November 2012

General Description

These P-Ch annel MOSFET enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching per formance, and withstand high energy pulse in the avalanche and commu tation mode. These devices are well suited for low voltage applications such as audio amplifier, high efficiency switching DC/DC converters, and DC motor control.

Application

Active Clamp Switch

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units	
V _{DS}	Drain to Source Voltage	-150	V	
V _{GS}	Gate to Source Voltage	±30	V	
	Drain Current -Continuous $T_C = 25^{\circ}C$	-3		
I _D	-Continuous T _C = 100°C	-1.8	Α	
	-Pulsed	-12		
P _D	Power Dissipation (Steady State) T _C = 25°C	42	W	
E _{AS}	Single Pulse Avalanche Energy (Note 5)	3.3	mJ	
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C	
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds	300	°C	
dv/dt	Peak Diode Recovery dv/dt (Note 2)	-5	V/ns	

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Note 1)	3.0	°C/M
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	60	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC2523P	FDMC2523P	MLP 3.3x3.3	13 "	13 " 12 mm	

FDMC2523P P-Channel QFET®

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
3Vnee	Drain to Source Breakdown Voltage	$I_{\rm D} = -250 \mu A V_{\rm CS} = 0 V$	-150			V
ABVDee	Breakdown Voltage Temperature					
ΔT_{J}	Coefficient	$I_D = -250\mu A$, referenced to 25°C		-138		mV/°C
	Zero Cato Valtago Drein Current	V _{DS} = -150V, V _{GS} = 0V			-1	
DSS	zero Gate voltage Drain Current	T _J = 125°C			-10	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100	nA
On Chara	acteristics					
	Gate to Source Threshold Voltage	$V_{22} = V_{22}$ $I_{2} = 250 \mu$	-3	-3.8	-5	V
GS(th)	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = -230 \mu A$	-5	-5.0	-0	v
$\frac{\Delta V_{GS(th)}}{\Delta T_1}$	Temperature Coefficient	I_D = -250µA, referenced to 25°C		6		mV/°C
<u> </u>		V _{GS} = -10V. I _D = -1.5A		1.1	1.5	Ω
DS(on)	Static Drain to Source On Resistance	$V_{GS} = -10V$, $I_{D} = -1.5A$, $T_{1} = 125^{\circ}C$		2.0	3.6	
ĴFS	Forward Transconductance	$V_{\rm DS} = -40V, I_{\rm D} = -1.5A$ (Note 4)		1.4		S
ynamic	Characteristics			1	1	1
C _{iss}	Input Capacitance	$V_{D0} = -25V$ $V_{00} = 0V$		200	270	pF
C _{oss}	Output Capacitance	-f = 1MHz		60	80	pF
C _{rss}	Reverse Transfer Capacitance			10	15	pF
₹ _g	Gate Resistance	f = 1MHz	0.1	7.5	15	Ω
Switching	g Characteristics					
d(on)	Turn-On Delay Time			15	27	ns
	Rise Time	$V_{DD} = -75V, I_{D} = -3A$		11	20	ns
d(off)	Turn-Off Delay Time	$-V_{GS} = -10V, R_{GEN} = 25\Omega$		19	35	ns
f	Fall Time	(Note 3,4)		13	24	ns
כי	Total Gate Charge	V _{GS} = -10V		6.2	9	nC
2 _{as}	Gate to Source Gate Charge	V _{DD} = -75V		1.4		nC
)	Gate to Drain "Miller" Charge	$-I_{\rm D} = -3A$		33		nC
∡ga		(Note 3,4)		0.0		no
Drain-So	urce Diode Characteristics					
9	Maximum continuous Drain - Source Diod	le Forward Current			-3	Α
SM	Maximum Pulse Drain - Source Doide For	ward Current			-12	Α
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_{S} = -3.0A$		-1.8	-5	V
	Reverse Recovery Time	$I_{\rm E} = -3.0$ A, di/dt = 100A/µs		93		ns
 כיי	Reverse Recovery Charge	(Note 3)		0.27		nC
otes:	Im of the junction-to-case and case-to- ambient thermal re- inteed by design while R _{ACA} is determined by the user's bo	sistance where the case thermal reference is defined bard design.	d as the solo	der mounting	surface of th	e drain pin
otes: R _{θJA} is the su R _{θ IC} is guara		ů				
otes: $R_{\theta JA}$ is the su $R_{\theta JC}$ is guara						
otes: : $R_{\theta JA}$ is the su $R_{\theta JC}$ is guara		inted on the second				
otes: : R _{θJA} is the sւ R _{θJC} is guara	a. 60°C/W when mou	inted on 👘 b. coper 🖉	135°C/W wh minimum pa	en mounted d of 2 oz cop	on a per	
otes: : $R_{\theta JA}$ is the su $R_{\theta JC}$ is guara	a. 60°C/W when mou a 1 n ² pad of 2 oz o	inted on b. coper T	135°C/W wh minimum pa	en mounted d of 2 oz cop	on a per	
otes: : $R_{\theta JA}$ is the su $R_{\theta JC}$ is guara	a. 60°C/W when mou a 1 in ² pad of 2 oz o	inted on b.	135°C/W wh minimum pa	en mounted d of 2 oz cop	on a per	

- Pulse Test: Pulse Width < 300 us, Duty cycle < 2.0%.
 Essentially independent of operating temperature.
 E_{AS} of 3.3 mJ is based on starting T_J = 25 °C; P-ch: L = 3 mH, I_{AS} = -1.5 A, V_{DD} = -150 V, V_{GS} = -10 V.

FDMC2523P Rev.C5

www.fairchildsemi.com

Typical Characteristics T_J = 25°C unless otherwise noted

www.fairchildsemi.com

RECOMMENDED LAND PATTERN

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ **DEUXPEED**[®] Dual Cool™ **EcoSPARK**[®] EfficientMax™ ESBC™ F® Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT FAST® FastvCore™

F-PFS™ FRFET® Global Power ResourceSM GreenBridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ **ISOPLANAR™** Making Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC® OPTOPLANAR**[®]

PowerTrench[®] PowerXS^{TI} Programmable Active Droop™ QFET QS™ Quiet Series™ RapidConfigure™ ⊃™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SvncFET™

Sync-Lock™ SYSTEM GENERAL^{®*} TinyBoost™

TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyPWIr™ TranSiC™ TriFault Detect™ TRUECURRENT®∗ µSerDes™

UHC[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

FPS™

 A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition	
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.	
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.	
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.	

Rev. 164