J111 / J112 / J113 / MMBFJ111 / MMBFJ112 / MMBFJ112_SB51338 / MMBFJ113
N-Channel Switch

Features

• This device is designed for low level analog switching, sample and hold circuits and chopper stabilized amplifiers.
• Sourced from Process 51.
• Source & Drain are interchangeable.

Absolute Maximum Ratings* $T_a = 25^\circ C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DG}</td>
<td>Drain-Gate Voltage</td>
<td>35</td>
<td>V</td>
</tr>
<tr>
<td>V_{GS}</td>
<td>Gate-Source Voltage</td>
<td>-35</td>
<td>V</td>
</tr>
<tr>
<td>I_{GF}</td>
<td>Forward Gate Current</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>T_J, T_{stg}</td>
<td>Operating and Storage Junction Temperature Range</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

* These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:
1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics $T_a = 25^\circ C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>J111-113</td>
<td>*MMBFJ111-113</td>
</tr>
<tr>
<td>P_D</td>
<td>Total Device Dissipation</td>
<td>625</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>Derate above 25°C</td>
<td>5.0</td>
<td>2.8</td>
</tr>
<tr>
<td>R_{JUC}</td>
<td>Thermal Resistance, Junction to Case</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>R_{JUA}</td>
<td>Thermal Resistance, Junction to Ambient</td>
<td>357</td>
<td>556</td>
</tr>
</tbody>
</table>

* Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06".
Electrical Characteristics \(T_a = 25^\circ C \) unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(BV_{BR(GSS)})</td>
<td>Gate-Source Breakdown Voltage (I_G = -1.0 \mu A, V_{DS} = 0)</td>
<td>-35</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{GSS})</td>
<td>Gate Reverse Current (V_{GS} = -15V, V_{DS} = 0)</td>
<td></td>
<td>-1.0</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>(V_{GS(0ff)})</td>
<td>Gate-Source Cutoff Voltage (V_D = 5.0V, I_D = 1.0 \mu A)</td>
<td>111</td>
<td>-3.0</td>
<td></td>
<td>-10</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>112</td>
<td>-1.0</td>
<td></td>
<td>-5.0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMBFJ112_SB51338</td>
<td>-3.0</td>
<td></td>
<td>-5.0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>113</td>
<td>-0.5</td>
<td></td>
<td>-3.0</td>
<td>V</td>
</tr>
<tr>
<td>(I_{D(0ff)})</td>
<td>Drain Cutoff Leakage Current (V_D = 5.0V, V_{GS} = -10V)</td>
<td>113</td>
<td></td>
<td></td>
<td>1.0</td>
<td>nA</td>
</tr>
</tbody>
</table>

On Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{DSS})</td>
<td>Zero-Gate Voltage Drain Current* (V_D = 15V, I_G = 0)</td>
<td>111</td>
<td>20</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>112</td>
<td>5.0</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>113</td>
<td>2.0</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(r_{DS(on)})</td>
<td>Drain-Source On Resistance (V_D \leq 0.1V, V_{GS} = 0)</td>
<td>111</td>
<td>30</td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>112</td>
<td>50</td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>113</td>
<td>100</td>
<td></td>
<td>(\Omega)</td>
</tr>
</tbody>
</table>

Small Signal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{dg(on)})</td>
<td>Drain & Source Gate On Capacitance (V_D = 0, V_{GS} = 0, f = 1.0MHz)</td>
<td>28</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>(C_{s(on)})</td>
<td>Drain-Gate Off Capacitance (V_D = 0, V_{GS} = -10V, f = 1.0MHz)</td>
<td>5.0</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>(C_{s(off)})</td>
<td>Source-Gate Off Capacitance (V_D = 0, V_{GS} = -10V, f = 1.0MHz)</td>
<td>5.0</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

* Pulse Test: Pulse Width \(\leq 300 \mu s \), Duty Cycle \(\leq 3.0\% \)

Typical Performance Characteristics

![Common Drain-Source](image)

![Parameter Interactions](image)
Typical Performance Characteristics (continued)

Transfer Characteristics

-3-2-10
0
10
20
30
40
V - GATE-SOURCE VOLTAGE (V)

I - DRAIN CURRENT (mA)

V = - 3.0 V
GS(off)
25°C
125°C
- 55°C
V = 15 V
DS
V = - 2.0 V
GS(off)
25°C
125°C
- 55°C
125°C

Transfer Characteristics

-1.5-1-0.50
0
4
8
12
16
V - GATE-SOURCE VOLTAGE (V)

g - TRANSCONDUCTANCE (mmhos)

V = - 1.6 V
GS(off)
25°C
125°C
- 55°C
V = 15 V
DS
V = - 1.1 V
GS(off)
25°C
125°C
- 55°C
125°C

On Resistance vs Drain Current

12 5 1 0 2 0 5 0 1 0 0
10
20
50
100
I - DRAIN CURRENT (mA)

r - DRAIN "ON" RESISTANCE

V = - 7.0V
GS(off)
25°C
125°C
- 55°C
V TYP

Normalized Drain Resistance vs Bias Voltage

0 0.2 0.4 0.6 0.8 1
V /V - NORMALIZED GATE-SOURCE VOLTAGE (V)
r - NORMALIZED RESISTANCE

r =

1 - V
V
V
125°C
V @ 5.0V, 10μA
G G
G (Ω)

© 2012 Fairchild Semiconductor Corporation www.fairchildsemi.com
Typical Performance Characteristics (continued)

Transconductance vs Drain Current

Output Conductance vs Drain Current

Capacitance vs Voltage

Noise Voltage vs Frequency

Noise Voltage vs Current

Power Dissipation vs Ambient Temperature
Typical Performance Characteristics (continued)

Switching Turn-On Time vs Gate-Source Voltage

Switching Turn-Off Time vs Drain Current
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™
AccuPower™
AX/CAP™
BASIC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
CorePOWER®
CorePLUS®
Build it Now
BitSiC

F-FPS™
F-FET™
Global Power Resource™
GreenBridge™
Green FPS™
Green FPS™ e-Series™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™
Making Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MillerDrive™
MotionMax™
Motion-SPM™
mWSaver™
OptoHT™
OPTOLOGIC®
OPTOPLANAR®
PowerTrench™
PowerXS™
Programmable Active Droop™
QFET™
QS™
Quiet Series™
RapidConfigure™
Saving our world, 1mW/W/kg at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM™
STEALTH™
SuperFET®
SuperSOT-3
SuperSOT-6
SuperSOT-8
SupreMOS®
SyncFET™
Sync-Lock™

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

Rev. I61

© Fairchild Semiconductor Corporation www.fairchildsemi.com