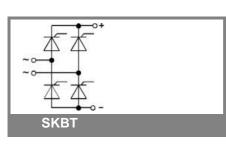
SKBT 28

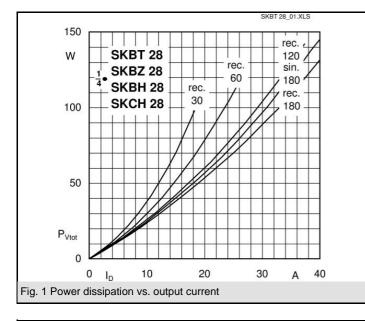
SEMIPONT[®] 1

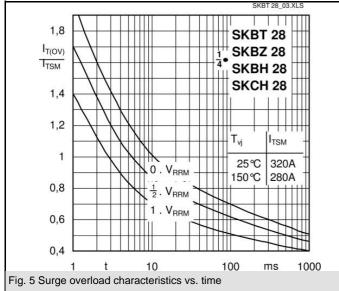
Controllable Bridge Rectifiers

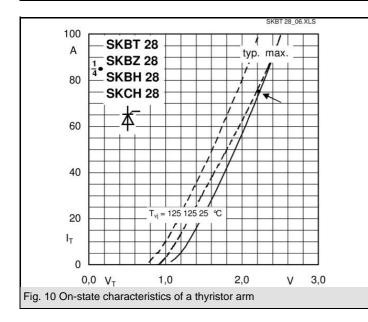
SKBT 28

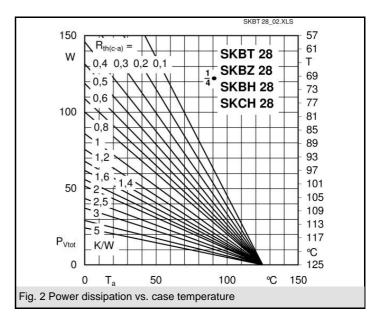

Features

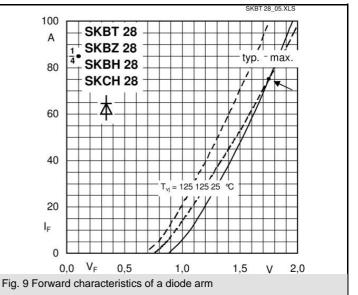
- Sturdy isolated metal baseplate
- · Fast-on terminals with solder tips
- Suitable for wave soldering
- High surge current rating
- UL recognized, file no. E 63 532

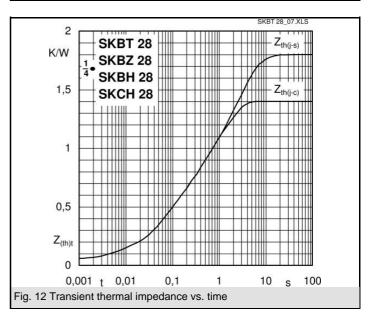

Typical Applications*

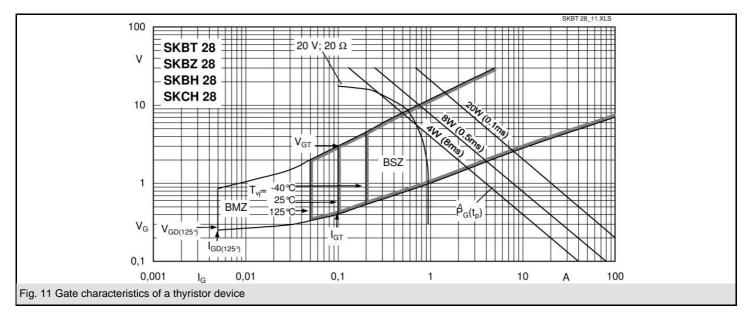

- Controllable single phase rectifierDC power supplies
- DC motor controllers
- DC motor field controllers
- 1) Painted metal shield of minimum 250 x 250 x 1 mm: R_{th(c-a)} = 1,85 K/W
- 2) Freely suspended or mounted on insulator

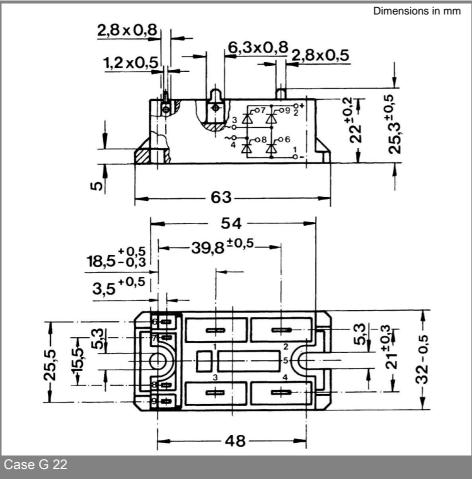

V _{RSM}	V _{RRM} , V _{DRM}	I _D = 28 A (fu	Il conduction)	
		(T _c = 89 °C)		
600	600	•	28/06	
800	800		SKBT 28/08	
1200			SKBT 28/12	
1400			SKBT 28/14	
Symbol	Conditions		Values	Units
I _D	T _c = 85 °C		30	Α
	T _a = 45 °C; chassis ¹⁾		13	A
	T _a = 45 °C; P5A/100		15	A
	T _a = 45 °C; P13A/125		16	A
	T _a = 45 °C; P1A/120		23	А
I_{TSM}, I_{FSM}	$_{SM}$, I_{FSM} T_{vj} = 25 °C; 10 ms		320	А
	T _{vj} = 125 °C; 10 ms		280	А
i²t	T _{vj} = 25 °C; 8,3 10 ms		510	A²s
	T _{vj} = 125 °C; 8,3 10 ms		390	A²s
V _T			1ax. 2,25	V
V _{T(TO)}) T _{vj} = 125 °C;		max. 1	V
r _T	T _{vj} = 125 °C		max. 16	mΩ
I _{DD} ; I _{RD}	$T_{vj} = 125 \text{ °C}; V_{DD} = V_{DRM};$	V _{RD} = V _{RRM}	max. 8	mA
t _{gd}	T _{vj} = 25 °C; I _G = 1 A; di _G /dt = 1 A/μs		1	μs
t _{gr}	$V_{D} = 0.67 \cdot V_{DRM}$		1	μs
(dv/dt) _{cr}	$t/dt)_{cr}$ $T_{vj} = 125 \ ^{\circ}C$		nax. 500	V/µs
(di/dt) _{cr}	T _{vj} = 125 °C; f = 50 Hz		max. 50	A/µs
t _q	T _{vj} = 125 °C; typ.		80	μs
I _H	T _{vj} = 25 °C; typ. / max.		50 / 150	mA
I _L	T_{vj} = 25 °C; R_G = 33 Ω	1	00 / 300	mA
V _{GT}	T _{vi} = 25 °C; d.c.		min. 2	V
I _{GT}	T _{vi} = 25 °C; d.c.	r	min. 100	mA
V_{GD}	T _{vj} = 125 °C; d.c.	n	nax. 0,25	V
I _{GD}	T _{vj} = 125 °C; d.c.		max. 3	mA
R _{th(j-c)}	per thyristor / diode		1,8	K/W
	total		0,45	K/W
R _{th(c-s)}	total		0,1	K/W
R _{th(j-a)}	total ²⁾		15	K/W
T _{vj}		- 4	0 + 125	°C
T _{stg}		- 4	0 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1	nin. 360	00 (3000)	V
M _s	case to heatsink		2	Nm
M _t			n.a.	Nm
m			66	g
Case	SKBT		G 22	




SKBT 28







© by SEMIKRON

17-01-2005 SCT

SKBT 28

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.