FEATURES

High accuracy
- 0.02% maximum nonlinearity, 0 V to 2 V rms input
- 0.10% additional error to crest factor of 3

Wide bandwidth
- 8 MHz at 2 V rms input
- 600 kHz at 100 mV rms

Computes
- True rms
- Square
- Mean square
- Absolute value

dB output (60 dB range)

Chip select/power-down feature allows
- Analog three-state operation
- Quiescent current reduction from 2.2 mA to 350 μA

14-lead SBDIP, 14-lead low cost CERDIP, and 16-lead SOIC_W

GENERAL DESCRIPTION

The AD637 is a complete, high accuracy, monolithic rms-to-dc converter that computes the true rms value of any complex waveform. It offers performance that is unprecedented in integrated circuit rms-to-dc converters and comparable to discrete and modular techniques in accuracy, bandwidth, and dynamic range. A crest factor compensation scheme in the AD637 permits measurements of signals with crest factors of up to 10 with less than 1% additional error. The wide bandwidth of the AD637 permits the measurement of signals up to 600 kHz with inputs of 200 mV rms and up to 8 MHz when the input levels are above 1 V rms.

As with previous monolithic rms converters from Analog Devices, Inc., the AD637 has an auxiliary dB output available to users. The logarithm of the rms output signal is brought out to a separate pin, allowing direct dB measurement with a useful range of 60 dB. An externally programmed reference current allows the user to select the 0 dB reference voltage to correspond to any level between 0.1 V and 2.0 V rms.

A chip select connection on the AD637 permits the user to decrease the supply current from 2.2 mA to 350 μA during periods when the rms function is not in use. This feature facilitates the addition of precision rms measurement to remote or handheld applications where minimum power consumption is critical. In addition, when the AD637 is powered down, the output goes to a high impedance state. This allows several AD637s to be tied together to form a wideband true rms multiplexer.

The input circuitry of the AD637 is protected from overload voltages in excess of the supply levels. The inputs are not damaged by input signals if the supply voltages are lost.

The AD637 is available in accuracy Grade J and Grade K for commercial temperature range (0°C to 70°C) applications, accuracy Grade A and Grade B for industrial range (−40°C to +85°C) applications, and accuracy Grade S rated over the −55°C to +125°C temperature range. All versions are available in hermetically sealed, 14-lead SBDIP, 14-lead CERDIP, and 16-lead SOIC_W packages.

The AD637 computes the true root mean square, mean square, or absolute value of any complex ac (or ac plus dc) input waveform and gives an equivalent dc output voltage. The true rms value of a waveform is more useful than an average rectified signal because it relates directly to the power of the signal. The rms value of a statistical signal is also related to the standard deviation of the signal.

The AD637 is laser wafer trimmed to achieve rated performance without external trimming. The only external component required is a capacitor that sets the averaging time period. The value of this capacitor also determines low frequency accuracy, ripple level, and settling time.

The on-chip buffer amplifier can be used either as an input buffer or in an active filter configuration. The filter can be used to reduce the amount of ac ripple, thereby increasing accuracy.
IMPORTANT LINKS for the AD637*

PARAMETRIC SELECTION TABLES
Find Similar Products By Operating Parameters

DOCUMENTATION
AD637: Military Data Sheet
AN-653: Improving Temperature, Stability, and Linearity of High Dynamic Range RMS RF Power Detectors
AN-268: RMS-to-DC Converters Ease Measurement Tasks
RMS-to-DC Application Guide
- Section I: RMS-DC Conversion - Theory
- Section II: RMS-DC Conversion - Basic Design Considerations
- Section III: RMS Application Circuits
- Appendix A: Testing the Critical Parameters of RMS Converters
- Appendix B: Input Buffer Amplifier Requirements
- Appendix C: Computer Programs for Determining Computational Errors, Output Ripple, and 1% Settling Time of RMS Converter
- Appendix D: New Products Appendix to the RMS-to-DC Conversion Application Guide
- Download the entire guide in .zip format
Introduction to Analog RMS-to-DC Technology: Converters and Applications
- Audio Version
- Non-Audio Version
ADI Warns Against Misuse of COTS Integrated Circuits
Space Qualified Parts List

DESIGN TOOLS, MODELS, DRIVERS & SOFTWARE
AD637 SPICE Macro Model

DESIGN COLLABORATION COMMUNITY
Collaborate Online with the ADI support team and other designers about select ADI products.
Follow us on Twitter: www.twitter.com/ADI_News
Like us on Facebook: www.facebook.com/AnalogDevicesInc

DESIGN SUPPORT
Submit your support request here:
Linear and Data Converters
Embedded Processing and DSP
Telephone our Customer Interaction Centers toll free:
Americas: 1-800-262-5643
Europe: 00800-266-822-82
China: 4006-100-006
India: 1800-419-0108
Russia: 8-800-555-45-90

Quality and Reliability
Lead(Pb)-Free Data

EVALUATION KITS & SYMBOLS & FOOTPRINTS
View the Evaluation Boards and Kits page for documentation and purchasing
Symbols and Footprints

SAMPLE & BUY
AD637
- View Price & Packaging
- Request Evaluation Board
- Request Samples
- Check Inventory & Purchase

Find Local Distributors

* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page (labeled 'Important Links') does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.
TABLE OF CONTENTS

Features ... 1
Functional Block Diagram ... 1
General Description .. 1
Revision History ... 2
Specifications ... 3
Absolute Maximum Ratings ... 5
ESD Caution .. 5
Pin Configurations and Function Descriptions 6
Functional Description ... 7
Standard Connection .. 8
Chip Select ... 8
Optional Trims for High Accuracy 8
Choosing the Averaging Time Constant 9
Frequency Response .. 11
AC Measurement Accuracy and Crest Factor 12
Connection for dB Output .. 12
dB Calibration ... 13
Low Frequency Measurements 14
Vector Summation .. 14
Evaluation Board .. 16
Outline Dimensions .. 19
Ordering Guide ... 20

REVISION HISTORY

Changes to Figure 15 ... 11
Changes to Figure 16 ... 12
Changes to Evaluation Board Section and Figure 23 16
Added Figure 24; Renumbered Sequentially 17
Changes to Figure 25 Through Figure 29 17
Changes to Figure 30 ... 18
Added Figure 31 .. 18
Deleted Table 6; Renumbered Sequentially 18
Changes to Ordering Guide 20

4/07—Rev. I to Rev. J
Added Evaluation Board Section 16
Updated Outline Dimensions 20

10/06—Rev. H to Rev. I
Changes to Table 1 ... 3
Changes to Figure 4 ... 7
Changes to Figure 7 ... 9
Changes to Figure 16, Figure 18, and Figure 19 12
Changes to Figure 20 ... 13

12/05—Rev. G to Rev. H
Updated Format .. Universal
Changes to Figure 1 ... 1
Changes to Figure 11 ... 10
Updated Outline Dimensions 16
Changes to Ordering Guide 17

4/05—Rev. F to Rev. G
Updated Format .. Universal
Changes to Figure 1 ... 1
Changes to General Description 1
Deleted Product Highlights 1
Moved Figure 4 to Page .. 8
Changes to Figure 5 ... 9
Changes to Figure 8 ... 10
Changes to Figure 11, Figure 12, Figure 13, and Figure 14... 11
Changes to Figure 19 ... 14
Changes to Figure 20 ... 14
Changes to Figure 21 ... 16
Updated Outline Dimensions 17
Changes to Ordering Guide 18

3/02—Rev. E to Rev. F
Edits to E to Rev. F .. 3
SPECIFICATIONS

At 25°C and ±15 V dc, unless otherwise noted.

Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AD637J/AD637A</th>
<th>AD637K/AD637B</th>
<th>AD637S</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSFER FUNCTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OUT} = \sqrt{\frac{\text{avg} \times (V_{IN})^2}{2}})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONVERSION ACCURACY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Error, Internal Trim (^2) (Figure 5)</td>
<td>±1 ± 0.5</td>
<td>±0.5 ± 0.2</td>
<td>±1 ± 0.5</td>
</tr>
<tr>
<td>(T_{MIN} \text{ to } \ T_{MAX})</td>
<td>±3.0 ± 0.6</td>
<td>±2.0 ± 0.3</td>
<td>±6 ± 0.7</td>
</tr>
<tr>
<td>vs. Supply +(V_N = 300) mV</td>
<td>30 150</td>
<td>30 150</td>
<td>30 150</td>
</tr>
<tr>
<td>vs. Supply −(V_N = -300) mV</td>
<td>100 300</td>
<td>100 300</td>
<td>100 300</td>
</tr>
<tr>
<td>DC Reversal Error at 2 V</td>
<td>0.25</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>Nonlinearity 2 V Full Scale (^3)</td>
<td>0.04</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>Nonlinearity 7 V Full Scale</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Total Error, External Trim</td>
<td>±0.5 ± 0.1</td>
<td>±0.25 ± 0.05</td>
<td>±0.5 ± 0.1</td>
</tr>
<tr>
<td>ERROR VS. CREST FACTOR(^4)</td>
<td>Specified accuracy</td>
<td>Specified accuracy</td>
<td>Specified accuracy</td>
</tr>
<tr>
<td>Crest Factor 1 to 2</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>Crest Factor = 3</td>
<td>±1.0</td>
<td>±1.0</td>
<td>±1.0</td>
</tr>
<tr>
<td>Crest Factor = 10</td>
<td>±1.0</td>
<td>±1.0</td>
<td>±1.0</td>
</tr>
<tr>
<td>AVERAGING TIME CONSTANT</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>INPUT CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Range, ±15 V Supply</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous RMS Level</td>
<td>0 to 7</td>
<td>0 to 7</td>
<td>0 to 7</td>
</tr>
<tr>
<td>Peak Transient Input</td>
<td>±15</td>
<td>±15</td>
<td>±15</td>
</tr>
<tr>
<td>Signal Range, ±5 V Supply</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous RMS Level</td>
<td>0 to 4</td>
<td>0 to 4</td>
<td>0 to 4</td>
</tr>
<tr>
<td>Peak Transient Input</td>
<td>±6</td>
<td>±6</td>
<td>±6</td>
</tr>
<tr>
<td>Maximum Continuous Nondestructive Input Level (All Supply Voltages)</td>
<td>±15</td>
<td>±15</td>
<td>±15</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>6.4 8 9.6</td>
<td>6.4 8 9.6</td>
<td>6.4 8 9.6</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>±0.5</td>
<td>±0.2</td>
<td>±0.5</td>
</tr>
<tr>
<td>FREQUENCY RESPONSE(^5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandwidth for 1% Additional Error (0.09 dB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_N = 20) mV</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>(V_N = 200) mV</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>(V_N = 2) V</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>±3 dB Bandwidth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_N = 20) mV</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>(V_N = 200) mV</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(V_N = 2) V</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
AD637

Offset Voltage
- **Output Characteristics**
 - **Offset Voltage vs. Temperature**
 - Min: ±0.05 mV
 - Typ: ±0.089 mV
 - Max: ±1 mV
 - **Voltage Swing, ±13 V Supply, 2 kΩ Load**
 - Min: 0 mV
 - Typ: ±0.04 mV
 - Max: ±0.056 mV
 - **Voltage Swing, ±3 V Supply, 2 kΩ Load**
 - Min: 0 mV
 - Typ: ±0.04 mV
 - Max: ±0.07 mV

Voltage Swing
- **Voltage Swing, ±15 V Supply, 2 kΩ Load**
 - Min: 0 mV
 - Typ: ±0.05 mV
 - Max: ±0.07 mV
- **Voltage Swing, ±3 V Supply, 2 kΩ Load**
 - Min: 0 mV
 - Typ: ±0.04 mV
 - Max: ±0.07 mV

Output Current
- **Short-Circuit Current**
 - Min: 20 mA
 - Typ: 20 mA
 - Max: 20 mA

Resistance
- **Chip Select High**
 - Min: 0.5 kΩ
 - Typ: 0.5 kΩ
 - Max: 0.5 kΩ

dB OUTPUT
- **Error, Vrms 7 mV to 7 V rms, 0 dB = 1 V rms**
 - Min: ±0.5 dB
 - Typ: ±0.3 dB
 - Max: ±0.5 dB

Scale Factor
- **Scale Factor**
 - Min: −3 mV/dB
 - Typ: −3 mV/dB
 - Max: −3 mV/dB

Scale Factor Temperature Coefficient
- **Scale Factor Temperature Coefficient**
 - Min: +0.33 % of reading/°C
 - Typ: +0.33 % of reading/°C
 - Max: +0.33 % of reading/°C

IREF for 0 dB = 1 V rms
- **IREF Range**
 - Min: 5 μA
 - Typ: 20 μA
 - Max: 80 μA

BUFFER AMPLIFIER
- **Input Range**
 - Min: −V_i to (+V_i − 2.5 V)
 - Typ: −V_i to (+V_i − 2.5 V)
 - Max: −V_i to (+V_i − 2.5 V)

Input Offset Voltage
- **Input Current**
 - Min: ±2 nA
 - Typ: ±2 nA
 - Max: ±5 nA

Input Resistance
- **Input Resistance**
 - Min: 10⁶ Ω
 - Typ: 10⁶ Ω
 - Max: 10⁶ Ω

Output Current
- **Output Current**
 - Min: −0.13 mA
 - Typ: +5 mA
 - Max: −0.13 mA

Small Signal Bandwidth
- **Small Signal Bandwidth**
 - Min: 1 MHz
 - Typ: 1 MHz
 - Max: 1 MHz

Slew Rate
- **Slew Rate**
 - Min: 5 V/μs
 - Typ: 5 V/μs
 - Max: 5 V/μs

DENOMINATOR INPUT
- **Input Range**
 - Min: 0 mV
 - Typ: 0 mV
 - Max: 0 mV

Input Resistance
- **Input Resistance**
 - Min: 20 kΩ
 - Typ: 25 kΩ
 - Max: 30 kΩ

Offset Voltage
- **Offset Voltage**
 - Min: ±0.2 mV
 - Typ: ±0.5 mV
 - Max: ±0.2 mV

CHIP SELECT (CS)
- **RMS On Level**
 - Min: V_C < 0.2 V
 - Typ: V_C < 0.2 V
 - Max: V_C < 0.2 V

RMS Off Level
- **RMS Off Level**
 - Min: Open or 2.4 V < V_C < +V_i
 - Typ: Open or 2.4 V < V_C < +V_i
 - Max: Open or 2.4 V < V_C < +V_i

Low of Chip Select
- **CS Low**
 - Min: 10 μA
 - Typ: 10 μA
 - Max: 10 μA

CS High
- **CS High**
 - Min: 0 μA
 - Typ: 0 μA
 - Max: 0 μA

On Time Constant
- **On Time Constant**
 - Min: 10 μs
 - Typ: 10 μs
 - Max: 10 μs

Off Time Constant
- **Off Time Constant**
 - Min: 10 μs
 - Typ: 10 μs
 - Max: 10 μs

POWER SUPPLY
- **Operating Voltage Range**
 - Min: ±3.0 V
 - Typ: ±18 V
 - Max: ±3.0 V

Quiescent Current
- **Quiescent Current**
 - Min: 2.2 mA
 - Typ: 3 mA
 - Max: 2.2 mA

Standby Current
- **Standby Current**
 - Min: 350 μA
 - Typ: 450 μA
 - Max: 350 μA

1 Specifications shown in **bold** are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All minimum and maximum specifications are guaranteed, although only those shown in boldface are tested on all production units.

2 Accuracy specified 0 V rms to 7 V rms dc with AD637 connected, as shown in Figure 5.

3 Nonlinearity is defined as the maximum deviation from the straight line connecting the readings at 10 mV and 2 V.

4 Error vs. crest factor is specified as additional error for 1 V rms.

5 Input voltages are expressed in volts rms. Percent is in % of reading.

6 With external 2 kΩ pull-down resistor tied to −V_i.

Rev. K | Page 4 of 20
ABSOLUTE MAXIMUM RATINGS

Table 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD Rating</td>
<td>500 V</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>±18 V dc</td>
</tr>
<tr>
<td>Internal Quiescent Power Dissipation</td>
<td>108 mW</td>
</tr>
<tr>
<td>Output Short-Circuit Duration</td>
<td>Indefinite</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65°C to +150°C</td>
</tr>
<tr>
<td>Lead Temperature (Soldering 10 sec)</td>
<td>300°C</td>
</tr>
<tr>
<td>Rated Operating Temperature Range AD637J, AD637K</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>AD637A, AD637B</td>
<td>−40°C to +85°C</td>
</tr>
<tr>
<td>AD637S, 5962-8963701CA</td>
<td>−55°C to +125°C</td>
</tr>
</tbody>
</table>

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 3. 14-Lead SBDIP/CERDIP Pin Function Descriptions

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BUFF IN</td>
<td>Buffer Input</td>
</tr>
<tr>
<td>2, 12</td>
<td>NC</td>
<td>No Connection</td>
</tr>
<tr>
<td>3</td>
<td>COMMON</td>
<td>Analog Common</td>
</tr>
<tr>
<td>4</td>
<td>OUTPUT OFFSET</td>
<td>Output Offset</td>
</tr>
<tr>
<td>5</td>
<td>CS</td>
<td>Chip Select</td>
</tr>
<tr>
<td>6</td>
<td>DEN INPUT</td>
<td>Denominator Input</td>
</tr>
<tr>
<td>7</td>
<td>dB OUTPUT</td>
<td>dB Output</td>
</tr>
<tr>
<td>8</td>
<td>C_{AV}</td>
<td>Averaging Capacitor Connection</td>
</tr>
<tr>
<td>9</td>
<td>RMS OUT</td>
<td>RMS Output</td>
</tr>
<tr>
<td>10</td>
<td>$-V_S$</td>
<td>Negative Supply Rail</td>
</tr>
<tr>
<td>11</td>
<td>$+V_S$</td>
<td>Positive Supply Rail</td>
</tr>
<tr>
<td>13</td>
<td>V$_{IN}$</td>
<td>Signal Input</td>
</tr>
<tr>
<td>14</td>
<td>BUFF OUT</td>
<td>Buffer Output</td>
</tr>
</tbody>
</table>

Table 4. 16-Lead SOIC_W Pin Function Descriptions

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BUFF IN</td>
<td>Buffer Input</td>
</tr>
<tr>
<td>2, 8, 9, 14</td>
<td>NC</td>
<td>No Connection</td>
</tr>
<tr>
<td>3</td>
<td>COMMON</td>
<td>Analog Common</td>
</tr>
<tr>
<td>4</td>
<td>OUTPUT OFFSET</td>
<td>Output Offset</td>
</tr>
<tr>
<td>5</td>
<td>CS</td>
<td>Chip Select</td>
</tr>
<tr>
<td>6</td>
<td>DEN INPUT</td>
<td>Denominator Input</td>
</tr>
<tr>
<td>7</td>
<td>dB OUTPUT</td>
<td>dB Output</td>
</tr>
<tr>
<td>10</td>
<td>C_{AV}</td>
<td>Averaging Capacitor Connection</td>
</tr>
<tr>
<td>11</td>
<td>RMS OUT</td>
<td>RMS Output</td>
</tr>
<tr>
<td>12</td>
<td>$-V_S$</td>
<td>Negative Supply Rail</td>
</tr>
<tr>
<td>13</td>
<td>$+V_S$</td>
<td>Positive Supply Rail</td>
</tr>
<tr>
<td>15</td>
<td>V$_{IN}$</td>
<td>Signal Input</td>
</tr>
<tr>
<td>16</td>
<td>BUFF OUT</td>
<td>Buffer Output</td>
</tr>
</tbody>
</table>
The AD637 embodies an implicit solution of the rms equation that overcomes the inherent limitations of straightforward rms computation. The actual computation performed by the AD637 follows the equation

\[V_{rms} = \text{Avg} \left(\frac{V_{IN}^2}{V_{rms}} \right) \]

Figure 4 is a simplified schematic of the AD637, subdivided into four major sections: absolute value circuit (active rectifier), squarer/divider, filter circuit, and buffer amplifier. The input voltage (Vin), which can be ac or dc, is converted to a unipolar current I1 by the active rectifiers A1 and A2. I1 drives one input of the squarer/divider, which has the transfer function

\[I_i = \frac{I_i^2}{I_3} \]

The output current of the squarer/divider Ii drives A4, forming a low-pass filter with the external averaging capacitor. If the RC time constant of the filter is much greater than the longest period of the input signal, then the A4 output is proportional to the average of Ii. The output of this filter amplifier is used by A3 to provide the denominator current I3, which equals Avg I4 and is returned to the squarer/divider to complete the implicit rms computation

\[I_i = \text{Avg} \left(\frac{I_i^2}{I_3} \right) = I_i \text{ rms} \]

and

\[V_{OUT} = V_{IN} \text{ rms} \]

To compute the absolute value of the input signal, the averaging capacitor is omitted. However, a small capacitance value at the averaging capacitor pin is recommended to maintain stability; 5 pF is sufficient for this purpose. The circuit operates identically to that of the rms configuration, except that I3 is now equal to Ii, giving

\[I_i = \frac{I_i^2}{I_i} \]

\[I_i = |I_i| \]

The denominator current can also be supplied externally by providing a reference voltage (VREF) to Pin 6. The circuit operates identically to the rms case, except that I3 is now proportional to VREF. Therefore,

\[I_i = \text{Avg} \left(\frac{I_i^2}{I_3} \right) \]

and

\[V_{OUT} = \frac{V_{IN}^2}{V_{DEN}} \]

This is the mean square of the input signal.
STANDARD CONNECTION

The AD637 is simple to connect for a majority of rms measurements. In the standard rms connection shown in Figure 5, only a single external capacitor is required to set the averaging time constant. In this configuration, the AD637 computes the true rms of any input signal. An averaging error, the magnitude of which is dependent on the value of the averaging capacitor, is present at low frequencies. For example, if the filter capacitor, C_{AV}, is 4 μF, the error is 0.1% at 10 Hz and increases to 1% at 3 Hz. To measure ac signals, the AD637 can be ac-coupled by adding a nonpolar capacitor in series with the input, as shown in Figure 5.

The performance of the AD637 is tolerant of minor variations in the power supply voltages; however, if the supplies used exhibit a considerable amount of high frequency ripple, it is advisable to bypass both supplies to ground through a 0.1 μF ceramic disc capacitor placed as close to the device as possible.

The output signal range of the AD637 is a function of the supply voltages, as shown in Figure 6. The output signal can be used buffered or nonbuffered, depending on the characteristics of the load. If no buffer is needed, tie the buffer input (Pin 1) to common. The output of the AD637 is capable of driving 5 mA into a 2 kΩ load without degrading the accuracy of the device.

CHIP SELECT

The AD637 includes a chip select feature that allows the user to decrease the quiescent current of the device from 2.2 mA to 350 μA. This is done by driving CS, Pin 5, to below 0.2 V dc. Under these conditions, the output goes into a high impedance state. In addition to reducing the power consumption, the outputs of multiple devices can be connected in parallel to form a wide bandwidth rms multiplexer. Tie Pin 5 high to disable the chip select.

OPTIONAL TRIMS FOR HIGH ACCURACY

The AD637 includes provisions for trimming out output offset and scale factor errors resulting in significant reduction in the maximum total error, as shown in Figure 7. The residual error is due to a nontrimmable input offset in the absolute value circuit and the irreducible nonlinearity of the device.

Referring to Figure 8, the trimming process is as follows:

- Offset trim: Ground the input signal (V_{IN}) and adjust R1 to give 0 V output from Pin 9. Alternatively, R1 can be adjusted to give the correct output with the lowest expected value of V_{IN}.

- Scale factor trim: Resistor R4 is inserted in series with the input to lower the range of the scale factor. Connect the desired full-scale input to V_{DS}, using either a dc or a calibrated ac signal, and trim Resistor R3 to give the correct output at Pin 9 (that is, 1 V dc at the input results in a dc output voltage of 1000 V dc). A 2 V p-p sine wave input yields 0.707 V dc at the output. Remaining errors are due to the nonlinearity.
CHOOSING THE AVERAGING TIME CONSTANT

The AD637 computes the true rms value of both dc and ac input signals. At dc, the output tracks the absolute value of the input exactly; with ac signals, the AD637 output approaches the true rms value of the input. The deviation from the ideal rms value is due to an averaging error. The averaging error comprises an ac component and a dc component. Both components are functions of input signal frequency f and the averaging time constant τ (τ: $25 \text{ ms}/\mu\text{F}$ of averaging capacitance). Figure 9 shows that the averaging error is defined as the peak value of the ac component (ripple) and the value of the dc error.

The peak value of the ac ripple component of the averaging error is defined approximately by the relationship

$$\frac{50}{6.3} \tau f \text{ in } \% \text{ of reading where } (\tau > 1/f)$$

The ac ripple component of averaging error is greatly reduced by increasing the value of the averaging capacitor. There are two major disadvantages to this: the value of the averaging capacitor becomes extremely large and the settling time of the AD637 increases in direct proportion to the value of the averaging capacitor ($T_s = 115 \text{ ms}/\mu\text{F}$ of averaging capacitance). A preferable method of reducing the ripple is by using the postfilter network, as shown in Figure 11. This network can be used in either a 1-pole or 2-pole configuration. For most applications, the 1-pole filter gives the best overall compromise between ripple and settling time.
Figure 11. 2-Pole Sallen-Key Filter

Figure 12 shows values of CAV and the corresponding averaging error as a function of sine wave frequency for the standard rms connection. The 1% settling time is shown on the right side of Figure 12.

Figure 13 shows the relationship between the averaging error, signal frequency settling time, and averaging capacitor value. Figure 13 is drawn for filter capacitor values of 3.3 times the averaging capacitor value. This ratio sets the magnitude of the ac and dc errors equal at 50 Hz. As an example, by using a 1 μF averaging capacitor and a 3.3 μF filter capacitor, the ripple for a 60 Hz input signal is reduced from 5.3% of the reading using the averaging capacitor alone to 0.15% using the 1-pole filter. This gives a factor of 30 reduction in ripple, and yet the settling time only increases by a factor of 3. The values of filter capacitor CAV and filter capacitor C2 can be calculated for the desired value of averaging error and settling time by using Figure 13.

The symmetry of the input signal also has an effect on the magnitude of the averaging error. Table 5 gives the practical component values for various types of 60 Hz input signals. These capacitor values can be directly scaled for frequencies other than 60 Hz—that is, for 30 Hz, these values are doubled, and for 120 Hz they are halved.

For applications that are extremely sensitive to ripple, the 2-pole configuration is suggested. This configuration minimizes capacitor values and the settling time while maximizing performance.

Figure 14 can be used to determine the required value of CAV, C2, and C3 for the desired level of ripple and settling time.
<table>
<thead>
<tr>
<th>Input Waveform and Period</th>
<th>Absolute Value Circuit Waveform and Period</th>
<th>Minimum R × CAV Time Constant</th>
<th>Recommended Standard Values for CAV and C2 for 1% Averaging Error @ 60 Hz with T = 16.6 ms</th>
<th>1% Settling Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1/2T</td>
<td>0.47</td>
<td>1.5</td>
<td>181 ms</td>
</tr>
<tr>
<td>B</td>
<td>T</td>
<td>0.82</td>
<td>2.7</td>
<td>325 ms</td>
</tr>
<tr>
<td>C</td>
<td>10 (T − T2)</td>
<td>6.8</td>
<td>22</td>
<td>2.67 sec</td>
</tr>
<tr>
<td>D</td>
<td>10 (T − 2T2)</td>
<td>5.6</td>
<td>18</td>
<td>2.17 sec</td>
</tr>
</tbody>
</table>

FREQUENCY RESPONSE

The frequency response of the AD637 at various signal levels is shown in Figure 15. The dashed lines show the upper frequency limits for 1%, 10%, and ±3 dB of additional error. For example, note that for 1% additional error with a 2 V rms input, the highest frequency allowable is 200 kHz. A 200 mV signal can be measured with 1% error at signal frequencies up to 100 kHz.

To take full advantage of the wide bandwidth of the AD637, care must be taken in the selection of the input buffer amplifier. To ensure that the input signal is accurately presented to the converter, the input buffer must have a −3 dB bandwidth that is wider than that of the AD637. Note the importance of slew rate in this application. For example, the minimum slew rate required for a 1 V rms, 5 MHz, sine wave input signal is 44 V/μs. The user is cautioned that this is the minimum rising or falling slew rate and that care must be exercised in the selection of the buffer amplifier, because some amplifiers exhibit a two-to-one difference between rising and falling slew rates. The AD845 is recommended as a precision input buffer.

![Figure 15. Frequency Response](image-url)
AC MEASUREMENT ACCURACY AND CREST FACTOR

Crest factor is often overlooked in determining the accuracy of an ac measurement. Crest factor is defined as the ratio of the peak signal amplitude to the rms value of the signal (CF = Vp/V rms).

Most common waveforms, such as sine and triangle waves, have relatively low crest factors (≤2). Waveforms that resemble low duty cycle pulse trains, such as those occurring in switching power supplies and SCR circuits, have high crest factors. For example, a rectangular pulse train with a 1% duty cycle has a crest factor of 10 (CF = 10√D).

Figure 16. Duty Cycle Timing

Figure 17. Duty Cycle Timing

Figure 18. Additional Error vs. Crest Factor

Figure 19. Error vs. RMS Input Level for Three Common Crest Factors

CONNECTION FOR dB OUTPUT

Another feature of the AD637 is the logarithmic, or decibel, output. The internal circuit that computes dB works well over a 60 dB range. Figure 20 shows the dB measurement connection. The user selects the 0 dB level by setting R1 for the proper 0 dB reference current, which is set to cancel the log output current from the squarer/divider circuit at the desired 0 dB point. The external op amp is used to provide a more convenient scale and to allow compensation of the +0.3%/°C temperature drift of the dB circuit. The temperature resistor R3, as shown in Figure 20, is available from Precision Resistor Co., Inc., in Largo, Fla. (Model PT146). Consult its website for additional information.
dB CALIBRATION

Refer to Figure 20:

- Set $V_{IN} = 1.00 \text{ V dc or } 1.00 \text{ V rms}$
- Adjust R1 for 0 dB out = 0.00 V
- Set $V_{IN} = 0.1 \text{ V dc or } 0.10 \text{ V rms}$
- Adjust R2 for dB out = -2.00 V

Any other dB reference can be used by setting V_{IN} and R1 accordingly.

*1kΩ = 3500ppm
SEE TEXT

Figure 20. dB Connection
LOW FREQUENCY MEASUREMENTS

If the frequencies of the signals to be measured are below 10 Hz, the value of the averaging capacitor required to deliver even 1% averaging error in the standard rms connection becomes extremely large. Figure 21 shows an alternative method of obtaining low frequency rms measurements. The averaging time constant is determined by the product of \(R \) and \(C_{AV1} \), in this circuit, 0.5 sec/\(\mu \)F of \(C_{AV} \). This circuit permits a 20:1 reduction in the value of the averaging capacitor, permitting the use of high quality tantalum capacitors. It is suggested that the 2-pole, Sallen-Key filter shown in Figure 21 be used to obtain a low ripple level and minimize the value of the averaging capacitor.

If the frequency of interest is below 1 Hz, or if the value of the averaging capacitor is still too large, the 20:1 ratio can be increased. This is accomplished by increasing the value of \(R \). If this is done, it is suggested that a low input current, low offset voltage amplifier, such as the AD548, be used instead of the internal buffer amplifier. This is necessary to minimize the offset error introduced by the combination of amplifier input currents and the larger resistance.

VECTOR SUMMATION

Vector summation can be accomplished through the use of two AD637s, as shown in Figure 22. Here, the averaging capacitors are omitted (nominal 100 pF capacitors are used to ensure stability of the filter amplifier), and the outputs are summed as shown. The output of the circuit is

\[
V_{OUT} = \sqrt{V_X^2 + V_Y^2}
\]

This concept can be expanded to include additional terms by feeding the signal from Pin 9 of each additional AD637 through a 10 k\(\Omega \) resistor to the summing junction of the AD711 and tying all of the denominator inputs (Pin 6) together.

If \(C_{AV} \) is added to IC1 in this configuration, then the output is

\[
\sqrt{V_X^2 + V_Y^2}
\]

If the averaging capacitor is included on both IC1 and IC2, the output is

\[
\sqrt{V_X^2 + V_Y^2}
\]

This circuit has a dynamic range of 10 V to 10 mV and is limited only by the 0.5 mV offset voltage of the AD637. The useful bandwidth is 100 kHz.
Figure 22. Vector Sum Configuration

\[V_{OUT} = \sqrt{V_{x2}^2 + V_{y2}^2} \]
EVALUATION BOARD

Figure 23 shows a digital image of the AD637-EVALZ, an evaluation board specially designed for the AD637. It is available at www.analog.com and is fully tested and ready for bench testing after connecting power and signal I/O. The circuit is configured for dual power supplies, and standard BNC connectors serve as the signal input and output ports.

Referring to the schematic in Figure 30, the input connector RMS_IN is capacitively coupled to Pin 15 (V_{in} of SOIC package) of the AD637. The DC_OUT connector is connected to Pin 11, RMS_OUT, with provisions for connections to the output buffer between Pin 1 and Pin 16. The buffer is an uncommitted op amp, and is configured on the AD637-EVALZ as a low-pass Sallen-Key filter whose \(f_c < 0.5 \text{ Hz} \). Users can connect to the buffer by moving the FILTER switch to the on position. DC_OUT is still the output of the AD637, and the test loop, BUF_OUT, is the output of the buffer. The R2 trimmer adjusts the output offset voltage.

The LPF frequency is changed by changing the component values of CF1, CF2, R4, and R5. See Figure 24 and Figure 30 to locate these components. Note that a wide range of capacitor and resistor values can be used with the AD637 buffer amplifier.
Figure 30. Evaluation Board Schematic

Figure 31. AD637-EVALZ Typical Bench Configuration
OUTLINE DIMENSIONS

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 32. 14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP] (D-14)
Dimensions shown in inches and (millimeters)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 33. 14-Lead Ceramic Dual In-Line Package [CERDIP] (Q-14)
Dimensions shown in inches and (millimeters)
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 34. 16-Lead Standard Small Outline Package (SOIC_W) Wide Body (RW-16)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

<table>
<thead>
<tr>
<th>Model</th>
<th>Notes</th>
<th>Temperature Range</th>
<th>Package Description</th>
<th>Package Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>5962-8963701CA</td>
<td>2</td>
<td>−55°C to +125°C</td>
<td>14-Lead CERDIP</td>
<td>Q-14</td>
</tr>
<tr>
<td>AD637AQ</td>
<td></td>
<td>−40°C to +85°C</td>
<td>14-Lead CERDIP</td>
<td>Q-14</td>
</tr>
<tr>
<td>AD637AR</td>
<td></td>
<td>−40°C to +85°C</td>
<td>16-Lead SOIC_W</td>
<td>RW-16</td>
</tr>
<tr>
<td>AD637ARZ</td>
<td></td>
<td>−40°C to +85°C</td>
<td>16-Lead SOIC_W</td>
<td>RW-16</td>
</tr>
<tr>
<td>AD637BQ</td>
<td></td>
<td>−40°C to +85°C</td>
<td>14-Lead CERDIP</td>
<td>Q-14</td>
</tr>
<tr>
<td>AD637BR</td>
<td></td>
<td>−40°C to +85°C</td>
<td>16-Lead SOIC_W</td>
<td>RW-16</td>
</tr>
<tr>
<td>AD637BRZ</td>
<td></td>
<td>−40°C to +85°C</td>
<td>16-Lead SOIC_W</td>
<td>RW-16</td>
</tr>
<tr>
<td>AD637JD</td>
<td></td>
<td>0°C to 70°C</td>
<td>14-Lead SBDIP</td>
<td>D-14</td>
</tr>
<tr>
<td>AD637JDZ</td>
<td></td>
<td>0°C to 70°C</td>
<td>14-Lead SBDIP</td>
<td>D-14</td>
</tr>
<tr>
<td>AD637JQ</td>
<td></td>
<td>0°C to 70°C</td>
<td>14-Lead CERDIP</td>
<td>Q-14</td>
</tr>
<tr>
<td>AD637JR</td>
<td></td>
<td>0°C to 70°C</td>
<td>16-Lead SOIC_W</td>
<td>RW-16</td>
</tr>
<tr>
<td>AD637JR-REEL</td>
<td></td>
<td>0°C to 70°C</td>
<td>16-Lead SOIC_W</td>
<td>RW-16</td>
</tr>
<tr>
<td>AD637JR-REEL7</td>
<td></td>
<td>0°C to 70°C</td>
<td>16-Lead SOIC_W</td>
<td>RW-16</td>
</tr>
<tr>
<td>AD637JRZ</td>
<td></td>
<td>0°C to 70°C</td>
<td>16-Lead SOIC_W</td>
<td>RW-16</td>
</tr>
<tr>
<td>AD637JRZ-RL</td>
<td></td>
<td>0°C to 70°C</td>
<td>16-Lead SOIC_W</td>
<td>RW-16</td>
</tr>
<tr>
<td>AD637JRZ-R7</td>
<td></td>
<td>0°C to 70°C</td>
<td>16-Lead SOIC_W</td>
<td>RW-16</td>
</tr>
<tr>
<td>AD637KD</td>
<td></td>
<td>0°C to 70°C</td>
<td>14-Lead SBDIP</td>
<td>D-14</td>
</tr>
<tr>
<td>AD637KDZ</td>
<td></td>
<td>0°C to 70°C</td>
<td>14-Lead SBDIP</td>
<td>D-14</td>
</tr>
<tr>
<td>AD637KQ</td>
<td></td>
<td>0°C to 70°C</td>
<td>14-Lead CERDIP</td>
<td>Q-14</td>
</tr>
<tr>
<td>AD637KRZ</td>
<td></td>
<td>0°C to 70°C</td>
<td>16-Lead SOIC_W</td>
<td>RW-16</td>
</tr>
<tr>
<td>AD637SD</td>
<td></td>
<td>−55°C to +125°C</td>
<td>14-Lead SBDIP</td>
<td>D-14</td>
</tr>
<tr>
<td>AD637SD/833B</td>
<td></td>
<td>−55°C to +125°C</td>
<td>14-Lead SBDIP</td>
<td>D-14</td>
</tr>
<tr>
<td>AD637SQ/833B</td>
<td></td>
<td>−55°C to +125°C</td>
<td>14-Lead CERDIP</td>
<td>Q-14</td>
</tr>
<tr>
<td>AD637-EVALZ</td>
<td></td>
<td></td>
<td>Evaluation Board</td>
<td></td>
</tr>
</tbody>
</table>

1. Z = RoHS Compliant Part.
2. A standard microcircuit drawing is available.