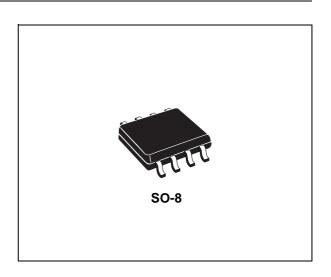


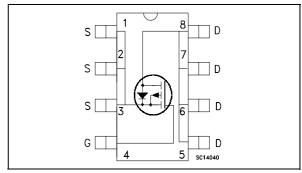
STS6PF30L

P-CHANNEL 30V - 0.027Ω - 6A SO-8STripFET™ POWER MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STS6PF30L	30 V	<0.030 Ω	6 A


- TYPICAL $R_{DS}(on) = 0.027 \Omega$
- STANDARD OUTLINE FOR EASY AUTOMATED SURFACE MOUNT ASSEMBLY
- LOW THRESHOLD DRIVE

DESCRIPTION


This Power MOSFET is the latest development of STMicroelectronis unique "Single Feature Size™" strip-based process. The resulting transistor shows extremely high packing density for low onresistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

APPLICATIONS

- MOBILE PHONE APPLICATIONS
- DC-DC CONVERTERS
- BATTERY MANAGEMENT IN NOMADIC **EQUIPMENT**

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Information furnished is believed to be accurate and reliable. However, STMicroel of use of such information nor for any infringement of patents or other rights of third Parameter by implication or oth Malige under any patent or patent rigulation ST Microelectronic Symbol to change without notice. This publication supersedes and replaces all information authorized for use as official components in life support devices or systems without Drain-source Voltage (VGS = 0) V_{DS} Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$) V_{DGR} 30 The ST logo is registered trademark of S Vgs Gate-source Voltage ± 16 <u>® 2008 STMicroelectronics - All Right</u> Drain Current (continuous) at T_C = 25°C 6 I_D Drain Current (continuous) at T_C = 100°C All other names ar the property of their re I_D 3.8 I_{DM}(•) Drain Current (pulsed) 24 STM croelectronics GROUP OF C(
Australia - Brazil - China - Finland - France - Germany - Hong Kong - In Total Dissipation at T_C = 25°C Ptot

(•) Pulse width limited by safe operating area.

Note: For the P-CHANNEL MOSTEPTE a Street powerflay of witzerland - Ur voltages and current has to be reversed http://www.st.com http://www.st.com

May 2003 1/8

THERMAL DATA

Rthj-amb Thermal Resistance Junction-ambient Maximum Lead Temperature For Soldering Purpose storage temperature	Max Typ	50 150 -55 to 150	°C/W °C
---	------------	-------------------------	------------

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu\text{A}, \ V_{GS} = 0$	30			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating T_C = 125^{\circ}C$			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 16 V			±100	nA

ON (*)

Symb	ol Parameter	Test C	Test Conditions		Тур.	Max.	Unit
V _{GS(t}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	$I_D = 250 \mu A$	1	1.6	2.5	V
R _{DS(o}	Static Drain-source On Resistance	V _{GS} = 10 V V _{GS} = 5 V	I _D = 3 A I _D = 3 A		0.027 0.034	0.030 0.042	Ω

DYNAMIC

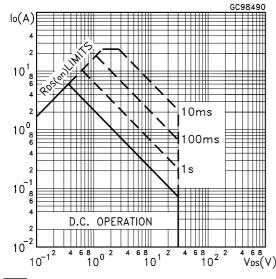
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	V_{DS} =10 V I_{D} =3 A		12		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25V$, $f = 1 MHz$, $V_{GS} = 0$		1670 345 120		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

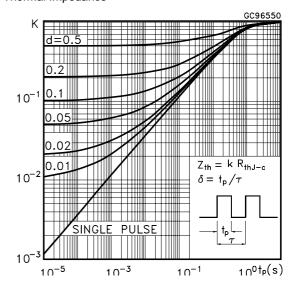
SWITCHING ON(*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$\begin{aligned} V_{DD} &= 15 \text{ V} & I_D &= 3 \text{ A} \\ R_G &= 4.7 \Omega & V_{GS} &= 5 \text{ V} \\ \text{(Resistive Load, Figure 1)} \end{aligned}$		62 140		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 24V I _D = 6A V _{GS} =5V (see test circuit, Figure 2)		21 3.9 8.6	28	nC nC nC

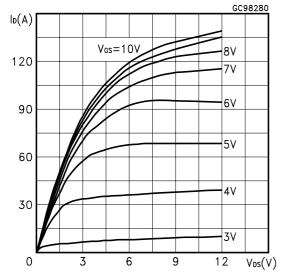
SWITCHING OFF(*)

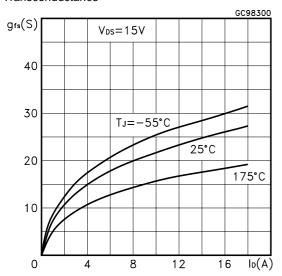

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	$\begin{aligned} &V_{DD} = 24 \text{ V} & I_{D} = 3 \text{ A} \\ &R_{G} = 4.7\Omega, &V_{GS} = 5 \text{ V} \\ &(\text{Resistive Load, Figure 1}) \end{aligned}$		57 19		ns ns

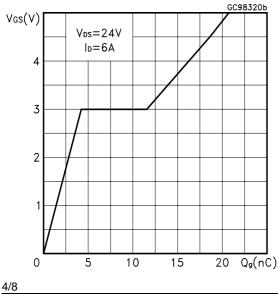
SOURCE DRAIN DIODE(*)

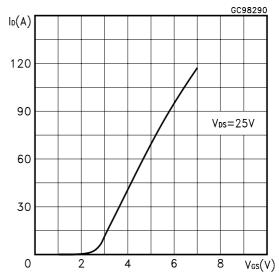

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current Source-drain Current (pulsed)					6 4	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 6 A	V _{GS} = 0			1.2	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I _{SD} = 6 A V _{DD} = 15 V (see test circu	di/dt = $100A/\mu s$ $T_j = 150^{\circ}C$ iit, Figure 3)		37 46.3 2.5		ns nC A

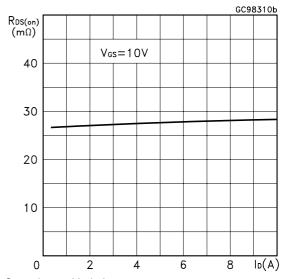
^(*)Pulse width \leq 300 µs, duty cycle 1.5 %. (•)Pulse width limited by T_{JMAX}

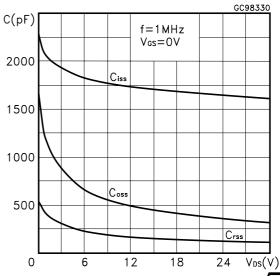

Safe Operating Area


Thermal Impedance

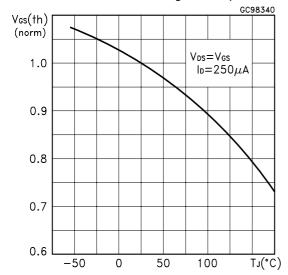

Output Characteristics


Transconductance

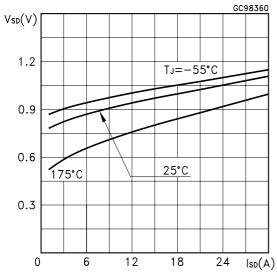

Gate Charge vs Gate-source Voltage


Transfer Characteristics

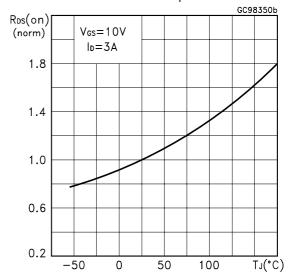
Static Drain-source On Resistance

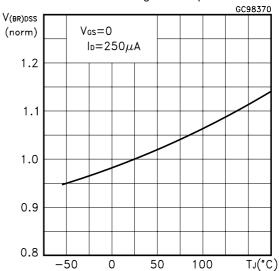


Capacitance Variations



√y,


Normalized Gate Threshold Voltage vs Temperature


Source-drain Diode Forward Characteristics

Normalized on Resistance vs Temperature

Normalized Breakdown Voltage vs Temperature

, ,

Fig. 1: Switching Times Test Circuits For Resistive Load

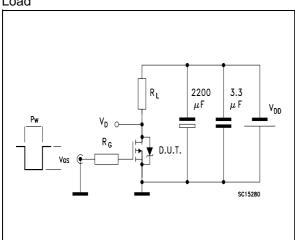


Fig. 2: Gate Charge test Circuit

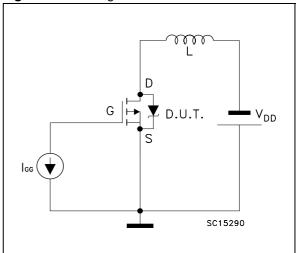
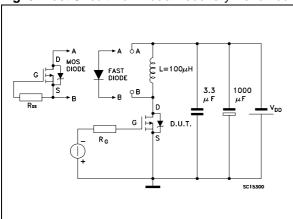
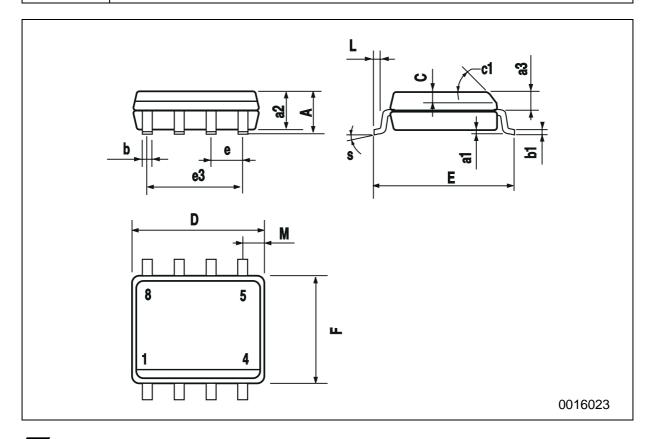




Fig. 3: Test Circuit For Diode Recovery Behaviour

SO-8 MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1			45	(typ.)		
D	4.8		5.0	0.188		0.196
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
S			8 (1	max.)		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics ® 2003 STMicroelectronics - All Rights Reserved

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com