FFPF10F150S
10 A, 1500 V, Damper Diode

Features
- High Speed Recovery $t_r = 170$ ns (@ $I_F = 1$ A)
- Max Forward Voltage, $V_F = 1.6$ V (@ $T_C = 25^\circ$C)
- 1500 V Reverse Voltage and High Reliability
- Low Forward Voltage

Applications
- Suitable for Damper Diode in Horizontal Deflection Circuits

Pin Assignments

Absolute Maximum Ratings $T_C = 25^\circ$C unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{RRM}</td>
<td>Peak Repetitive Reverse Voltage</td>
<td>1500</td>
<td>V</td>
</tr>
<tr>
<td>V_{WRM}</td>
<td>Working Peak Reverse Voltage</td>
<td>1500</td>
<td>V</td>
</tr>
<tr>
<td>$I_{F(AV)}$</td>
<td>Average Rectified Forward Current @ $T_C = 125^\circ$C</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>I_{FSM}</td>
<td>Non-repetitive Peak Surge Current 60Hz Single Half-Sine Wave</td>
<td>100</td>
<td>A</td>
</tr>
<tr>
<td>T_J, T_{STG}</td>
<td>Operating Junction and Storage Temperature</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics $T_C = 25^\circ$C unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JC}</td>
<td>Maximum Thermal Resistance, Junction to Case</td>
<td>3.0</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Top Mark</th>
<th>Package</th>
<th>Packing Method</th>
<th>Reel Size</th>
<th>Tape Width</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFPF10F150STU</td>
<td>FFPF10F150S</td>
<td>TO-220F-2L</td>
<td>Tube</td>
<td>N/A</td>
<td>N/A</td>
<td>30</td>
</tr>
</tbody>
</table>
Electrical Characteristics \(T_C = 25^\circ\text{C} \) unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_F) (^1)</td>
<td>Maximum Instantaneous Forward Voltage</td>
<td>(T_C = 25^\circ\text{C})</td>
<td>(T_C = 125^\circ\text{C})</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(I_F = 10 \text{ A})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_F = 10 \text{ A})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_R) (^1)</td>
<td>Maximum Instantaneous Reverse Current</td>
<td>(T_C = 25^\circ\text{C})</td>
<td>(T_C = 125^\circ\text{C})</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(@ \text{ rated } V_R)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{rr})</td>
<td>Maximum Reverse Recovery Time</td>
<td>((I_F = 1 \text{ A}, \frac{diF}{dt} = 50 \text{ A/\mu s}, V_R = 30 \text{ V}))</td>
<td>-</td>
<td>-</td>
<td>170</td>
</tr>
<tr>
<td>(t_{fr})</td>
<td>Maximum Forward Recovery Time</td>
<td>((I_F = 6.5 \text{ A}, \frac{diF}{dt} = 50 \text{ A/\mu s}))</td>
<td>-</td>
<td>-</td>
<td>250</td>
</tr>
<tr>
<td>(V_{FRM})</td>
<td>Maximum Forward Recovery Voltage</td>
<td>-</td>
<td>-</td>
<td>14</td>
<td>V</td>
</tr>
</tbody>
</table>

Notes:
1. Pulse : Test Pulse Width = 300\(\mu\text{s} \), Duty Cycle = 2%

Test Circuit and Waveforms

Figure 1. Diode Reverse Recovery Test Circuit & Waveform

Figure 2. Unclamped Inductive Switching Test Circuit & Waveform
Typical Performance Characteristics \(T_C = 25^\circ C \) unless otherwise noted

Figure 3. Typical Forward Voltage Drop

- Forward Voltage vs. Forward Current
- Typical Capacitance at 0V = 150 pF
- \(T_J = 25^\circ C \)
- \(T_J = 125^\circ C \)

Figure 4. Typical Reverse Current

- Reverse Voltage vs. Reverse Current
- \(T_J = 25^\circ C \)
- \(T_J = 100^\circ C \)
- \(T_J = 125^\circ C \)

Figure 5. Typical Junction Capacitance

- Capacitance vs. Reverse Voltage
- Typical Capacitance at 0V = 150 pF
- \(T_J = 25^\circ C \)
- \(T_J = 125^\circ C \)

Figure 6. Typical Reverse Recovery Time

- Reverse Recovery Time vs. Forward Current
- \(\frac{dI}{dt} = 100 A/\mu s \)
- \(\frac{dI}{dt} = 50 A/\mu s \)

Figure 7. Typical Stored Charge

- Stored Recovery Charge vs. Forward Current
- \(\frac{dI}{dt} = 100 A/\mu s \)
- \(\frac{dI}{dt} = 50 A/\mu s \)

Figure 8. Forward Current Deration Curve

- Average Forward Current vs. Case Temperature
- \(\Phi \)
Mechanical Dimensions

Figure 9. TO-220F 2L - 2LD; TO220; MOLDED; FULL PACK

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:

TRADEMARS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AX-CAP™
BitSIC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED™
Dual Cool™
EcoSPARK®
EfficientMax™
ESBC™
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FastCore™
FETBench™
FPS™
F-PFS™
FRFET™
Global Power Resource™
GreenBridge™
Green FPS™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™
Marking Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
mWSaver®
OptoHTM™
OPTOLOGIC®
OPTOPLANAR®
PowerTrench®
PowerXS™
Programmable Active Droop™
QFET®
QS™
Quiet Series™
RapidConfigure™
Sanding our world, 1mW/W/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™
SYSTEM®
T3-GENERAL
TinyBoost™
TinyBuck™
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TransiC™
TriFault Detect™
TRUECURRENT™
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and resolve customer issues. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>