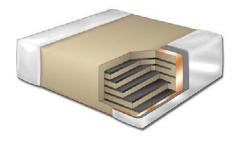

Commercial Off-the-Shelf (COTS) for Higher Reliability Applications, X7R Dielectric, 6.3 – 250 VDC

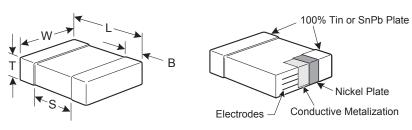

Overview

KEMET's COTS program is an extension of KEMET knowledge of high reliability test regimes and requirements. KEMET regularly supplies "up-screened" products by working with customer drawings and imposing specified design and test requirements. The COTS program offers the same high quality and high reliability components as up-screened products, but at a lower cost to the customer. This is accomplished by eliminating the need for customer-specific drawings to achieve the reliability level required for customer applications. A series of tests and inspections have been selected to provide the accelerated conditioning and 100% screening necessary to eliminate infant mortal failures from the population.

KEMET's X7R dielectric features a 125°C maximum operating temperature and is considered "temperature stable." The Electronics Components, Assemblies & Materials Association (EIA) characterizes X7R dielectric as a Class II material. Components of this classification are fixed, ceramic dielectric capacitors suited for bypass and decoupling applications or for frequency discriminating circuits where Q and stability of capacitance characteristics are not critical. X7R exhibits a predictable change in capacitance with respect to time and voltage and boasts a minimal change in capacitance with reference to ambient temperature. Capacitance change is limited to ±15% from -55°C to +125°C.

All COTS testing includes voltage conditioning and post-electrical testing as per MIL–PRF–55681. For enhanced reliability, KEMET also provides the following test level options and conformance certifications:

Ordering Information


C	1210	T	104	K	5	R	Α	С	TU
Ceramic	Case Size (L" x W")	Specification/ Series	Capacitance Code (pF)	Capacitance Tolerance	Voltage	Dielectric	Failure Rate/Design	Termination Finish ¹	Packaging/Grade (C-Spec) ²
	0402 0603 0805 1206 1210 1812 2220	T = COTS	2 Significant Digits + Number of Zeros	J = ±5% K = ±10% M = ±20%	9 = 6.3 V 8 = 10 V 4 = 16 V 3 = 25 V 5 = 50 V 1 = 100 V 2 = 200 V	R = X7R	A = Testing per MIL-PRF- 55681 PDA 8% B= Testing per MIL-PRF- 55681 PDA 8%, DPA per EIA-469 C = Testing per MIL-PRF- 55681 PDA 8%, DPA per EIA- 469, Humidity per MIL-STD-202, Method 103, Condition A	C = 100% Matte Sn L = SnPb (5% minimum)	Blank = Bulk TU = 7" Reel Unmarked TM = 7" Reel Marked

¹ Additional termination finish options may be available. Contact KEMET for details.

² Additional reeling or packaging options may be available. Contact KEMET for details.

Dimensions – Millimeters (Inches)

EIA Size Code	Metric Size Code	L Length	W Width	T Thickness	B Bandwidth	S Separation Minimum	Mounting Technique
0402	1005	1.00 (.040) ± 0.05 (.002)	0.50 (.020) ± 0.05 (.002)		0.30 (.012) ± 0.10 (.004)	0.30 (.012)	Solder Reflow Only
0603	1608	1.60 (.063) ± 0.15 (.006)	0.80 (.032) ± 0.15 (.006)		0.35 (.014) ± 0.15 (.006)	0.70 (.028)	
0805	2012	2.00 (.079) ± 0.20 (.008)	1.25 (.049) ± 0.20 (.008)		0.50 (0.02) ± 0.25 (.010)	0.75 (.030)	Solder Wave or Solder Reflow
1206	3216	3.20 (.126) ± 0.20 (.008)	1.60 (.063) ± 0.20 (.008)	See Table 2 for Thickness	0.50 (0.02) ± 0.25 (.010)		
1210¹	3225	3.20 (.126) ± 0.20 (.008)	2.50 (.098) ± 0.20 (.008)	1	0.50 (0.02) ± 0.25 (.010)	N/A	
1812	4532	4.50 (.177) ± 0.30 (.012)	3.20 (.126) ± 0.30 (.012)		0.60 (.024) ± 0.35 (.014)	IN/A	Solder Reflow Only
2220	5650	5.70 (.224) ± 0.40 (.016)	5.00 (.197) ± 0.40 (.016)		0.60 (.024) ± 0.35 (.014)		

¹ For capacitance values ≥ 12 μ F add 0.02 (0.001) to the width tolerance dimension

Benefits

- -55°C to +85°C operating temperature range
- Pb-Free and RoHS Compliant
- Voltage conditioning and post-electrical testing per MIL–PRF– 55681
- Destructive Physical Analysis (DPA) per EIA–469
- Biased humidity testing (85/85) per MIL–STD–202
- · Certificate of Compliance
- Temperature stable dielectric
- EIA 0402, 0603, 0805, 1206, 1210, 1812, and 2220 case sizes

- DC voltage ratings of 6.3 V, 10 V, 16 V, 25 V, 50 V, 100 V, 200 V, and 250 V
- Capacitance offerings ranging from 10 pF to 22 μF
- Available capacitance tolerances of ±5%, ±10%, and ±20%
- Non-polar device, minimizing installation concerns
- 100% pure matte tin-plated termination finish allowing for excellent solderability
- SnPb termination finish option available upon request (5% minimum)

Applications

Typical applications include military, space quality and high reliability electronics.

Qualification/Certification

Commercial Grade products are subject to internal qualification. Details regarding test methods and conditions are referenced in Table 4, Performance & Reliability.

Environmental Compliance

Pb-Free and RoHS Compliant (excluding SnPb termination finish option).

Electrical Parameters/Characteristics

Item	Parameters/Characteristics
Operating Temperature Range	-55°C to +125°C
Capacitance Change with Reference to +25°C and 0 VDC Applied (TCC)	±15%
Aging Rate (Maximum % Capacitance Loss/Decade Hour)	3.0%
Dielectric Withstanding Voltage (DWV)	250% of rated voltage (5 ±1 seconds and charge/discharge not exceeding 50 mA)
Dissipation Factor (DF) Maximum Limit @ 25°C	5% (6.3 and 10 V), 3.5% (16 and 25 V) and 2.5% (50 V to 250 V)
Insulation Resistance (IR) Limit @ 25°C	See Insulation Resistance Limit Table (Rated voltage applied for 120 ±5 seconds @ 25°C)

Regarding aging rate: Capacitance measurements (including tolerance) are indexed to a referee time of 1,000 hours.

To obtain IR limit, divide $M\Omega$ - μ F value by the capacitance and compare to $G\Omega$ limit. Select the lower of the two limits.

Capacitance and dissipation factor (DF) measured under the following conditions:

1 kHz ± 50 Hz and 1.0 ± 0.2 Vrms if capacitance $\leq 10 \ \mu F$

120 Hz \pm 10 Hz and 0.5 \pm 0.1 Vrms if capacitance > 10 μ F

Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 and Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON."

Post Environmental Limits

	High Temperatu	ıre Life, Biased	Humidity, Moist	ture Resistance	
Dielectric	Rated DC Voltage	Capacitance Value	Dissipation Factor (Maximum %)	Capacitance Shift	Insulation Resistance
	> 25		3.0		
X7R	16/25	All	5.0	±20%	10% of Initial Limit
	< 16		7.5		

Insulation Resistance Limit Table

EIA Case Size	1,000 Megohm Microfarads or 100 GΩ	500 Megohm Microfarads or 10 GΩ
0201	N/A	ALL
0402	< 0.012 µF	≥ 0.012 µF
0603	< 0.047 µF	≥ 0.047 µF
0805	< 0.047 µF	≥ 0.047 µF
1206	< 0.22 µF	≥ 0.22 µF
1210	< 0.39 µF	≥ 0.39 µF
1808	ALL	N/A
1812	< 2.2 µF	≥ 2.2 µF
1825	ALL	N/A
2220	< 10 µF	≥ 10 µF
2225	ALL	N/A

Table 1A – Capacitance Range/Selection Waterfall (0402 – 1206 Case Sizes)

		S	erie	S		C	040	2				С	060	13						CO	305							C12	206			
Capacitance	Cap	Vol	tage C	ode	9	8	4	3	5	9	8	4	3	5	1	2	9	8	4	3	5	1	2	Α	9	8	4	3	5	1	2	Α
Capacitance	Code	Vo	ltage	DC	6.3	2	16	25	20	6.3	9	16	25	20	100	200	6.3	9	16	25	20	100	200	250	6.3	9	16	25	20	100	200	250
			oacita oleran																													
10-91 pF	100-910	J	K	М	ВВ	ВВ	ВВ	ВВ	ВВ	СВ	СВ	СВ	СВ	СВ	СВ	СВ	DC	DC	DC	DC	DC	DC	DC		EB	EB	EB	EB	EB	EB	EB	
100 - 150 pF 180 - 820 pF	101-151 181-820	J	K	M	BB BB	BB BB																		DC								
1,000 pF	101-020	J	K	M	BB	BB																										FB
1,200 pF	122	Ĵ	K	M	BB	BB	BB	BB	BB	СВ	СВ	СВ	СВ	СВ	СВ	СВ	DC	DC	DC	DC	DC	DC	DC	DC	EB	EB	EB	EB	EB	EB	EB	EB
1,500 pF	152	J	K	М	ВВ	ВВ	ВВ	ВВ	ВВ	СВ	СВ	СВ	СВ	СВ	СВ	СВ	DC	DC	DC	DC	DC	DC	DC	DC	EB	EB	EB	EB	EB	EB	EB	EB
1,800 pF	182	J	K	M					BB									DC	DC	DC		DC		1			1			1		
2,200 pF	222	J	K																1					1		1	1					
2,700 pF 3,300 pF	272 332	J	K																1					1			1					
3,900 pF	392	J	K M BB BB BB BB CB CD CD CD CD CD <td>_</td> <td>_</td> <td></td> <td></td>						_	_																						
4,700 pF	472	Ĵ		M BB BB BB BB CB CB CB CB CB CB CD DC DC </td <td>EB</td>						EB																						
5,600 pF	562	J	K	М	ВВ	ВВ	B																									
6,800 pF	682	J				BB			ВВ		Product Availability and Chip Thickness Codes																					
8,200 pF	822	J																_								_			_			
10,000 pF	103	J														CB			1					1		1	1					
12,000 pF 15,000 pF	123 153	J						1											1					1			1					
18,000 pF	183	Ĵ													-				1					1		1	1					
22,000 pF	223	J																	1							1	1			1	1	
27,000 pF	273	J	K	М	ВВ	ВВ	ВВ	ВВ		СВ	СВ	СВ	СВ	СВ	СВ		DC	DC	DC	DC	DC	DD	DE		EB	EB	EB	EB	EB	EB	EB	EB
33,000 pF	333	J																														
39,000 pF	393	J																														
47,000 pF	473 563	J J						BB							CB																	
56,000 pF 68,000 pF	683	J																					טט			_		_	_			
82,000 pF	823	Ĵ																								1	1					
0.10 µF	104	J	K	М	ВВ												DC	DC	DC						EB	1	1			1		EM
0.12 µF	124	J	K	M	ļ					СВ	СВ	СВ	СВ	СВ			DC	DC	DC	DC	DD	DG			EC	EC	EC	EC	EC	EC	EG	
0.15 µF	154	J	K								_			СВ				-	_			_				_	_	_	_	_	EG	
0.18 µF	184	J	K																													
0.22 μF 0.27 μF	224 274	J	K										CB									DG						1				
0.27 µF	334	Ĵ	K																													
0.39 µF	394	J	K		l																											
0.47 µF	474	J	K	М						СВ	СВ	СВ					DD	DD	DD	DD	DE				EC	EC	EC	EC	EC	EG		
0.56 µF	564	J	K		l																					1	1					
0.68 µF	684	J	K														1				DH					1	1					
0.82 μF 1.0 μF	824 105	J	K	M															1							1	1					
1.0 µF	125	J	K	M																20							_		_			
1.5 µF	155	J	K	M																												
1.8 µF	185	J	K	М																												
2.2 µF	225	J	K	М													DG	DG	DG													
2.7 µF	275	J	K	M																												
3.3 μF 3.9 μF	335 395	J	K	M																												
3.9 μF 4.7 μF	475	, i	K	M																												
5.6 µF	565	Ĵ	K	M	l																											
6.8 µF	685	J	K	М																					EH	EH	EH					
8.2 µF	825	J	K	М																					EH							
10 μF	106	J	K	M	8		60	ın	0	က	0	60	ις.		0	9	3	0	ω	LC.		9	0	9	EH	_	EH	LC.		0	9	.0
Canacitanas	Сар	<u> </u>	ltage		6.3	e	9 4	3 2	0 <u>C</u>	6.3	9	9	3	<u>S</u>	0 1	200	6.3	8	<u>9</u>	3	0 <u>c</u>	100	200		6.3	8	9 4	3	0 <u>c</u>	_	2	A 250
Capacitance	Code		tage C		9	8			J	9	ď	4			1		y	ď	4			1	2	Α	9	ď	4			1		А
		'	Series	5			040						060	ა						CO	505							U12	206			

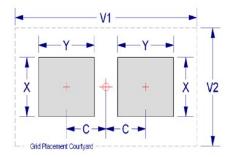
Table 1B - Capacitance Range/Selection Waterfall (1210 - 2220 Case Sizes)

		5	Serie	S				C1:	210					(C181	2			C1	825			(C222	20	
Consoitones	Cap	Vol	tage C	ode	9	8	4	3	5	1	2	A	3	5	1	2	Α	5	1	2	Α	3	5	1	2	Α
Capacitance	Code	Vo	ltage l	DC	6.3	9	9	25	20	100	200	250	25	20	9	200	250	20	190	200	250	25	20	100	200	250
			pacita									roduc	t Ava	ilabili	ty and	Chip	Thic	kness	Cod	es						
40.04.5	100.010		leran		ED.	-FD	ED		ED	ED	ED	See 7	able	2 for (Chip T	hickn	ess E	imen	sions	3						
10 - 91 pF 100 - 390 pF	100-910 101-391	J	K K	M M	FB FB																					
470 - 820 pF	471-821	J	K	M	FB		GB	GB	GB	GB																
560 pF	561	Ĵ	K	M	FB		GB	GB	GB	GB																
680 pF	681	J	K	М	FB		GB	GB	GB	GB																
820 pF	821	J	K	M	FB		GB	GB	GB	GB																
1,000 pF	102	J	K	M	FB		GB	GB	GB	GB																
1,200 pF	122	J	K	M	FB		GB	GB	GB	GB																
1,500 pF	152	J	K	M	FB FB	FB	FB FB	FB FB	FB	FB	FE FE		GB GB	GB	GB	GB GB										
1,800 pF 2,200 pF	182 222	J	K	M	FB	FB FB	FB	FB	FB FB	FB FB	FB	FB	GB	GB GB	GB GB	GB										
2,700 pF	272	J	K	M	FB	GB	GB	GB	GB																	
3,300 pF	332	Ĵ	K	M	FB	GB	GB	GB	GB																	
3,900 pF	392	J	K	М	FB	GB	GB	GB	GB																	
4,700 pF	472	J	K	M	FB	GB	GB	GB	GD																	
5,600 pF	562	J	K	М	FB	GB	GB	GB	GH						1											
6,800 pF	682	J	K	M	FB	GB	GB	GB	GB	GB					JE	JE	JE									
8,200 pF	822	J	K	M	FB	GB	GB	GB	GB	GB					JE	JE	JE									
10,000 pF 12,000 pF	103 123	J	K K	M	FB FB	GB GB	GB GB	GB GB	GB GB	GB GB					JE JE	JE JE	JE JE									
15,000 pF	153	J	K	M	FB	GB	GB	GB	GB	GB					JE	JE	JE									
18,000 pF	183	Ĵ	K	M	FB	GB	GB	GB	GB	GB					JE	JE	JE									
22,000 pF	223	J	K	M	FB	GB	GB	GB	GB	GB	НВ	НВ	НВ	НВ	JE	JE	JE									
27,000 pF	273	J	K	M	FB	GB	GB	GB	GB	GB	НВ	НВ	НВ	НВ	JE	JE	JE									
33,000 pF	333	J	K	M	FB	GB	GB	GB	GB	GB	НВ	НВ	HB	HB	JB	JB	JB									
39,000 pF	393	J	K	M	FB	GB	GB	GB	GB	GB	НВ	НВ	НВ	НВ	JB	JB	JB									
47,000 pF	473	J	K	M	FB	GB	GB	GB	GB	GB	HB	HB	HB	HB	JB	JB	JB									
56,000 pF	563 683	J	K K	M M	FB	FB FB	FB FB	FB FB	FB FB	FB FB	FC FC	FC FC	GB GB	GB GB	GB GB	GB GB	GB GB	HB HB	HB HB	HB HB	HB HB	JB JB	JB JB	JB JB		
68,000 pF 82,000 pF	823	J	K	M	FB FB	FB	FB	FB	FB	FC	FF	FF	GB	GB	GB	GB	GB	нв НВ	НВ	НВ	НВ	JB	JB	JC	JC	JC
0.10 µF	104	J	K	M	FB	FB	FB	FB	FB	FD	FG	FG	GB	GB	GB	GB	GB	НВ	HB	НВ	HB	JB	JB	JC	JC	JC
0.12 µF	124	J	K	M	FB	FB	FB	FB	FB	FD			GB	GB	GB	GB	GB	НВ	НВ	НВ	НВ	JB	JB	JC	JC	JC
0.15 µF	154	J	K	M	FC	FC	FC	FC	FC	FD			GB	GB	GB	GE	GE	НВ	НВ	НВ	НВ	JB	JB	JC	JC	JC
0.18 µF	184	J	K	M	FC	FC	FC	FC	FC	FD			GB	GB	GB	GG	GG	НВ	НВ	HB	HB	JB	JB	JC	JC	JC
0.22 µF	224	J	K	M	FC	FC	FC	FC	FC	FD			GB	GB	GB	GG	GG	НВ	НВ	HB	HB	JB	JB	JC	JC	JC
0.27 µF	274	J	K	M	FC	FC	FC	FC	FC	FD			GB	GB	GG	GG	GG	HB	HB	HB	HB	JC	JC	JC	JC	JC
0.33 μF 0.39 μF	334 394	J J	K K	M	FD FD	FD FD	FD FD	FD FD	FD FD	FD FD			GB GB	GB GB	GG	GG GG	GG	HB HD	HB	HB	HB	JC	JC	JC	JC	JC
0.47 μF	474	J	K	M	FD	FD	FD	FD	FD	FD			GB	GB	GG	GJ	GJ	HD	HD	HD	HD	JC	JC	JC	JC	JC
0.56 µF	564	Ĵ	K	M	FD	FD	FD	FD	FD	FF			GC	GC	GG			HD	HD	HD	HD	JC	JD	JD	JD	JD
0.68 µF	684	J	K	М	FD	FD	FD	FD	FD	FG			GC	GC	GG			HD	HD	HD	HD	JC	JD	JD	JD	JD
0.82 µF	824	J	K	M	FF	FF	FF	FF	FF	FL			GE	GE	GG			HF	HF	HF	HF	JC	JF	JF	JF	JF
1.0 µF	105	J	K	M	FH	FH	FH	FH	FH	FM			GE	GE	GG			HF	HF	HF	HF	JC	JF	JF	JF	JF
1.2 μF 1.5 μF	125 155	J	K	M	FH	FH FH	FH FH	FH FH	FG FG													JC	JC			
1.5 µF 1.8 µF	185	J	K	M	FH FH	FH	FH	FH	FG													JD	JD			
2.2 µF	225	J	K	M	FJ	FJ	FJ	FJ	FG				GO	GO				l				JF	JF			
2.7 µF	275	J	K	M	FE	FE	FE	FG	FH					-				l				1				
3.3 µF	335	J	K	М	FF	FF	FF	FM	FM													1				
3.9 µF	395	J	K	M	FG	FG	FG	FG	FK																	
4.7 μF	475	J	K	M	FC	FC	FC	FG	FS				GK	GK								JF	JF			
5.6 μF 6.8 μF	565 685	J	K K	M	FF FG	FF FG	FF FG	FH																		
8.2 µF	825	J	K	M	FH	FH	FH	FM FK																		
0.2 μ1 10 μF	106	J	K	M	FH	FH	FH	FS					GK									JF	JO			
15 µF	156	J	K	M																		JO				
22 μF	226	J	K	М	FS	FS																JO				
		Vo	ltage l	DC	6.3	9	16	25	50	100	200	250	25	50	100	200	250	50	100	200	250	25	50	100	200	250
Capacitance	Cap	Vol	tage C	ode	9	8	4	3	5	1	2	Α	3	5	1	2	Α	5	1	2	Α	3	5	1	2	Α
'	Code		Series						210				\vdash		C1812			\vdash		825		t		C222		
			061168	<u>, </u>				<u> </u>	£ 10				Щ_		J 10 12			<u> </u>	UI	023				UZZZ	<u> </u>	

Table 2 – Chip Thickness/Packaging Quantities

Thickness	Case	Thickness ±	Paper G	Quantity	Plastic (Quantity
Code	Size	Range (mm)	7" Reel	13" Reel	7" Reel	13" Reel
BB CB CF DE DC	0402 0603 0603 0805 0805	0.50 ± 0.05 0.80 ± 0.07 0.80 ± 0.07 0.70 ± 0.20 0.78 ± 0.10	10,000 4,000 4,000 4,000 4,000	50,000 10,000 15,000 10,000 10,000	0 0 0 0	0 0 0 0
DD DG DH EB EC	0805 0805 0805 0805 1206	0.90 ± 0.10 1.25 ± 0.15 1.25 ± 0.20 0.78 ± 0.10 0.90 ± 0.10	4,000 0 0 4,000 0	10,000 10,000 0 0 10,000	2,500 2,500 2,500 4,000 4,000	0 10,000 10,000 10,000 10,000
EN ED EE EF EM	1206 1206 1206 1206 1206	0.95 ± 0.10 1.00 ± 0.10 1.10 ± 0.10 1.20 ± 0.15 1.25 ± 0.15	0 0 0 0	0 0 0 0 0	4,000 2,500 2,500 2,500 2,500	10,000 10,000 10,000 10,000 10,000
EG EH FB FC FD	1206 1206 1210 1210 1210	1.60 ± 0.15 1.60 ± 0.20 0.78 ± 0.10 0.90 ± 0.10 0.95 ± 0.10	0 0 0 0	0 0 0 0	2,000 2,000 4,000 4,000 4,000	8,000 8,000 10,000 10,000 10,000
FE FF FG FL FH	1210 1210 1210 1210 1210	1.00 ± 0.10 1.10 ± 0.10 1.25 ± 0.15 1.40 ± 0.15 1.55 ± 0.15	0 0 0 0	0 0 0 0 0	2,500 2,500 2,500 2,000 2,000	10,000 10,000 10,000 8,000 8,000
FM FJ FK FS GB	1210 1210 1210 1210 1210 1812	1.70 ± 0.20 1.85 ± 0.20 2.10 ± 0.20 2.50 ± 0.30 1.00 ± 0.10	0 0 0 0	0 0 0 0 0	2,000 2,000 2,000 1,000 1,000	8,000 8,000 8,000 4,000 4,000
GC GD GE GH GG	1812 1812 1812 1812 1812	1.10 ± 0.10 1.25 ± 0.15 1.30 ± 0.10 1.40 ± 0.15 1.55 ± 0.10	0 0 0 0	0 0 0 0	1,000 1,000 1,000 1,000 1,000	4,000 4,000 4,000 4,000 4,000
GK GJ GO HB HD	1812 1812 1812 1825 1825	1.60 ± 0.20 1.70 ± 0.15 2.50 ± 0.20 1.10 ± 0.15 1.30 ± 0.15	0 0 0 0	0 0 0 0	1,000 1,000 500 1,000 1,000	4,000 4,000 2,000 4,000 4,000
HF JB JC JD JE JF	1825 2220 2220 2220 2220	1.50 ± 0.15 1.00 ± 0.15 1.10 ± 0.15 1.30 ± 0.15 1.40 ± 0.15 1.50 ± 0.15	0 0 0 0	0 0 0 0 0	1,000 1,000 1,000 1,000 1,000	4,000 4,000 4,000 4,000 4,000
JO	2220 2220	2.40 ± 0.15	0	0	1,000 500	4,000 2,000
Thickness Code	Case Size	Thickness ± Range (mm)	7" Reel Paper G	13" Reel Quantity	7" Reel Plastic (13" Reel Quantity

Package quantity based on finished chip thickness specifications.


Table 3 – Chip Capacitor Land Pattern Design Recommendations per IPC-7351

EIA Size Code	Metric Size Code	ı	Maxi	sity Lev mum (M rotrusio	lost))	ı	Media	sity Lev an (Nor rotrusio			Density Level C: Minimum (Least) Land Protrusion (mm)							
Oouc	Oodc	С	Y	X	V1	V2	С	Y	X	V1	V2	С	Y	Х	V1	V2			
0402	1005	0.50	0.72	0.72	2.20	1.20	0.45	0.62	0.62	1.90	1.00	0.40	0.52	0.52	1.60	0.80			
0603	1608	0.90	1.15	1.10	4.00	2.10	0.80	0.95	1.00	3.10	1.50	0.60	0.75	0.90	2.40	1.20			
0805	2012	1.00	1.35	1.55	4.40	2.60	0.90	1.15	1.45	3.50	2.00	0.75	0.95	1.35	2.80	1.70			
1206	3216	1.60	1.35	1.90	5.60	2.90	1.50	1.15	1.80	4.70	2.30	1.40	0.95	1.70	4.00	2.00			
1210	3225	1.60	1.35	2.80	5.65	3.80	1.50	1.15	2.70	4.70	3.20	1.40	0.95	2.60	4.00	2.90			
1210¹	3225	1.50	1.60	2.90	5.60	3.90	1.40	1.40	2.80	4.70	3.30	1.30	1.20	2.70	4.00	3.00			
1812	4532	2.15	1.60	3.60	6.90	4.60	2.05	1.40	3.50	6.00	4.00	1.95	1.20	3.40	5.30	3.70			
2220	5650	2.75	1.70	5.50	8.20	6.50	2.65	1.50	5.40	7.30	5.90	2.55	1.30	5.30	6.60	5.60			

¹ Only for capacitance values ≥ 22 μF

Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805, and 1206 case sizes.

Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. **Density Level C:** For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC–7351).

Soldering Process

Recommended Soldering Technique:

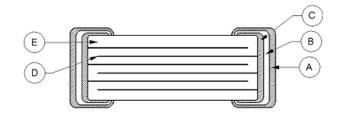
- Solder wave or solder reflow for EIA case sizes 0603, 0805, and 1206
- · All other EIA case sizes are limited to solder reflow only

Recommended Soldering Profile:

KEMET recommends following the guidelines outlined in IPC/JEDEC J-STD-020

Table 4 – Performance & Reliability: Test Methods and Conditions

Stress	Reference	Test or Inspection Method
Terminal Strength	JIS-C-6429	Appendix 1, Note: Force of 1.8 kg for 60 seconds.
Board Flex	JIS-C-6429	Appendix 2, Note: Standard termination system – 2.0 mm (minimum) for all except 3 mm for C0G. Flexible termination system – 3.0 mm (minimum).
		Magnification 50 X. Conditions:
Solderability	J-STD-002	a) Method B, 4 hours @ 155°C, dry heat @ 235°C
Solderability	J-31D-002	b) Method B @ 215°C category 3
		c) Method D, category 3 @ 260°C
Temperature Cycling	JESD22 Method JA-104	1,000 Cycles (-55°C to +125°C). Measurement at 24 hours +/- 2 hours after test conclusion.
Biased Humidity	MIL-STD-202 Method 103	Load Humidity: 1,000 hours 85°C/85% RH and rated voltage. Add 100 K ohm resistor. Measurement at 24 hours +/- 2 hours after test conclusion. Low Volt Humidity: 1,000 hours 85°C/85% RH and 1.5 V. Add 100 K ohm resistor. Measurement at 24 hours +/- 2 hours after test conclusion.
Moisture Resistance	MIL-STD-202 Method 106	t = 24 hours/cycle. Steps 7a and 7b not required. Unpowered. Measurement at 24 hours +/- 2 hours after test conclusion.
Thermal Shock	MIL-STD-202 Method 107	-55°C/+125°C. Note: Number of cycles required – 300, maximum transfer time – 20 seconds, dwell time – 15 minutes. Air – Air.
High Temperature Life	MIL-STD-202 Method 108 /EIA-198	1,000 hours at 125°C (85°C for X5R, Z5U and Y5V) with 2 X rated voltage applied.
Storage Life	MIL-STD-202 Method 108	150°C, 0 VDC for 1,000 hours.
Vibration	MIL-STD-202 Method 204	5 g's for 20 min., 12 cycles each of 3 orientations. Note: Use 8" X 5" PCB 0.031" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. Test from 10 – 2,000 Hz
Mechanical Shock	MIL-STD-202 Method 213	Figure 1 of Method 213, Condition F.
Resistance to Solvents	MIL-STD-202 Method 215	Add aqueous wash chemical, OKEM Clean or equivalent.


Storage & Handling

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature—reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 70% relative humidity. Temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 1.5 years of receipt.

Construction

Reference	lt	em	Mat	erial
А		Finish	100% Matte Sn	SnPb (5% min)
В	Termination System	Barrier Layer	ı	Ni
D	, ,,,,,	Base Metal	С	Cu
Е	Inner E	Electrode	N	Ni .
F	Dielectri	c Material	Ba	ΓiO ₃

Note: Image is exaggerated in order to clearly identify all components of construction.

Capacitor Marking (Optional):

These surface mount multilayer ceramic capacitors are normally supplied unmarked. If required, they can be marked as an extra cost option. Marking is available on most KEMET devices but must be requested using the correct ordering code identifier(s). If this option is requested, two sides of the ceramic body will be laser marked with a "K" to identify KEMET, followed by two characters (per EIA–198 - see table below) to identify the capacitance value. EIA 0603 case size devices are limited to the "K" character only.

Marking appears in legible contrast. Illustrated below is an example of an MLCC with laser marking of "KA8", which designates a KEMET device with rated capacitance of 100 μ F. Orientation of marking is vendor optional.

Laser marking option is <u>not</u> available on:

- C0G, Ultra Stable X8R and Y5V dielectric devices
- EIA 0402 case size devices
- EIA 0603 case size devices with Flexible Termination option.
- · KPS Commercial and Automotive Grade stacked devices.

		Capacil	ance (p	or) ror				I Identifi	C15	
Alpha		l		ı		Numera	1			
Character	9	0	1	2	3	4	5	6	7	8
Cilalactei					Capa	acitance	e (pF)			
Α	0.1	10	10	100	1,000	10,000	100,000	1,000,000	10,000,000	100,000,000
В	0.11	1.1	11	110	1,100	11,000	110,000	1,100,000	11,000,000	110,000,000
С	0.12	12	12	120	1,200	12,000	120,000	1,200,000	12,000,000	120,000,000
D	0.13	13	13	130	1,300	13,000	130,000	1,300,000	13,000,000	130,000,000
Е	0.15	15	15	150	1,500	15,000	150,000	1,500,000	15,000,000	150,000,000
F	0.16	16	16	160	1,600	16,000	160,000	1,600,000	16,000,000	160,000,000
G	0.18	18	18	180	1,800	18,000	180,000	1,800,000	18,000,000	180,000,000
Н	0.2	20	20	200	2,000	20,000	200,000	2,000,000	20,000,000	200,000,000
J	0.22	22	22	220	2,200	22,000	220,000	2,200,000	22,000,000	220,000,000
K	0.24	2.4	24	240	2,400	24,000	240,000	2,400,000	24,000,000	240,000,000
L	0.27	2.7	27	270	2,700	27,000	270,000	2,700,000	27,000,000	270,000,000
М	0.3	3 0	30	300	3,000	30,000	300,000	3,000,000	30,000,000	300,000,00
N	0.33	3 3	33	330	3,300	33,000	330,000	3,300,000	33,000,000	330,000,000
Р	0.36	3 6	36	360	3,600	36,000	360,000	3,600,000	36,000,000	360,000,00
Q	0.39	3 9	39	390	3,900	39,000	390,000	3,900,000	39,000,000	390,000,00
R	0.43	4 3	43	430	4,300	43,000	430,000	4,300,000	43,000,000	430,000,00
S	0.47	4.7	47	470	4,700	47,000	470,000	4,700,000	47,000,000	470,000,00
Т	0.51	5.1	51	510	5,100	51,000	510,000	5,100,000	51,000,000	510,000,00
U	0.56	5 6	56	560	5,600	56,000	560,000	5,600,000	56,000,000	560,000,00
V	0.62	62	62	620	6,200	62,000	620,000	6,200,000	62,000,000	620,000,00
W	0.68	68	68	680	6,800	68,000	680,000	6,800,000	68,000,000	680,000,00
Х	0.75	7 5	75	750	7,500	75,000	750,000	7,500,000	75,000,000	750,000,000
Υ	0.82	82	82	820	8,200	82,000	820,000	8,200,000	82,000,000	820,000,00
Z	0.91	9.1	91	910	9,100	91,000	910,000	9,100,000	91,000,000	910,000,000
а	0.25	25	25	250	2,500	25,000	250,000	2,500,000	25,000,000	250,000,000
b	0.35	3 5	35	350	3,500	35,000	350,000	3,500,000	35,000,000	350,000,000
d	0.4	4 0	40	400	4,000	40,000	400,000	4,000,000	40,000,000	400,000,00
е	0.45	4 5	45	450	4,500	45,000	450,000	4,500,000	45,000,000	450,000,00
f	0.5	5 0	50	500	5,000	50,000	500,000	5,000,000	50,000,000	500,000,00
m	0.6	6 0	60	600	6,000	60,000	600,000	6,000,000	60,000,000	600,000,00
n	0.7	7 0	70	700	7,000	70,000	700,000	7,000,000	70,000,000	700,000,00
t	0.8	8 0	80	800	8,000	80,000	800,000	8,000,000	80,000,000	800,000,00
у	0.9	90	90	900	9,000	90,000	900,000	9,000,000	90,000,000	900,000,000

Tape & Reel Packaging Information

KEMET offers multilayer ceramic chip capacitors packaged in 8, 12 and 16 mm tape on 7" and 13" reels in accordance with EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for details on reeling quantities for commercial chips.

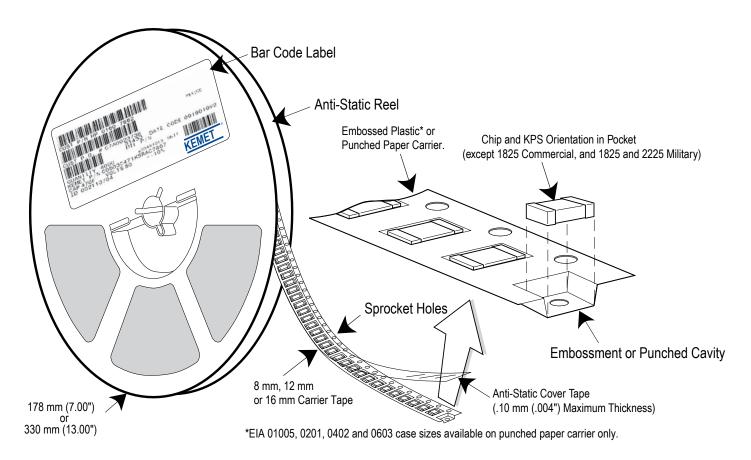
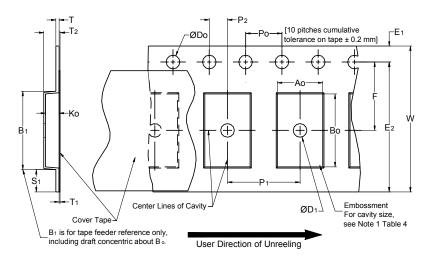


Table 5 – Carrier Tape Configuration – Embossed Plastic & Punched Paper (mm)

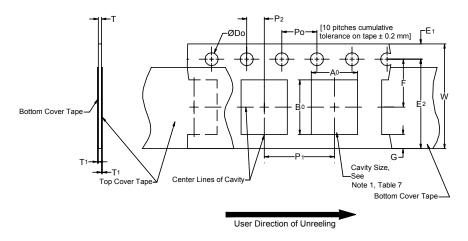

EIA Case Size	Tape Size (W)*	Pitch (P ₁)*
01005 – 0402	8	2
0603 – 1210	8	4
1805 – 1808	12	4
≥ 1812	12	8
KPS 1210	12	8
KPS 1812 & 2220	16	12
Array 0508 & 0612	8	4

^{*}Refer to Figures 1 & 2 for W and P, carrier tape reference locations.

^{*}Refer to Tables 6 & 7 for tolerance specifications.

Figure 1 – Embossed (Plastic) Carrier Tape Dimensions

Table 6 - Embossed (Plastic) Carrier Tape Dimensions


Metric will govern

Constant Dimensions — Millimeters (Inches)									
Tape Size	D ₀	D ₁ Minimum Note 1	E ₁	P ₀	P ₂	R Reference Note 2	S ₁ Minimum Note 3	T Maximum	T ₁ Maximum
8 mm		1.0 (0.039)				25.0 (0.984)			
12 mm	1.5 +0.10/-0.0 (0.059 +0.004/-0.0)	1.5	1.75 ±0.10 (0.069 ±0.004)	4.0 ±0.10 (0.157 ±0.004)	2.0 ±0.05 (0.079 ±0.002)	30	0.600 (0.024)	0.600 (0.024)	0.100 (0.004)
16 mm	(0.059)					(1.181)			
	Variable Dimensions — Millimeters (Inches)								
Tape Size	Tape Size Pitch B ₁ Maximum E ₂ F P ₁ T ₂ W Maximum A ₀ , B ₀ & K ₀					& K ₀			
8 mm	Single (4 mm)	4.35 (0.171)	6.25 (0.246)	3.5 ±0.05 (0.138 ±0.002)	4.0 ±0.10 (0.157 ±0.004)	2.5 (0.098)	8.3 (0.327)		
12 mm	Single (4 mm) & Double (8 mm)	8.2 (0.323)	10.25 (0.404)	5.5 ±0.05 (0.217 ±0.002)	8.0 ±0.10 (0.315 ±0.004)	4.6 (0.181)	12.3 (0.484)	Not	e 5
16 mm	Triple (12 mm)	12.1 (0.476)	14.25 (0.561)	7.5 ±0.05 (0.138 ±0.002)	12.0 ±0.10 (0.157 ±0.004)	4.6 (0.181)	16.3 (0.642)		

- 1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.
- 2. The tape with or without components shall pass around R without damage (see Figure 6).
- 3. If S, < 1.0 mm, there may not be enough area for cover tape to be properly applied (see EIA Standard 481 paragraph 4.3 section b).
- 4. B, dimension is a reference dimension for tape feeder clearance only.
- 5. The cavity defined by A_0 , B_0 and K_0 shall surround the component with sufficient clearance that:
 - (a) the component does not protrude above the top surface of the carrier tape.
 - (b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.
 - (c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 3).
 - (d) lateral movement of the component is restricted to 0.5 mm maximum for 8 and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 4).
 - (e) for KPS Series product, A_a and B_a are measured on a plane 0.3 mm above the bottom of the pocket.
 - (f) see Addendum in EIA Standard 481 for standards relating to more precise taping requirements.

Figure 2 – Punched (Paper) Carrier Tape Dimensions

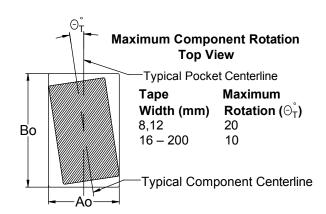
Table 7 – Punched (Paper) Carrier Tape Dimensions

Metric will govern

	Constant Dimensions — Millimeters (Inches)								
Tape Size	D ₀	E ₁	P ₀	P ₂	T ₁ Maximum	G Minimum	R Reference Note 2		
8 mm	1.5 +0.10 -0.0 (0.059 +0.004 -0.0)	1.75 ±0.10 (0.069 ±0.004)	4.0 ±0.10 (0.157 ±0.004)	2.0 ±0.05 (0.079 ±0.002)	0.10 (0.004) Maximum	0.75 (0.030)	25 (0.984)		
	Variable Dimensions — Millimeters (Inches)								
Tape Size	Pitch	E2 Minimum	F	P ₁	T Maximum	W Maximum	A_0B_0		
8 mm	Half (2 mm)	6.25	3.5 ±0.05	2.0 ±0.05 (0.079 ±0.002)	1.1	8.3 (0.327)	Note 1		
8 mm	Single (4 mm)	(0.246)	(0.138 ±0.002)	4.0 ±0.10 (0.157 ±0.004)	(0.098)	8.3 (0.327)	Note I		

- 1. The cavity defined by A_{o} , B_{o} and T shall surround the component with sufficient clearance that:
 - a) the component does not protrude beyond either surface of the carrier tape.
 - b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.
 - c) rotation of the component is limited to 20° maximum (see Figure 3).
 - d) lateral movement of the component is restricted to 0.5 mm maximum (see Figure 4).
- e) see Addendum in EIA Standard 481 for standards relating to more precise taping requirements.
- 2. The tape with or without components shall pass around R without damage (see Figure 6).

Packaging Information Performance Notes


- 1. Cover Tape Break Force: 1.0 Kg minimum.
- 2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:

Tape Width	Peel Strength
8 mm	0.1 to 1.0 Newton (10 to 100 gf)
12 and 16 mm	0.1 to 1.3 Newton (10 to 130 gf)

The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165 $^{\circ}$ to 180 $^{\circ}$ from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300 \pm 10 mm/minute.

3. Labeling: Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. *Refer to EIA Standards 556 and 624.*

Figure 3 – Maximum Component Rotation

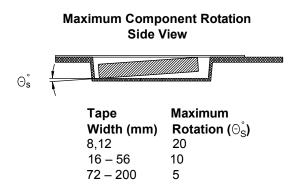


Figure 4 – Maximum Lateral Movement

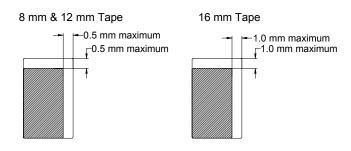
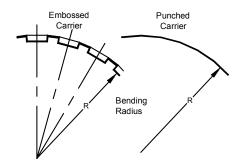
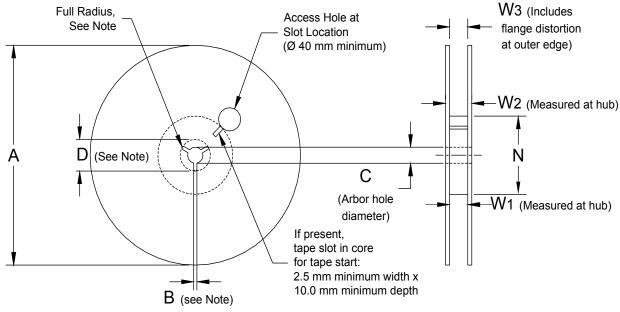
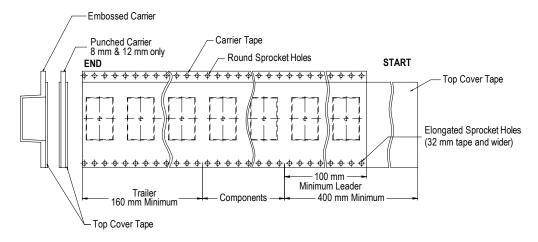




Figure 5 – Bending Radius

Figure 6 - Reel Dimensions

Note: Drive spokes optional; if used, dimensions B and D shall apply.


Table 8 - Reel Dimensions

Metric will govern

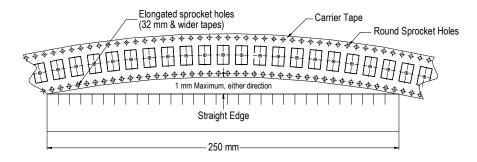

	Constant Dimensions — Millimeters (Inches)							
Tape Size	A	B Minimum	С	D Minimum				
8 mm	178 ±0.20							
12 mm	(7.008 ±0.008) or	1.5 (0.059)	13.0 +0.5/-0.2 (0.521 +0.02/-0.008)	20.2 (0.795)				
16 mm	330 ±0.20 (13.000 ±0.008)	,	,	(/				
	Variable	Dimensions — Millimeter	s (Inches)					
Tape Size	N Minimum	W ₁	W ₂ Maximum	W_3				
8 mm		8.4 +1.5/-0.0 (0.331 +0.059/-0.0)	14.4 (0.567)					
12 mm	50 (1.969)	12.4 +2.0/-0.0 (0.488 +0.078/-0.0)	18.4 (0.724)	Shall accommodate tape width without interference				
16 mm		16.4 +2.0/-0.0 (0.646 +0.078/-0.0)	22.4 (0.882)					

Figure 7 – Tape Leader & Trailer Dimensions

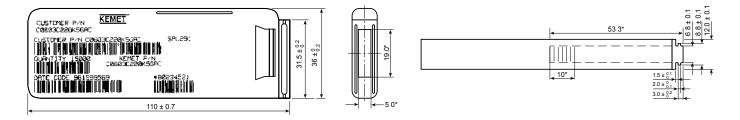


Figure 8 – Maximum Camber

Bulk Cassette Packaging (Ceramic Chips Only)

Meets Dimensional Requirements IEC–286 and EIAJ 7201 *Unit mm *Reference*

Capacitor Dimensions for Bulk Cassette

Cassette Packaging - Millimeters

EIA Size Code	Metric Size Code	L Length	W Width	B Bandwidth	S Separation Minimum	T Thickness	Number of Pieces/Cassette
0402	1005	1.0 ±0.05	0.5 ± 0.05	0.2 to 0.4	0.3	0.5 ±0.05	50,000
0603	1608	1.6 ±0.07	0.8 ±0.07	0.2 to 0.5	0.7	0.8 ±0.07	15,000

KEMET Corporation World Headquarters

2835 KEMET Way Simpsonville, SC 29681

Mailing Address: P.O. Box 5928 Greenville, SC 29606

www.kemet.com Tel: 864-963-6300 Fax: 864-963-6521

Corporate Offices

Fort Lauderdale, FL Tel: 954-766-2800

North America

Southeast

Lake Mary, FL Tel: 407-855-8886

Northeast

Wilmington, MA Tel: 978-658-1663

Central

Novi, MI

Tel: 248-994-1030

West

Milpitas, CA Tel: 408-433-9950

Mexico

Guadalajara, Jalisco Tel: 52-33-3123-2141

Europe

Southern Europe

Paris, France Tel: 33-1-4646-1006

Sasso Marconi, Italy Tel: 39-051-939111

Central Europe

Landsberg, Germany Tel: 49-8191-3350800

Kamen, Germany Tel: 49-2307-438110

Northern Europe

Bishop's Stortford, United Kingdom Tel: 44-1279-460122

Espoo, Finland

Tel: 358-9-5406-5000

Asia

Northeast Asia

Hong Kong

Tel: 852-2305-1168

Shenzhen, China Tel: 86-755-2518-1306

Beijing, China

Tel: 86-10-5829-1711

Shanghai, China Tel: 86-21-6447-0707

Taipei, Taiwan Tel: 886-2-27528585

Southeast Asia

Singapore

Tel: 65-6586-1900

Penang, Malaysia Tel: 60-4-6430200

Bangalore, India Tel: 91-806-53-76817

Note: KEMET reserves the right to modify minor details of internal and external construction at any time in the interest of product improvement. KEMET does not assume any responsibility for infringement that might result from the use of KEMET Capacitors in potential circuit designs. KEMET is a registered trademark of KEMET Electronics Corporation.

Other KEMET Resources

Tools				
Resource	Location			
Configure A Part: CapEdge	http://capacitoredge.kemet.com			
SPICE & FIT Software	http://www.kemet.com/spice			
Search Our FAQs: KnowledgeEdge	http://www.kemet.com/keask			
Electrolytic LifeCalculator	http://www.kemet.com:8080/elc			

Product Information			
Resource	Location		
Products	http://www.kemet.com/products		
Technical Resources (Including Soldering Techniques)	http://www.kemet.com/technicalpapers		
RoHS Statement	http://www.kemet.com/rohs		
Quality Documents	http://www.kemet.com/qualitydocuments		

Product Request			
Resource Location			
Sample Request	http://www.kemet.com/sample		
Engineering Kit Request	http://www.kemet.com/kits		

Contact				
Resource	Location			
Website	www.kemet.com			
Contact Us	http://www.kemet.com/contact			
Investor Relations	http://www.kemet.com/ir			
Call Us	1-877-MyKEMET			
Twitter	http://twitter.com/kemetcapacitors			

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.

All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

