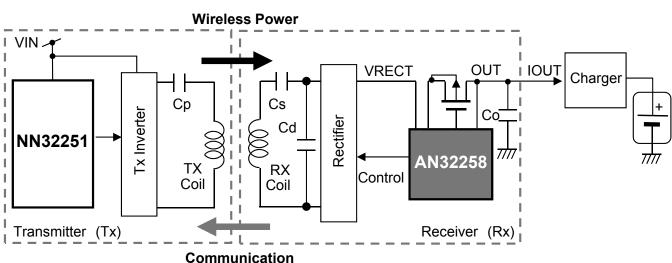
AN32258A

http://www.semicon.panasonic.co.jp/en/

INTEGRATED WIRELESS POWER SUPPLY RECEIVER, Qi (WIRELESS POWER CONSORTIUM) COMPLIANT

FEATURES

- Integrated Wireless Power Receiver Solution
- WPC Ver. 1.1 Compliant
- Synchronous Full Bridge Rectifier Control
- Input Voltage Range : VRECT = 4.4 V to 19 V
- Selectable Output Voltage: 5, 7V
- Temperature Detecting Circuit
- Full Charge Detection with Adjustable Current Level
- Switching Control of External Power Supply
- Supports Under Voltage Lockout, Thermal Shutdown, Over Voltage Detection, and Over Current Detection.
- LED Indicator
- I²C Interface
- 3.16 mm X 3.16 mm WLCSP
 48 Pins with 0.4mm pitch


DESCRIPTION

AN32258A is a wireless power system controller IC which is compliant with Qi version 1.1 of the System Description Wireless Power Transfer, Volume 1 for Low Power defined by Wireless Power Consortium. AN32258A is a controller IC of a power receiver (Rx) which can be used with any Qi-compliant wireless chargers.

Over 5W high power transfer is achievable with wireless chargers using Panasonic Tx IC NN32251A.

APPLICATIONS

- WPC Compliant Receivers
- · Cell Phones, Smartphones
- Headsets
- Digital Cameras
- Tablet Devices
- Portable Media Players etc.

Wireless Power System

CONTENTS

FEATURES		. 1
DESCRIPTION		. 1
APPLICATIONS		. 1
SIMPLIFIED APPLIC	ATION	1,16
ABSOLUTE MAXIMU	JM RATINGS	. 3
POWER DISSIPATIO	ON RATING	. 4
RECOMMENDED O	PERATING CONDITIONS	. 4
ELECTRICAL CHAR	ACTERISTICS	. 5
PIN CONFIGURATIO	DN	. 9
OPERATION		. 17
PACKAGE INFORM	ATION	63
IMPORTANT NOTIC	Ε	64

DELIVERY INFORMATION

Order Number	Package	Output Supply	Minimum Quantity
AN32258A-PR	48 pin WLCSP(3.2 × 3.2mm)	Embossed Taping	5000pcs

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit	Notes
	V _{RECT}	20	V	*1
Supply voltage	V _{EXT}	6.9	V	*1
	V _{IO}	6	V	*1
Output current	I _{RECT}	—	А	*1
Operating ambient temperature	T _{opr}	- 30 to + 85	°C	*2
Operating junction temperature	Tj	-40 to +125	°C	*2
Storage temperature	T _{stg}	– 50 to + 125	°C	*2
	$V_{\text{DETIN}}, V_{\text{TD2}}, V_{\text{TD1}}, V_{\text{SC2}}, V_{\text{SC1}}$	– 0.3 to 20	V	*1
	V_{OUT}, V_{LED}	– 0.3 to 12	V	*1
Input voltage range	V _{SCL} , V _{SDA} , V _{EXTCLK}	– 0.3 to (V _{IO} + 0.3)	V	*1
	$V_{VTH}, V_{FCCNT}, V_{FODG}, V_{SELVER}$ $V_{FULLCH}, V_{FOD}, V_{SELHP}$ $V_{SELOSR}, V_{FODL}, V_{SELHV}$	– 0.3 to (V _{VREG34V} + 0.3)	V	*1
	V _{VPGATE}	– 0.3 to (V _{RECT} + 0.3)	V	*1
	V _{DT1H}	$-0.3 \text{ to}(V_{sc1} + V_{VREG47V} + 0.3)$	V	*1
	V _{DT2H}	$-0.3 \text{ to}(V_{sc2} + V_{VREG47V} + 0.3)$	V	*1
Output voltage range	V _{DT2L} , V _{DT1L}	$-$ 0.3 to ($V_{\rm VREG47V}$ + 0.3)	V	*1
	V _{EXTCNT}	-0.3 to (V _{EXT} + 0.3)	V	*1
	V _{MEMBAT}	– 0.3 to (V _{VREG34V} + 0.3)	V	*1
	V_{OUTHP}, V_{ENI2C}	– 0.3 to (V _{IO} + 0.3)	V	*1
	TD2	1.0	kV	_
ESD	HBM (Human Body Model) ISENSE1, ISENSE2, ISENSE1-S, ISENSE1-S1	1.5	kV	_
	HBM (Human Body Model) Except for pins above	2	kV	_

Note) This product may sustain permanent damage if the actual condition is higher than the absolute maximum rating stated above. This rating is the maximum stress, and device will not be guaranteed to operate in case it is higher than our stated range. When exposed to the absolute maximum rating for a long time, the reliability of the product may be affected.

*1:The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

*2:Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for Ta = 25 °C.

POWER DISSIPATION RATING

PACKAGE	θ_{j-a}	$\theta_{j\text{-C}}$	PD (Ta = 25 °C)	PD (Ta = 85 °C)	Notes
Wafer Level Chip Size Package (WLCSP type)	631.4 °C / W	7.2 °C /W	0.158 W	0.0632 W	*1

Note). *1 :For the actual usage, please refer to the PD-Ta characteristics diagram in the package specification, and follow the power supply voltage, load and ambient temperature conditions to ensure that there is enough margin and the thermal design does not exceed the allowable value.

CAUTION

Although this device has limited built-in ESD protection circuit, permanent damage may occur on it. Therefore, proper ESD precautions are recommended to avoid electrostatic damage to the MOS gates

RECOMMENDED OPERATING CONDITIONS

Parameter	Pin Name	Min.	Тур.	Max.	Unit	Notes
	V _{RECT}	4.4	8	19	V	
Supply voltage range	V _{EXT}	4.4	5	6	V	*2
	V _{IO}	1.74	3.3	5.5	V	

Note) *2 : The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

ELECRTRICAL CHARACTERISTICS

Co = 10 $\mu F,\,V_{RECT}$ = $\,8$ V, T_a = 25 $^{\circ}C$ \pm 2 $^{\circ}C$ unless otherwise noted.

	Boromotor	Symphol	Condition		Limits		Linit	Nata
	Parameter	Symbol Condition		Min	Тур	Max	Unit	Note
Cur	rent Consumption							
	Quiescent current	I _{STBY}		10	12	14	mA	
Unc	der-voltage lock-out (UVLO)						L.	
	Under-voltage lock-out	V _{UVLO}	V _{RECT} : 0V -> 5V	3.29	3.5	3.71	V	
	Hysteresis on UVLO	V _{UVLOHY}	V _{RECT} : 5V -> 3V	-	0.7	-	V	*1
Ove	er-voltage protection (OVP)	·					L.	
	Input overvoltage threshold	V _{OVP}	V _{RECT} : 5V -> 19V	17	18	19	V	
	Hysteresis on OVP	V _{OVPOHY}	V _{RECT} : 19V -> 5V	-	4	-	V	*1
V _{RE}	_{c⊤} (5W, LDO 5V mode)	·					L.	
	V _{RECT} Threshold1	V _{RECTTH1}	In increasing I _{OUT} < 125mA In decreasing I : I _{OUT} <60mA	-	8	-	V	*1
	V _{RECT} Threshold2	V _{RECTTH2}	In increasing 125mA <i<sub>OUT<420mA In decreasing 60mA<i<sub>OUT<360mA</i<sub></i<sub>	-	5.4	-	V	*1
	V _{RECT} Threshold3	V _{RECTTH3}	In increasing I_{OUT} > 420mA In decreasing I_{OUT} > 360mA	-	5.1	-	V	*1
V _{RE}	_{c⊤} (5W, LDO 7V mode)			Ļ	ł			
	V _{RECT} Threshold7	V _{RECTTH7}	In increasing I_{OUT} < 125mA In decreasing I_{OUT} < 60mA	-	10	-	V	*1
	V _{RECT} Threshold8	V _{RECTTH8}	In increasing 125mA <i<sub>OUT<420mA In decreasing 60mA<i<sub>OUT<360mA</i<sub></i<sub>	-	7.4	-	V	*1
	V _{RECT} Threshold9	V _{RECTTH9}	In increasing I _{OUT} >420mA In decreasing I _{OUT} >360mA	-	7.1	-	V	*1
00	TPUT				L		-1	
		V _{OUT1}	VRECT=8V ,I _{OUT} =10mA	4.76	5	5.24	V	
	V _{OUT} (5W, LDO 5V mode)	V _{OUT2}	VRECT=5.1V , I _{OUT} =1000mA	4.76	_	_	V	
	V _{OUT} (5W, LDO 7V mode)	V _{OUT4}	VRECT=10V ,I _{OUT} =10mA Co = 10µF	6.76	7	7.24	V	

Note) *1 : Designed typical values

ELECRTRICAL CHARACTERISTICS (Continued)

Co = 10 $\mu F,\,V_{RECT}$ = $\,8$ V, T_a = 25 $^{\circ}C$ \pm 2 $^{\circ}C$ unless otherwise noted.

Denne	0	0		Limits			
Parameter	Symbol Condition		Min	Тур	Мах	Unit	Note
Temperature Detection [Thermistor : E	RTJ0EV104	.F]					
Over-temperature Detection Voltage	V _{TH}	60 °C detection VTHR : 47 kohm (±1%)	0.887	0.975	1.069	V	
Over-current protection (OCP)							
Over-current threshold voltage 1	V _{OCPL}	SELHP=L	1.25	1.5	1.75	А	
Over-current threshold voltage 2	V _{OCPH}	SELHP=H (With NN32251A for Tx)	2.25	2.6	2.95	А	
Thermal protection		L		1			
Thermal shutdown temperature	T _j	—		150			*1
Thermal shutdown hysteresis	T _{jhys}	—		20			*1
External voltage detection							
V_{EXT} Rising threshold voltage	V _{EXTTH}	—	3.99	4.2	4.41	V	
V _{EXT} hysteresis	V _{EXTHY}	—		0.4		V	*1
Terminal voltage (FULLCH)							
High input threshold (Termination)	V _{IH1}	—	1.6			V	
Low input threshold	V _{IL1}	—	-0.2		0.2	V	
Terminal voltage (SELVER)							
High input threshold (Termination)	V _{IH1}	—	1.6			V	
Low input threshold	V_{IL1}	—	-0.2		0.2	V	
Terminal voltage (SELHP)							
High input threshold (Termination)	V _{IH1}	—	1.6	_		V	
Low input threshold	V_{IL1}	—	-0.2		0.2	V	
Terminal voltage (SELOSR)							
High input threshold (Termination)	$V_{\rm IH1}$	—	1.6		—	V	
Low input threshold	V_{IL1}	—	-0.2	_	0.2	V	
Terminal voltage (FODL)							
High input threshold (Termination)	V _{IH1}	—	1.6	_	_	V	
Low input threshold	V _{IL1}	_	-0.2		0.2	V	
Terminal voltage (SELHV)							
High input threshold (Termination)	V _{IH1}	_	2.9		_	V	
Low input threshold	V _{IL1}	—	-0.2		0.5	V	

Notes) *1 : Designed typical values

ELECRTRICAL CHARACTERISTICS (Continued)

Co = 10 $\mu F,\,V_{RECT}$ = $\,8$ V, T_a = 25 $^{\circ}C$ \pm 2 $^{\circ}C$ unless otherwise noted.

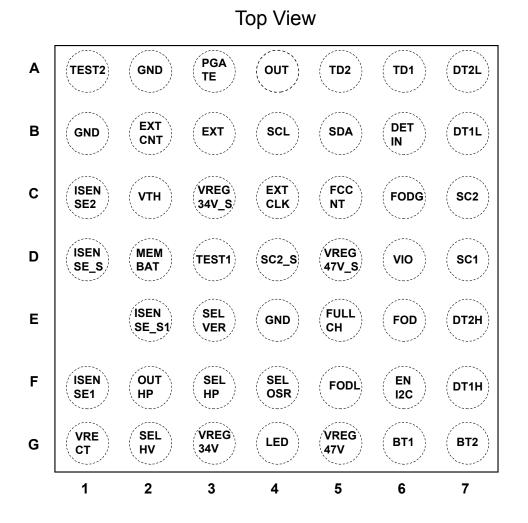
	Devenetor	Symbol	Condition		Limits		Unit	Nata
	Parameter	Symbol Condition		Min	Тур	Max	Unit	Note
Tei	minal voltage (EXTCLK)							
	High input threshold (Termination)	V _{IH1}	V _{IO} = 3.3V	$V_{IO} \times 0.7$	—	_	V	_
	Low input threshold	V _{IL1}	V _{IO} = 3.3V	-0.2	_	$V_{IO} \times 0.3$	V	_
Tei	rminal voltage (OUTHP)							
	Output High level	V _{OH}	V _{IO} = 3.3V I _{OUTHP} = -2mA	V _{IO} × 0.8		_	V	_
	Output Low level	V _{OL}	V _{IO} = 3.3V I _{OUTHP} = +2mA	-0.2	_	$V_{IO} \times 0.2$	V	
Те	rminal voltage (ENI2C)							
	Output High level	V _{OH}	V _{IO} = 3.3V I _{ENI2C} = -2mA	V _{IO} × 0.8		_	V	
Output Low level		V _{OL}	V _{IO} = 3.3V I _{ENI2C} = +2mA	-0.2		$V_{IO} \times 0.2$	V	
LE	DCNT							
	LED Saturation voltage	LED _{SAT}	I _{LED} = 20mA	_	_	0.5	V	_
	LED Leak current	LED	LED = 7.5V			10	μA	—

ELECRTRICAL CHARACTERISTICS (Continued)

Co = 10 $\mu F,\,V_{RECT}$ = $\,8$ V, T_a = 25 $^{\circ}C\pm2$ $^{\circ}C$ unless otherwise noted.

Parameter	Sympol	Condition		Limits		Unit	Note
Parameter	Symbol	Condition	Min	Тур	Тур Мах		Note
I2C bus (Internal I/O characteristics)							
Low-level input voltage	VIL1	Voltage which is recognized as SDA and SCL Low Level	-0.5		$0.3 \times V_{IO}$	V	*1
High-level input voltage	VIH1	Voltage which is recognized as SDA and SCL High Level	0.7 × V _{IO}		V _{IOmax} + 0.5	V	*1
SDA Low-level output voltage 1	VOL1	V _{IO} > 3 V SDA(sink current) = 3 mA	0		0.4	V	
SDA Low-level output voltage 2	VOL2	V _{IO} < 3 V SDA(sink current) = 3 mA	0	_	$0.2 \times V_{IO}$	V	
Input current each I/O pin	IL	SCL, SDA = $0.1 \times V_{IO}$ to $0.9 \times V_{IO}$	-10	_	10	mA	
SCL clock frequency	FOSC	_	0		400	kHz	

Note) *1 : The input threshold voltage of I²C bus (Vth) is linked to V_{IO} (I²C bus I/O stage supply voltage).


In case the pull-up voltage is not V_{IO} , the threshold voltage (Vth) is fixed to ((V_{IO} / 2) ± (Schmitt width) / 2) and High-level, Low-level of input voltage are not specified.

In this case, pay attention to Low-level (max.) value (V $_{\text{ILmax}}$).

It is recommended that the pull-up voltage of I^2C bus is set to the I^2C bus I/O stage supply voltage (V_{IO}).

Pin Layout

AN32258A

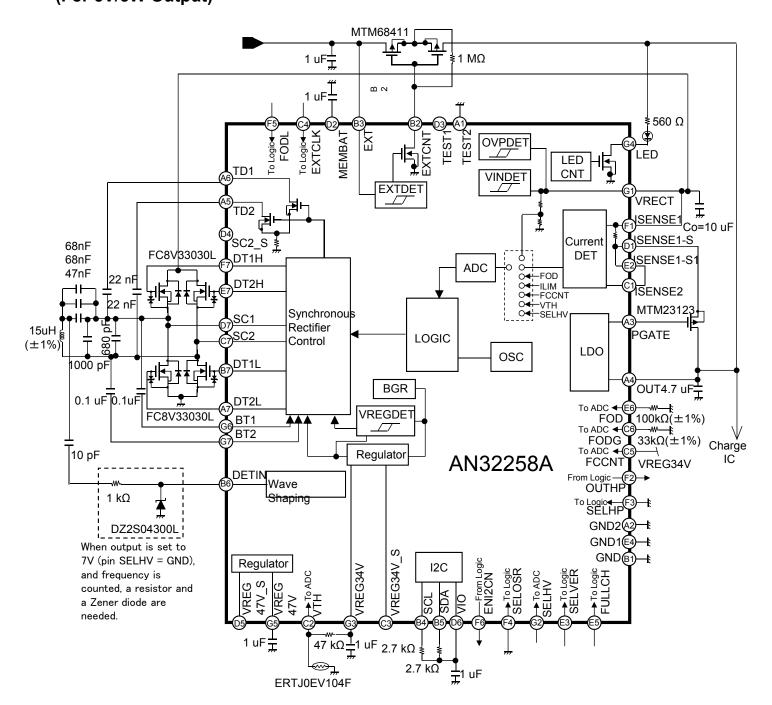
PIN FUNCTIONS

Pin	Name	I/O	Function	Description
A1	TEST2	I	Test pin 2	Connect to GND. Panasonic uses this pin for test purposes only.
A2,B1, E4	GND	GND	Ground	_
A3	PGATE	0	LDO control	Controls the PMOS gate of the LDO
A4	OUT	I	LDO feedback	Connects to the PMOS drain of the LDO
A5	TD2	0	Drive load to transmit 2	Controls capacitive load modulation for Qi data
A6	TD1	0	Drive load to transmit 1	Controls capacitive load modulation for Qi data
A7	DT2L	0	Rectification low side switch gate control 2	Controls the switching gate of the low side of the rectifier
B2	EXTCNT	0	External PMOS control	Controls the switch to an external power supply. This pin is internally connected to the drain of NMOS to use under 2mA. When EXT is larger than 4.2V, EXTCNT will become low and the external MOSFET will turn on. (Refer to the circuit diagram followed by Pin Functions.)
B3	EXT	Power Supply	External power detection	Supplies power externally in direct. When EXT becomes larger than 4.2V, EXTCNT will become low and the wireless power transmission will stop. The external power supply will then directly output, and the Tx will be stopped. (Refer to the circuit diagram followed by Pin Functions.)
B4	SCL	I	I2C clock input	Connect to I2C clock of an MCU.
B5	SDA	I/O	I2C data input / output	Connect to I2C data of an MCU. Input the signal from the Rx coil in
B6	DETIN	I	Communication detection	order to establish communication with Tx of NN32251A to receive power over 5W. Frequency of the power is counted at this pin, and for this to work, input an external clock from EXTCLK. If output is set to 7V (pin SELHV = GND), and frequency is counted, a resistor and a Zener diode need to be connected to this pin. Leave the pin open when the high- power mode and frequency measurement are not needed.

Pin	Name	I/O	Function	Description
B7	DT1L	0	Rectification Low side Switch Gate Control 1	Controls the switching gate of the low side of the rectifier
C1	ISENSE2	I	Current sensor 2	Detects the output current from LDO. Connect this pin to ISENSE1-S1(E2) for regular usage. In case of applying high-power mode with NN32251A, a sensing resistor is required. Refer to the circuit diagram followed by Pin Functions.
C2	VTH	I	Thermistor voltage	Connect to a thermistor placed where temperature needs to be measured to prevent over heat. Connect to VREEG34V (G3) if themistors are not in use.
C3	VREG34V_ S	0	Internal regulator sense output	This pin is shorted internally to VREG34V(G3).
C4	EXTCLK	I	External clock	Input a reference clock when transmission frequency of the received data at DETIN is measured. Use a clock with frequency from 4MHz to 19MHz. The results can be read from I2C.
C5	FCCNT	Ι	Full charge control	Connect a pull-down resistor to set an automatic full-charge detecting current. For example, when a resistor of 100kohm is used, decreasing output current to less than 80mA will shutdown the LDO, and also data is sent to Tx to stop power transmission. The current detection starts 5 seconds after power transmission starts. Using this pin can also replace the full-charge control from FULLCH(E5).

Pin	Name	I/O	Function	Description
C6	FODG	I	FOD gain control	Connect a pull-down resistor to adjust the gain level of Received Power Packet defined in WPC specification. The resistance can be varied from 10k ohms to 180k ohms.
C7	SC2	I	Synchronous rectifier control 2	Connect to the rectifier to detect its voltage level.
D1	ISENSE1_S	I	Sense pin for ISENSE1	Connect to the source of the LDO's MOSFET to detect the output current. A sense resistor of 50mohms is connected to ISENSE1(F1) inside the IC. In case of applying the solution over 5W (high-power mode) with NN32251A, leave this pin open. Refer to the circuit diagram followed by Pin Functions.
D2	MEMBAT	0	Random number memory adjustment	Connect a capacitor of 1uF to fix a memory time.
D3	TEST1	0	Test pin 1	Leave this pin open. Panasonic uses this pin for test purposes only.
D4	SC2_S	I	Synchronous rectifier sense pin	Leave this pin open. Panasonic uses this pin to sense SC2(C7) for test purposes only.
D5	VREG47V_ S	0	Internal regulator sense output	This pin in shorted internally to VREG47V(G5).
D6	VIO	Power Supply	I2C power	Apply common power supply of the MCU. The voltage must not exceed 5.5V.
D7	SC1	I	Synchronous rectifier control 1	Connect to the rectifier to detect its voltage level.
E2	ISENSE1_S1	I	Sense pin 1 for ISENSE1	Connect to ISENSE2(C1) to detect the output current. In case of applying the solution over 5W (high-power mode) with NN32251A, leave this pin open. Refer to the circuit diagram followed by Pin Functions.
E3	SELVER	I	Select a WPC version	Connect to GND to select ver1.1 of WPC Volume1 specification, and connecting to VREG34V(G3) enables to select ver.1.0.

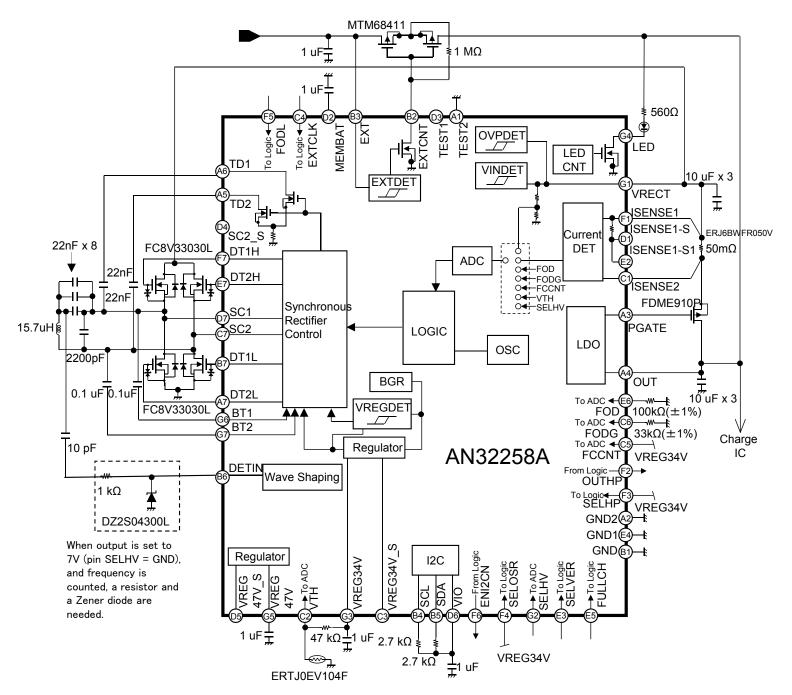
Pin	Name	I/O	Function	Description
E5	FULLCH	I	Full charge detection	This input controls the full charge detection externally such as from an MCU. When a high voltage level (over 1.6V) is inputted for over 50us, AN32258A will recognize it as full- charge and send packets to Tx to stop the power transmission. Right after the input becomes low, the power transmission can restart.
E6	FOD	Ο	Foreign object detection offset	Connect a pull-down resistor to adjust the offset level of received power of WPC specification. For example, a pull-down resistor of 100kohm will set the offset to be zero. Refer to No.3 of the Functions section.
E7	DT2H	0	Rectification high side switch gate control 2	Controls the switching gate of the high side of the rectifier
F1	ISENSE1	I	Current sensor 1	Connect to VRECT(G1) to detect the output current. A sense resistor of 50mohms is connected to ISENSE1- S(D1) inside the IC. An external resistor can also be connected. Refer to the circuit diagram followed by Pin Functions.
F2	OUTHP	0	Output high power	Outputs logical high level (Min. 1.6V) when SELHP pin is connected to VREG34V.
F3	SELHP	I	Select high-power mode	Connect to GND to output 5W at maximum from LDO. Connecting to VREG34V(G3) will activate the high- power output of over 5W (high-power mode) with using NN32251A for Tx.
F4	SELOSR	I	Select sense resistor	Connect to GND to use the internal sense resistor between ISENSE1(F1) and ISENSE1-S(D1). Connect to VREG34V to use an external sense resistor. When SELHP is set to high-power mode, use an external sense resistor.



Pin	Name	I/O	Function	Description
F5	FODL	I	Foreign object detection offset for low current	Inputting a logical high level (over 1.6V) will introduce an offset to Received Power Packet when IOUT is small. When GND is inputted, no offset will be added.
F6	ENI2C	0	Enable I2C	Outputs a logical high level from this pin when registers are accessible.
F7	DT1H	0	Rectification high side switch gate control 1	Controls the switching gate of high side of the rectifier
G1	VRECT	Power Supply	Voltage of rectifier	Voltage of the rectifier output becomes the power supply of AN32258A.
G2	SELHV	I	Select output voltage	Set this pin to select the LDO output as follows; OPEN:5V GND:7V
G3	VREG34V	0	Internal regulator output	Outputs a voltage level of 3.4V.
G4	LED	0	LED control	This pin is internally connected to the drain of NMOS which turns on when the LDO outputs a voltage.
G5	VREG47V	0	Internal regulator output	Outputs a voltage level of 4.7V.
G6	BT1	0	Boot strap 1	Connect to the rectifier
G7	BT2	0	Boot strap 2	Connect to the rectifier

AN32258A

CIRCUIT DIAGRAM (For 5V/5W Output)



AN32258A

CIRCUIT DIAGRAM

AN32258A

FUNCTIONS

AN32258A has the following functions.

No.	Function
1	Full charge control
2	Over current control
3	Foreign object detection
4	To select output power mode
5	To select the current sense resistor
6	Thermal shutdown
7	To select output voltage
8	VRECT voltage control
9	LED display
10	To select external voltage
11	Frequency counter of power transmission
12	To select WPC version
13	I2C bus interface
14	Register map

1. Full Charge Control

AN32258A has two ways to detect full-charge.

1-1. Switch ON/OFF externally : FULLCH (Pin E5)

AN32258A recognizes an input of high level to FULLCH as full-charge detected and an input of low level as full-charge not detected. When full-charge is detected, a Qi protocol of End Power Transfer Packet will be sent to Tx. The Tx will then stop the power transmission, and the output of AN32258A will shutdown. Keep the high level to FULLCH for longer than 50µs for full-charge detection. Change it to low level to restart

charging. When this function with FULLCH is not needed, connect the pin to GND.

*Time to resume power transmission depends on the Tx. When NN32251A is used, it will take an hour to restart power transmission after full-charge is detected. Notice that the charge may start and stop repeatedly, if the Tx does not have sufficient time to resume power transmission.

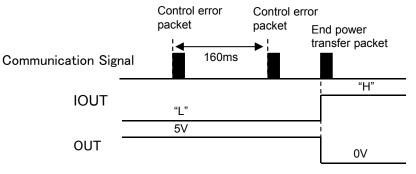


Figure A-1. Full Charge Detection by FULLCH

1-2. Control by output current: FCCNT (Pin C5)

When charging current becomes less than the value set at FCCNT (Pin C5), the power transmission stops as full charge. The threshold is determined by a pull-down resistor connected at this pin. For example, when a resistor of 100kohm is used, decreasing output current to less than 80mA will shutdown the LDO, and also data is sent to Tx to stop power transmission. The data to transmit is defined in Qi and called End Power Transfer packet. The current detection starts 5 seconds after power transmission starts.

Connect this pin to VREG34V, when this full-charge detection is not needed. When FULLCH pin is connected to high level to be activated, FCCNT will not control the full-charge detection. This function does not work for FCCNT voltage of over 3V. Also, note that the minimum threshold is 40mA.

*Time to resume power transmission depends on the Tx. When NN32251A is used, it will take an hour to restart power transmission after full-charge is detected. Notice that the charge may start and stop repeatedly, if the Tx does not have sufficient time to resume power transmission.

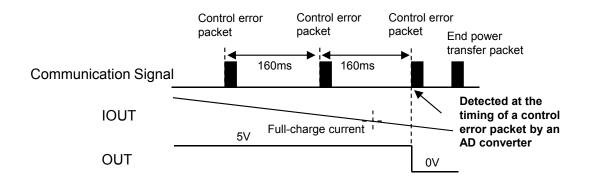
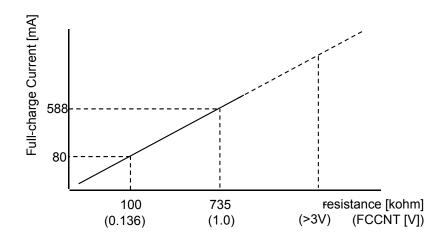



Figure A-2. Full Charge Detection by FCCNT

FigureA-3. Full charge detecting current is controlled by a resistor connected to FCCNT. Full-charge Current [mA] = $2000/3.4 \times 0.00000136 \times R[\Omega]$

2.Current Limit Control

When the output current exceeds the threshold value, AN32258A will shutdown the output.

When this over-current is detected, data is sent to Tx to stop power transmission. The data to transmit to Tx is End Power Transfer packet defined in Qi, and right after the Tx receives the data, it stops its power transmission. The threshold value is about 1.5A for the 5W solution and 2.6A for the high-power solution.

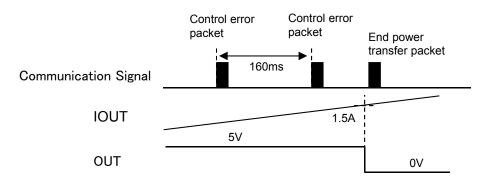
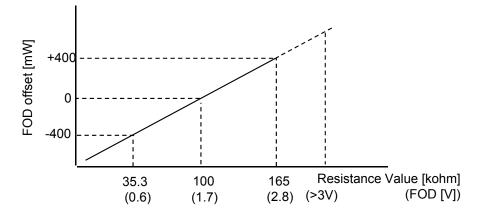
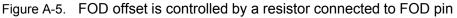


Figure A-4. Timing characteristics for current limit control


3. Foreign Object Detection


AN32258A has a foreign object detection complying with the WPC 1.1 specification. The specification defines a foreign object when the difference between transmitted power and received power is large. The Tx measures the power difference and stops power transmission when the difference is large. The value of Received Power (address 04h) can be adjusted by the following three pins.

3-1. Offset Control : FOD (Pin E6)

Connect a pull-down resistor at FOD pin to adjust the offset level of received power sent to the Tx. For example, a pull-down resistor of 100kohm will set the offset to be zero. This function does not work for FOD voltage of over 3V.

If this function is not needed, connect the FOD pin to VREG34V.

3. Foreign Object Detection (Continued)

3-2. Offset Control for low current : FOD (Pin F5)

An offset can be introduced to the received power for low current at IOUT. Set the FODL pin to either logical high or low.

Low (GND) : No offset High (over 1.6V) : Offset added (IOUT < ~125mA)

3-3. Gain control : FODG (Pin C6)

The gain of received power can be adjusted by a pull-down resistor connected at this pin. The resistance can be varied from 10k ohms to 180k ohms as the following figure shows.

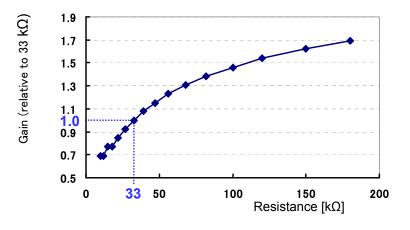


Figure A-5-1. The relationship between received power gain and pull-down resistance at FODG

4.Select High-Power mode : SELHP (Pin F3)

AN32258A can output power of 5W which is WPC 1.1 compliant, but, in addition, the output can be increased over 5W in high-power mode. Connect SELHP pin to GND to output 5W of WPC compliant and to VREG34V to output power over 5W. Note that the Tx must use NN32251A in order for high-power mode to work. If the Tx does not use NN32251A the high-power mode will output WPC compliant 5W.

5. Select Sense Resistor : SELOSR (Pin F4)

Output current is detected by a sense resistor, and AN32258A has internal and external resistors to choose from. Connect SELOSR pin to GND to use the internal resistor and to VREG34V to use the external resistor. External components must be routed as the following figure shows.

* In the high-power mode, use an external resistor, otherwise internal heat becomes large.

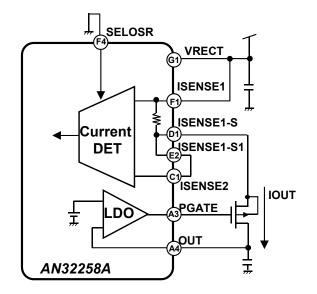


Figure A-6. Circuit when the internal resistor is used. (SELOSR pin is connected to GND)

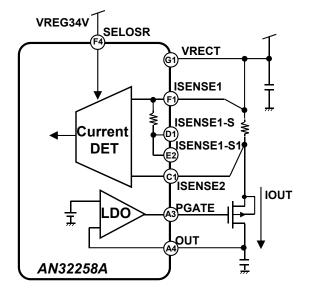
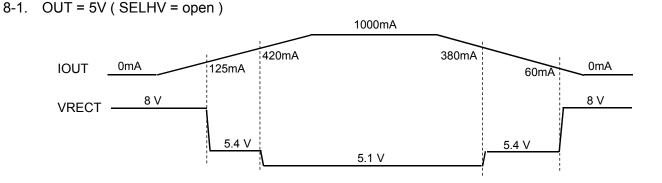


Figure A-7. Circuit when an external resistor is used. (SELOSR pin is connected to VREG34V)

6. Over Temperature Detection : VTH (Pin C2)

A thermistor, ERTJ0EV104F recommended, can be connected to VTH pin. Connecting a resistor from VTH to VREG34V will fix the threshold temperature. For example, a $47k\Omega$ resistor yields a threshold of 60°C. Refer to TYPICAL CHARACTERISTICS section for more detail. Connect to VREEG34V (G3) if themistors are not in use.



7. Select Output Voltage : SELHV (Pin G2)

The output voltage of AN32258A can be set to either 5V or 7V. When SELHV is open, the output will be 5V, and when SELHV is connected to GND, the output will be 7V. The coils will be different for 5V and 7V solutions.

8. Rectifier Voltage Control

AN32258A controls the rectifier output (VRECT) depending on the current value (IOUT). The following figure shows the change of VRECT due to IOUT. Note that the changed timing in increasing IOUT is different from that in decreasing IOUT.

8-2. OUT=7V (SELHV = GND)

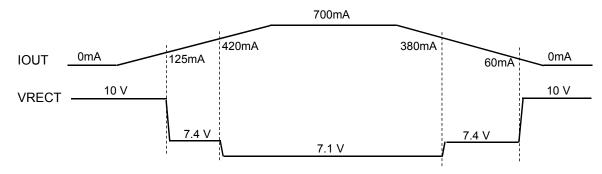


Figure A-8. VRECT changes by the value of output current. (Values shown are for reference.)

9. LED Display : LED (Pin G4)

AN32258A has LED driver. Connect an LED and a resistor in series from OUT to LED pins. The LED turns on and off as the following figure shows.

Table A-1. LED Display					
Status	Display				
Status	LED				
Standby	OFF				
Charging	ON				
Full-charge detected	OFF				
External power supply detected	OFF				
Over-current detected	OFF				
Over-temperature detected	OFF				

Table	Δ_1	I FD	Display
Iable	A-1.		Display

10. External Voltage Supply Switch : EXT (Pin B3), EXTCNT (Pin B2)

The voltage supply to a charger can be switched from AN32258A to some external voltage supply, such as USB. For this function to work, introduce an external voltage to EXT pin. When EXT becomes larger than 4.2V, the external MOSFET switch will turn on to output the external voltage in direct. Also, End Power Transfer Packet is sent to Tx to stop power transmission at the same time.

If the external voltage supply becomes lower than 3.8V, the external MOSFET switch will turn off. Then, Tx will resume power transmission, and AN32258A will start to output at the LDO. Refer to the circuit diagram before FUNCTIONS section for the configuration at EXT pin.

11. Power Frequency Detection : EXTCLK (Pin C4)

The frequency of received power is measured with a 4MHz to 19MHz clock inputted to EXTCLK pin. A measurement starts 3ms after the register at 0Ah is set to 01h. The results will be written into the register 09h, FREQCNT[7:0], and they can be read from I2C bus.

Frequency = Fextclk / FREQCNT[7:0]

If output is set to 7V (pin SELHV = GND), and frequency is counted, a resistor and a Zener diode need to be connected to DETIN (Pin B6).

12. Select WPC Version : SELVER (Pin E3)

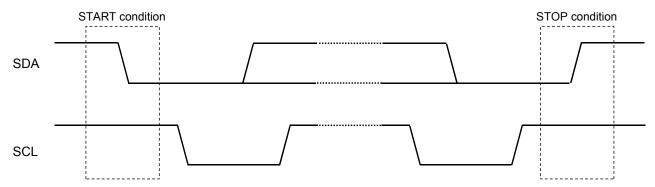
Connect SELVER pin to GND to select ver1.1 of WPC Volume1 specification, and connecting to VREG34V(G3) enables to select ver.1.0. Note that ver. 1.0 of WPC will not be certified by the organization any more.

13. I2C-bus interface

13-1. Basic Rules

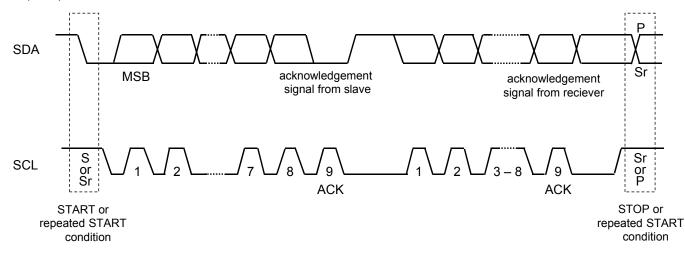
•This IC, I2C-bus, is designed to correspond to the Standard-mode (100 kbps) and Fast-mode(400 kbps) devices in the version 2.1 of NXP's specification. However, it does not correspond to the HS-mode (to 3.4 Mbps).

• This IC will be operated as a slave device in the I2C-bus system. This IC will not operate as a master device.


• The program operation check of this IC has not been conducted on the multi-master bus system and the mix-speed bus system, yet. The connected confirmation of this IC to the CBUS receiver also has not been checked. Please confirm our company if it will be used in these mode systems.

•The I2C is the brand of NXP.

13-2. START and STOP conditions

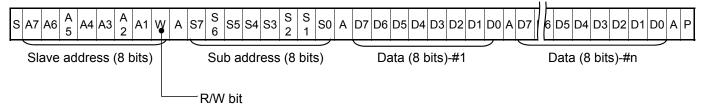

A High to Low transition on the SDA line while SCLK is High is one such unique case. This situation indicates START condition. A Low to High transition on the SDA line while SCLK is High defines STOP condition. START and STOP conditions are always generated by the master. After START condition occur, the bus will be busy.

The bus is considered to be free again a certain time after the STOP condition.

13-3. Transferring Data

Every byte put on the SDA line must be 8-bits long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first.

- 13. I2C-bus interface (continued)
- 13-4. Data format
- 13-4-1. Write mode
 - A) Write mode


S A7 A6 5 A4 A3 A A1 W	A S7 ^S 6 S5 S4 S3 ^S 2 1 S0	A D7 D6 D5 D4 D3 D2 D1 D0 A P		
Slave address (8 bits)	Sub address (8 bits)	Data (8 bits)-#1		
	—— R/W bit			

·LSB of slave address (8 bits) is definition bit for read/write. (This is I2C-bus specification.)

Slave address

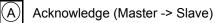
A7	A6	A5	A4	A3	A2	A1
0	0	1	0	0	1	0

B) Auto increment mode

Auto increment mode : Master device writes to slave n-times while slave increments write address start from sub address. ($n \ge 1$)

А

START condition

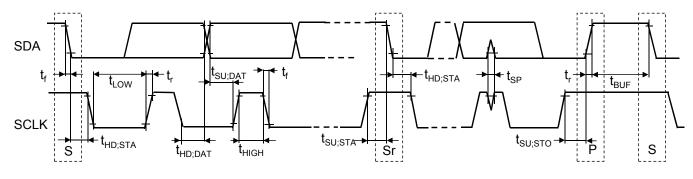

P STOP condition

Acknowledge (Slave -> Master)

- 13. I2C-bus inter face (continued)
- 13-4. Data format (continued)
- 13-4-2. Read mode
 - A) Random mode

S A7 A6 A5 A4 A3 A2 A1 W A	S7 S6 S5 S4 S3 S2 S1 S0 A S	6r A7 A6 A5 A4 A3 A2 A1 R A I	D7D6D5D4D3D2D1D0(A)P
Slave address (8 bits)	Sub address (8 bits)	Slave address (8 bits)	Data (8 bits)
		ess which sub address indicate vrite. (This is I2C bus specifica	
B) Sequential mode			
S A7 A6 A5 A4 A3 A2 A1 R A	D7 D6 D5 D4 D3 D2 D1 D0 A		
Slave address (8 bits)	Data (8 bits)-#1	Data (8 bits)-#2	Data (8 bits)-#n
In this example, sub addre	ess is omitted. Slave device h	lave device increments write a has address pointer, and incre rrite. (This is I2C bus specifica	ments this pointer.
S START condition			
P STOP condition			
Sr Repeated START co	ndition		
A Acknowledge (Slave	-> Master)		

A Not acknowledge (Master -> Slave)


Co = 10 $\mu F,\,V_{RECT}$ = $\,8$ V, T_a = 25 $^{\circ}C$ \pm 2 $^{\circ}C$ unless otherwise noted.

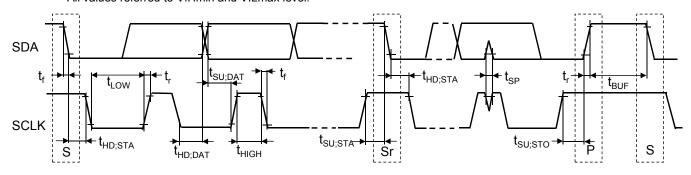
Devemeter	Symbol Condition		Limits			Unit	Note
Parameter			Min	Тур	Max	Unit	Note
I2C bus (I/O specifications)							
Hysteresis of Schmitt trigger input 1	Hysteresis of Schmitt trigger input 1 Vio > 2 V, Hysteresis 1 of SE SCLK		$0.05 \times V_{IO}$	_		V	*1,2
Hysteresis of Schmitt trigger input 2	Vhys2	VIO < 2 V, Hysteresis 2 of SDA, SCLK	0.1 × V _{IO}	_		V	*1,2
Output fall time from VIHmin to VILmax	Tof	$\begin{array}{l} \text{Bus capacitance}: 10 \text{ pF} \\ \text{to } 400 \text{ pF} \\ \text{I}_{\text{P}} \leq 6 \text{ mA} \left(\text{V}_{\text{OLmax}} = 0.6 \text{ V}\right) \\ \text{I}_{\text{P}}: \text{Max. sink current} \end{array}$	$20 + 0.1 \times C_{b}$	_	250	ns	*1,2
Pulse width of spikes which must be suppressed by the input filter	tsp	_	0	_	50	ns	*1,2
Capacitance for each I/O pin	Ci	-	_	-	10	pF	*1,2

Note)

*1: Designed values, but not tested in shipping inspection

*2 : The timing of Fast-mode devices in I2C-bus is specified as the following. All values referred to VIHmin and VILmax level.

- S: START condition
- Sr : Repeated START condition
- P: STOP condition



Co = 10 $\mu F,\,V_{RECT}$ = $\,8$ V, T_a = 25 $^{\circ}C$ \pm 2 $^{\circ}C$ unless otherwise noted.

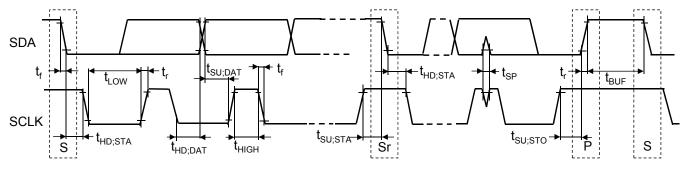
Parameter	Symbol	Condition	Limits			Unit	Note
Parameter	Symbol	Condition	Min	Тур	Max	Unit	Note
2C bus (Bus line specifications)							
Hold time (repeated) START condition	t _{HD:STA}	The first clock pulse is generated after tHD:STA.	0.6	_	—	ms	*1,2
Low period of the SCLK clock	t _{LOW}	—	1.3	_	_	ms	*1,2
High period of the SCLK clock	t _{HIGH}	—	0.6	_	_	ms	*1,2
Set-up time for a repeat START condition	t _{su:sta}	_	0.6	_	_	ms	*1,2
Data hold time	t _{HD:DAT}	—	0	_	0.9	ms	*1,2
Data set-up time	t _{su:DAT}	—	100	—		ns	*1,2
Rise time of both SDA and SCLK signals	t _r	_	20 + 0.1 C _b	_	300	ns	*1,2
Fall time of both SDA and SCLK signals	t _f		20 + 0.1 C _b		300	ns	*1,2
Set-up time of STOP condition	t _{su:sto}	—	0.6	_	_	ms	*1,2
Bus free time between STOP and START condition	t _{BUF}		1.3			ms	*1,2

Note)

- *1: Designed values, but not tested in shipping inspection
- *2 : The timing of Fast-mode devices in I2C-bus is specified as the following. All values referred to VIHmin and VILmax level.

S: START condition

- Sr : Repeated START condition
- P: STOP condition



Co = 10 $\mu F,\,V_{RECT}$ = $\,8$ V, T_a = 25 $^{\circ}C$ \pm 2 $^{\circ}C$ unless otherwise noted.

	Parameter		Symbol Condition		Limits			
	Parameter	Symbol Condition		Min	Тур	Max	Unit	Note
120	I2C bus (Bus line specifications) (continued)							
	Capacitive load for each bus line	C _b	—			400	pF	*1,2
	Noise margin at the Low-level for each connected device	V _{nL}	_	0.1 V _{IO}	_	_	V	*1,2
	Noise margin at the High-level for each connected device	V _{nH}	—	0.2 V _{IO}		_	V	*1,2

Note)

- *1: Designed values, but not tested in shipping inspection
- *2: The timing of Fast-mode devices in I2C-bus is specified as the following. All values referred to VIHmin and VILmax level.

- S: START condition
- Sr: Repeated START condition
- P: STOP condition

AN32258A

FUNCTIONS (Continued)

14. Register Map

Normal mode

01hRInitial02hRInitial03hRInitial04hR	NRESET NRESET NRESET	SIGNALSTR - EPTP -	0	0	0	SSV[7:0]								
02h Initial 03h Initial 04h		EPTP	0	0		0	0	0	0	0					
Initial R 03h Initial R 04h		EPTP			0	EPTP		0	0	0					
03h Initial R	NRESET		0	0	0	0	0	0	0	0					
Initial 04h	NRESET	CONTROL	-			CERR	[7:0]								
04h R		ERROR	0	0	0	0	0	0	0	0					
R	NEEDET	RECEIVED		1	1	RPWR	R[7:0]		I						
Initial	NRESET	POWER	0	0	0	0	0	0	0	0					
20h R/V	V NRESET	CONTROL				CTLPOIN	ITA[7:0]								
Initial	V INRESET	POINT A	0	1	1	0	0	1	1	0					
21h R/V	V NRESET	CONTROL				CTLPOIN	ITB[7:0]								
Initial	V INREGET	POINT B	0	1	0	0	0	1	0	1					
22h R/V	V NRESET	CONTROL				CTLPOIN	ITC[7:0]								
Initial	NICESET	POINT C	0	1	0	0	0	0	0	1					
23h R/V	V NRESET	CURRENT				THRESH	1A[7:0]								
Initial	NICEOET	THRESH 1A	0	0	0	1	0	0	0	0					
24h R/V	R/W NRESET	CURRENT		1		THRESH	1B[7:0]								
Initial		THRESH 1B	0	0	0	0	1	0	0	0					
25h R/V	N NRESET	R/W NRESET	R/W NRESET	R/W NRESET	R/W NRESET		CURRENT		1	1	THRESH			[
Initial		THRESH 2A	0	0	1	1	0	1	1	0					
26h R/V	V NRESET	CURRENT		1		THRESH			[
Initial		THRESH 2B	0	0	1	1	0	0	0	0					
27h W	NRESET	TXEPTP		_	_	_	_	_	_	TXEPTP					
Initial			0	0	0	0	0	0	0	0					
40h R/V	V NRESET	USER MODE SELECT	_	_	_	_	_	_		PRIVILEGE					
Initial		SELECT	0	0	0	0	0	0	0	0					
71h R	NRESET	ID1		MAJOR		1	<u>^</u>	0 MINOR	VER[3:0]	1					
Initial 705			0	0	0	MANUFACTUR		U	0	1					
72h Initial R	NRESET	ID2	0	0	0	0	0	0	0	0					
73h _			0	0	0	MANUFACTUR	-	0	0	0					
Initial R	NRESET	ID3	0	0	1	0	0	1	0	1					
74h _			EXTID	0		-	C DEVICE ID[3		0						
Initial R	NRESET	ID4	0	0	0	0	0	0	0	0					
75h			•			BASIC DEVI	-								
Initial R	NRESET	ID5	0	0	0	0	0	0	0	0					
76h			-	-	-	BASIC DEVI		-	-	-					
Initial R	NRESET	ID6	0	0	0	0	0	0	0	0					
77h			-		-	BASIC DEV	CE ID[7:0]	-	-	-					
Initial R	NRESET	ID7	0	0	0	0	0	0	0	0					
80h		CHARGE		_	_	_	_	—	_	HPMODE					
Initial R	NRESET	MODE	0	0	0	0	0	0	0	0					

AN32258A

FUNCTIONS (Continued)

14. Register Map (Continued)

Privilege registers

Address	R/W	RESET factor	attribute	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
03h			CONTROL	CERR7	CERR6	CERR5	CERR4	CERR3	CERR2	CERR1	CERR0
Initial	R/W	PRIVILEGE	ERROR	0	0	0	0	0	0	0	0
04h	R/W		RECEIVED	RPWR7	RPWR6	RPWR5	RPWR4	RPWR3	RPWR2	RPWR1	RPWR0
Initial	R/W	PRIVILEGE	POWER	0	0	0	0	0	0	0	0
05h	R/W	PRIVILEGE	CHARGE				CHGSTA	TUS[7:0]			
Initial	R/VV	PRIVILEGE	STATUS	1	1	1	1	1	1	1	1
07h			1/450	VADC7	VADC6	VADC5	VADC4	VADC3	VADC2	VADC1	VADC0
Initial	R	PRIVILEGE	VADC	0	0	0	0	0	0	0	0
08h	-		14.50	IADC7	IADC6	IADC5	IADC4	IADC3	IADC2	IADC1	IADC0
Initial	R	PRIVILEGE	IADC	0	0	0	0	0	0	0	0
09h	_				r		FREQC	NT[7:0]			
Initial	R	PRIVILEGE	FREQCNT	0	0	0	0	0	0	0	0
0Ah			EXTCLK	_	_	_		_	_	_	EXTCLKEN
Initial	R/W	PRIVILEGE	ENABLE	0	0	0	0	0	0	0	0
30h			CTLP HP		1		HPCTLPO	INTA[7:0]	1		
Initial	R/W	PRIVILEGE	VRECA	0	1	1	0	0	1	1	0
31h			CTLP HP				HPCTLPO	INTB[7:0]	1		
Initial	R/W	PRIVILEGE	VRECB	0	1	1	0	0	1	1	0
32h			CTLP HP				HPCTLPO	INTC[7:0]	1		
Initial	R/W	PRIVILEGE	VRECC	0	1	0	0	0	0	0	1
33h					_	_		_		_	CTLPKEY
Initial	R/W	PRIVILEGE	CTLP KEY	0	0	0	0	0	0	0	0
41h			FUNCTION	_				_	_	SETRPWR	SETCE
Initial	R/W	PRIVILEGE	SET	0	0	0	0	0	0	0	0
43h			POWER	-		-	KB[7:01	-		-
Initial	R/W	NRESET	PARAMETER	0	0	0	0	0	0	0	1
			2 POWER	0	0	0			0	0	I
44h	R/W	NRESET	PARAMETER		1		KC[-	1	1	
Initial			3	0	0	0	0	0	1	1	1
45h	R/W	NRESET	POWER				OFFSE	T[7:0]			
Initial	10.00	NICESET	OFFSET	0	0	0	0	0	0	0	0
51h	R	PRIVILEGE	CONFIG1	PWR CLASS1	PWR CLASS0	MAXPWR5	MAXPWR4	MAXPWR3	MAXPWR2	MAXPWR1	MAXPWR0
Initial	R	FRIVILEGE	CONFIGT	0	0	0	0	1	0	1	0
53h	R/W	PRIVILEGE	CONFIG3	—	—	—	—	—	COUNT2	COUNT1	COUNT0
Initial		FRIVILEGE	CONFIGS	0	0	0	0	0	0	0	0
54h	R/W	PRIVILEGE	CONFIG4			WINDOW SIZE			v	VINDOW OFFSE	Т
Initial	10.00	TRIVILLOL	0011104	1	0	0	0	0	1	0	0
60h	w	AUTORST	OPTREQ	—	—	_		—	—	—	OPTREQ
Initial	٧V	AUTUROT	UFIREQ	0	0	0	0	0	0	0	0
61h	R/W	PRIVILEGE	OPTCNT	—	—	—	OPTCNT4	OPTCNT3	OPTCNT2	OPTCNT1	OPTCNT0
Initial	17.00	TIMLEGE		0	0	0	0	0	0	1	1
62h	R/W	PRIVILEGE	OPTADR				OPTAD	DR[7:0]			
Initial	17.00	TIMLEGE		0	0	0	0	0	1	1	0
63h	R/W	PRIVILEGE	OPTDATA1				OPTDA	FA1[7:0]			
Initial		TRIVILEGE	UFIDATAL	0	0	0	0	0	0	0	0
64h	R/W		OPTDATA2				OPTDA	FA2[7:0]			
Initial	FV/VV	PRIVILEGE	UPIDATAZ	0	0	0	0	0	0	0	0
65h							OPTDA	FA3[7:0]			
Initial	R/W	PRIVILEGE	OPTDATA3	0	0	0	0	0	0	0	0
66h	DAA						OPTDA	FA4[7:0]			
Initial	R/W	PRIVILEGE	OPTDATA4	0	0	0	0	0	0	0	0
67h	_			_	_	_	_	OPT4TXWAIT	OPT3TXWAIT	OPT2TXWAIT	OPT1TXWAIT
Initial	R	PRIVILEGE	OPTDATTX	0	0	0	0	0	0	0	0
71h				MAJOR VER3			MAJOR VER0	MINOR VER	MINOR VER	MINOR VER	MINOR VER
Initial	R/W	PRIVILEGE	ID1	0	0	0	1	0	0	0	1
			1			-	•	· ·	· ·		

14. Register Map (Continued)

Registe	r Name		SIGNALSTR										
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0				
01h	R	SSV7	SSV6	SSV5	SSV4	SSV3	SSV2	SSV1	SSV0				
Default	00h	0	0	0	0	0	0	0	0				

D7-D0 : Signal Strength Value (0-255)

It shows the coupling of a transmitter coil and a receiver coil.

AN32258A shows the rate to the maximum of rectification voltage.

Signal Strength Value = VRECT Voltage / 20 \times 255

Registe	r Name				EP	TP			
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0
02h	R	EPTP7	EPTP6	EPTP5	EPTP4	EPTP3	EPTP2	EPTP1	EPTP0
Default	00h	0	0	0	0	0	0	0	0

D7-D0 : End Power Transfer packet

The message contained in a "End Power Transfer packet" is shown.

0x00 : EXT input detection

0x01 : Full charge

0x02 : Internal Fault ** This can be set by writing 01h to register 27h.

- 0x03 : Over temperature detection
- 0x04 : Over voltage detection
- 0x05 : Over current detection

Registe	r Name		CONTROLERROR										
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0				
03h	R	CERR7	CERR6	CERR5	CERR4	CERR3	CERR2	CERR1	CERR0				
Default	00h	0	0	0	0	0	0	0	0				

D7-D0 : Control Error Value (-128 - +127)

The contents of Control Error packet are shown.

It is a signed integer of -128 to +127 in the complement form of 2.

14. Register Map (Continued)

Description (Continued)

Registe	r Name		RECEIVEDPOWER										
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0				
04h	R	RPWR7	RPWR6	RPWR5	RPWR4	RPWR3	RPWR2	RPWR1	RPWR0				
Default	00h	0	0	0	0	0	0	0	0				

D7-D0 : Received Power Value(0-255)

This register shows the average of total power in received side within the time range of defined configuration packet.

It is an unsigned integer of 0 to 255.

Receiving Power's total amount is calculated below.

Received Power = (RPWR[7:0] / 128) × (Maximum Power / 2) × 10^{Power Class} W

* The Configuration packet defines Maximum Power and Power Class.

Registe	r Name				CONTRO	LPOINT A			
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0
20h	R/W	CTLPOIN TA7	CTLPOIN TA6	CTLPOIN TA5	CTLPOIN TA4	CTLPOIN TA3	CTLPOIN TA2	CTLPOIN TA1	CTLPOIN TA0
Default	66h	0	1	1	0	0	1	1	0

D7-D0 : Control Point A(0-255)

The target value of VRECT voltage when current is less than 125mA is shown.

VRECT voltage is calculated below.

VRECT voltage = CTLPOINTA[7:0] / 255×20 V

*Initial value : 8.0 V

Registe	r Name		CONTROLPOINT B										
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0				
21h	R/W	CTLPOINT B7	CTLPOINT B6	CTLPOINT B5	CTLPOINT B4	CTLPOINT B3	CTLPOINT B2	CTLPOINT B1	CTLPOINT B0				
Default	45h	0	1	0	0	0	1	0	1				

D7-D0 : Control Point B(0-255)

The target value of VRECT voltage in case current is settled in the range of 125mA to 420mA is shown. VRECT voltage is calculated below.

VRECT voltage = CTLPOINTB[7:0] / 255×20 V

* Initial value : 5.4 V

14. Register Map (Continued)

Description (Continued)

Registe	er Name		CONTROLPOINT C									
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0			
22h	R/W	CTLPOINT C7	CTLPOINT C6	CTLPOINT C5	CTLPOINT C4	CTLPOINT C3	CTLPOINT C2	CTLPOINT C1	CTLPOINT C0			
					_	_	_	_				

D7-D0 : Control Point C(0-255)

The target value of VRECT voltage in case current is more than 420mA is shown.

VRECT voltage is calculated below.

VRECT voltage = CTLPOINTC[7:0] / 255×20 V

*Initial value : 5.1 V

Registe	r Name		CURRENTTHRESH 1A										
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0				
23h	R/W	THRESH1 A7	THRESH1 A6	THRESH1 A5	THRESH1 A4	THRESH1 A3	THRESH1 A2	THRESH1 A1	THRESH1 A0				
Default	10h	0	0	0	1	0	0	0	0				

D7-D0 : Current thresh 1A(0-255)

It is a setting register of a Control Point A/B switch current threshold value (higher).

A current threshold value is calculated below.

Current threshold = THRESH1A[7:0] / 255×2 A

* Initial value : 125mA

Registe	r Name		CURRENTTHRESH 1B										
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0				
24h	R/W	THRESH1 B7	THRESH1 B6	THRESH1 B5	THRESH1 B4	THRESH1 B3	THRESH1 B2	THRESH1 B1	THRESH1 B0				
Default	08h	0	0	0	0	1	0	0	0				

D7-D0 : Current thresh 1B(0-255)

It is a setting register of a Control Point A/B switch current threshold value (lower).

A current threshold value is calculated below.

Current threshold = THRESH1B[7:0] / 255×2 A

* Initial value : 60mA

14. Register Map (Continued)

Description (Continued)

Registe	r Name		CURRENTTHRESH 2A									
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0			
25h	R/W	THRESH2 A7	THRESH2 A6	THRESH2 A5	THRESH2 A4	THRESH2 A3	THRESH2 A2	THRESH2 A1	THRESH2 A0			
Default	36h	0	0	1	1	0	1	1	0			

D7-D0 : Current thresh 2A(0-255)

It is a setting register of a Control Point B/C switch current threshold value (higher).

A current threshold value is calculated below.

Current threshold = THRESH2A[7:0] / 255×2 A

* Initial value : 420mA

Registe	r Name		CURRENTTHRESH 2B										
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0				
26h	R/W	THRESH2 B7	THRESH2 B6	THRESH2 B5	THRESH2 B4	THRESH2 B3	THRESH2 B2	THRESH2 B1	THRESH2 B0				
Default	30h	0	0	1	1	0	0	0	0				

D7-D0 : Current thresh 2B(0-255)

It is a setting register of a Control Point B/C switch current threshold value (lower).

A current threshold value is calculated below.

Current threshold = THRESH2B[7:0] / 255×2 A

* Initial value : 380mA

Register Name		ТХЕРТР									
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0		
27h	W	-	-	-	-	-	-	-	TXEPTP		
Default	00h	0	0	0	0	0	0	0	0		

D0 : TXEPTP

It is a compulsive transmitting register of an End Power Transfer packet.

0 : Normal operation (default)

1 : End Power Transfer packet transmission

* After transmitting End Power Transfer packet, a Transmitter side will be in a power-off state, and this register returns to a default value by resetting this IC.

14. Register Map (Continued)

Description (Continued)

Register Name		USER MORE SELECT									
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0		
40h	R/W	-	-	-	-	-	-	-	PRIVILEG E		
Default	00h	0	0	0	0	0	0	0	0		

D0 : PRIVILEGE

This register controls the access to privilege register.

0 : Normal register map access only. (default)

1 : Access to privilege register and normal register.

Register Name		ID1									
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0		
71h	R		MAJOR	VER[3:0]		MINOR VER[3:0]					
Default	00h	0	0	0	1	0	0	0	1		

D7-D4 : MAJOR VER[3:0]

Major Version of Volume I of the System Description Wireless Power Transfer of the WPC standard to which this IC corresponds is shown.

0001 : Major Version (default)

D3-D0 : MINOR VER[3:0]

Minor Version of Volume I of the System Description Wireless Power Transfer of the WPC standard to which this IC corresponds is shown.

0001 : Minor Version (default)

Register Name		ID2								
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0	
72h	R	MANUFACTURE CODE[15:8]								
Default	00h	0	0 0 0 0 0 0 0 0							
Register Name		ID3								
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0	
73h	R	MANUFACTURE CODE[7:0]								
Default	25h	0	0	1	0	0	1	0	1	

REGISTER 72h-73h[7:0] : MANUFACTURE CODE

Manufacture Code of Panasonic is shown.

0025 : Manufacture Code of Panasonic (default)

14. Register Map (Continued)

Description (Continued)

Registe	r Name				ID) 4				
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0	
74h	R	EXTID			BASIC	DEVICE ID	30:24]			
Default	00h	0	0	0	0	0	0	0	0	
Registe	r Name				ID	5				
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0	
75h	R		BASIC DEVICE ID[23:16]							
Default	0Xh	0	0 0 0 0 0 X X X X							
Registe	r Name				IC	06				
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0	
76h	R				BASIC DEV	ICE ID[15:8]				
Default	XXh	Х	Х	Х	X	Х	Х	Х	Х	
Registe	r Name				IC)7				
Sub Address	R/W	D7	D6 D5 D4 D3 D2 D1 D0							
77h	R				BASIC DEV	/ICE ID[7:0]				
Default	XXh	Х	x x x x x x x x							

REGISTER 74h[7] : Extended ID

The identification bit sequence of this IC is chosen.

0 : Manufacturer Code || Basic Device ID (default)

1 : Manufacturer Code || Basic Device ID || Extended Device Identifier

REGISTER 74h-77h Basic Device ID[30:0]

Basic Device ID of this IC is shown.

A random number is set to BASIC DEVICE ID [19:0].

Register Name CHRGE MODE									
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0
80h	R	-	-	-	-	-	-	-	HPMODE
Default	00h	0	0	0	0	0	0	0	0

D0 : High Power MODE

It is a register which shows the High Power mode.

By setup of SELHP=H, when the Transmitter side corresponds (NN32251A), it becomes "H".

0 : 5W mode (default)

1 : High Power mode

14. Register Map (Continued)

Description (Continued)

Registe	r Name				CONTRO	LERROR			
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0
03h	R/W	CERR7	CERR6	CERR5	CERR4	CERR3	CERR2	CERR1	CERR0
Default	00h	0	0	0	0	0	0	0	0

D7-D0 : Control Error Value (-128 - +127)

The contents of the Control Error packet are shown.

It is a signed integer of -128 to +127 in the complement form of 2.

By set up SETCE (Address41h, bit0) ="H", the Control Error value written in this address is transmit.

Registe	r Name				RECEIVE	DPOWER			
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0
04h	R/W	RPWR7	RPWR6	RPWR5	RPWR4	RPWR3	RPWR2	RPWR1	RPWR0
Default	00h	0	0	0	0	0	0	0	0

D7-D0 : Received Power Value(0-255)

This register shows the average of total power in received side within the time range of defined configuration packet.

It is an unsigned integer of 0 to 255.

The total amount of receiving power is calculated below.

Received Power = (RPWR[7:0] / 128) \times (Maximum Power / 2) \times 10^{Power Class} W

By set up SETRPWR (Address41h, bit1) ="H", the Received Power value written in this address is transmit.

* The Configuration packet defines Maximum Power and Power Class.

14. Register Map (Continued)

Description (Continued)

Registe	r Name		CHARGE STATUS									
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0			
05h	R/W	CHGSTAT US7	CHGSTAT US6	CHGSTAT US5	CHGSTAT US4	CHGSTAT US3	CHGSTAT US2	CHGSTAT US1	CHGSTAT US0			
Default	FFh	1	1	1	1	1	1	1	1			

D7-D0 : Charge Status Value(0-100, 255)

The rate to a full charge level is shown.

00000000 : Battery Empty

: 01100100 : Full charge

11111111 : Charge information cannot be given. (default)

* Writing other values is prohibited.

Registe	r Name		VADC									
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0			
07h	R	VADC7	VADC6	VADC5	VADC4	VADC3	VADC2	VADC1	VADC0			
Default	00h	0	0	0	0	0	0	0	0			

D7-D0 : VRECT Value (0 - +255)

The voltage level of VRECT is shown.

It is set to VADC[7:0] = FFh at the time of VRECT = 20V.

Registe	r Name		IADC									
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0			
08h	R	IADC7	IADC6	IADC5	IADC4	IADC3	IADC2	IADC1	IADC0			
Default	00h	0	0	0	0	0	0	0	0			

D7-D0 : ISENSE Value (0 - +255)

The current level of ISENSE is shown.

It is set to IADC[7:0] = FFh at the time of ISENSE current = 2A.

14. Register Map (Continued)

Description (Continued)

Privilege register

Registe	r Name		FREQCNT										
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0				
09h	R	FREQCNT 7	FREQCNT 6	FREQCNT 5	FREQCNT 4	FREQCNT 3	FREQCNT 2	FREQCNT 1	FREQCNT 0				
Default	00h	0	0	0	0	0	0	0	0				

D7-D0 : Coil Frequency (0-100, 255)

The value (average of 256 cycles) which counted the coil frequency Fcoil with the EXTCLK_IN clock is shown.

If frequency of EXTCLK_IN is made into Fext Hz, the coil frequency Fcoil will be calculated below. Fcoil = Fext / FREQCNT[7:0] Hz

Registe	r Name		EXTCLK ENABLE									
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0			
0Ah	R	-	-	-	-	-	-	-	EXTCLKE N			
Default	00h	0	0	0	0	0	0	0	0			

D0 : EXTCLKEN

It is the clock input enabling register from EXTCLK_IN.

0 : EXTCLK_IN is invalid (default)

1 : EXTCLK_IN is effective

14. Register Map (Continued)

Description (Continued)

Privilege register

Registe	r Name				CTLP HP VREC A					
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0	
30h	R/W	HPCTLPOI NTA7	HPCTLPOI NTA6	HPCTLPOI NTA5	HPCTLPOI NTA4	HPCTLPOI NTA3	HPCTLPOI NTA2	HPCTLPOI NTA1	HPCTLPOI NTA0	
Default	66h	0	1	1	0	0	1	1	0	

D7-D0 : High Power Control Point A(0-255)

The target value of VRECT voltage for the current less than 125mA at High Power mode is shown.

VRECT voltage is calculated below.

VRECT voltage = HPCTLPOINTA[7:0] / 255×20 V

*Initial value : 8.0 V

Registe	er Name				CTLP HF	VREC B			
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0
31h	R/W	HPCTLPOI NTB7	HPCTLPOI NTB6	HPCTLPOI NTB5	HPCTLPOI NTB4	HPCTLPOI NTB3	HPCTLPOI NTB2	HPCTLPOI NTB1	HPCTLPOI NTB0
Default	66h	0	1	1	0	0	1	1	0

D7-D0 : High Power Control Point B(0-255)

The target value of VRECT voltage for the current from 125mA to 420mA at High Power mode is shown. VRECT voltage is calculated below.

VRECT voltage = HPCTLPOINTB[7:0] / 255×20 V

*Initial value : 5.4 V

Registe	er Name				CTLP HF	VREC C			
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0
32h	R/W	HPCTLPOI NTC7	HPCTLPOI NTC6	HPCTLPOI NTC5	HPCTLPOI NTC4	HPCTLPOI NTC3	HPCTLPOI NTC2	HPCTLPOI NTC1	HPCTLPOI NTC0
Default	41h	0	1	0	0	0	0	0	1

D7-D0 : High Power Control Point C(0-255)

The target value of VRECT voltage for the current larger than 420mA at High Power mode is shown. VRECT voltage is calculated below.

VRECT voltage = HPCTLPOINTC[7:0] / 255×20 V

*Initial value : 5.1 V

14. Register Map (Continued)

Description (Continued)

Privilege register

Registe	er Name		CTLP KEY									
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0			
33h	R/W	-	-	-	-	-	-	-	CTLPKEY			
Default	00h	0	0	0	0	0	0	0	0			

D0:CTLPKEY

A setup of Control Point in the High Power mode is chosen as a default, or it can be changed by a register (Address 30h, 31h, 32h).

0: Register invalid (default)

1: Register effective

Registe	r Name		FUNCTION SET									
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0			
41h	R/W	-	-	-	-	-	-	SETRPWR	SETCE			
Default	00h	0	0	0	0	0	0	0	0			

D1:SETRPWR

It is a register which transmits the Received Power value set as RPWR [7:0] (Address 04h).

0:Normal operation (default)

1: The Received Power value set as RPWR [7:0] is transmit.

* This register is not cleared by itself.

D0:SETCE

It is a register which transmits the Control Error value set as CERR [7:0] (Address 03h).

0:Normal operation (default)

1: The Control Error value set as CERR [7:0] is transmit.

* This register is not cleared by itself.

14. Register Map (Continued)

Description (Continued)

Privilege register

Registe	r Name				POWER PA	RAMETER 2					
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0		
43h	R/W				KBĮ	7:0]					
Default	01h	0	0	0	0	0	0	0	1		
Registe	r Name		POWER PARAMETER 3								
Sub Address	R/W	D7	D7 D6 D5 D4 D3 D2 D1 D0								
44h	R/W				KC	[7:0]					
Default	0Fh	0	0	0	0	0	1	1	1		
Registe	er Name				POWER	OFFSET					
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0		
45h	R/W		OFFSET[7:0]								
Default	00h	0	0 0 0 0 0 0 0								

REGISTER 43h, 44h, 45h : Power Parameter

These are coefficients to correct the Received Power to be sent to a Tx.

43h, 44h : The default values are for 5V (SELHV = Open). Refer to Application Note for more detail.

45h : The value of offset which is defined at FOD pin can be read.

If other values are written in this register, the offset will be over written.

The Received Power can be adjusted also by pins FOD, FODL, and FODG. Refer to "3. Foreign Object Detection" in Functions section for more detail.

14. Register Map (Continued)

Description (Continued)

Privilege register

Registe	r Name				CON	FIG1			
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0
51h	R	PWRCLAS S1	PWRCLAS S0	MAXPWR5	MAXPWR4	MAXPWR3	MAXPWR2	MAXPWR1	MAXPWR0
Default	0Ah	0	0	0	0	1	0	1	0

D7-D6 : Power Class

It is a register which shows Power Class.

In WPC Version 1.1, it is set as "0".

D5-D0 : Maximum Power

It is a register which shows the maximum power supplied to the output of the rectifier which a secondary side expects.

The maximum power is calculated as follows.

Maximum Power = (MAXPWR[5:0] / 2)×10^{PWRCLASS[1:0]} W

By this IC, MAXPWR [5:0] is one of the two following values.

001010 : Maximum Power = 5W (default)

010100 : Maximum Power = 10W (High Power mode)

Registe	r Name		CONFIG 3								
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0		
53h	R/W	-	-	-	-	-	COUNT2	COUNT1	COUNT0		
Default	00h	0	0	0	0	0	0	0	0		

D2-D0 : Count

:

It is a register which shows the number of the Optional packets (Power Control Hold-off time) to transmit in the Identification & configuration phase.

Before Identification packet transmission, when numerical values other than "000" are set to this register, the Power Control Hold-off time packet to transmit will be the number of times to set up.

- 000 : Optional packet does not transmit. (default)
- 001 : Power Control Hold-off time packet is transmitted once.
- 010 : Power Control Hold-off time packet is transmitted twice.
- 111 : Power Control Hold-off time packet is transmitted 7 times.

*The Power Control Hold-off time value to transmit is fixed as 05h.

14. Register Map (Continued)

Description (Continued)

Privilege register

Registe	r Name		CONFIG 4						
Sub Address	R/W	D7	D7 D6 D5 D4 D3 D2 D1						D0
54h	R/W		WI	NDOWSIZE[4	1:0]		WIN	DOWOFFSET	[[2:0]
Default	84h	1	1 0 0 0 0 1 0						

D7-D3 : Window Size

It is a register showing the section which takes the average of Received Power.

00000 : 0ms 00001 : 4ms 00010 : 8ms : : 10000 : 64ms (default) : : 11110 : 120ms 11111 : 124ms

D2-D0 : Window Offset

It is a register showing the interval of the section and the Received Power packet which take the average of Received Power.

000 : 0ms 001 : 4ms 010 : 8ms : : 100 : 16ms (default) : : 110 : 24ms 111 : 28ms

14. Register Map (Continued)

Description (Continued)

Privilege register

Registe	er Name		OPTREQ									
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0			
60h	W	-	-	-	-	-	-	-	OPTREQ			
Default	00h	0	0	0	0	0	0	0	0			

D0 : OPTREQ

It is a request to send the Optional packet (Address 61h, 62 h, 63 h, 64 h, 65 h, and 66 h) to transmit in the Power Transfer phase.

0 : Optional packet is not transmitted. (default)

1 : Optional packet is transmitted.

*This register is cleared by itself.

Registe	r Name				OPT	CNT			
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0
61h	R/W	-	-	-	OPTCNT4	OPTCNT3	OPTCNT2	OPTCNT1	OPTCNT0
Default	84h	0	0	0	0	0	0	1	1

D4-D0 : OPTCNT

It is a register showing the size of the Optional packet to transmit in the Power Transfer phase. Please set up message size +2 of a packet.

00000 : Don't set up.

00001 : Don't set up.

00010 : Don't set up.

:

- 00011 : Message size = 1 (default)
- 00100 : Message size = 2

:

- 11110 : Message size = 28
- 11111 : Message size = 29

14. Register Map (Continued)

Description (Continued)

Privilege register

Registe	r Name		OPTADR									
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0			
62h	R/W				OPTAI	DR[7:0]						
Default	06h	0	0	0	0	0	1	1	0			

D7-D0 : OPTADR

It is a register showing the header of the Optional packet to transmit in a Power Transfer phase.

Registe	er Name				OPTC	DATA1				
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0	
63h	R/W				OPTDA ⁻	TA1[7:0]				
Default	00h	0	0	0	0	0	0	0	0	
Registe	r Name				OPTC	DATA2				
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0	
64h	R/W				OPTDA ⁻	TA2[7:0]				
Default	00h	0	0	0	0	0	0	0	0	
Registe	er Name				OPTC	DATA3				
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0	
65h	R/W				OPTDA	TA3[7:0]				
Default	00h	0	0	0	0	0	0	0	0	
Registe	er Name				OPTE	DATA4				
Sub Address	R/W	D7	D7 D6 D5 D4 D3 D2 D1 D0							
66h	R/W				OPTDA	TA4[7:0]				
Default	00h	0	0	0	0	0	0	0	0	

REGISTER 63h, 64h, 65h, 66h : OPTDATA

It is a register showing the message of the Optional packet to transmit in a Power Transfer phase.

14. Register Map (Continued)

Description (Continued)

Privilege register

Registe	r Name		OPTDATTX									
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0			
51h	R	-	-	-	-	OPT4TXW AIT	OPT3TXW AIT	OPT2TXW AIT	OPT1TXW AIT			
Default	0Ah	0	0	0	0	0	0	0	0			

D3-D0 : OPTDATTX

It is a register showing the transmitting state of the message of the Optional packet to transmit in a Power Transfer phase.

0 : Transmission is completed. (default)

1 : Transmission is not completed.

*Please do not write data in OPTDATA1 [7:0] at the time of OPT1TXWAIT = 1.

*Please do not write data in OPTDATA2 [7:0] at the time of OPT2TXWAIT = 1.

*Please do not write data in OPTDATA3 [7:0] at the time of OPT3TXWAIT = 1.

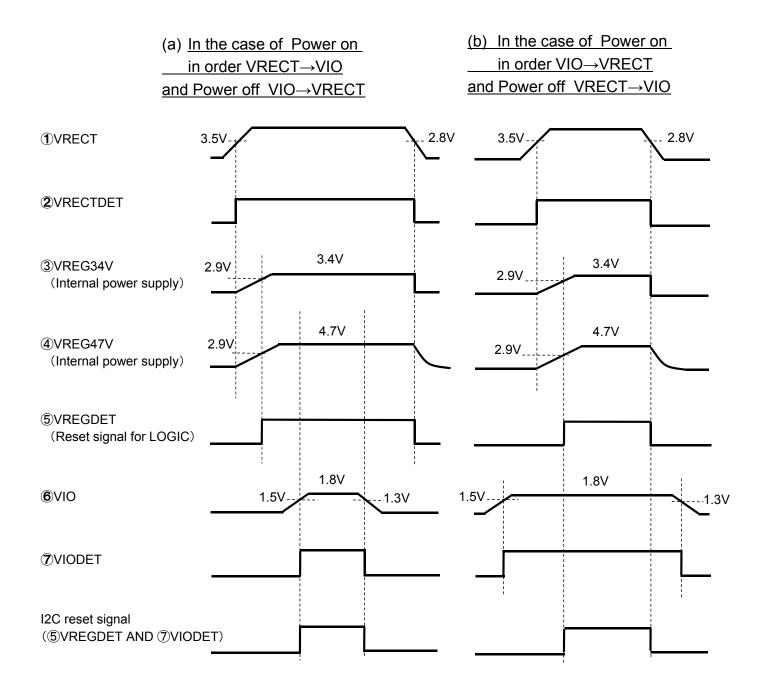
*Please do not write data in OPTDATA4 [7:0] at the time of OPT4TXWAIT = 1.

Registe	r Name		OPTREQ									
Sub Address	R/W	D7	D6	D5	D4	D3	D2	D1	D0			
71h	R/W	MAJORVE R3	MAJORVE R2	MAJORVE R1	MAJORVE R0	MINORVE R3	MINORVE R2	MINORVE R1	MINORVE R0			
Default	00h	0	0	0	1	0	0	0	1			

D7-D4 : MAJOR VER[3:0]

Major Version of Volume I of the System Description Wireless Power Transfer of the WPC standard to which this IC corresponds is shown.

0001 : Major Version (default)


D3-D0 : MINOR VER[3:0]

Minor Version of Volume I of the System Description Wireless Power Transfer of the WPC standard to which this IC corresponds is shown.

0001 : Minor Version (default)

15. Power supply sequence

EVALUATION RESULTS

Evaluation Circuit Diagram (5W)

Conditions :

EXT (B3) : 5V input

FCCNT (C5): Pulled down with a 100k Ω resistor for section 3, and connected to REG34V for other evaluations. FULLCH (E5) : Voltage swept for section 3, and connected to GND for other evaluations. SELHV (G2) : Opened

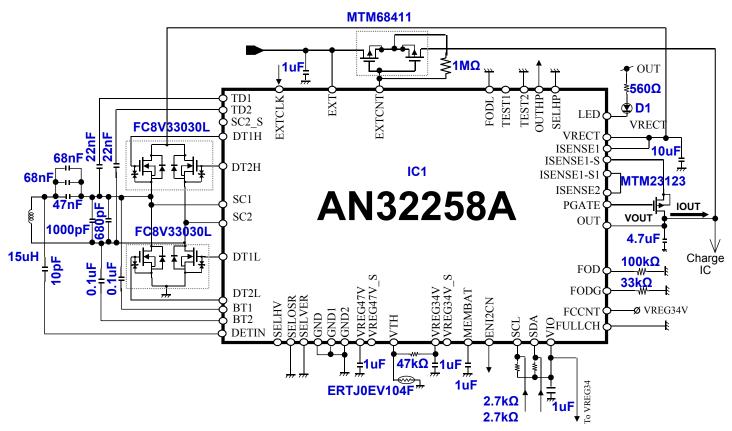
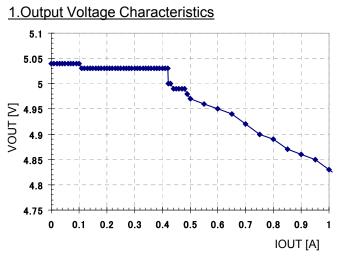
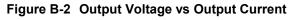




Figure B-1. AN32258A Evaluation Circuit

3. Full-Charge Characteristics

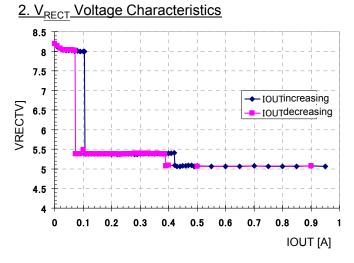
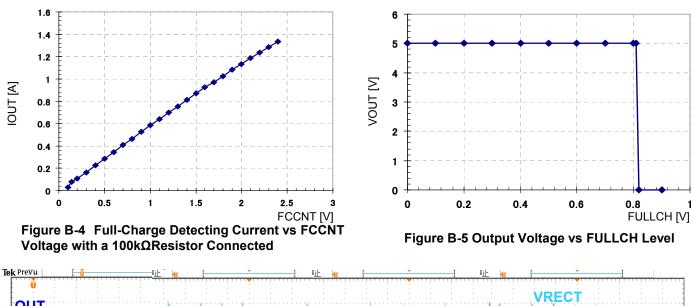
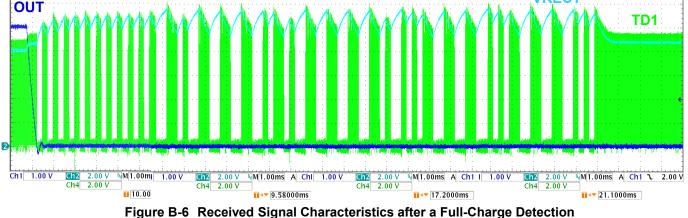




Figure B-3 VRECT Voltage vs Output Current

*After the output voltage becomes zero, an End Power Transfer Packet is sent.

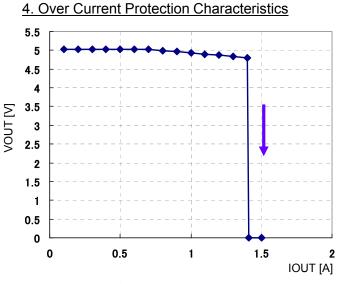
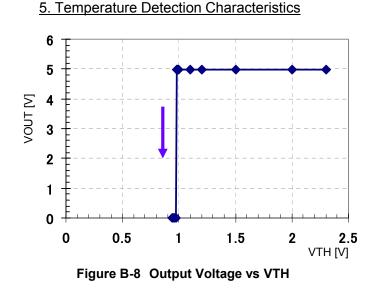
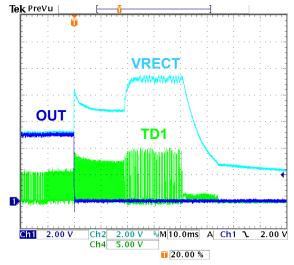
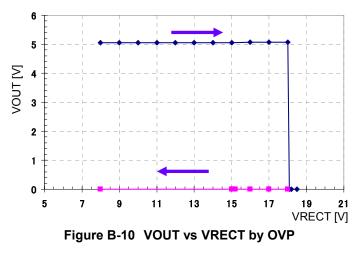
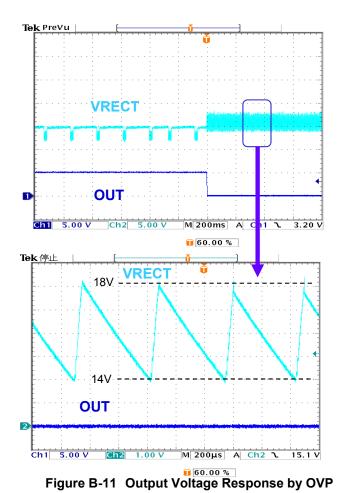
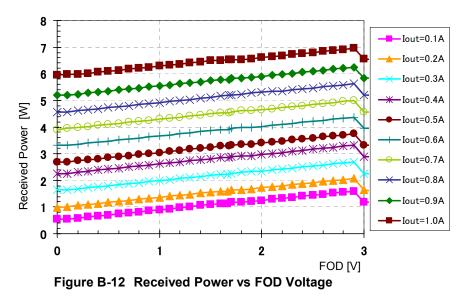




Figure B-7 VOUT vs IOUT





*Conditions : IOUT =500mA The power transmission from Tx stops due to temperature detection (VTH).



7. Foreign Object Detection Characteristics

*Received Power = (RPWR[7:0] / 128) × (Maximum Power / 2) × 10Power Class W

8. External Power Supply Switch Characteristics

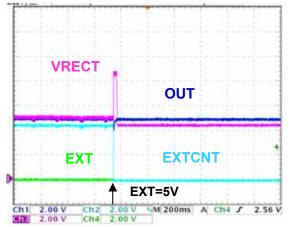


Figure B-13 Voltage when an External Power is Inputted during Normal Wireless Power Transmission *Condition : IOUT=500mA

9. Start-up Characteristics

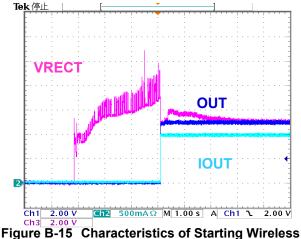
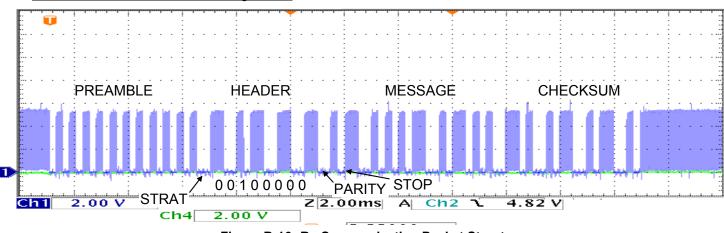



Figure B-15 Characteristics of Starting Wireless Power Transmission

*Condition : IOUT=500mA

10. Communication Packet Configuration

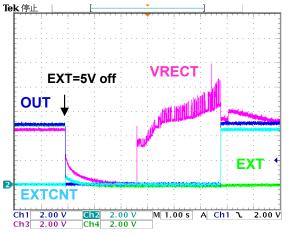
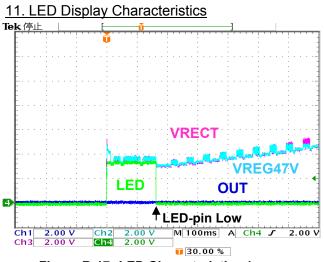
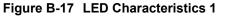




Figure B-14 Normal Power Transmission Resumes after the External Power Turns Off. *Condition : IOUT=500mA

Panasonic

TYPICAL CHARACTERISTICS (Continued)

*Condition : LED is pulled up to VREG34V first

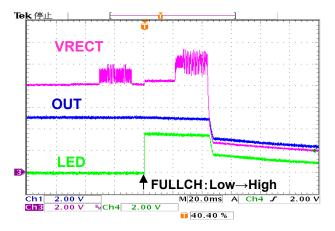


Figure B-19 LED Turned off by a Full Charge *FULLCH detects a full-charge, and LED

turns off when the output goes down.

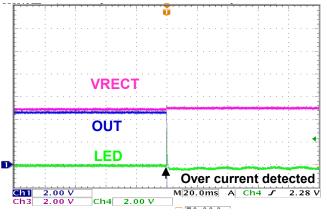
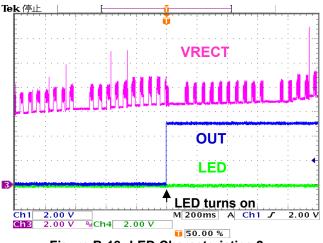
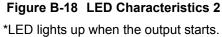
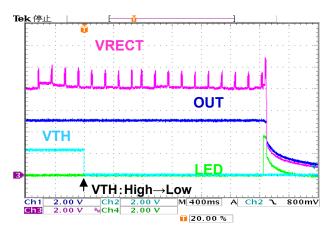
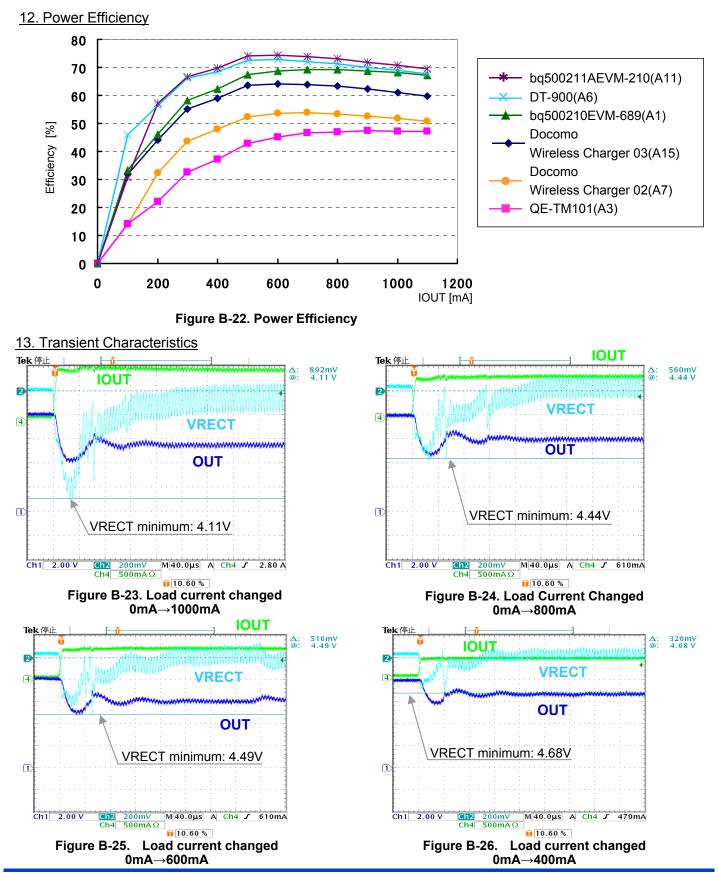




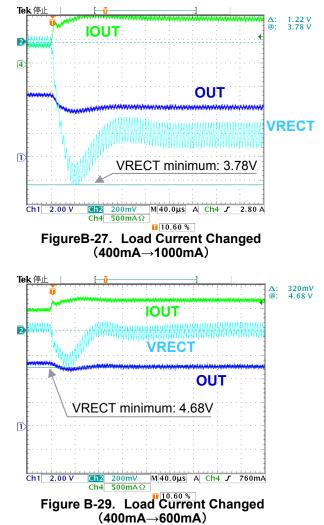
Figure B-21 LED Turned off by an over current After an over current is detected, LED turns off when the output goes down.

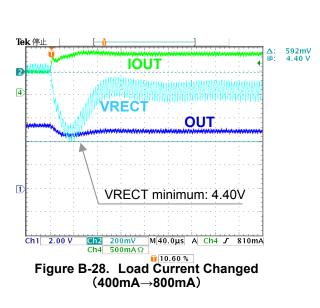


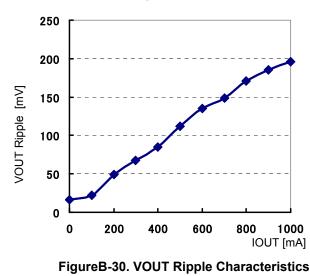

Figure B-20 LED Turned off by an over temperature

*VTH detects an over temperature, and LED turns off when the output goes down.

Panasonic


AN32258A


TYPICAL CHARACTERISTICS (Continued)


Established : 2014-01-15 Revised : ####-##-##

13. Transient Characteristics (Continued)

14. VOUT Ripple Voltage

Established : 2014-01-15 Revised : ####-##-##

Evaluation Circuit Diagram (High-Power)

Conditions :

FCCNT (C5):Pulled down with a 100k Ω resistor for section 17, and connected to REG34V for other evaluations. FULLCH (E5): Voltage swept for section 17, and connected to GND for other evaluations.

SELHV (G2): Opened

SELHP(F3): VREG34V (high-power mode)

SELOSR(F4): VREG34V (external sense resistor)

Coil (L1): 15.7uH

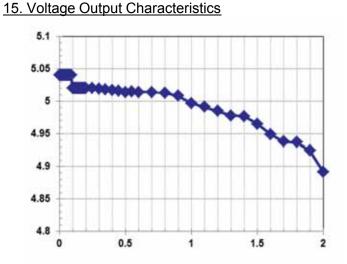

Tx: NN32251A (Type A6 with 3 coils), or varied for section 20

Figure C-1. AN32258 Evaluation Circuit

TYPICAL CHARACTERISTICS

17. Full-Charge Characteristics

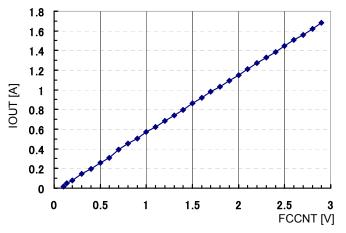
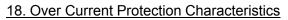
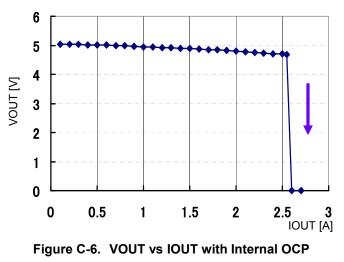




Figure C-4. Full-Charge Detecting Current vs FCCNT

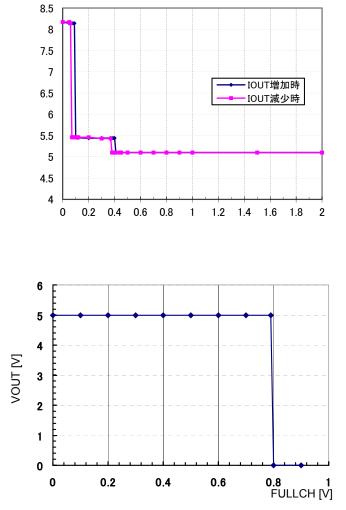
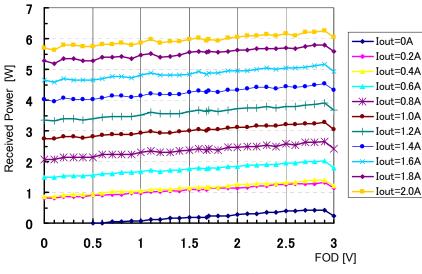
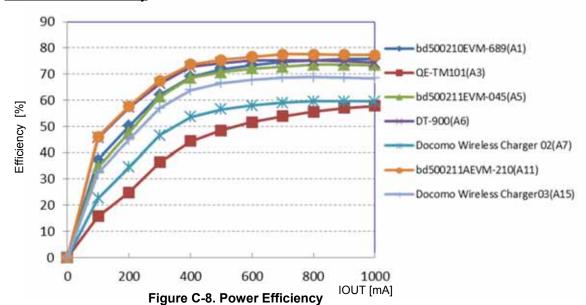
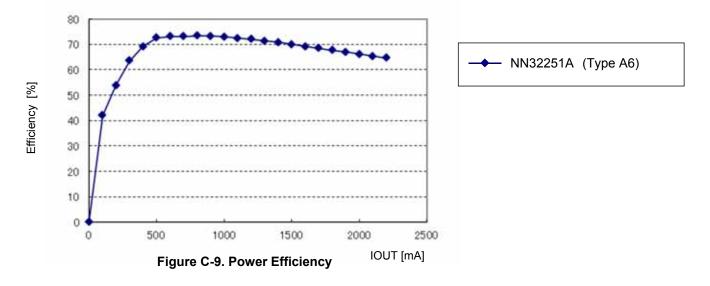



Figure C-5. Output Voltage vs FULLCH Level

Panasonic


TYPICAL CHARACTERISTICS (Continued)

19. Foreign Object Detection Characteristics


※ Received Power = (RPWR[7:0] / 128) × (Maximum Power / 2) × 10Power Class W

20-1. Power Efficiency

20-2. Power Efficiency with NN32251A

21. Transient Characteristics with NN32251A Type A6

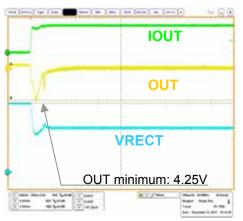
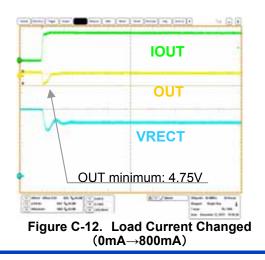
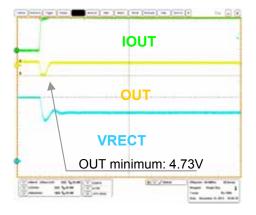
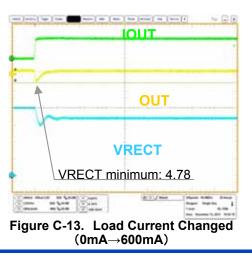
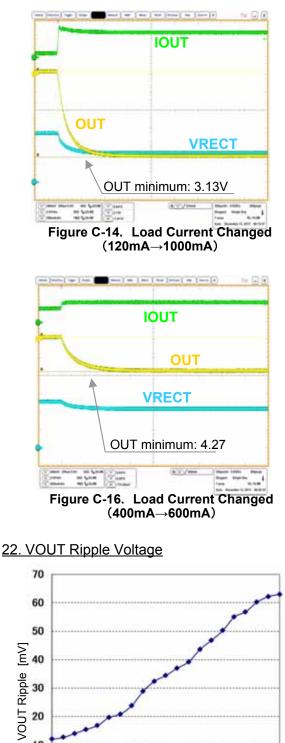
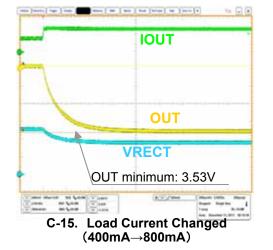



Figure C-10. Load Current Changed (0mA \rightarrow 1500mA)


Figure C-11. Load Current Changed (0mA \rightarrow 1000mA)



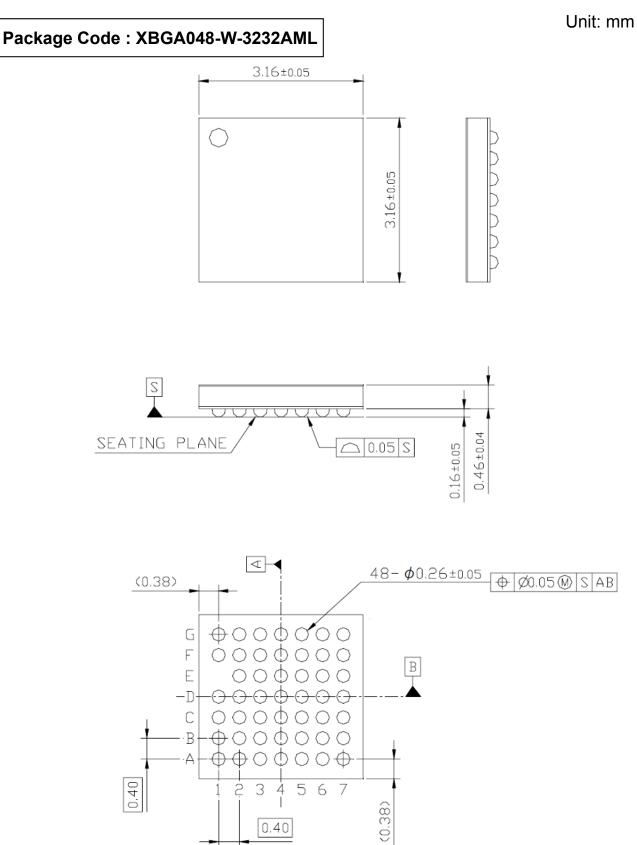
21. Transient Characteristics with NN32251A Type A6 (Continued)

1000

1500

2000 IOUT [mA]

500


10

0

0

Package Information

Panasonic

IMPORTANT NOTICE

- 1. When using the IC for new models, verify the safety including the long-term reliability for each product.
- 2. When the application system is designed by using this IC, please confirm the notes in this book.
- Please read the notes to descriptions and the usage notes in the book.
- 3. This IC is intended to be used for general electronic equipment.

Consult our sales staff in advance for information on the following applications: Special applications in which exceptional quality and reliability are required, or if the failure or malfunction of this IC may directly jeopardize life or harm the human body. Any applications other than the standard applications intended.

- (1) Space appliance (such as artificial satellite, and rocket)
- (2) Traffic control equipment (such as for automotive, airplane, train, and ship)
- (3) Medical equipment for life support
- (4) Submarine transponder
- (5) Control equipment for power plant
- (6) Disaster prevention and security device
- (7) Weapon
- (8) Others : Applications of which reliability equivalent to (1) to (7) is required

Our company shall not be held responsible for any damage incurred as a result of or in connection with the IC being used for any special application, unless our company agrees to the use of such special application.

- However, for the IC which we designate as products for automotive use, it is possible to be used for automotive.
- 4. This IC is neither designed nor intended for use in automotive applications or environments unless the IC is designated by our company to be used in automotive applications.

Our company shall not be held responsible for any damage incurred by customers or any third party as a result of or in connection with the IC being used in automotive application, unless our company agrees to such application in this book.

- 5. Please use this IC in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Our company shall not be held responsible for any damage incurred as a result of our IC being used by our customers, not complying with the applicable laws and regulations.
- 6. Pay attention to the direction of the IC. When mounting it in the wrong direction onto the PCB (printed-circuit-board), it might be damaged.
- 7. Pay attention in the PCB (printed-circuit-board) pattern layout in order to prevent damage due to short circuit between pins. In addition, refer to the Pin Description for the pin configuration.
- 8. Perform visual inspection on the PCB before applying power, otherwise damage might happen due to problems such as solder-bridge between the pins of the IC. Also, perform full technical verification on the assembly quality, because the same damage possibly can happen due to conductive substances, such as solder ball, that adhere to the IC during transportation.
- 9. Take notice in the use of this IC that it might be damaged when an abnormal state occurs such as output pin-VCC short (Power supply fault), output pin-GND short (Ground fault), or output-to-output-pin short (load short). Safety measures such as installation of fuses are recommended because the extent of the above-mentioned damage will depend on the current capability of the power supply.
- 10. The protection circuit is for maintaining safety against abnormal operation. Therefore, the protection circuit should not work during normal operation.

Especially for the thermal protection circuit, if the area of safe operation or the absolute maximum rating is momentarily exceeded due to output pin to VCC short (Power supply fault), or output pin to GND short (Ground fault), the IC might be damaged before the thermal protection circuit could operate.

- 11. Unless specified in the product specifications, make sure that negative voltage or excessive voltage are not applied to the pins because the IC might be damaged, which could happen due to negative voltage or excessive voltage generated during the ON and OFF timing when the inductive load of a motor coil or actuator coils of optical pick-up is being driven.
- 12. Verify the risks which might be caused by the malfunctions of external components.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book. Consult our sales staff in advance for information on the following applications:

• Special applications (such as for airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.

It is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application, unless our company agrees to your using the products in this book for any special application.

- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.

(7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20100202