

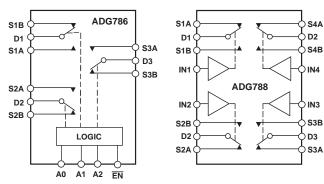
2.5 Ω , 1.8 V to 5.5 V, \pm 2.5 V Triple/Quad SPDT Switches in Chip Scale Packages

ADG786/ADG788

FEATURES

1.8 V to 5.5 V Single Supply ±2.5 V Dual Supply 2.5 Ω On Resistance 0.5 Ω On Resistance Flatness 100 pA Leakage Currents 19 ns Switching Times Triple SPDT: ADG786 Quad SPDT: ADG788

20-Lead 4 mm × 4 mm Chip Scale Packages


Low Power Consumption TTL/CMOS-Compatible Inputs

For Functionally-Equivalent Devices in 16-Lead TSSOP

Packages, See ADG733/ADG734 Qualified for automotive applications

APPLICATIONS Data Acquisition Systems Communication Systems Relay Replacement Audio and Video Switching Battery-Powered Systems

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC "1" INPUT

GENERAL DESCRIPTION

The ADG786 and ADG788 are low voltage, CMOS devices comprising three independently selectable SPDT (single pole, double throw) switches and four independently selectable SPDT switches respectively.

Low power consumption and operating supply range of 1.8 V to 5.5 V and dual ± 2.5 V make the ADG786 and ADG788 ideal for battery powered, portable instruments and many other applications. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels. An $\overline{\rm EN}$ input on the ADG786 is used to enable or disable the device. When disabled, all channels are switched OFF.

These multiplexers are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on resistance, high signal bandwidths and low leakage currents. On resistance is in the region of a few ohms, is closely matched between switches and very flat over the full signal range. These parts can operate equally well in either direction and have an input signal range which extends to the supplies.

The ADG786 and ADG788 are available in small 20-lead chip scale packages.

PRODUCT HIGHLIGHTS

- 1. Small 20-Lead 4 mm × 4 mm Chip Scale Packages (CSP).
- 2. Single/Dual Supply Operation. The ADG786 and ADG788 are fully specified and guaranteed with 3 V \pm 10% and 5 V \pm 10% single supply rails, and ± 2.5 V \pm 10% dual supply rails.
- 3. Low On Resistance (2.5 Ω typical).
- 4. Low Power Consumption ($<0.01 \mu W$).
- 5. Guaranteed Break-Before-Make Switching Action.

REV.B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

$ADG786/ADG788 - SPECIFICATIONS^{1} \ (\textit{V}_{DD} = 5 \ \textit{V} \ \pm \ 10\%, \ \textit{V}_{SS} = 0 \ \textit{V}, \ \textit{GND} = 0 \ \textit{V}, \ \textit{unless otherwise noted.})$

	B Ve	ersion		
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0~\mathrm{V}$ to V_{DD}	V	
On Resistance (R _{ON})	2.5		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$
	4.5	5.0	Ω max	Test Circuit 1
On-Resistance Match between		0.1	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
Channels (ΔR_{ON})	0.5	0.4	Ω max	V OVA
On-Resistance Flatness (R _{FLAT(ON)})	0.5	1.2	Ω typ Ω max	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
LEAKAGE CURRENTS				$V_{\mathrm{DD}} = 5.5 \mathrm{\ V}$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
	±0.1	± 0.3	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	± 0.01		nA typ	$V_D = V_S = 1 \text{ V, or } 4.5 \text{ V;}$
	±0.1	± 0.5	nA max	Test Circuit 3
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current	0.005		u A trop	V = V or V
I_{INL} or I_{INH}	0.003	±0.1	μΑ typ μΑ max	$V_{IN} = V_{INL} \text{ or } V_{INH}$
C _{IN} , Digital Input Capacitance	4	±0.1	pF typ	
DYNAMIC CHARACTERISTICS ²				
t_{ON}	19		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		34	ns max	$V_{S1A} = 3 \text{ V}, V_{S1B} = 0 \text{ V}, \text{ Test Circuit 4}$
$t_{ m OFF}$	7		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		12	ns max	$V_S = 3 \text{ V}$, Test Circuit 4
ADG786 $t_{ON}(\overline{EN})$	20	40	ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
4 (ENI)	~	40	ns max	$V_S = 3 \text{ V}$, Test Circuit 5
$\mathrm{t_{OFF}}(\overline{\mathrm{EN}})$	7	12	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 3 V$, Test Circuit 5
Break-Before-Make Time Delay, t _D	13	12	ns max ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
break before wake Time belay, to	10	1	ns min	$V_S = 3 \text{ V}$, Test Circuit 6
Charge Injection	±3	•	pC typ	$V_S = 2 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
J. J.			r	Test Circuit 7
Off Isolation	-80		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz;$
			_	Test Circuit 8
Channel-to-Channel Crosstalk	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
-3 dB Bandwidth	160		MHz typ	Test Circuit 9 $R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 10
C _S (OFF)	11		pF typ	f = 1 MHz
C_D , C_S (ON)	34		pF typ	f = 1 MHz
POWER REQUIREMENTS			_ ••	$V_{DD} = 5.5 \text{ V}$
I_{DD}	0.001		μA typ	Digital Inputs = 0 V or 5.5 V
		1.0	μA max	

NOTES

¹Temperature range is as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

 $SPECIFICAT \underline{IONS^1} \ \, (V_{DD} = 3 \ V \ \pm \ 10\%, \ V_{SS} = 0 \ V, \ \text{GND} = 0 \ V, \ \text{unless otherwise noted.})$

	B Version -40°C			
Parameter	+25°C	to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0~\mathrm{V}$ to V_{DD}	V	
On Resistance (R _{ON})	6		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$
	11	12	Ω max	Test Circuit 1
On-Resistance Match between		0.1	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
Channels (ΔR_{ON})		0.5	Ω max	
On-Resistance Flatness (R _{FLAT(ON)})		3	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
LEAKAGE CURRENTS				$V_{\mathrm{DD}} = 3.3 \mathrm{\ V}$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$
•	±0.1	± 0.3	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	±0.01		nA typ	$V_S = V_D = 1 \text{ V or } 3 \text{ V};$
	±0.1	± 0.5	nA max	Test Circuit 3
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μ A typ	$V_{IN} = V_{INL}$ or V_{INH}
		± 0.1	μA max	
C _{IN} , Digital Input Capacitance	4		pF typ	
DYNAMIC CHARACTERISTICS ²				
t_{ON}	28		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		55	ns max	$V_{S1A} = 2 \text{ V}, V_{S1B} = 0 \text{ V}, \text{ Test Circuit 4}$
$t_{ m OFF}$	9		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		16	ns max	$V_S = 2 V$, Test Circuit 4
ADG786 $t_{ON}(\overline{EN})$	29		ns typ	$R_L = 300 \ \Omega, \ C_L = 35 \ pF;$
		60	ns max	$V_S = 2 V$, Test Circuit 5
$t_{ m OFF}(\overline{ m EN})$	9		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		16	ns max	$V_S = 2 \text{ V}$, Test Circuit 5
Break-Before-Make Time Delay, t _D	22	4	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		1	ns min	$V_S = 2 \text{ V}$, Test Circuit 6
Charge Injection	±3		pC typ	$V_S = 1 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
Off Isolation	90		dD tros	Test Circuit 7
On isolation	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Test Circuit 8
Channel-to-Channel Crosstalk	-80		dB typ	R _L = 50Ω , C _L = $5 pF$, $f = 1 MHz$;
Chamber to Chamber Crosstark			ab typ	Test Circuit 9
-3 dB Bandwidth	160		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 10
C_S (OFF)	11		pF typ	f = 1 MHz
C_D, C_S (ON)	34		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{DD} = 3.3 \text{ V}$
I _{DD}	0.001		μ A typ	Digital Inputs = 0 V or 3.3 V
	1		1 J I	

REV.B -3-

¹Temperature ranges are as follows: B Version: -40°C to +85°C. ²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ADG786/ADG788-SPECIFICATIONS¹

DUAL SUPPLY ($V_{DD} = +2.5 \text{ V} \pm 10\%$, $V_{SS} = -2.5 \text{ V} \pm 10\%$, GND = 0 V, unless otherwise noted.)

	B V	ersion		
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V _{SS} to V _{DD}	V	
On Resistance (R_{ON})	2.5	1 22 to 1 DD	Ω typ	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA;
On resistance (100N)	4.5	5.0	Ω max	Test Circuit 1
On-Resistance Match between	1.0	0.1	Ω typ	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA
Channels (ΔR_{ON})		0.4	Ω max	V _S = V _{SS} to V _{DD} , I _{DS} = 10 IIII 1
On-Resistance Flatness ($R_{FLAT(ON)}$)	0.5	0.1	Ω typ	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA
On resistance rathess (reflation))	0.0	1.2	Ω max	VS = VSS to VDD, IDS = IO IIII I
LEAKAGE CURRENTS				$V_{\rm DD} = +2.75 \text{ V}, V_{\rm SS} = -2.75 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_{\rm S} = +2.25 \text{ V/}-1.25 \text{ V}, V_{\rm D} = -1.25 \text{ V/}+2.25 \text{ V}$
Source Off Leakage is (Off)	±0.1	± 0.3	nA max	Test Circuit 2
Channel ON Leakage ID, IS (ON)	±0.01	20.0	nA typ	$V_S = V_D = +2.25 \text{ V}/-1.25 \text{ V}$, Test Circuit 3
Onumer of v Leakage 1D, 15 (O14)	±0.1	± 0.5	nA max	VS = VD = Value V/ 1.20 V, Test elleuit 0
DIGITAL INPUTS				
Input High Voltage, V _{INH}		1.7	V min	
Input Low Voltage, V _{INL}		0.7	V max	
Input Current			* 1111111	
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INI}$ or V_{INH}
TINE OF TINH	0.000	± 0.1	μA max	THE ST THAN
C _{IN} , Digital Input Capacitance	4	_011	pF typ	
DYNAMIC CHARACTERISTICS ²				
t_{ON}	21		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		35	ns max	$V_{S1A} = 1.5 \text{ V}, V_{S1B} = \hat{0} \text{ V}, \text{ Test Circuit 4}$
$t_{ m OFF}$	10		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		16	ns max	$V_S = 1.5 \text{ V}$, Test Circuit 4
ADG786 $t_{ON}(\overline{EN})$	21		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		40	ns max	V _S = 1.5 V, Test Circuit 5
$t_{ m OFF}(\overline{ m EN})$	10		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		16	ns max	V _S = 1.5 V, Test Circuit 5
Break-Before-Make Time Delay, t _D	13		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		1	ns min	V _S = 1.5 V, Test Circuit 6
Charge Injection	±5		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
				Test Circuit 7
Off Isolation	-80		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz;$
				Test Circuit 8
Channel-to-Channel Crosstalk	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
-3 dB Bandwidth	160		MHz typ	Test Circuit 9 $R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 10
C _S (OFF)	11		pF typ	f = 1 MHz
$C_S(OPP)$ $C_D, C_S(ON)$	34		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{\rm DD} = +2.75 \text{ V}$
I _{DD}	0.001		μ A typ	Digital Inputs = 0 V or 2.75 V
-עע		1.0	μA max	gn-paus
I_{SS}	0.001		μ A typ	$V_{SS} = -2.75 \text{ V}$
- 33	0.001	1.0	μA max	Digital Inputs = 0 V or 2.75 V

REV.B -4-

¹Temperature range is as follows: B Version: -40°C to +85°C. ²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ADG786/ADG788

Storage Temperature Range65°C to	+150°C
Junction Temperature	150°C
20 Lead CSP, θ_{JA} Thermal Impedance	32°C/W
Lead Temperature, Soldering (10 sec)	300°C
IR Reflow, Peak Temperature	220°C

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

2 Overvoltages at A, EN, IN, S, or D will be clamped by internal diodes. Current

should be limited to the maximum ratings given.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG786/ADG788 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS

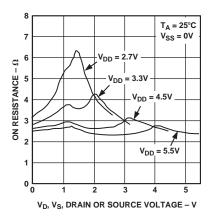
EXPOSED PAD TIED TO SUBSTRATE, V_{SS}

REV.B -5-

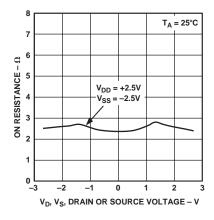
ADG786/ADG788

Table I. ADG786 Truth Table

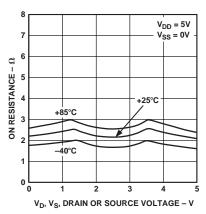
A2	A1	A0	EN	ON Switch
X	X	X	1	None
0	0	0	0	D1-S1A, D2-S2A, D3-S3A
0	0	1	0	D1-S1B, D2-S2A, D3-S3A
0	1	0	0	D1-S1A, D2-S2B, D3-S3A
0	1	1	0	D1-S1B, D2-S2B, D3-S3A
1	0	0	0	D1-S1A, D2-S2A, D3-S3B
1	0	1	0	D1-S1B, D2-S2A, D3-S3B
1	1	0	0	D1-S1A, D2-S2B, D3-S3B
1	1	1	0	D1-S1B, D2-S2B, D3-S3B

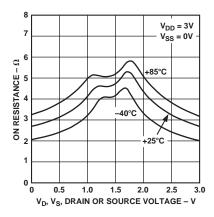

Table II. ADG788 Truth Table

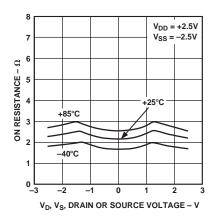
Logic	Switch A	Switch B	
0	OFF	ON	
1	ON	OFF	

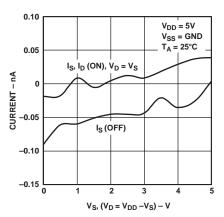

TERMINOLOGY

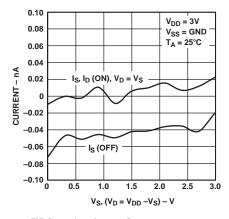
$\overline{V_{ m DD}}$	Most Positive Power Supply Potential
V_{SS}	Most Negative Power Supply in a Dual Supply Application. In single supply applications, this should be tied to ground close to the device.
I_{DD}	Positive Supply Current
I_{SS}	Negative Supply Current
GND	Ground (0 V) Reference
S	Source Terminal. May be an input or output
D	Drain Terminal. May be an input or output
IN	Logic Control Input
$V_D(V_S)$	Analog Voltage on Terminals D, S
R_{ON}	Ohmic Resistance between D and S
ΔR_{ON}	On Resistance Match between Any Two Channels, i.e., R _{ON} max – R _{ON} min.
$R_{FLAT(ON)}$	Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
I _S (OFF)	Source Leakage Current with the Switch "OFF"
I_D , I_S (ON)	Channel Leakage Current with the Switch "ON"
V_{INL}	Maximum Input Voltage for Logic "0"
V_{INH}	Minimum Input Voltage for Logic "1"
$I_{INL}(I_{INH})$	Input Current of the Digital Input
C _S (OFF)	"OFF" Switch Source Capacitance. Measured with reference to ground.
C_D , $C_S(ON)$	"ON" Switch Capacitance. Measured with reference to ground.
C_{IN}	Digital Input Capacitance
t_{ON}	Delay time measured between the 50% and 90% points of the digital inputs and the switch "ON" condition.
t_{OFF}	Delay time measured between the 50% and 90% points of the digital input and the switch "OFF" condition.
$t_{ON}(\overline{EN})$	Delay time between the 50% and 90% points of the $\overline{\rm EN}$ digital input and the switch "ON" condition.
$t_{OFF}(\overline{EN})$	Delay time between the 50% and 90% points of the $\overline{\text{EN}}$ digital input and the switch "OFF" condition.
t_{OPEN}	"OFF" time measured between the 80% points of both switches when switching from one address state to another.
Charge	A measure of the glitch impulse transferred Injection from the digital input to the analog output during switching.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic
	capacitance.
On Response	The Frequency Response of the "ON" Switch
Insertion Loss	The Loss Due to the ON Resistance of the Switch.

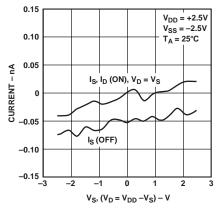

Typical Performance Characteristics- ADG786/ADG788

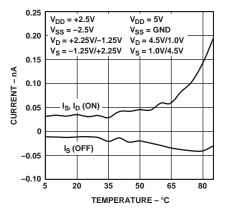

TPC 1. On Resistance as a Function of $V_D(V_S)$ for Single Supply


TPC 2. On Resistance as a Function of $V_D(V_S)$ for Dual Supply

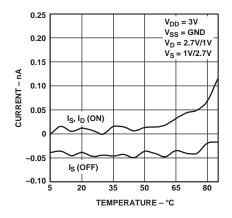

TPC 3. On Resistance as a Function of $V_D(V_S)$ for Different Temperatures, Single Supply

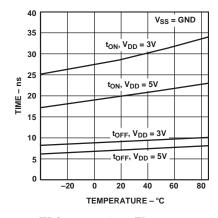

TPC 4. On Resistance as a Function of $V_D(V_S)$ for Different Temperatures, Single Supply


TPC 5. On Resistance as a Function of $V_D(V_S)$ for Different Temperatures, Dual Supply

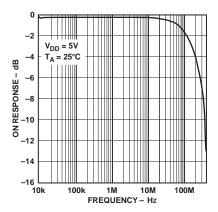

TPC 6. Leakage Currents as a Function of $V_D(V_S)$

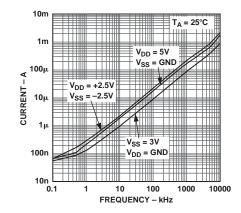
TPC 7. Leakage Currents as a Function of $V_D(V_S)$

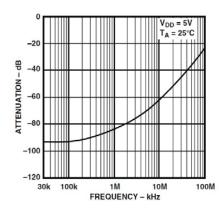

TPC 8. Leakage Currents as a Function of $V_D(V_S)$

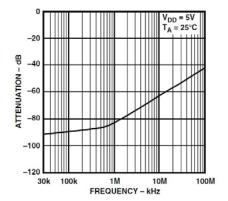

TPC 9. Leakage Currents as a Function of Temperature

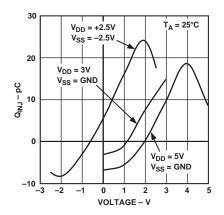
REV.B -7-


ADG786/ADG788

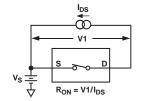

TPC 10. Leakage Currents as a Function of Temperature

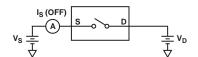

TPC 11. t_{ON}/t_{OFF} Times vs. Temperature


TPC 12. On Response vs. Frequency

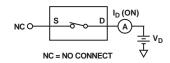

TPC 13. Input Current, I_{DD} vs. Switching Frequency

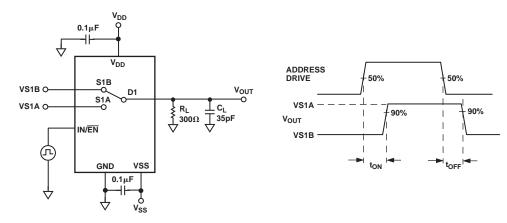
TPC 14. Off Isolation vs. Frequency

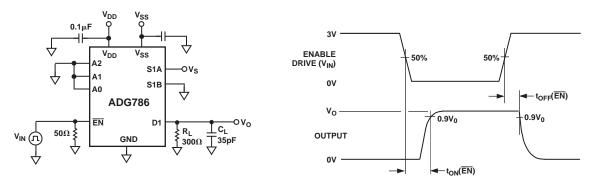

TPC 15. Crosstalk vs. Frequency

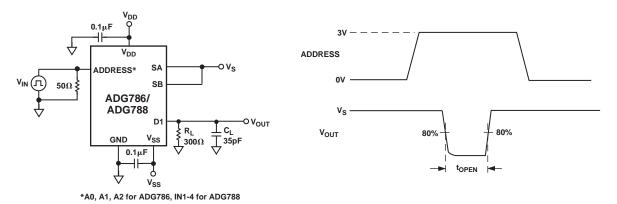

TPC 16. Charge Injection vs. Source Voltage

-8- REV. B

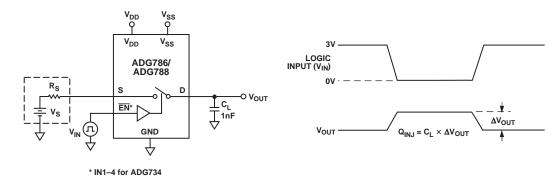

Test Circuits


Test Circuit 1. On Resistance

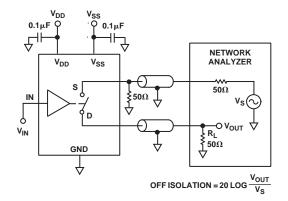

Test Circuit 2. I_S (OFF)


Test Circuit 3. I_D (ON)

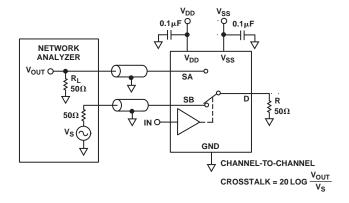
Test Circuit 4. Switching Times, t_{ON}, t_{OFF}

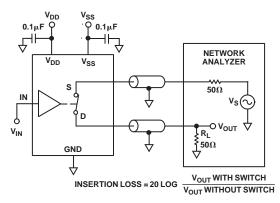


Test Circuit 5. Enable Delay, t_{ON} (\overline{EN}), t_{OFF} (\overline{EN})



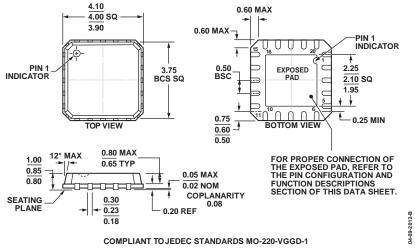
Test Circuit 6. Break-Before-Make Delay, t_{OPEN}


REV.B


Test Circuit 7. Charge Injection

Test Circuit 8. OFF Isolation

Test Circuit 9. Channel-to-Channel Crosstalk


Test Circuit 10. Bandwidth

Power Supply Sequencing

When using CMOS devices, care must be taken to ensure correct power supply sequencing. Incorrect sequencing can result in the device being subjected to stresses beyond those maximum ratings listed in the data sheet. Digital and analog inputs should be applied to the device after supplies and ground. In dual supply applications, if digital and analog inputs may be applied prior to $V_{\rm DD}$ and $V_{\rm SS}$ supplies, the addition of a Schottky diode connected between $V_{\rm SS}$ and GND will ensure that the device powers on correctly. For single supply applications, $V_{\rm SS}$ should be tied to GND as close to the device as possible.

-10- REV.B

OUTLINE DIMENSIONS

20-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 4 mm × 4 mm Body, Very Thin Quad (CP-20-1) Dimensions shown in inches and (mm)

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	Package Description	Package Option
ADG786BCPZ	-40°C to +85°C	20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-20-1
ADG786BCPZ-REEL7	-40°C to +85°C	20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-20-1
ADG786WBCPZ-REEL7	-40°C to +85°C	20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-20-1
ADG788BCPZ	-40°C to +85°C	20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-20-1
ADG788BCPZ-REEL	−40°C to +85°C	20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-20-1
ADG788BCPZ-REEL7	-40°C to +85°C	20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-20-1
EVAL-ADG788EBZ		Evaluation Board	

¹ Z = RoHS Compliant Part.

AUTOMOTIVE PRODUCTS

The ADG786W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

REVISION HISTORY

10/13—Rev. A to Rev. B

Changed Off Isolation from -72 dB to -80 dB and Channel-to-Channel Crosstalk from -67 dB to -80 dB (Throughout)......2 Changes to TPC 14 and TPC 15.....8

8/12-Rev. 0 to Rev. A

7/01—Revision 0: Initial Version

² W = Qualified for Automotive Applications.