

AN-1147 LM2651_EVAL 1.5A High Efficiency Synchronous Switching Regulator Evaluation Board

1 Introduction

The LM2651 switching regulator provides high efficiency power conversion over a 100:1 load range (1.5A to 15mA). This feature makes the LM2651 an ideal fit in battery powered applications.

Synchronous rectification and 75 m Ω internal switches provide up to 97% efficiency. At light loads, the LM2651 enters a low power hysteretic or sleep mode to keep the efficiency high. In many applications, the efficiency still exceeds 80% at 15 mA load.

A shutdown pin is available to disable the LM2651 and reduce the supply current to 7 μ A. The IC contains patented current sensing circuitry for current mode control. This feature eliminates the external current sensing required by other current mode DC to DC converters. The IC has a 300kHz fixed frequency internal oscillator. The high oscillator frequency allows the use of extremely small, low profile components.

The evaluation board can be obtained by ordering part number LM2651_EVAL from your local Texas Instruments sales office, or TI website at www.ti.com.

2 Evaluation Board Design

The evaluation board is designed to supply 1.8V, 2.5V, 3.3V or adjustable output voltages at 15 mA up to 1.5A. The evaluation board comes with a design to supply an output voltage of 2.5V with input voltage range of 4V to 14V and output current range of 15 mA to 1.5A. The design can easily be modified to provide other output voltage using Equation 1 to change the ratio of the feedback resistors R1 and R2:

$$R1 = R2\left(\frac{V_{\text{OUT}}}{1.238} - 1\right) \tag{1}$$

The feedback resistors should not be made arbitrarily large as this would create a high impedance node at the feedback pin that is more susceptible to noise. A combined value of 50 k Ω for the two resistors is adequate.

Components were selected based on the design procedure in the LM2651 datasheet. PCB layout is critical to reduce noise and ensure specified performance for any power supply design. To minimize the parasitic inductance in the loop of input capacitors and the internal MOSFETs, connect the capacitors to $V_{\rm IN}$ and PGND pins with short and wide traces. This is important because the rapidly switching current, together with wiring inductance can generate large voltage spikes that may cause noise problems. Locate the feedback resistors close to the IC and keep the feedback trace as short as possible. Do not run any feedback traces near the switch node and keep away from the flux field of the inductor. The schematic is shown in Figure 1. The parts list of the design is shown in Table 1. The pictorial representations of the layout top, bottom and silkscreen layers are shown at the end of this application note.

When an undervoltage situation occurs, the output voltage can be pulled below ground as the inductor current is reversed through the synchronous FET. For applications which need to be protected from a negative voltage, a clamping diode D2 is recommended. When used, D2 should be connected cathode to V_{OUT} and anode to ground. A diode rated for a minimum of 2A is recommended.

All trademarks are the property of their respective owners.

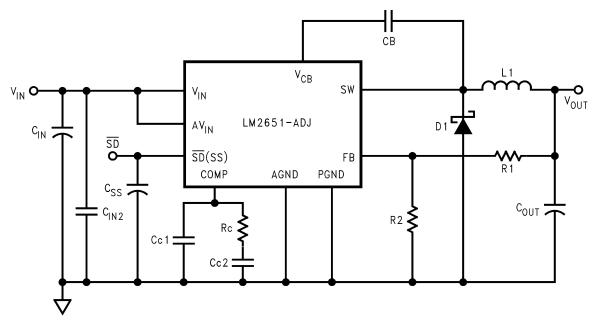


Figure 1. LM2651_EVAL Schematic for Adjustable Voltage

Ref Designator	Part Description	Part Number
U1	IC LM2651MTC-ADJ	LM2651MTC-ADJ
L1	Inductor	Coilcraft DO3316P-223
CIN	Tan Cap 100 μF 16V 10% Size = D	Vishay 594D107X0016D2T
CSS	Cer Cap 4.7 nF 50V X7R 10% 1206	Vishay VJ1206Y472KXAMB
CC2	Cer Cap 100 pF 50V NPO 1206	Vishay VJ1206A101JXAMB
CC1	Cer Cap 2.2 nF 50V X7R 10% 1206	Vishay VJ1206Y222KXAMB
COUT	Tan Cap 120 μF 6.3V 10% Size = D	Vishay 594D127X06R3C2T
CIN2	Cer Cap 0.1 µF 50V X7R 10% 0805	Vishay VJ0805Y104KXAMB
СВ	Cer Cap 0.1 µF 50V X7R 10% 0805	Vishay VJ0805Y104KXAMB
R1	Res 20.0 kΩ 1/ ₈ W 1% 0805	Vishay CRCW08052002F
R2	Res 19.6 kΩ 1/4W 1/8 0805	Vishay CRCW08051962F
RC	Res 30.0 kΩ 1/2W 5% 0805	Vishay CRCW0805303J
D1	Schottky Diode 1A SMA	Motorola MBRA130LT3

Table 1. Bill of Materials

3 Operating the Evaluation Board

3.1 Setup

The LM2651_EVAL evaluation board comes ready to be tested. The only setup needed is connecting the input voltage to the V_{IN} and GND posts. The load and output are connected to the V_{OUT} post.

3.2 Operating Conditions

The input voltage to the LM2651 regulator must be within the range of 4V to 14V DC for proper operation. The device will not function properly with voltages below 4V and damage may occur if any voltage greater than 16V is applied. Refer to LM2651 1.5A High Efficiency Synchronous Switching Regulator (SNVS032) for all performance characteristics.

www.ti.com Layouts

4 Layouts

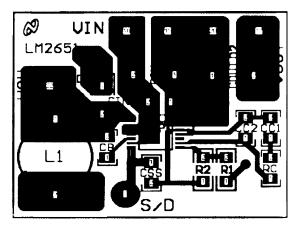


Figure 2. Layout Top Layer

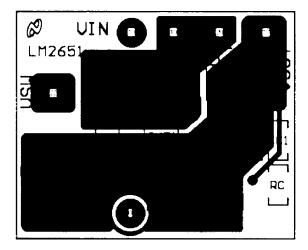


Figure 3. Layout Bottom Layer

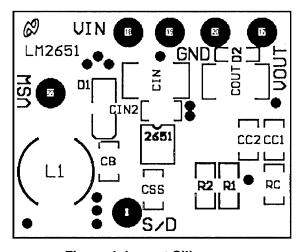


Figure 4. Layout Silkscreen

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>