FAIRCHILD

SEMICONDUCTOR®

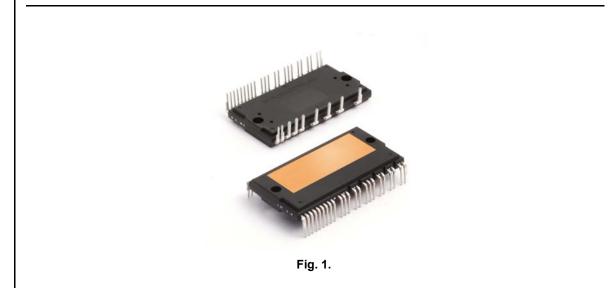
FSAM50SM60A Motion SPM[®] 2 Series

Features

- UL Certified No. E209204
- 600 V 50 A 3 Phase IGBT Inverter Bridge Including Control ICs for Gate Driving and Protection
- Three Separate Open Emitter Pins from Low Side IGBTs for Three Leg Current Sensing
- Single-Grounded Power Supply Thanks to Built-in HVIC
- Typical Switching Frequency of 5 kHz
- Built-in Thermistor for Temperature Monitoring
- Inverter Power Rating of 4.0 kW / 100~253 VAC
- Isolation Rating of 2500 Vrms / min.
- Very Low Thermal Resistance by Using DBC(Al₂O₃) Substrate
- Adjustable Current Protection Level by Changing the Value of Series Resistor Connected to The Emitters of Sense-IGBTs

Applications

Motion Control - Home Appliance / Industrial Motor


September 2013

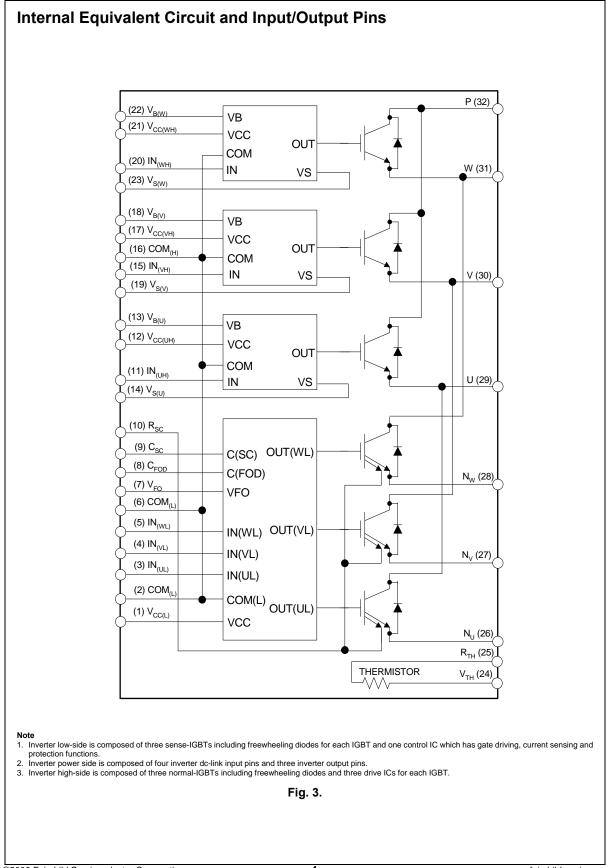
General Description

FSAM50SM60A Is A Motion SPM[®] 2 Series that Fairchild Has Developed to Provide A Very Compact and Low Cost, yet High Performance Inverter Solution for AC Motor Drives in Low-Power Applications Such as Air Conditioners. It Combines Optimized Circuit Protections and Drive Matched to Low-Loss IGBTs. Effective Over-Current Protection Is Realized Through Advanced Current Sensing IGBTs. The System Reliability Is Further Enhanced by The Built-in Thermistor and Integrated Under-Voltage Lock-Out Protection. In Addition The Incorporated HVIC Facilitates The Use of Single-Supply Voltage Without Any Negative Bias. Inverter Leg Current Sensing Can Be Implemented Because of Three Separate Nagative DC Terminals.

Related Source

• AN-9043 : Motion SPM® 2 Series User's Guide

Package Marking and Ordering Information


Device Marking	Device	Package	Real Size	Packing Type	Quantity
FSAM50SM60A	FSAM50SM60A	S32CA-032	-	RAIL	8

©2006 Fairchild Semiconductor Corporation FSAM50SM60A Rev. C3

• 600 V - 50 A IGBT inverter for three-phase DC / AC power conversion (Please refer to Fig. 3) Integrated Drive, Protection and System Control Functions • For inverter high-side IGBTs: Gate drive circuit, High voltage isolated high-speed level shifting Control circuit under-voltage (UV) protection Note) Available bootstrap circuit example is given in Figs. 13 and 14. • For inverter low-side IGBTs: Gate drive circuit, Short circuit protection (SC) Control supply circuit under-voltage (UV) protection • Temperature Monitoring: System over-temperature monitoring using built-in thermistor Note) Available temperature monitoring circuit is given in Fig. 14. • Fault signaling: Corresponding to a SC fault (Low-side IGBTs) or a UV fault (Low-side control supply circuit) Input interface: Active-low interface, can work with 3.3 / 5 V Logic **Pin Configuration Top View** (1)V_{CC(L)} (24)V_{TH} (2)COM(L) (3)IN_(UL) (25)R_{TH} 0 0 (4)IN_(VL) (26)N₁₁ (5)IN(WL) (6)COM (27)N_v (7)V_{FO} . (8)C_{FOD} (28)N_w (9)C_{SC} (10)R_{SC} (11)IN_(UH) (29)U Case Temperature(T_c) (12)V_{CC(UH)} **Detecting Point** (13)V_{B(U)} (30)V (14)V_{S(U)} (15)IN_{V(H)} (16)COM(H) (31)W (17)V_{CC(VH)} (18)V_{B(V)} DBC Substrate (19)V_{S(V)} (20)IN_(WH) (32)P (21)V_{CC(WH)} Ο Ο (22)V_{B(W)} (23)V_{S(W)} Fig. 2.

Integrated Power Functions

Pin Number	Pin Name	Pin Description
1	V _{CC(L)}	Low-side Common Bias Voltage for IC and IGBTs Driving
2	COM _(L)	Low-side Common Supply Ground
3	IN _(UL)	Signal Input Terminal for Low-side U Phase
4	IN _(VL)	Signal Input Terminal for Low-side V Phase
5	IN _(WL)	Signal Input Terminal for Low-side W Phase
6	COM _(L)	Low-side Common Supply Ground
7	V _{FO}	Fault Output
8	C _{FOD}	Capacitor for Fault Output Duration Time Selection
9	C _{SC}	Capacitor (Low-pass Filter) for Short-Circuit Current Detection Input
10	R _{SC}	Resistor for Short-circuit Current Detection
11	IN _(UH)	Signal Input for High-side U Phase
12	V _{CC(UH)}	High-side Bias Voltage for U Phase IC
13	V _{B(U)}	High-side Bias Voltage for U Phase IGBT Driving
14	V _{S(U)}	High-side Bias Voltage Ground for U Phase IGBT Driving
15	IN _(VH)	Signal Input for High-side V Phase
16	COM(H)	High-side Common Supply Ground
17	V _{CC(VH)}	High-side Bias Voltage for V Phase IC
18	V _{B(V)}	High-side Bias Voltage for V Phase IGBT Driving
19	V _{S(V)}	High-side Bias Voltage Ground for V Phase IGBT Driving
20	IN _(WH)	Signal Input for High-side W Phase
21	V _{CC(WH)}	High-side Bias Voltage for W Phase IC
22	V _{B(W)}	High-side Bias Voltage for W Phase IGBT Driving
23	V _{S(W)}	High-side Bias Voltage Ground for W Phase IGBT Driving
24	V _{TH}	Thermistor Bias Voltage
25	R _{TH}	Series Resistor for the Use of Thermistor (Temperature Detection)
26	NU	Negative DC–Link Input Terminal for U Phase
27	N _V	Negative DC-Link Input Terminal for V Phase
28	N _W	Negative DC-Link Input Terminal for W Phase
29	U	Output for U Phase
30	V	Output for V Phase
31	W	Output for W Phase
32	Р	Positive DC–Link Input

©2006 Fairchild Semiconductor Corporation FSAM50SM60A Rev. C3 FSAM50SM60A Motion SPM® 2 Series

Absolute Maximum Ratings ($T_J = 25^{\circ}C$, Unless Otherwise Specified) **Inverter Part**

Item	Symbol	Condition	Rating	Unit
Supply Voltage	V _{DC}	Applied to DC - Link	450	V
Supply Voltage (Surge)	V _{PN(Surge)}	Applied between P- N	500	V
Collector-emitter Voltage	V _{CES}		600	V
Each IGBT Collector Current	± I _C	$T_{\rm C} = 25^{\circ}{\rm C}$	50	А
Each IGBT Collector Current	± I _C	$T_{\rm C} = 100^{\circ}{\rm C}$	25	А
Each IGBT Collector Current (Peak)	± I _{CP}	$T_{C} = 25^{\circ}C$, Under 1ms pulse width	100	А
Collector Dissipation	P _C	T _C = 25°C per One Chip	100	W
Operating Junction Temperature	Тј	(Note 1)	-20 ~ 125	°C

Note 1. It would be recommended that the average junction temperature should be limited to $T_J \le 125^{\circ}C$ (@ $T_C \le 100^{\circ}C$) in order to guarantee safe operation.

Control Part

ltem	Symbol	Condition	Rating	Unit
Control Supply Voltage	V _{CC}	Applied between $V_{CC(UH)}$, $V_{CC(VH)}$, $V_{CC(WH)}$ - $COM_{(H)}$, $V_{CC(L)}$ - $COM_{(L)}$	20	V
High-side Control Bias Voltage	V _{BS}	Applied between V _{B(U)} - V _{S(U)} , V _{B(V)} - V _{S(V)} , V _{B(W)} - V _{S(W)}	20	V
Input Signal Voltage	V _{IN}	Applied between $IN_{(UH)}$, $IN_{(VH)}$, $IN_{(WH)}$ - $COM_{(H)}$ $IN_{(UL)}$, $IN_{(VL)}$, $IN_{(WL)}$ - $COM_{(L)}$	-0.3 ~ V _{CC} +0.3	V
Fault Output Supply Voltage	V _{FO}	Applied between V _{FO} - COM _(L)	-0.3 ~ V _{CC} +0.3	V
Fault Output Current	I _{FO}	Sink Current at V _{FO} Pin	5	mA
Current Sensing Input Voltage	V _{SC}	Applied between C _{SC} - COM _(L)	-0.3 ~ V _{CC} +0.3	V

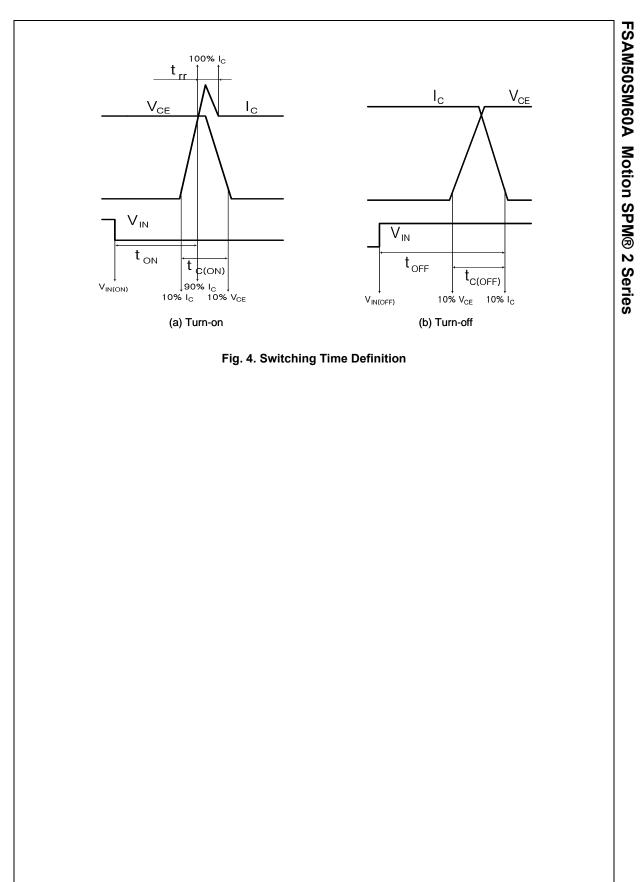
Total System

Item	Symbol	Condition	Rating	Unit
Self Protection Supply Voltage Limit (Short Circuit Protection Capability)	V _{PN(PROT)}	Applied to DC - Link, $V_{CC} = V_{BS} = 13.5 \sim 16.5 V$ $T_J = 125^{\circ}C$, Non-repetitive, less than 5µs	400	V
Module Case Operation Temperature	T _C	Note Fig. 2	-20 ~ 100	°C
Storage Temperature	T _{STG}		-20 ~ 125	°C
Isolation Voltage	V _{ISO}	60 Hz, Sinusoidal, AC 1 minute, Connection Pins to Heat-sink Plate	2500	V _{rms}

Absolute Maximum Ratings

Thermal Resistance

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Junction to Case Thermal	R _{th(j-c)Q}	Inverter IGBT part (per 1 / 6 module)	-	-	1.0	°C/W
Resistance	R _{th(j-c)F}	Inverter FWDi part (per 1 / 6 module)	-	-	1.5	°C/W
Contact Thermal Resistance	R _{th(c-f)}	Ceramic Substrate (per 1 Module) Thermal Grease Applied (Note 3)	-	-	0.06	°C/W


 $\begin{array}{l} \textbf{Note} \\ \textbf{2. For the measurement point of case temperature(T_C), please refer to Fig. 2. \\ \textbf{3. The thickness of thermal grease should not be more than 100um.} \end{array}$

Electrical Characteristics

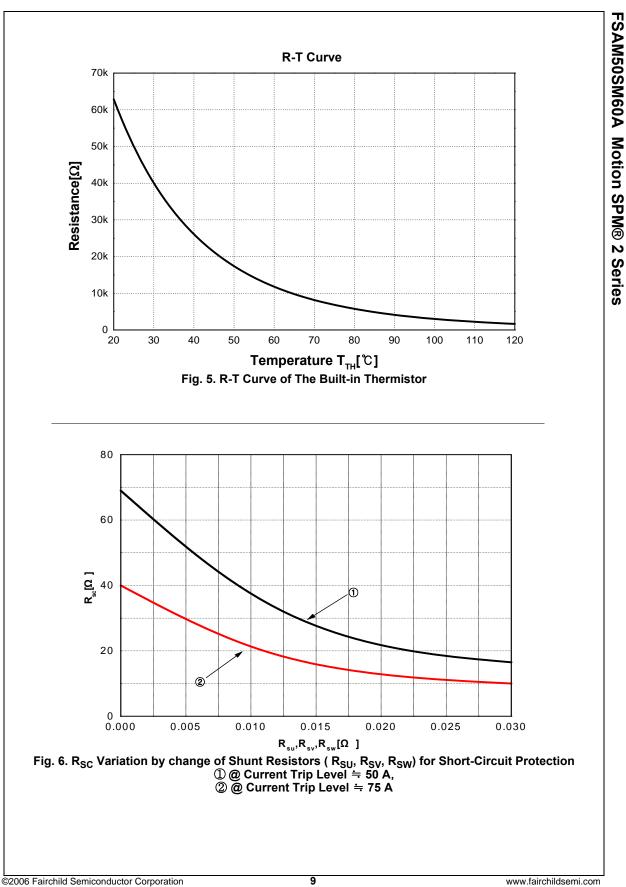
Inverter Part (T_J = 25°C, Unless Otherwise Specified)

Item	Symbol	Conditio	on	Min.	Тур.	Max.	Unit
Collector - emitter Saturation Voltage	V _{CE(SAT)}	V _{CC} = V _{BS} = 15 V V _{IN} = 0 V	$I_{\rm C} = 50 \text{ A}, \text{ T}_{\rm J} = 25^{\circ} \text{C}$	-	-	2.4	V
FWDi Forward Voltage	V _{FM}	V _{IN} = 5 V	$I_{\rm C} = 50 \text{ A}, \text{ T}_{\rm J} = 25^{\circ} \text{C}$	-	-	2.1	V
Switching Times	t _{ON}	$V_{PN} = 300 \text{ V}, V_{CC} = V_{BS} = 18$	5 V	-	0.69	-	μS
	t _{C(ON)}	$I_{\rm C} = 50 \text{ A}, T_{\rm J} = 25^{\circ}{\rm C}$		-	0.32	-	μS
	t _{OFF}	$V_{IN} = 5 V \leftrightarrow 0 V$, Inductive L (High-Low Side)	oad	-	1.32	-	μS
	t _{C(OFF)}	(High-Low Side)		-	0.46	-	μS
	t _{rr}	(Note 4)		-	0.10	-	μS
Collector - emitter Leakage Current	I _{CES}	$V_{CE} = V_{CES}, T_J = 25^{\circ}C$		-	-	250	μA

Note
 4. t_{ON} and t_{OFF} include the propagation delay time of the internal drive IC. t_{C(ON)} and t_{C(OFF)} are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Fig. 4.

Electrical Charact Control Part		- () ,	· ,				
Item	Symbol		Condition	Min.	Тур.	Max.	Unit
Quiescent V _{CC} Supply Current	I _{QCCL}	V _{CC} = 15 V IN _(UL, VL, WL) = 5 V	V _{CC(L)} - COM _(L)	-	-	26	mA
	I _{QCCH}	V _{CC} = 15 V IN _(UH, VH, WH) = 5 V	$V_{CC(UH)}$, $V_{CC(VH)}$, $V_{CC(WH)}$ - $COM_{(H)}$	-	-	130	uA
Quiescent $\rm V_{BS}$ Supply Current	I _{QBS}	V _{BS} = 15 V IN _(UH, VH, WH) = 5 V	$V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$	-	-	420	uA
Fault Output Voltage	V _{FOH}			4.5	-	-	V
	V _{FOL}	V_{SC} = 1 V, V_{FO} Circuit: 4.7 k Ω to 5 V Pull-up		-	-	1.1	V
Short-Circuit Trip Level	V _{SC(ref)}	V _{CC} = 15 V (Note 5)		0.45	0.51	0.56	V
Sensing Voltage of IGBT Current	V _{SEN}	$R_{SC} = 40 \Omega$, $R_{SU} = R$ (Fig. 6)	$R_{\rm SV}$ = $R_{\rm SW}$ = 0 Ω and $I_{\rm C}$ = 75 A	0.45	0.51	0.56	V
Supply Circuit Under-	UV _{CCD}	Detection Level		11.5	12	12.5	V
Voltage Protection	UV _{CCR}	Reset Level		12	12.5	13	V
	UV _{BSD}	Detection Level		7.3	9.0	10.8	V
	UV _{BSR}	Reset Level		8.6	10.3	12	V
Fault Output Pulse Width	t _{FOD}	C _{FOD} = 33 nF (Note 6	3)	1.4	1.8	2.0	ms
ON Threshold Voltage	V _{IN(ON)}	High-Side	Applied between IN(UH), IN(VH),	-	-	0.8	V
OFF Threshold Voltage	V _{IN(OFF)}		IN _(WH) - COM _(H)	3.0	-	-	V
ON Threshold Voltage	V _{IN(ON)}	Low-Side	Applied between IN(UL), IN(VL),	-	-	0.8	V
OFF Threshold Voltage	V _{IN(OFF)}	1	IN _(WL) - COM _(L)	3.0	-	-	V
Resistance of Thermistor	R _{TH}	@ T _{TH} = 25°C (Note	Fig. 6) (Note 7)	-	50	-	kΩ
		@ T _{TH} = 100°C (Note	e Fig. 6) (Note 7)	-	3.0	-	kΩ

Note:
5. Short-circuit current protection is functioning only at the low-sides. It would be recommended that the value of the external sensing resistor (R_{SC}) should be selected around 40 Ω in order to make the SC trip-level of about 75 A at the shunt resistors (R_{SU},R_{SV},R_{SW}) of 0 Ω. For the detailed information about the relationship between the external sensing resistor (R_{SC}) and the shunt resistors (R_{SU},R_{SV},R_{SW}), please see Fig. 6.
6. The fault-out pulse width t_{FOD} depends on the capacitance value of C_{FOD} according to the following approximate equation : C_{FOD} = 18.3 x 10⁻⁶ x t_{FOD}[F]
7. T_{TH} is the temperature of thermistor itself. To know case temperature (T_C), please make the experiment considering your application.

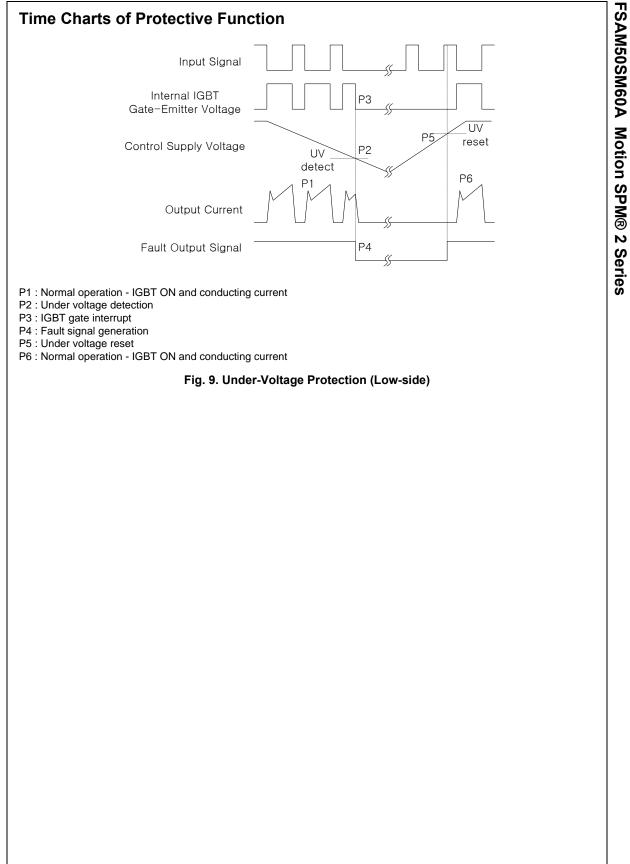

Recommended Operating Conditions

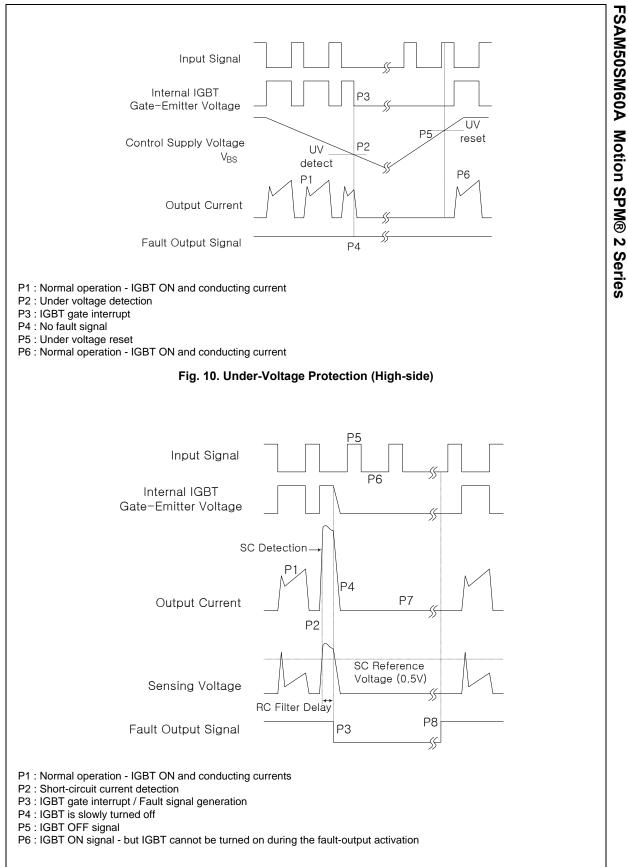
140.00	Symbol Condition		Values			11
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage	V _{PN}	Applied between P - N _U , N _V , N _W	-	300	400	V
Control Supply Voltage	V _{CC}	Applied between $V_{CC(UH)}$, $V_{CC(VH)}$, $V_{CC(WH)}$ - $COM_{(H)}$, $V_{CC(L)}$ - $COM_{(L)}$	13.5	15	16.5	V
High-side Bias Voltage	V _{BS}	Applied between $V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$	13.0	15	18.5	V
Blanking Time for Preventing Arm-short	t _{dead}	For Each Input Signal	3.5	-	-	us
PWM Input Signal	f _{PWM}	T _C ≤ 100°C, T _J ≤ 125°C	-	5	-	kHz
Minimum Input Pulse Width	PW _{IN(OFF)}	$\begin{array}{l} 200 \leq V_{PN} \leq 400 \; \text{V}, \; 13.5 \leq V_{CC} \leq 16.5 \; \text{V}, \\ 13.0 \leq V_{BS} \leq 18.5 \; \text{V}, \; \; 0 \leq I_C \leq 100 \; \text{A}, \\ -20 \leq T_J \leq 125^\circ\text{C} \\ V_{IN} = 5 \; \text{V} \leftrightarrow 0\text{V}, \; \text{Inductive Load} \; \; (\text{Note 8}) \end{array}$	3	-	-	us
Input ON Threshold Voltage V _{IN(ON)}		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0 ~ 0.65	5	V
Input OFF Threshold Voltage	V _{IN(OFF)}	$\begin{array}{l} \text{Applied between IN}_{(\text{UH})}, \text{IN}_{(\text{VH})}, \text{IN}_{(\text{WH})} \text{-} \\ \text{COM}_{(\text{H})}, \text{IN}_{(\text{UL})}, \text{IN}_{(\text{VL})}, \text{IN}_{(\text{WL})} \text{-} \text{COM}_{(\text{L})} \end{array}$		4 ~ 5.5		V

Note: 8. Motion SPM® 2 Product might not make response if the PW_{IN(OFF)} is less than the recommended minimum value.

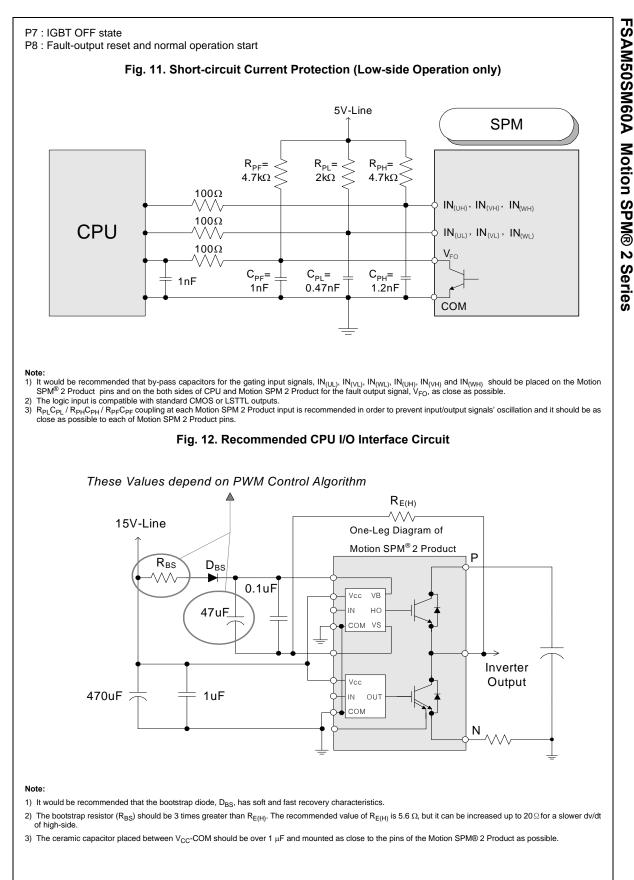
©2006 Fairchild Semiconductor Corporation FSAM50SM60A Rev. C3

FSAM50SM60A Motion SPM® 2 Series

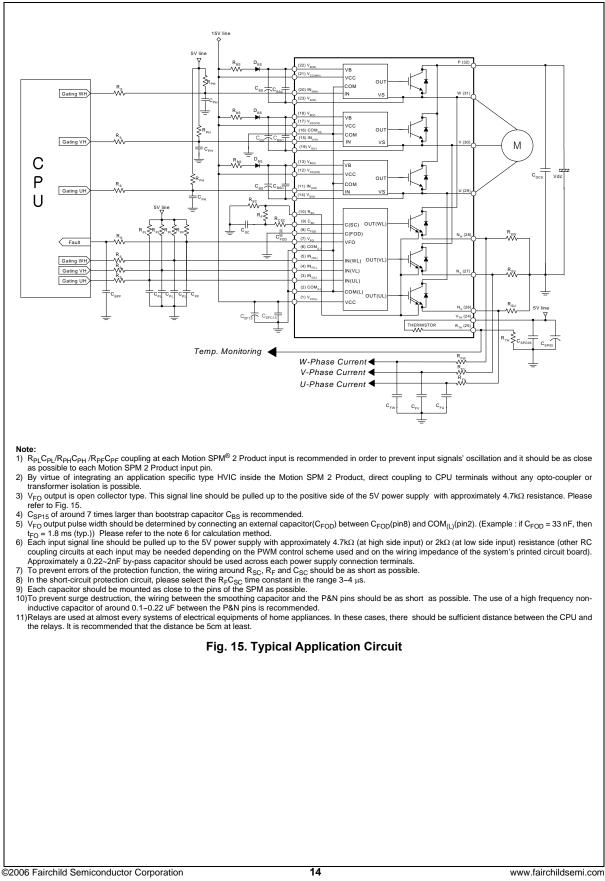


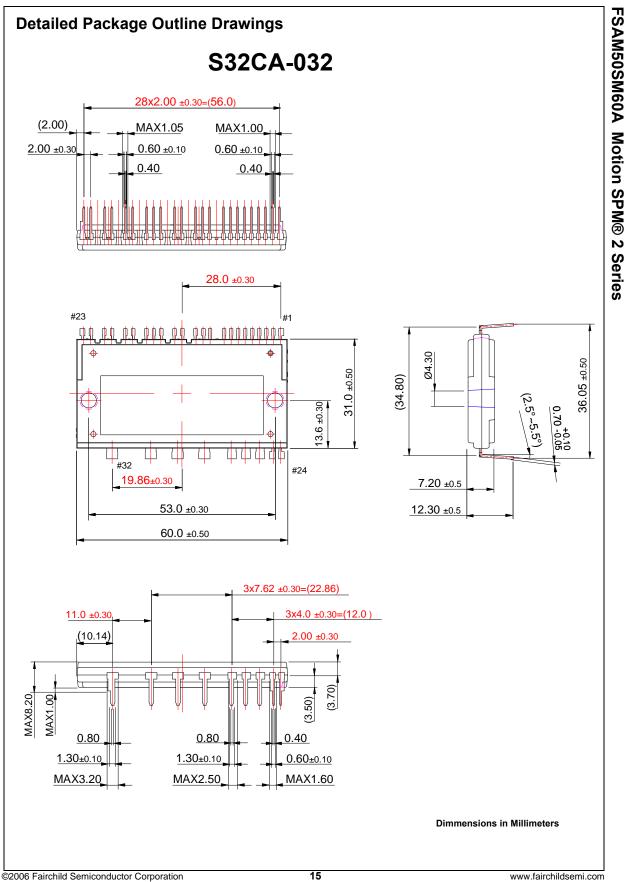

FSAM50SM60A Rev. C3

				Limits		Limit	
ltem		Condition	Min.	Тур.	Max.	Unit	
Mounting Torque	Mounting Screw: M4	Recommended 10 Kg•cm	8	10	12	Kg•cm	
	(Note 9 and 10)	Recommended 0.98 N•m	0.78	0.98	1.17	N•m	
DBC Flatness		Note Fig.7	0	-	+120	μm	
Weight			-	32	-	g	
 Do not make over torgi 	ue or mounting screws. Much mountin ing stress. Fig.8 shows the recomme	asurement Position of The D ng torque may cause ceramic cracks and bolt inded torque order for mounting screws. Une	s and Al heat-fi	n destruction.	Motion SPI	M [®] 2 Packa	
0. Avoid one side tighten	ue or mounting screws. Much mountin ing stress. Fig.8 shows the recomme	ng torque may cause ceramic cracks and bolt	s and AI heat-fi ven mounting c	n destruction.	Motion SPI	M [®] 2 Packa	


FSAM50SM60A Motion SPM® 2 Series

FSAM50SM60A Rev. C3




©2006 Fairchild Semiconductor Corporation FSAM50SM60A Rev. C3

©2006 Fairchild Semiconductor Corporation FSAM50SM60A Rev. C3

©2006 Fairchild Semiconductor Corpora FSAM50SM60A Rev. C3

FSAM50SM60A Rev. C3

FSAM50SM60A Motion SPM® N Series

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

©2006 Fairchild Semiconductor Corporation FSAM50SM60A Rev. C3