BD435, BD437, BD439, BD441

Plastic Medium-Power Silicon NPN Transistors

This series of plastic, medium-power silicon NPN transistors can be used for amplifier and switching applications.

Features

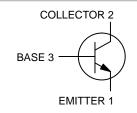
- Complementary Types are BD438 and BD442
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS

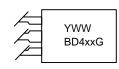
Rating	Symbol	Value	Unit
Collector–Emitter Voltage BD435 BD437 BD439 BD441	V _{CEO}	32 45 60 80	Vdc
Collector–Base Voltage BD435 BD437 BD439 BD441	V _{CBO}	32 45 60 80	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current	I _C	4.0	Adc
Base Current	Ι _Β	1.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	36 288	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	3.5	°C/W

ON Semiconductor®


http://onsemi.com

4.0 AMPERES POWER TRANSISTORS NPN SILICON

MARKING DIAGRAM

BD4xx = Device Code

xx = 35, 37, 37T, 39, 41

Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
BD435G	TO-225 (Pb-Free)	500 Units/Box
BD437G	TO-225 (Pb-Free)	500 Units/Box
BD437TG	TO-225 (Pb-Free)	50 Units/Rail
BD439G	TO-225 (Pb-Free)	500 Units/Box
BD441G	TO-225 (Pb-Free)	500 Units/Box

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

BD435, BD437, BD439, BD441

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Collector–Emitter Breakdown Voltage ($I_C = 100 \text{ mA}, I_B = 0$) BD435 BD437 BD439 BD441	V _(BR) CEO	32 45 60 80	- - - -	- - - -	Vdc
Collector–Base Breakdown Voltage (I _C = 100 μA, I _B = 0) BD435 BD437 BD439 BD441	V _(BR) CBO	32 45 60 80	- - - -	- - - -	Vdc
Emitter-Base Breakdown Voltage $(I_E = 100 \mu A, I_C = 0)$	V _{(BR)EBO}	5.0	-	-	Vdc
Collector Cutoff Current $(V_{CB} = 32 \text{ V}, I_E = 0)$ BD435 $(V_{CB} = 45 \text{ V}, I_E = 0)$	Ісво	-	_	0.1	mAdc
BD437 (V _{CB} = 60 V, I _E = 0) BD439 (V _{CB} = 80 V, I _E = 0)		-	-	0.1 0.1	
(V _{CB} = 80 V, I _E = 0) BD441		-	-	0.1	
Emitter Cutoff Current (V _{EB} = 5.0 V)	I _{EBO}	-	-	1.0	mAdc
DC Current Gain (I _C = 10 mA, V _{CE} = 5.0 V) BD435 BD437 BD439 BD441	h _{FE}	40 30 20 15	- - -	- - -	-
DC Current Gain (I _C = 500 mA, V _{CE} = 1.0 V) BD435 BD437 BD439, BD441	h _{FE}	85 85 40	- - -	475 375 475	-
DC Current Gain (I _C = 2.0 A, V _{CE} = 1.0 V) BD435 BD437 BD439 BD441	h _{FE}	50 40 25 15	- - - -	- - - -	-
Collector Saturation Voltage ($I_C = 2.0 \text{ A}, I_B = 0.2 \text{ V}$) BD435 ($I_C = 3.0 \text{ A}, I_B = 0.3 \text{ A}$) BD437, BD439, BD441	V _{CE(sat)}	-	-	0.5 0.8	Vdc
Base–Emitter On Voltage (I _C = 2.0 A, V _{CE} = 1.0 V)	V _{BE(on)}	_	_	1.1	Vdc
Current–Gain – Bandwidth Product (V _{CE} = 1.0 V, I _C = 250 mA, f = 1.0 MHz)	f _T	3.0	_	_	MHz

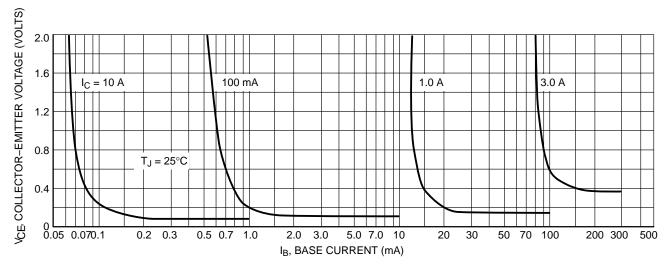


Figure 1. Collector Saturation Region

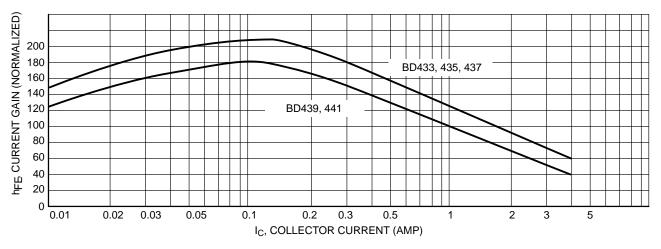


Figure 2. Current Gain

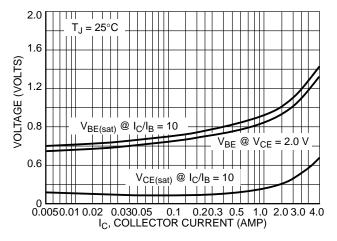


Figure 3. "On" Voltage

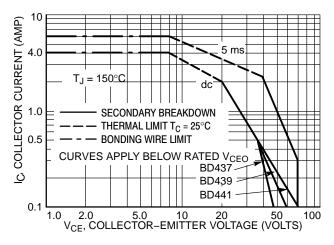
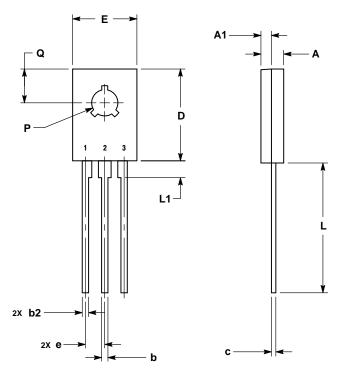



Figure 4. Active Region Safe Operating Area

BD435, BD437, BD439, BD441

PACKAGE DIMENSIONS

TO-225 CASE 77-09 ISSUE AA

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. NUMBER AND SHAPE OF LUGS OPTIONAL.

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.40	3.00	
A1	1.00	1.50	
b	0.60	0.90	
b2	0.51	0.88	
С	0.39	0.63	
D	10.60	11.10	
Е	7.40	7.80	
е	2.04	2.54	
L	14.50	16.63	
L1	1.27	2.54	
P	2.90	3.30	
Q	3.80	4.20	

STYLE 1:

PIN 1. EMITTER

COLLECTOR

3. BASE

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opport

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Ca

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

N. American Technical Support: 800-282-9855 Toll Free

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative