Unipolar winding · Lead wire type

<table>
<thead>
<tr>
<th>Model number</th>
<th>Single shaft</th>
<th>Double shafts</th>
<th>Holding torque at 2-phase energization [N · m (oz · in) · MIN.]</th>
<th>Rated current A/phase</th>
<th>Wiring resistance Ω/phase</th>
<th>Winding inductance mH/phase</th>
<th>Rotor inertia [×10 kg · m² (oz · in)]</th>
<th>Mass (Weight) [kg (lbs)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>103H7121-0140/0110</td>
<td>0.39 (55.2)</td>
<td>1</td>
<td>4.8</td>
<td>8</td>
<td>0.1 (0.55)</td>
<td>0.47 (1.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103H7121-0440/0410</td>
<td>0.39 (55.2)</td>
<td>2</td>
<td>1.25</td>
<td>1.9</td>
<td>0.1 (0.55)</td>
<td>0.47 (1.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103H7121-0740/0710</td>
<td>0.39 (55.2)</td>
<td>3</td>
<td>0.6</td>
<td>0.8</td>
<td>0.1 (0.55)</td>
<td>0.47 (1.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103H7121-0710</td>
<td>0.83 (117.5)</td>
<td>2</td>
<td>1.6</td>
<td>3.8</td>
<td>0.21 (1.15)</td>
<td>0.65 (1.43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103H7121-0740/0710</td>
<td>0.83 (117.5)</td>
<td>3</td>
<td>0.77</td>
<td>1.58</td>
<td>0.21 (1.15)</td>
<td>0.65 (1.43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103H7124-0140/0110</td>
<td>0.98 (138.8)</td>
<td>1</td>
<td>7</td>
<td>14.5</td>
<td>0.245 (1.34)</td>
<td>0.8 (1.76)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103H7124-0440/0410</td>
<td>0.98 (138.8)</td>
<td>2</td>
<td>1.7</td>
<td>3.1</td>
<td>0.245 (1.34)</td>
<td>0.8 (1.76)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103H7124-0740/0710</td>
<td>0.98 (138.8)</td>
<td>3</td>
<td>0.74</td>
<td>1.4</td>
<td>0.245 (1.34)</td>
<td>0.8 (1.76)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103H7126-0140/0110</td>
<td>1.27 (179.8)</td>
<td>1</td>
<td>8.6</td>
<td>19</td>
<td>0.36 (1.97)</td>
<td>0.98 (2.16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103H7126-0440/0410</td>
<td>1.27 (179.8)</td>
<td>2</td>
<td>2</td>
<td>4.5</td>
<td>0.36 (1.97)</td>
<td>0.98 (2.16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103H7126-0740/0710</td>
<td>1.27 (179.8)</td>
<td>3</td>
<td>0.9</td>
<td>2.2</td>
<td>0.36 (1.97)</td>
<td>0.98 (2.16)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics diagram

103H7121-0140/0110

- **Constant current circuit**
 - Source voltage: DC24V · Operating current: 1A/phase,
 - \(J_s = (0.94 \times 10 \, \text{kg} \cdot \text{m}^2 / \text{in}^2) \cdot \text{use the rubber coupling} \)
 - \(f_s \): Maximum self-start frequency when not loaded

103H7121-0440/0410

- **Constant current circuit**
 - Source voltage: DC24V · Operating current: 2A/phase,
 - \(J_s = (0.94 \times 10 \, \text{kg} \cdot \text{m}^2 / \text{in}^2) \cdot \text{use the rubber coupling} \)
 - \(f_s \): Maximum self-start frequency when not loaded

103H7121-0740/0710

- **Constant current circuit**
 - Source voltage: DC24V · Operating current: 3A/phase,
 - \(J_s = (0.94 \times 10 \, \text{kg} \cdot \text{m}^2 / \text{in}^2) \cdot \text{use the rubber coupling} \)
 - \(f_s \): Maximum self-start frequency when not loaded

103H7123-0140/0110

- **Constant current circuit**
 - Source voltage: DC24V · Operating current: 1A/phase,
 - \(J_s = (0.94 \times 10 \, \text{kg} \cdot \text{m}^2 / \text{in}^2) \cdot \text{use the rubber coupling} \)
 - \(f_s \): Maximum self-start frequency when not loaded
P.53 General Specifications

Stepping Motor

Stepping motors with integrated drivers

Constant current circuit
Source voltage: DC24V - Operating current: 2A/phase, 2-phase energization (full-step)
Jₗ = [0.94 × 10⁻⁴ kg · m² (5.14 oz · in²) use the rubber coupling]
fs: Maximum self-start frequency when not loaded
Driving torque may vary according to actual machine precision.

P.6 The data are measured under the drive condition of our company.

Dimensions

Stepping motor for vacuum environment

Allowable load · Internal wiring · Rotation direction ▶ P.53 General Specifications ▶ P.54 Motor dimensions ▶ P.66 The data are measured under the drive condition of our company.

Driving torque may vary according to actual machine precision.