

LM3642 Evaluation Board

1 Introduction

The LM3642 is a 4MHz fixed-frequency synchronous boost converter plus 1.5A constant current driver for a high-current white LED. The high-side current source allows for grounded cathode LED operation providing Flash current up to 1.5A. An adaptive regulation method ensures the current source remains in regulation and maximizes efficiency.

The LM3642 is controlled via an I²C-compatible interface. Features include: a hardware flash enable (STROBE) allowing a logic input to trigger the flash pulse and a TX input which forces the flash pulse into a low-current Torch Mode allowing for synchronization to RF power amplifier events or other high-current conditions.

The 4MHz switching frequency, over-voltage protection and adjustable current limit settings allows the use of tiny, low-profile inductors and (10 μ F) ceramic capacitors. The device is available in a small 9-bump (1.615 mm × 1.665 mm × 0.6 mm) DSBGA package and operates over the -40°C to +85°C temperature range.

The schematic for LM3642 is shown in Figure 1.

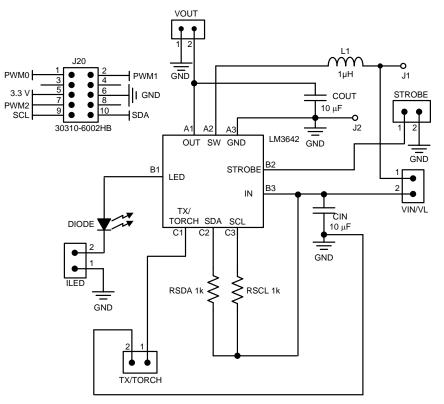


Figure 1. LM3642 Evaluation Board Schematic

All trademarks are the property of their respective owners.

1

www.ti.com

2 Evaluation Board Bill of Materials

Component	Manufacturer	Value	Part Number	Size (mm)	Description
L1	токо	1.0 µH	DFE201610C-1R0N	2 x 1.6 x 1.2	Inductor, Metal Alloy, 1μH, 2.7A, 0.063Ω, SMT
COUT	Murata	10 µF	GRM155R60J106ME44D	0603 (1.6 x 0.8)	CAP, CERM, 10µF, 6.3V, X5R 20%, 0402
CIN	Murata	10 µF	GRM155R60J106ME44D	0603 (1.6 x 0.8)	CAP, CERM, 10µF, 6.3V, X5R 20%, 0402
DIODE	Lumiled	Flash LED	LXCL-EYW4	(2.04 x 1.64 x 0.7)	145 lm (1A), VF = 3.6V, @1A
ILED,STROBE, TX/TORCH, VIN/VL,VOUT	Header		TSW-102-07-G-S	2 x 1	Header, TH, 100mil, 2x1, Gold plated, 230 mil above insulator
J1,J2	Keystone		6091,6092		Standard Banana Jack, Insulated, Red and Black
J20	ЗM		30310-6002HB		CONN HEADER 10POS DL STR GOLD
RSCL,RSDA	Vishay	1kΩ	CRCW0402100KJNED	0603 (1.6 x 0.8)	Resisitor, 100kΩ, 5%, 0.063W, 0402

Table 1. Bill of Materials

3 Operation

To operate the LM3642 board, the following jumpers will have to be connected:

SI No	Jumper Between	Function
1	VIN and VL	This connects the inductor to the Input. If a triangular waveform of the input is needed, please disconnect this jumper and supply Vin separately.
2	ILED1 and ILED2	This completes the loop, where the cathode of the LED Diode is connected to ground.

www.ti.com

4 LM3642 Graphical User Interface

The LM3642 graphical user interface, Figure 2, features all the register options that are programmable within the LM3642. When the LM3642.exe program is executed and any button is pressed or drop down box is selected, the program will automatically update the LM3642 with the settings of the appropriate register.

🔜 Texas Instruments - USB2ANY - GUI v1.10.0.0 - API v1.10.0.0	
LM3642_Customer	
LM3642 USER INTERFACE Enable Register (0x0A) (0x08)	
IVFM TX Lvl Str Torch Pin Flash Torch Indicator Standby Flash Features Register (0x08) IVFM Register (0x01) Si Rev IVFM CL Flash Ramp Time FTO IVFM Threshold Si Rev]
1.9 ▼ 1.024ms ▼ 300ms ▼ UVLO 2.9V ▼ UVLO 0VP	
Current Control Register (0x09) Torch Ramp Register (0x06) Torch Current Flash Current Torch Ramp Up Torch Ramp Down Write TSD 46.88mA 1500mA	
USB2ANY: Detected	

Figure 2. LM3642 Graphical User Interface

4.1 Register Descriptions

Register Name	Internal Hex Address	Power On/RESET Value
Enable Register	0x0A	00
Flags Register	0x0B	00
Flash Features Register	0x08	52
Current Control Register	0x09	0F
IVFM Mode Register	0x01	80
Torch Ramp Time Register	0x06	00
Silicon Revision Register	0x00	00

4.1.1 Enable Register (0x0A)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IVFM 0 = Disabled (default) 1 = Stop and Hold Mode	TX Pin Enable 0 = Disabled (default) 1 = Enabled	Strobe Pin Enable 0 = Disabled (default) 1 = Enabled	Torch Pin Enable 0 = Disabled (default) 1 = Enabled	RFU	RFU		by (default)

LM3642 Graphical User Interface

4.1.2 Flags Register (0x0B)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RFU	RFU	IVFM	UVLO Flag	OVP Flag	LED or Vout Short Flag	Thermal Shutdown Fault	Timeout Flag

IVFM— IVFM down threshold crossed.

UVLO Fault—UVLO Threshold crossed.

OVP Flag—Over-voltage Protection tripped. Open Output cap or open LED.

LED Short Fault—LED Short detected.

Thermal Shutdown Fault—LM3642 die temperature reached thermal shutdown value.

Time-Out Flag—Flash Timer tripped.

Note: Faults require a read-back of the Flags Register to resume operation. Flags report an event occurred, but do not inhibit future functionality. A read-back of the Flags Register will only get updated again if the fault or flags is still present upon a restart.

4.1.3 Flash Features Register (0x08)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RFU	Inductor Current Limit 0 = 1.6A 1 = 1.88A (default)	010	Flash Ramp Time 000 = 256 µs 001 = 512 µs 0 = 1.024 ms (defa 011 = 2.048 ms 100 = 4.096 ms 101 = 8.192 ms 110 = 16.384 ms 111 = 32.768 ms	ault)		lash Time-Out Tin 000 = 100 ms 001 =200 ms 10 =300 ms (defau 011 = 400 ms 100 = 500 ms 101 =600 ms 110 = 700 ms 111 = 800 ms	

4.1.4 Current Control Register (0x09)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RFU		Torch Current 0 = 48.4 mA(defa 001 =93.74 mA 010 =140.63 mA 011 = 187.5 mA 100 =234.38 mA 101 = 281.25 mA 110 = 328.13 mA 111 = 375 mA			$\begin{array}{r} 0000 = \\ 0001 = \\ 0010 = 2 \\ 0011 = \\ 0100 = 4 \\ 0101 = \\ 0110 = 6 \\ 0111 = \\ 1000 = 8 \\ 1001 = \\ 1010 = 1 \\ 1011 = \\ 1100 = 1 \\ 1101 = 1 \\ 1110 = 1 \end{array}$	Current 93.75 mA 187.5 mA 281.25 mA 468.75 mA 562.5 mA 556.25 mA 556.25 mA 343.75 mA 937.5 mA 937.5 mA 031.25 mA 1125 mA 218.75 mA 1312.5 mA 406.25 mA 0 mA (default)	

www.ti.com

4.1.5 Input Voltage Flash Monitor (IVFM) Mode Register (0x01)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
UVLO 0 = Disabled 1= Enabled (default)	RI	FU		I-D (Down) Threst 100 = 2.9V (defaul 001 = 3.0V 010 = 3.1V 011 = 3.2V 100 = 3.3V 101 = 3.4V 110 = 3.5V 111 = 3.6V		RF	Ū

UVLO EN—If enabled and VIN drops below 2.8V, the LM3642 will enter standby and set the UVLO flag in the Flags Register. Enabled = 1, Disabled = 0'

Stop and Hold Mode— Stops Current Ramp and Holds the level for the remaining flash if V_{IN} crosses IVM-D Line. Sets IVFM Flag in Flags Register upon crossing IVM-D Line.

4.1.6 Torch Ramp Time Register (0x06)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RFU	RFU		orch Ramp-Up Tin 00 = 16 ms (defau 001 = 32 ms 010 = 64 ms 011 = 128 ms 100 = 256 ms 101 = 512 ms 110 = 1.024s 111 = 2.048s			rch Ramp-Down T 00 = 16 ms (defau 001 = 32 ms 010 = 64 ms 011 = 128 ms 100 = 256 ms 101 = 512 ms 110 = 1.024s	

4.1.7 Silicon Revision Register (0x00)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		RFU				000 = LM3642	

5 Board Layout

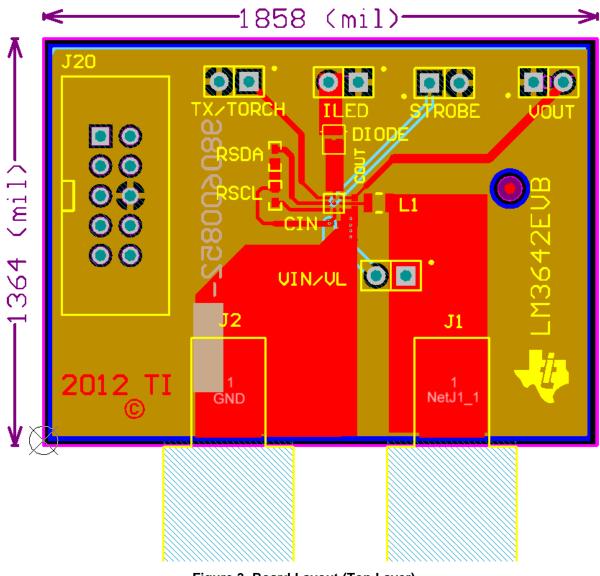


Figure 3. Board Layout (Top Layer)

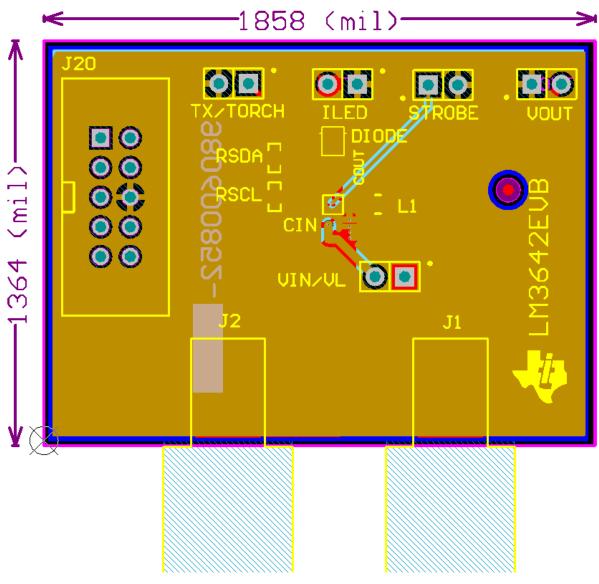


Figure 4. Board Layout (Mid Layer 1)

7

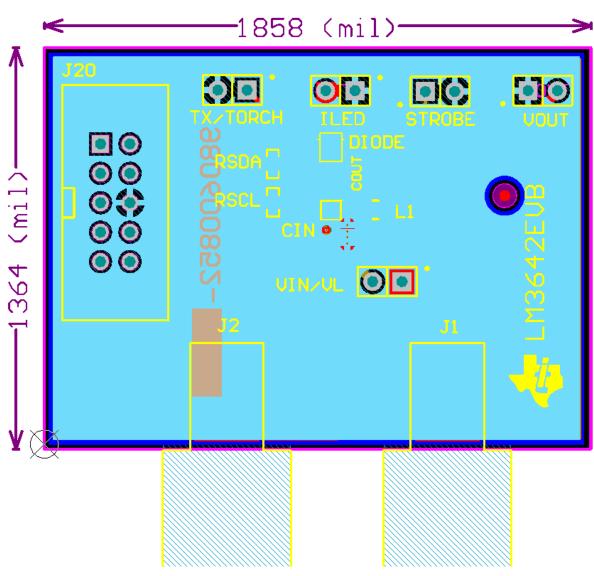


Figure 5. Board Layout (Mid Layer 2)

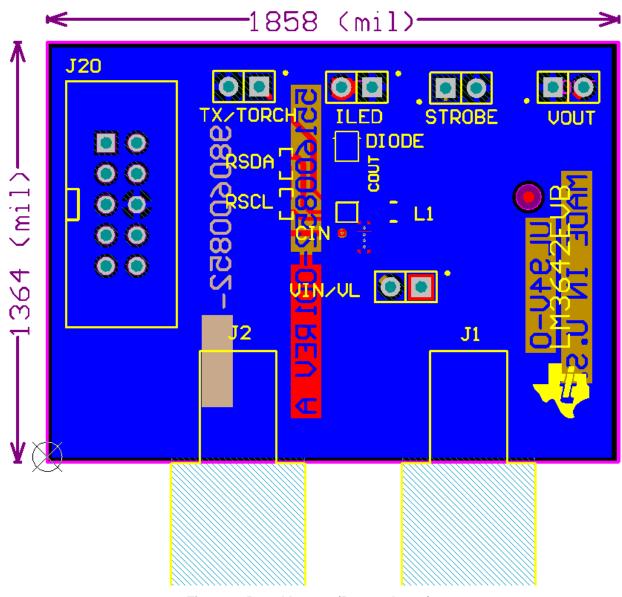


Figure 6. Board Layout (Bottom Layer)

9

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated