
a

ADSP-BF51x Blackfin® Processor
Hardware Reference

(Includes ADSP-BF512, ADSP-BF514,
ADSP-BF516, ADSP-BF518)

Revision 1.2, February 2013

Part Number
82-100109-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2013 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, CrossCore, EngineerZone, EZ-KIT
Lite, and VisualDSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS
PREFACE

Purpose of This Manual ... lxi

Intended Audience ... lxi

Manual Contents .. lxii

What’s New in This Manual .. lxvi

Technical Support .. lxvii

Supported Processors ... lxviii

Product Information ... lxviii

Analog Devices Web Site ... lxix

EngineerZone .. lxix

Notation Conventions .. lxx

Register Diagram Conventions .. lxxi

INTRODUCTION

Peripherals .. 1-1

Memory Architecture .. 1-3

Internal Memory ... 1-5

External Memory .. 1-5
ADSP-BF51x Blackfin Processor Hardware Reference iii

Contents
I/O Memory Space .. 1-5

One-Time-Programmable (OTP) Memory 1-6

DMA Support .. 1-7

External Bus Interface Unit ... 1-8

SDRAM Controller ... 1-8

Asynchronous Controller .. 1-9

General-Purpose I/O (GPIO) .. 1-9

Two-Wire Interface ... 1-10

Ethernet MAC .. 1-11

IEEE 1588 Support .. 1-12

RSI Interface .. 1-13

General-Purpose (GP) Counter ... 1-13

3-Phase PWM Unit .. 1-14

Parallel Peripheral Interface ... 1-15

SPORT Controllers .. 1-17

Serial Peripheral Interface (SPI) Ports .. 1-19

Timers ... 1-19

UART Ports ... 1-20

Security .. 1-21

Real-Time Clock .. 1-22

Watchdog Timer ... 1-23

Clock Signals .. 1-24
iv ADSP-BF51x Blackfin Processor Hardware Reference

Contents
Dynamic Power Management .. 1-24

Full-On Mode (Maximum Performance) 1-24

Active Mode (Moderate Power Savings) 1-25

Sleep Mode (High Power Savings) .. 1-25

Deep Sleep Mode (Maximum Power Savings) 1-25

Hibernate State ... 1-26

Instruction Set Description ... 1-26

Development Tools ... 1-27

MEMORY

Memory Architecture .. 2-1

L1 Instruction SRAM ... 2-2

L1 Data SRAM ... 2-3

L1 Data Cache .. 2-4

Boot ROM ... 2-4

External Memory .. 2-5

Processor-Specific MMRs .. 2-5

DMEM_CONTROL Register ... 2-6

DTEST_COMMAND Register ... 2-6

ONE-TIME PROGRAMMABLE MEMORY

OTP Memory Overview .. 3-2

OTP Memory Map ... 3-3

Error Correction ... 3-7

Error Correction Policy .. 3-8
ADSP-BF51x Blackfin Processor Hardware Reference v

Contents
OTP Access .. 3-10

OTP Timing Parameters ... 3-11

OTP_TIMING Register ... 3-14

Callable ROM Functions for OTP ACCESS 3-14

Initializing OTP ... 3-14

bfrom_OtpCommand ... 3-15

Programming and Reading OTP .. 3-17

bfrom_OtpRead ... 3-17

bfrom_OtpWrite .. 3-18

Error Codes .. 3-22

Write-Protecting OTP Memory ... 3-24

Accessing Private OTP Memory .. 3-26

OTP Programming Examples .. 3-26

CHIP BUS HIERARCHY

Chip Bus Hierarchy Overview ... 4-1

Interface Overview ... 4-3

Internal Clocks ... 4-4

Core Bus Overview ... 4-4

Peripheral Access Bus (PAB) .. 4-6

PAB Arbitration ... 4-6

PAB Agents (Masters, Slaves) .. 4-6

PAB Performance .. 4-7
vi ADSP-BF51x Blackfin Processor Hardware Reference

Contents
DMA Access Bus (DAB), DMA Core Bus (DCB),
DMA External Bus (DEB) .. 4-8

DAB, DCB, and DEB Arbitration 4-8

DAB Bus Agents (Masters) .. 4-9

DAB, DCB, and DEB Performance 4-10

External Access Bus (EAB) ... 4-11

Arbitration of the External Bus .. 4-11

DEB/EAB Performance ... 4-11

SYSTEM INTERRUPTS

Specific Information for the ADSP-BF51x 5-1

Overview .. 5-2

Features ... 5-2

Description of Operation .. 5-2

Events and Sequencing .. 5-2

System Peripheral Interrupts .. 5-4

Programming Model ... 5-7

System Interrupt Initialization ... 5-8

System Interrupt Processing Summary 5-8

System Interrupt Controller Registers .. 5-10

System Interrupt Assignment (SIC_IAR) Register 5-11

System Interrupt Mask (SIC_IMASK) Register 5-12

System Interrupt Status (SIC_ISR) Register 5-12

System Interrupt Wakeup-Enable (SIC_IWR) Register 5-12
ADSP-BF51x Blackfin Processor Hardware Reference vii

Contents
Programming Examples .. 5-13

Clearing Interrupt Requests ... 5-13

Unique Information for the ADSP-BF51x Processor 5-16

Interfaces .. 5-16

System Peripheral Interrupts .. 5-19

DIRECT MEMORY ACCESS

Specific Information for the ADSP-BF51x 6-1

Overview and Features .. 6-2

DMA Controller Overview ... 6-4

External Interfaces .. 6-4

Internal Interfaces ... 6-4

Peripheral DMA .. 6-5

Memory DMA .. 6-6

Handshaked Memory DMA (HMDMA) Mode 6-8

Modes of Operation ... 6-9

Register-Based DMA Operation .. 6-9

Stop Mode ... 6-11

Autobuffer Mode .. 6-11

Two-Dimensional DMA Operation 6-11

Examples of Two-Dimensional DMA 6-12

Descriptor-Based DMA Operation .. 6-13

Descriptor List Mode .. 6-14

Descriptor Array Mode ... 6-15
viii ADSP-BF51x Blackfin Processor Hardware Reference

Contents
Variable Descriptor Size .. 6-15

Mixing Flow Modes .. 6-16

Functional Description ... 6-17

DMA Operation Flow ... 6-17

DMA Startup .. 6-17

DMA Refresh ... 6-22

Work Unit Transitions .. 6-24

DMA Transmit and MDMA Source 6-25

DMA Receive ... 6-26

Stopping DMA Transfers ... 6-28

DMA Errors (Aborts) .. 6-29

DMA Control Commands ... 6-31

Restrictions ... 6-34

Transmit Restart or Finish ... 6-34

Receive Restart or Finish ... 6-35

Handshaked Memory DMA Operation 6-36

Pipelining DMA Requests ... 6-37

HMDMA Interrupts ... 6-40

DMA Performance .. 6-40

DMA Throughput .. 6-42

Memory DMA Timing Details .. 6-44

Static Channel Prioritization ... 6-44

Temporary DMA Urgency ... 6-45
ADSP-BF51x Blackfin Processor Hardware Reference ix

Contents
Memory DMA Priority and Scheduling 6-46

Traffic Control ... 6-48

Programming Model ... 6-50

Synchronization of Software and DMA 6-50

Single-Buffer DMA Transfers .. 6-53

Continuous Transfers Using Autobuffering 6-53

Descriptor Structures .. 6-55

Descriptor Queue Management .. 6-56

Descriptor Queue Using Interrupts on Every Descriptor 6-57

Descriptor Queue Using Minimal Interrupts 6-58

Software Triggered Descriptor Fetches 6-60

DMA Registers ... 6-62

DMA Channel Registers .. 6-63

DMA Peripheral Map Registers
(DMAx_PERIPHERAL_MAP/
MDMA_yy_PERIPHERAL_MAP) 6-66

DMA Configuration Registers
(DMAx_CONFIG/MDMA_yy_CONFIG) 6-67

DMA Interrupt Status Registers
(DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS) 6-71

DMA Start Address Registers
(DMAx_START_ADDR/MDMA_yy_START_ADDR) . 6-74

DMA Current Address Registers
(DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR) ... 6-74

DMA Inner Loop Count Registers
(DMAx_X_COUNT/MDMA_yy_X_COUNT) 6-75
x ADSP-BF51x Blackfin Processor Hardware Reference

Contents
DMA Current Inner Loop Count Registers
(DMAx_CURR_X_COUNT
/MDMA_yy_CURR_X_COUNT) 6-76

DMA Inner Loop Address Increment Registers
(DMAx_X_MODIFY/MDMA_yy_X_MODIFY) 6-77

DMA Outer Loop Count Registers
(DMAx_Y_COUNT/MDMA_yy_Y_COUNT) 6-78

DMA Current Outer Loop Count Registers
(DMAx_CURR_Y_COUNT/
MDMA_yy_CURR_Y_COUNT) 6-78

DMA Outer Loop Address Increment Registers
(DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY) 6-79

DMA Next Descriptor Pointer Registers
(DMAx_NEXT_DESC_PTR/
MDMA_yy_NEXT_DESC_PTR) 6-80

DMA Current Descriptor Pointer Registers
(DMAx_CURR_DESC_PTR/
MDMA_yy_CURR_DESC_PTR) 6-81

HMDMA Registers ... 6-82

Handshake MDMA Control Registers
(HMDMAx_CONTROL) .. 6-82

Handshake MDMA Initial Block Count Registers
(HMDMAx_BCINIT) ... 6-84

Handshake MDMA Current Block Count Registers
(HMDMAx_BCOUNT) .. 6-85

Handshake MDMA Current Edge Count Registers
(HMDMAx_ECOUNT) .. 6-86

Handshake MDMA Initial Edge Count Registers
(HMDMAx_ECINIT) ... 6-87
ADSP-BF51x Blackfin Processor Hardware Reference xi

Contents
Handshake MDMA Edge Count Urgent Registers
(HMDMAx_ECURGENT) ... 6-87

Handshake MDMA Edge Count Overflow Interrupt
Registers (HMDMAx_ECOVERFLOW) 6-88

DMA Traffic Control Registers
(DMA_TC_PER and DMA_TC_CNT) 6-88

DMA_TC_PER Register .. 6-89

DMA_TC_CNT Register ... 6-89

Programming Examples .. 6-91

Register-Based 2-D Memory DMA .. 6-91

Initializing Descriptors in Memory .. 6-94

Software-Triggered Descriptor Fetch Example 6-97

Handshaked Memory DMA Example 6-100

Unique Information for the ADSP-BF51x Processor 6-103

DMA Control Commands .. 6-103

Static Channel Prioritization ... 6-103

EXTERNAL BUS INTERFACE UNIT

EBIU Overview .. 7-1

Block Diagram .. 7-4

Internal Memory Interfaces ... 7-4

Registers ... 7-5

Shared and Multiplexed Pins ... 7-6

System Clock .. 7-7

Error Detection ... 7-7
xii ADSP-BF51x Blackfin Processor Hardware Reference

Contents
AMC Overview and Features ... 7-7

Features ... 7-8

Asynchronous Memory Interface .. 7-8

Asynchronous Memory Address Decode 7-9

AMC Pin Description ... 7-9

AMC Description of Operation ... 7-10

Avoiding Bus Contention .. 7-10

External Access Extension .. 7-11

AMC Functional Description .. 7-11

Programmable Timing Characteristics 7-11

Asynchronous Reads ... 7-12

Asynchronous Writes ... 7-13

Adding External Access Extension 7-15

Byte Enables .. 7-15

AMC Programming Model .. 7-17

AMC Registers .. 7-19

EBIU_AMGCTL Register ... 7-20

EBIU_AMBCTL0 and EBIU_AMBCTL1 Registers 7-20

AMC Programming Examples ... 7-23

SDC Overview and Features .. 7-24

Features ... 7-24

SDRAM Configurations Supported 7-25

SDRAM External Bank Size ... 7-26

SDC Address Mapping .. 7-26
ADSP-BF51x Blackfin Processor Hardware Reference xiii

Contents
Internal SDRAM Bank Select .. 7-28

Parallel Connection of SDRAMs ... 7-28

SDC Interface Overview ... 7-28

SDC Pin Description .. 7-29

SDRAM Performance ... 7-30

SDC Description of Operation ... 7-31

Definition of SDRAM Architecture Terms 7-31

Refresh ... 7-31

Row Activation ... 7-31

Column Read/Write ... 7-31

Row Precharge .. 7-31

Internal Bank ... 7-32

External Bank ... 7-32

Memory Size .. 7-32

Burst Length .. 7-32

Burst Type .. 7-32

CAS Latency .. 7-33

Data I/O Mask Function .. 7-33

SDRAM Commands .. 7-33

Mode Register Set (MRS) Command 7-33

Extended Mode Register Set (EMRS) Command 7-33

Bank Activate Command .. 7-33

Read/Write Command .. 7-34

Precharge/Precharge All Command 7-34
xiv ADSP-BF51x Blackfin Processor Hardware Reference

Contents
Auto-Refresh command ... 7-34

Enter Self-Refresh Mode ... 7-34

Exit Self-Refresh Mode .. 7-34

SDC Timing Specs .. 7-35

tMRD .. 7-35

tRAS .. 7-35

CL .. 7-36

tRCD ... 7-36

tRRD ... 7-36

tWR .. 7-37

tRP .. 7-37

tRC ... 7-37

tRFC ... 7-38

tXSR .. 7-38

tREF .. 7-38

tREFI ... 7-39

SDC Functional Description ... 7-39

SDC Operation ... 7-39

SDC Address Muxing .. 7-42

Multibank Operation .. 7-43

Core and DMA Arbitration ... 7-44

Changing System Clock During Runtime 7-45

Changing Power Management During Runtime 7-46
ADSP-BF51x Blackfin Processor Hardware Reference xv

Contents
Deep Sleep Mode .. 7-46

Hibernate State ... 7-46

SDC Commands ... 7-47

Mode Register Set Command .. 7-48

Extended Mode Register Set Command
(Mobile SDRAM) .. 7-49

Bank Activation Command ... 7-50

Read/Write Command .. 7-50

Partial Write ... 7-51

Single Precharge Command .. 7-52

Precharge All Command ... 7-52

Auto-Refresh Command ... 7-52

Self-Refresh Mode .. 7-53

Self-Refresh Entry Command 7-53

Self-Refresh Exit Command 7-53

No Operation Command .. 7-54

SDC SA10 Pin .. 7-55

SDC Programming Model .. 7-55

SDC Configuration .. 7-55

Example SDRAM System Block Diagrams 7-57

SDC Register Definitions ... 7-59

EBIU_SDRRC Register .. 7-60

EBIU_SDBCTL Register .. 7-62

Using SDRAMs With Systems Smaller Than 16M Byte 7-64
xvi ADSP-BF51x Blackfin Processor Hardware Reference

Contents
EBIU_SDGCTL Register .. 7-66

SDRAM Clock Enable (SCTLE) 7-66

CAS Latency (CL) .. 7-68

Partial Array Self Refresh (PASR) 7-69

Bank Activate Command Delay (TRAS) 7-69

Bank Precharge Delay (TRP) ... 7-70

RAS to CAS Delay (TRCD) .. 7-70

Write to Precharge Delay (TWR) 7-71

Power-Up Start Delay (PUPSD) .. 7-71

Power-Up Sequence Mode (PSM) 7-71

Power-Up Sequence Start Enable (PSSE) 7-72

Self-Refresh Setting (SRFS) ... 7-73

Enter Self-Refresh Mode .. 7-73

Exit Self-Refresh Mode .. 7-74

External Buffering Enabled (EBUFE) 7-74

Fast Back-to-Back Read to Write (FBBRW) 7-75

Extended Mode Register Enabled (EMREN) 7-75

Temperature Compensated Self-Refresh (TCSR) 7-75

EBIU_SDSTAT Register .. 7-76

SDC Programming Examples .. 7-77
ADSP-BF51x Blackfin Processor Hardware Reference xvii

Contents
DYNAMIC POWER MANAGEMENT

Phase Locked Loop and Clock Control ... 8-1

PLL Overview ... 8-2

PLL Clock Multiplier Ratios ... 8-3

Core Clock/System Clock Ratio Control 8-5

Dynamic Power Management Controller 8-7

Operating Modes .. 8-7

Dynamic Power Management Controller States 8-8

Full-On Mode .. 8-8

Active Mode ... 8-8

Sleep Mode .. 8-9

Deep Sleep Mode ... 8-9

Hibernate State ... 8-10

Operating Mode Transitions .. 8-10

Programming Operating Mode Transitions 8-13

Dynamic Supply Voltage Control .. 8-15

Power Supply Management ... 8-15

Changing Voltage ... 8-16

Powering Down the Core (Hibernate State) 8-17

PLL and VR Registers ... 8-19

PLL_DIV Register .. 8-21

PLL_CTL Register .. 8-21

PLL_STAT Register .. 8-22
xviii ADSP-BF51x Blackfin Processor Hardware Reference

Contents
PLL_LOCKCNT Register ... 8-22

VR_CTL Register .. 8-23

System Control ROM Function ... 8-24

Programming Model .. 8-26

Accessing the System Control ROM Function in C/C++ 8-26

Accessing the System Control ROM Function in Assembly 8-27

Programming Examples ... 8-30

Full-on Mode to Active Mode and Back 8-32

Transition to Sleep Mode or Deep Sleep Mode 8-33

Set Wakeups and Entering Hibernate State 8-35

Perform a System Reset or Soft-Reset 8-38

In Full-on Mode, Change VCO Frequency, Core Clock
Frequency, and System Clock Frequency 8-39

Changing Voltage Levels .. 8-42

GENERAL-PURPOSE PORTS

Overview .. 9-1

Features .. 9-2

Interface Overview .. 9-3

External Interface .. 9-4

Port F Structure .. 9-4

Port G Structure ... 9-5

Port H Structure ... 9-6

Input Tap Considerations .. 9-7
ADSP-BF51x Blackfin Processor Hardware Reference xix

Contents
PWM Unit Considerations ... 9-8

RSI Considerations ... 9-9

Internal Interfaces ... 9-10

SPI0 and Internal Flash Usage ... 9-10

GP Timer Interaction With Other Blocks 9-11

Buffered CLKIN (CLKBUF) ... 9-11

GP Counter .. 9-11

PPI ... 9-12

UART .. 9-12

SPORT .. 9-12

Performance/Throughput .. 9-13

Description of Operation .. 9-13

Operation ... 9-14

General-Purpose I/O Modules ... 9-14

GPIO Interrupt Processing .. 9-18

Programming Model ... 9-24

Memory-Mapped GPIO Registers ... 9-26

PORTx Hysteresis Control (PORTx_HYSTERESIS)
Register .. 9-26

Non-GPIO Drive Strength Control Register 9-28

Non-GPIO Hysteresis (NONGPIO_HYSTERESIS)
Register .. 9-29

Port Multiplexer Control Register (PORTF_MUX) 9-30

Port Multiplexer Control Register (PORTG_MUX) 9-31

Port Multiplexer Control Register (PORTH_MUX) 9-32
xx ADSP-BF51x Blackfin Processor Hardware Reference

Contents
Function Enable Registers (PORTx_FER) 9-32

GPIO Direction Registers (PORTxIO_DIR) 9-33

GPIO Input Enable Registers (PORTxIO_INEN) 9-33

GPIO Data Registers (PORTxIO) .. 9-34

GPIO Set Registers (PORTxIO_SET) 9-34

GPIO Clear Registers (PORTxIO_CLEAR) 9-35

GPIO Toggle Registers (PORTxIO_TOGGLE) 9-35

GPIO Polarity Registers (PORTxIO_POLAR) 9-36

Interrupt Sensitivity Registers (PORTxIO_EDGE) 9-36

GPIO Set on Both Edges Registers (PORTxIO_BOTH) 9-37

GPIO Mask Interrupt Registers (PORTxIO_MASKA/B) 9-37

GPIO Mask Interrupt Set Registers
(PORTxIO_MASKA/B_SET) ... 9-39

GPIO Mask Interrupt Clear Registers
(PORTxIO_MASKA/B_CLEAR) .. 9-41

GPIO Mask Interrupt Toggle Registers
(PORTxIO_MASKA/B_TOGGLE) 9-43

Programming Examples ... 9-44

GENERAL-PURPOSE TIMERS

Specific Information for the ADSP-BF51x 10-1

Overview .. 10-2

External Interface .. 10-4

Internal Interface ... 10-4
ADSP-BF51x Blackfin Processor Hardware Reference xxi

Contents
Description of Operation .. 10-5

Interrupt Processing .. 10-6

Illegal States .. 10-8

Modes of Operation ... 10-11

Pulse Width Modulation (PWM_OUT) Mode 10-11

Output Pad Disable .. 10-13

Single Pulse Generation .. 10-13

Pulse Width Modulation Waveform Generation 10-14

PULSE_HI Toggle Mode .. 10-16

Externally Clocked PWM_OUT 10-20

Using PWM_OUT Mode With the PPI 10-21

Stopping the Timer in PWM_OUT Mode 10-22

Pulse Width Count and Capture (WDTH_CAP) Mode 10-24

Autobaud Mode ... 10-32

External Event (EXT_CLK) Mode 10-33

Programming Model ... 10-34

Timer Registers .. 10-35

Timer Enable Register (TIMER_ENABLE) 10-36

Timer Disable Register (TIMER_DISABLE) 10-37

Timer Status Register (TIMER_STATUS) 10-38

Timer Configuration Register (TIMER_CONFIG) 10-39

Timer Counter Register (TIMER_COUNTER) 10-41

Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers 10-42

Summary .. 10-45
xxii ADSP-BF51x Blackfin Processor Hardware Reference

Contents
Programming Examples ... 10-48

Unique Information for the ADSP-BF51x Processor 10-57

Interface Overview .. 10-57

External Interface .. 10-57

CORE TIMER

Specific Information for the ADSP-BF51x 11-1

Overview and Features .. 11-2

Timer Overview .. 11-2

External Interfaces ... 11-3

Internal Interfaces ... 11-3

Description of Operation .. 11-3

Interrupt Processing .. 11-4

Core Timer Registers ... 11-4

Core Timer Control Register (TCNTL) 11-5

Core Timer Count Register (TCOUNT) 11-5

Core Timer Period Register (TPERIOD) 11-6

Core Timer Scale Register (TSCALE) 11-7

Programming Examples ... 11-7

Unique Information for the ADSP-BF51x Processor 11-9

WATCHDOG TIMER

Specific Information for the ADSP-BF51x 12-1

Overview and Features .. 12-2
ADSP-BF51x Blackfin Processor Hardware Reference xxiii

Contents
Interface Overview ... 12-3

External Interface .. 12-3

Internal Interface .. 12-3

Description of Operation .. 12-4

Register Definitions .. 12-5

Watchdog Count (WDOG_CNT) Register 12-6

Watchdog Status (WDOG_STAT) Register 12-6

Watchdog Control (WDOG_CTL) Register 12-7

Programming Examples .. 12-8

Unique Information for the ADSP-BF51x Processor 12-11

GENERAL-PURPOSE COUNTER

Specific Information for the ADSP-BF51x 13-1

Overview .. 13-2

Features .. 13-2

Interface Overview ... 13-3

Description of Operation .. 13-4

Quadrature Encoder Mode .. 13-5

Binary Encoder Mode ... 13-6

Up/Down Counter Mode .. 13-6

Direction Counter Mode ... 13-7

Timed Direction Mode ... 13-7

Functional Description ... 13-8

Input Noise Filtering (Debouncing) 13-8

Zero Marker (Push Button) Operation 13-9
xxiv ADSP-BF51x Blackfin Processor Hardware Reference

Contents
Boundary Comparison Modes .. 13-11

Control and Signaling Events ... 13-12

Illegal Gray/Binary Code Events 13-12

Up/Down Count Events .. 13-13

Zero-Count Events ... 13-13

Overflow Events .. 13-13

Boundary Match Events .. 13-14

Zero Marker Events ... 13-14

Capturing Timing Information .. 13-14

Capturing Time Interval Between
Successive Counter Events .. 13-15

Capturing Counter Interval and
CNT_COUNTER Read Timing 13-16

Programming Model ... 13-18

Registers ... 13-19

Counter Module Register Overview 13-19

Counter Configuration Register (CNT_CONFIG) 13-20

Counter Interrupt Mask Register (CNT_IMASK) 13-21

Counter Status Register (CNT_STATUS) 13-21

Counter Command Register (CNT_COMMAND) 13-22

Counter Debounce Register (CNT_DEBOUNCE) 13-24

Counter Count Value Register (CNT_COUNTER) 13-25

Counter Boundary Registers
(CNT_MIN and CNT_MAX) .. 13-26

Programming Examples ... 13-28
ADSP-BF51x Blackfin Processor Hardware Reference xxv

Contents
Unique Information for the ADSP-BF51x Processor 13-38

PWM CONTROLLER

Specific Information for the ADSP-BF51x 14-1

Overview .. 14-2

General Operation .. 14-8

Functional Description ... 14-10

Three-Phase PWM Timing Unit and Dead Time Control
Unit ... 14-11

PWM Switching Frequency (PWM_TM) Register 14-11

PWM Switching Dead Time (PWM_DT) Register 14-12

PWM Operating Mode (PWM_CTRL and PWM_STAT)
Registers .. 14-13

PWM Duty Cycle (PWM_CHA, PWM_CHB, and
PWM_CHC) Registers ... 14-15

Special Consideration for PWM Operation in
Over-Modulation ... 14-20

Three-Phase PWM Timing Unit Operation 14-23

Effective PWM Accuracy ... 14-23

Switched Reluctance Mode .. 14-25

Output Control Unit .. 14-25

Crossover Feature ... 14-25

Mode Bits (POLARITY and SRMODE) 14-26

Output Enable Function ... 14-26

Brushless DC Motor (Electronically Commutated Motor)
Control ... 14-27
xxvi ADSP-BF51x Blackfin Processor Hardware Reference

Contents
Gate Drive Unit .. 14-28

High-Frequency Chopping .. 14-29

PWM Polarity Control .. 14-31

Output Control Feature Precedence 14-32

Switched Reluctance (SR) Mode .. 14-32

PWM Sync Operation ... 14-35

Internal PWM SYNC Generation 14-36

External PWM SYNC Generation 14-36

PWM Shutdown and Interrupt Control Unit 14-37

PWM Registers ... 14-38

PWM Control (PWM_CTRL) Register 14-39

PWM Status (PWM_STAT) Register 14-41

PWM Period (PWM_TM) Register 14-42

PWM Dead Time (PWM_DT) Register 14-43

PWM Chopping Control (PWM_GATE) Register 14-43

PWM Channel A, B, C Duty Control
(PWM_CHA, PWM_CHB, PWM_CHC) Registers 14-44

PWM Crossover and Output Enable (PWM_SEG)
Register .. 14-46

PWM Sync Pulse Width Control (PWM_SYNCWT)
Register .. 14-48

PWM Channel AL, BL, CL Duty Control
(PWM_CHAL, PWM_CHBL, PWM_CHCL) Registers ... 14-48

PWM Low Side Invert (PWM_LSI) Register 14-50

PWM Simulation Status (PWM_STAT2) Register 14-51
ADSP-BF51x Blackfin Processor Hardware Reference xxvii

Contents
Unique Information for the ADSP-BF51x Processor 14-52

UART PORT CONTROLLERS

Specific Information for the ADSP-BF51x 15-1

Overview .. 15-2

Features .. 15-2

Interface Overview ... 15-3

External Interface .. 15-3

Internal Interface .. 15-4

Description of Operation .. 15-4

UART Transfer Protocol .. 15-5

UART Transmit Operation .. 15-6

UART Receive Operation .. 15-7

IrDA Transmit Operation .. 15-8

IrDA Receive Operation .. 15-9

Interrupt Processing .. 15-11

Bit Rate Generation .. 15-12

Autobaud Detection .. 15-13

Programming Model ... 15-15

Non-DMA Mode .. 15-15

DMA Mode .. 15-17

Mixing Modes ... 15-18

UART Registers .. 15-19

UART Line Control (UART_LCR) Register 15-21

UART Modem Control (UART_MCR) Register 15-23
xxviii ADSP-BF51x Blackfin Processor Hardware Reference

Contents
UART Line Status (UART_LSR) Register 15-24

UART Transmit Holding (UART_THR) Register 15-25

UART Receive Buffer (UART_RBR) Register 15-26

UART Interrupt Enable (UART_IER) Register 15-26

UART Interrupt Identification (UART_IIR) Register 15-28

UART Divisor Latch
(UART_DLL and UART_DLH) Registers 15-30

UART Scratch (UART_SCR) Register 15-31

UART Global Control (UART_GCTL) Register 15-31

Programming Examples ... 15-32

Unique Information for the ADSP-BF51x Processor 15-42

TWO-WIRE INTERFACE CONTROLLER

Specific Information for the ADSP-BF51x 16-1

Overview .. 16-2

Interface Overview .. 16-3

External Interface .. 16-4

Serial Clock Signal (SCL) .. 16-4

Serial Data Signal (SDA) ... 16-5

TWI Pins .. 16-5

Internal Interfaces ... 16-6

Description of Operation .. 16-7

TWI Transfer Protocols ... 16-7

Clock Generation and Synchronization 16-8

Bus Arbitration ... 16-9
ADSP-BF51x Blackfin Processor Hardware Reference xxix

Contents
Start and Stop Conditions ... 16-9

General Call Support .. 16-11

Fast Mode .. 16-11

Functional Description ... 16-12

General Setup ... 16-12

Slave Mode ... 16-12

Master Mode Clock Setup ... 16-13

Master Mode Transmit .. 16-14

Master Mode Receive .. 16-15

Repeated Start Condition ... 16-16

Transmit/Receive Repeated Start Sequence 16-16

Receive/Transmit Repeated Start Sequence 16-18

Clock Stretching ... 16-19

Clock Stretching During FIFO Underflow 16-19

Clock Stretching During FIFO Overflow 16-20

Clock Stretching During Repeated Start Condition 16-22

Programming Model ... 16-24

Register Descriptions .. 16-26

TWI CONTROL Register (TWI_CONTROL) 16-26

SCL Clock Divider Register (TWI_CLKDIV) 16-27

TWI Slave Mode Control Register (TWI_SLAVE_CTL) 16-28

TWI Slave Mode Address Register (TWI_SLAVE_ADDR) .. 16-30

TWI Slave Mode Status Register (TWI_SLAVE_STAT) 16-30

TWI Master Mode Control Register
(TWI_MASTER_CTL) ... 16-31
xxx ADSP-BF51x Blackfin Processor Hardware Reference

Contents
TWI Master Mode Address Register
(TWI_MASTER_ADDR) .. 16-34

TWI Master Mode Status Register
(TWI_MASTER_STAT) .. 16-35

TWI FIFO Control Register (TWI_FIFO_CTL) 16-38

TWI FIFO Status Register (TWI_FIFO_STAT) 16-40

TWI FIFO Status ... 16-40

TWI Interrupt Mask Register (TWI_INT_MASK) 16-41

TWI Interrupt Status Register (TWI_INT_STAT) 16-42

TWI FIFO Transmit Data Single Byte
Register (TWI_XMT_DATA8) ... 16-45

TWI FIFO Transmit Data Double Byte
Register (TWI_XMT_DATA16) 16-46

TWI FIFO Receive Data Single Byte
Register (TWI_RCV_DATA8) .. 16-47

TWI FIFO Receive Data Double Byte
Register (TWI_RCV_DATA16) .. 16-48

Programming Examples ... 16-49

Master Mode Setup ... 16-49

Slave Mode Setup .. 16-54

Electrical Specifications ... 16-61

Unique Information for the ADSP-BF51x Processor 16-61

SPI-COMPATIBLE PORT CONTROLLER

Specific Information for the ADSP-BF51x 17-1

Overview .. 17-2

Features .. 17-2
ADSP-BF51x Blackfin Processor Hardware Reference xxxi

Contents
Interface Overview ... 17-4

External Interface .. 17-4

SPI Clock Signal (SCK) .. 17-5

Master-Out, Slave-In (MOSI) Signal 17-5

Master-In, Slave-Out (MISO) Signal 17-5

SPI Slave Select Input Signal (SPISS) 17-6

SPI Slave Select Enable Output Signals 17-7

Slave Select Inputs .. 17-8

Use of FLS Bits in SPI_FLG for Multiple Slave SPI
Systems ... 17-8

Internal Interfaces ... 17-10

DMA Functionality .. 17-10

Description of Operation .. 17-11

SPI Transfer Protocols ... 17-12

SPI General Operation .. 17-14

Clock Signals .. 17-16

Interrupt Output .. 17-16

Functional Description ... 17-17

Master Mode Operation (Non-DMA) 17-17

Transfer Initiation From Master (Transfer Modes) 17-19

Slave Mode Operation (Non-DMA) 17-20

Slave Ready for a Transfer .. 17-21
xxxii ADSP-BF51x Blackfin Processor Hardware Reference

Contents
Programming Model ... 17-21

Beginning and Ending an SPI Transfer 17-21

Master Mode DMA Operation ... 17-24

Slave Mode DMA Operation ... 17-26

SPI Registers ... 17-34

SPI Baud Rate (SPI_BAUD) Register 17-35

SPI Control (SPI_CTL) Register .. 17-36

SPI Flag (SPI_FLG) Register .. 17-38

SPI Status (SPI_STAT) Register ... 17-40

Mode Fault Error (MODF) ... 17-41

Transmission Error (TXE) ... 17-42

Reception Error (RBSY) .. 17-42

Transmit Collision Error (TXCOL) 17-42

SPI Transmit Data Buffer (SPI_TDBR) Register 17-42

SPI Receive Data Buffer (SPI_RDBR) Register 17-43

SPI RDBR Shadow (SPI_SHADOW) Register 17-44

Programming Examples ... 17-44

Core-Generated Transfer .. 17-45

Initialization Sequence .. 17-45

Starting a Transfer ... 17-46

Post Transfer and Next Transfer 17-47

Stopping ... 17-48
ADSP-BF51x Blackfin Processor Hardware Reference xxxiii

Contents
DMA-Based Transfer ... 17-48

DMA Initialization Sequence .. 17-48

SPI Initialization Sequence ... 17-49

Starting a Transfer .. 17-51

Stopping a Transfer ... 17-51

Unique Information for the ADSP-BF51x Processor 17-53

SPI SERIAL FLASH

Memory Organization .. 18-5

Device Operation ... 18-5

Reset Mode .. 18-6

Status Register .. 18-8

Busy .. 18-9

Write Enable Latch (WEL) ... 18-9

Auto Address Increment (AAI) ... 18-10

Block-Protection (BP2, BP1, BP0) 18-10

Block-Protection Lock-Down (BPL) 18-10

Instructions ... 18-11

Read (20 MHz) .. 18-14

High-Speed-Read (25 MHz) ... 18-15

Byte-Program ... 18-16

Auto Address Increment (AAI) Word Program 18-17

End-of-Write Detection ... 18-18

Hardware End-of-Write Detection 18-18
xxxiv ADSP-BF51x Blackfin Processor Hardware Reference

Contents
Sector-Erase ... 18-21

32K Byte Block-Erase ... 18-22

64K Byte Block-Erase .. 18-23

Chip-Erase .. 18-24

Read-Status-Register (RDSR) .. 18-25

Write-Enable (WREN) .. 18-26

Write-Disable (WRDI) .. 18-27

Enable-Write-Status-Register (EWSR) 18-28

Write-Status-Register (WRSR) ... 18-29

Read-ID .. 18-30

JEDEC Read-ID ... 18-31

SPORT CONTROLLER

Specific Information for the ADSP-BF51x 19-1

Overview .. 19-2

Features ... 19-3

Interface Overview .. 19-4

SPORT Pin/Line Terminations .. 19-8

Description of Operation .. 19-9

SPORT Disable ... 19-9

Setting SPORT Modes .. 19-10

Stereo Serial Operation .. 19-10

Multichannel Operation .. 19-14

Multichannel Enable ... 19-17

Frame Syncs in Multichannel Mode 19-18
ADSP-BF51x Blackfin Processor Hardware Reference xxxv

Contents
The Multichannel Frame .. 19-19

Multichannel Frame Delay .. 19-20

Window Size .. 19-20

Window Offset ... 19-21

Other Multichannel Fields in SPORT_MCMC2 19-21

Channel Selection Register .. 19-22

Multichannel DMA Data Packing 19-23

Support for H.100 Standard Protocol 19-24

2× Clock Recovery Control ... 19-25

Functional Description ... 19-25

Clock and Frame Sync Frequencies 19-25

Maximum Clock Rate Restrictions 19-27

Word Length .. 19-27

Bit Order .. 19-27

Data Type ... 19-28

Companding ... 19-28

Clock Signal Options .. 19-29

Frame Sync Options .. 19-30

Framed Versus Unframed .. 19-30

Internal Versus External Frame Syncs 19-32

Active Low Versus Active High Frame Syncs 19-33

Sampling Edge for Data and Frame Syncs 19-33

Early Versus Late Frame Syncs (Normal Versus
Alternate Timing) .. 19-35

Data Independent Transmit Frame Sync 19-37
xxxvi ADSP-BF51x Blackfin Processor Hardware Reference

Contents
Moving Data Between SPORTs and Memory 19-38

SPORT RX, TX, and Error Interrupts 19-38

Peripheral Bus Errors ... 19-39

Timing Examples .. 19-39

SPORT Registers .. 19-45

Register Writes and Effective Latency 19-46

SPORT Transmit Configuration
(SPORT_TCR1 and SPORT_TCR2) Registers 19-47

SPORT Receive Configuration
(SPORT_RCR1 and SPORT_RCR2) Registers 19-52

Data Word Formats ... 19-56

SPORT Transmit Data (SPORT_TX) Register 19-57

SPORT Receive Data (SPORT_RX) Register 19-59

SPORT Status (SPORT_STAT) Register 19-61

SPORT Transmit and Receive Serial Clock Divider
(SPORT_TCLKDIV and SPORT_RCLKDIV) Registers ... 19-62

SPORT Transmit and Receive Frame Sync Divider
(SPORT_TFSDIV and SPORT_RFSDIV) Registers 19-63

SPORT Multichannel Configuration
(SPORT_MCMC1 and SPORT_MCMC2) Registers 19-64

SPORT Current Channel (SPORT_CHNL) Register 19-66

SPORT Multichannel Receive Selection
(SPORT_MRCSn) Registers ... 19-66

SPORT Multichannel Transmit Selection
(SPORT_MTCSn) Registers ... 19-67
ADSP-BF51x Blackfin Processor Hardware Reference xxxvii

Contents
Programming Examples .. 19-69

SPORT Initialization Sequence ... 19-69

DMA Initialization Sequence .. 19-71

Interrupt Servicing .. 19-73

Starting a Transfer ... 19-74

Unique Information for the ADSP-BF51x Processor 19-75

PARALLEL PERIPHERAL INTERFACE

Specific Information for the ADSP-BF51x 20-1

Overview .. 20-2

Features .. 20-2

Interface Overview ... 20-3

Description of Operation .. 20-4

Functional Description ... 20-5

ITU-R 656 Modes .. 20-5

ITU-R 656 Background .. 20-5

ITU-R 656 Input Modes .. 20-9

Entire Field .. 20-9

Active Video Only .. 20-10

Vertical Blanking Interval (VBI) Only 20-10

ITU-R 656 Output Mode ... 20-11

Frame Synchronization in ITU-R 656 Modes 20-11
xxxviii ADSP-BF51x Blackfin Processor Hardware Reference

Contents
General-Purpose PPI Modes .. 20-12

Data Input (RX) Modes .. 20-14

No Frame Syncs .. 20-15

1, 2, or 3 External Frame Syncs 20-15

2 or 3 Internal Frame Syncs ... 20-16

Data Output (TX) Modes ... 20-17

No Frame Syncs .. 20-17

1 or 2 External Frame Syncs .. 20-18

1, 2, or 3 Internal Frame Syncs 20-18

Frame Synchronization in GP Modes 20-19

Modes With Internal Frame Syncs 20-19

Modes With External Frame Syncs 20-20

Programming Model ... 20-21

DMA Operation .. 20-22

PPI Registers ... 20-25

 PPI Control Register (PPI_CONTROL) 20-25

PPI Status Register (PPI_STATUS) 20-29

PPI Delay Count Register (PPI_DELAY) 20-32

PPI Transfer Count Register (PPI_COUNT) 20-32

PPI Lines Per Frame Register (PPI_FRAME) 20-33

Programming Examples ... 20-34

Unique Information for the ADSP-BF51x Processor 20-37
ADSP-BF51x Blackfin Processor Hardware Reference xxxix

Contents
REMOVABLE STORAGE INTERFACE

Overview .. 21-1

Interface Overview ... 21-3

Description of Operation .. 21-7

Functional Description ... 21-9

RSI Clock Configuration .. 21-9

RSI Interface Configuration .. 21-10

Card Detection ... 21-12

RSI Power Saving Configuration ... 21-14

RSI Commands and Responses .. 21-15

IDLE State ... 21-20

PEND State ... 21-20

SEND State .. 21-21

WAIT State .. 21-21

RECEIVE State .. 21-22

CEATA_INT_WAIT State .. 21-22

CEATA_INT_DIS State ... 21-22

RSI Command Path CRC ... 21-23

RSI Data .. 21-23

RSI Data Transmit Path .. 21-26

RSI Data Receive Path .. 21-28

RSI Data Path CRC .. 21-30

RSI Data FIFO ... 21-30

SDIO Interrupt and Read Wait Support 21-31
xl ADSP-BF51x Blackfin Processor Hardware Reference

Contents
Programming Model ... 21-32

Card Identification .. 21-33

SD Card Identification Procedure 21-33

MMC Identification Procedure 21-35

Single Block Write Operations ... 21-35

Using Core ... 21-36

Using DMA .. 21-38

Single Block Read Operation ... 21-39

Using Core ... 21-41

Using DMA .. 21-43

Multiple Block Write Operation .. 21-44

Using Core ... 21-45

Using DMA .. 21-47

Multiple Block Read Operation ... 21-49

Using Core ... 21-49

Using DMA .. 21-51

RSI Registers .. 21-53

RSI Power Control Register (RSI_PWR_CONTROL) 21-55

RSI Clock Control Register (RSI_CLK_CONTROL) 21-56

RSI Argument Register (RSI_ARGUMENT) 21-58

RSI Command Register (RSI_COMMAND) 21-58

RSI Response Command Register (RSI_RESP_CMD) 21-60

RSI Response Registers (RSI_RESPONSEx) 21-61

RSI Data Timer Register (RSI_DATA_TIMER) 21-62
ADSP-BF51x Blackfin Processor Hardware Reference xli

Contents
RSI Data Length Register (RSI_DATA_LGTH) 21-63

RSI Data Control Register (RSI_DATA_CONTROL) 21-63

RSI Data Counter Register (RSI_DATA_CNT) 21-65

RSI Status Register (RSI_STATUS) 21-66

RSI Status Clear Register (RSI_STATUSCL) 21-70

RSI Interrupt Mask Registers (RSI_MASKx) 21-72

RSI FIFO Counter Register (RSI_FIFO_CNT) 21-75

RSI CE-ATA Control Register (RSI_CEATA_CONTROL) .. 21-75

RSI Data FIFO Register (RSI_FIFO) 21-76

RSI Exception Status Register (RSI_ESTAT) 21-77

RSI Exception Mask Register (RSI_EMASK) 21-78

RSI Configuration Register (RSI_CONFIG) 21-79

RSI Read Wait Enable Register (RSI_RD_WAIT_EN) 21-81

RSI Peripheral ID Registers (RSI_PIDx) 21-82

ETHERNET MAC

Specific Information for the ADSP-BF51x 22-1

Overview .. 22-2

Features .. 22-2

Interface Overview ... 22-3

External Interface .. 22-4

Clocking .. 22-4

Pins .. 22-5

Internal Interface .. 22-7

Power Management .. 22-7
xlii ADSP-BF51x Blackfin Processor Hardware Reference

Contents
Description of Operation .. 22-7

Protocol .. 22-8

MII Management Interface .. 22-8

Operation ... 22-10

MII Management Interface Operation 22-10

Receive DMA Operation ... 22-11

Frame Reception and Filtering 22-13

RX Automatic Pad Stripping 22-17

RX DMA Data Alignment ... 22-18

RX DMA Buffer Structure ... 22-18

RX Frame Status Buffer ... 22-19

RX Frame Status Classification 22-20

RX IP Frame Checksum Calculation 22-21

RX DMA Direction Errors .. 22-22

Transmit DMA Operation ... 22-23

Flexible Descriptor Structure 22-26

TX DMA Data Alignment .. 22-27

Late Collisions .. 22-27

TX Frame Status Classification 22-28

TX DMA Direction Errors .. 22-29

Power Management ... 22-30

Ethernet Operation in the Sleep State 22-32

Magic Packet Detection ... 22-33

Remote Wake-up Filters .. 22-34
ADSP-BF51x Blackfin Processor Hardware Reference xliii

Contents
Ethernet Event Interrupts ... 22-38

RX/TX Frame Status Interrupt Operation 22-41

RX Frame Status Register Operation at
Startup and Shutdown ... 22-41

TX Frame Status Register Operation at
Startup and Shutdown ... 22-42

MAC Management Counters .. 22-42

Programming Model ... 22-45

Configure MAC Pins .. 22-45

Multiplexing Scheme .. 22-45

CLKBUF ... 22-46

Configure Interrupts ... 22-46

Configure MAC Registers ... 22-47

MAC Address ... 22-47

MII Station Management .. 22-47

Configure PHY ... 22-48

Receive and Transmit Data .. 22-49

Receiving Data ... 22-49

Transmitting Data .. 22-50

Ethernet MAC Register Definitions .. 22-50

Control-Status Register Group .. 22-59

MAC Operating Mode (EMAC_OPMODE) Register 22-60

MAC Address Low (EMAC_ADDRLO) Register 22-67

MAC Address High Register (EMAC_ADDRHI)
Register ... 22-68
xliv ADSP-BF51x Blackfin Processor Hardware Reference

Contents
MAC Multicast Hash Table High (EMAC_HASHHI)
and Low (EMAC_HASHLO) Registers 22-68

MAC Station Management Address
(EMAC_STAADD) Register ... 22-72

MAC Station Management Data
(EMAC_STADAT) Register ... 22-74

MAC Flow Control (EMAC_FLC) Register 22-74

MAC VLAN1 Tag (EMAC_VLAN1)
and MAC VLAN2 Tag (EMAC_VLAN2)Registers 22-76

MAC Wakeup Frame Control and Status
(EMAC_WKUP_CTL) Register 22-78

MAC Wakeup Frame0 Byte Mask (EMAC_WKUP_FFMSK0)
MAC Wakeup Frame1 Byte Mask (EMAC_WKUP_FFMSK1)
MAC Wakeup Frame2 Byte Mask (EMAC_WKUP_FFMSK2)
MAC Wakeup Frame3 Byte Mask (EMAC_WKUP_FFMSK3)
Registers .. 22-80

MAC Wakeup Frame Filter Commands
(EMAC_WKUP_FFCMD) Register 22-85

Ethernet MAC Wakeup Frame Filter Offsets
(EMAC_WKUP_FFOFF) Register 22-87

MAC Wakeup Frame Filter CRC0/1 (EMAC_WKUP_FFCRC0)
and CRC2/3 (EMAC_WKUP_FFCRC1) Registers 22-87

System Interface Register Group .. 22-88

MAC System Control (EMAC_SYSCTL) Register 22-89

MAC System Status (EMAC_SYSTAT) Register 22-90

Ethernet MAC Frame Status Registers 22-92

Ethernet MAC RX Current Frame Status
(EMAC_RX_STAT) Register .. 22-93
ADSP-BF51x Blackfin Processor Hardware Reference xlv

Contents
Ethernet MAC RX Sticky Frame Status
(EMAC_RX_STKY) Register 22-99

Ethernet MAC RX Frame Status Interrupt Enable
(EMAC_RX_IRQE) Register 22-104

Ethernet MAC TX Current Frame Status
(EMAC_TX_STAT) Register 22-105

Ethernet MAC TX Sticky Frame Status
(EMAC_TX_STKY) Register 22-109

Ethernet MAC TX Frame Status Interrupt Enable
(EMAC_TX_IRQE) Register 22-112

Ethernet MAC MMC RX Interrupt Status
(EMAC_MMC_RIRQS) Register 22-112

Ethernet MAC MMC RX Interrupt Enable
(EMAC_MMC_RIRQE) Register 22-114

Ethernet MAC MMC TX Interrupt Status
(EMAC_MMC_TIRQS) Register 22-114

Ethernet MAC MMC TX Interrupt Enable
(EMAC_MMC_TIRQE) Register 22-117

MAC Management Counter Registers 22-117

MAC Management Counters Control
(EMAC_MMC_CTL) Register 22-119

Programming Examples .. 22-120

Ethernet Structures ... 22-121

MAC Address Setup .. 22-124

PHY Control Routines .. 22-124

Unique Information for the ADSP-BF51x Processor 22-127
xlvi ADSP-BF51x Blackfin Processor Hardware Reference

Contents
IEEE 1588 PTP ENGINE

PTP_TSYNC Overview .. 23-1

Features ... 23-2

General Operation .. 23-2

PTP_TSYNC Module Description of Operation 23-4

Clock Source Selection .. 23-6

Clock Adjustment ... 23-6

Event Message (Timestamping) .. 23-7

Transmit Packet Detection ... 23-8

Receive Packet Detection ... 23-8

Alarm .. 23-10

Pulse-Per-Second (PPS) ... 23-10

Auxiliary Snapshot ... 23-11

PTP_TSYNC Module Registers ... 23-11

Control Register (EMAC_PTP_CTL) 23-13

Interrupt Enable Register (EMAC_PTP_IE) 23-16

Interrupt Status Register (EMAC_PTP_ISTAT) 23-18

Message Filter Offset Register (EMAC_PTP_FOFF) 23-19

Message Filter Value Register 1 (EMAC_PTP_FV1) 23-21

Message Filter Value Register 2 (EMAC_PTP_FV2) 23-22

Message Filter Value Register 3 (EMAC_PTP_FV3) 23-22

Addend Register (EMAC_PTP_ADDEND) 23-24

Accumulator Register (EMAC_PTP_ACCR) 23-25

Time Offset Register (EMAC_PTP_OFFSET) 23-25
ADSP-BF51x Blackfin Processor Hardware Reference xlvii

Contents
Local Clock Time Low Register (EMAC_PTP_TIMELO) 23-26

Local Clock Time High Register (EMAC_PTP_TIMEHI) ... 23-27

Receive Snapshot Low Register
(EMAC_PTP_RXSNAPLO) .. 23-28

Receive Snapshot High Register
(EMAC_PTP_RXSNAPHI) ... 23-29

Transmit Snapshot Low Register
(EMAC_PTP_TXSNAPLO) .. 23-30

Transmit Snapshot High Register
 (EMAC_PTP_TXSNAPHI) .. 23-31

Target Alarm Time Low Register
(EMAC_PTP_ALARMLO) .. 23-32

Target Alarm Time High Register
(EMAC_PTP_ALARMHI) ... 23-33

Source ID Offset Register (EMAC_PTP_ID_OFF) 23-34

Source ID Snapshot Register (EMAC_PTP_ID_SNAP) 23-35

PPS Start Low Register (EMAC_PTP_PPS_STARTLO) 23-36

PPS Start High Register (EMAC_PTP_PPS_STARTHI) 23-37

PPS Period Register (EMAC_PTP_PPS_PERIOD) 23-38

PTP_TSYNC Module Programming Model 23-39

IEEE 1588-2002 Implementation Over IP/UDP 23-39

IEEE 1588-2008 Implementation Over IP/UDP 23-40

IEEE 1588-2008 Implementation Over MAC Layer 23-40

Pulse-Per-Second (PPS) Signal Generation 23-41
xlviii ADSP-BF51x Blackfin Processor Hardware Reference

Contents
REAL-TIME CLOCK

Specific Information for the ADSP-BF51x 24-1

Overview .. 24-1

Interface Overview .. 24-3

Description of Operation .. 24-3

RTC Clock Requirements .. 24-3

Prescaler Enable ... 24-5

RTC Programming Model ... 24-6

Register Writes .. 24-8

Write Latency .. 24-9

Register Reads ... 24-10

Deep Sleep .. 24-10

Event Flags .. 24-11

Setting Time of Day .. 24-13

Using the Stopwatch .. 24-13

Interrupts .. 24-14

State Transitions Summary ... 24-17

Register Definitions .. 24-19

RTC Status (RTC_STAT) Register 24-21

RTC Interrupt Control (RTC_ICTL) Register 24-21

RTC Interrupt Status (RTC_ISTAT) Register 24-22

RTC Stopwatch Count (RTC_SWCNT) Register 24-22

RTC Alarm (RTC_ALARM) Register 24-23

RTC Prescaler Enable (RTC_PREN) Register 24-23
ADSP-BF51x Blackfin Processor Hardware Reference xlix

Contents
Programming Examples .. 24-24

Enable RTC Prescaler .. 24-24

RTC Stopwatch For Exiting Deep Sleep Mode 24-25

RTC Alarm to Come Out of Hibernate State 24-27

Unique Information for the ADSP-BF51x Processor 24-28

SECURITY

Overview .. 25-2

Features .. 25-4

Description of Operation .. 25-6

Secure State Machine .. 25-7

Open Mode .. 25-8

Secure Entry Mode ... 25-9

Secure Mode ... 25-10

Secure Mode Control .. 25-11

Security Features ... 25-13

Digital Signature Authentication 25-14

Digital Signature Authentication Performance
Measurement ... 25-17

Protection Features .. 25-17

Operating in Secure Mode ... 25-20

Entering Secure Mode .. 25-21

Exiting Secure Mode ... 25-21
l ADSP-BF51x Blackfin Processor Hardware Reference

Contents
Reset Handling in Secure Mode ... 25-21

Hardware Reset ... 25-21

Clearing Private Data .. 25-22

Public Key Requirements ... 25-24

Storing Public Cipher Key in Public OTP 25-26

Cryptographic Ciphers .. 25-27

Keys .. 25-27

Debug Functionality .. 25-27

Programming Examples ... 25-31

Programming Model ... 25-33

Secure Entry Service Routine (SESR) API 25-33

Starting Authentication ... 25-34

Memory Configuration .. 25-35

Message Placement .. 25-36

Digital Signature ... 25-36

Message Size Constraints ... 25-36

Memory Usage .. 25-37

Memory Protection ... 25-37

Secure Function and Secure Entry Service Routine
Arguments .. 25-38

Secure Function Arguments ... 25-38

Secure Entry Service Routine Arguments 25-39

usFlags .. 25-40

uslRQMask ... 25-41

ulMessageSize ... 25-41
ADSP-BF51x Blackfin Processor Hardware Reference li

Contents
ulSFEntryPoint ... 25-41

ulMessagePtr .. 25-41

Secure Message Execution ... 25-42

Return Codes ... 25-42

SECURE HASH ALGORITHM (SHA-1) API 25-44

ADI_SHA1 Data Type .. 25-44

bfrom_Sha1Init ROM Routine 25-45

bfrom_Sha1Hash ROM Routine 25-45

Security Registers .. 25-46

Secure System Switch (SECURE_SYSSWT) Register 25-47

Secure Control (SECURE_CONTROL) Register 25-54

Secure Status (SECURE_STATUS) Register 25-56

SYSTEM RESET AND BOOTING

Overview .. 26-1

Reset and Power-up .. 26-3

Hardware Reset ... 26-5

Software Resets ... 26-6

Reset Vector .. 26-7

Servicing Reset Interrupts .. 26-7

Preboot .. 26-9

Factory Page Settings (FPS) ... 26-10

Preboot Page Settings (PBS) .. 26-13

Alternative PBS Pages ... 26-14

Programming PBS Pages ... 26-15
lii ADSP-BF51x Blackfin Processor Hardware Reference

Contents
Recovering From Misprogrammed PBS Pages 26-15

Customizing Power Management 26-16

Customizing Booting Options ... 26-17

Customizing the Asynchronous Port 26-18

Customizing the Synchronous Port 26-18

Basic Booting Process .. 26-19

Block Headers ... 26-21

Block Code ... 26-22

DMA Code Field .. 26-22

Block Flags Field ... 26-25

Header Checksum Field .. 26-27

Header Sign Field .. 26-27

Target Address .. 26-27

Byte Count ... 26-28

Argument ... 26-29

Boot Host Wait (HWAIT) Feedback Strobe 26-30

Using HWAIT as Reset Indicator 26-31

Boot Termination .. 26-32

Single Block Boot Streams ... 26-32

Direct Code Execution .. 26-33

Advanced Boot Techniques .. 26-35

Initialization Code ... 26-35

Quick Boot ... 26-40

Indirect Booting .. 26-41
ADSP-BF51x Blackfin Processor Hardware Reference liii

Contents
Callback Routines ... 26-42

Error Handler ... 26-45

CRC Checksum Calculation .. 26-45

Load Functions ... 26-46

Calling the Boot Kernel at Runtime 26-47

Debugging the Boot Process .. 26-48

Boot Management .. 26-51

Booting a Different Application .. 26-51

Multi-DXE Boot Streams .. 26-52

Determining Boot Stream Start Addresses 26-57

Initialization Hook Routine .. 26-57

Specific Boot Modes ... 26-58

No Boot Mode .. 26-59

Flash Boot Modes ... 26-59

SDRAM Boot Mode ... 26-62

SPI Master Boot Modes ... 26-63

SPI Device Detection Routine .. 26-65

SPI Slave Boot Mode ... 26-67

UART Slave Mode Boot .. 26-71

OTP Boot Mode ... 26-73

Reset and Booting Registers .. 26-74

Software Reset (SWRST) Register 26-74

System Reset Configuration (SYSCR) Register 26-76

Boot Code Revision Control (BK_REVISION) 26-78
liv ADSP-BF51x Blackfin Processor Hardware Reference

Contents
Boot Code Date Code (BK_DATECODE) 26-79

Zero Word (BK_ZEROS) .. 26-80

Ones Word (BK_ONES) ... 26-81

OTP Memory Pages for Booting .. 26-81

Lower PBS00 Half Page ... 26-81

Upper PBS00 Half Page ... 26-84

Lower PBS01 Half Page ... 26-85

Upper PBS01 Half Page ... 26-85

Lower PBS02 Half Page ... 26-88

Upper PBS02 Half Page ... 26-89

Reserved Half Pages ... 26-89

Data Structures ... 26-89

ADI_BOOT_HEADER .. 26-89

ADI_BOOT_BUFFER .. 26-90

ADI_BOOT_DATA .. 26-90

dFlags Word ... 26-94

Callable ROM Functions for Booting .. 26-95

BFROM_FINALINIT ... 26-95

BFROM_PDMA ... 26-96

BFROM_MDMA ... 26-96

BFROM_MEMBOOT .. 26-96

BFROM_SPIBOOT .. 26-98

BFROM_OTPBOOT ... 26-100

BFROM_BOOTKERNEL .. 26-101
ADSP-BF51x Blackfin Processor Hardware Reference lv

Contents
BFROM_CRC32 .. 26-102

BFROM_CRC32POLY ... 26-102

BFROM_CRC32CALLBACK ... 26-103

BFROM_CRC32INITCODE ... 26-103

Programming Examples .. 26-104

System Reset ... 26-104

Exiting Reset to User Mode ... 26-105

Exiting Reset to Supervisor Mode 26-106

Initcode (SDRAM Controller Setup) 26-107

Initcode (Power Management Control) 26-109

Quickboot With Restore From SDRAM 26-112

XOR Checksum .. 26-113

Direct Code Execution .. 26-115

Managing PBS Pages in OTP Memory 26-116

SYSTEM DESIGN

Pin Descriptions ... 27-1

Managing Clocks .. 27-1

Managing Core and System Clocks .. 27-2

Configuring and Servicing Interrupts .. 27-2

Semaphores .. 27-2

Example Code for Query Semaphore 27-3

Data Delays, Latencies and Throughput 27-4

Bus Priorities .. 27-4
lvi ADSP-BF51x Blackfin Processor Hardware Reference

Contents
External Memory Design Issues ... 27-5

Example Asynchronous Memory Interfaces 27-5

Avoiding Bus Contention .. 27-7

High-Frequency Design Considerations 27-8

Signal Integrity .. 27-8

Decoupling Capacitors and Ground Planes 27-10

5 Volt Tolerance .. 27-11

Test Point Access ... 27-12

Oscilloscope Probes ... 27-12

Recommended Reading ... 27-12

Resetting the Processor .. 27-13

Recommendations for Unused Pins ... 27-14

Programmable Outputs ... 27-14

Voltage Regulation Interface .. 27-14

SYSTEM MMR ASSIGNMENTS

Processor-Specific Memory Registers .. A-3

Core Timer Registers .. A-3

System Reset and Interrupt Control
Registers ... A-4

DMA/Memory DMA Control Registers A-5

Handshake MDMA Control Registers .. A-7

External Bus Interface Unit Registers .. A-9

Ports Registers .. A-9

Timer Registers .. A-13
ADSP-BF51x Blackfin Processor Hardware Reference lvii

Contents
Watchdog Timer Registers .. A-15

GP Counter Registers ... A-15

Real-Time Clock Registers .. A-16

OTP and Security Registers .. A-17

Dynamic Power Management Registers A-17

Ethernet MAC Registers ... A-18

IEEE 1588 PTP Registers ... A-23

PPI Registers .. A-25

SPI Controller Registers .. A-25

SPORT Controller Registers ... A-26

UART Controller Registers ... A-30

Motor Control PWM Registers ... A-31

Removable Storage Interface (RSI) Registers A-32

TWI Registers .. A-34

TEST FEATURES

JTAG Standard ... B-1

Boundary-Scan Architecture ... B-2

Instruction Register ... B-4

Public Instructions .. B-6

EXTEST – Binary Code 00000 ... B-6

SAMPLE/PRELOAD – Binary Code 10000 B-6

BYPASS – Binary Code 11111 .. B-6

Boundary-Scan Register .. B-7
lviii ADSP-BF51x Blackfin Processor Hardware Reference

Contents
INDEX
ADSP-BF51x Blackfin Processor Hardware Reference lix

Contents

lx ADSP-BF51x Blackfin Processor Hardware Reference

Preface
PREFACE

Thank you for purchasing and developing systems using an enhanced
Blackfin® processor from Analog Devices.

Purpose of This Manual
ADSP-BF51x Blackfin Processor Hardware Reference provides architectural
information about the ADSP-BF512, ADSP-BF514, ADSP-BF516,
ADSP-BF518 processors. This hardware reference provides architectural
information about these processors and the peripherals contained within
the ADSP-BF51x Blackfin packages. The architectural descriptions cover
functional blocks, buses, and ports, including all features and processes
that they support. For programming information, see Blackfin Processor
Programming Reference. For timing, electrical, and package specifications,
see ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor Data Sheet.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. The manual assumes the audience has a
working knowledge of the appropriate processor architecture and instruc-
tion set. Programmers who are unfamiliar with Analog Devices processors
can use this manual, but should supplement it with other texts, such as
ADSP-BF51x Blackfin Processor Hardware Reference lxi

Manual Contents
hardware and programming reference manuals that describe their target
architecture.

Manual Contents
This manual consists of one volume:

• Chapter 1, “Introduction”
Provides a high level overview of the processor, including peripher-
als, power management, and development tools.

• Chapter 2, “Memory”
Describes processor-specific memory topics, including L1 memo-
ries and processor-specific memory MMRs.

• Chapter 3, “One-Time Programmable Memory”
Describes the one-time-programmable memory features.

• Chapter 4, “Chip Bus Hierarchy”
Describes on-chip buses, including how data moves through the
system.

• Chapter 5, “System Interrupts”
Describes the system peripheral interrupts, including setup and
clearing of interrupt requests.

• Chapter 6, “Direct Memory Access”
Describes the peripheral DMA and Memory DMA controllers.
Includes performance, software management of DMA, and DMA
errors.

• Chapter 7, “External Bus Interface Unit”
Describes the external bus interface unit of the processor. The
chapter also discusses the asynchronous memory interface, the
SDRAM controller (SDC), related registers, and SDC configura-
tion and commands.
lxii ADSP-BF51x Blackfin Processor Hardware Reference

Preface
• Chapter 8, “Dynamic Power Management”
Describes the clocking, including the PLL, and the dynamic power
management controller.

• Chapter 9, “General-Purpose Ports”
Describes the general-purpose I/O ports, including the structure of
each port, multiplexing, configuring the pins, and generating
interrupts.

• Chapter 10, “General-Purpose Timers”
Describes the eight general-purpose timers.

• Chapter 11, “Core Timer”
Describes the core timer.

• Chapter 12, “Watchdog Timer”
Describes the watchdog timer.

• Chapter 13, “General-Purpose Counter”
Describes the Rotary (up/down) Counter. This counter provides
support for manually controlled rotary controllers, such as the vol-
ume wheel on a radio device. This unit also supports industrial or
motor-control type of wheels.

• Chapter 14, “PWM Controller”
Describes the programmable, three-phase PWM waveform genera-
tor which can generate switching patterns to drive a three-phase
voltage source inverter for ac induction motor (ACIM) or
permanent magnet synchronous motor (PMSM) control.

• Chapter 15, “UART Port Controllers”
Describes the Universal Asynchronous Receiver/Transmitter port
that converts data between serial and parallel formats. The UART
supports the half-duplex IrDA® SIR protocol as a mode-enabled
feature.
ADSP-BF51x Blackfin Processor Hardware Reference lxiii

Manual Contents
• Chapter 16, “Two-Wire Interface Controller”
Describes the Two-Wire Interface (TWI) controller, which allows
a device to interface to an Inter IC bus as specified by the Philips
I2C Bus Specification version 2.1 dated January 2000.

• Chapter 17, “SPI-Compatible Port Controller”
Describes the Serial Peripheral Interface (SPI) port that provides an
I/O interface to a variety of SPI compatible peripheral devices.

• Chapter 18, “SPI Serial Flash”
Describes the SPI serial flash memory contained within the pack-
age of the processor and connected to the SPIO.

• Chapter 19, “SPORT Controller”
Describes the independent, synchronous Serial Port Controller
which provides an I/O interface to a variety of serial peripheral
devices.

• Chapter 20, “Parallel Peripheral Interface”
Describes the Parallel Peripheral Interface (PPI) of the processor.
The PPI is a half-duplex, bidirectional port accommodating up to
16 bits of data and is used for digital video and data converter
applications.

• Chapter 21, “Removable Storage Interface”
Describes the RSI interface for multimedia cards (MMC), secure
digital memory cards (SD), secure digital input/output cards
(SDIO) and consumer electronic ATA devices (CE-ATA).

• Chapter 22, “Ethernet MAC”
Describes the Ethernet Media Access Controller (MAC) peripheral
that provides a 10/100M bit/s Ethernet interface, compliant to
IEEE Std. 802.3-2002, between an MII (Media Independent Inter-
face) and the Blackfin peripheral subsystem.
lxiv ADSP-BF51x Blackfin Processor Hardware Reference

Preface
• Chapter 23, “IEEE 1588 PTP Engine”
Describes the IEEE 1588 engine module (PTP_TSYNC for
ADSP-BF518 processors) and the module’s operation.

• Chapter 24, “Real-Time Clock”
The RTC provides a set of digital watch features to the processor,
including time of day, alarm, and stopwatch countdown. It is typi-
cally used to implement either a real-time watch or a life counter,
which counts the elapsed time since the last system reset.

• Chapter 25, “Security”
Describes the LockboxTM Secure Technology for Analog Devices
Blackfin processors. This comprises a mix of hardware and software
mechanisms designed to prevent unauthorized accesses and allow
trusted code to execute on the processor.

• Chapter 26, “System Reset and Booting”
Describes the booting methods, booting process and specific boot
modes for the processor.

• Chapter 27, “System Design”
Describes how to use the processor as part of an overall system. It
includes information about bus timing and latency numbers, sema-
phores, and a discussion of the treatment of unused pins.

• Appendix A, “System MMR Assignments”
Lists the memory-mapped registers included in this manual, their
addresses, and cross-references to text.

• Appendix B, “Test Features”
Describes test features for the processor, discusses the JTAG stan-
dard, boundary-scan architecture, instruction and boundary
registers, and public instructions.

 This hardware reference is a companion document to Blackfin Pro-
cessor Programming Reference.
ADSP-BF51x Blackfin Processor Hardware Reference lxv

What’s New in This Manual
What’s New in This Manual
This is Revision 1.2 of ADSP-BF51x Blackfin Processor Hardware Refer-
ence. This revision corrects minor typographical errors and the following
issues:

• UART not half-duplex in Chapter 1, “Introduction”

• Range for UNSECURED ECC SPACE in the Public OTP Mem-
ory Map and OTP_init_value setting in code example in
Chapter 3, “One-Time Programmable Memory”

• Core priority over DMA when accessing L1 SRAM in Chapter 4,
“Chip Bus Hierarchy”

• Note on timing dependencies for the TRP and TRAS settings in the
EBIU_SDGCTL register in Chapter 7, “External Bus Interface Unit”

• Arithmetic operators in PLL block diagram, note on programming
the STOPCK bit, CLKBUF behavior during hibernate, input and output
delays removed from the processor and PLL_CTL diagram, and extra
pipe in the bfrom_SysControl code example in Chapter 8,
“Dynamic Power Management”

• GPIO data register and RSI data pin assignments
in Chapter 9, “General-Purpose Ports”

• Descriptions of the TWI_XMT_DATA8 register bit and RCVSERV, the
Receive FIFO service, in Chapter 16, “Two-Wire Interface
Controller”

• Termination of SPI TX DMA operations and comments on
SPI_CTL register functionality in Chapter 17, “SPI-Compatible
Port Controller”

• Reset timing parameter specifications that duplicate the datasheet
removed in Chapter 18, “SPI Serial Flash”
lxvi ADSP-BF51x Blackfin Processor Hardware Reference

Preface
• Description of multichannel mode operation added and receiver
and transmitter enable bit names standardized on RSPEN and TSPEN
in Chapter 19, “SPORT Controller”

• End-of-range address for Lockbox memory and SESR location
in Chapter 25, “Security”

• Target address setting by elfloader utility and MOSI pin latching
information in Chapter 26, “System Reset and Booting”

Technical Support
You can reach Analog Devices processors and DSP technical support in
the following ways:

• Post your questions in the processors and DSP support community
at EngineerZone®:
http://ez.analog.com/community/dsp

• Submit your questions to technical support directly at:
http://www.analog.com/support

• E-mail your questions about processors, DSPs, and tools develop-
ment software from CrossCore® Embedded Studio or
VisualDSP++®:

Choose Help > Email Support. This creates an e-mail to
processor.tools.support@analog.com and automatically attaches
your CrossCore Embedded Studio or VisualDSP++ version infor-
mation and license.dat file.

• E-mail your questions about processors and processor applications
to:
processor.support@analog.com or
processor.china@analog.com (Greater China support)
ADSP-BF51x Blackfin Processor Hardware Reference lxvii

http://ez.analog.com/community/dsp
http://www.analog.com/support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.china@analog.com

Supported Processors
• In the USA only, call 1-800-ANALOGD (1-800-262-5643)

• Contact your Analog Devices sales office or authorized distributor.
Locate one at:
www.analog.com/adi-sales

• Send questions by mail to:
Processors and DSP Technical Support
Analog Devices, Inc.
Three Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Supported Processors
The name “Blackfin” refers to a family of 16-bit, embedded processors.
Refer to the CCES or VisualDSP++ online help for a complete list of sup-
ported processors.

Product Information
Product information can be obtained from the Analog Devices Web site
and the CCES or VisualDSP++ online help.
lxviii ADSP-BF51x Blackfin Processor Hardware Reference

http://www.analog.com/adi-sales

Preface
Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, myAnalog is a free feature of the Analog Devices Web site that
allows customization of a Web page to display only the latest information
about products you are interested in. You can choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests, including documentation errata against all manuals. myAnalog
provides access to books, application notes, data sheets, code examples,
and more.

Visit myAnalog to sign up. If you are a registered user, just log on. Your
user name is your e-mail address.

EngineerZone
EngineerZone is a technical support forum from Analog Devices, Inc. It
allows you direct access to ADI technical support engineers. You can
search FAQs and technical information to get quick answers to your
embedded processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.
ADSP-BF51x Blackfin Processor Hardware Reference lxix

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://ez.analog.com

Notation Conventions
Notation Conventions
Text conventions in this manual are identified and described as follows.

Example Description

File > Close Titles in reference sections indicate the location of an item within the
IDE environment’s menu system (for example, the Close command
appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipsis; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

lxx ADSP-BF51x Blackfin Processor Hardware Reference

Preface
Register Diagram Conventions
Register diagrams use the following conventions:

• The descriptive name of the register appears at the top, followed by
the short form of the name in parentheses.

• If the register is read-only (RO), write-1-to-set (W1S), or
write-1-to-clear (W1C), this information appears under the name.
Read/write is the default and is not noted. Additional descriptive
text may follow.

• If any bits in the register do not follow the overall read/write con-
vention, this is noted in the bit description after the bit name.

• If a bit has a short name, the short name appears first in the bit
description, followed by the long name in parentheses.

• The reset value appears in binary in the individual bits and in hexa-
decimal to the right of the register.

• Bits marked x have an unknown reset value. Consequently, the
reset value of registers that contain such bits is undefined or depen-
dent on pin values at reset.

• Shaded bits are reserved.

 To ensure upward compatibility with future implementations,
write back the value that is read for reserved bits in a register,
unless otherwise specified.
ADSP-BF51x Blackfin Processor Hardware Reference lxxi

Register Diagram Conventions
The following figure shows an example of these conventions.

Figure 1. Register Diagram Example

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse.
1 - Positive action pulse.

This bit must be set to 1, when operat-
ing the PPI in GP Output modes.
0 - Use system clock SCLK for counter.
1 - Use PWM_CLK to clock counter.

0 - The effective state of PULSE_HI
is the programmed state.
1 - The effective state of PULSE_HI
alternates each period.

00 - No error.
01 - Counter overflow error.
10 - Period register programming error.
11 - Pulse width register programming error.

00 - Reset state - unused.
01 - PWM_OUT mode.
10 - WDTH_CAP mode.
11 - EXT_CLK mode.

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI Toggle Mode)

ERR_TYP[1:0] (Error Type) - RO

PERIOD_CNT (Period
Count)

0 - Interrupt request
disable.
1 - Interrupt request enable

0 - Count to end of width.
1 - Count to end of period.

IRQ_ENA (Interrupt
Request Enable)

0 - Sample TMRx pin or
PF1 pin.
1 - Sample UART RX pin
or PPI_CLK pin.

TIN_SEL (Timer Input
Select)

0 - Enable pad in PWM_OUT mode.
1 - Disable pad in PWM_OUT mode.

OUT_DIS (Output Pad Disable)

0 - Timer counter stops during emulation.
1 - Timer counter runs during emulation.

EMU_RUN (Emulation Behavior Select)
lxxii ADSP-BF51x Blackfin Processor Hardware Reference

Introduction
1 INTRODUCTION

The ADSP-BF51x processors are members of the Blackfin processor fam-
ily that offer significant high performance and low power features while
retaining their ease-of-use benefits. All parts within the family are
pin-compatible. However, the ADSP-BF512 does not include the RSI
module, the ADSP-BF512 and ADSP-BF514 do not include an Ethernet
MAC, and the ADSP-BF516 does not include an IEEE-1588 block.

Peripherals
The processor system peripherals include:

• Two memory-to-memory DMAs with handshake DMA

• Event handler with 56 interrupt inputs

• 12 peripheral DMAs (2 mastered by the Ethernet MAC)

• Removable Storage Interface (RSI) (not available on ADSP-BF512)

• 40 General-Purpose I/Os (GPIOs)

• Eight 32-bit timer/counters with PWM support

• 32-bit core timer

• Real-Time Clock (RTC) and watchdog timer
ADSP-BF51x Blackfin Processor Hardware Reference 1-1

Peripherals
• Rotary counter

• Lockbox security controller

• One-time Programmable (OTP) Memory

• On-chip PLL capable of 0.5× to 64× frequency multiplication

• Debug/JTAG interface

• IEEE 802.3-compliant 10/100 Ethernet MAC (only on the
ADSP-BF516 and ADSP-BF518)

• IEEE-1588 precision clock synchronization protocol for 10/100
Ethernet MAC (only on the ADSP-BF518)

• Parallel Peripheral Interface (PPI), supporting ITU-R 656 video
data formats

• Two Serial Peripheral Interface (SPI)-compatible ports

• Two-Wire Interface (TWI) controller

• Two dual-channel, full-duplex synchronous Serial Ports
(SPORTs), supporting eight stereo I2S channels

• Two UARTs with IrDA® support

• 3-phase PWM generation unit

These peripherals are connected to the core via several high bandwidth
buses, as shown in Figure 1-1.

Most of the peripherals are supported by a flexible DMA structure. There
are also two separate memory DMA channels dedicated to data transfers
between the processor’s memory spaces, which include external SDRAM
and asynchronous memory. Multiple on-chip buses provide enough band-
width to keep the processor core running even when there is also activity
on all of the on-chip and external peripherals.
1-2 ADSP-BF51x Blackfin Processor Hardware Reference

Introduction
Memory Architecture
The Blackfin processor architecture structures memory as a single, unified
4G byte address space using 32-bit addresses. All resources, including
internal memory, external memory, and I/O control registers, occupy sep-
arate sections of this common address space. The memory portions of this
address space are arranged in a hierarchical structure to provide a good
cost/performance balance of some very fast, low latency on-chip memory
as cache or SRAM, and larger, lower cost and lower performance off-chip
memory systems. Table 1-1 shows the memory for the ADSP-BF51x
processors.

Figure 1-1. ADSP-BF51x Processor Block Diagram

JTAG TEST AND EMULATION

PERIPHERAL
ACCESS BUS

OTP

3-Phase PWM

WATCHDOG TIMERRTC

TWI

SPORT1-0

RSI (SDIO)

PPI

UART1–0

SPI0

4 Mbit SPI Flash

SPI1

TIMERS7–0

COUNTER

EMAC

BOOT
ROM

DMA
EXTERNAL

BUS

INTERRUPT
CONTROLLER

DMA
CONTROLLER

L1
DATA

MEMORY

L1
INSTRUCTION

MEMORY

16 DMA CORE BUS
EXTERNAL ACCESS BUS

EXTERNAL PORT
FLASH, SDRAM CONTROL

PORTS

B

ADSP-BF51x Blackfin Processor Hardware Reference 1-3

Memory Architecture
The L1 memory system is the primary highest performance memory avail-
able to the core. The off-chip memory system, accessed through the
external bus interface unit (EBIU), provides expansion with SDRAM,
flash memory, and SRAM, optionally accessing up to 132M bytes of phys-
ical memory.

The memory DMA controller provides high bandwidth data movement
capability. It can perform block transfers of code or data between the
internal memory and the external memory spaces.

Table 1-1. Memory Configurations

Type of Memory ADSP-BF51x

Instruction SRAM/cache, lockable by way or line 16K byte

Instruction SRAM 32K byte

Data SRAM/cache 32K byte

Data SRAM 32K byte

Data scratchpad SRAM 4K byte

L3 Boot ROM 32K byte

Total 148K byte
1-4 ADSP-BF51x Blackfin Processor Hardware Reference

Introduction
Internal Memory
The processor has three blocks of on-chip memory that provide high
bandwidth access to the core:

• L1 instruction memory, consisting of SRAM and a 4-way set-asso-
ciative cache. This memory is accessed at full processor speed.

• L1 data memory, consisting of SRAM and/or a 2-way set-associa-
tive cache. This memory block is accessed at full processor speed.

• L1 scratchpad RAM, which runs at the same speed as the L1 mem-
ories but is only accessible as data SRAM and cannot be configured
as cache memory.

External Memory
External (off-chip) memory is accessed via the external bus interface unit
(EBIU). This 16-bit interface provides a glueless connection to a bank of
synchronous DRAM (SDRAM) and as many as four banks of asynchro-
nous memory devices including flash memory, EPROM, ROM, SRAM,
and memory-mapped I/O devices.

The SDRAM controller can be programmed to interface to up to
128M bytes of SDRAM.

The asynchronous memory controller can be programmed to control up
to four banks of devices. Each bank occupies a 1M byte segment regardless
of the size of the devices used, so that these banks are only contiguous if
each is fully populated with 1M byte of memory.

I/O Memory Space
Blackfin processors do not define a separate I/O space. All resources are
mapped through the flat 32-bit address space. Control registers for
on-chip I/O devices are mapped into memory-mapped registers (MMRs)
ADSP-BF51x Blackfin Processor Hardware Reference 1-5

Memory Architecture
at addresses near the top of the 4G byte address space. These are separated
into two smaller blocks: one contains the control MMRs for all core func-
tions and the other contains the registers needed for setup and control of
the on-chip peripherals outside of the core. The MMRs are accessible only
in supervisor mode. They appear as reserved space to on-chip peripherals.

One-Time-Programmable (OTP) Memory
ADSP-BF51x processors also include an on-chip OTP memory array
which provides 64K bits of non-volatile memory that can be programmed
by the developer one time only. It includes the array and logic to support
read access and programming. A mechanism for error correction is pro-
vided. Additionally, its pages can be write protected.

The OTP is not part of the Blackfin linear memory map. OTP memory is
not accessed directly using the Blackfin memory map; rather, it is accessed
via four 32-bit-wide registers that act as the OTP memory read/write
buffer.

This memory is organized into 512 pages, each comprised of 128 bits and
equally separated into two distinct areas with privileged access dependant
upon modes of operation when security features are utilized. Approxi-
mately 400 pages are available for developer use. The remaining 100 pages
are utilized for page protection bits, error correction, and Analog Devices
factory-reserved areas. One area is read/write accessible at all time (Public
OTP Memory). The second area maintains privileged access and can only
be accessed (read/write) upon entry to Secure Mode when security features
are utilized (Private OTP Memory).

All together, OTP memory provides a means to store Public Keys in Pub-
lic OTP Memory or secrets such as Private Keys or Symmetric Keys in
Private OTP Memory. One page of the Public OTP Memory is initialized
in the Analog Devices factory with a Unique Chip ID.

This OTP memory provides a means to store public and private cipher
keys as well as chip, customer, and factory identification data.
1-6 ADSP-BF51x Blackfin Processor Hardware Reference

Introduction
DMA Support
The processor has a DMA controller which supports automated data
transfers with minimal overhead for the core. DMA transfers can occur
between the internal memories and any of its DMA-capable peripherals.
Additionally, DMA transfers can be accomplished between any of the
DMA-capable peripherals and external devices connected to the external
memory interfaces, including the SDRAM controller and the asynchro-
nous memory controller. DMA-capable peripherals include the SPORTs,
SPI ports, UARTs, RSI, Ethernet, and PPI. Each individual DMA-capable
peripheral has at least one dedicated DMA channel.

The DMA controller supports both one-dimensional (1D) and
two-dimensional (2-D) DMA transfers. DMA transfer initialization can
be implemented from registers or from sets of parameters called descriptor
blocks.

The 2-D DMA capability supports arbitrary row and column sizes up to
64K elements by 64K elements, and arbitrary row and column step sizes
up to +/- 32K elements. Furthermore, the column step size can be less
than the row step size, allowing implementation of interleaved data-
streams. This feature is especially useful in video applications where data
can be de-interleaved on the fly.

Examples of DMA types supported include:

• A single, linear buffer that stops upon completion

• A circular, auto-refreshing buffer that interrupts on each full or
fractionally full buffer

• 1-D or 2-D DMA using a linked list of descriptors

• 2-D DMA using an array of descriptors specifying only the base
DMA address within a common page
ADSP-BF51x Blackfin Processor Hardware Reference 1-7

External Bus Interface Unit
In addition to the dedicated peripheral DMA channels, there are two sep-
arate pairs of memory DMA channels provided for transfers between the
various memories of the system. This enables transfers of blocks of data
between any of the memories—including external SDRAM, ROM,
SRAM, and flash memory—with minimal processor intervention. Mem-
ory DMA transfers can be controlled by a very flexible descriptor-based
methodology or by a standard register-based autobuffer mechanism.

The ADSP-BF51x processors also include a handshake DMA capability
via dual external DMA request pins when used in conjunction with the
external bus interface unit (EBIU). This functionality can be used when a
high speed interface is required for external FIFOs and high bandwidth
communications peripherals such as USB 2.0. It allows control of the
number of data transfers for MDMA. The number of transfers per edge is
programmable. This feature can be programmed to allow MDMA to have
an increased priority on the external bus relative to the core.

External Bus Interface Unit
The external bus interface unit (EBIU) on the processor interfaces with a
wide variety of industry-standard memory devices. The controller consists
of an SDRAM controller and an asynchronous memory controller.

SDRAM Controller
The SDRAM controller provides an interface to a single bank of indus-
try-standard SDRAM devices or DIMMs. The bank can be configured to
contain between 16M and 128M bytes of memory.

A set of programmable timing parameters is available to configure the
SDRAM bank to support slower memory devices. The memory bank is
16 bits wide for minimum device count and lower system cost.
1-8 ADSP-BF51x Blackfin Processor Hardware Reference

Introduction
Asynchronous Controller
The asynchronous memory controller provides a configurable interface for
up to four separate banks of memory or I/O devices. Each bank can be
independently programmed with different timing parameters. This allows
connection to a wide variety of memory devices, including SRAM, ROM,
and flash EPROM, as well as I/O devices that interface with standard
memory control lines. Each bank occupies a 1M byte window in the pro-
cessor address space, but if not fully populated, these are not made
contiguous by the memory controller. The banks are 16 bits wide, for
interfacing to a range of memories and I/O devices.

General-Purpose I/O (GPIO)
The ADSP-BF51x processors have 40 bidirectional, general-purpose I/O
(GPIO) pins allocated across three separate GPIO modules—PORTFIO,
PORTGIO, and PORTHIO, associated with port F, port G, and port H,
respectively. Port J does not provide GPIO functionality. Each
GPIO-capable pin shares functionality with other ADSP-BF51x processor
peripherals via a multiplexing scheme; however, the GPIO functionality is
the default state of the device upon powerup. Neither GPIO output or
input drivers are active by default. Each general-purpose port pin can be
individually controlled by manipulation of the port control, status, and
interrupt registers:

• GPIO direction control register – Specifies the direction of each
individual GPIO pin as input or output.

• GPIO control and status registers – The ADSP-BF51x processors
employ a “write one to modify” mechanism that allows any combi-
nation of individual GPIO pins to be modified in a single
instruction, without affecting the level of any other GPIO pins.
Four control registers are provided. One register is written in order
to set pin values, one register is written in order to clear pin values,
ADSP-BF51x Blackfin Processor Hardware Reference 1-9

Two-Wire Interface
one register is written in order to toggle pin values, and one register
is written in order to specify a pin value. Reading the GPIO status
register allows software to interrogate the sense of the pins.

• GPIO interrupt mask registers – The two GPIO interrupt mask
registers allow each individual GPIO pin to function as an inter-
rupt to the processor. Similar to the two GPIO control registers
that are used to set and clear individual pin values, one GPIO
interrupt mask register sets bits to enable interrupt function, and
the other GPIO interrupt mask register clears bits to disable inter-
rupt function. GPIO pins defined as inputs can be configured to
generate hardware interrupts, while output pins can be triggered by
software interrupts.

• GPIO interrupt sensitivity registers – The two GPIO interrupt sen-
sitivity registers specify whether individual pins are level- or
edge-sensitive and specify—if edge-sensitive—whether just the ris-
ing edge or both the rising and falling edges of the signal are
significant. One register selects the type of sensitivity, and one reg-
ister selects which edges are significant for edge-sensitivity.

Two-Wire Interface
The Two-Wire Interface (TWI) is fully compatible with the widely used
I2C bus standard. It was designed with a high level of functionality and is
compatible with multi-master, multi-slave bus configurations. To preserve
processor bandwidth, the TWI controller can be set up and a transfer ini-
tiated with interrupts only to service FIFO buffer data reads and writes.
Protocol related interrupts are optional.
1-10 ADSP-BF51x Blackfin Processor Hardware Reference

Introduction
The TWI externally moves 8-bit data while maintaining compliance with
the I2C bus protocol. The Philips I2C Bus Specification version 2.1 covers
many variants of I2C. The TWI controller includes these features:

• Simultaneous master and slave operation on multiple device
systems

• Support for multi-master data arbitration

• 7-bit addressing

• 100K bits/second and 400K bit/second data rates

• General call address support

• Master clock synchronization and support for clock low extension

• Separate multiple-byte receive and transmit FIFOs

• Low interrupt rate

• Individual override control of data and clock lines in the event of
bus lock-up

• Input filter for spike suppression

• Serial camera control bus support as specified in OmniVision Serial
Camera Control Bus (SCCB) Functional Specification version 2.1

Ethernet MAC
The Ethernet Media Access Controller (MAC) peripheral provides a
10/100M bit/second Ethernet interface, compliant with IEEE Std.
802.3-2002, between a Media Independent Interface (MII) and the Black-
fin peripheral subsystem. The MAC operates in both half-duplex and
full-duplex modes. It provides programmable enhanced features designed
to minimize bus utilization and pre- or post-message processing. The con-
ADSP-BF51x Blackfin Processor Hardware Reference 1-11

IEEE 1588 Support
nection to the external physical layer device (PHY) is achieved via the MII
or a Reduced Media Independent Interface (RMII). The RMII provides
data buses half as wide (2 bit vs. 4 bit) as those of an MII, operating at
double the frequency.

The MAC is clocked internally from the CLKIN pin on the processor. A
buffered version of this clock can also be used to drive the external PHY
via the CLKBUF pin. A 25 MHz source should be used with an MII PHY.
A 50 MHz clock source is required to drive an RMII PHY.

IEEE 1588 Support
The IEEE 1588 standard is a precision clock synchronization protocol for
networked measurement and control systems. The ADSP-BF518 proces-
sors include hardware support for IEEE 1588 with an integrated precision
time protocol synchronization engine (PTP_TSYNC). This engine pro-
vides hardware assisted time stamping to improve the accuracy of clock
synchronization between PTP nodes. The main features of the
PTP_SYNC engine are:

• Support for both IEEE 1588-2002 and IEEE 1588-2008 protocol
standards

• Hardware assisted time stamping capable of 12.5 ns resolution

• Lock adjustment

• Programmable PTM message support

• Dedicated interrupts

• Programmable alarm

• Multiple input clock sources (SCLK, MII clock, external clock up
to 50 MHz)
1-12 ADSP-BF51x Blackfin Processor Hardware Reference

Introduction
• Programmable pulse per second (PPS) output

• Auxiliary snapshot to time stamp external events

RSI Interface
The removable storage interface (RSI) controller acts as the host interface
for multi-media cards (MMC), secure digital memory cards (SD Card),
secure digital input/output cards (SDIO), and CE-ATA hard disk drives.
The following list describes the main features of the RSI controller:

• Support for a single MMC, SD memory, SDIO card or CE-ATA
hard disk drive

• Support for 1-bit and 4-bit SD modes

• Support for 1-bit, 4-bit and 8-bit MMC modes

• Support for 4-bit and 8-bit CE-ATA hard disk drives

• A ten-signal external interface with clock, command, and up to
eight data lines

• Card detection using one of the data signals

• Card interface clock generation from SCLK

• SDIO interrupt and read wait features

• CE-ATA command completion signal recognition and disable

General-Purpose (GP) Counter
A 32-bit GP counter is provided that can sense 2-bit quadrature or binary
codes as typically emitted by industrial drives or manual thumb wheels.
The counter can also operate in general-purpose up/down count modes.
ADSP-BF51x Blackfin Processor Hardware Reference 1-13

3-Phase PWM Unit
Then, count direction is either controlled by a level-sensitive input signal
or by two edge detectors. A third input can provide flexible zero marker
support and can alternatively be used to input the push-button signal of
thumb wheels. All three signals have a programmable debouncing circuit.
An internal signal forwarded to the GP timer unit enables one timer to
measure the intervals between count events. Boundary registers enable
auto-zero operation or simple system warning by interrupts when pro-
grammable count values are exceeded.

3-Phase PWM Unit
The processors integrate a flexible and programmable 3-phase PWM
waveform generator that can be programmed to generate the required
switching patterns to drive a 3-phase voltage source inverter for ac induc-
tion (ACIM) or permanent magnet synchronous (PMSM) motor control.
In addition, the PWM block contains special functions that considerably
simplify the generation of the required PWM switching patterns for con-
trol of the electronically commutated motor (ECM) or brushless dc motor
(BDCM). Software can enable a special mode for switched reluctance
motors (SRM).

Features of the 3-phase PWM generation unit are:

• 16-bit center-based PWM generation unit

• Programmable PWM pulse width

• Single/double update modes

• Programmable dead time and switching frequency

• Twos-complement implementation which permits smooth transi-
tion to full ON and full OFF states

• Possibility to synchronize the PWM generation to an external
synchronization
1-14 ADSP-BF51x Blackfin Processor Hardware Reference

Introduction
• Special provisions for BDCM operation (crossover and output
enable functions)

• Wide variety of special switched reluctance (SR) operating modes

• Output polarity and clock gating control

• Dedicated asynchronous PWM shutdown signal

The six PWM output signals consist of three high-side drive signals
(PWM_AH, PWM_BH, and PWM_CH) and three low-side drive signals (PWM_AL,
PWM_BL, and PWM_CL). The polarity of the generated PWM signal be set
with software, so that either active high or active low PWM patterns can
be produced. The switching frequency of the generated PWM pattern is
programmable. The PWM generator can operate in single update mode or
double update mode. In single update mode the duty cycle values are pro-
grammable only once per PWM period, so that the resultant PWM
patterns are symmetrical about the midpoint of the PWM period. In the
double update mode, a second updating of the PWM registers is imple-
mented at the midpoint of the PWM period. In this mode, it is possible to
produce asymmetrical PWM patterns that produce lower harmonic distor-
tion in 3-phase PWM inverters.

Parallel Peripheral Interface
The processor provides a Parallel Peripheral Interface (PPI) that can con-
nect directly to parallel A/D and D/A converters, ITU-R 601/656 video
encoders and decoders, and other general-purpose peripherals. The PPI
consists of a dedicated input clock pin and three multiplexed frame sync
pins. The input clock supports parallel data rates up to half the system
clock rate.

In ITU-R 656 modes, the PPI receives and parses a data stream of 8-bit or
10-bit data elements. On-chip decode of embedded preamble control and
synchronization information is supported.
ADSP-BF51x Blackfin Processor Hardware Reference 1-15

Parallel Peripheral Interface
Three distinct ITU-R 656 modes are supported:

• Active video only - The PPI does not read in any data between the
End of Active Video (EAV) and Start of Active Video (SAV) pre-
amble symbols, or any data present during the vertical blanking
intervals. In this mode, the control byte sequences are not stored to
memory; they are filtered by the PPI.

• Vertical blanking only - The PPI only transfers Vertical Blanking
Interval (VBI) data, as well as horizontal blanking information and
control byte sequences on VBI lines.

• Entire field - The entire incoming bitstream is read in through the
PPI. This includes active video, control preamble sequences, and
ancillary data that may be embedded in horizontal and vertical
blanking intervals.

Though not explicitly supported, ITU-R 656 output functionality can be
achieved by setting up the entire frame structure (including active video,
blanking, and control information) in memory and streaming the data out
the PPI in a frame sync-less mode. The processor’s 2-D DMA features
facilitate this transfer by allowing the static frame buffer (blanking and
control codes) to be placed in memory once, and simply updating the
active video information on a per-frame basis.

The general-purpose modes of the PPI are intended to suit a wide variety
of data capture and transmission applications. The modes are divided into
four main categories, each allowing up to 16 bits of data transfer per
PPI_CLK cycle:

• Data receive with internally generated frame syncs

• Data receive with externally generated frame syncs

• Data transmit with internally generated frame syncs

• Data transmit with externally generated frame syncs
1-16 ADSP-BF51x Blackfin Processor Hardware Reference

Introduction
These modes support ADC/DAC connections, as well as video communi-
cation with hardware signalling. Many of the modes support more than
one level of frame synchronization. If desired, a programmable delay can
be inserted between assertion of a frame sync and reception/transmission
of data.

SPORT Controllers
The processor incorporates two dual-channel synchronous serial ports
(SPORT0 and SPORT1) for serial and multiprocessor communications.
The SPORTs support these features:

• Bidirectional, I2S capable operation

Each SPORT has two sets of independent transmit and receive
pins, which enable eight channels of I2S stereo audio.

• Buffered (eight-deep) transmit and receive ports

Each port has a data register for transferring data words to and
from other processor components and shift registers for shifting
data in and out of the data registers.

• Clocking

Each transmit and receive port can either use an external serial
clock or can generate its own in a wide range of frequencies.

• Word length

Each SPORT supports serial data words from 3 to 32 bits in
length, transferred in most significant bit first or least significant
bit first format.
ADSP-BF51x Blackfin Processor Hardware Reference 1-17

SPORT Controllers
• Framing

Each transmit and receive port can run with or without frame sync
signals for each data word. Frame sync signals can be generated
internally or externally, active high or low, and with either of two
pulse widths and early or late frame sync.

• Companding in hardware

Each SPORT can perform A-law or µ-law companding according
to ITU recommendation G.711. Companding can be selected on
the transmit and/or receive channel of the SPORT without addi-
tional latencies.

• DMA operations with single cycle overhead

Each SPORT can automatically receive and transmit multiple buf-
fers of memory data. The processor can link or chain sequences of
DMA transfers between a SPORT and memory.

• Interrupts

Each transmit and receive port generates an interrupt upon com-
pleting the transfer of a data word or after transferring an entire
data buffer or buffers through DMA.

• Multichannel capability

Each SPORT supports 128 channels out of a 1024-channel win-
dow and is compatible with the H.100, H.110, MVIP-90, and
HMVIP standards.
1-18 ADSP-BF51x Blackfin Processor Hardware Reference

Introduction
Serial Peripheral Interface (SPI) Ports
The processor has two SPI-compatible ports that enable the processor to
communicate with multiple SPI-compatible devices.

Each SPI interface uses three pins for transferring data: two data pins and
a clock pin. An SPI chip select input pin lets other SPI devices select the
processor, and several SPI chip select output pins let the processor select
other SPI devices. The SPI select pins are reconfigured general-purpose
I/O pins. Using these pins, the SPI port provides a full-duplex, synchro-
nous serial interface, which supports both master and slave modes and
multimaster environments.

Each SPI port’s baud rate and clock phase/polarities are programmable,
and it has an integrated DMA controller, configurable to support either
transmit or receive datastreams. The SPI’s DMA controller can only ser-
vice unidirectional accesses at any given time.

During transfers, the SPI port simultaneously transmits and receives by
serially shifting data in and out of its two serial data lines. The serial clock
line synchronizes the shifting and sampling of data on the two serial data
lines.

Timers
There are nine general-purpose programmable timer units in the proces-
sor. Eight timers have an external pin that can be configured either as a
Pulse Width Modulator (PWM) or timer output, as an input to clock the
timer, or as a mechanism for measuring pulse widths of external events.
These timer units can be synchronized to an external clock input con-
nected to the TMRCLK/PPI_CLK pin or to the internal SCLK.

The timer units can be used in conjunction with the UARTs to measure
the width of the pulses in the datastream to provide an autobaud detect
function for a serial channel.
ADSP-BF51x Blackfin Processor Hardware Reference 1-19

UART Ports
The timers can generate interrupts to the processor core to provide peri-
odic events for synchronization, either to the processor clock or to a count
of external signals.

In addition to the eight general-purpose programmable timers, a 9th timer
is also provided. This extra timer is clocked by the internal processor clock
and is typically used as a system tick clock for generation of operating sys-
tem periodic interrupts.

UART Ports
The processor provides two full-duplex Universal Asynchronous
Receiver/Transmitter (UART) ports, which are fully compatible with
PC-standard UARTs. The UART ports provide a simplified UART inter-
face to other peripherals or hosts, providing full-duplex, DMA-supported,
asynchronous transfers of serial data. The UART ports include support for
5 to 8 data bits; 1 or 2 stop bits; and none, even, or odd parity. The
UART ports support two modes of operation:

• Programmed I/O

The processor sends or receives data by writing or reading
I/O-mapped UART registers. The data is double buffered on both
transmit and receive.

• Direct Memory Access (DMA)

The DMA controller transfers both transmit and receive data. This
reduces the number and frequency of interrupts required to trans-
fer data to and from memory. Each of the two UARTs have two
dedicated DMA channels, one for transmit and one for receive.
These DMA channels have lower priority than most DMA chan-
nels because of their relatively low service rates.
1-20 ADSP-BF51x Blackfin Processor Hardware Reference

Introduction
The UARTs’ baud rate, serial data format, error code generation and sta-
tus, and interrupts can be programmed to support:

• Wide range of bit rates

• Data formats from 7 to 12 bits per frame

• Generation of maskable interrupts to the processor by both trans-
mit and receive operations

In conjunction with the general-purpose timer functions, autobaud detec-
tion is supported.

The capabilities of the UART ports are further extended with support for
the Infrared Data Association (IrDA®) Serial Infrared Physical Layer Link
Specification (SIR) protocol.

Security
ADSP-BF51x processors provides security features (Blackfin Lockbox™
Secure Technology) that enable customer applications to use secure proto-
cols, consisting of code authentication and execution of code within a
secure environment. Implementing secure protocols on Blackfin proces-
sors involves a combination of hardware and software components.
Together these components protect secure memory spaces and restrict
control of security features to authenticated developer code.

• Blackfin Lockbox Secure Technology incorporates a secure hard-
ware platform for confidentiality and integrity protection of secure
code and data with authenticity maintained by secure software.

• This secure platform provides:

• A secure execution mode

• Secure storage for on-chip keys
ADSP-BF51x Blackfin Processor Hardware Reference 1-21

Real-Time Clock
• On-chip secure ROM

• Secure RAM

• Access to code and data in the secure domain is monitored by the
hardware and any unauthorized access to the secure domain is
prevented.

• The secure ROM code establishes the root of trust for the secure
software in the system.

• The secure RAM provides integrity protection and confidentiality
for authenticated code and data.

• User-defined cipher key(s) and ID(s) can be securely stored in the
on-chip OTP memory.

• Every processor ships from the ADI factory with a unique chip ID
value stored in publicly accessible OTP memory area.

Real-Time Clock
The processor’s Real-Time Clock (RTC) provides a robust set of digital
watch features, including current time, stopwatch, and alarm. The RTC is
clocked by a 32.768 kHz crystal external to the processor. The RTC
peripheral has dedicated power supply pins, so that it can remain powered
up and clocked even when the rest of the processor is in a low power state.
The RTC provides several programmable interrupt options, including
interrupt per second, minute, hour, or day clock ticks, interrupt on pro-
grammable stopwatch countdown, or interrupt at a programmed alarm
time.

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal
by a prescaler. The counter function of the timer consists of four counters:
a 60 second counter, a 60 minute counter, a 24 hours counter, and a
32768 day counter.
1-22 ADSP-BF51x Blackfin Processor Hardware Reference

Introduction
When enabled, the alarm function generates an interrupt when the output
of the timer matches the programmed value in the alarm control register.
There are two alarms. The first alarm is for a time of day. The second
alarm is for a day and time of that day.

The stopwatch function counts down from a programmed value, with one
minute resolution. When the stopwatch is enabled and the counter under-
flows, an interrupt is generated.

Like the other peripherals, the RTC can wake up the processor from sleep
mode or deep sleep mode upon generation of any RTC wakeup event. An
RTC wakeup event can also wake up the on-chip internal voltage regula-
tor from a powered down state.

Watchdog Timer
The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
availability by forcing the processor to a known state through generation
of a hardware reset, nonmaskable interrupt (NMI), or general-purpose
interrupt, if the timer expires before being reset by software. The pro-
grammer initializes the count value of the timer, enables the appropriate
interrupt, then enables the timer. Thereafter, the software must reload the
counter before it counts to zero from the programmed value. This protects
the system from remaining in an unknown state where software that
would normally reset the timer has stopped running due to an external
noise condition or software error.

If configured to generate a hardware reset, the watchdog timer resets both
the CPU and the peripherals. After a reset, software can determine if the
watchdog was the source of the hardware reset by interrogating a status bit
in the watchdog control register.

The timer is clocked by the system clock (SCLK), at a maximum frequency
of fSCLK.
ADSP-BF51x Blackfin Processor Hardware Reference 1-23

Clock Signals
Clock Signals
The processor can be clocked by an external crystal, a sine wave input, or a
buffered, shaped clock derived from an external clock oscillator.

This external clock connects to the processor’s CLKIN pin. The CLKIN input
cannot be halted, changed, or operated below the specified frequency dur-
ing normal operation. This clock signal should be a TTL-compatible
signal.

The core clock (CCLK) and system peripheral clock (SCLK) are derived from
the input clock (CLKIN) signal. An on-chip Phase Locked Loop (PLL) is
capable of multiplying the CLKIN signal by a user-programmable (0.5× to
64×) multiplication factor (bounded by specified minimum and maxi-
mum VCO frequencies). The default multiplier is 10×, but it can be
modified by a software instruction sequence. On-the-fly frequency
changes can be made by simply writing to the PLL_DIV register.

All on-chip peripherals are clocked by the system clock (SCLK). The system
clock frequency is programmable by means of the SSEL[3:0] bits of the
PLL_DIV register.

Dynamic Power Management
The processor provides four operating modes, each with a different perfor-
mance/power profile. In addition, dynamic power management provides
the control functions to dynamically alter the processor core supply volt-
age to further reduce power dissipation. Control of clocking to each of the
peripherals also reduces power consumption.

Full-On Mode (Maximum Performance)
In the full-on mode, the PLL is enabled, not bypassed, providing the max-
imum operational frequency. This is the normal execution state in which
1-24 ADSP-BF51x Blackfin Processor Hardware Reference

Introduction
maximum performance can be achieved. The processor core and all
enabled peripherals run at full speed.

Active Mode (Moderate Power Savings)
In the active mode, the PLL is enabled, but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. In this mode, the CLKIN to VCO multi-
plier ratio can be changed, although the changes are not realized until the
full on mode is entered. DMA access is available to appropriately config-
ured L1 memories.

In the active mode, it is possible to disable the PLL through the PLL con-
trol register (PLL_CTL). If disabled, the PLL must be re-enabled before
transitioning to the full on or sleep modes.

Sleep Mode (High Power Savings)
The sleep mode reduces power dissipation by disabling the clock to the
processor core (CCLK). The PLL and system clock (SCLK), however, con-
tinue to operate in this mode. Typically an external event or RTC activity
will wake up the processor. When in the sleep mode, assertion of any
interrupt causes the processor to sense the value of the bypass bit (BYPASS)
in the PLL control register (PLL_CTL). If bypass is disabled, the processor
transitions to the full on mode. If bypass is enabled, the processor transi-
tions to the active mode.

When in the sleep mode, system DMA access to L1 memory is not
supported.

Deep Sleep Mode (Maximum Power Savings)
The deep sleep mode maximizes dynamic power savings by disabling the
processor core and synchronous system clocks (CCLK and SCLK). Asynchro-
nous systems, such as the RTC, may still be running, but cannot access
ADSP-BF51x Blackfin Processor Hardware Reference 1-25

Instruction Set Description
internal resources or external memory. This powered-down mode can only
be exited by assertion of the reset interrupt or by an asynchronous inter-
rupt generated by the RTC. When in deep sleep mode, an RTC
asynchronous interrupt causes the processor to transition to the active
mode. Assertion of RESET while in deep sleep mode causes the processor to
transition to the full on mode.

Hibernate State
For lowest possible power dissipation, this state allows the internal supply
(VDDINT) to be powered down, while keeping the I/O supply (VDDEXT)
running. Although not strictly an operating mode like the four modes
detailed above, it is illustrative to view it as such.

Instruction Set Description
The Blackfin processor family assembly language instruction set employs
an algebraic syntax designed for ease of coding and readability. Refer to
Blackfin Processor Programming Reference for detailed information. The
instructions have been specifically tuned to provide a flexible, densely
encoded instruction set that compiles to a very small final memory size.
The instruction set also provides fully featured multifunction instructions
that allow the programmer to use many of the processor core resources in
a single instruction. Coupled with many features more often seen on
microcontrollers, this instruction set is very efficient when compiling C
and C++ source code. In addition, the architecture supports both user
(algorithm/application code) and supervisor (O/S kernel, device drivers,
debuggers, ISRs) modes of operation, allowing multiple levels of access to
core resources.
1-26 ADSP-BF51x Blackfin Processor Hardware Reference

Introduction
The assembly language, which takes advantage of the processor’s unique
architecture, offers these advantages:

• Embedded 16/32-bit microcontroller features, such as arbitrary bit
and bit field manipulation, insertion, and extraction; integer opera-
tions on 8-, 16-, and 32-bit data types; and separate user and
supervisor stack pointers

• Seamlessly integrated DSP/CPU features optimized for both 8-bit
and 16-bit operations

• A multi-issue load/store modified Harvard architecture, which sup-
ports two 16-bit MAC or four 8-bit ALU + two load/store + two
pointer updates per cycle

• All registers, I/O, and memory mapped into a unified 4G byte
memory space, providing a simplified programming model

Code density enhancements include intermixing of 16- and 32-bit
instructions with no mode switching or code segregation. Frequently used
instructions are encoded in 16 bits.

Development Tools
The processor is supported by a complete set of software and hardware
development tools, including Analog Devices’ emulators and the Cross-
Core Embedded Studio or VisualDSP++ development environment. (The
emulator hardware that supports other Analog Devices processors also
emulates the processor.)
ADSP-BF51x Blackfin Processor Hardware Reference 1-27

Development Tools
The development environments support advanced application code devel-
opment and debug with features such as:

• Create, compile, assemble, and link application programs written
in C++, C, and assembly

• Load, run, step, halt, and set breakpoints in application programs

• Read and write data and program memory

• Read and write core and peripheral registers

• Plot memory

Analog Devices DSP emulators use the IEEE 1149.1 JTAG test access
port to monitor and control the target board processor during emulation.
The emulator provides full speed emulation, allowing inspection and
modification of memory, registers, and processor stacks. Nonintrusive
in-circuit emulation is assured by the use of the processor JTAG inter-
face—the emulator does not affect target system loading or timing.

Software tools also include Board Support Packages (BSPs). Hardware
tools also include standalone evaluation systems (boards and extenders). In
addition to the software and hardware development tools available from
Analog Devices, third parties provide a wide range of tools supporting the
Blackfin processors. Third party software tools include DSP libraries,
real-time operating systems, and block diagram design tools.
1-28 ADSP-BF51x Blackfin Processor Hardware Reference

Memory
2 MEMORY

This chapter discusses memory population specific to the ADSP-BF51x
processors. Functional memory architecture is described in Blackfin Pro-
cessor Programming Reference.

Memory Architecture
Figure 2-1 provides an overview of the ADSP-BF51x processor system
memory map. For a detailed discussion of how to use them, see Blackfin
Processor Programming Reference. Note the architecture does not define a
separate I/O space. All resources are mapped through the flat 32-bit
address space. The memory is byte-addressable.

The upper portion of internal memory space is allocated to the core and
system MMRs. Accesses to this area are allowed only when the processor is
in supervisor or emulation mode (see the Operating Modes and States
chapter in Blackfin Processor Programming Reference).

Within the external memory map, four banks of asynchronous memory
space and one bank of SDRAM memory are available. Each of the asyn-
chronous banks is 1M byte and the SDRAM bank is up to 128M byte.
ADSP-BF51x Blackfin Processor Hardware Reference 2-1

L1 Instruction SRAM
L1 Instruction SRAM
The processor core reads the instruction memory through the 64-bit wide
instruction fetch bus. All addresses from this bus are 64-bit aligned. Each
instruction fetch can return any combination of 16-, 32-, or 64-bit
instructions (for example, four 16-bit instructions, two 16-bit instructions
and one 32-bit instruction, or one 64-bit instruction).

Table 2-1. ADSP-BF51x Memory Map

Starting Address Ending Address Description

0xFFE0 0000 0xFFFF FFFF Core MMR (2M bytes)

0xFFC0 0000 0xFFDF FFFF System MMR (2M bytes)

0xFFB0 1000 0xFFBF FFFF reserved

0xFFB0 0000 0xFFB0 0FFF Scratchpad SRAM (4K bytes)

0xFFA1 4000 0xFFAF FFFF reserved

0xFFA1 0000 0xFFA1 3FFF Instruction SRAM/Cache (16K bytes)

0xFFA0 8000 0xFFA0 FFFF reserved

0xFFA0 4000 0xFFA0 7FFF Instruction Bank B SRAM (16K bytes)

0xFFA0 0000 0xFFA0 3FFF Instruction Bank A SRAM (16K bytes)

0xFF90 8000 0xFF9F FFFF reserved

0xFF90 4000 0xFF90 7FFF Data Bank B SRAM/Cache (16K bytes)

0xFF90 0000 0xFF90 3FFF Data Bank B SRAM (16K bytes)

0xFF80 8000 0xFF9F FFFF reserved

0xFF80 4000 0xFF80 7FFF Data Bank A SRAM/Cache (16K bytes)

0xFF80 0000 0xFF80 3FFF Data Bank A SRAM (16K bytes)

0xEF00 8000 0xFF7F FFFF reserved

0xEF00 0000 0xEF00 7FFF BOOT ROM (32K bytes)

0x2040 0000 0xEEFF FFFF reserved

0x2030 0000 0x203F FFFF Async Bank 3 (1M bytes)

0x2020 0000 0x202F FFFF Async Bank 2 (1M bytes)

0x2010 0000 0x201F FFFF Async Bank 1 (1M bytes)

0x2000 0000 0x200F FFFF Async Bank 0 (1M bytes)

0x0800 0000 0x1FFF FFFF reserved

0x0000 0000 0x07FF FFFF SDRAM (128M bytes)
2-2 ADSP-BF51x Blackfin Processor Hardware Reference

Memory
Table 2-2 lists the memory start locations of the L1 instruction memory
subbanks.

L1 Data SRAM
Table 2-3 shows how the subbank organization is mapped into memory.

Table 2-2. L1 Instruction Memory Subbanks

Memory Subbank Memory Start Location for
ADSP-BF51x Processors

0 0xFFA0 0000

1 0xFFA0 1000

2 0xFFA0 2000

3 0xFFA0 3000

4 0xFFA0 4000

5 0xFFA0 5000

6 0xFFA0 6000

7 0xFFA0 7000

8 0xFFA1 0000

9 0xFFA1 1000

10 0xFFA1 2000

11 0xFFA1 3000

Table 2-3. L1 Data Memory SRAM Subbank Start Addresses

Memory Bank and Subbank ADSP-BF51x Processors

Data Bank A, Subbank 0 0xFF80 0000

Data Bank A, Subbank 1 0xFF80 1000

Data Bank A, Subbank 2 0xFF80 2000

Data Bank A, Subbank 3 0xFF80 3000
ADSP-BF51x Blackfin Processor Hardware Reference 2-3

L1 Data Cache
L1 Data Cache
When data cache is enabled (controlled by bits DMC[1:0] in the
DMEM_CONTROL register), either 16K byte of data bank A or 16K byte of
both data bank A and data bank B can be set to serve as cache.

Boot ROM
The lowest 32K byte of internal memory space is occupied by the boot
ROM starting from address 0xEF00 0000. This 16-bit boot ROM is not
part of the L1 memory module. Read accesses take one SCLK cycle and no
wait states are required. The read-only memory can be read by the core as
well as by DMA. It can be cached and protected by CPLB blocks like
external memory. The boot ROM not only contains boot-strap loader

Data Bank A, Subbank 4 0xFF80 4000

Data Bank A, Subbank 5 0xFF80 5000

Data Bank A, Subbank 6 0xFF80 6000

Data Bank A, Subbank 7 0xFF80 7000

Data Bank B, Subbank 0 0xFF90 0000

Data Bank B, Subbank 1 0xFF90 1000

Data Bank B, Subbank 2 0xFF90 2000

Data Bank B, Subbank 3 0xFF90 3000

Data Bank B, Subbank 4 0xFF90 4000

Data Bank B, Subbank 5 0xFF90 5000

Data Bank B, Subbank 6 0xFF90 6000

Data Bank B, Subbank 7 0xFF90 7000

Table 2-3. L1 Data Memory SRAM Subbank Start Addresses (Continued)

Memory Bank and Subbank ADSP-BF51x Processors
2-4 ADSP-BF51x Blackfin Processor Hardware Reference

Memory
code, it also provides some subfunctions that are user-callable at runtime.
For more information, see Chapter 26, “System Reset and Booting”.

External Memory
The external memory space is shown in Figure 2-1 on page 2-2. One of
the memory regions is dedicated to SDRAM support. The size of the
SDRAM bank is programmable and can range in size from 16M byte to
128M byte. The start address of the bank is 0x0000 0000.

Each of the next four banks contains 1M byte and is dedicated to support
asynchronous memories. The start address of the asynchronous memory
bank is 0x2000 0000.

Processor-Specific MMRs
The complete set of memory-related MMRs is described in the Blackfin
Processor Programming Reference. Several MMRs have bit definitions spe-
cific to the processors described in this manual. These registers are
described in the following sections.
ADSP-BF51x Blackfin Processor Hardware Reference 2-5

Processor-Specific MMRs
DMEM_CONTROL Register
The data memory control register (DMEM_CONTROL), shown in Figure 2-1,
contains control bits for the L1 data memory.

DTEST_COMMAND Register
When the data test command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed, and the data is transferred
through the data test data registers (DTEST DATA[1:0]). This register is
shown in Figure 2-2.

Figure 2-1. L1 Data Memory Control Register

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 10 0 0 0 0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

Data Memory Control Register (DMEM_CONTROL)

Reset = 0x0000 1001

ENDCPLB (Data Cacheability
Protection Lookaside Buffer
Enable)
0 - CPLBs disabled. Minimal

address checking only
1 - CPLBs enabled
DMC[1:0] (L1 Data Memory
Configure)

DCBS (L1 Data Cache Bank Select)

PORT_PREF1 (DAG1 Port
Preference)
0 - DAG1 non-cacheable fetches

use port A
1 - DAG1 non-cacheable fetches

use port B

PORT_PREF0 (DAG0 Port
Preference)
0 - DAG0 non-cacheable fetches

use port A
1 - DAG0 non-cacheable fetches

use port B

Valid only when DMC[1:0] = 11. Determines
whether Address bit A[14] or A[23] is used to
select the L1 data cache bank.
0 - Address bit 14 is used to select Bank A or B

for cache access. If bit 14 of address is 1,
select L1 Data Memory Data Bank A; if bit 14
of address is 0, select L1 Data Memory Data
Bank B.

1 - Address bit 23 is used to select Bank A or B for
cache access. If bit 23 of address is 1, select
L1 Data Memory Data Bank A; if bit 23 of
address is 0, select L1 Data Memory Data
Bank B.

0xFFE0 0004

For ADSP-BF51x:
00 - Both data banks are

SRAM, also invalidates all
cache lines if previously
configured as cache

01 - Reserved
10 - Data Bank A is lower

16K byte SRAM, upper
16K byte cache
Data Bank B is SRAM

11 - Both data banks are
lower 16K byte SRAM,
upper 16K byte cache
2-6 ADSP-BF51x Blackfin Processor Hardware Reference

Memory
 The data/instruction access bit allows direct access via the
DTEST_COMMAND MMR to L1 instruction SRAM.

 Bit 14 and bit 23 of DTEST_COMMAND must be cleared to correctly
access the L1 Instruction Memory Bank A. Likewise, for accesses to
L1 Instruction Memory Bank B, bits 14 and 23 must both be set.

Figure 2-2. Data Test Command Register

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X XX X X X X X X XX X X X X

Data Test Command Register (DTEST_COMMAND)

00 - Access subbank 0
01 - Access subbank 1
10 - Access subbank 2
11 - Access subbank 3

Subbank Access[1:0]
(SRAM ADDR[13:12])

Reset = Undefined

Read/Write Access

Access Way/Instruction
Address Bit 11
0 - Access Way0/Instruction bit 11 = 0
1 - Access Way1/Instruction bit 11 = 1

Data/Instruction Access
0 - Access Data
1 - Access Instruction

0 - Read access
1 - Write access
Array Access
0 - Access tag array
1 - Access data array

Double Word Index[1:0]
Selects one of four 64-bit
double words in a 256-bit line

Set Index[5:0]
Selects one of 64 sets

Data Bank Access

Data Cache Select/
Address Bit 14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

0xFFE0 0300

0 - Reserved/Instruction bit 14 = 0
1 - Select Data Cache Bank/Instruction bit 14 = 1

0 - Access Data Bank A/Instr Memory 0xFFA0 0000
1 - Access Data Bank B/Instr Memory 0xFFA0 4000
ADSP-BF51x Blackfin Processor Hardware Reference 2-7

Processor-Specific MMRs
2-8 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory
3 ONE-TIME PROGRAMMABLE
MEMORY

This chapter describes One-Time-Programmable (OTP) memory features
of the ADSP-BF51x Blackfin processor.

The chapter includes the following sections:

• “OTP Memory Overview”

• “OTP Memory Map” on page 3-3

• “Error Correction” on page 3-7

• “OTP Access” on page 3-10

• “Error Correction Policy” on page 3-8

• “OTP Timing Parameters” on page 3-11

• “Callable ROM Functions for OTP ACCESS” on page 3-14

• “Programming and Reading OTP” on page 3-17

• “Write-Protecting OTP Memory” on page 3-24

• “Accessing Private OTP Memory” on page 3-26

• “OTP Programming Examples” on page 3-26
ADSP-BF51x Blackfin Processor Hardware Reference 3-1

OTP Memory Overview
OTP Memory Overview
The ADSP-BF51x processors include an on-chip, one-time-programmable
memory array which provides 64k-bits of non-volatile memory. This
includes the array and logic to support read access and programming. A
mechanism for error correction is also provided. Additionally, pages can
be write protected.

OTP memory can be programmed through various methods including
software running on the Blackfin processor. The ADSP-BF51x processors
provide C and assembly callable functions in the on-chip ROM to help
the developer access the OTP memory.

The one-time-programmable memory is divided into two main regions. A
32-k bit “public” unsecured region which has no access restrictions and a
32-k bit “private” secured region with access restricted to authenticated
code when operating in Secure Mode (For information about these modes,
see Chapter 25, “Security” in this volume of the ADSP-BF51x Blackfin
Processor Hardware Reference.)

OTP enables developers to store both public and private data on-chip. A
64K x 1 bit array is available as shown in Figure 3-2. In addition to stor-
ing public and private data, it allows developers to store completely
user-definable data such as customer ID, product ID, MAC address, etc.

 The public portion of OTP memory contains many “factory set
only” values. Users are urged to exercise caution when writing to
OTP memory and to consult the OTP memory map for details of
Customer Programmable Settings (CPS) and factory reserved areas
of this memory. See also Factory Page Settings (FPS) and Preboot
Page Settings (PBS) in Chapter 26, “System Reset and Booting” in
this volume of the ADSP-BF51x Blackfin Processor Hardware
Reference.
3-2 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory
OTP Memory Map
The OTP is not part of the Blackfin linear memory map. It has a separate
memory map that is shown in Figure 3-2. OTP memory is not accessed
directly using the Blackfin memory map, rather, it is accessed via four
32-bit wide registers (OTP_DATA3:0) which act as the OTP memory
read/write buffer.

In the case of an OTP memory read, the OTP_DATAx registers will contain
the 16-byte result of the OTP memory access. In the case of an OTP
memory write, the OTP_DATAx registers will contain 16 bytes of data to be
written to the OTP memory.

OTP_DATA3—0 registers are organized into a 128 bit page as shown in
Figure 3-1.

Figure 3-1. OTP_DATAx Registers

127 96 95 64 63 32 31 0

BIT 31 BIT 0 BIT 31 BIT 0 BIT 31 BIT 0 BIT 31 BIT 0

OTP_DATA3 OTP_DATA2 OTP_DATA1 OTP_DATA0
ADSP-BF51x Blackfin Processor Hardware Reference 3-3

OTP Memory Map
Figure 3-2. Public OTP Memory Map

PROTECTION BITS FOR PAGES 0x000 (LSB) THROUGH 0x07F (MSB)

P
U

B
L

IC
 O

T
P

 (
25

6
PA

G
E

S
)

FACTORY RESERVED

PROTECTION BITS FOR PAGES 0x100 (LSB) THROUGH 0x17F (MSB)

PROTECTION BITS FOR PAGES 0x180 (LSB) THROUGH 0x1FF (MSB)

UNIQUE CHIP ID [127:0]

FACTORY RESERVED

Bytes 15:14, Part Number Integer

FACTORY RESERVED

FACTORY RESERVED

FACTORY RESERVED

FACTORY RESERVED

FACTORY RESERVED

FACTORY RESERVED

FACTORY RESERVED

FACTORY RESERVED

CUSTOMER KEY [127:0]

CUSTOMER KEY [255:128]

CUSTOMER KEY [383:256]

RESERVED

RESERVED

UNSECURED GENERAL PURPOSE SPACE

RESERVED

RESERVED

Bytes[15:8], PBS00H

Bytes[15:8], PBS01H

Bytes[15:8], RESERVED PBS003H

RESERVED

UNSECURED ERROR CORRECTION CODE (ECC) SPACE2

PAGE
NAME1

PAGE
ADDRESS BIT 127

128 BIT PAGE

64 BIT UPPER HALF PAGE

BIT 0

PROTECTION BITS FOR PAGES 0x080 (LSB) THROUGH 0x0FF (MSB)

BYTE

Bytes[15:8], PBS002H

0x000

0x001

0x002

0x003

0x004 FPS00

0x005 FPS01

0x006 FPS02

0x007 FPS03

0x008 FPS04

0x009 FPS05

0x00A FPS06

0x00B FPS07

0x00C FPS08

0x00D FPS09

0x00E FPS10

0x00F FPS11

0x10 CPS00

0x11 CPS01

0x12 CPS02

0x13 CPS03

0x14 CPS04

0x15 CPS05

0x16 CPS06

0x17 CPS07

0x18 PBS00

0x19 PSS01

0x1A PBS02

0x1B PBS03

0x0E0 to 0x0FF

0x1C to 0x0DF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

64 BIT LOWER HALF PAGE

Footnotes
1. Factory Programmable Settings (FPS) are programmed at the factory. Customer Progammable Settings (CPS) are programm
by the customer.
2. This space should NOT be written by the customer. 8-bit error correction codes are automatically generated by firmware an
stored in this region.
3. Part Number Field Definition. A string indicating the model number of the product is programmed into this location. Each
character is represented by standard 8-bit ASCII code. A termination character of 0x00000000 terminates the string. The
field supports up to 12 alphanumeric characters plus one termination character. The first string character resides in bits[7:0]
and the string grows to the left with the left most character being the termination character. Integer representation of the part
number is shown in Table 3-1. Byte 13 in FPS03 is reserved.

Bytes[7:0], PBS00L

Bytes[7:0], RESERVED PBS001U

Bytes[7:0], PBS002L

Bytes[7:0], RESERVED PBS003L

Bytes 12:0, Part Number String3
3-4 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory
Figure 3-3. Private OTP Memory Map

P
R

IV
A

T
E

 O
T

P
 (

25
6

PA
G

E
S

)

SECURED GENERAL PURPOSE SPACE

SECURED FACTORY RESERVED SPACE

SECURED ERROR CORRECTION CODE (ECC) SPACE1

PAGE
ADDRESS BIT 127

128 BIT PAGE

64 BIT UPPER HALF PAGE

BIT 0

BYTE

0x1E0 to 0x1FF

0x110 to 0x1DF

0x100 to 0x10F

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

64 BIT LOWER HALF PAGE

Footnotes
1. This space should NOT be written by the customer. 8-bit error correction codes are automatically generated by firmware an
stored in this region.
ADSP-BF51x Blackfin Processor Hardware Reference 3-5

OTP Memory Map
OTP memory ranges marked as Factory Reserved, Reserved and Error
Correction Code Space, in Figure 3-2, must not be programmed by the
user. Customer Programmable Settings are optionally programmed by the
developer.

Page-Protection bits provide protection for each 128-bit page within the
OTP. By default, the OTP array bits are not set and will read back as zero
values if left unprogrammed. Programmed data values consist of zeroes
and ones, therefore, after programming OTP memory, some bits will
intentionally remain as zero values. The write-protect bits provide protec-
tion for the zero value bits to remain as zeroes and prevent future
programming (inadvertent or malicious) from changing bit values from
zero to one.

Pages 0x10, 0x11, and 0x12 hold the customer public key which is used
for Lockbox digital signature authentication. Refer to Chapter 25, “Secu-
rity” for more information on Lockbox and how the public key is used.

OTP memory is logically arranged in a sequential set of 128-bit pages.
Each OTP memory address refers to a 128-bit page. The ADSP-BF51x
processor thus provides 512 pages of OTP memory.

Table 3-1. Part Number Field Definition

Part # Code

ADSP-BF512 0x0200

ADSP-BF512F 0xF200

ADSP-BF514 0x0202

ADSP-BF514F 0xF202

ADSP-BF516 0x0204

ADSP-BF516F 0xF204

ADSP-BF518 0x0206

ADSP-BF518F 0xF206
3-6 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory
In order to read or program the OTP memory, a set of functions are pro-
vided in the on-chip ROM. These functions include bfrom_OtpRead(),
bfrom_OtpWrite() and bfrom_OtpCommand().

Error Correction
To meet strict quality goals, error correction is used to ensure data integ-
rity. bfrom_OtpRead() and bfrom_OtpWrite(), provided in the on-chip
ROM, support error correction.

Error correction works by calculating an 8-bit Error Correction Code
(ECC) for each 64-bit data word (half page) when it is programmed into
the OTP. When this word is later read from OTP, its corresponding ECC
is also read and a data integrity check is performed. If the check fails, error
correction on the data word can be attempted using the ECC. Depending
on the type of error, the error correction algorithm will perform as shown
in Table 3-2.

Table 3-2. Hamming Code Single Error Corrections, Double Error
Detection

Number of Bad
Bits in Data Word

Error(s) Detected? Error(s) Corrected?

0 N/A N/A

1 Yes Yes

2 Yes No

3 or more No No
ADSP-BF51x Blackfin Processor Hardware Reference 3-7

Error Correction
Error Correction Policy
1. Error correction requires that OTP space is written and read in

64-bit widths. Firmware will only support writing or reading half
of an OTP page.

2. Error correction is used to correct data in all pages of OTP space
except the protection pages (0x0 to 0x3) and ECC pages them-
selves. See “OTP Access” on page 3-10 for more information.

3. Firmware will generate and program the 8-bit ECC fields as
mapped in Table 3-3 and Table 3-4.

4. The developer is responsible for locking both the data page(s)
AND the ECC page(s) after all programming is complete.

5. Pages 0x04 to 0x0F are reserved for ADI factory use. Therefore,
pages 0x004 to 0x00F, 0x0E0, and 0x0E1 will be locked coming
out of the Analog Devices factory.

Table 3-3. Mapping for Storage of Error Correction Codes for Unsecured
OTP Space

Page Byte

15 14 13 12 11 10 9 8

0x0E0 0x007U 0x007L 0x006U 0x006L 0x005U 0x005L 0x004U 0x004L

0x0E1 0x00FU 0x00FL 0x00EU 0x00EL 0x00DU 0x00DL 0x00CU 0x00CL

0x0E2 0x017U 0x017L 0x016U 0x016L 0x015U 0x015L 0x014U 0x014L

....

0x0FB 0x0DFU 0x0DFL 0x0DEU 0x0DEL 0x0DDU 0x0DDL 0x0DCU 0x0DCL
3-8 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory
Page 7 6 5 4 3 2 1 0

0x0E0 Unused Unused Unused Unused Unused Unused Unused Unused

0x0E1 0x00BU 0x00BL 0x00AU 0x00AL 0x009U 0x009L 0x008U 0x008L

0x0E2 0x013U 0x013L 0x012U 0x012L 0x011U 0x011L 0x010U 0x010L

....

0x0FB 0x0DBU 0x0DBL 0x0DAU 0x0DAL 0x0D9U 0x0D9L 0x0D8U 0x0D8L

Table 3-4. Mapping for Storage of Error Correction Codes for Secured
OTP Space

Page Byte

15 14 13 12 11 10 9 8

0x1E0 0x107U 0x107L 0x106U 0x106L 0x105U 0x105L 0x104U 0x104L

0x1E1 0x10FU 0x10FL 0x10EU 0x10EL 0x10DU 0x10DL 0x10CU 0x10CL

0x1E2 0x117U 0x117L 0x116U 0x116L 0x115U 0x115L 0x114U 0x114L

....

0x1FB 0x1DFU 0x1DFL 0x1DEU 0x1DEL 0x1DDU 0x1DDL 0x1DCU 0x1DCL

Page 7 6 5 4 3 2 1 0

0x1E0 0x103U 0x103L 0x102U 0x102L 0x101U 0x101L 0x100U 0x100L

0x1E1 0x10BU 0x10BL 0x10AU 0x10AL 0x109U 0x109L 0x108U 0x108L

0x1E2 0x113U 0x113L 0x112U 0x112L 0x111U 0x111L 0x110U 0x110L

....

0x1FB 0x1DBU 0x1DBL 0x1DAU 0x1DAL 0x1D9U 0x1D9L 0x1D8U 0x1D8L

Table 3-3. Mapping for Storage of Error Correction Codes for Unsecured
OTP Space (Continued)

Page Byte

15 14 13 12 11 10 9 8
ADSP-BF51x Blackfin Processor Hardware Reference 3-9

OTP Access
OTP Access
The ADSP-BF51x on-chip ROM contains functions for initializing OTP
timing parameters, reading and programming the OTP memory. These
functions include bfrom_OtpRead(), bfrom_OtpWrite() and
bfrom_OtpCommand().

 These functions are callable from C or assembly application code.
Use only these functions for accessing OTP memory. Directly
accessing memory locations within OTP memory by other means is
not supported.

The existing ECC in ROM is known as “Hamming [72,64]” - This
is specifically a 64-bit Data, +8-bit ECC Field, for 1-bit correction
and 2-bit error detection scheme.

 The ROM-based OTP read/write API must be used for all OTP
data accesses (see limited exceptions below). The ROM code incor-
porates the ONLY ECC method supported by Analog Devices.
Analog Devices does not support direct access of OTP data without
using error correction.

Exceptions: The only bits that do not use ECC are page lock bits
(first four pages) and the preboot invalidate bits. See the Preboot sec-
tion in Chapter 26, “System Reset and Booting”.

ADI does not support any ECC other than the ECC provided by ADI
within the ROM API. All attempts to implement other schemes are not
guaranteed or supported by Analog Devices.

OTP memory programming is done serially under software control. Since
the unprogrammed OTP memory value defaults to zero, only bits whose
value is intended to be “1” have to be programmed. In order to protect
areas of OTP memory that have been programmed or areas which have
intentionally been left unprogrammed which end users wish to remain
unchanged, write-protect bits can be set for each 128-bit page within
3-10 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory
OTP memory. Each write-protect bit, when set, will prevent further pro-
gramming attempts to OTP memory on a per page basis. Refer to the
OTP memory map (Figure 3-2) for details.

The ADSP-BF51x Blackfin processor can program OTP through software
code executing directly on the Blackfin processor. No on-chip charge
pump exists, therefore, an externally applied voltage is required to apply
the voltage levels appropriate for programming OTP memory. Refer to
the processor data sheet for VPPOTP specifications. OTP programming
code can be loaded into the processor via JTAG emulation, DMA, and all
supported boot methods.

OTP memory can only be written once (changing a bit from 0 to 1). Once
a bit has been changed from a 0 to a 1, it cannot be changed back to 0.
The write-protect bits prevent OTP memory from having any bits that are
meant to remain as 0 value later programmed to a value of 1.

Prior to accessing OTP memory, refer to the product data sheet for speci-
fications on VDDOTP and VPPOTP voltage levels to ensure reliable
OTP programming. OTP timing parameter settings must be set prior to
attempting any write accesses to OTP.

OTP Timing Parameters
In order to read and program the OTP memory reliably, set the OTP tim-
ing parameters prior to accessing OTP memory. All of the timing
parameters are bitfields within the OTP_TIMING register (see
“OTP_TIMING Register” on page 3-14). The bfrom_OtpCommand() func-
tion (detailed in the following sections) is provided in the on-chip ROM
to program the timing parameters.
ADSP-BF51x Blackfin Processor Hardware Reference 3-11

OTP Access
 OTP timing parameters must be set with bfrom_OtpCommand().
OTP read accesses can use the OTP timing default reset value
(Reset: OTP_TIMING = 0x00001485).

Use of the OTP timing default reset value for writes will result in
write errors as this timing value is not appropriate for performing
write accesses.

Insufficient voltage/current provided to OTP during write access
or incorrect OTP timing parameters may result in the following
error returned during OTP writes:

0x11: error code returned (multiple bad bits in 64 bit data), and
subsequent reads from this page return 0.

The OTP timing parameters consist of several concatenated fields and
form one value, which then is passed as an argument to the
bfrom_OtpCommand() function. There is one field for which the developer
must calculate a value based upon the desired SCLK frequency of operation
at which the OTP access will be performed. This calculated value then is
combined with a constant value field whose value is provided by Analog
Devices to arrive at the setting appropriate for the access.

The OTP timing parameters are comprised of two values as follows.

OTP_TIMING[7:0] = OTP_TP1 = 1000 / sclk_period (in nanoseconds)

OTP_TIMING[31:8] = OTP_TP2 = 0x145487

The OTP_TP2 field is specified by Analog Devices and must be used to
ensure reliable OTP write accesses. The user-calculated field must be com-
bined with the OTP_TP2 value as shown in Listing 3-1 and Listing 3-2.

Example calculations shown in Listing 3-1 and Listing 3-2 are based upon
VDDOTP and VPPOTP voltage values specified in
ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor Data Sheet.
The OTP timing parameter calculations are dependent upon user-defined
3-12 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory
SCLK frequency of operation. (Refer to the processor data sheet for actual
VDDOTP and VPPOTP voltage and SCLK specifications, do not rely on
the specifications quoted in these examples.)

Listing 3-1. OTP Timing Calculations for SCLK = 80 MHz

For SCLK = 12.5ns (80 MHz), the following field calculations are needed
to determine the OTP timing argument for the bfrom_OtpCommand() call.

The code for the API call (in C) is:

// Initialize OTP access settings

// Proper access settings for SCLK = 80 MHz

const u32 OTP_init_value = 0x14548750;

return_code = bfrom_OtpCommand(OTP_INIT, OTP_init_value);

Listing 3-2. OTP Timing Calculations for SCLK = 50 MHz

For SCLK = 20.0ns (50 MHz), the following field calculations are needed
to determine the OTP timing argument for the bfrom_OtpCommand() call.

OTP_TP1 = 1000 / sclk_period = 1000 / 12.5 = 0x50 0x00000050

OTP_TP2 = (constant) 0x145487xx

Calculated OTP timing parameter value 0x14548750

OTP_TP1 = 1000 / sclk_period = 1000 / 20.0 = 0x32 0x00000032

OTP_TP2 = (constant) 0x145487xx

Calculated OTP timing parameter value 0x14548732
ADSP-BF51x Blackfin Processor Hardware Reference 3-13

OTP Access
The code for the API call (in C) is:

// Initialize OTP access settings

// Proper access settings for SCLK = 50 MHz

const u32 OTP_init_value = 0x14548732;

return_code = bfrom_OtpCommand(OTP_INIT, OTP_init_value);

OTP_TIMING Register

Callable ROM Functions for OTP ACCESS
The following functions support OTP access.

Initializing OTP

This section describes the usage of the bfrom_OtpCommand() function for
the OTP memory controller setup provided in the ADSP-BF51x proces-
sor’s on-chip ROM. The prototype and macros to help decode the
function’s return codes are supplied in the bfrom.h header file located in

Figure 3-4. OTP_TIMING Register

OTP_TIMING Register

Reset = 0x0000 1485

OTP_TP2 [31:8]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 1 0 1 0 0 1 0 0 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OTP_TP1 [7:0]

OTP_TP1 = 1000/SCLK Period

Valid for OTP Read
Access

OTP_TP2 = 0x145487
3-14 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory
the CCES or VisualDSP++ installation directory. The meaning of the
error code is described in “Error Codes” on page 3-22.

bfrom_OtpCommand

This function is used to implement various “commands” to setup the
OTP controller. The first input parameter is a mnemonic label specifying
the command. The second parameter is a generic value that is passed as
argument for the requested command. The second parameter is optional
and can be an integer value or (via opportune casting) a pointer or a
pointer to an extension structure. There are two commands:

• OTP_INIT: sets the required timing value (register OTP_TIMING) to
“value”.

• OTP_CLOSE: reinitializes the OTP controller. This can be called by
the user before exiting Secure Mode if desired. The Value parame-
ter may be specified as “0” or “NULL” with OTP_CLOSE.

Entry address: 0xEF00 0018

Arguments:

R0: command (dCommand)
OTP_INIT

OTP_CLOSE

R1: timing value to be programmed (dValue), not used for OTP_CLOSE

C Prototype: u32 bfrom_OtpCommand(u32 dCommand, u32 dValue);

Return code:

bfrom_OtpCommand() currently always returns with “0”.

From the examples above, the OTP timing parameter was calculated to be
0x14548750 processor with SCLK = 80 MHz. Shown below is a sample of
ADSP-BF51x Blackfin Processor Hardware Reference 3-15

OTP Access
C code that uses the bfrom_OtpCommand() function to program this timing
parameter.

#include <bfrom.h>

#define OTP_TIMING_PARAM (0x14548750)

u32 Otp_Timing_Param_Init()

{

u32 otp_timing_parameter;

u32 = RetVal;

otp_timing_parameter = OTP_TIMING_PARAM;

RetVal = bfrom_OtpCommand(OTP_INIT, otp_timing_parameter);

// (equivalently, with a variable):

RetVal = bfrom_OtpCommand(OTP_INIT, OTP_TIMING_PARAM);

return RetVal;

}

More examples:

//timing parameter

const u32 init_value = 0x14548750;

// call sets OTP_TIMING register

RetVal = bfrom_OtpCommand(OTP_INIT, init_value);

// call sets OTP_TIMING register

RetVal = bfrom_OtpCommand(OTP_INIT, 0x14548750);

// call clears OTP controller and data registers

RetVal = bfrom_OtpCommand(OTP_CLOSE, NULL);

The prototype of bfrom_OtpCommand() is also included in the bfrom.h
header file installed with the VisualDSP++ 5.0 or CrossCore Embedded
Studio IDE. The OTP_INIT macro is defined in bfrom.h as well.
3-16 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory
Programming and Reading OTP
This section describes the usage of bfrom_OtpRead() and
bfrom_OtpWrite() read and write functions for OTP memory provided in
the ADSP-BF51x processor’s on-chip ROM. The prototypes and macros
to help decode their return codes are supplied in the bfrom.h header file
located in the CCES or VisualDSP++ installation directory. The meaning
of the error code is described in “Error Codes” on page 3-22.

bfrom_OtpRead

This function is used to read 64-bit OTP half-pages using error
correction.

Entry address: 0xEF00 001A

Arguments:

R0: OTP page address (dPage)

R1: Flags (dFlags)
OTP_LOWER_HALF

OTP_UPPER_HALF

OTP_NO_ECC

R2: Pointer to 64-bit memory struct (long long) to put read data
(*pPageContent)

C prototype:

u32 bfrom_OtpRead (u32 dPage, u32 dFlags, u64 *pPageContent);

Return code:

R0: error or warning code, see Table 3-5.

This function reads a half-page and stores the content in the 64-bit vari-
able pointed to by its last parameter. The page parameter defines the
ADSP-BF51x Blackfin Processor Hardware Reference 3-17

OTP Access
address. The flags parameter defines whether the upper or the lower half
page is to be read. The default reset OTP_TIMING value may be used for all
read accesses without requiring any new setting value to be programmed
prior to performing read accesses. Programming a valid value suitable for
write accesses will also allow read accesses.

The use of flag parameter OTP_NO_ECC is not recommended for use with
any OTP read access as it will bypass error correction code support. It is
available only for diagnostic purposes.

bfrom_OtpWrite

This function attempts to write to (program) a half-page with the content
in the 64-bit variable pointed to by its last parameter. The page parameter
defines the address.

Entry address: 0xEF00 001C

Arguments:

R0: OTP page address (dFlag)

R1: Flags (dFlags)
OTP_LOWER_HALF

OTP_UPPER_HALF

OTP_NO_ECC

OTP_LOCK

OTP_CHECK_FOR_PREV_WRITE

R2: Pointer to 64-bit memory struct (long long) that contains the data to
be written to OTP memory (*pPageContent)

C Prototype:

u32 bfrom_OtpWrite (u32 dPage, u32 dFlags, u64 *pPageContent);
3-18 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory
Return code:

R0: error or warning code, see Table 3-5.

The dFlags parameter defines whether the upper or the lower half page is
to be written to and also whether the target half page should be checked
for a previously written value before any write attempt is made. Addition-
ally, a page can optionally be locked (permanently protected against
further writes).

When performing pure lock operations (only locking a page without writ-
ing any data values to it), the half-page parameter is not required and it
makes no difference which half-page is specified if this parameter is
included in the function call.

In order to reduce the probability of inadvertent writes to OTP pages, the
bfrom_OtpWrite() function checks for a valid OTP write timing setting in
the OTP_TIMING register. More specifically, bits [31:15] must not be equal
to zero. Calls to the write routine, when this field (bits [31:15]) is equal to
zero cause an access violation error and the requested action is not per-
formed. The user can use this mechanism to protect against inadvertent
writes by calling the bfrom_OtpCommand (OTP_init, …) function with
appropriate values for reads only and for read/write accesses. Users are free
to ignore this mechanism by calling bfrom_OtpCommand (OTP_init, …)
only once for read/write access.

When the flag OTP_CHECK_FOR_PREV_WRITE is NOT specified, a previously
written value will be overwritten, both in the ECC and data fields for any
unlocked page where a write access is performed. Of course, once a bit was
set to “1” it cannot be reset to “0” by the new write operation. This means
that, in all likelihood, if the new value is different from the previous one,
the result will have multiple bit errors, in either or both the ECC and data
fields.
ADSP-BF51x Blackfin Processor Hardware Reference 3-19

OTP Access
 Since the ECC field is written first by the ROM function, a multi-
ple bit error will abort the operation without writing the new data
value to the OTP data page.

Also note that multiple bit errors have a statistical chance of not
being detected as such. So this default mode of operation is not
recommended to be used, or used with appropriate caution.

The flag, OTP_CHECK_FOR_PREV_WRITE, should always be used by
default when performing write accesses to OTP with the
bfrom_OtpWrite() function.

If the flag OTP_CHECK_FOR_PREV_WRITE is specified in the call, a write to a
previously programmed page causes dedicated error messages and will not
be undertaken. More specifically, the criterion for generating errors is as
follows: the 64-bit data and the 8-bit ECC field are read and the total
number of “1” is counted. If this number is equal to or greater than 2, the
error flag OTP_PREV_WR_ERRO” is returned and the write operation is not
performed. If the number is 0, the page is certainly blank and the write is
performed. If the number is one, a more thorough check is performed. If
the “1” is in the ECC field, an error flag OTP_SB_DEFECT_ERROR is returned
and the write is not performed. If the “1” is in the data field, it is deter-
mined whether the value to be written contains a “1” in the same position.
If so, the write is performed. If not, the error flag OTP_SB_DEFECT_ERROR is
returned and the write is not performed. This error code warns the user
that it could be a single-bit defect in the page. The user can then decide
whether to use this page regardless (by repeating the call without the
OTP_CHECK_FOR_PREV_WRITE flag) or skip this page.

The OTP_CHECK_FOR_PREV_WRITE flag is ignored when a pure lock opera-
tion is requested (for example, a OTP_LOCK flag is set and *pPageContent =
NULL). It is therefore unnecessary and harmless to specify this flag. The
OTP_CHECK_FOR_PREV_WRITE flag is not ignored when doing a lock opera-
tion after a write (for example, OTP_LOCK + write in the same call and
*pPageContent = NULL).
3-20 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory
If the flag parameter for the write operation is augmented by the OR with
OTP_LOCK flag, the write operation, if successful, will be immediately fol-
lowed by setting the protection bit for the requested full 128-bit page.

A special case is the following (OTP_LOCK): if the third parameter is NULL,
this call will lock a page without writing any data value to it (pure lock
function). Note that in this case, “page” can span all pages from 0x000 to
0x1FF. This is the only way to lock the ECC pages themselves.

 The use of flag parameter OTP_NO_ECC is only supported in write
operations when used to implement write-protection/ page-locking
(use of OTP_LOCK parameter in bfrom_Otp_Write function is pre-
ferred method of locking pages, see Write Protecting OTP
Memory section below) or to set the preboot invalidate bits (see the
Preboot section in Chapter 26, “System Reset and Booting”).
Bypassing error correction in OTP writes may result in loss of OTP
data integrity and is not supported for any other OTP access.

The use of ECC in all OTP accesses other than the limited excep-
tions described previously is mandatory.
ADSP-BF51x Blackfin Processor Hardware Reference 3-21

OTP Access
Error Codes

This section describes the returned error codes from the API functions.
Figure 3-5 and Table 3-5 demonstrate and list the returned error codes
from API functions.

Figure 3-5. Returned Error Codes from API Functions

Returned Error Codes from API Functions

OTP_SUCCESS = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OTP_MASTER_ERROR

Master Error Bit = OP[OR(bits
1,2,3,4,5,6,7), AND(bits 8,9)]

OTP_WRITE_ERROR

(E) OTP Write Error

OTP_READ_ERROR

E OTP Read Error

OTP_ACC_VIO_ERROR

(E) Attempt to access invalid
OTP space

OTP_DATA_MULT_ERROR

(E) Multiple bad bits on write of
64-bit data

OTP_ECC_SB_WARN

(W) Single bad bit on write of
ECC

OTP_DATA_SB_WARN

(W) Single bad bit on write of
64-bit data

OTP_SB_DEFECT_ERROR

(E) Single bit defect in the page

OTP_PREV_WR_ERROR

(E) Attempt to write previously
written space

OTP_ECC_MULT_ERROR

(E) Multiple bad bits on write of
ECC
3-22 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory
bfrom_OtpRead() returns with an error when any of the bits [6:2] are set
or both bits [9:8] are set. In this case, the OTP_MASTER_ERROR bit is also set.
It returns with a warning if only one of the bits [9:8] is set.

bfrom_OtpWrite() returns with an error when any of the bits [7:1] are set
or both bits [9:8] are set. In this case, the OTP_MASTER_ERROR bit is also set.
It returns with a warning if only one of the bits [9:8] is set.

bfrom_OtpCommand() currently always returns with “0”.

Table 3-5. Returned Error Codes from API Functions

Bit
Position

Name Example
Return
Value

Definition

N/A OTP_SUCCESS 0x0 No Error

0 OTP_MASTER_ERROR 0x1 Master Error Bit = OR [OR (bits
1,2,3,4,5,6,7), AND (bits 8,9)]

1 OTP_WRITE_ERROR 0x3 (E) OTP Write Error

2 OTP_READ_ERROR 0x5 (E) OTP Read Error

3 OTP_ACC_VIO_ERROR 0x9 (E) Attempt to access invalid OTP
space

4 OTP_DATA_MULT_ERROR 0x11 (E) Multiple bad bits on write of 64
bit data

5 OTP_ECC_MULT_ERROR 0x21 (E) Multiple bad bits on write of
ECC

6 OTP_PREV_WR_ERROR 0x41 (E) Attempt to write previously writ-
ten space

7 OTP_SB_DEFECT_ERROR 0x81 (E) Single-bit defect in the page

8 OTP_DATA_SB_WARN 0x100 (W) Single bad bit on write of 64 bit
data

9 OTP_ECC_SB_WARN 0x200 (W) Single bad bit on write of ECC
ADSP-BF51x Blackfin Processor Hardware Reference 3-23

OTP Access
Write-Protecting OTP Memory
As shown in Figure 3-2, a small portion of OTP memory is reserved for
write-protect bits (“write-protect” is synonymous with “page-protect” in
the context of this discussion). After programming OTP memory, the pro-
grammer can use these protection bits to “lock” the page that was just
programmed by setting the write-protect bit corresponding to the OTP
data page. Once the write-protect bit is set and the lock is in place, further
attempts to write to that page will not be allowed, resulting in an error.
Page protect bits can also be set in order to prevent programming of
unwritten OTP pages as well. Once an OTP page is page-protected, the
write protection can not be reversed and no further write accesses can be
made to the protected page(s).

There are four pages reserved for the write-protection bits. Pages 0x0
through 0x3 contain the 512 write-protect bits, one bit for each of the 512
data pages within OTP memory. The first two write-protect bit pages
(pages 0x0 and 0x1) correspond to the public (non-secure) regions of the
OTP map. The other two write-protect bit pages (0x2 and 0x3) corre-
spond to the protection of private (secure) regions of the OTP map. The
processor does not need to be operating in Secure Mode in order to be
able to program protection pages associated with secure OTP regions. All
protection bits can be written in any security state including Open Mode.

 Note that while reads and writes access a half-page at a time, set-
ting a protection bit for a page will effectively lock an entire page
for future write accesses (lower and upper half page). The program-
mer must ensure that all required programming is completed on a
full 128-bit OTP data page prior to setting the write-protect bit for
that page. In other words, the programmer must make sure that a
full 128-bit OTP page is programmed, or that no future program-
ming is required to be performed to the unprogrammed portion of
the page before locking the page.
3-24 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory
If P is the OTP page that is needed to be write-protected, the write-protect
bit and its page can be calculated as follows:

Let WPP be the write-protect page where the write-protect bit resides and
let WPB be the write-protect bit that needs to be set in order to lock page P.

The write-protect page can be calculated by:

WPP = P >> 7;

and the write-protect bit can be calculated by:

WPB = P & 0x7f;

Manual calculation is largely unnecessary due to the fact that the
bfrom_OtpWrite() function can be used to lock pages (see “OTP Program-
ming Examples” on page 3-26 for details).

// lock page (note third parameter equals NULL)

return_code = bfrom_OtpWrite(0x01C, OTP_LOCK, NULL);

Locking a single ECC (error correction code) page results in locking the
correction codes which correspond to eight OTP data pages (16 half
pages). This is due to the fact that a 64-bit half-page access must be per-
formed when write protecting the ECC page and every 8-bits within an
ECC page is a parity correction code which corresponds to a 64-bit
half-page of data in OTP. Therefore, a full 128-bit ECC page holds the
correction codes for eight full 128-bit pages of data in OTP, or 16
half-pages. Pages can only be locked as full 128-bit pages even though
read/write accesses may occur at 64-bit half-page granularity. Locking a
single ECC page will prevent further write access to the corresponding
eight OTP data pages.

ECC (error correction code) space is not permitted to be written to
directly.
ADSP-BF51x Blackfin Processor Hardware Reference 3-25

OTP Programming Examples
For example, locking ECC page 0xFB will result in locking the error cor-
rection parity data associated with the 16 data pages in the range of
0x0D8 – 0x0DF.

// Only Lock ECC code page

return_code = bfrom_OtpWrite(0xFB, OTP_LOCK, NULL);

No further write accesses to the ECC page 0xFB or corresponding data
pages 0x0D8 – 0x0DF will be allowed following write protection of the
ECC page in this example.

 Bits [3:0] of OTP page 0 are the write-protect bits for the first four
OTP pages, which contain the write-protect bits. If these bits are
set, it will prevent the other write-protect bits from being set, thus
disabling the write protection mechanism. But this does not pre-
vent the user from programming the other user-programmable
OTP pages.

Accessing Private OTP Memory
In order to read or write to the private area of OTP memory, the processor
must be operating in Secure Mode and the OTPSEN bit within the
SECURE_SYSSWT register must be set to a value of 1 to enable secured OTP
access. For information about Security, Secure Mode, and the Secure State
Machine, see the Secure State Machine section of Chapter 25, “Security”.

OTP Programming Examples
The recommended sequence of steps when accessing OTP memory is as
follows:

1. Initialize OTP array by calling bfrom_OtpCommand().

2. Perform OTP read or write access by calling bfrom_OtpRead() or
bfrom_OtpWrite().
3-26 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory
3. Call bfrom_OtpCommand() with OTP_CLOSE parameter to re-initialize
the OTP controller when OTP read/write access is complete.

4. Initialize OTP array by calling bfrom_OtpCommand() for next OTP
access.

5. Repeat steps 1–3 for subsequent OTP accesses.

In general, it is recommended to use OTP_CLOSE if sensitive data has been
written/read in some secure mode, and the processor is subsequently
returned to Open Mode operation. For information about these modes,
see Chapter 25, “Security”.

To enable access to private OTP memory space while operating in Secure
Mode, use the code shown in Listing 3-3.

Listing 3-3. Enable Access to Private OTP

// Enable private OTP access

*pSECURE_SYSSWT = ~EMUDABL | OTPSEN;

SSYNC();

...

To enable access to private OTP memory space via OTPSEN while operating
in Secure Mode, use the code shown in Listing 3-4.

Listing 3-4. Enable Access to Private OTP and Enable JTAG Emulation in
Secure Mode

// Enable JTAG and private OTP access

*pSECURE_SYSSWT = *pSECURE_SYSSWT & (~EMUDABL)) | OTPSEN;

SSYNC(0);

...

To read pages 0x4 through 0xDF in public OTP memory space and print
results to the IDE console, use the code shown in Listing 3-5.
ADSP-BF51x Blackfin Processor Hardware Reference 3-27

OTP Programming Examples
Listing 3-5. Read Pages 0x4 Through 0xDF in Public OTP Memory Space
and Print Results to the IDE Console

#include <blackfin.h>

#include <bfrom.h>

u32 return_code, i;

u64 value;

// Initialize OTP timing parameter

// Proper timing for OTP read access

const u32 OTP_init_value = 0x00001485;

return_code = bfrom_OtpCommand(OTP_INIT, OTP_init_value);

...

for (i= 0x004; <0x0xE0; i++)

{

return_code = bfrom_OtpRead(i, OTP_LOWER_HALF, &value);

printf(“page: 0x%03xL, Content ECC: 0x%01611x, returncode:

0x%03x \n”, i, value, return_code);

return_code = bfrom_OtpRead(i, OTP_UPPER_HALF, &value);

printf(“page: 0x%03xH, Content ECC: 0x%01611x, returncode:

0x%03x \n”, i, value, return_code);

}

To write and lock a single OTP page and return the results to the IDE
console via printf, use the code shown in Listing 3-6.
3-28 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory
Listing 3-6. Perform OTP Write to a Single Page via Two 64-Bit
(Half-Page) Accesses

#include <blackfin.h>

#include <bfrom.h>

u64 value;

u32 return_code;

// Initialize OTP timing parameter

// Proper timing for SCLK = 80 MHz

const u32 OTP_init_value = 0x14548750;

return_code = bfrom_OtpCommand(OTP_INIT, OTP_init_value);

return_code = bfrom_OtpWrite(0x01C, OTP_LOWER_HALF |

OTP_CHECK_FOR_PREV_WRITE, &testdata);

printf(“WRITE page: 0x%03xL, Content ECC: 0x%01611x,

returncode: 0x%03x \n”, 0x1C, testdata, return_code);

return_code = bfrom_OtpWrite(0x01C, OTP_UPPER_HALF |

OTP_CHECK_FOR_PREV_WRITE | OTP_LOCK, &testdata);

printf(“WRITE page: 0x%03xH, Content ECC: 0x%01611x,

returncode: 0x%03x \n”, 0x1C, testdata, return_code);

Note that locking a page will lock the full 128-bit page, whereas the previ-
ous examples perform OTP access on a 64-bit half-page granularity. This
is the finest level of granularity that is allowed due to the OTP error cor-
rection implementation. The page lock should occur only after both the
lower and upper portion of the page have been written. Note that the page
lock operation is performed on the second and final access to the page in
the code in Listing 3-6.

It may be desired to lock some specific OTP pages in a separate access
after writing of data values is already complete.
ADSP-BF51x Blackfin Processor Hardware Reference 3-29

OTP Programming Examples
OTP pages are typically locked in order to protect them from being over-
written or to prevent inadvertent or malicious tampering. This can be
performed by the following instructions in Listing 3-7.

Listing 3-7. Perform Pure Page Lock Operation Without Writing any
Data Values

#include <blackfin.h>

#include <bfrom.h>

u64 value;

u32 return_code;

// Initialize OTP timing parameter

// Proper timing for SCLK = 80 MHz

const u32 OTP_init_value = 0x14548750;

return_code = bfrom_OtpCommand(OTP_INIT, OTP_init_value);

return_code = bfrom_OtpWrite(0x01C, OTP_LOCK, NULL);

Listing 3-8. Read Unique Chip ID Stored in OTP Memory

#include <bfrom.h>

#include <stdio.h>

#include <cdefBF518.h>

#include <ccblkfn.h> // contains intrinsics for Blackfin

// assembler commands

void main()

{
u32 return_code; // 32-bit element to hold return code

u64 idupper, idlower; // Two 64-bit elements to hold the

// upper & lower halves of the unique chip id
3-30 ADSP-BF51x Blackfin Processor Hardware Reference

One-Time Programmable Memory
// Code to read the unique chip ID

return_code = bfrom_OtpRead(0x4, OTP_LOWER_HALF, &idlower);

printf("page: 0x%03xL, Content ECC: 0x%016llx, returncode:

0x%03x\n", 0x4, idlower, return_code);

return_code = bfrom_OtpRead(0x4, OTP_UPPER_HALF, &idupper);

printf("page: 0x%03xH, Content ECC: 0x%016llx, returncode:

0x%03x\n", 0x4, idupper, return_code);

return;

}

ADSP-BF51x Blackfin Processor Hardware Reference 3-31

OTP Programming Examples
3-32 ADSP-BF51x Blackfin Processor Hardware Reference

Chip Bus Hierarchy
4 CHIP BUS HIERARCHY

This chapter discusses on-chip buses, how data moves through the system,
and other factors that determine the system organization. Following an
overview and a list of key features is a block diagram of the chip bus hier-
archy and a description of its operation. The chapter concludes with
details about the system interconnects and associated system buses.

This chapter provides

• “Chip Bus Hierarchy Overview”

• “Interface Overview” on page 4-3

Chip Bus Hierarchy Overview
ADSP-BF51x Blackfin processors feature a powerful chip bus hierarchy on
which all data movement between the processor core, internal memory,
external memory, and its rich set of peripherals occurs. The chip bus hier-
archy includes the controllers for system interrupts, test/emulation, and
clock and power management. Synchronous clock domain conversion is
provided to support clock domain transactions between the core and the
system.
ADSP-BF51x Blackfin Processor Hardware Reference 4-1

Chip Bus Hierarchy Overview
The processor system includes:

• The peripheral set including timers, GP Counter, RTC, TWI, RSI
(except ADSP-BF512), 10/100 Ethernet MAC (ADSP-BF516 and
ADSP-BF518), IEEE 1588-2008 (ADSP-BF518), UARTs,
SPORTs, SPIs, PPI, watchdog timer, and PWM

• The External Bus Interface Unit (EBIU)

• The Direct Memory Access (DMA) controller

• The interfaces between these, the system, and the optional external
(off-chip) resources

The following sections describe the on-chip interfaces between the system
and the peripherals via the:

• Peripheral Access Bus (PAB)

• DMA Access Bus (DAB)

• DMA Core Bus (DCB)

• DMA External Bus (DEB)

• External Access Bus (EAB)

The External Bus Interface Unit (EBIU) is the primary chip pin bus and is
discussed in Chapter 7, “External Bus Interface Unit”.
4-2 ADSP-BF51x Blackfin Processor Hardware Reference

Chip Bus Hierarchy
Interface Overview
Figure 4-1 shows the core processor and system boundaries as well as the
interfaces between them.

Figure 4-1. Processor Bus Hierarchy

PW
M

G
PI

O
S

SP
O

R
Ts

SP
Is

EBIU

PP
I

U
A

R
Ts

TI
M

ER
S

R
TC

DMA
CONTROLLER

L1 MEMORYCORE
PROCESSOR INSTRUCTION

LOAD DATA

LOAD DATA

EXTERNAL
MEMORY
DEVICES

64

32

32

16

32

STORE DATA

SYSTEM CLOCK
(SCLK) DOMAIN

CORE CLOCK
(CCLK) DOMAIN

DMA ACCESS BUS (DAB)

EXTERNAL
PORT
BUS (EPB)

EXTERNAL
ACCESS
BUS (EAB)

DMA
EXT.
BUS
(DEB)

DMA
CORE
BUS
(DCB)

W
AT

CH
DO

G
TI

M
ER TW

I

ET
HE

RN
ET

 M
AC

PERIPHERAL
ACCESS
BUS (PAB)

16

1616
16

32
K

RO
M 16

PL
L

VO
LT

AG
E

CO
NT

RO
L

UN
IT

16

RS
I

ADSP-BF51x Blackfin Processor Hardware Reference 4-3

Interface Overview
Internal Clocks
The core processor clock (CCLK) rate is highly programmable with respect
to CLKIN. The CCLK rate is divided down from the Phase Locked Loop
(PLL) output rate. This divider ratio is set using the CSEL parameter of the
PLL divide register.

The PAB, the DAB, the EAB, the DCB, the DEB, the EPB, and the EBIU
run at system clock frequency (SCLK domain). This divider ratio is set
using the SSEL parameter of the PLL divide (PLL_DIV) register and must be
set so that these buses run as specified in the processor data sheet, and
slower than or equal to the core clock frequency.

These buses can also be cycled at a programmable frequency to reduce
power consumption, or to allow the core processor to run at an optimal
frequency. Note all synchronous peripherals derive their timing from the
SCLK. For example, the UART clock rate is determined by further divid-
ing this clock frequency.

Core Bus Overview
For the purposes of this discussion, level 1 memories (L1) are included in
the description of the core; they have full bandwidth access from the pro-
cessor core with a 64-bit instruction bus and two 32-bit data buses.

Figure 4-2 shows the core processor and its interfaces to the peripherals
and external memory resources.

The core can generate up to three simultaneous off-core accesses per cycle.

The core bus structure between the processor and L1 memory runs at the
full core frequency and has data paths up to 64 bits.

When the instruction request is filled, the 64-bit read can contain a single
64-bit instruction or any combination of 16-, 32-, or 64-bit (partial)
instructions.
4-4 ADSP-BF51x Blackfin Processor Hardware Reference

Chip Bus Hierarchy
When cache is enabled, four 64-bit read requests are issued to support
32-byte line fill burst operations. These requests are pipelined so that each
transfer after the first is filled in a single, consecutive cycle.

Figure 4-2. Core Block Diagram

INT

RESET
VECTOR

ACK

CORE TIMER

CORE
EVENT

CONTROLLER

DEBUG AND JTAG INTERFACE

JTAG DSP ID
(8 BITS)

SYSTEM CLOCK
AND POWER

MANAGEMENT

POWER AND
CLOCK

CONTROLLER

PERFORMANCE
MONITOR

MEMORY
MANAGEMENT

UNIT
L1 DATA L1 INSTRUCTION

L
D

0

L
D

1

S
D

D
A

0

D
A

1

IA
B

ID
B

CORE

EAB

PROCESSOR

DMA CORE BUS
(DCB)

PAB

32 32 32 32 32 32 64
ADSP-BF51x Blackfin Processor Hardware Reference 4-5

Interface Overview
Peripheral Access Bus (PAB)
The processor has a dedicated low latency peripheral bus that keeps core
stalls to a minimum and allows for manageable interrupt latencies to
time-critical peripherals. All peripheral resources accessed through the
PAB are mapped into the system MMR space of the processor memory
map. The core accesses system MMR space through the PAB bus.

The core processor has byte addressability, but the programming model is
restricted to only 32-bit (aligned) access to the system MMRs. Byte
accesses to this region are not supported.

PAB Arbitration

The core is the only master on this bus. No arbitration is necessary.

PAB Agents (Masters, Slaves)

The processor core can master bus operations on the PAB. All peripherals
have a peripheral bus slave interface which allows the core to access con-
trol and status state. These registers are mapped into the system MMR
space of the memory map. Appendix B lists system MMR addresses.

The slaves on the PAB bus are:

• System event controller

• Clock and power management controller

• Watchdog timer

• Real-time clock (RTC)

• Timer 0–7

• SPORT0–1

• SPI0–1
4-6 ADSP-BF51x Blackfin Processor Hardware Reference

Chip Bus Hierarchy
• Ports

• UART0–1

• PPI

• TWI

• Ethernet MAC IEEE 1588-2008

• PWM

• RSI

• Asynchronous memory controller (AMC)

• SDRAM controller (SDC)

• DMA controller

PAB Performance

For the PAB, the primary performance criteria is latency, not throughput.
Transfer latencies for both read and write transfers on the PAB are two
SCLK cycles.

For example, the core can transfer up to 32 bits per access to the PAB
slaves. With the core clock running at 2x the frequency of the system
clock, the first and subsequent system MMR read or write accesses take
four core clocks (CCLK) of latency.

The PAB has a maximum frequency of SCLK.
ADSP-BF51x Blackfin Processor Hardware Reference 4-7

Interface Overview
DMA Access Bus (DAB), DMA Core Bus (DCB), DMA
External Bus (DEB)

The DAB, DCB, and DEB buses provide a means for DMA-capable
peripherals to gain access to on-chip and off-chip memory with little or no
degradation in core bandwidth to memory.

DAB, DCB, and DEB Arbitration

Sixteen DMA channels and bus masters support the DMA-capable periph-
erals in the processor system. The twelve peripheral DMA channel
controllers can transfer data between peripherals and internal or external
memory. Both the read and write channels of the dual-stream memory
DMA controller access their descriptor lists through the DAB.

The DCB has priority over the core processor on arbitration into L1 con-
figured as data SRAM, whereas the core processor has priority over the
DCB on arbitration into L1 instruction SRAM. For off-chip memory, the
core (by default) has priority over the DEB for accesses to the EPB. The
processor has a programmable priority arbitration policy on the DAB.
Table 4-1 shows the default arbitration priority. In addition, by setting
the CDPRIO bit in the EBIU_AMGCTL register, all DEB transactions to the
EPB have priority over core accesses to external memory. Use of this bit is
application-dependent. For example, if you are polling a peripheral
mapped to asynchronous memory with long access times, by default the
core will “win” over DMA requests. By setting the CDPRIO bit, the core
would be held off until DMA requests were serviced.
4-8 ADSP-BF51x Blackfin Processor Hardware Reference

Chip Bus Hierarchy
DAB Bus Agents (Masters)

All peripherals capable of sourcing a DMA access are masters on this bus,
as shown in Table 4-1. A single arbiter supports a programmable priority
arbitration policy for access to the DAB.

When two or more DMA master channels are actively requesting the
DAB, bus utilization is considerably higher due to the DAB’s pipelined
design. Bus arbitration cycles are concurrent with the previous DMA
access’s data cycles.

Table 4-1. DAB, DCB, and DEB Arbitration Priority

DAB, DCB, DEB Master Default Arbitration Priority

PPI receive/transmit 0 - highest

Ethernet receive 1

Ethernet transmit 2

SPORT0 receive 3

SPORT0 transmit
RSI

4

SPORT1 receive
SPI1 transmit/receive

5

SPORT1 transmit 6

SPI0 receive/transmit 7

UART0 receive 8

UART0 transmit 9

UART1 receive 10

UART1 transmit 11

MDMA stream 0 destination 12

MDMA stream 0 source 13

MDMA stream 1 destination 14

MDMA stream 1 source 15 - lowest
ADSP-BF51x Blackfin Processor Hardware Reference 4-9

Interface Overview
DAB, DCB, and DEB Performance

The processor DAB supports data transfers of 16 bits or 32 bits. The data
bus has a 16-bit width with a maximum frequency as specified in the pro-
cessor data sheet.

The DAB has a dedicated port into L1 memory. No stalls occur as long as
the core access and the DMA access are not to the same memory bank (4K
byte size for L1). If there is a conflict when accessing data memory, DMA
is the highest priority requester, followed by the core. If the conflict
occurs when accessing instruction memory, the core is the highest priority
requester, followed by DMA.

Note that a locked transfer by the core processor (for example, execution
of a TESTSET instruction) effectively disables arbitration for the addressed
memory bank or resource until the memory lock is deasserted. DMA con-
trollers cannot perform locked transfers.

DMA access to L1 memory can only be stalled by an access already in
progress from another DMA channel. Latencies caused by these stalls are
in addition to any arbitration latencies.

 The core processor and the DAB must arbitrate for access to exter-
nal memory through the EBIU. This additional arbitration latency
added to the latency required to read off-chip memory devices can
significantly degrade DAB throughput, potentially causing periph-
eral data buffers to underflow or overflow. If you use DMA
peripherals other than the memory DMA controller, and you target
external memory for DMA accesses, you need to carefully analyze
your specific traffic patterns. Make sure that isochronous peripher-
als targeting internal memory have enough allocated bandwidth
and the appropriate maximum arbitration latencies.
4-10 ADSP-BF51x Blackfin Processor Hardware Reference

Chip Bus Hierarchy
External Access Bus (EAB)
The EAB provides a way for the processor core to directly access off-chip
memory.

Arbitration of the External Bus
Arbitration for use of external port bus interface resources is required
because of possible contention between the potential masters of this bus. A
fixed-priority arbitration scheme is used. That is, core accesses via the
EAB will be of higher priority than those from the DMA external bus
(DEB).

DEB/EAB Performance
The DEB and the EAB support single word accesses of either 8-bit or
16-bit data types. The DEB and the EAB operate at the same frequency as
the PAB and the DAB, up to the maximum SCLK frequency specified in
the processor data sheet.

Memory DMA transfers can result in repeated accesses to the same mem-
ory location. Because the memory DMA controller has the potential of
simultaneously accessing on-chip and off-chip memory, considerable
throughput can be achieved. The throughput rate for an on-chip/off-chip
memory access is limited by the slower of the two accesses.

In the case where the transfer is from on-chip to on-chip memory or from
off-chip to off-chip memory, the burst accesses cannot occur simultane-
ously. The transfer rate is then determined by adding each transfer plus an
additional cycle between each transfer.

Table 4-2 shows many types of 16-bit memory DMA transfers. In the
table, it is assumed that no other DMA activity is conflicting with ongoing
operations. The numbers in the table are theoretical values. These values
ADSP-BF51x Blackfin Processor Hardware Reference 4-11

Interface Overview
may be higher when they are measured on actual hardware due to a variety
of reasons relating to the device that is connected to the EBIU.

For non-DMA accesses (for example, a core access via the EAB), a 32-bit
access to SDRAM (of the form R0 = [P0]; where P0 points to an address in
SDRAM) is always more efficient than executing two 16-bit accesses (of
the form R0 = W[P0++]; where P0 points to an address in SDRAM). In
this example, a 32-bit SDRAM read takes 10 SCLK cycles while two 16-bit
reads take 9 SCLK cycles each.

Table 4-2. Performance of DMA Access to External Memory

Source Destination Approximate SCLKs For n Words
(from start of DMA to interrupt at
end)

16-bit SDRAM L1 data memory n + 14

L1 data memory 16-bit SDRAM n + 11

16-bit async memory L1 data memory xn + 12, where x is the number of
wait states + setup/hold SCLK cycles
(minimum x = 2)

L1 data memory 16-bit async memory xn + 9, where x is the number of wait
states + setup/hold SCLK cycles (min-
imum x = 2)

16-bit SDRAM 16-bit SDRAM 10 + (17n/7)

16-bit async memory 16-bit async memory 10 + 2xn, where x is the number of
wait states + setup/hold SCLK cycles
(minimum x = 2)

L1 data memory L1 data memory 2n + 12
4-12 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts
5 SYSTEM INTERRUPTS

This chapter discusses the system interrupt controller (SIC). While this
chapter does refer to features of the core event controller (CEC), it does
not cover all aspects of it. Refer to Blackfin Processor Programming Refer-
ence for more information on the CEC.

Specific Information for the ADSP-BF51x
For details regarding the number of system interrupts for the
ADSP-BF51x product, refer to ADSP-BF512/BF514/BF516/BF518(F)
Embedded Processor Data Sheet.

To determine how each of the system interrupts is multiplexed with other
functional pins, refer to Table 9-2 on page 9-5 through Table 9-4 on
page 9-7 in Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for each DMA, refer to Chapter A, “System
MMR Assignments”.

System interrupt behavior for the ADSP-BF51x that differs from the gen-
eral information in this chapter can be found at the end of this chapter in
the section “Unique Information for the ADSP-BF51x Processor” on
page 5-16.
ADSP-BF51x Blackfin Processor Hardware Reference 5-1

Overview
Overview
The processor system has numerous peripherals, which therefore require
many supporting interrupts.

Features
The Blackfin architecture provides a two-level interrupt processing
scheme:

• The core event controller (CEC) runs in the CCLK clock domain. It
interacts closely with the program sequencer and manages the event
vector table (EVT). The CEC processes not only core-related inter-
rupts such as exceptions, core errors, and emulation events; it also
supports software interrupts.

• The system interrupt controller (SIC) runs in the SCLK clock
domain. It masks, groups, and prioritizes interrupt requests sig-
nalled by on-chip or off-chip peripherals and forwards them to the
CEC.

Description of Operation
The following sections describe the operation of the system interrupts.

Events and Sequencing
The processor employs a two-level event control mechanism. The proces-
sor SIC works with the CEC to prioritize and control all system
interrupts. The SIC provides mapping between the many peripheral inter-
rupt sources and the prioritized general-purpose interrupt inputs of the
core. This mapping is programmable, and individual interrupt sources can
be masked in the SIC.
5-2 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts
The CEC of the processor manages five types of activities or events:

• Emulation

• Reset

• Nonmaskable interrupts (NMI)

• Exceptions

• Interrupts

Note the word event describes all five types of activities. The CEC man-
ages fifteen different events in all: emulation, reset, NMI, exception, and
eleven interrupts.

An interrupt is an event that changes the normal processor instruction
flow and is asynchronous to program flow. In contrast, an exception is a
software initiated event whose effects are synchronous to program flow.

The event system is nested and prioritized. Consequently, several service
routines may be active at any time, and a low priority event may be pre-
empted by one of higher priority.

The CEC supports nine general-purpose interrupts (IVG7 – IVG15) in
addition to the dedicated interrupt and exception events that are described
in Table 5-1. It is common for applications to reserve the lowest or the
two lowest priority interrupts (IVG14 and IVG15) for software interrupts,
leaving eight or seven prioritized interrupt inputs (IVG7 – IVG13) for
peripheral purposes. Refer to Table 5-1.
ADSP-BF51x Blackfin Processor Hardware Reference 5-3

Description of Operation
System Peripheral Interrupts
To service the rich set of peripherals, the SIC has multiple interrupt
request inputs and outputs that go to the CEC. The primary function of
the SIC is to mask, group, and prioritize interrupt requests and to forward
them to the nine general-purpose interrupt inputs of the CEC (IVG7–
IVG15). Additionally, the SIC controller can enable individual peripheral
interrupts to wake up the processor from Idle or power-down state.

The nine general-purpose interrupt inputs (IVG7–IVG15) of the core event
controller have fixed priority. Of this group, the IVG7 channel has the
highest priority and IVG15 has the lowest priority. Therefore, the interrupt
assignment in the SIC_IAR registers not only groups peripheral interrupts;
it also programs their priority by assigning them to individual IVG chan-
nels. However, the relative priority of peripheral interrupts can be set by
mapping the peripheral interrupt to the appropriate general-purpose inter-
rupt level in the core. The mapping is controlled by the SIC_IAR register

Table 5-1. System and Core Event Mapping

Event Source Core Event
Name

Core events

Emulation (highest priority) EMU

Reset RST

NMI NMI

Exception EVX

Reserved –

Hardware error IVHW

Core timer IVTMR

System interrupts IVG7–IVG13

Software interrupt 1 IVG14

Software interrupt 2 (lowest priority) IVG15
5-4 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts
settings shown in Figure 5-2 on page 5-11 and the tables in Appendix A,
“System MMR Assignments”. If more than one interrupt source is
mapped to the same interrupt, they are logically OR’ed, with no hardware
prioritization. Software can prioritize the interrupt processing as required
for a particular system application.

 For general-purpose interrupts with multiple peripheral interrupts
assigned to them, take special care to ensure that software correctly
processes all pending interrupts sharing that input. Software is
responsible for prioritizing the shared interrupts.

The core timer has a dedicated input to the CEC controller. Its interrupt
is not routed through the SIC controller and always has higher priority
than requests from all peripherals.

The SIC_IMASK register allows software to mask any peripheral interrupt
source at the SIC level. This functionality is independent of whether the
particular interrupt is enabled at the peripheral itself. At reset, the con-
tents of the SIC_IMASK register are all 0s to mask off all peripheral
interrupts. Turning off a system interrupt mask and enabling the particu-
lar interrupt is performed by writing a 1 to a bit location in the SIC_IMASK
register.

The SIC includes one or more read-only SIC_ISR registers with individual
bits which correspond to the interrupt status of one of the peripheral
interrupt sources. When the SIC detects the interrupt, the bit is asserted.
When the SIC detects that the peripheral interrupt input has been deas-
serted, the respective bit in the system interrupt status register is cleared.
Note for some peripherals, such as general-purpose I/O asynchronous
input interrupts, many cycles of latency may pass from the time an inter-
rupt service routine initiates the clearing of the interrupt (usually by
writing a system MMR) to the time the SIC senses that the interrupt has
been deasserted.

Depending on how interrupt sources map to the general-purpose interrupt
inputs of the core, the interrupt service routine may have to interrogate
ADSP-BF51x Blackfin Processor Hardware Reference 5-5

Description of Operation
multiple interrupt status bits to determine the source of the interrupt.
One of the first instructions executed in an interrupt service routine
should read the SIC_ISR register to determine whether more than one of
the peripherals sharing the input has asserted its interrupt output. The ser-
vice routine should fully process all pending, shared interrupts before
executing the RTI, which enables further interrupt generation on that
interrupt input.

 When an interrupt’s service routine is finished, the RTI instruction
clears the appropriate bit in the IPEND register. However, the rele-
vant SIC_ISR bit is not cleared unless the service routine clears the
mechanism that generated the interrupt.

Many systems need relatively few interrupt-enabled peripherals, allowing
each peripheral to map to a unique core priority level. In these designs, the
SIC_ISR register will seldom, if ever, need to be interrogated.

The SIC_ISR register is not affected by the state of the SIC_IMASK register
and can be read at any time. Writes to the SIC_ISR register have no effect
on its contents.

Peripheral DMA channels are mapped in a fixed manner to the peripheral
interrupt IDs. However, the assignment between peripherals and DMA
channels is freely programmable with the DMA_PERIPHERAL_MAP registers.
Table 5-1 on page 5-4 and Table 5-2 on page 5-11 show the default DMA
assignment. Once a peripheral has been assigned to any other DMA chan-
nel it uses the new DMA channel’s interrupt ID regardless of whether
DMA is enabled or not. Therefore, clean DMA_PERIPHERAL_MAP manage-
ment is required even if the DMA is not used. The default setup should be
the best choice for all non-DMA applications.

For dynamic power management, any of the peripherals can be configured
to wake up the core from its idled state to process the interrupt, simply by
enabling the appropriate bit in the SIC_IWR register (refer to Table 5-1 on
page 5-4 and Table 5-2 on page 5-11). If a peripheral interrupt source is
enabled in SIC_IWR and the core is idled, the interrupt causes the DPMC
5-6 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts
to initiate the core wakeup sequence in order to process the interrupt.
Note this mode of operation may add latency to interrupt processing,
depending on the power control state. For further discussion of power
modes and the idled state of the core, see the Dynamic Power Manage-
ment chapter.

The SIC_IWR register has no effect unless the core is idled. By default, all
interrupts generate a wakeup request to the core. However, for some
applications it may be desirable to disable this function for some peripher-
als, such as for a SPORT transmit interrupt. The SIC_IWR register can be
read from or written to at any time. To prevent spurious or lost interrupt
activity, this register should be written to only when all peripheral inter-
rupts are disabled.

 The wakeup function is independent of the interrupt mask func-
tion. If an interrupt source is enabled in the SIC_IWR but masked
off in the SIC_IMASK register, the core wakes up if it is idled, but it
does not generate an interrupt.

The peripheral interrupt structure of the processor is flexible. Upon reset,
multiple peripheral interrupts share a single, general-purpose interrupt in
the core by default, as shown in Table 5-2 on page 5-11.

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system memory mapped registers (MMRs) to
determine which peripheral generated the interrupt.

Programming Model
The programming model for the system interrupts is described in the fol-
lowing sections.
ADSP-BF51x Blackfin Processor Hardware Reference 5-7

Programming Model
System Interrupt Initialization
If the default peripheral-to-IVG assignments shown in Table 5-1 on
page 5-4 and Table 5-2 on page 5-11 are acceptable, then interrupt initial-
ization involves only:

• Initialization of the core event vector table (EVT) vector address
entries

• Initialization of the IMASK register

• Unmasking the specific peripheral interrupts that the system
requires in the SIC_IMASK register

System Interrupt Processing Summary
Referring to Figure 5-1 on page 5-10, note when an interrupt (interrupt
A) is generated by an interrupt-enabled peripheral:

1. SIC_ISR logs the request and keeps track of system interrupts that
are asserted but not yet serviced (that is, an interrupt service rou-
tine hasn’t yet cleared the interrupt).

2. SIC_IWR checks to see if it should wake up the core from an idled
state based on this interrupt request.

3. SIC_IMASK masks off or enables interrupts from peripherals at the
system level. If interrupt A is not masked, the request proceeds to
Step 4.

4. The SIC_IAR registers, which map the peripheral interrupts to a
smaller set of general-purpose core interrupts (IVG7 – IVG15),
determine the core priority of interrupt A.

5. ILAT adds interrupt A to its log of interrupts latched by the core
but not yet actively being serviced.
5-8 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts
6. IMASK masks off or enables events of different core priorities. If the
IVGx event corresponding to interrupt A is not masked, the process
proceeds to Step 7.

7. The event vector table (EVT) is accessed to look up the appropriate
vector for interrupt A’s interrupt service routine (ISR).

8. When the event vector for interrupt A has entered the core pipe-
line, the appropriate IPEND bit is set, which clears the respective
ILAT bit. Thus, IPEND tracks all pending interrupts, as well as those
being presently serviced.

9. When the interrupt service routine (ISR) for interrupt A has been
executed, the RTI instruction clears the appropriate IPEND bit.
However, the relevant SIC_ISR bit is not cleared unless the inter-
rupt service routine clears the mechanism that generated interrupt
A, or if the process of servicing the interrupt clears this bit.

It should be noted that emulation, reset, NMI, and exception events, as
well as hardware error (IVHW) and core timer (IVTMR) interrupt requests,
enter the interrupt processing chain at the ILAT level and are not affected
by the system-level interrupt registers (SIC_IWR, SIC_ISR, SIC_IMASK,
SIC_IAR).

If multiple interrupt sources share a single core interrupt, then the inter-
rupt service routine (ISR) must identify the peripheral that generated the
interrupt. The ISR may then need to interrogate the peripheral to deter-
mine the appropriate action to take.
ADSP-BF51x Blackfin Processor Hardware Reference 5-9

System Interrupt Controller Registers
System Interrupt Controller Registers
The SIC registers are described in the following sections.

These registers can be read from or written to at any time in supervisor
mode. It is advisable, however, to configure them in the reset interrupt
service routine before enabling interrupts. To prevent spurious or lost
interrupt activity, these registers should be written to only when all
peripheral interrupts are disabled.

Figure 5-1. Interrupt Processing Block Diagram

"INTERRUPT
A"

SYSTEM
INTERRUPT

MASK
(SIC_IMASK)

ASSIGN
SYSTEM

PRIORITY
(SIC_IAR)

CORE EVENT CONTROLLERSYSTEM INTERRUPT CONTROLLER

NOTE: NAMES IN PARENTHESES ARE MEMORY-MAPPED REGISTERS.

EMU
RESET
NMI
EVX
IVTMR
IVHW

PERIPHERAL
INTERRUPT
REQUESTS

CORE
EVENT

VECTOR
TABLE

(EVT[15:0])

CORE
PENDING
(IPEND)

CORE
STATUS
(ILAT)

CORE
INTERRUPT

MASK
(IMASK)

SYSTEM
WAKEUP
(SIC_IWR)

SYSTEM
STATUS

(SIC_ISR)

TO DYNAMIC POWER
MANAGEMENT
CONTROLLER
5-10 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts
System Interrupt Assignment (SIC_IAR) Register
The SIC_IAR register maps each peripheral interrupt ID to a correspond-
ing IVG priority level. This is accomplished with 4-bit groupings that
translate to IVG levels as shown in Table 5-2 and Figure 5-2. In other
words, Table 5-2 defines the value to write in a 4-bit field within SIC_IAR
in order to configure a peripheral interrupt ID for a particular IVG prior-
ity. Refer to Table 5-1 on page 5-4 for information on SIC_IAR
mappings for this specific processor.

Figure 5-2. System Interrupt Assignment Register

Table 5-2. IVG Select Definition

General-Purpose Interrupt Value in SIC_IAR

IVG7 0

IVG8 1

IVG9 2

IVG10 3

IVG11 4

IVG12 5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Assignment Register (SIC_IAR)

ID Grouping 0

ID Grouping 2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID Grouping 7
ID Grouping 4

ID Grouping 1

ID Grouping 5
ID Grouping 6

ID Grouping 3
ADSP-BF51x Blackfin Processor Hardware Reference 5-11

System Interrupt Controller Registers
System Interrupt Mask (SIC_IMASK) Register
The SIC_IMASK register masks or enables peripheral interrupts at the sys-
tem level. A "0" in a bit position masks off (disables) interrupts for that
particular peripheral interrupt ID. A "1" enables interrupts for that inter-
rupt ID. Refer to Table 5-1 on page 5-4 and Table 5-2 for information on
how peripheral interrupt IDs are mapped to the SIC_IMASK register(s) for
this particular processor.

System Interrupt Status (SIC_ISR) Register
The SIC_ISR register keeps track of system interrupts that are asserted but
not yet serviced. A "0" in a bit position indicates that a particular inter-
rupt is deasserted. A "1" indicates that it is asserted. Refer to Table 5-1 on
page 5-4 and Table 5-2 for information on how peripheral interrupt IDs
are mapped to the SIC_ISR register(s) for this particular processor.

System Interrupt Wakeup-Enable (SIC_IWR)
Register

The SIC_IWR register allows an interrupt request to wake up the processor
core from an idled state. A "0" in a bit position indicates that a particular
peripheral interrupt ID is not configured to wake the core (upon assertion
of the interrupt request). A "1" indicates that it is configured to do so.
Refer to Table 5-1 on page 5-4 and Table 5-2 for information on how

IVG13 6

IVG14 7

IVG15 8

Table 5-2. IVG Select Definition (Continued)

General-Purpose Interrupt Value in SIC_IAR
5-12 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts
peripheral interrupt IDs are mapped to the SIC_IWR register(s) for this par-
ticular processor.

Programming Examples
The following section provides an example for servicing interrupt
requests.

Clearing Interrupt Requests
When the processor services a core event it automatically clears the
requesting bit in the ILAT register and no further action is required by the
interrupt service routine. It is important to understand that the SIC con-
troller does not provide any interrupt acknowledgment feedback
mechanism from the CEC controller back to the peripherals. Although
the ILAT bits clear in the same way when a peripheral interrupt is serviced,
the signalling peripheral does not release its level-sensitive request until it
is explicitly instructed by software. If however, the peripheral keeps
requesting, the respective ILAT bit is set again immediately and the service
routine is invoked again as soon as its first run terminates by an RTI
instruction.

Every software routine that services peripheral interrupts must clear the
signalling interrupt request in the respective peripheral. The individual
peripherals provide customized mechanisms for how to clear interrupt
requests. Receive interrupts, for example, are cleared when received data is
read from the respective buffers. Transmit requests typically clear when
software (or DMA) writes new data into the transmit buffers. These
implicit acknowledge mechanisms avoid the need for cycle-consuming
software handshakes in streaming interfaces. Other peripherals such as
timers, GPIOs, and error requests require explicit acknowledge instruc-
tions, which are typically performed by efficient W1C (write-1-to-clear)
operations.
ADSP-BF51x Blackfin Processor Hardware Reference 5-13

Programming Examples
Listing 5-1 shows a representative example of how a GPIO interrupt
request might be serviced.

Listing 5-1. Servicing GPIO Interrupt Request

#include <defBF527.h>

/*ADSP-BF527 product is used as an example*/

.section program;

_portg_a_isr:

/* push used registers */

[--sp] = (r7:7, p5:5);

/* clear interrupt request on GPIO pin PG2 */

/* no matter whether used A or B channel */

p5.l = lo(PORTGIO_CLEAR);

p5.h = hi(PORTGIO_CLEAR);

r7 = PG2;

w[p5] = r7;

/* place user code here */

/* sync system, pop registers and exit */

ssync;

(r7:7, p5:5) = [sp++];

rti;

_portg_a_isr.end:

The W1C instruction shown in this example may require several SCLK
cycles to complete, depending on system load and instruction history. The
program sequencer does not wait until the instruction completes and con-
tinues program execution immediately. The SSYNC instruction ensures that
the W1C command indeed cleared the request in the GPIO peripheral
before the RTI instruction executes. However, the SSYNC instruction does
not guarantee that the release of interrupt request has also been recognized
by the CEC controller, which may require a few more CCLK cycles depend-
ing on the CCLK-to-SCLK ratio. In service routines consisting of a few
5-14 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts
instructions only, two SSYNC instructions are recommended between the
clear command and the RTI instruction. However, one SSYNC instruction
is typically sufficient if the clear command performs in the very beginning
of the service routine, or the SSYNC instruction is followed by another set
of instructions before the service routine returns. Commonly, a pop-mul-
tiple instruction is used for this purpose as shown in Listing 5-1.

The level-sensitive nature of peripheral interrupts enables more than one
of them to share the same IVG channel and therefore the same interrupt
priority. This is programmable using the assignment registers. Then a
common service routine typically interrogates the SIC_ISR register to
determine the signalling interrupt source. If multiple peripherals are
requesting interrupts at the same time, it is up to the service routine to
either service all requests in a single pass or to service them one by one. If
only one request is serviced and the respective request is cleared by soft-
ware before the RTI instruction executes, the same service routine is
invoked another time because the second request is still pending. While
the first approach may require fewer cycles to service both requests, the
second approach enables higher priority requests to be serviced more
quickly in a non-nested interrupt system setup.
ADSP-BF51x Blackfin Processor Hardware Reference 5-15

Unique Information for the ADSP-BF51x Processor
Unique Information for the ADSP-BF51x
Processor

Components of the ADSP-BF51x processor with unique implementation
details include:

• “Interfaces” on page 5-16

• “System Peripheral Interrupts” on page 5-19

Interfaces
Figure 5-3 and Figure 5-4 provide an overview of how the individual
peripheral interrupt request lines connect to the SIC. These figures show
how the eight SIC_IAR registers control the assignment to the nine avail-
able peripheral request inputs of the CEC.

 The memory-mapped ILAT, IMASK, and IPEND registers are part of
the CEC controller.
5-16 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts
Figure 5-3. Interrupt Routing Overview (Part 1)

0

DMA3 (SPORT0 RX)
DMA4 (SPORT0 TX or RSI)

DMA5 (SPORT1 RX/SPI1 RX or TX)
DMA6 (SPORT1 TX)

DMA7 (SPI RX or TX)
DMA8 (UART0 RX)
DMA9 (UART0 TX)

DMA10 (UART1 RX)
DMA11 (UART1 TX)

OTP MEMORY
GP COUNTER

1
2
3
4
5
6
7

PLL WAKEUP

REAL TIME CLOCK
DMA0 (PPI)

W
A

K
E

 U
P

C
O

R
E

 T
IM

E
R

H
A

R
D

W
A

R
E

 E
R

R
O

R

E
X

C
E

P
T

IO
N

S

N
M

I

S
IC

_I
A

R
3

S
IC

_I
A

R
2

S
IC

_I
A

R
1

S
IC

_I
A

R
0

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

S
IC

_I
S

R
0

S
IC

_I
W

R
0

S
IC

_I
M

A
S

K
0

R
E

S
E

T

E
M

U
L

A
T

IO
N

IMASK

IPEND

ILAT

IV
G

15

IV
G

14

IV
G

13

IV
G

12

IV
G

11

IV
G

10

IV
G

9

IV
G

8

IV
G

7

IV
G

6

IV
G

5

IV
G

3

IV
G

2

IV
G

1

IV
G

0

TWI

DMA1 (EMAC RX)
PORT H INTERRUPT A

PORT H INTERRUPT B
DMA2 (EMAC TX)

EMAC STATUS

SPORT0 STATUS
SPORT1 STATUS

PPI ERROR

PTP ERROR INTERRUPT
RESERVED

UART0 STATUS
UART1 STATUS

DMA ERROR (GENERIC)
DMAR0 BLOCK INTERRUPT
DMAR1 BLOCK INTERRUPT

DMAR0 OVERFLOW ERROR
DMAR1 OVERFLOW ERROR
ADSP-BF51x Blackfin Processor Hardware Reference 5-17

Unique Information for the ADSP-BF51x Processor
Figure 5-4. Interrupt Routing Overview (Part 2)

W
A

K
E

 U
P

C
O

R
E

 T
IM

E
R

H
A

R
D

W
A

R
E

 E
R

R
O

R

E
X

C
E

P
T

IO
N

S

N
M

I

S
IC

_I
A

R
4

S
IC

_I
A

R
5

S
IC

_I
A

R
6

S
IC

_I
A

R
7

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

S
IC

_I
S

R
1

S
IC

_I
W

R
1

S
IC

_I
M

A
S

K
1

R
E

S
E

T

E
M

U
L

A
T

IO
N

IMASK

IPEND

ILAT

IV
G

15

IV
G

14

IV
G

13

IV
G

12

IV
G

11

IV
G

10

IV
G

9

IV
G

8

IV
G

7

IV
G

6

IV
G

5

IV
G

3

IV
G

2

IV
G

1

IV
G

0

SPI0 STATUS

RESERVED

RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED

TIMER0
TIMER1
TIMER2
TIMER3
TIMER4
TIMER5
TIMER6
TIMER7

MDMA0
MDMA1

PORT G INTERRUPT A
PORT G INTERRUPT B

PORT F INTERRUPT A
PORT F INTERRUPT B

WATCHDOG TIMER

RSI INTERRUPT 0
RSI INTERRUPT 1

PWM TRIP
PWM SYNC

PTP STATUS

SPI1 STATUS
RESERVED
5-18 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts
System Peripheral Interrupts
The MAC interrupt requests shown in Figure 5-3 on page 5-17 are avail-
able only on ADSP-BF516 and ADSP-BF518 parts. However, for code
compatibility, all of the default assignments for the ADSP-BF51x proces-
sors are the same.

Table 5-3 on page 5-20 and Table 5-4 on page 5-21 show the peripheral
interrupt events, the default mapping of each event, the peripheral inter-
rupt ID used in the system interrupt assignment registers (SIC_IAR), and
the core interrupt ID.

Note that the system interrupt to core event mappings shown are the
default values at reset and can be changed by software. Where there is
more than one DMA interrupt source for a given interrupt ID number,
the default DMA source mapping is listed first in parentheses.

The peripheral interrupt structure of the processor is flexible. Upon reset,
multiple peripheral interrupts share a single, general-purpose interrupt in
the core by default, as shown in Table 5-3 on page 5-20 and Table 5-4 on
page 5-21.

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system memory mapped registers (MMRs) to
determine which peripheral generated the interrupt.
ADSP-BF51x Blackfin Processor Hardware Reference 5-19

Unique Information for the ADSP-BF51x Processor
Table 5-3. Peripheral Interrupt Events (Part 1)

Peripheral
ID Number

Bit Position for
SIC_ISR0,
SIC_IMASK0,
SIC_IWR0

SIC_IAR3-0 Interrupt Source Default
Mapping

31 Bit 31 SIC_IAR3[31:28] Port H interrupt B IVG11

30 Bit 30 SIC_IAR3[27:24] DMA2 (Ethernet MAC TX) IVG11

29 Bit 29 SIC_IAR3[23:20] Port H interrupt A IVG11

28 Bit 28 SIC_IAR3[19:16] DMA1 (Ethernet MAC RX) IVG11

27 Bit 27 SIC_IAR3[15:12] GP Counter IVG11

26 Bit 26 SIC_IAR3[11:8] OTP Memory IVG11

25 Bit 25 SIC_IAR3[7:4] DMA11 (UART1 TX) IVG10

24 Bit 24 SIC_IAR3[3:0] DMA10 (UART1 RX) IVG10

23 Bit 23 SIC_IAR2[31:28] DMA9 (UART0 TX) IVG10

22 Bit 22 SIC_IAR2[27:24] DMA8 (UART0 RX) IVG10

21 Bit 21 SIC_IAR2[23:20] DMA7 (SPI0 RX or TX) IVG10

20 Bit 20 SIC_IAR2[19:16] TWI IVG10

19 Bit 19 SIC_IAR2[15:12] DMA6 (SPORT1 TX) IVG9

18 Bit 18 SIC_IAR2[11:8] DMA5 (SPORT1 RX/SPI1 RX or TX) IVG9

17 Bit 17 SIC_IAR2[7:4] DMA4 (SPORT0 TX/RSI) IVG9

16 Bit 16 SIC_IAR2[3:0] DMA3 (SPORT0 RX) IVG9

15 Bit 15 SIC_IAR1[31:28] DMA0 (PPI) IVG8

14 Bit 14 SIC_IAR1[27:24] Real-time clock IVG8

13 Bit 13 SIC_IAR1[23:20] UART1 status IVG7

12 Bit 12 SIC_IAR1[19:16] UART0 status IVG7

11 Bit 11 SIC_IAR1[15:12] Reserved IVG7

10 Bit 10 SIC_IAR1[11:8] PTP Error Interrupt IVG7

9 Bit 9 SIC_IAR1[7:4] SPORT1 status IVG7

8 Bit 8 SIC_IAR1[3:0] SPORT0 status IVG7
5-20 ADSP-BF51x Blackfin Processor Hardware Reference

System Interrupts
7 Bit 7 SIC_IAR0[31:28] Ethernet MAC status IVG7

6 Bit 6 SIC_IAR0[27:24] PPI error IVG7

5 Bit 5 SIC_IAR0[23:20] DMAR1 overflow error IVG7

4 Bit 4 SIC_IAR0[19:16] DMAR0 overflow error IVG7

3 Bit 3 SIC_IAR0[15:12] DMAR1 block interrupt IVG7

2 Bit 2 SIC_IAR0[11:8] DMAR0 block interrupt IVG7

1 Bit 1 SIC_IAR0[7:4] DMA Error (generic) IVG7

0 Bit 0 SIC_IAR0[3:0] PLL Wakeup IVG7

Table 5-4. Peripheral Interrupt Events (Part 2)

Peripheral
ID Number

Bit Position for
SIC_ISR1,
SIC_IMASK1,
SIC_IWR1

SIC_IAR7–4 Interrupt Source Default
Mapping

63 Bit 31 SIC_IAR7[31:28] Reserved IVG13

62 Bit 30 SIC_IAR7[27:24] Reserved IVG13

61 Bit 29 SIC_IAR7[23:20] Reserved IVG13

60 Bit 28 SIC_IAR7[19:16] Reserved IVG12

59 Bit 27 SIC_IAR7[15:12] Reserved IVG12

58 Bit 26 SIC_IAR7[11:8] Reserved IVG12

57 Bit 25 SIC_IAR7[7:4] Reserved IVG12

56 Bit 24 SIC_IAR7[3:0] Reserved IVG12

55 Bit 23 SIC_IAR6[31:28] PTP Status IVG10

54 Bit 22 SIC_IAR6[27:24] PWM Sync IVG10

53 Bit 21 SIC_IAR6[23:20] PWM Trip IVG10

Table 5-3. Peripheral Interrupt Events (Part 1) (Continued)

Peripheral
ID Number

Bit Position for
SIC_ISR0,
SIC_IMASK0,
SIC_IWR0

SIC_IAR3-0 Interrupt Source Default
Mapping
ADSP-BF51x Blackfin Processor Hardware Reference 5-21

Unique Information for the ADSP-BF51x Processor
52 Bit 20 SIC_IAR6[19:16] RSI Interrupt 1 IVG10

51 Bit 19 SIC_IAR6[15:12] RSI Interrupt 0 IVG10

50 Bit 18 SIC_IAR6[11:8] Reserved IVG7

49 Bit 17 SIC_IAR6[7:4] Reserved IVG7

48 Bit 16 SIC_IAR6[3:0] SPI1 status IVG7

47 Bit 15 SIC_IAR5[31:28] SPI0 status IVG7

46 Bit 14 SIC_IAR5[27:24] Port F interrupt B IVG13

45 Bit 13 SIC_IAR5[23:20] Port F interrupt A IVG13

44 Bit 12 SIC_IAR5[19:16] Watchdog timer IVG13

43 Bit 11 SIC_IAR5[15:12] MDMA1 IVG13

42 Bit 10 SIC_IAR5[11:8] MDMA0 IVG13

41 Bit 9 SIC_IAR5[7:4] Port G interrupt B IVG12

40 Bit 8 SIC_IAR5[3:0] Port G interrupt A IVG12

39 Bit 7 SIC_IAR4[31:28] Timer 7 IVG12

38 Bit 6 SIC_IAR4[27:24] Timer 6 IVG12

37 Bit 5 SIC_IAR4[23:20] Timer 5 IVG12

36 Bit 4 SIC_IAR4[19:16] Timer 4 IVG12

35 Bit 3 SIC_IAR4[15:12] Timer 3 IVG12

34 Bit 2 SIC_IAR4[11:8] Timer 2 IVG12

33 Bit 1 SIC_IAR4[7:4] Timer 1 IVG12

32 Bit 0 SIC_IAR4[3:0] Timer 0 IVG12

Table 5-4. Peripheral Interrupt Events (Part 2) (Continued)

Peripheral
ID Number

Bit Position for
SIC_ISR1,
SIC_IMASK1,
SIC_IWR1

SIC_IAR7–4 Interrupt Source Default
Mapping
5-22 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
6 DIRECT MEMORY ACCESS

This chapter describes the direct memory access (DMA) controller. Fol-
lowing an overview and list of key features is a description of operation
and functional modes of operation. The chapter concludes with a pro-
gramming model, consolidated register definitions, and programming
examples.

This chapter describes the features common to all the DMA channels, as
well as how DMA operations are set up. For specific peripheral features,
see the appropriate peripheral chapter for additional information. Perfor-
mance and bus arbitration for DMA operations can be found in
Chapter 4, “Chip Bus Hierarchy”.

Specific Information for the ADSP-BF51x
For details regarding the number of DMA controllers for the
ADSP-BF51x product, refer to ADSP-BF512/BF514/BF516/BF518(F)
Embedded Processor Data Sheet.

For DMA interrupt vector assignments, refer to Table 5-3 on page 5-20 in
Chapter 5, “System Interrupts”.

To determine how each of the DMAs is multiplexed with other functional
pins, refer to Table 9-2 on page 9-5 through Table 9-4 on page 9-7 in
Chapter 9, “General-Purpose Ports”.
ADSP-BF51x Blackfin Processor Hardware Reference 6-1

Overview and Features
For a list of MMR addresses for each DMA, refer to Chapter A, “System
MMR Assignments”.

DMA controller behavior for the ADSP-BF51x that differs from the gen-
eral information in this chapter can be found in the section “Unique
Information for the ADSP-BF51x Processor” on page 6-103.

Overview and Features
The processor uses DMA to transfer data between memory spaces or
between a memory space and a peripheral. The processor can specify data
transfer operations and return to normal processing while the fully inte-
grated DMA controller carries out the data transfers independent of
processor activity.

The DMA controller can perform several types of data transfers:

• Peripheral DMA transfers data between memory and on-chip
peripherals.

• Memory DMA (MDMA) transfers data between memory and
memory. The processor has two MDMA modules, each consisting
of independent memory read and memory write channels.

• Handshaking memory DMA (HMDMA) transfers data between
off-chip peripherals and memory. This enhancement of the
MDMA channels enables external hardware to control the timing
of individual data transfers or block transfers.

 The HMDMA feature is not available for all products. Refer to
“Unique Information for the ADSP-BF51x Processor” on
page 6-103 to determine whether it applies to this product.

All DMAs can transport data to and from on-chip and off-chip memories,
including L1 and SDRAM. The L1 scratchpad memory cannot be
accessed by DMA.
6-2 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
 SDRAM and SRAM are not available on all products. Refer to
“Unique Information for the ADSP-BF51x Processor” on
page 6-103 to determine whether it applies to this product.

DMA transfers on the processor can be descriptor-based or register-based.

Register-based DMA allows the processor to directly program DMA con-
trol registers to initiate a DMA transfer. On completion, the control
registers may be automatically updated with their original setup values for
continuous transfer, if needed.

Descriptor-based DMA transfers require a set of parameters stored within
memory to initiate a DMA sequence. This sort of transfer allows the
chaining together of multiple DMA sequences. In descriptor-based DMA
operations, a DMA channel can be programmed to automatically set up
and start another DMA transfer after the current sequence completes.

Examples of DMA styles supported by flex descriptors include:

• A single linear buffer that stops on completion (FLOW = stop mode)

• A linear buffer with byte strides of any integer value, including
negative values (DMAx_X_MODIFY register)

• A circular, auto-refreshing buffer that interrupts on each full buffer

• A similar buffer that interrupts on fractional buffers (for example,
½, ¼) (2-D DMA)

• 1-D DMA, using a set of identical ping-pong buffers defined by a
linked ring of 3-word descriptors, each containing a link pointer
and a 32-bit address

• 1-D DMA, using a linked list of 5-word descriptors containing a
link pointer, a 32-bit address, the buffer length, and a
configuration
ADSP-BF51x Blackfin Processor Hardware Reference 6-3

DMA Controller Overview
• 2-D DMA, using an array of 1-word descriptors, specifying only
the base DMA address within a common data page

• 2-D DMA, using a linked list of 9-word descriptors specifying
everything

DMA Controller Overview
A block diagram of the DMA controller can be found in the “Unique
Information for the ADSP-BF51x Processor” on page 6-103.

External Interfaces
The DMA does not connect external memories and devices directly.
Rather, data is passed through the EBIU port. Any kind of device that is
supported by the EBIU can also be accessed by peripheral DMA or mem-
ory DMA operation. This is typically flash memory, SRAM, SDRAM,
FIFOs, or memory-mapped peripheral devices.

For products with handshaking MDMA (HMDMA), the operation is sup-
ported by two MDMA request input pins, DMAR0 and DMAR1. The DMAR0
pin controls transfer timing on the MDMA0 destination channel. The DMAR1
pin controls the destination channel of MDMA1. With these pins, external
FIFO devices, ADC or DAC converters, or other streaming or block-pro-
cessing devices can use the MDMA channels to exchange their data or
data buffers with the Blackfin processor memory.

Internal Interfaces
Figure 4-1 on page 4-3 shows the dedicated DMA buses used by the DMA
controller to interconnect L1 memory, the on-chip peripherals, and the
EBIU port.
6-4 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
The 16-bit DMA core bus (DCB) connects the DMA controller to a dedi-
cated port of L1 memory. L1 memory has dedicated DMA ports featuring
special DMA buffers to decouple DMA operation. See Blackfin Processor
Programming Reference for a description of the L1 memory architecture.
The DCB bus operates at core clock (CCLK) frequency. It is the DMA con-
troller’s responsibility to translate DCB transfers to the system clock
(SCLK) domain.

The 16-bit DMA access bus (DAB) connects the DMA controller to the
on-chip peripherals. This bus operates at SCLK frequency.

The 16-bit DMA external bus (DEB) connects the DMA controller to the
EBIU port. This bus is used for all peripheral and memory DMA transfers
to and from external memories and devices. It operates at SCLK frequency.

Transferred data can be 8-, 16-, or 32-bits wide. The DMA controller,
however, connects only to 16-bit buses.

Memory DMA can pass data every SCLK cycle between L1 memory and the
EBIU. Transfers from L1 memory to L1 memory require two cycles, as the
DCB bus is used for both source and destination transfers. Similarly,
transfers between two off-chip devices require EBIU and DEB resources
twice. Peripheral DMA transfers can be performed every other SCLK cycle.

For more details on DMA performance see “DMA Performance” on
page 6-40.

Peripheral DMA
The DMA controller features 12 channels that perform transfers between
peripherals and on-chip or off-chip memories. The user has full control
over the mapping of DMA channels and peripherals. The default DMA
channel priority and mapping, shown in Table 6-7 on page 6-103, can be
changed by altering the 4-bit PMAP field in the DMAx_PERIPHERAL_MAP regis-
ters for the peripheral DMA channels.
ADSP-BF51x Blackfin Processor Hardware Reference 6-5

DMA Controller Overview
The default configuration should suffice in most cases, but there are some
cases where remapping the assignment can be helpful because of the DMA
channel priorities. When competing for any of the system buses, DMA0
has higher priority than DMA1, and so on. DMA11 has the lowest prior-
ity of the peripheral DMA channels.

 A 1:1 mapping should exist between DMA channels and peripher-
als. The user is responsible for ensuring that multiple DMA
channels are not mapped to the same peripheral and that multiple
peripherals are not mapped to the same DMA port. If multiple
channels are mapped to the same peripheral, only one channel is
connected (the lowest priority channel). If a nonexistent peripheral
(for example, 0xF in the PMAP field) is mapped to a channel, that
channel is disabled—DMA requests are ignored, and no DMA
grants are issued. The DMA requests are also not forwarded from
the peripheral to the interrupt controller.

All peripheral DMA channels work completely independently from each
other. The transfer timing is controlled by the mapped peripheral.

Every DMA channel features its own 4-deep FIFO that decouples DAB
activity from DCB and DEB availability. DMA interrupt and descriptor
fetch timing is aligned with the memory side (DCB/DEB side) of the
FIFO. The user does, however, have an option to align interrupts with the
peripheral side (DAB side) of the FIFO for transmit operations. Refer to
the SYNC bit in the DMAx_CONFIG register for details.

Memory DMA
This section describes the two pairs of MDMA channels, which provide
memory-to-memory DMA transfers among the various memory spaces.
These include L1 memory and external synchronous/asynchronous
memories.

Each MDMA channel contains a DMA FIFO, an 8-word by 16-bit FIFO
block used to transfer data to and from either L1 or the DCB and DEB
6-6 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
buses. Typically, it is used to transfer data between external memory and
internal memory. It will also support DMA from the boot ROM on the
DEB bus. The FIFO can be used to hold DMA data transferred between
two L1 memory locations or between two external memory locations.

Each page of MDMA channels consists of:

• A source channel (for reading from memory)

• A destination channel (for writing to memory)

A memory-to-memory transfer always requires both the source and the
destination channel to be enabled. Each source/destination channel forms
a “stream,” and these two streams are hardwired for DMA priorities 12
through 15.

• Priority 12: MDMA0 destination

• Priority 13: MDMA0 source

• Priority 14: MDMA1 destination

• Priority 15: MDMA1 source

MDMA0 takes precedence over MDMA1, unless round-robin scheduling
is used or priorities become urgent, as programmed by the DRQ bit field in
the HMDMA_CONTROL register.

 It is illegal to program a source channel for memory write or a des-
tination channel for memory read.

The channels support 8-, 16-, and 32-bit memory DMA transfers, but
both ends of the MDMA connect to 16-bit buses. Source and destination
channels must be programmed to the same word size. In other words, the
MDMA transfer does not perform packing or unpacking of data; each
read results in one write. Both ends of the MDMA FIFO for a given
stream are granted priority at the same time. Each pair shares an 8-word
deep 16-bit FIFO. The source DMA engine fills the FIFO, while the
ADSP-BF51x Blackfin Processor Hardware Reference 6-7

DMA Controller Overview
destination DMA engine empties it. The FIFO depth allows the burst
transfers of the external access bus (EAB) and DMA access bus (DAB) to
overlap, significantly improving throughput on block transfers between
internal and external memory. Two separate descriptor blocks are required
to supply the operating parameters for each MDMA pair, one for the
source channel and one for the destination channel.

Because the source and destination DMA engines share a single FIFO buf-
fer, the descriptor blocks must be configured to have the same data size. It
is possible to have a different mix of descriptors on both ends as long as
the total transfer count is the same.

To start a MDMA transfer operation, the MMRs for the source and desti-
nation channels are written, each in a manner similar to peripheral DMA.

 The DMAx_CONFIG register for the source channel must be written
before the DMAx_CONFIG register for the destination channel.

Handshaked Memory DMA (HMDMA) Mode

This feature is not available for all products. Refer to “Unique Informa-
tion for the ADSP-BF51x Processor” on page 6-103 to determine whether
it applies to this product.

Handshaked operation applies only to memory DMA channels.

Normally, memory DMA transfers are performed at maximum speed.
Once started, data is transferred in a continuous manner until either the
data count expires or the MDMA is stopped. In handshake mode, the
MDMA does not transfer data automatically when enabled; it waits for an
external trigger on the MDMA request input signals. The DMAR0 input is
associated with MDMA0 and the DMAR1 input with MDMA1. Once a trig-
ger event is detected, a programmable portion of data is transferred and
then the MDMA stalls again and waits for the next trigger.

Handshake operation is not only useful for controlling the timing of
memory-to-memory transfers, it also enables the MDMA to operate with
6-8 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
asynchronous FIFO-style devices connected to the EBIU port. The Black-
fin processor acknowledges a DMA request by a proper number of read or
write operations. It is up to the device connected to any of the AMSx
strobes to deassert or pulse the request signal and to decrement the num-
ber of pending requests accordingly.

Depending on HMDMA operating mode, an external DMA request may
trigger individual data word transfers or block transfers. A block can con-
sist of up to 65535 data words. For best throughput, DMA requests can
be pipelined. The HMDMA controllers feature a request counter to
decouple request timing from the data transfers.

See “Handshaked Memory DMA Operation” on page 6-36 for a func-
tional description.

Modes of Operation
The following sections describe the DMA operation.

Register-Based DMA Operation
Register-based DMA is the traditional kind of DMA operation. Software
configures the source or destination address and the length of the data to
be transferred to memory-mapped registers and then starts DMA
operation.

For basic operation, the software performs these steps:

• Write the source or destination address to the 32-bit
DMAx_START_ADDR register.

• Write the number of data words to be transferred to the 16-bit
DMAx_X_COUNT register.
ADSP-BF51x Blackfin Processor Hardware Reference 6-9

Modes of Operation
• Write the address modifier to the 16-bit DMAx_X_MODIFY register.
This is the two’s-complement value added to the address pointer
after every transfer. This value must always be initialized as there is
no default value. Typically, this register is set to 0x0004 for 32-bit
DMA transfers, to 0x0002 for 16-bit transfers, and to 0x0001 for
byte transfers.

• Write the operation mode to the DMAx_CONFIG register. These bits
in particular need to be changed as needed:

• The DMAEN bit enables the DMA channel.

• The WNR bit controls the DMA direction. DMAs that read
from memory (peripheral transmit DMAs and source chan-
nel MDMAs) keep this bit cleared. Peripheral receive
DMAs and destination channel MDMAs set this bit because
they write to memory.

• The WDSIZE bit controls the data word width for the trans-
fer. It can be 8-, 16-, or 32-bits wide.

• The DI_EN bit enables an interrupt when the DMA opera-
tion has finished.

• Set the FLOW field to 0x0 for stop mode or 0x1 for autobuffer
mode.

Once the DMAEN bit is set, the DMA channel starts its operation. While
running, the DMAx_CURR_ADDR and the DMAx_CURR_X_COUNT registers can be
monitored to determine the current progress of the DMA operation.
However they should not be used to synchronize software and hardware.

The DMAx_IRQ_STATUS register signals whether the DMA has finished
(DMA_DONE bit), whether a DMA error has occurred (DMA_ERR bit), and
whether the DMA is currently running (DMA_RUN bit). The DMA_DONE and
the DMA_ERR bits also function as interrupt latch bits. They must be cleared
by write-one-to-clear (W1C) operations by the interrupt service routine.
6-10 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
Stop Mode

In stop mode, the DMA operation is executed only once. When started,
the DMA channel transfers the desired number of data words and stops
itself when the transfer is complete. If the DMA channel is no longer used,
software should clear the DMAEN enable bit to disable the otherwise paused
channel. Stop mode is entered if the FLOW bit field in the DMA channel’s
DMAx_CONFIG register is 0. The NDSIZE field must always be 0 in this mode.

For receive (memory write) operation, the DMA_RUN bit functions almost
the same as the inverted DMA_DONE bit. For transmit (memory read) opera-
tion, however, the two bits have different timing. Refer to the description
of the SYNC bit in the DMAx_CONFIG register for details.

Autobuffer Mode

In autobuffer mode, the DMA operates repeatedly in a circular manner. If
all data words have been transferred, the address pointer DMAx_CURR_ADDR
is reloaded automatically by the DMAx_START_ADDR value. An interrupt may
also be generated.

Autobuffer mode is entered if the FLOW field in the DMAx_CONFIG register
is 1. The NDSIZE bit must be 0 in autobuffer mode.

Two-Dimensional DMA Operation
Register-based and descriptor-based DMA can operate in one-dimensional
mode or two-dimensional mode.

In two-dimensional (2-D) mode, the DMAx_X_COUNT register is accompa-
nied by the DMAx_Y_COUNT register, supporting arbitrary row and column
sizes up to 64K × 64K elements, as well as arbitrary DMAx_X_MODIFY and
DMAx_Y_MODIFY values up to ±32K bytes. Furthermore, DMAx_Y_MODIFY can
be negative, allowing implementation of interleaved datastreams. The
DMAx_X_COUNT and DMAx_Y_COUNT values specify the row and column sizes,
where DMAx_X_COUNT must be 2 or greater.
ADSP-BF51x Blackfin Processor Hardware Reference 6-11

Modes of Operation
The start address and modify values are in bytes, and they must be aligned
to a multiple of the DMA transfer word size (WDSIZE[1:0] in
DMAx_CONFIG). Misalignment causes a DMA error.

The DMAx_X_MODIFY value is the byte-address increment that is applied
after each transfer that decrements the DMAx_CURR_X_COUNT register. The
DMAx_X_MODIFY value is not applied when the inner loop count is ended by
decrementing DMAx_CURR_X_COUNT from 1 to 0, except that it is applied on
the final transfer when DMAx_CURR_Y_COUNT is 1 and DMAx_CURR_X_COUNT
decrements from 1 to 0.

The DMAx_Y_MODIFY value is the byte-address increment that is applied
after each decrement of the DMAx_CURR_Y_COUNT register. However, the
DMAx_Y_MODIFY value is not applied to the last item in the array on which
the outer loop count (DMAx_CURR_Y_COUNT) also expires by decrementing
from 1 to 0.

After the last transfer completes, DMAx_CURR_Y_COUNT = 1,
DMAx_CURR_X_COUNT = 0, and DMAx_CURR_ADDR is equal to the last item’s
address plus DMAx_X_MODIFY.

 If the DMA channel is programmed to refresh automatically (auto-
buffer mode), then these registers will be loaded from
DMAx_X_COUNT, DMAx_Y_COUNT, and DMAx_START_ADDR upon the first
data transfer.

The DI_SEL configuration bit enables DMA interrupt requests every time
the inner loop rolls over. If DI_SEL is cleared, but DI_EN is still set, only
one interrupt is generated after the outer loop completes.

Examples of Two-Dimensional DMA

Example 1: Retrieve a 16 × 8 block of bytes from a video frame buffer of
size (N × M) pixels:

DMAx_X_MODIFY = 1

DMAx_X_COUNT = 16
6-12 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
DMAx_Y_MODIFY = N–15 (offset from the end of one row to the start of
another)
DMAx_Y_COUNT = 8

This produces the following address offsets from the start address:

0,1,2,...15,

N,N + 1, ... N + 15,

2N, 2N + 1,... 2N + 15, ...

7N, 7N + 1,... 7N + 15,

Example 2: Receive a video datastream of bytes,
(R,G,B pixels) × (N × M image size):

DMAx_X_MODIFY = (N * M)

DMAx_X_COUNT = 3

DMAx_Y_MODIFY = 1 – 2(N * M) (negative)

DMAx_Y_COUNT = (N * M)

This produces the following address offsets from the start address:

0, (N * M), 2(N * M),

1, (N * M) + 1, 2(N * M) + 1,

2, (N * M) + 2, 2(N * M) + 2,

...

(N * M) – 1, 2(N * M) – 1, 3(N * M) – 1,

Descriptor-Based DMA Operation
In descriptor-based DMA operation, software does not set up DMA
sequences by writing directly into DMA controller registers. Rather, soft-
ware keeps DMA configurations, called descriptors, in memory. On
demand, the DMA controller loads the descriptor from memory and over-
writes the affected DMA registers by its own control. Descriptors can be
fetched from L1 memory using the DCB bus or from external memory
using the DEB bus.
ADSP-BF51x Blackfin Processor Hardware Reference 6-13

Modes of Operation
A descriptor describes what kind of operation should be performed next
by the DMA channel. This includes the DMA configuration word as well
as data source/destination address, transfer count, and address modify val-
ues. A DMA sequence controlled by one descriptor is called a work unit.

Optionally, an interrupt can be requested at the end of any work unit by
setting the DI_EN bit in the configuration word of the respective
descriptor.

A DMA channel is started in descriptor-based mode by first writing the
32-bit address of the first descriptor into the DMAx_NEXT_DESC_PTR register
(or the DMAx_CURR_DESC_PTR in case of descriptor array mode) and then
performing a write to the DMAx_CONFIG register that sets the FLOW field to
either 0x4, 0x6, or 0x7 and enables the DMAEN bit. This causes the DMA
controller to immediately fetch the descriptor from the address pointed to
by the DMAx_NEXT_DESC_PTR register. The fetch overwrites the DMAx_CONFIG
register again. If the DMAEN bit is still set, the channel starts DMA
processing.

The DFETCH bit in the DMAx_IRQ_STATUS register tells whether a descriptor
fetch is ongoing on the respective DMA channel. The
DMAx_CURR_DESC_PTR points to the descriptor value that is to be fetched
next.

Descriptor List Mode

Descriptor list mode is selected by setting the FLOW bit field in the DMA
channel’s DMAx_CONFIG register to either 0x6 (small descriptor mode) or
0x7 (large descriptor mode). In either of these modes multiple descriptors
form a chained list. Every descriptor contains a pointer to the next
descriptor. When the descriptor is fetched, this pointer value is loaded
into the DMAx_NEXT_DESC_PTR register of the DMA channel. In large
descriptor mode this pointer is 32 bits wide. Therefore, the next descrip-
tor may reside in any address space accessible through the DCB and DEB
buses. In small descriptor mode this pointer is just 16 bits wide. For this
reason, the next descriptor must reside in the same 64K byte address space
6-14 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
as the first one because the upper 16 bits of the DMAx_NEXT_DESC_PTR regis-
ter are not updated.

Descriptor list modes are started by writing first to the
DMAx_NEXT_DESC_PTR register and then to the DMAx_CONFIG register.

Descriptor Array Mode

Descriptor array mode is selected by setting the FLOW bit field in the DMA
channel’s DMAx_CONFIG register to 0x4. In this mode, the descriptors do
not contain further descriptor pointers. The initial DMAx_CURR_DESC_PTR
value is written by software. It points to an array of descriptors. The indi-
vidual descriptors are assumed to reside next to each other and, therefore,
their addresses are known.

Variable Descriptor Size

In any descriptor-based mode the NDSIZE field in the configuration word
specifies how many 16-bit words of the next descriptor need to be loaded
on the next fetch. In descriptor-based operation, NDSIZE must be
non-zero. The descriptor size can be any value from one entry (the lower
16 bits of DMAx_START_ADDR only) to nine entries (all the DMA parame-
ters). Table 6-1 illustrates how a descriptor must be structured in
memory. The values have the same order as the corresponding MMR
addresses.

If, for example, a descriptor is fetched in array mode with NDSIZE = 0x5,
the DMA controller fetches the 32-bit start address, the DMA configura-
tion word, and the XCNT and XMOD values. However, it does not load YCNT
and YMOD. This might be the case if the DMA operates in one-dimensional
mode or if the DMA is in two-dimensional mode, but the YCNT and YMOD
values do not need to change.

All the other registers not loaded from the descriptor retain their prior val-
ues, although the DMAx_CURR_ADDR, DMAx_CURR_X_COUNT, and
ADSP-BF51x Blackfin Processor Hardware Reference 6-15

Modes of Operation

e

DMAx_CURR_Y_COUNT registers are reloaded between the descriptor fetch and
the start of DMA operation.

Table 6-1 shows the offsets for descriptor elements in the three modes
described above. Note the names in the table describe the descriptor ele-
ments in memory, not the actual MMRs into which they are eventually
loaded. For more information regarding descriptor element acronyms, see
Table 6-4 on page 6-63.

Note that every descriptor fetch consumes bandwidth from either the
DCB bus or the DEB bus and the external memory interface, so it is best
to keep the size of descriptors as small as possible.

Mixing Flow Modes

The FLOW mode of a DMA is not a global setting. If the DMA configura-
tion word is reloaded with a descriptor fetch, the FLOW and NDSIZE bit
fields can also be altered. A small descriptor might be used to loop back to
the first descriptor if a descriptor array is used in an endless manner. If the
descriptor chain is not endless and the DMA is required to stop after a

Table 6-1. Parameter Registers and Descriptor Offsets

Descriptor Offset Descriptor Array Mode Small Descriptor List Mode Large Descriptor List Mod

0x0 SAL NDPL NDPL

0x2 SAH SAL NDPH

0x4 DMACFG SAH SAL

0x6 XCNT DMACFG SAH

0x8 XMOD XCNT DMACFG

0xA YCNT XMOD XCNT

0xC YMOD YCNT XMOD

0xE YMOD YCNT

0x10 YMOD
6-16 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
certain descriptor has been processed, the last descriptor is typically pro-
cessed in stop mode. That is, its FLOW and NDSIZE fields are 0, but its DMAEN
bit is still set.

Functional Description
The following sections provide a functional description of DMA.

DMA Operation Flow
Figure 6-1 and Figure 6-2 describe the DMA flow.

DMA Startup

This section discusses starting DMA “from scratch.” This is similar to
starting it after it has been paused by the FLOW = 0 mode.

Before initiating DMA for the first time on a given channel, all parameter
registers must be initialized . Be sure to initialize the upper 16 bits of the
DMAx_NEXT_DESC_PTR (or DMAx_CURR_DESC_PTR register in FLOW = 4 mode)
and DMAx_START_ADDR registers, because they might not otherwise be
accessed, depending upon the flow mode. Also note that the
DMAx_X_MODIFY and DMAx_Y_MODIFY registers are not preset to a default
value at reset.

The user may wish to write other DMA registers that might be static dur-
ing DMA activity (for example, DMAx_X_MODIFY, DMAx_Y_MODIFY). The
contents of NDSIZE and FLOW in DMAx_CONFIG indicate which registers, if
any, are fetched from descriptor elements in memory. After the descriptor
fetch, if any, is completed, DMA operation begins, initiated by writing
DMAx_CONFIG with DMAEN = 1.
ADSP-BF51x Blackfin Processor Hardware Reference 6-17

Functional Description
Figure 6-1. DMA Flow, From DMA Controller’s Point of View (1 of 2)

COPY FLOW, NDSIZE FROM DMA_CONFIG
INTO TEMPORARY DESCRIPTOR FETCH COUNTERS

B

COPY NEXT DESCRIPTOR POINTER
TO CURRENT DESCRIPTOR POINTER

USER WRITES SOME OR ALL DMA PARAMETER
REGISTERS, AND THEN WRITES DMA_CONFIG

SET DFETCH IN IRQ_STATUS

SET DMA_RUN IN IRQ_STATUS

BAD DMA_CONFIG?

TEST DMAEN

TEST FLOW

TEST FLOW

Y

N

DMA ERROR

DMAEN = 1

DMAEN = 0

FLOW = 4, 6, OR 7

DMA STOPPED.
CLEAR DMA_RUN IN

IRQ_STATUS

FLOW = 0 OR 1
A

C

DI_EN = 0 OR
(DI_EN = 1 AND
DMA_DONE_IRQ = 1)

FLOW = 4

FLOW = 6 OR 7

D
6-18 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
Figure 6-2. DMA Flow, From DMA Controller’s Point of View (2 of 2)

B

A

C

TEST NDSIZE
DMA

ABORT
OCCURS

READ NDSIZE ELEMENTS
OF DESCRIPTOR INTO

PARAMETER REGISTERS
VIA CURRENT

DESCRIPTOR POINTER
FLOW = 0 OR 1

FLOW = 1

CLEAR DFETCH IN
IRQ_STATUS

DMA TRANSFER
BEGINS AND

CONTINUES UNTIL
COUNTS EXPIRE

TEST DI_EN

TEST FLOW

TEST SYNC, WNR

DMA STOPPED.
CLEAR DMA_RUN IN

IRQ_STATUS.

MEMORY WRITE (DESTINATION)

SYNC = 0 &
MEMORY READ

FLOW = 0

DI_EN = 0

DI_EN = 1 SIGNAL AN
INTERRUPT

TO THE CORE

SET DMA_DONE
IN IRQ_STATUS

TRANSFER
DATA FROM

FIFO TO
PERIPHERAL
UNTIL EMPTY

*MAX SIZE DEPENDS ON FLOW
 IF FLOW = 4, MAX_SIZE = 7
 IF FLOW = 6, MAX_SIZE = 8
 IF FLOW = 7, MAX_SIZE = 9

NDSIZE = 0 OR
NDSIZE > MAX_SIZE*

NDSIZE > 0 AND
NDSIZE <= MAX_SIZE*

TEST SYNC, WNR

TRANSFER
DATA FROM

FIFO TO
PERIPHERAL
UNTIL EMPTY

SYNC = 1 &
MEMORY READ

SYNC = 0 OR
MEMORY WRITE

D
FLOW = 4, 6, 7

SYNC = 1 OR
MEMORY WRITE
ADSP-BF51x Blackfin Processor Hardware Reference 6-19

Functional Description
When DMAx_CONFIG is written directly by software, the DMA controller
recognizes this as the special startup condition that occurs when starting
DMA for the first time on this channel or after the engine has been
stopped (FLOW = 0).

When the descriptor fetch is complete and DMAEN = 1, the DMACFG descrip-
tor element that was read into DMAx_CONFIG assumes control. Before this
point, the direct write to DMAx_CONFIG had control. In other words, the
WDSIZE, DI_EN, DI_SEL, SYNC, and DMA2D fields will be taken from the
DMACFG value in the descriptor read from memory, while these field values
initially written to the DMAx_CONFIG register are ignored.

As Figure 6-1 and Figure 6-2 show, at startup the FLOW and NDSIZE bits in
DMAx_CONFIG determine the course of the DMA setup process. The FLOW
value determines whether to load more current registers from descriptor
elements in memory, while the NDSIZE bits detail how many descriptor
elements to fetch before starting DMA. DMA registers not included in the
descriptor are not modified from their prior values.

If the FLOW value specifies small or large descriptor list modes, the
DMAx_NEXT_DESC_PTR is copied into DMAx_CURR_DESC_PTR. Then, fetches of
new descriptor elements from memory are performed, indexed by
DMAx_CURR_DESC_PTR, which is incremented after each fetch. If NDPL
and/or NDPH is part of the descriptor, then these values are loaded into
DMAx_NEXT_DESC_PTR, but the fetch of the current descriptor continues
using DMAx_CURR_DESC_PTR. After completion of the descriptor fetch,
DMAx_CURR_DESC_PTR points to the next 16-bit word in memory past the
end of the descriptor.

If neither NDPH nor NDPL are part of the descriptor (that is, in descriptor
array mode, FLOW = 4), then the transfer from NDPH/NDPL into
DMAx_CURR_DESC_PTR does not occur. Instead, descriptor fetch indexing
begins with the value in DMAx_CURR_DESC_PTR.

If DMACFG is not part of the descriptor, the previous DMAx_CONFIG settings
(as written by MMR access at startup) control the work unit operation. If
6-20 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
DMACFG is part of the descriptor, then the DMAx_CONFIG value programmed
by the MMR access controls only the loading of the first descriptor from
memory. The subsequent DMA work operation is controlled by the low
byte of the descriptor’s DMACFG and by the parameter registers loaded from
the descriptor. The bits DI_EN, DI_SEL, DMA2D, WDSIZE, and WNR in the value
programmed by the MMR access are disregarded.

The DMA_RUN and DFETCH status bits in the DMAx_IRQ_STATUS register indi-
cate the state of the DMA channel. After a write to DMAx_CONFIG, the
DMA_RUN and DFETCH bits can be automatically set to 1. No data interrupts
are signaled as a result of loading the first descriptor from memory.

After the above steps, DMA data transfer operation begins. The DMA
channel immediately attempts to fill its FIFO, subject to channel prior-
ity—a memory write (RX) DMA channel begins accepting data from its
peripheral, and a memory read (TX) DMA channel begins memory reads,
provided the channel wins the grant for bus access.

When the DMA channel performs its first data memory access, its address
and count computations take their input operands from the start registers
(DMAx_START_ADDR, DMAx_X_COUNT, DMAx_Y_COUNT), and write results back
to the current registers (DMAx_CURR_ADDR, DMAx_CURR_X_COUNT,
DMAx_CURR_Y_COUNT). Note also that the current registers are not valid
until the first memory access is performed, which may be some time after
the channel is started by the write to the DMA_CONFIG register. The current
registers are loaded automatically from the appropriate descriptor ele-
ments, overwriting their previous contents, as follows.

• DMAx_START_ADDR is copied to DMAx_CURR_ADDR

• DMAx_X_COUNT is copied to DMAx_CURR_X_COUNT

• DMAx_Y_COUNT is copied to DMAx_CURR_Y_COUNT

Then DMA data transfer operation begins, as shown in Figure 6-2.
ADSP-BF51x Blackfin Processor Hardware Reference 6-21

Functional Description
DMA Refresh

On completion of a work unit:

• The DMA controller completes the transfer of all data between
memory and the DMA unit.

• If SYNC = 1 and WNR = 0 (memory read), the DMA controller selects
a synchronized transition and transfers all data to the peripheral
before continuing.

• If enabled by DI_EN, the DMA controller signals an interrupt to the
core and sets the DMA_DONE bit in the channel’s DMAx_IRQ_STATUS
register.

• If FLOW = 0 the DMA controller stops operation by clearing the
DMA_RUN bit in DMAx_IRQ_STATUS register after all data in the chan-
nel’s DMA FIFO has been transferred to the peripheral.

• During the fetch in FLOW modes 4, 6, and 7, the DMA controller
sets the DFETCH bit in DMAx_IRQ_STATUS register to 1. At this point,
the DMA operation depends on whether FLOW = 4, 6, or 7, as fol-
lows:

If FLOW = 4 (descriptor array) the DMA controller loads a new
descriptor from memory into the DMA registers using the contents
of DMAx_CURR_DESC_PTR, and increments DMAx_CURR_DESC_PTR. The
descriptor size comes from the NDSIZE field of the DMAx_CONFIG reg-
ister prior to the beginning of the fetch.

If FLOW = 6 (small descriptor list) the DMA controller copies the
32-bit DMAx_NEXT_DESC_PTR into DMAx_CURR_DESC_PTR. Next, the
DMA controller fetches a descriptor from memory into the DMA
registers using the new contents of DMAx_CURR_DESC_PTR, and incre-
ments DMAx_CURR_DESC_PTR. The first descriptor element that is
loaded is a new 16-bit value for the lower 16 bits of
DMAx_NEXT_DESC_PTR, followed by the rest of the descriptor
6-22 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
elements. The high 16 bits of DMAx_NEXT_DESC_PTR will retain their
former value. This supports a shorter, more efficient descriptor
than the large descriptor list model, which is suitable whenever the
application can place the channel’s descriptors in the same 64K
byte range of memory.

If FLOW = 7 (large descriptor list) the DMA controller copies the
32-bit DMAx_NEXT_DESC_PTR into DMAx_CURR_DESC_PTR. Next, the
DMA controller fetches a descriptor from memory into the DMA
registers using the new contents of DMAx_CURR_DESC_PTR, and incre-
ments DMAx_CURR_DESC_PTR. The first descriptor element that is
loaded is a new 32-bit value for the full DMAx_NEXT_DESC_PTR, fol-
lowed by the rest of the descriptor elements. The high 16 bits of
DMAx_NEXT_DESC_PTR may differ from their former value. This sup-
ports a fully flexible descriptor list which can be located anywhere
in internal memory or external memory.

• If it is necessary to link from a descriptor chain whose descriptors
are in one 64K byte area to another chain whose descriptors are
outside that area, only the descriptor containing the link to the new
64K byte range needs to use FLOW = 7. All descriptors that reference
the same 64K byte area may use FLOW = 6.

• If FLOW = 4, 6, or 7 (descriptor array, small descriptor list, or large
descriptor list, respectively), the DMA controller clears the DFETCH
bit in the DMAx_IRQ_STATUS register.
ADSP-BF51x Blackfin Processor Hardware Reference 6-23

Functional Description
• If FLOW = any value but 0 (Stop), the DMA controller begins the
next work unit for that channel, which must contend with other
channels for priority on the memory buses. On the first memory
transfer of the new work unit, the DMA controller updates the cur-
rent registers from the start registers:

DMAx_CURR_ADDR loaded from DMAx_START_ADDR
DMAx_CURR_X_COUNT loaded from DMAx_X_COUNT
DMAx_CURR_Y_COUNT loaded from DMAx_Y_COUNT

The DFETCH bit in the DMAx_IRQ_STATUS register is then cleared,
after which the DMA transfer begins again, as shown in Figure 6-2.

Work Unit Transitions

Transitions from one work unit to the next are controlled by the SYNC bit
in the DMAx_CONFIG register of the work units. In general, continuous tran-
sitions have lower latency at the cost of restrictions on changes of data
format or addressed memory space in the two work units. These latency
gains and data restrictions arise from the way the DMA FIFO pipeline is
handled while the next descriptor is fetched. In continuous transitions
(SYNC = 0), the DMA FIFO pipeline continues to transfer data to and
from the peripheral or destination memory during the descriptor fetch
and/or when the DMA channel is paused between descriptor chains.

Synchronized transitions (SYNC = 1), on the other hand, provide better
real-time synchronization of interrupts with peripheral state and greater
flexibility in the data formats and memory spaces of the two work units, at
the cost of higher latency in the transition. In synchronized transitions,
the DMA FIFO pipeline is drained to the destination or flushed (RX data
discarded) between work units.
6-24 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
 Work unit transitions for MDMA streams are controlled by the
SYNC bit of the MDMA source channel’s DMAx_CONFIG register. The
SYNC bit of the MDMA destination channel is reserved and must be
0. In transmit (memory read) channels, the SYNC bit of the last
descriptor prior to the transition controls the transition behavior.
In contrast, in receive channels, the SYNC bit of the first descriptor
of the next descriptor chain controls the transition.

DMA Transmit and MDMA Source

In DMA transmit (memory read) and MDMA source channels, the SYNC
bit controls the interrupt timing at the end of the work unit and the han-
dling of the DMA FIFO between the current and next work units.

If SYNC = 0, a continuous transition is selected. In a continuous transition,
just after the last data item is read from memory, the following operations
start in parallel:

• The interrupt (if any) is signalled.

• The DMA_DONE bit in the DMAx_IRQ_STATUS register is set.

• The next descriptor begins to be fetched.

• The final data items are delivered from the DMA FIFO to the des-
tination memory or peripheral.

This allows the DMA to provide data from the FIFO to the peripheral
“continuously” during the descriptor fetch latency period.

When SYNC = 0, the final interrupt (if enabled) occurs when the last data is
read from memory. This interrupt is at the earliest time that the output
memory buffer may safely be modified without affecting the previous data
transmission. Up to four data items may still be in the DMA FIFO,
however, and not yet at the peripheral, so the DMA interrupt should not
be used as the sole means of synchronizing the shutdown or reconfigura-
tion of the peripheral following a transmission.
ADSP-BF51x Blackfin Processor Hardware Reference 6-25

Functional Description
 If SYNC = 0 (continuous transition) on a transmit (memory read)
descriptor, the next descriptor must have the same data word size,
read/write direction, and source memory (internal vs. external) as
the current descriptor.

SYNC = 0 selects continuous transition on a work unit in FLOW = 0 mode
with interrupt enabled. The interrupt service routine may begin execution
while the final data is still draining from the FIFO to the peripheral. This
is indicated by the DMA_RUN bit in the DMAx_IRQ_STATUS register; if it is 1,
the FIFO is not empty yet. Do not start a new work unit with different
word size or direction while DMA_RUN = 1. Further, if the channel is dis-
abled (by writing DMAEN = 0), the data in the FIFO is lost.

SYNC = 1 selects a synchronized transition in which the DMA FIFO is first
drained to the destination memory or peripheral before any interrupt is
signalled and before any subsequent descriptor or data is fetched. This
incurs greater latency, but provides direct synchronization between the
DMA interrupt and the state of the data at the peripheral.

For example, if SYNC = 1 and DI_EN = 1 on the last descriptor in a work
unit, the interrupt occurs when the final data has been transferred to the
peripheral, allowing the service routine to properly switch to non-DMA
transmit operation. When the interrupt service routine is invoked, the
DMA_DONE bit is set and the DMA_RUN bit is cleared.

A synchronized transition also allows greater flexibility in the format of
the DMA descriptor chain. If SYNC = 1, the next descriptor may have any
word size or read/write direction supported by the peripheral and may
come from either memory space (internal or external). This can be useful
in managing MDMA work unit queues, since it is no longer necessary to
interrupt the queue between dissimilar work units.

DMA Receive

In DMA receive (memory write) channels, the SYNC bit controls the han-
dling of the DMA FIFO between descriptor chains (not individual
6-26 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
descriptors), when the DMA channel is paused. The DMA channel pauses
after descriptors with FLOW = 0 mode, and may be restarted (for example,
after an interrupt) by writing the channel’s DMAx_CONFIG register with
DMAEN = 1.

If the SYNC bit is 0 in the new work unit’s DMAx_CONFIG value, a continuous
transition is selected. In this mode, any data items received into the DMA
FIFO while the channel was paused are retained, and they are the first
items written to memory in the new work unit. This mode of operation
provides lower latency at work unit transitions and ensures that no data
items are dropped during a DMA pause, at the cost of certain restrictions
on the DMA descriptors.

 If the SYNC bit is 0 on the first descriptor of a descriptor chain after
a DMA pause, the DMA word size of the new chain must not
change from the word size of the previous descriptor chain active
before the pause, unless the DMA channel is reset between chains
by writing the DMAEN bit to 0 and then to 1 again.

If the SYNC bit is 1 in the new work unit’s DMAx_CONFIG value, a synchro-
nized transition is selected. In this mode, only the data received from the
peripheral by the DMA channel after the write to the DMAx_CONFIG register
are delivered to memory. Any prior data items transferred from the
peripheral to the DMA FIFO before this register write are discarded. This
provides direct synchronization between the data stream received from the
peripheral and the timing of the channel restart (when the DMAx_CONFIG
register is written).

For receive DMAs, the SYNC bit has no effect in transitions between work
units in the same descriptor chain (that is, when the previous descriptor’s
FLOW mode was not 0, so that DMA channel did not pause.)

If a descriptor chain begins with a SYNC bit of 1, there is no restriction on
DMA word size of the new chain in comparison to the previous chain.
ADSP-BF51x Blackfin Processor Hardware Reference 6-27

Functional Description
 The DMA word size must not change between one descriptor and
the next in any DMA receive (memory write) channel within a sin-
gle descriptor chain, regardless of the SYNC bit setting. In other
words, if a descriptor has WNR = 1 and FLOW = 4, 6, or 7, then the
next descriptor must have the same word size. For any DMA
receive (memory write) channel, there is no restriction on changes
of memory space (internal vs. external) between descriptors or
descriptor chains. DMA transmit (memory read) channels may
have such restrictions (see “DMA Transmit and MDMA Source”
on page 6-25).

Stopping DMA Transfers

In FLOW = 0 mode, DMA stops automatically after the work unit is
complete.

If a list or array of descriptors is used to control DMA, and if every
descriptor contains a DMACFG element, then the final DMACFG element
should have a FLOW = 0 setting to gracefully stop the channel.

In autobuffer (FLOW = 1) mode, or if a list or array of descriptors without
DMACFG elements is used, then the DMA transfer process must be termi-
nated by an MMR write to the DMAx_CONFIG register with a value whose
DMAEN bit is 0. A write of 0 to the entire register will always terminate
DMA gracefully (without DMA abort).

 If a channel has been stopped abruptly by writing DMAx_CONFIG to 0
(or any value with DMAEN = 0), the user must ensure that any mem-
ory read or write accesses in the pipelines have completed before
enabling the channel again. If the channel is enabled again before
an “orphan” access from a previous work unit completes, the state
of the DMA interrupt and FIFO is unspecified. This can generally
be handled by ensuring that the core allocates several consecutive
idle cycles in its usage of the relevant memory space to allow up to
three pending DMA accesses to issue, plus allowing enough mem-
ory access time for the accesses themselves to complete.
6-28 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
DMA Errors (Aborts)
The DMA controller flags conditions that cause the DMA process to end
abnormally (abort). This functionality is provided as a tool for system
development and debug to detect DMA-related programming errors.
DMA errors (aborts) are detected by the DMA channel module in the
cases listed below. When a DMA error occurs, the channel is immediately
stopped (DMA_RUN goes to 0) and any prefetched data is discarded. In addi-
tion, a DMA_ERROR interrupt is asserted.

There is only one DMA_ERROR interrupt for the whole DMA controller,
which is asserted whenever any of the channels has detected an error
condition.

The DMA_ERROR interrupt handler must:

• Read each channel’s DMAx_IRQ_STATUS register to look for a channel
with the DMA_ERR bit set (bit 1).

• Clear the problem with that channel (for example, fix register
values).

• Clear the DMA_ERR bit (write DMAx_IRQ_STATUS with bit 1 set).

The following error conditions are detected by the DMA hardware and
result in a DMA abort interrupt.

• The configuration register contains invalid values:

• Incorrect WDSIZE value (WDSIZE = b#11)

• Bit 15 not set to 0

• Incorrect FLOW value (FLOW = 2, 3, or 5)

• NDSIZE value does not agree with FLOW. See Table 6-2.
ADSP-BF51x Blackfin Processor Hardware Reference 6-29

Functional Description
• A disallowed register write occurred while the channel was run-
ning. Only the DMAx_CONFIG and DMAx_IRQ_STATUS registers can be
written when DMA_RUN = 1.

• An address alignment error occurred during any memory access.
For example, when DMAx_CONFIG register WDSIZE = 1 (16-bit) but
the least significant bit (LSB) of the address is not equal to b#0, or
when WDSIZE = 2 (32-bit) but the two LSBs of the address are not
equal to b#00.

• A memory space transition was attempted (internal-to-external or
vice versa). For example, the value in the DMAx_CURR_ADDR register
or DMAx_CURR_DESC_PTR register crossed a memory boundary.

• A memory access error occurred. Either an access attempt was
made to an internal address not populated or defined as cache, or
an external access caused an error (signaled by the external memory
interface).

Some prohibited situations are not detected by the DMA hardware. No
DMA abort is signaled for these situations:

• DMAx_CONFIG direction bit (WNR) does not agree with the direction
of the mapped peripheral.

• DMAx_CONFIG direction bit does not agree with the direction of the
MDMA channel.

• DMAx_CONFIG word size (WDSIZE) is not supported by the mapped
peripheral. See Table 6-2.

• DMAx_CONFIG word size in source and destination of the MDMA
stream are not equal.
6-30 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
• Descriptor chain indicates data buffers that are not in the same
internal/external memory space.

• In 2-D DMA, X_COUNT = 1

DMA Control Commands
Advanced peripherals, such as an Ethernet MAC module, are capable of
managing some of their own DMA operations, thus dramatically improv-
ing real-time performance and relieving control and interrupt demands on
the Blackfin processor core. These peripherals may communicate to the
DMA controller using DMA control commands, which are transmitted
from the peripheral to the associated DMA channel over internal DMA
request buses. Refer to “Unique Information for the ADSP-BF51x Proces-
sor” on page 6-103 to determine if DMA control commands are
applicable to a particular product.

The request buses consist of three wires per DMA-management-capable
peripheral. The DMA control commands extend the set of operations
available to the peripheral beyond the simple “request data” command
used by peripherals in general.

While these DMA control commands are not visible to or controllable by
the user, their use by a peripheral has implications for the structure of the
DMA transfers which that peripheral can support. It is important that
application software be written to comply with certain restrictions

Table 6-2. Legal NDSIZE Values

FLOW NDSIZE Note

0 0

1 0

4 0 < NDSIZE 7 Descriptor array, no descriptor pointer fetched

6 0 < NDSIZE 8 Descriptor list, small descriptor pointer fetched

7 0 < NDSIZE 9 Descriptor list, large descriptor pointer fetched
ADSP-BF51x Blackfin Processor Hardware Reference 6-31

Functional Description
regarding work units and descriptor chains (described later in this section)
so that the peripheral operates properly whenever it issues DMA control
commands.

MDMA channels do not service peripherals and therefore do not support
DMA control commands. The DMA control commands are shown in
Table 6-3.

Additional information for the control commands includes:

• Restart

The Restart command causes the current work unit to interrupt
processing and start over, using the addresses and counts from
DMAx_START_ADDR, DMAx_X_COUNT, and DMAx_Y_COUNT. No interrupt
is signalled.

If a channel programmed for transmit (memory read) receives a
Restart command, the channel momentarily pauses while any
pending memory reads initiated prior to the Restart command are
completed.

Table 6-3. DMA Control Commands

Code Name Description

000 NOP No operation

001 Restart Restarts the current work unit from the beginning

010 Finish Finishes the current work unit and starts the next

011 - Reserved

100 Req Data Typical DMA data request

101 Req Data
Urgent

Urgent DMA data request

110 - Reserved

111 - Reserved
6-32 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
During this period of time, the channel does not grant DMA
requests. Once all pending reads have been flushed from the chan-
nel’s pipelines, the channel resets its counters and FIFO and starts
prefetch reads from memory. DMA data requests from the periph-
eral are granted as soon as new prefetched data is available in the
DMA FIFO. The peripheral can thus use the Restart command to
re-attempt a failed transmission of a work unit.

If a channel programmed for receive (memory write) receives a
Restart command, the channel stops writing to memory, discards
any data held in its DMA FIFO, and resets its counters and FIFO.
As soon as this initialization is complete, the channel again grants
DMA write requests from the peripheral. The peripheral can thus
use the Restart command to abort transfer of received data into a
work unit and re-use the memory buffer for a later data transfer.

• Finish

The Finish command causes the current work unit to terminate
and move on to the next work unit. An interrupt is signalled as
usual, if selected by the DI_EN bit. The peripheral can thus use the
Finish command to partition the DMA stream into work units on
its own, perhaps as a result of parsing the data currently passing
though its supported communication channel, without direct
real-time control by the processor.

If a channel programmed for transmit (memory read) receives a
Finish command, the channel momentarily pauses while any
pending memory reads initiated prior to the Finish command are
completed. During this period of time, the channel does not grant
DMA requests. Once all pending reads have been flushed from the
channel’s pipelines, the channel signals an interrupt (if enabled),
and begins fetching the next descriptor (if any). DMA data requests
from the peripheral are granted as soon as new prefetched data is
available in the DMA FIFO.
ADSP-BF51x Blackfin Processor Hardware Reference 6-33

Functional Description
If a channel programmed for receive (memory write) receives a
Finish command, the channel stops granting new DMA requests
while it drains its FIFO. Any DMA data received by the DMA con-
troller prior to the Finish command is written to memory. When
the FIFO reaches an empty state, the channel signals an interrupt
(if enabled) and begins fetching the next descriptor (if any). Once
the next descriptor has been fetched, the channel initializes its
FIFO and then resumes granting DMA requests from the
peripheral.

• Request Data

The Request Data command is identical to the DMA request oper-
ation of peripherals that are not DMA-management-capable.

• Request Data Urgent

The Request Data Urgent command behaves identically to the
DMA Request command, except that the DMA channel performs
its memory accesses with urgent priority while it is asserted. This
includes both data and descriptor-fetch memory accesses. A
DMA-management-capable peripheral might use this command if
an internal FIFO is approaching a critical condition.

Restrictions

The proper operation of the 4-location DMA channel FIFO leads to cer-
tain restrictions in the sequence of DMA control commands.

Transmit Restart or Finish

No Restart or Finish command may be issued by a peripheral to a chan-
nel configured for memory read unless the peripheral has already
performed at least one DMA transfer in the current work unit and the cur-
rent work unit has more than four items remaining in
DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT (thus not yet read from
6-34 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
memory). Otherwise, the current work unit may already have completed
memory operations and can no longer be restarted or finished properly.

If the DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT value of the current work
unit is sufficiently large that it is always at least five more than the maxi-
mum data count prior to any Restart or Finish command, the above
restriction is satisfied. This implies that any work unit which might be
managed by Restart or Finish commands must have DMAx_CURR_X_COUNT/
DMAx_CURR_Y_COUNT values representing at least five data items.

Particularly if the DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT registers are
programmed to 0 (representing 65,536 transfers, the maximum value) the
channel will operate properly for 1-D work units up to 65,531 data items
or 2-D work units up to 4,294,967,291 data items.

Receive Restart or Finish

No Restart or Finish command may be issued by a peripheral to a chan-
nel configured for memory write unless either the peripheral has already
performed at least five DMA transfers in the current work unit or the pre-
vious work unit was terminated by a Finish command and the peripheral
has performed at least one DMA transfer in the current work unit. If five
data transfers have been performed, then at least one data item has been
written to memory in the current work unit, which implies that the cur-
rent work unit’s descriptor fetch completed before the data grant of the
fifth item. Otherwise, if less than five data items have been transferred, it
is possible that all of them are still in the DMA FIFO and the previous
work unit is still in the process of completion and transition between work
units.

Similarly, if a Finish command ended the previous work unit and at least
one subsequent DMA data transfer has occurred, then the fact that the
DMA channel issued the grant guarantees that the previous work unit has
already completed the process of draining its data to memory and transi-
tioning to the new work unit.
ADSP-BF51x Blackfin Processor Hardware Reference 6-35

Functional Description
If a peripheral terminates all work units with the Finish opcode (effec-
tively assuming responsibility for all work unit boundaries for the DMA
channel), then the peripheral need only ensure that it performs a single
transfer in each work unit before any restart or finish. This requires, how-
ever, that the user programs the descriptors for all work units managed by
the channel with DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT values repre-
senting more data items than the maximum work unit size that the
peripheral will encounter. For example, DMAx_CURR_X_COUNT/
DMAx_CURR_Y_COUNT values of 0 allow the channel to operate properly on
1-D work units up to 65,535 data items and 2-D work units up to
4,294,967,295 data items.

Handshaked Memory DMA Operation
Handshaked memory DMA operation is not available for all products.
Refer to “Unique Information for the ADSP-BF51x Processor” on
page 6-103 to determine whether this feature applies to this product.

Each DMARx input has its own set of control and status registers. Hand-
shake operation for MDMA0 is enabled by the HMDMAEN bit in the
HMDMA0_CONTROL register. Similarly, the HMDMAEN bit in the HMDMA1_CONTROL
register enables handshake mode for MDMA1.

It is important to understand that the handshake hardware works com-
pletely independently from the descriptor and autobuffer capabilities of
the MDMA, allowing most flexible combinations of logical data organiza-
tion vs. data portioning as required by FIFO depths, for example. If,
however, the connected device requires certain behavior of the address
lines, these must be controlled by traditional DMA setup.

 The HMDMA unit controls only the destination (memory write)
channel of the memory DMA. The source channel (memory-read
side) fills the 8-deep DMA buffers immediately after the receive
side is enabled and issues eight read commands.
6-36 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
The HMDMAx_BCINIT registers control how many data transfers are per-
formed upon every DMA request. If set to one, the peripheral can time
every individual data transfer. If greater than one, the peripheral must
have sufficient buffer size to provide or consume the number of words
programmed. Once the transfer has been requested, no further handshake
can hold off the DMA from transferring the entire block, except by stall-
ing the EBIU accesses by the ARDY signal. Nevertheless, the peripheral may
request a block transfer before the entire buffer is available by simply tak-
ing the minimum transfer time based on wait-state settings into
consideration.

 The block count defines how many data transfers are performed by
the MDMA engine. A single DMA transfer can cause two read or
write operations on the EBIU port if the transfer word size is set to
32-bit in the MDMA_yy_CONFIG register (WDSIZE = b#10).

Since the block count registers are 16 bits wide, blocks can group up to
65,535 transfers.

Once a block transfer has been started, the HMDMAx_BCOUNT registers return
the remaining number of transfers to complete the current block. When
the complete block has been processed, the HMDMAx_BCOUNT register returns
zero. Software can force a reload of the HMDMAx_BCOUNT from the
HMDMAx_BCINIT register even during normal operation by setting the RBC
bit in the HMDMAx_CONTROL register. Set RBC when the HMDMA module is
already active, but only when the MDMA is not enabled.

Pipelining DMA Requests

The device mastering the DMA request lines is allowed to request addi-
tional transfers even before the former transfer has completed. As long as
the device can provide or consume sufficient data it is permitted to pulse
the DMARx inputs multiple times.

The HMDMAx_ECOUNT registers are incremented every time a significant edge
is detected on the respective DMARx input, and they are decremented when
ADSP-BF51x Blackfin Processor Hardware Reference 6-37

Functional Description
the MDMA completes the block transfer. These read-only registers use a
16-bit twos-complement data representation: if they return zero, all
requested block transfers have been performed. A positive value signals up
to 32767 requests that haven’t been served yet and indicates that the
MDMA is currently processing. Negative values indicate the number of
DMA requests that will be ignored by the engine. This feature restrains
initial pulses on the DMARx inputs at startup.

The HMDMAx_ECINIT registers reload the HMDMAx_ECOUNT registers every time
the handshake mode is enabled (when the HMDMAEN bit changes from
0 to 1). If the initial edge count value is 0, the handshake operation starts
with a settled request budget. If positive, the engine starts immediately
transferring the programmed number (up to 32767) of blocks once
enabled, even without detecting any activity on the DMARx pins. If nega-
tive, the engine will disregard the programmed number (up to 32768)
significant edges on the DMARx inputs before starting normal operation.

Figure 6-3 illustrates how an asynchronous FIFO could be connected. In
such a scenario the REP bit should be cleared to let the DMARx request pin
listen to falling edges.

The Blackfin processor does not evaluate the full flag such FIFOs usually
provide because asynchronous polling of that signal would reduce the sys-
tem throughput drastically. Moreover, the processor first fills the FIFO by
initializing the HMDMAx_ECINIT register to 1024, which equals the depth of
the FIFO. Once enabled, the MDMA automatically transmits 1024 data

Figure 6-3. Transmit DMA Example Connection

WR
AMSx

1024K x 16 FIFOBLACKFIN

FF

D0 .. D15

DMARx

RD

I0 .. I15 O0 .. O15

AWE
6-38 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
words. Afterward it continues to transmit only if the FIFO is emptied by
its read strobe again. Most likely, the HMDMAx_BCINIT register is pro-
grammed to 1 in this case.

In the receive example shown in Figure 6-4, the Blackfin processor again
does not use the FIFO’s internal control mechanism. Rather than testing
the empty flag, the processor counts the number of data words available in
the FIFO in its own HMDMAx_ECOUNT register. Theoretically, the MDMA
could immediately process data as soon as it is written into the FIFO by
the write strobe, but the fast MDMA engine would read out the FIFO
quickly and stall soon if the FIFO was not promptly filled with new data.
Streaming applications can balance the FIFO so that the producer is never
held off by a full FIFO and the consumer is never held by an empty FIFO.
This is accomplished by filling the FIFO halfway and then letting both
consumer and producer run at the same speed. In this case the
HMDMAx_ECINIT register can be written with a negative value, which corre-
sponds to half the FIFO depth. Then, the MDMA does not start
consuming data as long as the FIFO is not half-filled.

On internal system buses, memory DMA channels have lower priority
than other DMAs. In busy systems, the memory DMAs may tend to
starve. As this is not acceptable when transferring data through high-speed
FIFOs, the handshake mode provides a high-water functionality to
increase the MDMA’s priority. With the UTE bit in the HMDMAx_CONTROL
register set, the MDMA gets higher priority as soon as a (positive) value in

Figure 6-4. Receive DMA Example Connection

WR
AMSx

1024K x 16 FIFOBLACKFIN

FF

D0 .. D15

DMARx

RD

I0 .. I15 O0 .. O15

AWE
ADSP-BF51x Blackfin Processor Hardware Reference 6-39

Functional Description
the HMDMAx_ECOUNT register becomes higher than the threshold held by the
HMDMAx_ECURGENT register.

HMDMA Interrupts

In addition to the normal MDMA interrupt channels, the handshake
hardware provides two new interrupt sources for each DMARx input. The
HMDMAx_CONTROL registers provide interrupt enable and status bits. The
interrupt status bits require a write-1-to-clear operation to cancel the
interrupt request.

The block done interrupt signals that a complete MDMA block, as
defined by the HMDMAx_BCINIT register, has been transferred (when the
HMDMAx_BCOUNT register decrements to zero). While the BDIE bit enables
this interrupt, the MBDI bit can gate it until the edge count also becomes
zero, meaning that all requested MDMA transfers have been completed.

The overflow interrupt is generated when the HMDMA_ECOUNT register over-
flows. Since it can count up to 32767, which is much more than most
peripheral devices can support, the Blackfin processor has another thresh-
old register called HMDMA_ECOVERFLOW. It resets to 0xFFFF and should be
written with any positive value by the user before enabling the function by
the OIE bit. Then, the overflow interrupt is issued when the value of the
HMDMA_ECOUNT register exceeds the threshold in the HMDMA_ECOVERFLOW
register.

DMA Performance
The DMA system is designed to provide maximum throughput per chan-
nel and maximum utilization of the internal buses, while accommodating
the inherent latencies of memory accesses.

The Blackfin architecture features several mechanisms to customize system
behavior for best performance. This includes DMA channel prioritization,
traffic control, and priority treatment of bursted transfers. Nevertheless,
the resulting performance of a DMA transfer often depends on
6-40 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
application-level circumstances. For best performance consider the follow-
ing system software architecture questions.

• What is the required DMA bandwidth?

• Which DMA transfers have real-time requirements and which do
not?

• How heavily is the DMA controller competing with the core for
on-chip and off-chip resources?

• How often do competing DMA channels require the bus systems to
alter direction?

• How often do competing DMA or core accesses cause the SDRAM
to open different pages?

• Is there a way to distribute DMA requests nicely over time?

A key feature of the DMA architecture is the separation of the activity on
the DMA access bus (DAB) used by the peripherals from the activity on
the buses between the DMA and memory. For DMA to/from on-chip
memory the DMA core bus (DCB) is used, and the DMA external bus
(DEB) is used for DMA transfers with off-chip memory. The “Chip Bus
Hierarchy” chapter explains the bus architecture.

Each peripheral DMA channel has its own data FIFO which lies between
the DAB bus and the memory buses. These FIFOs automatically prefetch
data from memory for transmission and buffer received data for later
memory writes. This allows the peripheral to be granted a DMA transfer
with very low latency compared to the total latency of a pipelined memory
access, permitting the repeat rate (bandwidth) of each DMA channel to be
as fast as possible.
ADSP-BF51x Blackfin Processor Hardware Reference 6-41

Functional Description
DMA Throughput

Each peripheral DMA channel has a maximum transfer rate of one 16-bit
word per two system clocks in either direction. Like the DAB and DEB
buses, the DMA controller resides in the SCLK domain. The controller syn-
chronizes accesses to and from the DCB bus, which runs at the CCLK rate.

Each memory DMA channel has a maximum transfer rate of one 16-bit
word per system clock (SCLK) cycle.

When the traffic on all DMA channels is taken in the aggregate:

• Transfers between the peripherals and the DMA unit have a maxi-
mum rate of one 16-bit transfer per system clock.

• Transfers between the DMA unit and internal memory (L1) have a
maximum rate of one 16-bit transfer per system clock.

• Transfers between the DMA unit and external memory have a
maximum rate of one 16-bit transfer per system clock.

Some considerations which limit the actual performance include:

• Accesses to internal or external memory which conflict with core
accesses to the same memory. This can cause delays, for example
when both the core and the DMA access the same L1 bank, when
SDRAM pages need to be opened/closed, or when cache lines are
filled.

• Direction changes from RX to TX on the DAB bus impose a one
SCLK cycle delay.

• Direction changes on the DCB bus (for example, write followed by
read) to the same bank of internal memory can impose delays.

• Direction changes (for example, read followed by write) on the
DEB bus to external memory can each impose a several-cycle delay.
6-42 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
• MMR accesses to DMA registers other than DMAx_CONFIG,
DMAx_IRQ_STATUS, or DMAx_PERIPHERAL_MAP stall all DMA activity
for one cycle per 16-bit word transferred. In contrast, MMR
accesses to the control/status registers do not cause stalls or wait
states.

• Reads from DMA registers other than control/status registers use
one PAB bus wait state, delaying the core for several core clocks.

• Descriptor fetches consume one DMA memory cycle per 16-bit
word read from memory, but do not delay transfers on the DAB
bus.

• Initialization of a DMA channel stalls DMA activity for one cycle.
This occurs when DMAEN changes from 0 to 1 or when the SYNC bit
is set in the DMAx_CONFIG register.

Several of these factors may be minimized by proper design of the applica-
tion software. It is often possible to structure the software to avoid
internal and external memory conflicts by careful allocation of data buffers
within banks and pages, and by planning for low cache activity during
critical DMA operations. Furthermore, unnecessary MMR accesses can be
minimized, especially by using descriptors or autobuffering.

Efficiency loss caused by excessive direction changes (thrashing) can be
minimized by the processor’s traffic control features, described in the next
section.

The MDMA channels are clocked by SCLK. If the source and destination
are in different memory spaces (one internal and one external), the inter-
nal and external memory transfers are typically simultaneous and
continuous, maintaining 100% bus utilization of the internal and external
memory interfaces. This performance is affected by core-to-system clock
frequency ratios. At ratios below about 2.5:1, synchronization and pipe-
line latencies result in lower bus utilization in the system clock domain.
For example DMA typically runs at 2/3 of the system clock rate when the
ADSP-BF51x Blackfin Processor Hardware Reference 6-43

Functional Description
core-to-system clock ratio is 2:1. At higher clock ratios, full bandwidth is
maintained.

If the source and destination are in the same memory space (both internal
or both external), the MDMA stream typically prefetches a burst of source
data into the FIFO, and then automatically turns around and delivers all
available data from the FIFO to the destination buffer. The burst length is
dependent on traffic, and is equal to three plus the memory latency at the
DMA in SCLKs (which is typically seven for internal transfers and six for
external transfers).

Memory DMA Timing Details

When the destination DMAx_CONFIG register is written, MDMA operation
starts after a latency of three SCLK cycles.

If either MDMA channel has been selected to use descriptors, the descrip-
tors are fetched from memory. The destination channel descriptors are
fetched first. Then the source MDMA channel begins fetching data from
the source buffer, after a latency of four SCLK cycles after the last descrip-
tor word is returned from memory. Due to memory pipelining, this is
typically eight SCLK cycles after the fetch of the last descriptor word. The
resulting data is deposited in the MDMA channel’s 8-location FIFO.
After a latency of two SCLK cycles, the destination MDMA channel begins
writing data to the destination memory buffer.

Static Channel Prioritization

DMA channels are ordinarily granted service strictly according to their
priority. The priority of a channel is simply its channel number, where
lower priority numbers are granted first. Thus, peripherals with high data
rates or low latency requirements should be assigned to lower numbered
(higher priority) channels using the PMAP field in the
DMAx_PERIPHERAL_MAP registers. The memory DMA streams are always
lower static priority than the peripherals, but as they request service
6-44 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
continuously, they ensure that any time slots unused by peripheral DMA
are applied to MDMA transfers.

Temporary DMA Urgency

Typically, DMA transfers for a given peripheral occur at regular intervals.
Generally, the shorter the interval, the higher the priority that should be
assigned to the peripheral. If the average bandwidth of all the peripherals
is not too large a fraction of the total, then all peripherals’ requests should
be granted as required.

Occasionally, instantaneous DMA traffic might exceed the available band-
width, causing congestion. This may occur if L1 or external memory is
temporarily stalled, perhaps for an SDRAM page swap or a cache line fill.
Congestion might also occur if one or more DMA channels initiates a
flurry of requests, perhaps for descriptor fetches or to fill a FIFO in the
DMA or in the peripheral.

If congestion persists, lower priority DMA peripherals may become
starved for data. Even though the peripheral’s priority is low, if the neces-
sary data transfer does not take place before the end of the peripheral’s
regular interval, system failure may result. To minimize this possibility,
the DMA unit detects peripherals whose need for data has become urgent,
and preferentially grants them service at the highest priority.

A DMA channel’s request for memory service is defined as urgent if both:

• The channel’s FIFO is not ready for a DAB bus transfer (that is, a
transmit FIFO is empty or a receive FIFO is full), and

• The peripheral is asserting its DMA request line.

Descriptor fetches may be urgent if they are necessary to initiate or con-
tinue a DMA work unit chain for a starving peripheral.

DMA requests from an MDMA channel become urgent when handshaked
operation is enabled and the DMARx edge count exceeds the value stored in
ADSP-BF51x Blackfin Processor Hardware Reference 6-45

Functional Description
the HMDMAx_ECURGENT register. If handshaked operation is disabled, soft-
ware can control urgency of requests directly by altering the DRQ bit field
in the HMDMAx_CONTROL register.

When one or more DMA channels express an urgent memory request, two
events occur:

• All non-urgent memory requests are decreased in priority by 32,
guaranteeing that only an urgent request will be granted. The
urgent requests compete with each other, if there is more than one,
and directional preference among urgent requests is observed.

• The resulting memory transfer is marked for expedited processing
in the targeted memory system (L1 or external). All prior incom-
plete memory transfers ahead of it in that memory system are also
marked for expedited processing. This may cause a series of exter-
nal memory core accesses to be delayed for a few cycles so that a
peripheral’s urgent request may be accommodated.

The preferential handling of urgent DMA transfers is completely auto-
matic. No user controls are required for this function to operate.

Memory DMA Priority and Scheduling

All MDMA operations have lower precedence than any peripheral DMA
operations. MDMA thus makes effective use of any memory bandwidth
unused by peripheral DMA traffic.

By default, when more than one MDMA stream is enabled and ready,
only the highest priority MDMA stream is granted. If it is desirable for the
MDMA streams to share the available bandwidth, the
MDMA_ROUND_ROBIN_PERIOD may be programmed to select each stream in
turn for a fixed number of transfers.

If two MDMA streams are used (S0-D0 and S1-D1), the user may choose
to allocate bandwidth either by fixed stream priority or by a round-robin
scheme. This is selected by programming the MDMA_ROUND_ROBIN_PERIOD
6-46 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
field in the DMA_TC_PER register (see “Static Channel Prioritization” on
page 6-44).

If this field is set to 0, then MDMA is scheduled by fixed priority.
MDMA stream 0 takes precedence over MDMA stream 1 whenever
stream 0 is ready to perform transfers. Since an MDMA stream is typically
capable of transferring data on every available cycle, this could cause
MDMA stream 1 traffic to be delayed for an indefinite time until any and
all MDMA stream 0 operations are completed. This scheme could be
appropriate in systems where low duration but latency-sensitive data buf-
fers need to be moved immediately, interrupting long duration, low
priority background transfers.

If the MDMA_ROUND_ROBIN_PERIOD field is set to some nonzero value in the
range 1 P 31, then a round-robin scheduling method is used. The two
MDMA streams are granted bus access in alternation in bursts of up to P
data transfers. This could be used in systems where two transfer processes
need to coexist, each with a guaranteed fraction of the available band-
width. For example, one stream might be programmed for
internal-to-external moves while the other is programmed for exter-
nal-to-internal moves, and each would be allocated approximately equal
data bandwidth.

In round-robin operation, the MDMA stream selection at any time is
either “free” or “locked.” Initially, the selection is free. On any free cycle
available to MDMA (when no peripheral DMA accesses take precedence),
if either or both MDMA streams request access, the higher precedence
stream will be granted (stream 0 in case of conflict), and that stream’s
selection is then “locked.” The MDMA_ROUND_ROBIN_COUNT counter field in
the DMA_TC_CNT register is loaded with the period P from
MDMA_ROUND_ROBIN_PERIOD, and MDMA transfers begin. The counter is
decremented on every data transfer (as each data word is written to mem-
ory). After the transfer corresponding to a count of one, the MDMA
stream selection is passed automatically to the other stream with zero over-
head, and the MDMA_ROUND_ROBIN_COUNT counter is reloaded with the
ADSP-BF51x Blackfin Processor Hardware Reference 6-47

Functional Description
period value P from MDMA_ROUND_ROBIN_PERIOD. In this cycle, if the other
MDMA stream is ready to perform a transfer, the stream selection is
locked on the new MDMA stream. If the other MDMA stream is not
ready to perform a transfer, then no transfer is performed, and the stream
selection unlocks and becomes free again on the next cycle.

If round-robin operation is used when only one MDMA stream is active,
one idle cycle will occur for each P MDMA data cycles, slightly lowering
the bandwidth by a factor of 1/(P+1). However if both MDMA streams
are used, memory DMA can operate continuously with zero additional
overhead for alternation of streams. (Other than overhead cycles normally
associated with reversal of read/write direction to memory). By selection
of various round-robin period values P, which limit how often the
MDMA streams alternate, maximal transfer efficiency can be maintained.

Traffic Control

In the Blackfin DMA architecture, there are two completely separate but
simultaneous prioritization processes—the DAB bus prioritization and the
memory bus (DCB and DEB) prioritization. Peripherals that are request-
ing DMA via the DAB bus, and whose data FIFOs are ready to handle the
transfer, compete with each other for DAB bus cycles. Similarly but sepa-
rately, channels whose FIFOs need memory service (prefetch or
post-write) compete together for access to the memory buses. MDMA
streams compete for memory access as a unit, and source and destination
may be granted together if their memory transfers do not conflict. In this
way, internal-to-external or external-to-internal memory transfers may
occur at the full system clock rate (SCLK). Examples of memory conflict
include simultaneous access to the same memory space and simultaneous
attempts to fetch descriptors. Special processing may occur if a peripheral
is requesting DMA but its FIFO is not ready (for example, an empty
transmit FIFO or full receive FIFO). For more information, see “Tempo-
rary DMA Urgency” on page 6-45.
6-48 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
Traffic control is an important consideration in optimizing use of DMA
resources. Traffic control is a way to influence how often the transfer
direction on the data buses may change, by automatically grouping same
direction transfers together. The DMA block provides a traffic control
mechanism controlled by the DMA_TC_PER and DMA_TC_CNT registers. This
mechanism performs the optimization without real-time processor inter-
vention and without the need to program transfer bursts into the DMA
work unit streams. Traffic can be independently controlled for each of the
three buses (DAB, DCB, and DEB) with simple counters. In addition,
alternation of transfers among MDMA streams can be controlled with the
MDMA_ROUND_ROBIN_COUNT field of the DMA_TC_CNT register. See “Memory
DMA Priority and Scheduling” on page 6-46.

Using the traffic control features, the DMA system preferentially grants
data transfers on the DAB or memory buses which are going in the same
read/write direction as the previous transfer, until either the traffic control
counter times out or traffic stops or changes direction on its own. When
the traffic counter reaches zero, the preference is changed to the opposite
flow direction. These directional preferences work as if the priority of the
opposite direction channels were decreased by 16.

For example, if channels 3 and 5 were requesting DAB access, but lower
priority channel 5 is going with traffic and higher priority channel 3 is
going against traffic, then channel 3’s effective priority becomes 19, and
channel 5 would be granted instead. If, on the next cycle, only channels 3
and 6 were requesting DAB transfers, and these transfer requests were
both against traffic, then their effective priorities would become 19 and
22, respectively. One of the channels (channel 3) is granted, even though
its direction is opposite to the current flow. No bus cycles are wasted,
other than any necessary delay required for the bus turnaround.

This type of traffic control represents a trade-off of latency to improve uti-
lization (efficiency). Higher traffic timeouts might increase the length of
time each request waits for its grant, but it often dramatically improves the
ADSP-BF51x Blackfin Processor Hardware Reference 6-49

Programming Model
maximum attainable bandwidth in congested systems, often to above
90%.

To disable preferential DMA prioritization, program the DMA_TC_PER reg-
ister to 0x0000.

Programming Model
Several synchronization and control methods are available for use in devel-
opment of software tasks which manage peripheral DMA and memory
DMA (see also “Memory DMA” on page 6-6). Such software needs to be
able to accept requests for new DMA transfers from other software tasks,
integrate these transfers into existing transfer queues, and reliably notify
other tasks when the transfers are complete.

In the processor, it is possible for each peripheral DMA and memory
DMA stream to be managed by a separate task or to be managed together
with any other stream. Each DMA channel has independent, orthogonal
control registers, resources, and interrupts, so that the selection of the
control scheme for one channel does not affect the choice of control
scheme on other channels. For example, one peripheral can use a
linked-descriptor-list, interrupt-driven scheme while another peripheral
can simultaneously use a demand-driven, buffer-at-a-time scheme syn-
chronized by polling of the DMAx_IRQ_STATUS register.

Synchronization of Software and DMA
A critical element of software DMA management is synchronization of
DMA buffer completion with the software. This can best be done using
interrupts, polling of DMAx_IRQ_STATUS, or a combination of both. Polling
for address or count can only provide synchronization within loose toler-
ances comparable to pipeline lengths.
6-50 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
Interrupt-based synchronization methods must avoid interrupt overrun,
or the failure to invoke a DMA channel’s interrupt handler for every inter-
rupt event due to excessive latency in processing of interrupts. Generally,
the system design must either ensure that only one interrupt per channel is
scheduled (for example, at the end of a descriptor list), or that interrupts
are spaced sufficiently far apart in time that system processing budgets can
guarantee every interrupt is serviced. Note, since every interrupt channel
has its own distinct interrupt, interaction among the interrupts of differ-
ent peripherals is much simpler to manage.

Due to DMA FIFOs and DMA/memory pipelining, polling of the
DMAx_CURR_ADDR, DMAx_CURR_DESC_PTR, or DMAx_CURR_X_COUNT/
DMAx_CURR_Y_COUNT registers is not recommended for precisely synchroniz-
ing DMA with data processing. The current address, pointer, and count
registers change several cycles in advance of the completion of the corre-
sponding memory operation, as measured by the time at which the results
of the operation would first be visible to the core by memory read or write
instructions. For example, in a DMA memory write operation to external
memory, assume a DMA write by channel A is initiated that causes the
SDRAM to perform a page open operation which takes many system clock
cycles. The DMA engine may then move on to another DMA operation
by channel B which does not in itself incur latency, but will be stalled
behind the slow operation of channel A. Software monitoring of
channel B, based on examination of the DMAx_CURR_ADDR register contents,
would not safely conclude whether the memory location pointed to by
channel B’s DMAx_CURR_ADDR register has or has not been written.

If allowances are made for the lengths of the DMA/memory pipeline, poll-
ing of the current address, pointer, and count registers can permit loose
synchronization of DMA with software. The depth of the DMA FIFO is
four locations (either four 8- or 16-bit data elements, or two 32-bit data
elements) for a peripheral DMA channel, and eight locations (four 32-bit
data elements) for an MDMA FIFO. The DMA will not advance current
address/pointer/count registers if these FIFOs are filled with incomplete
work (including reads that have been started but not yet finished).
ADSP-BF51x Blackfin Processor Hardware Reference 6-51

Programming Model
Additionally, the length of the combined DMA and L1 pipelines to inter-
nal memory is approximately six 8- or 16-bit data elements. The length of
the DMA and external bus interface unit (EBIU) pipelines is approxi-
mately three data elements, when measured from the point where a DMA
register update is visible to an MMR read to the point where DMA and
core accesses to memory become strictly ordered. If the DMA FIFO
length and the DMA/memory pipeline length are added, an estimate can
be made of the maximum number of incomplete memory operations in
progress at one time. This value is a maximum because the DMA/memory
pipeline may include traffic from other DMA channels.

For example, assume a peripheral DMA channel is transferring a work
unit of 100 data elements into internal memory and its
DMAx_CURR_X_COUNT register reads a value of 60 remaining elements, so
that processing of the first 40 elements has at least been started. Since the
total pipeline length is no greater than the sum of four (for the peripheral
DMA FIFO) plus six (for the DMA/memory pipeline) or ten data ele-
ments, it is safe to conclude that the DMA transfer of the first 30 (40-10)
data elements is complete.

For precise synchronization, software should either wait for an interrupt
or consult the channel’s DMAx_IRQ_STATUS register to confirm completion
of DMA, rather than polling current address/pointer/count registers.
When the DMA system issues an interrupt or changes a DMAx_IRQ_STATUS
bit, it guarantees that the last memory operation of the work unit has been
completed and will definitely be visible to processor code. For memory
read DMA, the final memory read data will have been safely received in
the DMA’s FIFO. For memory write DMA, the DMA unit will have
received an acknowledgement from L1 memory, or the EBIU, that the
data has been written.

The following examples show methods of synchronizing software with
several different styles of DMA.
6-52 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
Single-Buffer DMA Transfers

Synchronization is simple if a peripheral’s DMA activity consists of iso-
lated transfers of single buffers. DMA activity is initiated by software
writes to the channel’s control registers. The user may choose to use a sin-
gle descriptor in memory, in which case the software only needs to write
the DMAx_CONFIG and the DMAx_NEXT_DESC_PTR registers. Alternatively, the
user may choose to write all the MMR registers directly from software,
ending with the write to the DMAx_CONFIG register.

The simplest way to signal completion of DMA is by an interrupt. This is
selected by the DI_EN bit in the DMAx_CONFIG register, and by the necessary
setup of the system interrupt controller. If no interrupt is desired, the soft-
ware can poll for completion by reading the DMAx_IRQ_STATUS register and
testing the DMA_RUN bit. If this bit is zero, the buffer transfer has
completed.

Continuous Transfers Using Autobuffering

If a peripheral’s DMA data consists of a steady, periodic stream of signal
data, DMA autobuffering (FLOW = 1) may be an effective option. Here,
DMA is transferred from or to a memory buffer with a circular addressing
scheme, using either one- or two-dimensional indexing with zero proces-
sor and DMA overhead for looping. Synchronization options include:

• 1-D interrupt-driven—software is interrupted at the conclusion of
each buffer. The critical design consideration is that the software
must deal with the first items in the buffer before the next DMA
transfer, which might overwrite or re-read the first buffer location
before it is processed by software. This scheme may be workable if
the system design guarantees that the data repeat period is longer
than the interrupt latency under all circumstances.
ADSP-BF51x Blackfin Processor Hardware Reference 6-53

Programming Model
• 2-D interrupt-driven (double buffering)—the DMA buffer is parti-
tioned into two or more sub-buffers, and interrupts are selected
(set DI_SEL = 1 in DMAx_CONFIG) to be signaled at the completion of
each DMA inner loop. In this way, a traditional double buffer or
“ping-pong” scheme can be implemented.

For example, two 512-word sub-buffers inside a 1K-word buffer
could be used to receive 16-bit peripheral data with these settings:

DMAx_START_ADDR = buffer base address

DMAx_CONFIG = 0x10D7 (FLOW = 1, DI_EN = 1, DI_SEL = 1,
DMA2D = 1, WDSIZE = b#01, WNR = 1, DMAEN = 1)

DMAx_X_COUNT = 512

DMAx_X_MODIFY = 2 for 16-bit data

DMAx_Y_COUNT = 2 for two sub-buffers

DMAx_Y_MODIFY = 2 same as DMAx_X_MODIFY for contiguous
sub-buffers

• 2-D polled—if interrupt overhead is unacceptable but the loose
synchronization of address/count register polling is acceptable, a
2-D multibuffer synchronization scheme may be used. For exam-
ple, assume receive data needs to be processed in packets of sixteen
32-bit elements. A four-part 2-D DMA buffer can be allocated
where each of the four sub-buffers can hold one packet with these
settings:

DMAx_START_ADDR = buffer base address

DMAx_CONFIG = 0x101B (FLOW = 1, DI_EN = 0, DMA2D = 1,
WDSIZE = b#10, WNR = 1, DMAEN = 1)

DMAx_X_COUNT = 16

DMAx_X_MODIFY = 4 for 32-bit data
6-54 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
DMAx_Y_COUNT = 4 for four sub-buffers

DMAx_Y_MODIFY = 4 same as DMAx_X_MODIFY for contiguous
sub-buffers

The synchronization core might read DMAx_Y_COUNT to determine
which sub-buffer is currently being transferred, and then allow one
full sub-buffer to account for pipelining. For example, if a read of
DMAx_Y_COUNT shows a value of 3, then the software should assume
that sub-buffer 3 is being transferred, but some portion of sub-buf-
fer 2 may not yet be received. The software could, however, safely
proceed with processing sub-buffers 1 or 0.

• 1-D unsynchronized FIFO—if a system’s design guarantees that
the processing of a peripheral’s data and the DMA rate of the data
will remain correlated in the steady state, but that short-term
latency variations must be tolerated, it may be appropriate to build
a simple FIFO. Here, the DMA channel may be programmed using
1-D autobuffer mode addressing without any interrupts or polling.

Descriptor Structures

DMA descriptors may be used to transfer data to or from memory data
structures that are not simple 1-D or 2-D arrays. For example, if a packet
of data is to be transmitted from several different locations in memory (a
header from one location, a payload from a list of several blocks of mem-
ory managed by a memory pool allocator, and a small trailer containing a
checksum), a separate DMA descriptor can be prepared for each memory
area, and the descriptors can be grouped in either an array or list by select-
ing the appropriate FLOW setting in DMAx_CONFIG.

The software can synchronize with the progress of the structure’s transfer
by selecting interrupt notification for one or more of the descriptors. For
example, the software might select interrupt notification for the header’s
descriptor and for the trailer’s descriptor, but not for the payload blocks’
descriptors.
ADSP-BF51x Blackfin Processor Hardware Reference 6-55

Programming Model
It is important to remember the meaning of the various fields in the
DMAx_CONFIG descriptor elements when building a list or array of DMA
descriptors. In particular:

• The lower byte of DMAx_CONFIG specifies the DMA transfer to be
performed by the current descriptor (for example 2-D inter-
rupt-enable mode)

• The upper byte of DMAx_CONFIG specifies the format of the next
descriptor in the chain. The NDSIZE and FLOW fields in a given
descriptor do not correspond to the format of the descriptor itself;
they specify the link to the next descriptor, if any.

On the other hand, when the DMA unit is being restarted, both bytes of
the DMAx_CONFIG value written to the DMA channel’s DMAx_CONFIG register
should correspond to the current descriptor. At a minimum, the FLOW,
NDSIZE, WNR, and DMAEN fields must all agree with the current descriptor.
The WDSIZE, DI_EN, DI_SEL, SYNC, and DMA2D fields will be taken from the
DMAx_CONFIG value in the descriptor read from memory. The field values
initially written to the register are ignored. See “Initializing Descriptors in
Memory” on page 6-94 in the “Programming Examples” section for infor-
mation on how descriptors can be set up.

Descriptor Queue Management

A system designer might want to write a DMA manager facility which
accepts DMA requests from other software. The DMA manager software
does not know in advance when new work requests will be received or
what these requests might contain. The software could manage these
transfers using a circular linked list of DMA descriptors, where each
descriptor’s NDPH and NDPL members point to the next descriptor, and the
last descriptor points back to the first.

The code that writes into this descriptor list could use the processor’s cir-
cular addressing modes (Ix, Lx, Mx, and Bx registers), so that it does not
need to use comparison and conditional instructions to manage the
6-56 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
circular structure. In this case, the NDPH and NDPL members of each
descriptor could even be written once at startup and skipped over as each
descriptor’s new contents are written.

The recommended method for synchronization of a descriptor queue is
through the use of an interrupt. The descriptor queue is structured so that
at least the final valid descriptor is always programmed to generate an
interrupt.

There are two general methods for managing a descriptor queue using
interrupts:

• Interrupt on every descriptor

• Interrupt minimally - only on the last descriptor

Descriptor Queue Using Interrupts on Every Descriptor

In this system, the DMA manager software synchronizes with the DMA
unit by enabling an interrupt on every descriptor. This method should
only be used if system design can guarantee that each interrupt event will
be serviced separately (no interrupt overrun).

To maintain synchronization of the descriptor queue, the non-interrupt
software maintains a count of descriptors added to the queue, while the
interrupt handler maintains a count of completed descriptors removed
from the queue. The counts are equal only when the DMA channel is
paused after having processed all the descriptors.

When each new work request is received, the DMA manager software ini-
tializes a new descriptor, taking care to write a DMAx_CONFIG value with a
FLOW value of 0. Next, the software compares the descriptor counts to
determine if the DMA channel is running or not. If the DMA channel is
paused (counts are equal), the software increments its count and then
starts the DMA unit by writing the new descriptor’s DMAx_CONFIG value to
the DMA channel’s DMAx_CONFIG register.
ADSP-BF51x Blackfin Processor Hardware Reference 6-57

Programming Model
If the counts are unequal, the software instead modifies the next-to-last
descriptor’s DMAx_CONFIG value so that its upper half (FLOW and NDSIZE)
now describes the newly queued descriptor. This operation does not dis-
rupt the DMA channel, provided the rest of the descriptor data structure
is initialized in advance. It is necessary, however, to synchronize the soft-
ware to the DMA to correctly determine whether the new or the old
DMAx_CONFIG value was read by the DMA channel.

This synchronization operation should be performed in the interrupt
handler. First, upon interrupt, the handler should read the channel’s
DMAx_IRQ_STATUS register. If the DMA_RUN status bit is set, then the channel
has moved on to processing another descriptor, and the interrupt handler
may increment its count and exit. If the DMA_RUN status bit is not set, how-
ever, then the channel has paused, either because there are no more
descriptors to process, or because the last descriptor was queued too late
(the modification of the next-to-last descriptor’s DMAx_CONFIG element
occurred after that element was read into the DMA unit). In this case, the
interrupt handler should write the DMAx_CONFIG value appropriate for the
last descriptor to the DMA channel’s DMAx_CONFIG register, increment the
completed descriptor count, and exit.

Again, this system can fail if the system’s interrupt latencies are large
enough to cause any of the channel’s DMA interrupts to be dropped. An
interrupt handler capable of safely synchronizing multiple descriptors’
interrupts would need to be complex, performing several MMR accesses to
ensure robust operation. In such a system environment, a minimal inter-
rupt synchronization method is preferred.

Descriptor Queue Using Minimal Interrupts

In this system, only one DMA interrupt event is possible in the queue at
any time. The DMA interrupt handler for this system can also be
extremely short. Here, the descriptor queue is organized into an “active”
and a “waiting” portion, where interrupts are enabled only on the last
descriptor in each portion.
6-58 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
When each new DMA request is processed, the software’s non-interrupt
code fills in a new descriptor’s contents and adds it to the waiting portion
of the queue. The descriptor’s DMAx_CONFIG word should have a FLOW value
of zero. If more than one request is received before the DMA queue com-
pletion interrupt occurs, the non-interrupt code should queue later
descriptors, forming a waiting portion of the queue that is disconnected
from the active portion of the queue being processed by the DMA unit. In
other words, all but the last active descriptors contain FLOW values 4 and
have no interrupt enable set, while the last active descriptor contains a
FLOW of 0 and an interrupt enable bit DI_EN set to 1. Also, all but the last
waiting descriptors contain FLOW values 4 and no interrupt enables set,
while the last waiting descriptor contains a FLOW of 0 and an interrupt
enable bit set. This ensures that the DMA unit can automatically process
the whole active queue and then issue one interrupt. Also, this arrange-
ment makes it easy to start the waiting queue within the interrupt handler
with a single DMAx_CONFIG register write.

After queuing a new waiting descriptor, the non-interrupt software should
leave a message for its interrupt handler in a memory mailbox location
containing the desired DMAx_CONFIG value to use to start the first waiting
descriptor in the waiting queue (or 0 to indicate no descriptors are
waiting).

Once processing by the DMA unit has started, it is critical that the soft-
ware not directly modify the contents of the active descriptor queue unless
careful synchronization measures are taken. In the most straightforward
implementation of a descriptor queue, the DMA manager software would
never modify descriptors on the active queue; instead, the DMA manager
waits until the DMA queue completion interrupt indicates the processing
of the entire active queue is complete.

When a DMA queue completion interrupt is received, the interrupt han-
dler reads the mailbox from the non-interrupt software and writes the
value in it to the DMA channel’s DMAx_CONFIG register. This single register
write restarts the queue, effectively transforming the waiting queue to an
ADSP-BF51x Blackfin Processor Hardware Reference 6-59

Programming Model
active queue. The interrupt handler should then pass a message back to
the non-interrupt software indicating the location of the last descriptor
accepted into the active queue. If, on the other hand, the interrupt han-
dler reads its mailbox and finds a DMAx_CONFIG value of zero, indicating
there is no more work to perform, then it should pass an appropriate mes-
sage (for example zero) back to the non-interrupt software indicating that
the queue has stopped. This simple handler should be able to be coded in
a very small number of instructions.

The non-interrupt software which accepts new DMA work requests needs
to synchronize the activation of new work with the interrupt handler. If
the queue has stopped (the mailbox from the interrupt software is zero),
the non-interrupt software is responsible for starting the queue (writing
the first descriptor’s DMAx_CONFIG value to the channel’s DMAx_CONFIG reg-
ister). If the queue is not stopped, the non-interrupt software must not
write to the DMAx_CONFIG register (which would cause a DMA error).
Instead the descriptor should queue to the waiting queue, and update its
mailbox directed to the interrupt handler.

Software Triggered Descriptor Fetches

If a DMA has been stopped in FLOW = 0 mode, the DMA_RUN bit in the
DMAx_IRQ_STATUS register remains set until the content of the internal
DMA FIFOs has been completely processed. Once the DMA_RUN bit clears,
it is safe to restart the DMA by simply writing again to the DMAx_CONFIG
register. The DMA sequence is repeated with the previous settings.

Similarly, a descriptor-based DMA sequence that has been stopped tem-
porarily with a FLOW = 0 descriptor can be continued with a new write to
the configuration register. When the DMA controller detects the FLOW = 0
condition by loading the DMACFG field from memory, it has already
updated the next descriptor pointer, regardless of whether operating in
descriptor array mode or descriptor list mode.

The next descriptor pointer remains valid if the DMA halts and is
restarted. As soon as the DMA_RUN bit clears, software can restart the DMA
6-60 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
and force the DMA controller to fetch the next descriptor. To accomplish
this, the software writes a value with the DMAEN bit set and with proper val-
ues in the FLOW and NDSIZE fields into the configuration register. The next
descriptor is fetched if FLOW equals 0x4, 0x6, or 0x7. In this mode of oper-
ation, the NDSIZE field should at least span up to the DMACFG field to
overwrite the configuration register immediately.

One possible procedure is:

1. Write to DMAx_NEXT_DESC_PTR

2. Write to DMAx_CONFIG with

FLOW = 0x8

NDSIZE 0xA

DI_EN = 0

DMAEN = 1

3. Automatically fetched DMACFG has

FLOW = 0x0

NDSIZE = 0x0

SYNC = 1 (for transmitting DMAs only)

DI_EN = 1

DMAEN = 1

4. In the interrupt routine, repeat step 2. The DMAx_NEXT_DESC_PTR is
updated by the descriptor fetch.

 To avoid polling of the DMA_RUN bit, set the SYNC bit in case of
memory read DMAs (DMA transmit or MDMA source).
ADSP-BF51x Blackfin Processor Hardware Reference 6-61

DMA Registers
If all DMACFG fields in a descriptor chain have the FLOW and NDSIZE fields set
to zero, the individual DMA sequences do not start until triggered by soft-
ware. This is useful when the DMAs need to be synchronized with other
events in the system, and it is typically performed by interrupt service rou-
tines. A single MMR write is required to trigger the next DMA sequence.

Especially when applied to MDMA channels, such scenarios play an
important role. Usually, the timing of MDMAs cannot be controlled (See
“Handshaked Memory DMA Operation” on page 6-36). By halting
descriptor chains or rings this way, the whole DMA transaction can be
broken into pieces that are individually triggered by software.

 Source and destination channels of a MDMA may differ in descrip-
tor structure. However, the total work count must match when the
DMA stops. Whenever a MDMA is stopped, destination and
source channels should both provide the same FLOW = 0 mode after
exactly the same number of words. Accordingly, both channels
need to be started afterward.

Software-triggered descriptor fetches are illustrated in Listing 6-7 on
page 6-98. MDMA channels can be paused by software at any time by
writing a 0 to the DRQ bit field in the HMDMAx_CONTROL register. This simply
disables the self-generated DMA requests, whether or not the HMDMA is
enabled.

DMA Registers
DMA registers fall into three categories:

• DMA channel registers

• Handshaked MDMA registers

• Global DMA traffic control registers
6-62 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
DMA Channel Registers
A processor features up to twelve peripheral DMA channels and two chan-
nel pairs for memory DMA. All channels have an identical set of registers
as summarized in Table 6-4.

Table 6-4 lists the generic names of the DMA registers. For each register,
the table also shows the MMR offset, a brief description of the register,
the register category, and where applicable, the corresponding name for
the data element in a DMA descriptor.

Table 6-4. Generic Names of the DMA Memory-Mapped
Registers

MMR
Offset

Generic MMR
Name

MMR Description Register
Category

Name of
Corresponding
Descriptor Element in
Memory

0x00 NEXT_DESC_PTR Link pointer to next descrip-
tor

Parame-
ter

NDPH (upper 16 bits),
NDPL (lower 16 bits)

0x04 START_ADDR Start address of current buffer Parame-
ter

SAH (upper 16 bits),
SAL (lower 16 bits)

0x08 CONFIG DMA Configuration register,
including enable bit

Parame-
ter

DMACFG

0x0C Reserved Reserved

0x10 X_COUNT Inner loop count Parame-
ter

XCNT

0x14 X_MODIFY Inner loop address increment,
in bytes

Parame-
ter

XMOD

0x18 Y_COUNT Outer loop count (2-D only) Parame-
ter

YCNT

0x1C Y_MODIFY Outer loop address incre-
ment, in bytes

Parame-
ter

YMOD

0x20 CURR_DESC_PTR Current descriptor pointer Current N/A

0x24 CURR_ADDR Current DMA address Current N/A
ADSP-BF51x Blackfin Processor Hardware Reference 6-63

DMA Registers
Channel-specific register names are composed of a prefix and the generic
MMR name shown in Table 6-4. For peripheral DMA channels the prefix
“DMAx_” is used, where “x” stands for a channel number between 0 and
11. For memory DMA channels, the prefix is “MDMA_yy_”, where “yy”
stands for either “D0”, “S0”, “D1”, or “S1” to indicate destination and
source channel registers of MDMA0 and MDMA1. For example the
peripheral DMA channel 6 configuration register is called DMA6_CONFIG.
The register for the MDMA1 source channel is called MDMA_S1_CONFIG.

0x28 IRQ_STATUS Interrupt status register con-
tains completion and DMA
error interrupt status and
channel state
(run/fetch/paused)

Control/
Status

N/A

0x2C PERIPHERAL_MAP Peripheral to DMA channel
mapping contains a 4-bit
value specifying the periph-
eral associated with this DMA
channel (read-only for
MDMA channels)

Control/
Status

N/A

0x30 CURR_X_COUNT Current count (1-D) or
intra-row X count (2-D);
counts down from
X_COUNT

Current N/A

0x34 Reserved Reserved

0x38 CURR_Y_COUNT Current row count (2-D
only); counts down from
Y_COUNT

Current N/A

0x3C Reserved Reserved

Table 6-4. Generic Names of the DMA Memory-Mapped
Registers (Continued)

MMR
Offset

Generic MMR
Name

MMR Description Register
Category

Name of
Corresponding
Descriptor Element in
Memory
6-64 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
 The generic MMR names shown in Table 6-4 are not actually
mapped to resources in the processor.

For convenience, discussions in this chapter use generic
(non-peripheral specific) DMA and memory DMA register names.

DMA channel registers fall into three categories.

• Parameter registers such as DMAx_CONFIG and DMAx_X_COUNT that can
be loaded directly from descriptor elements as shown in Table 6-4

• Current registers such as DMAx_CURR_ADDR and DMAx_CURR_X_COUNT

• Control/status registers such as DMAx_IRQ_STATUS and
DMAx_PERIPHERAL_MAP

All DMA registers can be accessed as 16-bit entities. However, the follow-
ing registers may also be accessed as 32-bit registers.

• DMAx_NEXT_DESC_PTR

• DMAx_START_ADDR

• DMAx_CURR_DESC_PTR

• DMAx_CURR_ADDR

 When these four registers are accessed as 16-bit entities, only the
lower 16 bits can be accessed.

Because confusion might arise between descriptor element names and
generic DMA register names, this chapter uses different naming conven-
tions for physical registers and their corresponding elements in descriptors
that reside in memory. Table 6-4 shows the relation.
ADSP-BF51x Blackfin Processor Hardware Reference 6-65

DMA Registers
DMA Peripheral Map Registers (DMAx_PERIPHERAL_MAP/
MDMA_yy_PERIPHERAL_MAP)

Each DMA channel’s DMAx_PERIPHERAL_MAP register contains bits that:

• Map the channel to a specific peripheral

• Identify whether the channel is a peripheral DMA channel or a
memory DMA channel

Follow these steps to swap the DMA channel priorities of two channels.
Assume that channels 6 and 7 are involved.

1. Make sure DMA is disabled on channels 6 and 7.

2. Write DMA6_PERIPHERAL_MAP with 0x7000 and
DMA7_PERIPHERAL_MAP with 0x6000.

3. Enable DMA on channels 6 and/or 7.

Figure 6-5. DMA Peripheral Map Registers

PMAP[3:0]
(Peripheral is mapped to this channel)

X XXX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X

DMA Peripheral Map Registers
(DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP)

CTYPE (DMA Channel Type) - RO
0 - Peripheral DMA
1 - Memory DMA

R/W prior to enabling channel; RO after enabling channel

Default peripheral mappings are provided in Table 6-7 on page 6-103.
6-66 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
DMA Configuration Registers
(DMAx_CONFIG/MDMA_yy_CONFIG)

The DMAx_CONFIG register, shown in Figure 6-6, is used to set up DMA
parameters and operating modes. Writing the DMAx_CONFIG register while
DMA is already running will cause a DMA error unless writing with the
DMAEN bit set to 0.

Figure 6-6. DMA Configuration Registers

0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0

DI_EN (Data Interrupt Enable)
0 - Do not allow completion of

work unit to generate an interrupt
1 - Allow completion of work unit

to generate a data interrupt

FLOW[2:0] (Next
Operation)
0x0 - Stop
0x1 - Autobuffer mode
0x4 - Descriptor array
0x6 - Descriptor list (small model)
0x7 - Descriptor list (large model)

DMA Configuration Registers (DMAx_CONFIG/MDMA_yy_CONFIG)

NDSIZE[3:0] (Flex Descriptor Size)
Size of next descriptor
0000 - Required if in Stop or Autobuffer mode
0001 - 1001 - Descriptor size
1010 - 1111 - Reserved

DMAEN (DMA
Channel Enable)
0 - Disable DMA channel
1 - Enable DMA channel
WNR (DMA Direction)
0 - DMA is a memory read

(source) operation
1 - DMA is a memory write

(destination) operation

WDSIZE[1:0] (Transfer
Word Size)
00 - 8-bit transfers
01 - 16-bit transfers
10 - 32-bit transfers
11 - Reserved

DMA2D (DMA Mode)

0 - Linear (One-dimensional)
1 - Two-dimensional (2-D)

Reset = 0x0000

DI_SEL (Data Interrupt Timing Select)

Applies only when DMA2D = 1
0 - Interrupt after completing

whole buffer (outer loop)
1 - Interrupt after completing

each row (inner loop)

R/W prior to enabling channel; RO after enabling channel

SYNC (Work Unit
Transitions)
0 - Continuous transition
1 - Synchronized transition
ADSP-BF51x Blackfin Processor Hardware Reference 6-67

DMA Registers
The fields of the DMAx_CONFIG register are used to set up DMA parameters
and operating modes.

• FLOW[2:0] (next operation). This field specifies the type of DMA
transfer to follow the present one. The flow options are:

0x0 - stop. When the current work unit completes, the DMA chan-
nel stops automatically, after signaling an interrupt (if selected).
The DMA_RUN status bit in the DMAx_IRQ_STATUS register changes
from 1 to 0, while the DMAEN bit in the DMAx_CONFIG register is
unchanged. In this state, the channel is paused. Peripheral
interrupts are still filtered out by the DMA unit. The channel may
be restarted simply by another write to the DMAx_CONFIG register
specifying the next work unit, in which the DMAEN bit is set to 1.

0x1 - autobuffer mode. In this mode, no descriptors in memory are
used. Instead, DMA is performed in a continuous circular buffer
fashion based on user-programmed DMA MMR settings. Upon
completion of the work unit, the parameter registers are reloaded
into the current registers, and DMA resumes immediately with
zero overhead. Autobuffer mode is stopped by a user write of 0 to
the DMAEN bit in the DMAx_CONFIG register.

0x4 - descriptor array mode. This mode fetches a descriptor from
memory that does not include the NDPH or NDPL elements. Because
the descriptor does not contain a next descriptor pointer entry, the
DMA engine defaults to using the DMAx_CURR_DESC_PTR register to
step through descriptors, thus allowing a group of descriptors to
follow one another in memory like an array.

0x6 - descriptor list (small model) mode. This mode fetches a
descriptor from memory that includes NDPL, but not NDPH. There-
fore, the high 16 bits of the next descriptor pointer field are taken
from the upper 16 bits of the DMAx_NEXT_DESC_PTR register, thus
confining all descriptors to a specific 64K page in memory.
6-68 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
0x7 - descriptor list (large model) mode. This mode fetches a
descriptor from memory that includes NDPH and NDPL, thus allowing
maximum flexibility in locating descriptors in memory.

• NDSIZE[3:0] (flex descriptor size). This field specifies the number
of descriptor elements in memory to load. This field must be 0 if in
stop or autobuffer mode. If NDSIZE and FLOW specify a descriptor
that extends beyond YMOD, a DMA error results.

• DI_EN (data interrupt enable). This bit specifies whether to allow
completion of a work unit to generate a data interrupt.

• DI_SEL (data interrupt timing select). This bit specifies the timing
of a data interrupt—after completing the whole buffer or after
completing each row of the inner loop. This bit is used only in 2-D
DMA operation.

• SYNC (work unit transitions). This bit specifies whether the DMA
channel performs a continuous transition (SYNC = 0) or a synchro-
nized transition (SYNC = 1) between work units. For more
information, see “Work Unit Transitions” on page 6-24.

In DMA transmit (memory read) and MDMA source channels, the
SYNC bit controls the interrupt timing at the end of the work unit
and the handling of the DMA FIFO between the current and next
work unit.

 Work unit transitions for MDMA streams are controlled by the
SYNC bit of the MDMA source channel’s DMAx_CONFIG register. The
SYNC bit of the MDMA destination channel is reserved and must be
0.
ADSP-BF51x Blackfin Processor Hardware Reference 6-69

DMA Registers
• DMA2D (DMA mode). This bit specifies whether DMA mode
involves only DMAx_X_COUNT and DMAx_X_MODIFY (one-dimensional
DMA) or also involves DMAx_Y_COUNT and DMAx_Y_MODIFY
(two-dimensional DMA).

• WDSIZE[1:0] (transfer word size). The DMA engine supports trans-
fers of 8-, 16-, or 32-bit items. Each request/grant results in a
single memory access (although two cycles are required to transfer
32-bit data through a 16-bit memory port or through the 16-bit
DMA access bus). The increment sizes (strides) of the DMA
address pointer registers must be a multiple of the transfer unit
size—one for 8-bit, two for 16-bit, four for 32-bit.

Only SPORT DMA and Memory DMA can operate with a transfer
size of 32 bits. All other peripherals have a maximum DMA trans-
fer size of 16 bits.

• WNR (DMA direction). This bit specifies DMA direction—memory
read (0) or memory write (1).

• DMAEN (DMA channel enable). This bit specifies whether to enable
a given DMA channel.

 When a peripheral DMA channel is enabled, interrupts from the
peripheral denote DMA requests. When a channel is disabled, the
DMA unit ignores the peripheral interrupt and passes it directly to
the interrupt controller. To avoid unexpected results, take care to
enable the DMA channel before enabling the peripheral, and to
disable the peripheral before disabling the DMA channel.
6-70 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
DMA Interrupt Status Registers
(DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS)

The DMAx_IRQ_STATUS register, shown in Figure 6-7, contains bits that
record whether the DMA channel:

• Is enabled and operating, enabled but stopped, or disabled.

• Is fetching data or a DMA descriptor.

• Has detected that a global DMA interrupt or a channel interrupt is
being asserted.

• Has logged occurrence of a DMA error.

Note the DMA_DONE interrupt is asserted when the last memory access (read
or write) has completed.

 For a memory transfer to a peripheral, there may be up to four data
words in the channel’s DMA FIFO when the interrupt occurs. At
this point, it is normal to immediately start the next work unit. If,
however, the application needs to know when the final data item is
actually transferred to the peripheral, the application can test or
poll the DMA_RUN bit. As long as there is undelivered transmit data
in the FIFO, the DMA_RUN bit is 1.

 For a memory write DMA channel, the state of the DMA_RUN bit has
no meaning after the last DMA_DONE event has been signaled. It does
not indicate the status of the DMA FIFO.

For MDMA transfers where an interrupt is not desired to notify
when the DMA operation has ended, software should poll the
DMA_DONE bit, rather than the DMA_RUN bit to determine when the
transaction has completed.
ADSP-BF51x Blackfin Processor Hardware Reference 6-71

DMA Registers
The processor supports a flexible interrupt control structure with three
interrupt sources:

• Data driven interrupts (see Table 6-5)

• Peripheral error interrupts

• DMA error interrupts (for example, bad descriptor or bus error)

Separate interrupt request (IRQ) levels are allocated for data, peripheral
error, and DMA error interrupts.

Figure 6-7. DMA Interrupt Status Registers

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

This bit is set to 1 automatically when
the DMAx_CONFIG register is written
0 - This DMA channel is disabled, or it

is enabled but paused (FLOW
mode 0)

1 - This DMA channel is enabled and
operating, either transferring data
or fetching a DMA descriptor

DMA Interrupt Status Registers (DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS)

DFETCH (DMA Descriptor Fetch) - RO

DMA_RUN (DMA Channel Running) - RO DMA_DONE (DMA Comple-
tion Interrupt Status) - W1C
0 - No interrupt is being

asserted for this channel
1 - DMA work unit has

completed, and this DMA
channel’s interrupt is being
asserted

DMA_ERR (DMA Error Inter-
rupt Status) - W1C
0 - No DMA error has

occurred
1 - A DMA error has occurred,

and the global DMA Error
interrupt is being asserted.
After this error occurs,
the contents of the DMA
Current registers are
unspecified. Control/
Status and Parameter
registers are unchanged.

Reset = 0x0000

This bit is set to 1 automatically when
the DMAx_CONFIG register is written
with FLOW modes 4–7
0 - This DMA channel is disabled, or it

is enabled but stopped (FLOW
mode 0)

1 - This DMA channel is enabled and
presently fetching a DMA descriptor
6-72 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
The DMA error conditions for all DMA channels are OR’ed together into
one system-level DMA error interrupt. The individual IRQ_STATUS words
of each channel can be read to identify the channel that caused the DMA
error interrupt.

 Note the DMA_DONE and DMA_ERR interrupt indicators are
write-one-to-clear (W1C).

 When switching a peripheral from DMA to non-DMA mode, the
peripheral’s interrupts should be disabled during the mode switch
(via the appropriate peripheral register or SIC_IMASK register) so
that no unintended interrupt is generated on the shared
DMA/interrupt request line.

Table 6-5. Data Driven Interrupts

Interrupt Name Description

No Interrupt Interrupts can be disabled for a given work unit.

Peripheral Inter-
rupt

These are peripheral (non-DMA) interrupts.

Row Completion DMA Interrupts can occur on the completion of a row (CURR_X_COUNT
expiration).

Buffer Completion DMA Interrupts can occur on the completion of an entire buffer (when
CURR_X_COUNT and CURR_Y_COUNT expire).
ADSP-BF51x Blackfin Processor Hardware Reference 6-73

DMA Registers
DMA Start Address Registers
(DMAx_START_ADDR/MDMA_yy_START_ADDR)

The DMAx_START_ADDR register, shown in Figure 6-8, contains the start
address of the data buffer currently targeted for DMA.

DMA Current Address Registers
(DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR)

The 32-bit DMAx_CURR_ADDR register shown in Figure 6-9, contains the
present DMA transfer address for a given DMA session. On the first mem-
ory transfer of a DMA work unit, the DMAx_CURR_ADDR register is loaded
from the DMAx_START_ADDR register, and it is incremented as each transfer
occurs.

Figure 6-8. DMA Start Address Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

DMA Start
Address[31:16]

X X X X X X X X X X X X X X X

DMA Start Address Registers (DMAx_START_ADDR/ MDMA_yy_START_ADDR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

DMA Start
Address[15:0]

X X X X X X X X X X X X X X X

Reset = Undefined

R/W prior to enabling channel; RO after enabling channel
6-74 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
DMA Inner Loop Count Registers
(DMAx_X_COUNT/MDMA_yy_X_COUNT)

For 2-D DMA, the DMAx_X_COUNT register, shown in Figure 6-10, contains
the inner loop count. For 1-D DMA, it specifies the number of elements
to transfer. For details, see “Two-Dimensional DMA Operation” on
page 6-11. A value of 0 in DMAx_X_COUNT corresponds to 65,536 elements.

Figure 6-9. DMA Current Address Registers

Figure 6-10. DMA Inner Loop Count Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

Current Address[31:16]

X X X X X X X X X X X X X X X

DMA Current Address Registers (DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR)
R/W prior to enabling channel; RO after enabling channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Current Address[15:0]

X X X X X X X X X X X X X X X

Reset = Undefined

Upper 16 bits of present
DMA transfer address for
a given DMA session

Lower 16 bits of present
DMA transfer address for
a given DMA session

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

X_COUNT[15:0] (Inner
Loop Count)

X X X X X X X X X X X X X X X

DMA Inner Loop Count Registers (DMAx_X_COUNT/MDMA_yy_X_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

The number of elements to
transfer (1-D); the number of
rows in the inner loop (2-D)
ADSP-BF51x Blackfin Processor Hardware Reference 6-75

DMA Registers
DMA Current Inner Loop Count Registers
(DMAx_CURR_X_COUNT
/MDMA_yy_CURR_X_COUNT)

The DMAx_CURR_X_COUNT register, shown in Figure 6-11, holds the number
of transfers remaining in the current DMA row (inner loop). On the first
memory transfer of each DMA work unit, it is loaded with the value in the
DMAx_X_COUNT register and then decremented. For 2-D DMA, on the last
memory transfer in each row except the last row, it is reloaded with the
value in the DMAx_X_COUNT register; this occurs at the same time that the
value in the DMAx_CURR_Y_COUNT register is decremented. Otherwise it is
decremented each time an element is transferred. Expiration of the count
in this register signifies that DMA is complete. In 2-D DMA, the
DMAx_CURR_X_COUNT register value is 0 only when the entire transfer is
complete. Between rows it is equal to the value of the DMAx_X_COUNT
register.

Figure 6-11. DMA Current Inner Loop Count Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

CURR_X_COUNT[15:0]
(Current Inner Loop
Count)

X X X X X X X X X X X X X X X

DMA Current Inner Loop Count Registers (DMAx_CURR_X_COUNT/

MDMA_yy_CURR_X_COUNT)

R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Loaded by X_COUNT
at the beginning of each
DMA session (1-D DMA),
or at the beginning of
each row (2-D DMA)
6-76 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
DMA Inner Loop Address Increment Registers
(DMAx_X_MODIFY/MDMA_yy_X_MODIFY)

The DMAx_X_MODIFY register, shown in Figure 6-12, contains a signed,
two’s-complement byte-address increment. In 1-D DMA, this increment
is the stride that is applied after transferring each element.

 DMAx_X_MODIFY is specified in bytes, regardless of the DMA transfer
size.

In 2-D DMA, this increment is applied after transferring each element in
the inner loop, up to but not including the last element in each inner
loop. After the last element in each inner loop, the DMAx_Y_MODIFY register
is applied instead, except on the very last transfer of each work unit. The
DMAx_X_MODIFY register is always applied to the last transfer of a work unit.

The DMAx_X_MODIFY field may be set to 0. In this case, DMA is performed
repeatedly to or from the same address. This is useful, for example, in
transferring data between a data register and an external memory-mapped
peripheral.

Figure 6-12. DMA Inner Loop Address Increment Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

X_MODIFY[15:0] (Inner
Loop Address Increment)

X X X X X X X X X X X X X X X

DMA Inner Loop Address Increment Registers (DMAx_X_MODIFY/MDMA_yy_X_MODIFY)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Stride (in bytes) to take after
each decrement of
CURR_X_COUNT
ADSP-BF51x Blackfin Processor Hardware Reference 6-77

DMA Registers
DMA Outer Loop Count Registers
(DMAx_Y_COUNT/MDMA_yy_Y_COUNT)

For 2-D DMA, the DMAx_Y_COUNT register, shown in Figure 6-13, contains
the outer loop count. It is not used in 1-D DMA mode. This register con-
tains the number of rows in the outer loop of a 2-D DMA sequence. For
details, see “Two-Dimensional DMA Operation” on page 6-11.

DMA Current Outer Loop Count Registers
(DMAx_CURR_Y_COUNT/
MDMA_yy_CURR_Y_COUNT)

The DMAx_CURR_Y_COUNT register, used only in 2-D mode, holds the num-
ber of full or partial rows (outer loops) remaining in the current work
unit. See Figure 6-14. On the first memory transfer of each DMA work
unit, it is loaded with the value of the DMAx_Y_COUNT register. The register
is decremented each time the DMAx_CURR_X_COUNT register expires during
2-D DMA operation (1 to DMAx_X_COUNT or 1 to 0 transition), signifying
completion of an entire row transfer. After a 2-D DMA session is com-
plete, DMAx_CURR_Y_COUNT = 1 and DMAx_CURR_X_COUNT = 0.

Figure 6-13. DMA Outer Loop Count Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Y_COUNT[15:0]
(Outer Loop Count)

X X X X X X X X X X X X X X X

DMA Outer Loop Count Registers (DMAx_Y_COUNT/MDMA_yy_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

The number of rows in
the outer loop of a 2-D
DMA sequence
6-78 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
DMA Outer Loop Address Increment Registers
(DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY)

The DMAx_Y_MODIFY register contains a signed, two’s-complement value.
See Figure 6-15. This byte-address increment is applied after each decre-
ment of the DMAx_CURR_Y_COUNT register except for the last item in the 2-D
array where the DMAx_CURR_Y_COUNT also expires. The value is the offset
between the last word of one row and the first word of the next row. For
details, see “Two-Dimensional DMA Operation” on page 6-11.

 DMAx_Y_MODIFY is specified in bytes, regardless of the DMA transfer
size.

Figure 6-14. DMA Current Outer Loop Count Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

CURR_Y_COUNT[15:0]
(Current Outer Loop
Count)

X X X X X X X X X X X X X X X

DMA Current Outer Loop Count Registers
(DMAx_CURR_Y_COUNT/MDMA_yy_CURR_Y_COUNT)

R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Loaded by Y_COUNT
at the beginning of each
2-D DMA session; not
used for 1-D DMA
ADSP-BF51x Blackfin Processor Hardware Reference 6-79

DMA Registers
DMA Next Descriptor Pointer Registers
(DMAx_NEXT_DESC_PTR/
MDMA_yy_NEXT_DESC_PTR)

The 32-bit DMAx_NEXT_DESC_PTR register, shown in Figure 6-16, specifies
where to look for the start of the next descriptor block when the DMA
activity specified by the current descriptor block finishes. This register is
used in small and large descriptor list modes. At the start of a descriptor
fetch in either of these modes, this register is copied into the
DMAx_CURR_DESC_PTR register. Then, during the descriptor fetch, the
DMAx_CURR_DESC_PTR register increments after each element of the descrip-
tor is read in.

 In small and large descriptor list modes, the DMAx_NEXT_DESC_PTR
register, and not the DMAx_CURR_DESC_PTR register, must be pro-
grammed directly via MMR access before starting DMA operation.

In descriptor array mode, the next descriptor pointer register is disre-
garded, and fetching is controlled only by the DMAx_CURR_DESC_PTR
register.

Figure 6-15. DMA Outer Loop Address Increment Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Y_MODIFY[15:0]
(Outer Loop Address
Increment)

X X X X X X X X X X X X X X X

DMA Outer Loop Address Increment Registers (DMAx_Y_MODIFY/ MDMA_yy_Y_MODIFY)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Stride to take after each
decrement of
CURR_Y_COUNT
6-80 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
DMA Current Descriptor Pointer Registers
(DMAx_CURR_DESC_PTR/
MDMA_yy_CURR_DESC_PTR)

The 32-bit DMAx_CURR_DESC_PTR register, shown in Figure 6-17, contains
the memory address for the next descriptor element to be loaded. For FLOW
mode settings that involve descriptors (FLOW = 4, 6, or 7), this register is
used to read descriptor elements into appropriate MMRs before a DMA
work block begins. For descriptor list modes (FLOW = 6 or 7), this register
is initialized from the DMAx_NEXT_DESC_PTR register before loading each
descriptor. Then, the address in the DMAx_CURR_DESC_PTR register incre-
ments as each descriptor element is read in.

When the entire descriptor has been read, the DMAx_CURR_DESC_PTR regis-
ter contains this value:

Descriptor Start Address + (2 × Descriptor Size) (# of elements)

 For descriptor array mode (FLOW = 4), this register, and not the
DMAx_NEXT_DESC_PTR register, must be programmed by MMR
access before starting DMA operation.

Figure 6-16. DMA Next Descriptor Pointer Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

Next Descriptor
Pointer[31:16]

X X X X X X X X X X X X X X X

DMA Next Descriptor Pointer Registers
(DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR)

R/W prior to enabling channel; RO after enabling channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Next Descriptor
Pointer[15:0]

X X X X X X X X X X X X X X X

Reset = Undefined
ADSP-BF51x Blackfin Processor Hardware Reference 6-81

DMA Registers
HMDMA Registers
Some processors have two HMDMA blocks, while others have none. See
the “Unique Information for the ADSP-BF51x Processor” on page 6-103
to determine whether this feature is applicable to your product.
HMDMA0 is associated with MDMA0, and HMDMA1 is associated with
MDMA1.

Handshake MDMA Control Registers (HMDMAx_CONTROL)

The HMDMAx_CONTROL register, shown in Figure 6-18, is used to set up
HMDMA parameters and operating modes.

The DRQ[1:0] field is used to control the priority of the MDMA channel
when the HMDMA is disabled, that is, when handshake control is not
being used (see Table 6-6).

Figure 6-17. DMA Current Descriptor Pointer Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

Next Descriptor
Pointer[31:16]

X X X X X X X X X X X X X X X

DMA Next Descriptor Pointer Registers
(DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR)

R/W prior to enabling channel; RO after enabling channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Next Descriptor
Pointer[15:0]

X X X X X X X X X X X X X X X

Reset = Undefined
6-82 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access

A

ty)

t

Figure 6-18. Handshake MDMA Control Registers

00 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 1 0 0 0 0 0

PS (Pin Status) - RO
0 - Request pin is 0
1 - Request pin is 1

0 - Block done interrupt
not generated

1 - Block done interrupt
generated

Handshake MDMA Control Registers (HMDMAx_CONTROL)

DRQ[1:0] (Default MDMA Request
When Handshake DMA is Disabled
EN=0)
00 - No request
01 - Request single transfer from MDMA channel
10 - Request multiple transfers from MDMA channel (default)
11 - Request urgent multiple transfers from MDMA channel

BDI (Block Done
Interrupt Generated)
- W1C

HMDMAEN (Handshake MDM
Enable)
0 - Disable handshake

Operation
1 - Enable handshake

Operation
REP (HMDMA Request Polari
0 - Increment ECOUNT on

falling edges of DMARx
input

1 - Increment ECOUNT on
rising edges of DMARx
input

UTE (Urgency Threshold
Enable)
0 - Disable urgency threshold
1 - Enable urgency threshold
OIE (Overflow Interrupt
Enable)
0 - Disable overflow interrupt
1 - Enable overflow interrupt

Reset = 0x0200

BDIE (Block Done Interrupt
Enable)
0 - Disable block done interrup
1 - Enable block done interrupt
MBDI (Mask Block Done
Interrupt)
BDIE must = 1
0 - Interrupt generated when

BCOUNT decrements to 0
1 - Interrupt generated when

BCOUNT decrements to 0
and ECOUNT = 0

0 - Overflow interrupt
not generated

1 - Overflow interrupt
generated

OI (Overflow Interrupt
Generated) - W1C

RBC (Force Reload of
BCOUNT) - WO
0 - Reload not active
1 - Force reload of BCOUNT with BCINIT.
Write 1 to activate
ADSP-BF51x Blackfin Processor Hardware Reference 6-83

DMA Registers
The RBC bit forces the BCOUNT register to be reloaded with the BCINIT value
while the module is already active. Do not set this bit in the same write
that sets the HMDMAEN bit to active.

Handshake MDMA Initial Block Count Registers
(HMDMAx_BCINIT)

The HMDMAx_BCINIT register, shown in Figure 6-19, holds the number of
transfers to do per edge of the DMARx control signal.

Table 6-6. DRQ[1:0] Values

DRQ[1:0] Priority Description

00 Disabled The MDMA request is disabled.

01 Enabled/S Normal MDMA channel priority. The channel in this mode is limited to
single memory transfers separated by one idle system clock. Request sin-
gle transfer from MDMA channel.

10 Enabled/
M

Normal MDMA channel functionality and priority. Request multiple
transfers from MDMA channel (default).

11 Urgent The MDMA channel priority is elevated to urgent. In this state, it has
higher priority for memory access than non-urgent channels. If two chan-
nels are both urgent, the lower-numbered channel has priority.

Figure 6-19. Handshake MDMA Initial Block Count Registers

00 0 00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

Handshake MDMA Initial Block Count Registers (HMDMAx_BCINIT)

BCINIT[15:0] (Initial Block
Count)

Reset = 0x0000
6-84 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
Handshake MDMA Current Block Count Registers
(HMDMAx_BCOUNT)

The HMDMAx_BCOUNT register, shown in Figure 6-20, holds the number of
transfers remaining for the current edge. MDMA requests are generated if
this count is greater than 0.

Examples:

• 0000 = 0 transfers remaining

• FFFF = 65535 transfers remaining

The BCOUNT field is loaded with BCINIT when ECOUNT is greater than 0 and
BCOUNT is expired (0). Also, if the RBC bit in the HMDMAx_CONTROL register is
written to 1, BCOUNT is loaded with BCINIT. The BCOUNT field is decre-
mented with each MDMA grant. It is cleared when HMDMA is disabled.

A block done interrupt is generated when BCOUNT decrements to 0. If the
MBDI bit in the HMDMAx_CONTROL register is set, the interrupt is suppressed
until ECOUNT is 0. If BCINIT is 0, no block done interrupt is generated,
since no DMA requests were generated or grants received.

Figure 6-20. Handshake MDMA Current Block Count Registers

00 0 00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

Handshake MDMA Current Block Count Register (HMDMAx_BCOUNT)

BCOUNT[15:0] (Transfers
Remaining for Current Edge)

Reset = 0x0000
ADSP-BF51x Blackfin Processor Hardware Reference 6-85

DMA Registers
Handshake MDMA Current Edge Count Registers
(HMDMAx_ECOUNT)

The HMDMAx_ECOUNT register, shown in Figure 6-21, holds a signed number
of edges remaining to be serviced. This number is in a signed
two’s-complement representation. When an edge is detected on the
respective DMARx input, requests occur if this count is greater than or equal
to 0 and BCOUNT is greater than 0.

When the handshake mode is enabled, ECOUNT is loaded and the resulting
number of requests is:

Number of edges + N,

where N is the number loaded from ECINIT. The number N can be posi-
tive or negative. Examples:

• 0x7FFF = 32,767 edges remaining

• 0x0000 = 0 edges remaining

• 0x8000 = –32,768: ignore the next 32,768 edges

Each time that BCOUNT expires, ECOUNT is decremented and BCOUNT is
reloaded from BCINIT. When a handshake request edge is detected, ECOUNT
is incremented. The ECOUNT field is cleared when HMDMA is disabled.

Figure 6-21. Handshake MDMA Current Edge Count Registers

00 0 00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

Handshake MDMA Current Edge Count Register (HMDMAx_ECOUNT)

ECOUNT[15:0] (Edges
Remaining to be Serviced)

Reset = 0x0000
6-86 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
Handshake MDMA Initial Edge Count Registers
(HMDMAx_ECINIT)

The HMDMAx_ECINIT register, shown in Figure 6-22, holds a signed number
that is loaded into HMDMAx_ECOUNT when handshake DMA is enabled. This
number is in a signed two’s complement representation.

Handshake MDMA Edge Count Urgent Registers
(HMDMAx_ECURGENT)

The HMDMAx_ECURGENT register, shown in Figure 6-23, holds the urgent
threshold. If the ECOUNT field in the HMDMAx_ECOUNT register is greater than
this threshold, the MDMA request is urgent and might get higher
priority.

Figure 6-22. Handshake MDMA Initial Edge Count Registers

Figure 6-23. Handshake MDMA Edge Count Urgent Registers

00 0 00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

Handshake MDMA Initial Edge Count Registers (HMDMAx_ECINIT)

ECINIT[15:0] (Initial Edge
Count)

Reset = 0x0000

11 1 11 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1

Handshake MDMA Edge Count Urgent Registers (HMDMAx_ECURGENT)

UTHE[15:0] (Urgent
Threshold)

Reset = 0xFFFF
ADSP-BF51x Blackfin Processor Hardware Reference 6-87

DMA Registers
Handshake MDMA Edge Count Overflow Interrupt
Registers (HMDMAx_ECOVERFLOW)

The HMDMAx_ECOVERFLOW register, shown in Figure 6-24, holds the inter-
rupt threshold. If the ECOUNT field in the HMDMAx_ECOUNT register is greater
than this threshold, an overflow interrupt is generated.

DMA Traffic Control Registers
(DMA_TC_PER and DMA_TC_CNT)

The DMA_TC_PER register (see Figure 6-25) and the DMA_TC_CNT register (see
Figure 6-26) work with other DMA registers to define traffic control.

Figure 6-24. Handshake MDMA Edge Count Overflow Interrupt
Registers

11 1 11 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1

Handshake MDMA Edge Count Overflow Interrupt Registers (HMDMAx_ECOVERFLOW)

ITHR[15:0] (Interrupt
Threshold)

Reset = 0xFFFF
6-88 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
DMA_TC_PER Register

DMA_TC_CNT Register

The MDMA_ROUND_ROBIN_COUNT field shows the current transfer count
remaining in the MDMA round-robin period. It initializes to

M

Figure 6-25. DMA Traffic Control Counter Period Register

Figure 6-26. DMA Traffic Control Counter Register

0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0

Maximum length of MDMA round
robin bursts. If not zero, any MDMA
stream which receives a grant is
allowed up to that number of DMA
transfers, to the exclusion of the other
MDMA streams.

DMA Traffic Control Counter Period Register (DMA_TC_PER)

DAB_TRAFFIC_PERIOD[2:0]
000 - No DAB bus transfer grouping performed
Other - Preferred length of unidirectional bursts
on the DAB bus between the DMA and the
peripherals

MDMA_ROUND_ROBIN_PERIOD[4:0] DCB_TRAFFIC_PERIOD[3:0]

DEB_TRAFFIC_PERIOD[3:0]

Reset = 0x0000

0000 - No DCB bus transfer
 grouping performed
Other - Preferred length of unidi-
rectional bursts on the DCB bus
between the DMA and internal L1
memory

0000 - No DEB bus transfer
 grouping performed
Other - Preferred length of unidi-
rectional bursts on the DEB bus
between the DMA and external
memory

RO

0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0

Current transfer count remaining in
the MDMA round-robin period

DMA Traffic Control Counter Register (DMA_TC_CNT)

DAB_TRAFFIC_COUNT[2:0]

Current cycle count remaining in the
DAB traffic period

MDMA_ROUND_ROBIN_COUNT[4:0] DCB_TRAFFIC_COUNT[3:0]

DEB_TRAFFIC_COUNT[3:0]

Reset = 0x0000

Current cycle count remaining
in the DCB traffic period

Current cycle count remaining
in the DEB traffic period
ADSP-BF51x Blackfin Processor Hardware Reference 6-89

DMA Registers
MDMA_ROUND_ROBIN_PERIOD whenever DMA_TC_PER is written, whenever a
different MDMA stream is granted, or whenever every MDMA stream is
idle. It then counts down to 0 with each MDMA transfer. When this
count decrements from 1 to 0, the next available MDMA stream is
selected.

The DAB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DAB traffic period. It initializes to DAB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written, or whenever the DAB bus changes direction or
becomes idle. It then counts down from DAB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DAB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DAB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DAB bus access occurs, the count is reloaded from
DAB_TRAFFIC_PERIOD to begin a new burst.

The DEB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DEB traffic period. It initializes to DEB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written or whenever the DEB bus changes direction or
becomes idle. It then counts down from DEB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DEB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DEB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DEB bus access occurs, the count is reloaded from
DEB_TRAFFIC_PERIOD to begin a new burst.

The DCB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DCB traffic period. It initializes to DCB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written or whenever the DCB bus changes direction or
becomes idle. It then counts down from DCB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DCB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DCB access is treated
6-90 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
preferentially, which may result in a direction change. When this count is
0 and a DCB bus access occurs, the count is reloaded from
DCB_TRAFFIC_PERIOD to begin a new burst.

Programming Examples
The following examples illustrate memory DMA and handshaked memory
DMA basics. Examples for peripheral DMAs can be found in the respec-
tive peripheral chapters.

Register-Based 2-D Memory DMA
Listing 6-1 shows a register-based, two-dimensional MDMA. While the
source channel processes linearly, the destination channel re-sorts ele-
ments by transposing the two-dimensional data array. See Figure 6-27.

The two arrays reside in two different L1 data memory blocks. However,
the arrays could reside in any internal or external memory, including L1
instruction memory and SDRAM. For the case where the destination
array resided in SDRAM, it is a good idea to let the source channel re-sort
elements and to let the destination buffer store linearly.

Figure 6-27. DMA Example, 2-D Array

1

2

3

4

5

6

8

7

9

10

11

12

19

18

17

16

15

14

13

20

21

22

23

24

26

27

28

29

25

30

1 2 3 4 5 6

87 9 10 11 12

19

181716151413

20 21 22 23 24

26 27 28 2925 30
ADSP-BF51x Blackfin Processor Hardware Reference 6-91

Programming Examples
Listing 6-1. Register-Based 2-D Memory DMA

#include <defBF527.h>/*For ADSP-BF527 product, as an example.*/

#define X 5

#define Y 6

.section L1_data_a;

.byte2 aSource[X*Y] =

1, 7, 13, 19, 25,

2, 8, 14, 20, 26,

3, 9, 15, 21, 27,

4, 10, 16, 22, 28,

5, 11, 17, 23, 29,

6, 12, 18, 24, 30;

.section L1_data_b;

.byte2 aDestination[X*Y];

.section L1_code;

.global _main;

_main:

p0.l = lo(MDMA_S0_CONFIG);

p0.h = hi(MDMA_S0_CONFIG);

call memdma_setup;

call memdma_wait;

_main.forever:

jump _main.forever;

_main.end:

The setup routine shown in Listing 6-2 initializes either MDMA0 or
MDMA1, depending on whether the MMR address of MDMA_S0_CONFIG or
MDMA_S1_CONFIG is passed in the P0 register. Note that the source channel
is enabled before the destination channel. Also, it is common to synchro-
nize interrupts with the destination channel because only those interrupts
indicate completion of both DMA read and write operations.
6-92 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
Listing 6-2. Two-Dimensional Memory DMA Setup Example

memdma_setup:

[--sp] = r7;

/* setup 1D source DMA for 16-bit transfers */

r7.l = lo(aSource);

r7.h = hi(aSource);

[p0 + MDMA_S0_START_ADDR - MDMA_S0_CONFIG] = r7;

r7.l = 2;

w[p0 + MDMA_S0_X_MODIFY - MDMA_S0_CONFIG] = r7;

 r7.l = X * Y;

w[p0 + MDMA_S0_X_COUNT - MDMA_S0_CONFIG] = r7;

r7.l = WDSIZE_16 | DMAEN;

w[p0] = r7;

/* setup 2D destination DMA for 16-bit transfers */

r7.l = lo(aDestination);

r7.h = hi(aDestination);

[p0 + MDMA_D0_START_ADDR - MDMA_S0_CONFIG] = r7;

r7.l = 2*Y;

w[p0 + MDMA_D0_X_MODIFY - MDMA_S0_CONFIG] = r7;

r7.l = Y;

w[p0 + MDMA_D0_Y_COUNT - MDMA_S0_CONFIG] = r7;

r7.l = X;

w[p0 + MDMA_D0_X_COUNT - MDMA_S0_CONFIG] = r7;

r7.l = -2 * (Y * (X-1) - 1);

w[p0 + MDMA_D0_Y_MODIFY - MDMA_S0_CONFIG] = r7;

r7.l = DMA2D | DI_EN | WDSIZE_16 | WNR | DMAEN;

w[p0 + MDMA_D0_CONFIG - MDMA_S0_CONFIG] = r7;

r7 = [sp++];

rts;

memdma_setup.end:

For simplicity the example shown in Listing 6-3 polls the DMA status
rather than using interrupts, which is the normal case in a real application.
ADSP-BF51x Blackfin Processor Hardware Reference 6-93

Programming Examples
Listing 6-3. Polling DMA Status

memdma_wait:

[--sp] = r7;

memdma_wait.test:

r7 = w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] (z);

CC = bittst (r7, bitpos(DMA_DONE));

if !CC jump memdma_wait.test;

r7 = DMA_DONE (z);

w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] = r7;

r7 = [sp++];

rts;

memdma_wait.end:

Initializing Descriptors in Memory
Descriptor-based DMAs expect the descriptor data to be available in
memory by the time the DMA is enabled. Often, the descriptors are pro-
grammed by software at run-time. Many times, however, the
descriptors—or at least large portions of them—can be static and there-
fore initialized at boot time. How to set up descriptors in global memory
depends heavily on the programming language and the tool set used. The
following examples show how this is best performed in the CCES or Visu-
alDSP++ tools’ assembly language.

Listing 6-4 uses multiple variables of either 16-bit or 32-bit size to
describe DMA descriptors. This example has two descriptors in small list
flow mode that point to each other. At the end of the second work unit,
an interrupt is generated without discontinuing the DMA processing. The
trailing .end label is required to let the linker know that a descriptor forms
a logical unit. It prevents the linker from removing variables when
optimizing.
6-94 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
Listing 6-4. Two Descriptors in Small List Flow Mode

.section sdram;

.byte2 arrBlock1[0x400];

.byte2 arrBlock2[0x800];

.section L1_data_a;

.byte2 descBlock1 = lo(descBlock2);

.var descBlock1.addr = arrBlock1;

.byte2 descBlock1.cfg = FLOW_SMALL|NDSIZE_5|WDSIZE_16|DMAEN;

.byte2 descBlock1.len = length(arrBlock1);

descBlock1.end:

.byte2 descBlock2 = lo(descBlock1);

.var descBlock2.addr = arrBlock2;

.byte2 descBlock2.cfg =

FLOW_SMALL|NDSIZE_5|DI_EN|WDSIZE_16|DMAEN;

.byte2 descBlock2.len = length(arrBlock2);

descBlock2.end:

Another method featured by the CCES or VisualDSP++ tools takes advan-
tage of C-style structures in global header files. The header file
descriptors.h could look like Listing 6-5.
ADSP-BF51x Blackfin Processor Hardware Reference 6-95

Programming Examples
Listing 6-5. Header File to Define Descriptor Structures

#ifndef __INCLUDE_DESCRIPTORS__

#define __INCLUDE_DESCRIPTORS__

#ifdef _LANGUAGE_C

typedef struct {

void *pStart;

short dConfig;

short dXCount;

short dXModify;

short dYCount;

short dYModify;

} dma_desc_arr;

typedef struct {

void *pNext;

void *pStart;

short dConfig;

short dXCount;

short dXModify;

short dYCount;

short dYModify;

} dma_desc_list;

#endif // _LANGUAGE_C

#endif // __INCLUDE_DESCRIPTORS__

Note that near pointers are not natively supported by the C language and,
thus, pointers are always 32 bits wide. Therefore, the scheme above cannot
be used directly for small list mode without giving up pointer syntax. The
variable definition file is required to import the C-style header file and can
finally take advantage of the structures. See Listing 6-6.
6-96 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
Listing 6-6. Using Descriptor Structures

#include "descriptors.h"

.import "descriptors.h";

.section L1_data_a;

.align 4;

.var arrBlock3[N];

.var arrBlock4[N];

.struct dma_desc_list descBlock3 = {

descBlock4, arrBlock3,

FLOW_LARGE | NDSIZE_7 | WDSIZE_32 | DMAEN,

length(arrBlock3), 4,

0, 0 /* unused values */

};

.struct dma_desc_list descBlock4 = {

descBlock3, arrBlock4,

FLOW_LARGE | NDSIZE_7 | DI_EN | WDSIZE_32 | DMAEN,

length(arrBlock4), 4,

0, 0 /* unused values */

};

Software-Triggered Descriptor Fetch Example
Listing 6-7 demonstrates a large list of descriptors that provide FLOW = 0
(stop mode) configuration. Consequently, the DMA stops by itself as soon
as the work unit has finished. Software triggers the next work unit by sim-
ply writing the proper value into the DMA configuration registers. Since
these values instruct the DMA controller to fetch descriptors in large list
mode, the DMA immediately fetches the descriptor, thus overwriting the
configuration value again with the new settings when it is started.
ADSP-BF51x Blackfin Processor Hardware Reference 6-97

Programming Examples
Note the requirement that source and destination channels stop after the
same number of transfers. Between stops, the two channels can have com-
pletely individual structures.

Listing 6-7. Software-Triggered Descriptor Fetch

.import "descriptors.h";

#define N 4

.section L1_data_a;

.byte2 arrSource1[N] = { 0x1001, 0x1002, 0x1003, 0x1004 };

.byte2 arrSource2[N] = { 0x2001, 0x2002, 0x2003, 0x2004 };

.byte2 arrSource3[N] = { 0x3001, 0x3002, 0x3003, 0x3004 };

.byte2 arrDest1[N];

.byte2 arrDest2[2*N];

.struct dma_desc_list descSource1 = {

descSource2, arrSource1,

WDSIZE_16 | DMAEN,

length(arrSource1), 2,

0, 0 /* unused values */

};

.struct dma_desc_list descSource2 = {

descSource3, arrSource2,

FLOW_LARGE | NDSIZE_7 | WDSIZE_16 | DMAEN,

length(arrSource2), 2,

0, 0 /* unused values */

};

.struct dma_desc_list descSource3 = {

descSource1, arrSource3,

WDSIZE_16 | DMAEN,

length(arrSource3), 2,

0, 0 /* unused values */

};
6-98 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
.struct dma_desc_list descDest1 = {

descDest2, arrDest1,

DI_EN | WDSIZE_16 | WNR | DMAEN,

length(arrDest1), 2,

0, 0 /* unused values */

};

.struct dma_desc_list descDest2 = {

descDest1, arrDest2,

DI_EN | WDSIZE_16 | WNR | DMAEN,

length(arrDest2), 2,

0, 0 /* unused values */

};

.section L1_code;

_main:

/* write descriptor address to next descriptor pointer */

p0.h = hi(MDMA_S0_CONFIG);

p0.l = lo(MDMA_S0_CONFIG);

r0.h = hi(descDest1);

r0.l = lo(descDest1);

[p0 + MDMA_D0_NEXT_DESC_PTR - MDMA_S0_CONFIG] = r0;

r0.h = hi(descSource1);

r0.l = lo(descSource1);

[p0 + MDMA_S0_NEXT_DESC_PTR - MDMA_S0_CONFIG] = r0;

/* start first work unit */

r6.l = FLOW_LARGE|NDSIZE_7|WDSIZE_16|DMAEN;

w[p0 + MDMA_S0_CONFIG - MDMA_S0_CONFIG] = r6;

r7.l = FLOW_LARGE|NDSIZE_7|WDSIZE_16|WNR|DMAEN;

w[p0 + MDMA_D0_CONFIG - MDMA_S0_CONFIG] = r7;
ADSP-BF51x Blackfin Processor Hardware Reference 6-99

Programming Examples
/* wait until destination channel has finished and W1C latch */

_main.wait:

r0 = w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] (z);

CC = bittst (r0, bitpos(DMA_DONE));

if !CC jump _main.wait;

r0.l = DMA_DONE;

w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] = r0;

/* wait for any software or hardware event here */

/* start next work unit */

w[p0 + MDMA_S0_CONFIG - MDMA_S0_CONFIG] = r6;

w[p0 + MDMA_D0_CONFIG - MDMA_S0_CONFIG] = r7;

jump _main.wait;

_main.end:

Handshaked Memory DMA Example
The functional block for the handshaked MDMA operation can be con-
sidered completely separately from the MDMA channels themselves.
Therefore the following HMDMA setup routine can be combined with
any of the MDMA examples discussed above. Be sure that the HMDMA
module is enabled before the MDMA channels.

Listing 6-8 enables the HMDMA1 block, which is controlled by the DMAR1
pin and is associated with the MDMA1 channel pair.
6-100 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
Listing 6-8. HMDMA1 Block Enable

/* optionally, enable all four bank select strobes */

p1.l = lo(EBIU_AMGCTL);

p1.h = hi(EBIU_AMGCTL);

r0.l = 0x0009;

w[p1] = r0;

/* function enable for DMAR1 */

p1.l = lo(PORTG_FER);

r0.l = PG12;

w[p1] = r0;

p1.l = lo(PORTG_MUX);

r0.l = 0x0000;

w[p1] = r0;

/* every single transfer requires one DMAR1 event */

p1.l = lo(HMDMA1_BCINIT);

r0.l = 1;

w[p1] = r0;

/* start with balanced request counter */

p1.l = lo(HMDMA1_ECINIT);

r0.l = 0;

w[p1] = r0;

/* enable for rising edges */

p1.l = lo(HMDMA1_CONTROL);

r2.l = REP | HMDMAEN;

w[p1] = r2;
ADSP-BF51x Blackfin Processor Hardware Reference 6-101

Programming Examples
If the HMDMA is intended to copy from internal memory to external
devices, the above setup is sufficient. If, however, the data flow is from
outside the processor to internal memory, then this small issue must be
considered—the HMDMA only controls the destination channel of the
memory DMA. It does not gate requests to the source channel at all.
Thus, as soon as the source channel is enabled, it starts filling the DMA
FIFO immediately. In 16-bit DMA mode, this results in eight read strobes
on the EBIU even before the first DMAR1 event has been detected. In
other words, the transferred data and the DMAR1 strobes are eight posi-
tions off. The example in Listing 6-9 delays processing until eight
DMAR1 requests have been received. By doing so, the transmitter is
required to add eight trailing dummy writes after all data words have been
sent. This is because the transmit channel still has to drain the DMA
FIFO.

Listing 6-9. HMDMA With Delayed Processing

/* wait for eight requests */

p1.l = lo(HMDMA1_ECOUNT);

r0 = 7 (z);

initial_requests:

r1 = w[p1] (z);

CC = r1 < r0;

if CC jump initial_requests;

/* disable and reenable to clear edge count */

p1.l = lo(HMDMA1_CONTROL);

r0.l = 0;

w[p1] = r0;

w[p1] = r2;

If the polling operation shown in Listing 6-9 is too expensive, an interrupt
version of it can be implemented by using the HMDMA overflow feature.
Temporarily set the HMDMAx_OVERFLOW register to eight.
6-102 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
Unique Information for the ADSP-BF51x
Processor

Figure 6-28 provides a block diagram of the ADSP-BF51x DMA
controller.

DMA Control Commands
The ADSP-BF516 and ADSP-BF518 processors both offer an Ethernet
MAC module that supports DMA control commands. Refer to
Chapter 22, “Ethernet MAC” for a description of how these commands
are used.

Static Channel Prioritization
The default DMA channel priority and mapping shown in Table 6-7 can
be changed by altering the 4-bit PMAP field in the DMAx_PERIPHERAL_MAP
registers for the peripheral DMA channels.

 Note that the ADSP-BF512 and ADSP-BF514 processors do not
feature the Ethernet MAC module. Therefore, the DMA1 and
DMA2 channels cannot be used with the default channel mapping
on these products. Also, the ADSP-BF512 does not have an RSI
module, but DMA3 can still be used for SPORT0 RX transfers in
this case.
ADSP-BF51x Blackfin Processor Hardware Reference 6-103

Unique Information for the ADSP-BF51x Processor
Figure 6-28. ADSP-BF51x DMA Controller Block Diagram

DMA 0 CONTROLPMAPFIFO

DMA 1 CONTROLPMAPFIFO

DMA 2 CONTROLPMAPFIFO

DMA 3 CONTROLPMAPFIFO

DMA 4 CONTROLPMAPFIFO

DMA 5 CONTROLPMAPFIFO

DMA 6 CONTROLPMAPFIFO

DMA 7 CONTROLPMAPFIFO

DMA 8 CONTROLPMAPFIFO

DMA 9 CONTROLPMAPFIFO

DMA 10 CONTROLPMAPFIFO

DMA 11 CONTROLPMAPFIFO

MDMA 1 DESTINATION CONTROLHMDMA 1
FIFO

MDMA 1 SOURCE CONTROL

MDMA 0 DESTINATION CONTROLHMDMA 0
FIFO

MDMA 0 SOURCE CONTROL

DMA TRAFFIC CONTROL

DMAR0 DMAR1

IRQ 15

IRQ 28

IRQ 30

IRQ 16

IRQ 17

IRQ 18

IRQ 19

IRQ 21

IRQ 22

IRQ 23

IRQ 24

IRQ 25

IRQ 43

IRQ 42

IRQ 1

IRQ 2,3,4,5

CCLK SCLK

DCB DEB DAB DGT DRQ PAB

16 16 16 12 3 x 12 16
6-104 ADSP-BF51x Blackfin Processor Hardware Reference

Direct Memory Access
Table 6-7. Priority and Default Mapping of Peripheral to DMA

Priority DMA Channel PMAP Default Value Peripheral Mapped by Default

Highest DMA 0 0x0 PPI receive or transmit

DMA 1 0x1 Ethernet MAC receive

DMA 2 0x2 Ethernet MAC transmit

DMA 3 0x3 SPORT0 receive

DMA 4 0x4 SPORT0 transmit or RSI

DMA 5 0x5 SPORT1 receive or SPI1 transmit/receive

DMA 6 0x6 SPORT1 transmit

DMA 7 0x7 SPI0 transmit/receive

DMA 8 0x8 UART0 receive

DMA 9 0x9 UART0 transmit

DMA 10 0xA UART1 receive

DMA 11 0xB UART1 transmit

MDMA D0 N/A N/A

MDMA S0 N/A N/A

MDMA D1 N/A N/A

Lowest MDMA S1 N/A N/A
ADSP-BF51x Blackfin Processor Hardware Reference 6-105

Unique Information for the ADSP-BF51x Processor

6-106 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
7 EXTERNAL BUS INTERFACE
UNIT

The external bus interface unit (EBIU) provides glueless interfaces to
external memories. The processor supports Synchronous DRAM
(SDRAM) including mobile SDRAM. The EBIU also supports asynchro-
nous interfaces such as SRAM, ROM, FIFOs, flash memory, and
ASIC/FPGA designs.

EBIU Overview
The EBIU services requests for external memory from the core or from a
DMA channel. The priority of the requests is determined by the external
bus controller. The address of the request determines whether the request
is serviced by the EBIU SDRAM controller or the EBIU asynchronous
memory controller.

The DMA controller provides high-bandwidth data movement capability.
The Memory DMA (MDMA) channels can perform block transfers of
code or data between the internal memory and the external memory
spaces. The MDMA channels also feature a Handshake Operation mode
(HMDMA) via dual external DMA request pins. When used in conjunc-
tion with the EBIU, this functionality can be used to interface high-speed
ADSP-BF51x Blackfin Processor Hardware Reference 7-1

EBIU Overview
external devices, such as FIFOs and USB 2.0 controllers, in an automatic
manner. For more information on HMDMA and the external DMA
request pins, refer to Chapter 6, “Direct Memory Access”.

The EBIU is clocked by the system clock (SCLK). All synchronous memo-
ries interfaced to the processor operate at the SCLK frequency. The ratio
between core clock frequency (CCLK) and SCLK frequency is programmable
using a Phase Locked Loop (PLL) system Memory-Mapped Register
(MMR). For more information, see “Core Clock/System Clock Ratio
Control” on page 8-5.

The external memory space is shown in Figure 7-1. One memory region is
dedicated to SDRAM support. SDRAM interface timing and the size of
the SDRAM region are programmable. The SDRAM memory space can
range in size from 16M byte to 128M byte.

The start address of the SDRAM memory space is 0x0000 0000. The area
from the end of the SDRAM memory space up to address 0x2000 0000 is
reserved.

The next four regions are dedicated to supporting asynchronous memo-
ries. Each asynchronous memory region can be independently
programmed to support different memory device characteristics. Each
region has its own memory select output pin from the EBIU.

The next region is reserved memory space. References to this region do
not generate external bus transactions. Writes have no effect on external
memory values, and reads return undefined values. The EBIU generates
an error response on the internal bus, which will generate a hardware
exception for a core access or will optionally generate an interrupt from a
DMA channel.
7-2 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
Figure 7-1. External Memory Map

0x0000 0000

ASYNC MEMORY BANK 0 (1 MByte)

ASYNC MEMORY BANK 1 (1 MByte)

SDRAM MEMORY
(16 MByte–128 MByte)

0x2000 0000

0x2010 0000

EXTERNAL MEMORY MAP

0x2040 0000

ASYNC MEMORY BANK 2 (1 MByte)
0x2020 0000

0x2030 0000

0xEEFF FFFF

NOTE: RESERVED OFF-CHIP MEMORY AREAS ARE LABELED IN THE DIAGRAM
ABOVE. ALL OTHER OFF-CHIP SYSTEM RESOURCES ARE ADDRESSABLE BY
BOTH THE CORE AND THE SYSTEM.

ASYNC MEMORY BANK 3 (1 MByte)

RESERVED

RESERVED
ADSP-BF51x Blackfin Processor Hardware Reference 7-3

EBIU Overview
Block Diagram
Figure 7-2 is a conceptual block diagram of the EBIU and its interfaces.
Signal names shown with an overbar are active low signals.

Since only one external memory device can be accessed at a time, control,
address, and data pins for each memory type are multiplexed together at
the pins of the device. The Asynchronous Memory Controller (AMC) and
the SDRAM Controller (SDC) effectively arbitrate for the shared pin
resources.

Internal Memory Interfaces
The EBIU functions as a slave on three buses internal to the processor:

• External Access Bus (EAB), mastered by the core memory manage-
ment unit on behalf of external bus requests from the core

• DMA External Bus (DEB), mastered by the DMA controller on
behalf of external bus requests from any DMA channel

Figure 7-2. External Bus Interface Unit (EBIU)

ABE [1:0]/SDQM [1:0]

EBIU

ASYNCHRONOUS
MEMORY

CONTROLLER
(AMC)

SDRAM
CONTROLLER

(SDC)

E
X

T
E

R
N

A
L

 B
U

S
 C

O
N

T
R

O
L

L
E

R
(E

B
C

)

EAB

PAB

D
E

V
IC

E
PA

D
S

DATA [15:0]
ADDR [19:1]

AMS [3:0]
ARDY

CLKOUT
SCKE
SA10

DEB
AOE
ARE
AWE
SMS

SWE

SRAS
SCAS
7-4 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
• Peripheral Access Bus (PAB), mastered by the core on behalf of sys-
tem MMR requests from the core

These are synchronous interfaces, clocked by SCLK, as is the EBIU. The
EAB provides access to both asynchronous external memory and synchro-
nous DRAM external memory. The external access is controlled by either
the AMC or the SDC, depending on the internal address used to access
the EBIU. Since the AMC and SDC share the same interface to the exter-
nal pins, access is sequential and must be arbitrated based on requests
from the EAB.

The third bus (PAB) is used only to access the memory-mapped control
and status registers of the EBIU. The PAB connects separately to the
AMC and SDC. It does not need to arbitrate with, nor take access cycles
from, the EAB bus.

The External Bus Controller (EBC) logic must arbitrate access requests for
external memory coming from the EAB and DEB buses. The EBC logic
routes read and write requests to the appropriate memory controller based
on the bus selects. The AMC and SDC compete for access to the shared
resources. This competition is resolved in a pipelined fashion, in the order
dictated by the EBC arbiter. Transactions from the core have priority over
DMA accesses in most circumstances. However, if the DMA controller
detects an excessive backup of transactions, it can request its priority to be
temporarily raised above the core.

Registers
There are six control registers and one status register in the EBIU. They
are:

• Asynchronous memory global control register (EBIU_AMGCTL)

• Asynchronous memory bank control 0 register (EBIU_AMBCTL0)

• Asynchronous memory bank control 1 register (EBIU_AMBCTL1)
ADSP-BF51x Blackfin Processor Hardware Reference 7-5

EBIU Overview
• SDRAM memory global control register (EBIU_SDGCTL)

• SDRAM memory bank control register (EBIU_SDBCTL)

• SDRAM refresh rate control register (EBIU_SDRRC)

• SDRAM control status register (EBIU_SDSTAT)

Each of these registers is described in detail in the AMC and SDC sections
later in this chapter.

Shared and Multiplexed Pins
Both the AMC and the SDC share the external interface address and data
pins, as well as some of the control signals. These pins are shared:

• ADDR[19:1], address bus

• DATA[15:0], data bus

• ABE[1:0]/SDQM[1:0], AMC byte enables/SDC data masks

• CLKOUT, system clock for SDC and AMC

No other signals are multiplexed between the two controllers.

The following AMC signals are multiplexed. Refer to Chapter 9, “Gen-
eral-Purpose Ports” for the locations of these signals and information on
configuring them.

• AMS[3:2] – Asynchronous memory bank selects

• AOE – Asynchronous memory output enable

• ARDY – Asynchronous memory ready response
7-6 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
System Clock
The CLKOUT pin is shared by both the SDC and AMC. Two different regis-
ters are used to control this:

• EBIU_SDGCTL register, SCTLE bit for SDC clock

• EBIU_AMGCTL register, AMCKEN bit for AMC clock

If enabling or disabling the system clock, software control for both regis-
ters is required.

Error Detection
The EBIU responds to any bus operation which addresses the range of
0x0000 0000 – 0xEEFF FFFF, even if that bus operation addresses
reserved or disabled memory or functions. It responds by completing the
bus operation (asserting the appropriate number of acknowledges as speci-
fied by the bus master) and by asserting the bus error signal for these error
conditions:

• Any access to a disabled external memory bank

• Any access to reserved SDRAM memory space

• Any access to unpopulated SDRAM space

If the core requested the faulting bus operation, the bus error response
from the EBIU is gated into the hardware error interrupt (IVHW) internal
to the core (this interrupt can be masked off in the core). If a DMA master
requested the faulting bus operation, then the bus error is captured in that
controller and can optionally generate an interrupt to the core.

AMC Overview and Features
The following sections describe the features of the AMC.
ADSP-BF51x Blackfin Processor Hardware Reference 7-7

AMC Overview and Features
Features
The EBIU AMC features include:

• 16-bit I/O width

• 1.8, 2.5 or 3.3 V I/O supply

• Supports up to 4M bytes of SRAM in four external banks

• AMC supports 8-bit data masking writes

• AMC has control of the EBIU while auto-refresh is performed to
SDRAM

• AMC supports asynchronous access extension (ARDY pin)

• Supports instruction fetch

• Allows booting from bank 0 (AMS0)

Asynchronous Memory Interface
The asynchronous memory interface allows a glueless interface to a variety
of memory and peripheral types. These include SRAM, ROM, EPROM,
flash memory, and FPGA/ASIC designs. Four asynchronous memory
regions are supported. Each has a unique memory pin select associated
with it, shown in Table 7-1.

Table 7-1. Asynchronous Memory Bank Address Range

Memory Bank Select Address Start Address End

AMS[3] 0x2030 0000 0x203F FFFF

AMS[2] 0x2020 0000 0x202F FFFF

AMS[1] 0x2010 0000 0x201F FFFF

AMS[0] 0x2000 0000 0x200F FFFF
7-8 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
Asynchronous Memory Address Decode

The address range allocated to each asynchronous memory bank is fixed at
1M bytes; however, not all of an enabled memory bank need be
populated.

 Accesses to unpopulated memory or partially populated AMC
banks do not result in a bus error and will alias to valid AMC
addresses.

The asynchronous memory signals are defined in Table 7-2. The timing of
these pins is programmable to allow a flexible interface to devices of differ-
ent speeds. For example interfaces, see Chapter 27, “System Design”.

AMC Pin Description
The following table describes the signals associated with each interface.

Table 7-2. Asynchronous Memory Interface Signals

Pad Pin Type 1 Description

DATA[15:0] I/O External data bus

CLKOUT O Switches at system clock frequency. Connect to the periph-
eral if required.

ADDR[19:1] O External address bus

AMS[3:0] O Asynchronous memory bank selects

AWE O Asynchronous memory write enable

ARE O Asynchronous memory read enable

AOE O Asynchronous memory output enable
In most cases, the AOE pin should be connected to the OE
pin of an external memory-mapped asynchronous device.
Refer to the product data sheet for specific timing informa-
tion between the AOE and ARE signals to determine which
interface signal should be used in your system.
ADSP-BF51x Blackfin Processor Hardware Reference 7-9

AMC Description of Operation
AMC Description of Operation
The following sections describe the operation of the AMC.

Avoiding Bus Contention
Because the three-stated data bus is shared by multiple devices in a system,
be careful to avoid contention. Contention causes excessive power dissipa-
tion and can lead to device failure. Contention occurs during the time one
device is getting off the bus and another is getting on. If the first device is
slow to three-state and the second device is quick to drive, the devices
contend.

There are two cases where contention can occur. The first case is a read
followed by a write to the same memory space. In this case, the data bus
drivers can potentially contend with those of the memory device addressed
by the read. The second case is back-to-back reads from two different
memory spaces. In this case, the two memory devices addressed by the two
reads could potentially contend at the transition between the two read
operations.

To avoid contention, program the turnaround time (bank transition time)
appropriately in the asynchronous memory bank control registers. This
feature allows software to set the number of clock cycles between these
types of accesses on a bank-by-bank basis. Minimally, the EBIU provides
one cycle for the transition to occur.

ARDY I Asynchronous memory ready response

ABE[1:0]/SDQM[1:0] O Byte enables

1 Pin Types: I = Input, O = Output

Table 7-2. Asynchronous Memory Interface Signals (Continued)

Pad Pin Type 1 Description
7-10 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
External Access Extension

Each bank can be programmed to sample the ARDY input after the read or
write access timer has counted down or to ignore this input signal. If
enabled and disabled at the sample window, ARDY can be used to extend
the access time as required.

The polarity of ARDY is programmable on a per-bank basis. Since ARDY is
not sampled until an access is in progress to a bank in which the ARDY
enable is asserted, ARDY does not need to be driven by default. For more
information, see “Adding External Access Extension” on page 7-15.

AMC Functional Description
The following sections provide a functional description of the AMC.

Programmable Timing Characteristics
This section describes the programmable timing characteristics for the
EBIU. Timing relationships depend on the programming of the AMC, no
matter whether the transaction initiation is from the core or from memory
DMA, or what the sequence of transactions is (read followed by read, read
followed by write, and so on).
ADSP-BF51x Blackfin Processor Hardware Reference 7-11

AMC Functional Description
Asynchronous Reads

Figure 7-3 shows an asynchronous read bus cycle with timing pro-
grammed as setup = 2 cycles, read access = 2 cycles, hold = 1 cycle, and
transition time = 1 cycle.

Asynchronous read bus cycles proceed as follows.

1. At the start of the setup period, AMS[x] and AOE assert. The address
bus becomes valid. The ABE[1:0] signals are low during the read.

2. At the beginning of the read access period and after the 2 setup
cycles, ARE asserts.

Figure 7-3. Asynchronous Read Bus Cycles

CLKOUT

ADDR[19:1]

DATA[15:0]

SETUP

2 CYCLES

READ ACCESS

2 CYCLES

HOLD
TRANSITION
TIME

1 CYCLE 1 CYCLE

AOE

ARE

AWE

[3:0]

[1:0]ABE

AMS
7-12 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
3. At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

4. At the end of the hold period, AOE deasserts unless this bus cycle is
followed by another asynchronous read to the same memory space.
Also, AMS[x] deasserts unless the next cycle is to the same memory
bank.

5. Unless another read of the same memory bank is queued internally,
the AMC appends the programmed number of memory transition
time cycles.

Asynchronous Writes

Figure 7-4 shows an asynchronous write bus cycle followed by an asyn-
chronous read cycle to the same bank, with timing programmed as setup =
2 cycles, write access = 2 cycles, read access = 3 cycles, hold = 1 cycle, and
transition time = 1 cycle.

Asynchronous write bus cycles proceed as follows.

1. At the start of the setup period, AMS[x], the address bus, data buses,
and ABE[1:0] become valid. See “Byte Enables” on page 7-15 for
more information.

2. At the beginning of the write access period, AWE asserts.

3. At the beginning of the hold period, AWE deasserts.

Asynchronous read bus cycles proceed as follows.

1. At the start of the setup period, AMS[x] and AOE assert. The address
bus becomes valid. The ABE[1:0] signals are low during the read.

2. At the beginning of the read access period, ARE asserts.
ADSP-BF51x Blackfin Processor Hardware Reference 7-13

AMC Functional Description

C

ADD

DAT

A

A

3. At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE signal deasserts after this
rising edge.

4. At the end of the hold period, AOE deasserts unless this bus cycle is
followed by another asynchronous read to the same memory space.
Also, AMS[x] deasserts unless the next cycle is to the same memory
bank.

Figure 7-4. Asynchronous Write and Read Bus Cycles

SETUP

2 CYCLES

WRITE ACCESS

2 CYCLES

HOLD

1 CYCLE

SETUP

2 CYCLES

READ ACCESS

3 CYCLES

HOLD

LKOUT

R[19:1]

A[15:0]

TRANSITION
TIME

D2

BE1

A1 A2

D1

DATA LATCHED

1 CYCLE 1 CYCLE

AOE

ARE

AWE

[X]MS

[1:0]BE
7-14 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
5. Unless another read of the same memory bank is queued internally,
the AMC appends the programmed number of memory transition
time cycles.

Adding External Access Extension

The ARDY pin is used to insert extra wait states. The EBIU starts sampling
ARDY on the clock cycle before the end of the programmed strobe period.
If ARDY is sampled as deasserted, the access period is extended. The ARDY
pin is then sampled on each subsequent clock edge. Read data is latched
on the clock edge after ARDY is sampled as asserted. The read- or
write-enable remains asserted for one clock cycle after ARDY is sampled as
asserted. An example of this behavior is shown in Figure 7-5, where
setup = 2 cycles, read access = 4 cycles, and hold = 1 cycle.

 The read access period must be programmed to a minimum of two
cycles to make use of the ARDY input.

Byte Enables
The AMC provides byte enable pins to allow the processor to perform
efficient byte-wide arithmetic and byte-wide processing in external
memory.

In general, there are two different ways to modify a single byte within the
16-bit interface. First, it can be done by a read/modify/write sequence.
However, this is not very efficient because multiple accesses are required
(that is, it takes many cycles for reads and writes to external memory).
Another option is available where just a specific byte can be modified for a
16-bit devices using the ABE[1:0] pins. See Table 7-3.

The ABE[1:0] pins are both low during all asynchronous reads and 16-bit
asynchronous writes. When an asynchronous write is made to the upper
byte of a 16-bit memory, ABE1 = 0 and ABE0 = 1. When an asynchronous
write is made to the lower byte of a 16-bit memory, ABE1 = 1 and ABE0 = 0.
ADSP-BF51x Blackfin Processor Hardware Reference 7-15

AMC Functional Description

A

Figure 7-5. Inserting Wait States Using ARDY

PROGRAMMED READ ACCESS ACCESS EXTENDED

READY SAMPLED

ARDY

EAD

CLKOUT

DDR[19:1]

DATA[15:0]

[X]

[1:0]

READ D

SETUP

2 CYCLES 4 CYCLES 3 CYCLES

HOLD

1 CYCLE

DATA
LATCHED

ADDRESS

AOE

ARE

AWE

ABE

AMS
7-16 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
AMC Programming Model
The asynchronous memory global control register (EBIU_AMGCTL) config-
ures global aspects of the controller. It contains bank enables and other
information as described in this section. This register should not be
programmed while the AMC is in use. The EBIU_AMGCTL register should be
the last control register written to when configuring the processor to
access external memory-mapped asynchronous devices.

Additional information for the EBIU_AMGCTL register bits includes:

• Asynchronous memory clock enable (AMCKEN)

For external devices that need a clock, CLKOUT can be enabled by
setting the AMCKEN bit in the EBIU_AMGCTL register. In systems that
do not use CLKOUT, set the AMCKEN bit to 0.

• Asynchronous memory bank enable (AMBEN).

If a bus operation accesses a disabled asynchronous memory bank,
the EBIU responds by acknowledging the transfer and asserting the
error signal on the requesting bus. The error signal propagates back
to the requesting bus master. This generates a hardware exception
to the core, if it is the requester. For DMA mastered requests, the
error is captured in the respective status register. If a bank is not

Table 7-3. Byte Enables 8-Bit Write Accesses

Internal Address IA[0] Internal Transfer Size

1 byte 2 bytes

0 ABE[1] = 1
ABE[0] = 0

ABE[1] = 0
ABE[0] = 0

1 ABE[1] = 0
ABE[0] = 1

ABE[1] = 0
ABE[0] = 0
This combination is invalid.
ADSP-BF51x Blackfin Processor Hardware Reference 7-17

AMC Programming Model
fully populated with memory, then the memory likely aliases into
multiple address regions within the bank. This aliasing condition is
not detected by the EBIU, and no error response is asserted.

• Core/DMA priority (CDPRIO).

This bit configures the AMC to control the priority over requests
that occur simultaneously to the EBIU from either processor core
or the DMA controller. When this bit is set to 0, a request from the
core has priority over a request from the DMA controller to the
AMC, unless the DMA is urgent. When the CDPRIO bit is set, all
requests from the DMA controller, including the memory DMAs,
have priority over core accesses. For the purposes of this discussion,
core accesses include both data fetches and instruction fetches.

 The CDPRIO bit also applies to the SDC.

The EBIU asynchronous memory controller has two asynchronous mem-
ory bank control registers (EBIU_AMBCTL0 and EBIU_AMBCTL1). They
contain bits for counters for setup, access, and hold time; bits to deter-
mine memory type and size; and bits to configure use of ARDY. These
registers should not be programmed while the AMC is in use.

The timing characteristics of the AMC can be programmed using these
four parameters:

• Setup: the time between the beginning of a memory cycle (AMS[x]
low) and the read-enable assertion (ARE low) or write-enable asser-
tion (AWE low).

• Read access: the time between read-enable assertion (ARE low) and
deassertion (ARE high).
7-18 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
• Write access: the time between write-enable assertion (AWE low) and
deassertion (AWE high).

• Hold: the time between read-enable deassertion (ARE high) or
write-enable deassertion (AWE high) and the end of the memory
cycle (AMS[x] high).

Each of these parameters can be programmed in terms of EBIU clock
cycles. In addition, there are minimum values for these parameters:

• Setup 1 cycle

• Read access 1 cycle

• Write access 1 cycle

• Hold 0 cycles

AMC Registers
The following sections describe the AMC registers.
ADSP-BF51x Blackfin Processor Hardware Reference 7-19

AMC Registers
EBIU_AMGCTL Register
Figure 7-6 shows the asynchronous memory global control register
(EBIU_AMGCTL).

EBIU_AMBCTL0 and EBIU_AMBCTL1 Registers
Figure 7-7 and Figure 7-8 show the asynchronous memory bank control
registers (EBIU_AMBCTL0 and EBIU_AMBCTL1).

Figure 7-6. Asynchronous Memory Global Control Register

00 0

Asynchronous Memory Global Control Register (EBIU_AMGCTL)

AMBEN[2:0]

AMCKEN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 1 1 1 0 1

0 - Disable CLKOUT for
asynchronous memory
region accesses

1 - Enable CLKOUT for
asynchronous memory
region accesses

Enable asynchronous memory
banks
000 - All banks disabled
001 - Bank0 enabled
010 - Bank0 and Bank1 enabled
011 - Bank0, Bank1, and Bank2

enabled
1xx - All banks (Bank0, Bank1,

Bank2, Bank3) enabled

Reset = 0x00F20xFFC0 0A00

CDPRIO
0 - Core has priority over DMA

for external accesses
1 - DMA has priority over core

for external accesses
For more information, see
Chapter 4, “Chip Bus Hierarchy”.
7-20 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit

)

,

)

Figure 7-7. Asynchronous Memory Bank Control 0 Register

Asynchronous Memory Bank Control 0 Register (EBIU_AMBCTL0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B1RDYPOL

B1TT[1:0]

B1ST[1:0]

B1RDYEN

B1HT[1:0]

B1RAT[3:0]

B1WAT[3:0]
Bank 1 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 1 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 1 hold time (number of cycles between AWE
or ARE deasserted, and AOE deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 1 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 1 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 1 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transaction completes if
ARDY sampled high

Bank 1 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown

use state of ARDY to deter-
mine completion of access

Reset = 0xFFC2 FFC2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B0RDYPOL

B0TT[1:0]

B0ST[1:0]

B0RDYEN

B0HT[1:0]

B0RAT[3:0]

B0WAT[3:0]
Bank 0 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 0 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 0 hold time (number of cycles between AWE or
ARE deasserted, and AOE deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 0 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 0 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 0 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transaction completes if
ARDY sampled high

Bank 0 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

0xFFC0 0A04
ADSP-BF51x Blackfin Processor Hardware Reference 7-21

AMC Registers

)

,

Figure 7-8. Asynchronous Memory Bank Control 1 Register

Asynchronous Memory Bank Control 1 Register (EBIU_AMBCTL1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B3RDYPOL

B3TT[1:0]

B3ST[1:0]

B3RDYEN

B3HT[1:0]

B3RAT[3:0]

B3WAT[3:0]
Bank 3 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 3 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 3 hold time (number of cycles between AWE or
ARE deasserted, and AOE deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 3 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 3 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 3 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transaction completes if
ARDY sampled high

Bank 3 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown

use state of ARDY to deter-
mine completion of access

Reset = 0xFFC2 FFC2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B2RDYPOL

B2TT[1:0]

B2ST[1:0]

B2RDYEN

B2HT[1:0]

B2RAT[3:0]

B2WAT[3:0]
Bank 2 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 2 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 2 hold time (number of cycles between AWE or
ARE deasserted, and AOE deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 2 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 2 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 2 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transaction completes if
ARDY sampled high

Bank 2 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

0xFFC0 0A08
7-22 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
AMC Programming Examples
Listing 7-1 and Listing 7-2 provide examples for working with the AMC.

Listing 7-1. 16-Bit Core Transfers to SRAM

.section L1_data_b;

.byte2 source[N] = 0x1122, 0x3344, 0x5566, 0x7788;

.section SRAM_bank_0;

.byte2 dest[N];

.section L1_code;

I0.L = lo(source);

I0.H = hi(source);

I1.L = lo(dest);

I1.H = hi(dest);

R0.L = w[I0++];

P5=N-1;

lsetup(lp, lp) LC0=P5;

lp: R0.L = w[I0++] || w[I1++] = R0.L;

w[I1++] = R0.L;

Listing 7-2. 8-Bit Core Transfers to SRAM Using Byte Mask ABE[1:0]
Pins

.section L1_data_b;

.byte source[N] = 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88;

.section SRAM_bank_0;

.byte dest[N];

p0.L = lo(source);

p0.H = hi(source);

p1.L = lo(dest);

p1.H = hi(dest);

p5=N;

lsetup(start, end) LC0=P5;
ADSP-BF51x Blackfin Processor Hardware Reference 7-23

SDC Overview and Features
start: R0 = b[p0++](z);

end: b[p1++] = R0; /* byte data masking */

SDC Overview and Features
The SDRAM Controller (SDC) enables the processor to transfer data to
and from Synchronous DRAM (SDRAM) with a maximum frequency
specified in the product data sheet. The processor supports a glueless
interface with one external bank of standard SDRAMs of 64M bit to
512M bit, with configurations x4, x8, and x16, up to a maximum total
capacity of 128M bytes of SDRAM.

Features
The EBIU SDC provides a glueless interface with standard SDRAMs. Fea-
tures include:

• I/O width 16-bit, I/O supply 1.8, 2.5, or 3.3 V

• Supports up to 128M byte of SDRAM in external bank

• Types of 64, 128, 256, and 512M bit with I/O of x4, x8, and x16

• Supports SDRAM page sizes of 512 byte, 1K, 2K, and 4K byte

• Supports multibank operation within the SDRAM

• Supports mobile SDRAMs

• SDC uses no-burst mode (BL = 1) with sequential burst type

• SDC supports 8-bit data masking writes

• SDC uses open page policy—any open page is closed only if a new
access in another page of the same bank occurs
7-24 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
• Uses a programmable refresh counter to coordinate between vary-
ing clock frequencies and the SDRAM’s required refresh rate

• Provides multiple timing options to support additional buffers
between the processor and SDRAM

• Allows independent auto-refresh while the asynchronous memory
controller has control of the EBIU port

• Supports self-refresh mode for power savings

• During hibernate state, self-refresh mode is supported

• Supports instruction fetch

SDRAM Configurations Supported
Table 7-4 shows all possible bank sizes, and SDRAM discrete component
configurations that can be gluelessly interfaced to the SDC. The bank
width for all cases is 16 bits.
ADSP-BF51x Blackfin Processor Hardware Reference 7-25

SDC Overview and Features
SDRAM External Bank Size
The total amount of external SDRAM memory addressed by the processor
is controlled by the EBSZ bits of the EBIU_SDBCTL register (see Table 7-5).
Accesses above the range shown for a specialized EBSZ value results in an
internal bus error and the access does not occur. For more information,
see “Error Detection” on page 7-7.

SDC Address Mapping
The address mapping scheme describes how the SDC maps the address
into SDRAM. To access SDRAM, the SDC uses the bank interleaving
map scheme, which fills each internal SDRAM bank before switching to
the next internal bank. Since the SDRAMs have four internal banks, the
entire SDRAM address space is therefore divided into four sub-address

Table 7-4. SDRAM Discrete Component Configurations
Supported

System Size
(M byte)

System Size
(M bit)

SDRAM
Configuration

Number of
Chips

16 8M x 16 8M x 8 2

16 8M x 16 8M x 16 1

32 16M x 16 16M x 4 4

32 16M x 16 16M x 8 2

32 16M x 16 16M x 16 1

64 32M x 16 32M x 4 4

64 32M x 16 32M x 8 2

64 32M x 16 32M x 16 1

128 64M x 16 64M x 4 4

128 64M x 16 64M x 8 2

128 64M x 16 64M x 16 1
7-26 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
regions containing the addresses of each internal bank. (See Figure 7-10
on page 7-40.) It starts with address 0x0 for internal bank A and ends with
the last valid address (specified with EBSZ and EBCAW parameters) contain-
ing the internal bank D.

The internal 29-bit non-multiplexed address (See Figure 7-9) is multi-
plexed into:

• Byte data mask (IA[0])

• SDRAM column address

• SDRAM row address

• Internal SDRAM bank address

 A good understanding of the SDC address map scheme in conjunc-
tion with the multibank operation is required to obtain optimized
system performance.

Figure 7-9. Multiplexed SDRAM Addressing Scheme

Table 7-5. External Bank Size Encodings

EBSZ Bank Size (M byte) Valid SDRAM Addresses

b#00 16 0x0000 0000 – 0x00FF FFFF

b#01 32 0x0000 0000 – 0x01FF FFFF

b#10 64 0x0000 0000 – 0x03FF FFFF

b#11 128 0x0000 0000 – 0x07FF FFFF

Internal 32-bit Address

31 28 0

Bank
Address

Column
Address

Row
Address

Byte
Mask
ADSP-BF51x Blackfin Processor Hardware Reference 7-27

SDC Interface Overview
Internal SDRAM Bank Select
The internal SDRAM banks are driven by the ADSP-BF51x ADDR[19:18]
which are part of the row and column address and connected to the
SDRAM BA[1:0].

 Do not flip up both internal bank select connections, if using the
mobile SDRAM PASR feature. If this is done, the system will not
work properly because the selected internal banks are not refreshed
during partial array self-refresh.

Parallel Connection of SDRAMs
To specify an SDRAM system, multiple possibilities are given based on
the different architectures. (See Table 7-13 on page 7-64.) For the
ADSP-BF51x processors, I/O capabilities of 1 x 16-bit, 2 x 8-bit or 4 x
4-bit are given. The reason to use a system of 4 x 4-bit vs. 2 x 8-bit or 1 x
16-bit is determined by the SDRAM page size. All 3 systems have the
same external bank size, but different page sizes. On one hand, the higher
the page size, the higher the performance. On the other hand, the higher
the page size, the higher the hardware layout requirements.

 Even if connecting SDRAMs in parallel, the SDC always considers
the entire system as one external SDRAM bank (SMS pin) because
all address and control lines feed the parallel parts.

However, access to a single cluster part is achieved using the mask feature
(SDQM[1:0] pins). This allows masked 8-bit I/O writes to dedicated chips
whereby the other 8-bit I/O is masked at its input buffer of the other
chips. See Listing 7-4 on page 7-78.

SDC Interface Overview
The following sections describe the SDC interface.
7-28 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
SDC Pin Description
The SDRAM interface signals are shown in Table 7-6.

Table 7-6. SDRAM Interface Signals

Pad Pin Type 1

1 Pin Types: I = Input, O = Output

Description

DATA[15:0] I/O External data bus

ADDR[19:18],
ADDR[16:12],
ADDR[10:1]

O External address bus
Connect to SDRAM address pins. Bank address is output on
ADDR[19:18] and should be connected to SDRAM BA[1:0] pins.

SRAS O SDRAM row address strobe pin
Connect to SDRAM’s RAS pin.

SCAS O SDRAM column address strobe pin
Connect to SDRAM’s CAS pin.

SWE O SDRAM write enable pin
Connect to SDRAM’s WE pin.

ABE[1:0]/
SDQM[1:0]

O SDRAM data mask pins
Connect to SDRAM’s DQM pins.

SMS O Memory select pin of external memory bank configured for
SDRAM
Connect to SDRAM’s CS (Chip Select) pin. Active low.

SA10 O SDRAM A10 pin
SDRAM interface uses this pin to be able to do refreshes while the
AMC is using the bus. Connect to SDRAM’s A[10] pin.

SCKE O SDRAM clock enable pin
Connect to SDRAM’s CKE pin.

CLKOUT O SDRAM clock output pin
Switches at system clock frequency. Connect to the SDRAM’s CLK
pin.
ADSP-BF51x Blackfin Processor Hardware Reference 7-29

SDC Interface Overview
SDRAM Performance
On-page sequential or non-sequential accesses are from internal data
memory to SDRAM. Table 7-7 summarizes SDRAM performance for
these on-page accesses.

On-page sequential instruction fetches from SDRAM are summarized in
Table 7-8.

Off-page accesses are summarized in Table 7-9.

Table 7-7. SDRAM Performance Between Internal Data Memory and

SDRAM1

1 Valid for core/system clock > 2:1

Type of access Performance

DAG access, write 1 SCLK cycle per 16-bit word

DAG access, read 8 SCLK cycles per 16-bit word

MemDMA access, write 1 SCLK cycle per 16-bit word

MemDMA access, read ª1.1 SCLK cycles per 16-bit word

Table 7-8. SDRAM Performance For On-Page Instruction Fetches

Type of access Performance

Ifetch from SDRAM ª1.1 SCLK cycles per 16-bit word

I/Dcache line fill from SDRAM ª1.1 SCLK cycles per 16-bit word

Table 7-9. SDRAM Stall Cycles For Off-Page Accesses

Type of access Stall Cycles

Write tWR + tRP + tRCD

Read tRP + tRCD + CL
7-30 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
SDC Description of Operation
The following sections describe the operation of the SDC.

Definition of SDRAM Architecture Terms
The following are definitions of SDRAM architecture terms used in the
remainder of this chapter.

Refresh

Since the information is stored in a low-capacitance cell that suffers from
leakage effects, the SDRAM must be refreshed periodically.

Row Activation

SDRAM accesses are multiplexed, which means any first access will open a
row/page before the column access is performed. It stores the row in a
“row cache” called row activation.

Column Read/Write

The row’s columns represent a page, which can be accessed with successive
read or write commands without needing to activate another row. This is
called column access and performs transfers from the “row cache.”

Row Precharge

If the next access is in a different row, the current row is closed before
another is opened. The current “row cache” is written back to the row.
This is called row precharge.
ADSP-BF51x Blackfin Processor Hardware Reference 7-31

SDC Description of Operation
Internal Bank

There are up to 4 internal memory banks on a given SDRAM. Each of
these banks can be accessed with the bank select lines BA[1:0]. The bank
address can be thought of as part of the row address.

External Bank

This is the address region where the SDC address the SDRAM.

 Do not confuse the internal banks, which are internal to the
SDRAM and are selected with the BA[1:0] pins with the external
bank that is enabled by the CS pin.

Memory Size

Since the 2-D memory is based on rows and columns, the size is:
mem size = (# rows) x (# columns) x (# internal banks) x I/O (Mbit)

Burst Length

The burst length determines the number of words that the SDRAM device
stores or delivers after detecting a single write or read command followed
by a NOP (no operation) command, respectively (Number of NOPs =
burst length - 1). Burst lengths of full page, 8, 4, 2, and 1 (no burst) are
available. The burst length is selected by writing the BL bits in the
SDRAM mode register during the SDRAM powerup sequence.

Burst Type

The burst type determines the address order in which the SDRAM deliv-
ers burst data. The burst type is selected by writing the BT bits in the
SDRAM mode register during the SDRAM powerup sequence.
7-32 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
CAS Latency

The CAS latency, or read latency, specifies the time between latching a
read address and driving the data off chip. This spec is normalized to the
system clock and varies from 2 to 3 cycles based on the speed. The CAS
latency is selected by writing the CL bits in the SDRAM mode register dur-
ing the SDRAM powerup sequence.

Data I/O Mask Function

SDRAMs allow a data byte-masking capability on writes. The DQM[1:0]
mask pins are used to block the data input buffer of the SDRAM during
write operations.

SDRAM Commands

SDRAM commands are not based on typical read or write strobes. The
pulsed CS, RAS, CAS, and WE lines determine the command on the rising
clock edge by a truth table.

Mode Register Set (MRS) Command

SDRAM devices contain an internal extended configuration register
which allows specification of the mobile SDRAM device’s functionality.

Extended Mode Register Set (EMRS) Command

Mobile SDRAM devices contain an internal extended configuration regis-
ter which allows specification of the mobile SDRAM device’s
functionality.

Bank Activate Command

The bank activate command causes the SDRAM to open an internal bank
(specified by the bank address) in a row (specified by the row address).
When the bank activate command is issued, it opens a new row address in
ADSP-BF51x Blackfin Processor Hardware Reference 7-33

SDC Description of Operation
the dedicated bank. The memory in the open internal bank and row is
referred to as the open page. The bank activate command must be applied
before a read or write command.

Read/Write Command

For the read command, the SDRAM latches the column address. The start
address is set according to the column address. For the write command,
SDRAM latches the column address. Data is also asserted in the same
cycle. The start address is set according to the column address.

Precharge/Precharge All Command

The precharge command closes a specific active page in an internal bank
and the precharge all command closes all 4 active pages in all 4 banks.

Auto-Refresh command

When the SDC refresh counter times out, the SDC precharges all four
banks of SDRAM and then issues an auto-refresh command to them. This
causes the SDRAM to generate an internal auto-refresh cycle. When the
internal refresh completes, all four internal SDRAM banks are precharged.

Enter Self-Refresh Mode

When the SDRAM enters self-refresh mode, the SDRAM’s internal timer
initiates refresh cycles periodically, without external control input.

Exit Self-Refresh Mode

When the SDRAM exits self-refresh mode, the SDRAM’s internal timer
stops refresh cycles and relinquishes control to external SDC.
7-34 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
SDC Timing Specs
The following SDRAM timing specs are used by the SDC and SDRAM.
To program the SDRAM interface, see the SDRAM specific datasheet
information

 Any absolute timing parameter must be normalized to the system
clock, which allows the SDC to adapt to the timing parameter of
the device.

tMRD

This is the required delay between issuing a mode register set and an
activate command during powerup.

Dependency: system clock frequency

SDC setting: 3 system clock cycles

SDC usage: MRS command

tRAS

This is the required delay between issuing a bank A activate command and
issuing a bank A precharge command.

Dependency: system clock frequency

SDC setting: 1–15 normalized system clock cycles

SDC usage: single column read/write, auto-refresh, self-refresh command

SDC dependencies: tRC, tRFC, and tXSR
ADSP-BF51x Blackfin Processor Hardware Reference 7-35

SDC Description of Operation
CL

The CAS latency, or read latency, is the delay between when the SDRAM
detects the read command and when it provides the data off-chip. This
spec does not apply to writes.

Dependency: system clock frequency and speed grade

SDC setting: 2–3 normalized system clock cycles

SDC usage: first read command

tRCD

This is the required delay between a bank A activate command and the
first bank A read or write command.

Dependency: system clock frequency

SDC setting: 1–7 normalized system clock cycles

SDC usage: first read/write command

tRRD

This is the required delay between a bank A activate command and a bank
B activate command. This spec is used for multibank operation.

Dependency: system clock frequency

SDC setting: tRCD + 1 normalized system clock cycles

SDC usage: multiple bank activation
7-36 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
tWR

This is the required delay between a bank A write command and a bank A
precharge command. This spec does not apply to reads.

Dependency: system clock frequency

SDC setting: 1–3 normalized system clock cycles

SDC usage: during off-page write command

tRP

This is the required delay between a bank A precharge command and a
bank A activation command.

Dependency: system clock frequency

SDC setting: 1–7 normalized system clock cycles

SDC usage: off-page read/write, auto-refresh, self-refresh command

SDC dependencies: tRC, tRFC, and tXSR

tRC

This is the required delay between issuing successive bank activate
commands.

Dependency: system clock frequency

SDC setting: User must ensure that tRAS + tRP >= tRP (normalized system
clock cycles)

SDC usage: single column read/write command
ADSP-BF51x Blackfin Processor Hardware Reference 7-37

SDC Description of Operation
tRFC

This is the required delay between issuing successive auto-refresh com-
mands (all banks).

Dependency: system clock frequency

SDC setting: User must ensure that tRAS + tRP >= tRFC (normalized sys-
tem clock cycles)

SDC usage: auto-refresh, exit self-refresh command

tXSR

This is the required delay between exiting self-refresh mode and the
auto-refresh command.

Dependency: system clock frequency

SDC setting: User must ensure that tRAS + tRP >= tXSR (normalized sys-
tem clock cycles)

SDC usage: exit self-refresh command

tREF

This is the row refresh period, and typically takes 64 ms.

Dependency: system clock frequency

SDC setting: none

SDC usage: auto-refresh command
7-38 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
tREFI

This is the row refresh interval and typically takes 15.6 s for < 8k rows
and 7.8 s for >= 8k rows. This spec is available by dividing tREF by the
number of rows. This number is used by the SDC refresh counter.

Dependency: system clock frequency

SDC setting: tREFI normalized system clock cycles (RDIV register)

SDC usage: auto-refresh command

 In typical applications making sequential (not random) accesses to
the SDRAM memory, the tRAS timing parameter is less critical
than tRP. System designers should be aware that whenever the
(tRP + tRAS) in their design is violating one of the other timing
specifications, then they should increase the tRAS parameter.

SDC Functional Description
The functional description of the SDC is provided in the following
sections.

SDC Operation
The AMC normally generates an external memory address, which then
asserts the corresponding CS select, along with RD and WR strobes. However
these control signals are not used by the SDC. The internal strobes are
used to generate pulsed commands (SMS, SCKE, SRAS, SCAS, SWE) within a
truth table (see Table 7-11 on page 7-48). The memory access to SDRAM
is based by mapping ADDR[28:0] causing an internal memory select to
SDRAM space (see Figure 7-10).
ADSP-BF51x Blackfin Processor Hardware Reference 7-39

SDC Functional Description
The configuration is programmed in the SDBCTL register. The SDRAM
controller can hold off the processor core or DMA controller with an
internally connected acknowledge signal, as controlled by refresh, or page
miss latency overhead.

A programmable refresh counter is provided which generates background
auto-refresh cycles at the required refresh rate based on the clock fre-
quency used. The refresh counter period is specified with the RDIV field in
the SDRAM refresh rate control register.

To allow auto-refresh commands to execute in parallel with any AMC
access, a separate A10 pin (SA10) is provided.

Figure 7-10. Simplified SDC Architecture

A[28:0]

DATA
LATCH/
DRIVE

BUSY

CKE

ADSP-BF51x

BA0

BA1

A10

A[0:9], A[11:12]

CLK

DQ15:0D[15:0]

DQMx

WE

CAS

RAS

CS

SDRAM
COMMAND LOGIC

ADDRESS
MULTIPLEXER

A[11]

A[0]/SDQM[1:0]

A[18]

A[19]

A[1:10], A[12:13]

SCKE

SA10

CLKOUT

SWE

SCAS

SRAS

SMS

INT RD

INT ACK

INT RESET

INT WR

SMS

ADDRESS
BUFFER

CORE
DMA

REFRESH
COUNTER
7-40 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
The internal 32-bit non-multiplexed address is multiplexed into:

• Data mask for bytes

• SDRAM column address

• SDRAM row address

• Internal SDRAM bank address

Bit A[0] is used for 8-bit wide SDRAMs to generate the data masks. The
next lowest bits are mapped into the column address, next bits are mapped
into the row address, and the final two bits are mapped into the internal
bank address. This mapping is based on the EBCAW and EBSZ values pro-
grammed into the SDRAM memory bank control register.

The SDC uses no burst mode (BL = 1) for read and write operations. This
requires the SDC to post every read or write address on the bus as for
non-sequential reads or writes, but does not cause any performance degra-
dation. For read commands, there is a latency from the start of the read
command to the availability of data from the SDRAM, equal to the CAS
latency. This latency is always present for any single read transfer. Subse-
quent reads do not have latency.

Whenever a page miss to the same bank occurs, the SDC executes a pre-
charge command followed by a bank activate command before executing
the read or write command. If there is a page hit, the read or write com-
mand can be given immediately without requiring the precharge
command.
ADSP-BF51x Blackfin Processor Hardware Reference 7-41

SDC Functional Description
SDC Address Muxing

Table 7-10 shows the connection of the address pins with the SDRAM
device pins.

Table 7-10. SDRAM Address Connections for 16-Bit Banks

External Address Pin SDRAM Address Pin

ADDR[19] BA[1]

ADDR[18] BA[0]

ADDR[16] A[15]

ADDR[15] A[14]

ADDR[14] A[13]

ADDR[13] A[12]

ADDR[12] A[11]

ADDR[11] Not used

SA[10] A[10]

ADDR[10] A[9]

ADDR[9] A[8]

ADDR[8] A[7]

ADDR[7] A[6]

ADDR[6] A[5]

ADDR[5] A[4]

ADDR[4] A[3]

ADDR[3] A[2]

ADDR[2] A[1]

ADDR[1] A[0]
7-42 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
Multibank Operation

Since an SDRAM contains 4 independent internal banks (A-D), the SDC
is capable of supporting multibank operation thus taking advantage of the
architecture.

Any first access to SDRAM bank (A) will force an activate command
before a read or write command. However, if any new access falls into the
address space of the other banks (B, C, D) the SDC leaves bank (A) open
and activates any of the other banks (B, C, D). Bank (A) to bank (B)
active time is controlled by tRRD = tRCD + 1. This scenario is repeated
until all 4 banks (A-D) are opened and results in an effective page size up
to 4 pages because no latency causes switching between these open pages
(compared to 1 page in only one bank at the time). Any access to any
closed page in any opened bank (A-D) forces a precharge command only
to that bank. If, for example, 2 MemDMA channels are pointing to the
same internal SDRAM bank, this always forces precharge and activation
cycles to switch between the different pages. However, if the 2 MemDMA
channels are pointing to different internal SDRAM banks, it does not
cause additional overhead. See Figure 7-11.
ADSP-BF51x Blackfin Processor Hardware Reference 7-43

SDC Functional Description
 The benefit of multibank operation reduces precharge and activa-
tion cycles by mapping opcode/data among different internal
SDRAM banks driven by the A[19:18] pins.

Core and DMA Arbitration

The CDPRIO bit configures the SDC to control the priority over requests
that occur simultaneously to the EBIU from either the processor core or
the DMA controller. When this bit is set to 0, a request from the core has
priority over a request from the DMA controller to the SDC, unless the
DMA is urgent. When it is set to 1, all requests from the DMA controller,
including the memory DMAs, have priority over core accesses. For the
purposes of this discussion, core accesses include both data fetches and
instruction fetches.

Figure 7-11. SDRAM Bank Operation Types

BANK D

BANK C

BANK B

BANK A

SINGLE BANK
OPERATION

BANK D

BANK C

BANK B

BANK A

MULTIBANK
OPERATION

ACCESS TO PAGE X

ACCESS TO PAGE Y

ACCESS TO PAGE X

ACCESS TO PAGE Y

ACCESS TO PAGE X

ACCESS TO PAGE Y
7-44 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
Changing System Clock During Runtime

All timing specs are normalized to the system clock. Since most of them
are minimum specs, except tREF, which is a maximum spec, a variation of
system clock will on one hand violate a specific spec and on the other
hand cause a performance degradation for the other specs.

The reduction of system clock will violate the minimum specs, while
increasing system clock will violate the maximum tREF spec. Therefore,
careful software control is required to adapt these changes.

 For most applications, the SDRAM powerup sequence and writing
of the mode register needs to be done only once. Once the pow-
erup sequence has completed, the PSSE bit should not be set again
unless a change to the mode register is desired.

The recommended procedure for changing the PLL VCO frequency is:

1. Issue an SSYNC instruction to ensure all pending memory opera-
tions have completed.

2. Set the SDRAM to self-refresh mode by writing a 1 to the SRFS bit
of EBIU_SDGCTL.

3. Execute the desired PLL programming sequence. (For details, refer
to Chapter 8, “Dynamic Power Management”.)

4. After the wakeup occurs that signifies the PLL has settled to the
new VCO frequency, reprogram the SDRAM registers (EBIU_SDRRC,
EBIU_SDGCTL) with values appropriate to the new SCLK fre-
quency, and assure that the PSSE bit is set.

5. Bring the SDRAM out of self-refresh mode by clearing the SRFS bit
of EBIU_SDGCTL.
ADSP-BF51x Blackfin Processor Hardware Reference 7-45

SDC Functional Description
Changing the SCLK frequency using the SSEL bits in PLL_DIV, as opposed
to actually changing the VCO frequency, should be done using these steps:

1. Issue an SSYNC instruction to ensure all pending memory opera-
tions have completed.

2. Set the SDRAM to self-refresh mode by writing a 1 to the SRFS bit
of EBIU_SDGCTL.

3. Execute the desired write to the SSEL bits.

4. Reprogram the SDRAM registers with values appropriate to the
new SCLK frequency, and assure that the PSSE bit is set.

5. Bring the SDRAM out of self-refresh mode by clearing the SRFS bit
of EBIU_SDGCTL.

Changing Power Management During Runtime

Deep sleep mode and hibernate state are available during runtime.

Deep Sleep Mode

During deep sleep mode, the core and system clock will halt. Therefore,
careful software control is required to place the SDRAM in self-refresh
before the device enters deep sleep mode.

Hibernate State

In the hibernate state the core voltage is 0 (core reset), but the I/O voltage
can still be applied. In order to save the SDRAM volatile data, the
ADSP-BF51x processor supports driving the SCKE signal low during core
reset. Setting the SCKELOW bit of VR_CTL keeps the SCKE signal low. This
ensures that the self-refresh mode is not exited during the reset sequence
initiated by a hibernate wake-up event. Normally, the SCKE pin is toggled
high during reset to comply with PC-133 specifications. For details about
the SCKELOW bit, refer to Chapter 8, “Dynamic Power Management”.
7-46 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
SDC Commands
This section provides a description of each of the commands that the SDC
uses to manage the SDRAM interface. These commands are initiated
automatically upon a memory read or memory write. A summary of the
various commands used by the on-chip controller for the SDRAM inter-
face is as follows.

• MODE REGISTER SET

• EXTENDED MODE REGISTER SET

• BANK ACTIVATION

• READ and WRITE

• SINGLE PRECHARGE

• PRECHARGE ALL

• AUTO-REFRESH

• SELF-REFRESH ENTRY and SELF-REFRESH EXIT

• NOP

Table 7-11 shows the SDRAM pin state during SDC commands.
ADSP-BF51x Blackfin Processor Hardware Reference 7-47

SDC Functional Description
Mode Register Set Command

The MODE REGISTER SET (MRS) command initializes SDRAM operation
parameters. This command is a part of the SDRAM power-up sequence.
The MRS command uses the address bus of the SDRAM as data input.
The power-up sequence is initiated by setting the PSSE bit in the SDRAM
memory global control register (EBIU_SDGCTL) and then writing or reading
from any enabled address within the SDRAM address space to trigger the
power-up sequence. The exact order of the power-up sequence is deter-
mined by the PSM bit of the EBIU_SDGCTL register.

Table 7-11. Pin State During SDC Commands

Command SCKE
(n - 1)

SCKE
(n)

SMS SRAS SCAS SWE SA10 Addresses

(E)/Mode
register set

High High Low Low Low Low Op-code Op-code

Activate High High Low Low High High Valid address
bit

Valid

Read High High Low High Low High Low
(CMD)

Valid

Single
precharge

High High Low Low High Low Low Valid

Precharge
all

High High Low Low High Low High Don’t care

Write High High Low High Low Low Low (CMD) Valid

Auto-refresh High High Low Low Low High Don’t care Don’t care

Self-refresh
entry

High Low Low Low Low High Don’t care Don’t care

Self-refresh Low Low Don’t care Don’t care Don’t care Don’t care Don’t care Don’t care

Self-refresh
exit

Low High High Don’t care Don’t care Don’t care Don’t care Don’t care

NOP High High Low High High High Don’t care Don’t care

Inhibit High High High Don’t care Don’t Care Don’t care Don’t care Don’t care
7-48 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
The MRS command initializes these parameters:

• Burst length = 1, bits A[2–0], always 0

• Burst type = sequential, bit A[3], always 0

• CAS latency, bits A[6–4], programmable in the EBIU_SDGCTL
register

• Bits A[12–7], always 0

After power-up and before executing a read or write to the SDRAM mem-
ory space, the application must trigger the SDC to write the SDRAM
mode register. The write of the SDRAM mode register is triggered by set-
ting the PSSE bit in the SDRAM memory global control register
(EBIU_SDGCTL) and then issuing a read or write transfer to the SDRAM
address space. The initial read or write triggers the SDRAM power-up
sequence to be run, which programs the SDRAM mode register with burst
length, burst type, and CAS latency from the EBIU_SDGCTL register and
optionally the content to the extended mode register. This initial read or
write to SDRAM takes many cycles to complete.

While executing an MRS command, the unused address pins are cleared.
During the two clock cycles following the MRS command (tMRD), the
SDC issues only NOP commands.

Extended Mode Register Set Command (Mobile SDRAM)

The extended mode register is a subset of the mode register. The EBIU
enables programming of the extended mode register during power-up via
the EMREN bit in the EBIU_SDGCTL register.
ADSP-BF51x Blackfin Processor Hardware Reference 7-49

SDC Functional Description
The extended mode register is initialized with these parameters:

• Partial array self-refresh, bits A[2–0], bit A[2] always 0, bits A[1–0]
programmable in EBIU_SDGCTL

• Temperature compensated self-refresh, bits A[4–3], bit A[3] always
1, bit A[4] programmable in EBIU_SDGCTL

• Drive strength control, bits A[6–5], always 0

• Bits A[12–7], always 0, and bit A[13] always 1

 Not programming the extended mode register upon initialization
results in default settings for the low-power features. The extended
mode defaults with the temperature sensor enabled, full drive
strength, and full array refresh.

Bank Activation Command

The BANK ACTIVATION command is required for first access to any internal
bank in SDRAM. Any subsequent access to the same internal bank but
different row will be preceded by a precharge and activation command to
that bank.

However, if an access to another bank occurs, the SDC leaves the current
page open and issues a BANK ACTIVATION command before executing the
read or write command to that bank. With this method, called multibank
operation, one page per bank can be open at a time, which results in a
maximum of four pages.

Read/Write Command

A read/write command is executed if the next read/write access is in the
present active page. During the read command, the SDRAM latches the
column address. The delay between activate and read commands is deter-
mined by the tRCD parameter. Data is available from the SDRAM after
the CAS latency has been met.
7-50 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
In the write command, the SDRAM latches the column address. The
write data is also valid in the same cycle. The delay between activate and
write commands is determined by the tRCD parameter.

The SDC does not use the auto-precharge function of SDRAMs, which is
enabled by asserting SA10 high during a read or write command.

Partial Write

In general, there are two different ways to modify a single byte within the
16-bit interface. First, it can be done by a read/modify/write sequence.
However, this is not very efficient because multiple accesses are required.

During partial writes to SDRAM, the SDQM[1:0] pins are used to mask
writes to bytes that are not accessed. Table 7-12 shows the SDQM[1:0]
encodings based on the internal transfer address bit IA[0] and the transfer
size.

However, during read transfers to SDRAM banks, reads are always done
of all bytes in the bank regardless of the transfer size. This means for
16-bit SDRAM banks, SDQM[1:0] are all zeros (0s).

 The SDC provides byte enable pins SDQM[1:0] to allow the pro-
cessor to perform efficient byte-wide arithmetic and byte-wide
processing in external memory.

Table 7-12. SDQM[1:0] Encodings During Writes

Internal Address
IA[0]

Internal Transfer Size

1 byte 2 bytes

0 SDQM[1] = 1
SDQM[0] = 0

SDQM[1] = 0
SDQM[0] = 0

1 SDQM[1] = 0
SDQM[0] = 1

SDQM[1] = 0
SDQM[0] = 0
ADSP-BF51x Blackfin Processor Hardware Reference 7-51

SDC Functional Description
 For 16-bit SDRAMs, connect SDQM[0] to DQML, and connect
SDQM[1] to DQMH.

Single Precharge Command

For a page miss during reads or writes in a specific internal SDRAM bank,
the SDC uses the SINGLE PRECHARGE command to that bank.

 The SDC does not use the auto-precharge read or write command
of SDRAMs, which is enabled by asserting SA10 high during a read
or write command.

Precharge All Command

The PRECHARGE ALL command is used to precharge all internal banks at the
same time before executing an auto-refresh. All open banks will be auto-
matically closed. This is possible since the SDC uses a separate SA10 pin
which is asserted high during this command. This command precedes the
AUTO-REFRESH command.

Auto-Refresh Command

The SDRAM internally increments the refresh address counter and causes
an auto-refresh to occur internally for that address when the AUTO-REFRESH
command is given. The SDC generates an AUTO-REFRESH command after
the SDC refresh counter times out. The RDIV value in the SDRAM refresh
rate control register must be set so that all addresses are refreshed within
the tREF period specified in the SDRAM timing specifications. This com-
mand is issued to the external bank whether or not it is enabled (EBE in the
SDRAM memory global control register). Before executing the
AUTO-REFRESH command, the SDC executes a PRECHARGE ALL command to
the external bank. The next activate command is not given until the tRFC
specification (tRFC = tRAS + tRP) is met.

Auto-refresh commands are also issued by the SDC as part of the powerup
sequence and after exiting self-refresh mode.
7-52 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
Self-Refresh Mode

The self-refresh mode is controlled by the SELF-REFRESH ENTRY and
SELF-REFRESH EXIT commands. The SDC must issue a series of com-
mands, including the SELF-REFRESH ENTRY command, to put the SDRAM
into this low power operation, and it must issue another series of com-
mands, including the SELF-REFRESH EXIT command, to re-access the
SDRAM.

Self-Refresh Entry Command

The SELF-REFRESH ENTRY command causes refresh operations to be per-
formed internally by the SDRAM without any external control. This
means that the SDC does not generate any auto-refresh commands while
the SDRAM is in self-refresh mode. Before executing the SELF-REFRESH
ENTRY command, all internal banks are precharged. The SELF-REFRESH
ENTRY command is started by setting the SRFS bit of the SDRAM memory
global control register (EBIU_SDGCTL). The SDC now drives SCKE low.

 Only the SCKE pin keeps control during self-refresh, all other
SDRAM pins are allowed to be disabled. However the SDC still
drives the SCLK during self-refresh mode. Software may disable the
clock by clearing the SCTLE bit in EBIU_SDGCTL.

Self-Refresh Exit Command

Leaving self-refresh mode is performed with the SELF-REFRESH EXIT com-
mand, whereby the SDC asserts SCKE. Any internal core/DMA access
causes the SDC to perform an SELF-REFRESH EXIT command. The SDC
waits to meet the tXSR specification (tXSR = tRAS + tRP) and then issues an
AUTO-REFRESH command. After the AUTO-REFRESH command, the SDC
waits for the tRFC specification (tRFC = tRAS + tRP) to be met before exe-
cuting the activate command for the transfer that caused the SDRAM to
exit self-refresh mode. The latency from when a transfer is received by the
SDC while in self-refresh mode, until the activate command occurs for
that transfer, is:
ADSP-BF51x Blackfin Processor Hardware Reference 7-53

SDC Functional Description
Time to exit self-refresh: 2 x (tRAS + tRP)

 The minimum time between a subsequent SELF-REFRESH ENTRY
and the SELF-REFRESH EXIT command is at least tRAS cycles. If a
self-refresh entry command is issued during any MDMA transfer,
the SDC satisfies this core request with the minimum self-refresh
period (tRAS).

The application software should ensure that all applicable clock timing
specifications are met before the transfer to SDRAM address space which
causes the controller to exit self-refresh mode. If a transfer occurs to
SDRAM address space when the SCTLE bit is cleared, an internal bus error
is generated, and the access does not occur externally, leaving the SDRAM
in self-refresh mode. For more information, see “Error Detection” on
page 7-7.

No Operation Command

The no operation (NOP) command to the SDRAM has no effect on opera-
tions currently in progress. The command inhibit command is the same as
a NOP command; however, the SDRAM is not chip-selected. When the
SDC is actively accessing the SDRAM to insert additional wait states, the
NOP command is given. When the SDC is not accessing the SDRAM, the
command inhibit command is given (SMS = 1).
7-54 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
SDC SA10 Pin
The SDRAM’s A[10] pin follows the truth table below:

• During the precharge command, it is used to indicate a precharge
all

• During a bank activate command, it outputs the row address bit

• During read and write commands, it is used to disable
auto-precharge

Therefore, the SDC uses a separate SA10 pin with these rules.

 Connect the SA10 pin with the SDRAM A[10] pin. Because the
ADSP-BF51x processor uses byte addressing, it starts with A[1].
The A[11] pin is left unconnected for SDRAM accesses and is
replaced by the SA10 pin.

SDC Programming Model
The following sections provide programming model information for the
SDC.

SDC Configuration
After a processor’s hardware or software reset, the SDC clocks are enabled;
however, the SDC must be configured and initialized. Before program-
ming the SDC and executing the powerup sequence, these steps are
required:

1. Ensure the clock to the SDRAM is stable after the power has stabi-
lized for the proper amount of time (typically 100 ms).

2. Write to the SDRAM refresh rate control register (EBIU_SDRRC).
ADSP-BF51x Blackfin Processor Hardware Reference 7-55

SDC Programming Model
3. Write to the SDRAM memory bank control register
(EBIU_SDBCTL).

4. Write to the SDRAM memory global control register
(EBIU_SDGCTL) and issue an SSYNC instruction.

5. Perform SDRAM access.

The SDRS bit of the SDRAM control status register can be checked to
determine the current state of the SDC. If this bit is set, the SDRAM
powerup sequence has not been initiated.

The RDIV field of the EBIU_SDRRC register should be written to set the
SDRAM refresh rate.

The EBIU_SDBCTL register should be written to describe the sizes /configu-
ration of SDRAM memory (EBSZ and EBCAW) and to enable the external
bank (EBE). Prior to the start of the SDRAM powerup sequence, any
access to SDRAM address space, regardless of the state of the EBE bit, gen-
erates an internal bus error, and the access does not occur externally. For
more information, see “Error Detection” on page 7-7.

The powerup latency can be estimated as:

tRP + (8 x tRFC) + tMRD + tRCD

If the external bank remains disabled after the SDRAM powerup sequence
has completed, any transfers to it will result in a hardware error interrupt
and the SDRAM transfer will not occur.
7-56 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
The EBIU_SDGCTL register is written:

• To set the SDRAM cycle timing options (CL, TRAS, TRP, TRCD, TWR,
EBUFE)

• To enable the SDRAM clock (SCTLE)

• To select and enable the start of the SDRAM powerup sequence
(PSM, PSSE)

If SCTLE is disabled, any access to SDRAM address space generates an
internal bus error and the access does not occur externally. For more infor-
mation, see “Error Detection” on page 7-7.

Once the PSSE bit in the EBIU_SDGCTL register is set, and a transfer occurs
to enabled SDRAM address space, the SDC initiates the SDRAM pow-
erup sequence. The exact sequence is determined by the PSM bit in the
EBIU_SDGCTL register. The transfer used to trigger the SDRAM powerup
sequence can be either a read or a write. This transfer occurs when the
SDRAM powerup sequence has completed. This initial transfer takes
many cycles to complete since the SDRAM powerup sequence must take
place.

Example SDRAM System Block Diagrams
Figure 7-12 shows a block diagram of an SDRAM interface. In this exam-
ple, the SDC is connected to 2 x (8M x 8) = 8M x 16 to form one external
128M bit / 16M byte bank of memory. The system’s page size is 1024
bytes. The same address and control bus feeds both SDRAM devices.
ADSP-BF51x Blackfin Processor Hardware Reference 7-57

SDC Programming Model
Figure 7-13 shows a block diagram of an SDRAM interface. In this exam-
ple, the SDC is connected to 4 x (16M x 4) = 16M x 16 to form one
external 256M bit / 32M byte bank of memory. The system’s page size is
2048 bytes. The same address and control bus pass a registered buffer
before they feed all 4 SDRAM devices.

Figure 7-12. SDRAM System Block Diagram, Example 1

SCKE

BLACKFIN

A[18]
A[19]
SA10

ADDR[12,10:1]

SDRAM 2
8Mx8

BA0

A[10]

CLKOUT

SDQM[0]

DATA[15:0]

BA1

A[11,9:0]

CKE
CLK

DQM

DQ[7:0]

SDRAM 1
8Mx8

BA0

A[10]
BA1

A[11,9:0]

CKE
CLK

DQM

DQ[7:0]

DATA[7:0]

DATA[15:8]

SDQM[1]

SWE
SCAS

SRAS
SMS

WE
CAS
RAS
CS

WE

CAS

RAS

CS
7-58 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
Furthermore, the EBUFE bit should be used to enable or disable external
buffer timing. When buffered SDRAM modules or discrete register-buf-
fers are used to drive the SDRAM control inputs, EBUFE should be set.
Using this setting adds a cycle of data buffering to read and write accesses.

SDC Register Definitions
The following sections describe the SDC registers.

Figure 7-13. SDRAM System Block Diagram, Example 2

SCKE

ADSP-BF51x

A[18]
A[19]
SA10

ADDR[12,10:1]

SDRAM 3
16Mx4

CLKOUT

SDQM[0]

DATA[15:0]

DQ[3:0]

SDRAM 1
16Mx4

DQM

DQ[3:0]
D[3:0]

D[11:8]

SDQM[1]

SWE
SCAS

SRAS
SMS

SDRAM 4
16Mx4

DQ[3:0]

SDRAM 2
16Mx4

DQ[3:0]
D[7:4]

D[15:12]

REGISTERED
BUFFER

CLKOUT

DQM

DQM

DQM

BA0

A[10]
BA1

A[11,9:0]

CKE
CLK

WE
CAS
RAS
CS

BA0

A[10]
BA1

A[11,9:0]

CKE
CLK

WE
CAS
RAS
CS

BA0

A[10]
BA1

A[11,9:0]

CKE
CLK

WE
CAS
RAS
CS

BA0

A[10]
BA1

A[11,9:0]

CKE
CLK

WE
CAS
RAS
CS
ADSP-BF51x Blackfin Processor Hardware Reference 7-59

SDC Register Definitions
EBIU_SDRRC Register
The SDRAM refresh rate control register (EBIU_SDRRC, shown in
Figure 7-14) provides a flexible mechanism for specifying the auto-refresh
timing. Since the clock supplied to the SDRAM can vary, the SDC pro-
vides a programmable refresh counter, which has a period based on the
value programmed into the RDIV field of this register. This counter coordi-
nates the supplied clock rate with the SDRAM device’s required refresh
rate.

The desired delay (in number of SDRAM clock cycles) between consecu-
tive refresh counter time-outs must be written to the RDIV field. A refresh
counter time-out triggers an auto-refresh command to all external
SDRAM devices. Write the RDIV value to the EBIU_SDRRC register before
the SDRAM powerup sequence is triggered. Change this value only when
the SDC is idle.

To calculate the value that should be written to the EBIU_SDRRC register,
use the following equation:

RDIV = ((fSCLK tREF) / NRA) – (tRAS + tRP)

= (fSCLK tREFI) - (tRAS + tRP)

Where:

• fSCLK = SDRAM clock frequency (system clock frequency)

• tREF = SDRAM row refresh period

Figure 7-14. SDRAM Refresh Rate Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 0 0 0 0 0 1 1 0 1

SDRAM Refresh Rate Control Register (EBIU_SDRRC)

RDIV[11:0]

Reset = 0x081A0xFFC0 0A18
7-60 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
• tREFI = SDRAM row refresh interval

• NRA = Number of row addresses in SDRAM (refresh cycles to
refresh whole SDRAM)

• tRAS = Active to precharge time (TRAS in the SDRAM memory
global control register) in number of clock cycles

• tRP = RAS to precharge time (TRP in the SDRAM memory global
control register) in number of clock cycles

 See the DRAM data sheet if NRA differs from the number of
required refresh cycles. In this case use the refresh cycle number
instead of NRA.

This equation (8192 row addresses per refresh cycle) calculates the num-
ber of clock cycles between required refreshes and subtracts the required
delay between bank activate commands to the same internal bank (tRC =
tRAS + tRP). The tRC value is subtracted, so that in the case where a refresh
time-out occurs while an SDRAM cycle is active, the SDRAM refresh rate
specification is guaranteed to be met. The result from the equation should
always be rounded down to an integer.

Below is an example of the calculation of RDIV for a typical SDRAM in a
system with a 80 MHz clock:

fSCLK = 80 MHz

tREF = 64 ms

NRA = 8192 row addresses

tRAS = 6

tRP = 3

The equation for RDIV yields:

RDIV = ((80 x 106 x 64 x 10-3) / 8192) – (6 + 3) = 616 clock cycles
ADSP-BF51x Blackfin Processor Hardware Reference 7-61

SDC Register Definitions
This means RDIV is 0x268 and the EBIU_SDRRC register should be written
with 0x0268.

 RDIV must be programmed to a nonzero value if the SDRAM con-
troller is enabled. When RDIV = 0, operation of the SDRAM
controller is not supported and can produce undesirable behavior.
Values for RDIV can range from 0x001 to 0xFFF.

EBIU_SDBCTL Register
The SDRAM memory bank control register (EBIU_SDBCTL), shown in
Figure 7-15, includes external bank-specific programmable parameters. It
allows software to control some parameters of the SDRAM. The external
bank can be configured for a different size of SDRAM. It uses the access
timing parameters defined in the SDRAM memory global control register
(EBIU_SDGCTL). The EBIU_SDBCTL register should be programmed before
powerup and should be changed only when the SDC is idle.

• External bank enable (EBE)

The EBE bit is used to enable or disable the external SDRAM bank.
If the SDRAM is disabled, any access to the SDRAM address space
generates an internal bus error, and the access does not occur exter-
nally. For more information, see “Error Detection” on page 7-7.

• External bank size (EBSZ)

The EBSZ encoding stores the configuration information for the
SDRAM bank interface. The EBIU supports 64M bit, 128M bit,
256M bit, and 512M bit SDRAM devices with x4, x8, and x16
configurations. Table 7-13 maps SDRAM density and I/O width.
See “SDRAM External Bank Size” on page 7-26 for more informa-
tion regarding the decoding of bank start addresses.
7-62 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
• External bank column address width (EBCAW)

The SDC determines the internal SDRAM page size from the
EBCAW parameters. Page sizes of 512 B, 1K byte, 2K byte, and 4K
byte are supported. Table 7-13 shows the page size and breakdown
of the internal address (IA[31:0], as seen from the core or DMA)
into the row, bank, column, and byte address. The bank width in
all cases is 16 bits. The column address and the byte address
together make up the address inside the page.

The page size can be calculated for 16-bit SDRAM banks with this
formula:

page size = 2(CAW + 1)

where CAW is the column address width of the SDRAM, plus 1 because the
SDRAM bank is 16 bits wide (1 address bit = 2 bytes).

Figure 7-15. SDRAM Memory Bank Control Register

SDRAM Memory Bank Control Register (EBIU_SDBCTL)

EBSZ[1:0]

EBCAW[1:0] EBE
SDRAM external bank enable
0 - Disabled
1 - Enabled

SDRAM external bank size
00 - 16M byte
01 - 32M byte
10 - 64M byte
11 - 128M byte

SDRAM external bank column
address width
00 - 8 bits
01 - 9 bits
10 - 10 bits
11 - 11 bits

Reset = 0x00000xFFC0 0A14
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ADSP-BF51x Blackfin Processor Hardware Reference 7-63

SDC Register Definitions
Using SDRAMs With Systems Smaller Than 16M Byte

It is possible to use SDRAMs smaller than 16M byte on the ADSP-BF51x,
as long as it is understood how the resulting memory map is altered.
Figure 7-16 shows an example where a 2M byte SDRAM (512K x 16 bits
x 2 banks) is mapped to the external memory interface. In this example,
there are 11 row addresses and eight column addresses per bank. Referring
to Table 7-4 on page 7-26, the lowest available bank size (16M byte) for a
device with eight column addresses has two bank address lines (IA[23:22])

Table 7-13. Internal Address Mapping
B

an
k

Si
ze

(M
 b

yt
e)

E
B

SZ
 b

it
s

C
ol

. A
dd

re
ss

.
W

id
th

 (
C

AW
)

E
B

C
AW

 b
it

s

Pa
ge

 S
iz

e
(K

 B
yt

e)

B
an

k
A

dd
re

ss

R
ow

A
dd

re
ss

Page

C
ol

um
n

A
dd

re
ss

B
yt

e
A

dd
re

ss

128 11 4 IA[26:25] IA[24:12] IA[11:1] IA[0]

128 10 2 IA[26:25] IA[24:11] IA[10:1] IA[0]

128 9 1 1A[26:25] IA[24:10] IA[9:1] IA[0]

128 8 .5 IA[26:25] IA[24:9] IA[8:1] IA[0]

64 11 4 IA[25:24] IA[23:12] IA[11:1] IA[0]

64 10 2 IA[25:24] IA[23:11] IA[0]IA[10:1]

64 9 1 IA[25:24] IA[23:10] IA[9:1] IA[0]

64 8 .5 IA[25:24] IA[23:9] IA[8:1] IA[0]

32 11 4 IA[24:23] IA[22:12] IA[11:1] IA[0]

32 10 2 IA[24:23] IA[22:11] IA[0]IA[10:1]

32 9 1 IA[24:23] IA[22:10] IA[9:1] IA[0]

32 8 .5 IA[24:23] IA[22:9] IA[8:1] IA[0]

16 11 4 IA[23:22] IA[21:12] IA[11:1] IA[0]

16 10 2 IA[23:22] IA[21:11] IA[10:1] IA[0]

16 9 1 IA[23:22] IA[21:10] IA[9:1] IA[0]

16 8 .5 IA[23:22] IA[21:9] IA[8:1] IA[0]
7-64 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
and 13 row address lines (IA[21:9]). Therefore, one processor bank
address line and two row address lines are unused when hooking up to the
SDRAM in the example. This causes aliasing in the processor’s external
memory map, which results in the SDRAM being mapped into non-con-
tiguous regions of the processor’s memory space.

Referring to the table in Figure 7-16, note that each line in the table cor-
responds to 219 bytes, or 512K byte. Thus, the mapping of the 2M byte
SDRAM is non-contiguous in Blackfin memory, as shown by the memory
mapping in the left side of the figure.

Figure 7-16. Using Small SDRAMs

BANK
ADDRESS

ROW ADDRESS

IA22IA23 IA21 IA20 IA19

0

1

1

UNAVAILABLE COMBINATIONS ARE SHADED

1

X XX

1

X

1

IA
23

 =
 0

0 111 0

0 011 1

0 011 0

0 101 1

0 101 0

0

0

01

1 01

0

0

1

0 010 0

0 100 1

0 100 0

0 000 1

0 000 0

0 001 1

0 001 0

0 110 1

1M BYTE

1M BYTE

BLACKFIN MEMORY MAP

0x0000 0000

IA
23

 =
 1

EXAMPLE: 2M BYTE SDRAM WITH
512K x 16 x 2 BANKS,
11 ROW ADDRESSES AND
8 COLUMN ADDRESSES PER BANK
ADSP-BF51x Blackfin Processor Hardware Reference 7-65

SDC Register Definitions
EBIU_SDGCTL Register
The SDRAM memory global control register (EBIU_SDGCTL) includes all
programmable parameters associated with the SDRAM access timing and
configuration. Figure 7-17 shows the EBIU_SDGCTL register bit definitions.

 Writes to this register should be followed by an SSYNC instruction
to prevent a subsequent external access from occurring before the
timing changes are properly effected.

SDRAM Clock Enable (SCTLE)

The SCTLE bit is used to enable or disable the SDC. If SCTLE is cleared, any
access to SDRAM address space generates an internal bus error, and the
access does not occur externally. For more information, see “Error Detec-
tion” on page 7-7. When SCTLE is cleared, all SDC control pins are in
their inactive states and the SDRAM clock is not running. The SCTLE bit
must be set for SDC operation and is set by default at reset. The CAS
latency (CL), SDRAM tRAS timing (TRAS), SDRAM tRP timing (TRP),
SDRAM tRCD timing (TRCD), and SDRAM tWR timing (TWR) bits should
be programmed based on the system clock frequency and the timing spec-
ifications of the SDRAM used.

 The user must ensure that tRAS + tRP >= max(tRC,tRFC,tXSR).

The SCTLE bit allows software to disable all SDRAM control pins. These
pins are SDQM[3:0], SCAS, SRAS, SWE, SCKE, and CLKOUT.

• SCTLE = 0
Disable all SDRAM control pins (control pins negated, CLKOUT
low).

• SCTLE = 1
Enable all SDRAM control pins (CLKOUT toggles).
7-66 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
Figure 7-17. SDRAM Memory Global Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 0 0 0 0 0 0 0 0 0 1 0 0

SDRAM Memory Global Control Register (EBIU_SDGCTL)

TWR[1:0]

PSM

PSSE

TRCD[2:1]
Reserved SDRAM tRCD in SCLK cycles

000 - Reserved
001-111 - 1 to 7 cycles

SDRAM tWR in SCLK cycles
00 - Reserved
01-11 - 1 to 3 cycles

SDRAM powerup sequence
0 - Precharge, 8 CBR refresh

cycles, mode register set
1 - Precharge, mode register

set, 8 CBR refresh cycles

SDRAM powerup sequence
start enable. Always reads 0
0 - No effect
1 - Enables SDRAM powerup

sequence on next SDRAM
access

Reset = 0xE008 8849

CL[1:0]

PASR[1:0]

SCTLE

TRAS[3:0]

TRP[2:0]

TRCD[0]
SDRAM tRCD in SCLK cycles
000 - Reserved
001-111 - 1 to 7 cycles

Enable CLKOUT, SRAS,
SCAS, SWE, SDQM[1:0]
0 - Disabled
1 - Enabled

SDRAM tRP in SCLK cycles
000 - No effect
001-111 - 1 to 7 cycles

SDRAM tRAS in SCLK cycles
0000 - No effect
0001-1111 - 1 to 15 cycles

SDRAM CAS latency
00–01 - Reserved
10 - 2 cycles
11 - 3 cycles

Partial array self-refresh in
extended mode register
00 - All 4 banks refreshed
01 - Int banks 0, 1 refreshed
10 - Int bank 0 only refreshed
11 - Reserved

FBBRW
Fast back-to-back read to write
0 - Disabled
1 - Enabled

EMREN
Extended mode register enable
0 - Disabled
1 - Enabled

TCSR
Temperature compensated self-refresh
value in extended mode register
0 - 45 degrees C
1 - 85 degrees C

PUPSD
Powerup start delay
0 - No extra delay added

before first Precharge
command

1 - Fifteen SCLK cycles of
delay before first
Precharge command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 0 0 0 1 0 0 0 0 1 0 0 1 0 0

0xFFC0 0A10

EBUFE

SRFS

SDRAM timing for external buffering
of address and control
0 - External buffering timing disabled
1 - External buffering timing enabled

SDRAM self-refresh enable
0 - Disable self-refresh
1 - Enable self-refresh during inactivity
ADSP-BF51x Blackfin Processor Hardware Reference 7-67

SDC Register Definitions
Note that the CLKOUT function is also shared with the AMC. Even if SCTLE
is disabled, CLKOUT can be enabled independently by the CLKOUT enable in
the AMC (AMCKEN in the EBIU_AMGCTL register).

If the system does not use SDRAM, SCTLE should be set to 0.

If an access occurs to the SDRAM address space while SCTLE is 0, the
access generates an internal bus error and the access does not occur exter-
nally. For more information, see “Error Detection” on page 7-7.

 With careful software control, the SCTLE bit can be used in con-
junction with the SRFS bit to further lower power consumption by
freezing the CLKOUT pin. However, SCTLE must remain enabled at
all times when the SDC is needed to generate auto-refresh com-
mands to SDRAM.

CAS Latency (CL)

The CL bits in the SDRAM memory global control register (EBIU_SDGCTL)
select the CAS latency value:

• CL = b#00
Reserved

• CL = b#01
Reserved

• CL = b#10
2 clock cycles

• CL = b#11
3 clock cycles
7-68 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
Partial Array Self Refresh (PASR)

The PASR bits determine how many internal SDRAM banks are refreshed
during self-refresh.

• PASR = b#00
All 4 banks

• PASR = b#01
Internal banks 0 and 1 refreshed

• PASR = b#10
Only internal bank 0 refreshed

• PASR = b#11
Reserved

Internal banks are decoded with the A[19:18] pins.

 The PASR feature requires careful software control with regard to
the internal bank used.

Bank Activate Command Delay (TRAS)

The TRAS bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the tRAS value. Any value between 1 and 15 clock
cycles can be selected. For example:

• TRAS = b#0000
No effect

• TRAS = b#0001
1 clock cycle

• TRAS = b#0010
2 clock cycles

• TRAS = b#1111
15 clock cycles
ADSP-BF51x Blackfin Processor Hardware Reference 7-69

SDC Register Definitions
Bank Precharge Delay (TRP)

The TRP bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the tRP value. Any value between 1 and 7 clock
cycles may be selected. For example:

• TRP = b#000
No effect

• TRP = b#001
1 clock cycle

• TRP = b#010
2 clock cycles

• TRP = b#111
7 clock cycles

RAS to CAS Delay (TRCD)

The TRCD bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the tRCD value Any value between 1 and 7 clock
cycles may be selected. For example:

• TRCD = b#000
 Reserved, no effect

• TRCD = b#001
1 clock cycle

• TRCD = b#010
2 clock cycles

• TRCD = b#111
7 clock cycles
7-70 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
Write to Precharge Delay (TWR)

The TWR bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the tWR value. Any value between 1 and 3 clock
cycles may be selected. For example:

• TWR = b#00
Reserved

• TWR = b#01
1 clock cycle

• TWR = b#10
2 clock cycles

• TWR = b#11
3 clock cycles

Power-Up Start Delay (PUPSD)

The power-up start delay bit (PUPSD) optionally delays the power-up start
sequence for 15 SCLK cycles. This is useful for multiprocessor systems shar-
ing an external SDRAM. If the bus has been previously granted to the
other processor before power-up and self-refresh mode is used when
switching bus ownership, then the PUPSD bit can be used to guarantee a
sufficient period of inactivity from self-refresh to the first Precharge com-
mand in the power-up sequence in order to meet the exit self-refresh time
(tXSR) of the SDRAM.

Power-Up Sequence Mode (PSM)

If the PSM bit is set to 1, the SDC command sequence is:

1. Precharge all

2. Mode register set

3. 8 auto-refresh cycles
ADSP-BF51x Blackfin Processor Hardware Reference 7-71

SDC Register Definitions
If the PSM bit is cleared, the SDC command sequence is:

1. Precharge all

2. 8 auto-refresh cycles

3. Mode register set

Power-Up Sequence Start Enable (PSSE)

The PSM and PSSE bits work together to specify and trigger an SDRAM
power-up (initialization) sequence. Two events must occur before the
SDC does the SDRAM power-up sequence:

• The PSSE bit must be set to enable the SDRAM power-up
sequence.

• A read or write access must be done to enabled SDRAM address
space in order to have the external bus granted to the SDC so that
the SDRAM power-up sequence may occur.

The SDRAM power-up sequence occurs and is followed immediately by
the read or write transfer to SDRAM that was used to trigger the SDRAM
power-up sequence. Note that there is a latency for this first access to
SDRAM because the SDRAM power-up sequence takes many cycles to
complete.

 Before executing the SDC power-up sequence, ensure that the
SDRAM receives stable power and is clocked for the proper
amount of time, as described in the SDRAM specifications.
7-72 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
Self-Refresh Setting (SRFS)

The SRFS and SCTLE bits work together in EBIU_SDGCTL for self-refresh
control.

• SRFS = b#0
Disable self-refresh mode

• SRFS = b#1
Enter self-refresh mode

When SRFS is set, self-refresh mode is triggered. Once the SDC completes
any active transfers, the SDC executes a sequence of commands to put the
SDRAM into self-refresh mode.

When the device comes out of reset, the SCKE pin is driven high. If it is
necessary to enter self-refresh mode after reset, program SRFS = b#1.

Enter Self-Refresh Mode

When SRFS is set, once the SDC enters an idle state it issues a precharge all
command and then issues a self-refresh entry command. If an internal
access is pending, the SDC delays issuing the self-refresh entry command
until it completes the pending SDRAM access and any subsequent pend-
ing access requests.

Once the SDRAM device enters into self-refresh mode, the SDRAM con-
troller asserts the SDSRA bit in the SDRAM control status register
(EBIU_SDSTAT).

 Once the SRFS bit is set to 1, the SDC enters self-refresh mode
when it finishes pending accesses. There is no way to cancel the
entry into self-refresh mode.

Before disabling the CLKOUT pin with the SCTLE bit, be sure to place the
SDC in self-refresh mode (SRFS bit). If this is not done, the SDRAM is
unclocked and will not work properly.
ADSP-BF51x Blackfin Processor Hardware Reference 7-73

SDC Register Definitions
Exit Self-Refresh Mode

The SDRAM device exits self-refresh mode only when the SDC receives
core or DMA requests. In conjunction with the SRFS bit, two possibilities
are given to exit self-refresh mode.

• If the SRFS bit remains set before the core/DMA request, the SDC
exits self-refresh mode temporarily for a single request and returns
back to self-refresh mode until a new request is latched.

• If the SRFS bit is cleared before the core/DMA request, the SDC
exits self-refresh mode and returns to auto-refresh mode.

Before exiting self-refresh mode with the SRFS bit, be sure to enable the
CLKOUT pin (SCTLE bit). If this is not done, the SDRAM is unclocked and
will not work properly.

External Buffering Enabled (EBUFE)

With the total I/O width of 16 bits, a maximum of 4x4 bits can be con-
nected in parallel in order to increase the system’s overall page size.

To meet overall system timing requirements, systems that employ several
SDRAM devices connected in parallel may require buffering between the
processor and the multiple SDRAM devices. This buffering generally con-
sists of a register and driver.

To meet such timing requirements and to allow intermediary registration,
the SDC supports pipelining of SDRAM address and control signals.

The EBUFE bit in the EBIU_SDGCTL register enables this mode:

• EBUFE = 0
Disable external buffering timing

• EBUFE = 1
Enable external buffering timing
7-74 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
When EBUFE = 1, the SDRAM controller delays the data in write accesses
by one cycle, enabling external buffer registers to latch the address and
controls. In read accesses, the SDRAM controller samples data one cycle
later to account for the one-cycle delay added by the external buffer regis-
ters. When external buffering timing is enabled, the latency of all accesses
is increased by one cycle.

 Connection of 4 x 4 bits rather than 1 x 16 bits increases the page
size by a factor of four, thus resulting in fewer off-page penalties.

Fast Back-to-Back Read to Write (FBBRW)

The FBBRW bit enables an SDRAM read followed by write to occur on con-
secutive cycles. In many systems, this is not possible because the turn-off
time of the SDRAM data pins is too long, leading to bus contention with
the succeeding write from the processor. When this bit is cleared, a clock
cycle is inserted between read accesses followed immediately by write
accesses.

Extended Mode Register Enabled (EMREN)

The EMREN bit enables programming of the extended mode register during
startup. The extended mode register is used to control SDRAM power
consumption in certain mobile low power SDRAMs. If the EMREN bit is
enabled, then the TCSR and PASR[1:0] bits control the value written to the
extended mode register.

Temperature Compensated Self-Refresh (TCSR)

The TCSR bit signals to the SDRAM the worst case temperature range for
the system, and thus how often the SDRAM internal banks need to be
refreshed during self-refresh.

 All reserved bits in this register must always be written with 0s.
ADSP-BF51x Blackfin Processor Hardware Reference 7-75

SDC Register Definitions
EBIU_SDSTAT Register
The SDRAM control status register (EBIU_SDSTAT), shown in Figure 7-18,
provides information on the state of the SDC. This information can be
used to determine when it is safe to alter SDC control parameters or it can
be used as a debug aid.

• SDC idle (SDCI)

If the SDCI bit is cleared, the SDC is performing a user access or
auto-refresh. If the SDCI bit is set, no commands are issued and the
SDC is in idle state.

• SDC self-refresh active (SDSRA)

If the SDSRA bit is cleared, the SDC is performing auto-refresh
(SCKE pin = 0). If the SDSRA bit is set, the SDC performs self-refresh
mode (SCKE pin = 1).

Figure 7-18. SDRAM Control Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Reserved

SDRAM Control Status Register (EBIU_SDSTAT)

SDSRA

SDPUA

SDCI

SDRS

SDEASE - W1C
SDRAM EAB sticky error status. Write 1
to this bit to clear it.
0 - No error detected
1 - EAB access generated an error

0 - Will not power up on next SDRAM
access (SDRAM already powered up)

1 - Will power up on next SDRAM
access if SDRAM enabled

SDRAM controller idle
0 - SDC is busy performing

an access or an Auto-
Refresh

1 - SDC is idle

SDRAM self-refresh active
0 - SDRAMs not in self-

refresh mode
1 - SDRAMs in self-refresh

mode

SDRAM powerup active
0 - SDC not in powerup

sequence
1 - SDC in powerup

sequence

Reset = 0x00080xFFC0 0A1C
7-76 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
• SDC powerup active (SDPUA)

If the SDPUA bit is cleared, the SDC is not in powerup sequence. If
the SDPUA bit is set, the SDC performs the powerup sequence.

• SDC powerup delay (SDRS)

If the SDRS bit is cleared, the SDC has already powered up. If the
SDRS bit is set, the SDC will still perform the powerup sequence.

• SDC EAB sticky error status (SDEASE)

If the SDEASE bit is cleared, there were no errors detected on the
EAB core bus. If the SDEASE bit is set, there were errors detected on
the EAB core bus. The SDEASE bit is sticky. Once it has been set,
software must explicitly write a 1 to the bit to clear it. Writes have
no effect on the other status bits, which are updated by the SDC
only.

SDC Programming Examples
Listing 7-3 through Listing 7-6 provide examples for working with the
SDC.

Listing 7-3. 16-Bit Core Transfers to SDRAM

.section L1_data_b;

.byte2 source[N] = 0x1122, 0x3344, 0x5566, 0x7788;

.section SDRAM;

.byte2 dest[N];

.section L1_code;

I0.L = lo(source);

I0.H = hi(source);

I1.L = lo(dest);

I1.H = hi(dest);
ADSP-BF51x Blackfin Processor Hardware Reference 7-77

SDC Programming Examples
R0.L = w[I0++];

p5=N-1;

lsetup(lp, lp) lc0=p5;

lp:R0.L = w[I0++] || w[I1++] = R0.L;

w[I1++] = R0.L;

Listing 7-4. 8-Bit Core Transfers to SDRAM Using Byte Mask
SDQM[1:0] Pins

.section L1_data_b;

.byte source[N] = 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88;

.section SDRAM;

.byte dest[N];

p0.L = lo(source);

p0.H = hi(source);

p1.L = lo(dest);

p1.H = hi(dest);

p5=N;

lsetup(start, end) lc0=p5;

start: R0 = b[p0++](z);

end: b[p1++] = R0; /* byte data masking */

Listing 7-5. Self-Refresh Mode Power Savings With Disabled CLKOUT

r0.l = w[I1++]; /* SDRAM access */

ssync; /* force last SDRAM access to finish */

P0.L = lo(EBIU_SDGCTL);

P0.H = hi(EBIU_SDGCTL);

R1 = [P0];

bitset(R1, bitpos(SRFS)); /* enter self-refresh */

[P0] = R1;
7-78 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
ssync;

P0.L = lo(EBIU_SDSTAT);

P0.H = hi(EBIU_SDSTAT);

R0 = [P0];

ssync;

self_refresh_status:

cc = bittst(R0, bitpos(SDSRA)); /* poll self-refresh status */

if !cc jump self_refresh_status;

P0.L = lo(EBIU_SDGCTL);

P0.H = hi(EBIU_SDGCTL);

R1 = [P0];

bitclr(R1, bitpos(SCTLE));

/* disable CLKOUT after approx 20 cycles */

[P0] = R1;

ssync;

P5 = 30000;

LSETUP(lp,lp) LC0 = P5;

lp: nop; /* dummy loop */

R1 = [P0];

bitset(R1, bitpos(SCTLE));

/* enable CLKOUT after approx 20 cycles */

[P0] = R1;

ssync;

R1 = [P0];

bitclr(R1, bitpos(SRFS)); /* exit self-refresh */

[P0] = R1;
ADSP-BF51x Blackfin Processor Hardware Reference 7-79

SDC Programming Examples
ssync;

w[I1++] = r0.l; /* SDRAM access */

Listing 7-6. Init

/***/

/* SDRAM part# Micron MT48LC32M8A2-75 (32Mx8/256Mbit) */

/* 8k rows, 1k columns -> EBCAW = 10 */

/* 2xSDRAM: 32Mx16 = 64Mbytes -> EBSZ = 010 */

/* populated SDRAM addresses -> 0x00000000 - 0x01FFFFFF */
/* internal SDRAM bank A 0x00000000 - 0x007FFFFF */
/* internal SDRAM bank B 0x00800000 - 0x00FFFFFF */
/* internal SDRAM bank C 0x01000000 - 0x017FFFFF */

/* internal SDRAM bank D 0x01800000 - 0x01FFFFFF */

/* powerup: PRE-REF-MRS -> PSM = 0 */

/* SCLK = 80 MHz */

/* tCK = 7.5ns min@CL=3 -> CL = 3 */

/* tRAS = 44ns min -> TRAS = 6 */

/* tRP = 20ns min -> TRP = 3 */

/* tRCD = 20ns min -> TRCD = 3 */

/* tWR = 15ns min -> TWR = 2 */

/* tREF = 64ms max

->RDIV = (80MHz*64ms)/8192-(6+3)=0x268 cycles */

/***/

#ifdef INIT_SDRAM

/* Check if already enabled */

p0.l = lo(EBIU_SDSTAT);

p0.h = hi(EBIU_SDSTAT);

r0 = [p0];
7-80 ADSP-BF51x Blackfin Processor Hardware Reference

External Bus Interface Unit
cc = bittst(r0, bitpos(SDRS));

if !cc jump skip init_sdram;

/* SDRAM Refresh Rate Control Register */

P0.L = lo(EBIU_SDRRC);

P0.H = hi(EBIU_SDRRC);

R0.L = 0x0268;

W[P0] = R0.L;

/* SDRAM Memory Bank Control Register */

P0.L = lo(EBIU_SDBCTL);

P0.H = hi(EBIU_SDBCTL);

R0.L = 0x0025;

W[P0] = R0.L;

/* SDRAM Memory Global Control Register */

P0.L = lo(EBIU_SDGCTL);

P0.H = hi(EBIU_SDGCTL);

R0.L = 0x998d;

R0.H = 0x8491;

[P0] = R0;

ssync; /* wait until executed */
ADSP-BF51x Blackfin Processor Hardware Reference 7-81

SDC Programming Examples
7-82 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
8 DYNAMIC POWER
MANAGEMENT

This chapter describes the dynamic power management functionality of
the Blackfin processor and includes the following sections:

• “Phase Locked Loop and Clock Control”

• “Dynamic Power Management Controller” on page 8-7

• “Operating Modes” on page 8-7

• “Dynamic Supply Voltage Control” on page 8-15

• “System Control ROM Function” on page 8-24

• “PLL and VR Registers” on page 8-19

• “Programming Examples” on page 8-30

Phase Locked Loop and Clock Control
The input clock into the processor, CLKIN, provides the necessary clock
frequency, duty cycle, and stability to allow accurate internal clock multi-
plication by means of an on-chip PLL module. During normal operation,
the user programs the PLL with a multiplication factor for CLKIN. The
resulting, multiplied signal is the voltage controlled oscillator (VCO)
ADSP-BF51x Blackfin Processor Hardware Reference 8-1

Phase Locked Loop and Clock Control
clock. A user-programmable value then divides the VCO clock signal to
generate the core clock (CCLK).

A user-programmable value divides the VCO signal to generate the system
clock (SCLK). The SCLK signal clocks the Peripheral Access Bus (PAB),
DMA Access Bus (DAB), External Access Bus (EAB), and the external bus
interface unit (EBIU).

 These buses run at the PLL frequency divided by 1–15 (SCLK
domain). Using the SSEL parameter of the PLL divide register,
select a divider value that allows these buses to run at or below the
maximum SCLK rate specified in the processor data sheet.

To optimize performance and power dissipation, the processor allows the
core and system clock frequencies to be changed dynamically in a “coarse
adjustment.” For a “fine adjustment,” the PLL clock frequency can also be
varied.

PLL Overview
To provide the clock generation for the core and system, the processor
uses an analog PLL with programmable state machine control.

The PLL design serves a wide range of applications. It emphasizes embed-
ded and portable applications and low cost, general-purpose processors, in
which performance, flexibility, and control of power dissipation are key
features. This broad range of applications requires a wide range of fre-
quencies for the clock generation circuitry. The input clock may be a
crystal, a crystal oscillator, or a buffered, shaped clock derived from an
external system clock oscillator.

The PLL interacts with the Dynamic Power Management Controller
(DPMC) block to provide power management functions for the processor.
For information about the DPMC, see “Dynamic Power Management
Controller” on page 8-7.
8-2 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
Subject to the maximum VCO frequency specified in the processor data
sheet, the PLL supports a wide range of multiplier ratios and achieves
multiplication of the input clock, CLKIN. To achieve this wide multiplica-
tion range, the processor uses a combination of programmable dividers in
the PLL feedback circuit and output configuration blocks.

Figure 8-1 illustrates a conceptual model of the PLL circuitry, configura-
tion inputs, and resulting outputs. In the figure, the VCO is an
intermediate clock from which the core clock (CCLK) and system clock
(SCLK) are derived.

PLL Clock Multiplier Ratios
The PLL control register (PLL_CTL) governs the operation of the PLL. For
details about the PLL_CTL register, see “PLL_CTL Register” on page 8-21.

Figure 8-1. PLL Block Diagram

OUTPUT CLOCK
GENERATOR (CLOCK
DIVIDE AND MUX)

÷1 OR ÷2 LOOP
FILTER

VCO

×1,..., ×64 ÷1, ÷2, ÷4,
 OR ÷8

÷1,..., ÷15
+

-

CLKOUT

CLKBUF

CLKIN XTAL

SSEL [3:0}

MSEL [5:0]

CSEL [1:0]

EN

EN

DF

SCLK

GATE

GATE SCLK

CCLK

PDWN
DEEP SLEEP
POWERDOWN
(CCLK AND
SCLK OFF)

STOPCK
(SLEEP MODE)
STOP CLOCK
CCLK OFFBYPASS

(ACTIVE
MODE)
CCLK = SCLK = CLKIN

PHASE LOCKED LOOP

fCLKIN

fCLKIN

fVCO

PLL_OFF DISABLE
CONTROL INPUT TO PLL.
CAN ADDITIONALLY BE
USED WITH BYPASS
ADSP-BF51x Blackfin Processor Hardware Reference 8-3

Phase Locked Loop and Clock Control
The divide frequency (DF) bit and multiplier select (MSEL[5:0]) field con-
figure the various PLL clock dividers:

• DF enables the input divider

• MSEL[5:0] controls the feedback dividers

The reset value of MSEL is 0x5. This value can be reprogrammed at startup
in the boot code.

Table 8-1 illustrates the VCO multiplication factors for the various MSEL
and DF settings.

As shown in the table, different combinations of MSEL[5:0] and DF can
generate the same VCO frequencies. For a given application, one combi-
nation may provide lower power or satisfy the VCO maximum frequency.
Under normal conditions, setting DF to 1 typically results in lower power
dissipation. See the processor data sheet for maximum and minimum fre-
quencies for CLKIN, CCLK, and VCO.

The PLL control (PLL_CTL) register controls operation of the PLL (see
Figure 8-4 on page 8-21). Note that changes to the PLL_CTL register do
not take effect immediately. In general, the PLL_CTL register is first pro-
grammed with a new value, and then a specific PLL programming
sequence must be executed to implement the changes. This is handled

Table 8-1. MSEL Encodings

Signal Name
MSEL[5:0]

VCO Frequency
DF = 0 DF = 1

0 64x 32x

1 1x 0.5x

2 2x 1x

N = 3–62 Nx 0.5Nx

63 63x 31.5x
8-4 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
automatically by the system control ROM function (bfrom_SysControl())
as described in “System Control ROM Function” on page 8-24.

Core Clock/System Clock Ratio Control

Table 8-2 describes the programmable relationship between the VCO fre-
quency and the core clock. Table 8-3 shows the relationship of the VCO
frequency to the system clock. Note the divider ratio must be chosen to
limit the SCLK to a frequency specified in the processor data sheet. The
SCLK drives all synchronous, system-level logic.

The divider ratio control bits, CSEL and SSEL, are in the PLL divide
(PLL_DIV) register. For information about this register, see “PLL_DIV
Register” on page 8-21.

The reset value of CSEL[1:0] is 0x0, and the reset value of SSEL[3:0] is
0x4. These values can be reprogrammed at startup by the boot code.

By updating PLL_DIV with an appropriate value, you can change the CSEL
and SSEL value dynamically. Note the divider ratio of the core clock can
never be greater than the divider ratio of the system clock. If the PLL_DIV
register is programmed to illegal values, the SCLK divider is automatically
increased to be greater than or equal to the core clock divider.

Unlike writing the PLL_CTL register, the PLL_DIV register can be pro-
grammed at any time to change the CCLK and SCLK divide values without
entering the PLL programing sequence.

Table 8-2. Core Clock Ratio

Signal Name
CSEL[1:0]

Divider Ratio
VCO/CCLK

Example Frequency Ratios (MHz)
VCO CCLK

00 1 300 300

01 2 300 150

10 4 400 100

11 8 400 50
ADSP-BF51x Blackfin Processor Hardware Reference 8-5

Phase Locked Loop and Clock Control
As long as the MSEL and DF control bits in the PLL control (PLL_CTL) regis-
ter remain constant, the PLL is locked.

 If changing the clock ratio via writing a new SSEL value into
PLL_DIV, take care that the enabled peripherals do not suffer data
loss due to SCLK frequency changes.

When changing clock frequencies in the PLL, the PLL requires time to
stabilize and lock to the new frequency. The PLL lock count
(PLL_LOCKCNT) register defines the number of CLKIN cycles that occur
before the processor sets the PLL_LOCKED bit in the PLL_STAT register.
When executing the PLL programming sequence, the internal PLL lock
counter begins incrementing upon execution of the IDLE instruction. The
lock counter increments by 1 each CLKIN cycle. When the lock counter has
incremented to the value defined in the PLL_LOCKCNT register, the
PLL_LOCKED bit is set.

See the processor data sheet for more information about PLL stabilization
time and programmed values for this register. For more information about
operating modes, see “Operating Modes” on page 8-7.

Table 8-3. System Clock Ratio

Signal Name
SSEL[3:0]

Divider Ratio
VCO/SCLK

Example Frequency Ratios (MHz)
VCO SCLK

0000 Reserved N/A N/A

0001 1:1 50 50

0010 2:1 150 75

0011 3:1 150 50

0100 4:1 200 50

0101 5:1 300 60

0110 6:1 360 60

N = 7–15 N:1 400 400/N
8-6 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
Dynamic Power Management Controller
The Dynamic Power Management Controller (DPMC) works in conjunc-
tion with the PLL, allowing the user to control the processor’s
performance characteristics and power dissipation dynamically. The
DPMC provides these features that allow the user to control performance
and power:

• Multiple operating modes – The processor works in four operating
modes, each with different performance characteristics and power
dissipation profiles. See “Operating Modes”.

• Peripheral clocks – Clocks to each peripheral are disabled automat-
ically when the peripheral is disabled.

• Voltage control – The VDDINT domain must be powered by an
external voltage regulator. For more information see “Voltage Reg-
ulation Interface” on page 27-14.

Operating Modes
The processor works in four operating modes, each with unique perfor-
mance and power saving benefits. Table 8-4 summarizes the operational
characteristics of each mode.

Table 8-4. Operational Characteristics

Operating Mode Power
Savings

PLL Status PLL Bypassed CCLK SCLK Allowed DMA Access

Full On None Enabled No Enabled Enabled L1

Active Medium Enabled1

1 PLL can also be disabled in this mode.

Yes Enabled Enabled L1

Sleep High Enabled No Disabled Enabled –

Deep Sleep Maximum Disabled – Disabled Disabled –
ADSP-BF51x Blackfin Processor Hardware Reference 8-7

Dynamic Power Management Controller
Dynamic Power Management Controller States
Power management states are synonymous with the PLL control state.
The active and full-on states of the DPMC/PLL can be determined by
reading the PLL status register (see “PLL_STAT Register” on page 8-22).
In these modes, the core can either execute instructions or be in the IDLE
core state. If the core is in the IDLE state, it can be awakened by several
sources. (See Chapter 5, “System Interrupts” for details.)

The following sections describe the DPMC/PLL states in more detail, as
they relate to the power management controller functions.

Full-On Mode

Full-on mode is the maximum performance mode. In this mode, the PLL
is enabled and not bypassed. Full-on mode is the normal execution state of
the processor, with the processor and all enabled peripherals running at
full speed. The system clock (SCLK) frequency is determined by the SSEL
specified ratio to VCO. DMA access is available to L1 and external mem-
ories. From full-on mode, the processor can transition directly to active,
sleep, or deep sleep modes, as shown in Figure 8-2 on page 8-12.

Active Mode

In active mode, the PLL is enabled but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. DMA access is available to appropri-
ately configured L1 and external memories.

In active mode, it is possible not only to bypass, but also to disable the
PLL. If disabled, the PLL must be re-enabled before transitioning to full-
on or sleep modes.

From active mode, the processor can transition directly to full-on, sleep,
or deep sleep modes.
8-8 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
 In this mode or in the transition phase to other modes, changes to
MSEL are not latched by the PLL.

Sleep Mode

Sleep mode significantly reduces power dissipation by idling the processor
core. The CCLK is disabled in this mode; however, SCLK continues to run at
the speed configured by MSEL and SSEL bit settings. Since CCLK is disabled,
DMA access is available only to external memory in sleep mode. From
sleep mode, a wakeup event causes the processor to transition to one of
these modes:

• Active mode if the BYPASS bit in the PLL_CTL register is set

• Full-on mode if the BYPASS bit is cleared

The processor resumes execution from the program counter value present
immediately prior to entering sleep mode.

 The STOPCK bit is not a status bit and is therefore unmodified by
hardware when the wakeup occurs. Software must explicitly clear
STOPCK in the next write to PLL_CTL to avoid going back into sleep
mode.

Deep Sleep Mode

Deep sleep mode maximizes power savings by disabling the PLL, CCLK,
and SCLK. In this mode, the processor core and all peripherals except the
real-time clock (RTC) are disabled. DMA is not supported in this mode.

Deep sleep mode can be exited only by a hardware reset event or an RTC
interrupt. A hardware reset begins the hardware reset sequence. For more
information about hardware reset, see Chapter 5, “System Interrupts”. An
RTC interrupt causes the processor to transition to active mode, and exe-
cution resumes from where the program counter was when deep sleep
mode was entered. If an interrupt is also enabled in SIC_IMASK, the vector
is taken immediately after exiting deep sleep and the ISR is executed.
ADSP-BF51x Blackfin Processor Hardware Reference 8-9

Dynamic Power Management Controller
Note an RTC interrupt in deep sleep mode automatically resets some
fields of the PLL control (PLL_CTL) register. See Table 8-5.

 When in deep sleep mode, clocking to the SDRAM is turned off.
Before entering deep sleep mode, software should ensure that
important information in SDRAM is saved to a non-volatile mem-
ory and/or the SDRAM is placed into self-refresh mode.

Hibernate State

For lowest possible power dissipation, this state allows the internal supply
(VDDINT) to be powered down by the external regulator, while keeping
the I/O supply (VDDEXT and VDDMEM) running. Although not strictly an
operating mode like the four modes detailed above, it is illustrative to view
it as such in the diagram of Figure 8-2 on page 8-12.This feature is dis-
cussed in detail in “Powering Down the Core (Hibernate State)” on
page 8-17.

Operating Mode Transitions
Figure 8-2 on page 8-12 graphically illustrates the operating modes and
transitions. In the diagram, ellipses represent operating modes and rectan-
gles represent processor states. Arrows show the allowed transitions into
and out of each mode or state.

For mode transitions, the text next to each transition arrow shows the
fields in the PLL control (PLL_CTL) register that must be changed for the

Table 8-5. PLL_CTL Values after RTC Wakeup Interrupt

Field Value

PLL_OFF 0

STOPCK 0

PDWN 0

BYPASS 1
8-10 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
transition to occur. For example, the transition from full-on mode to sleep
mode indicates that the STOPCK bit must be set to 1 and the PDWN bit must
be set to 0.

For transitions to processor states, the text next to each transition arrow
shows either a processor event (RTC wake up or hardware reset) or the
fields in the voltage regulator control register (VR_CTL) that must be
changed for the transition to occur.

For information about how to effect mode transitions, see “Programming
Operating Mode Transitions” on page 8-13.

In addition to the mode transitions shown in Figure 8-2 on page 8-12, the
PLL can be modified while in active operating mode. Changes to the PLL
do not take effect immediately. As with operating mode transitions, the
PLL programming sequence must be executed for these changes to take
effect (see “Programming Operating Mode Transitions” on page 8-13).

• PLL disabled: In addition to being bypassed in the active mode, the
PLL can be disabled.

When the PLL is disabled, additional power savings are achieved
although they are relatively small. To disable the PLL, set the
PLL_OFF bit in the PLL_CTL register, and then execute the PLL pro-
gramming sequence.

• PLL enabled: When the PLL is disabled, it can be re-enabled later
when additional performance is required.

The PLL must be re-enabled before transitioning to the full-on or
sleep operating modes. To re-enable the PLL, clear the PLL_OFF bit
in the PLL_CTL register, and then execute the PLL programming
sequence.
ADSP-BF51x Blackfin Processor Hardware Reference 8-11

Dynamic Power Management Controller
Figure 8-2. Operating Mode Transitions

Sleep

Full OnActive

Deep
Sleep

Reset

Wakeup &
BYPASS = 0

STOPCK = 1 &
 PDWN = 0

 PDWN = 1

RTC Wakeup

 PDWN = 1

STOPCK = 1 &
 PDWN = 0

HARDWARE
 RESET

BYPASS = 0 & PLL_OFF = 0 &
 STOPCK = 0 & PDWN = 0

BYPASS = 1 & STOPCK = 0 &
 PDWN = 0

Wakeup &
BYPASS = 1

Hibernate

 WAKE = 1 &

HARDWARE RESET
 FREQ = 00

 FREQ = 00

ETHERNET PHY Activity
and PHYWE = 1

MSEL = new value
and PLL_OFF = 0
and BYPASS = 0

RTC Wakeup occurs
8-12 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
• New multiplier ratio: The multiplier ratio can also be changed
while in full-on mode.

The PLL state automatically transitions to active mode while the
PLL is locking. After locking, the PLL returns to full-on mode. To
program a new CLKIN to VCO multiplier, write the new MSEL[5:0]
and/or DF values to the PLL_CTL register; then execute the PLL pro-
gramming sequence (on page 8-13).

Table 8-6 summarizes the allowed operating mode transitions.

 Attempting to cause mode transitions other than those shown in
Table 8-6 causes unpredictable behavior.

Programming Operating Mode Transitions
The operating mode is defined by the state of the PLL_OFF, BYPASS,
STOPCK, and PDWN bits of the PLL control (PLL_CTL) register. Merely modi-
fying the bits of the PLL_CTL register does not change the operating mode
or behavior of the PLL. Changes to the PLL_CTL register are realized only
after a specific code sequence is executed. This sequence is managed by a
user-callable routine in the on-chip ROM called bfrom_SysControl().
When calling this function, no further precautions have to be taken. See
“System Control ROM Function” on page 8-24 for more information.

Table 8-6. Allowed Operating Mode Transitions

New Mode

Current Mode

Full-On Active Sleep Deep Sleep

Full On – Allowed Allowed Allowed

Active Allowed – Allowed Allowed

Sleep Allowed Allowed – –

Deep Sleep Allowed Allowed – –
ADSP-BF51x Blackfin Processor Hardware Reference 8-13

Dynamic Power Management Controller
If the PLL_CTL register changes include a new CLKIN to VCO multiplier or
power is reapplied to the PLL, the PLL needs to relock. To relock, the
PLL lock counter is cleared first, then starts incrementing once per SCLK
cycle. After the PLL lock counter reaches the value programmed in the
PLL lock count (PLL_LOCKCNT) register, the PLL sets the PLL_LOCKED bit in
the PLL status (PLL_STAT) register, and the PLL asserts the PLL wake-up
interrupt.

When the bfrom_SysControl() routine reprograms the PLL_CTL register
with a new value, the bfrom_SysControl() routine executes a subsequent
IDLE instruction and prevents all other system interrupt sources, other
than the DPMC, from waking up the core from the IDLE state. If the lock
counter expires, the PLL issues an interrupt, and the code execution con-
tinues the instruction after the IDLE instruction. Therefore, the system is
in the new state by the time the bfrom_SysControl() routine returns.

 If the new value written to the PLL_CTL or VR_CTL register is the
same as the previous value, the PLL wake-up occurs immediately
(PLL is already locked), but the core and system clock are bypassed
for the PLL_LOCKCNT duration. For this interval, code executes at
the CLKIN rate instead of the expected CCLK rate. Software guards
against this condition by comparing the current value to the new
value before writing the new value.

• When the wake-up signal is asserted, the code execution continues
the instruction after the IDLE instruction, causing a transition to:

• Active mode if BYPASS in the PLL_CTL register is set

• Full-on mode if the BYPASS bit is cleared

• If the PLL_CTL register is programmed to enter the sleep operating
mode, the processor transitions immediately to sleep mode and
waits for a wake-up signal before continuing code execution. If the
8-14 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
PLL_CTL register is programmed to enter the deep sleep operating
mode, the processor immediately transitions to deep sleep mode
and waits for an RTC interrupt or hardware reset signal:

• An RTC interrupt causes the processor to enter active oper-
ating mode and to return from the bfrom_SysControl()
routine.

• A hardware reset causes the processor to execute the reset
sequence. For more information see Chapter 26, “System
Reset and Booting”.

If no operating mode transition is programmed, the PLL generates a
wake-up signal, and the bfrom_SysControl() routine returns.

Dynamic Supply Voltage Control
In addition to clock frequency control, the processor's core is capable of
running at different voltage levels. As power dissipation is proportional to
the voltage squared, significant power reductions can be accomplished
when lower voltages are used.

The processor uses multiple power domains. Each power domain has a
separate VDD supply. Note that the internal logic of the processor and
much of the processor I/O can be run over a range of voltages. See the
product data sheet for details on the allowed voltage ranges for each power
domain and power dissipation data.

Power Supply Management
VDDINT is supplied by an external regulator and pin PG is used to accept
an active-low power-good indicator from the regulator. Note that the
external regulator must comply with the VDDINT specifications defined in
the processor data sheet.
ADSP-BF51x Blackfin Processor Hardware Reference 8-15

Dynamic Power Management Controller
Changing Voltage

When changing the voltage using an external regulator, a specific pro-
gramming sequence must be followed.

Unlike other Blackfin derivatives that feature an internal voltage regulator;
the voltage level for the ADSP-BF51x cannot be changed by programming
the VR_CTL register. With an internal voltage regulator, the PLL would
automatically enter the active mode when the processor enters the IDLE
state. At that point the voltage level would change and the PLL would
re-lock to the new voltage. After the PLL_LOCKCNT has expired, the part
returns to the full-on state.

With an external voltage regulator, this sequence must be reproduced in
the program code by the user. The PLL_LOCKCNT register cannot be used in
this case, but the value is still needed for calculating the required delay. A
larger PLL_LOCKCNT value may be necessary for changing voltages than
when changing just the PLL frequency. See the processor data sheet for
details.

The processor must enter active mode before the user can access the exter-
nal voltage regulator and program a new voltage level. See the data sheet of
external voltage regulator for information on changing voltage levels. See
the processor data sheet for more information about voltage tolerances
and allowed rates of change.

 Reducing the processor’s operating voltage to greatly conserve
power or raising the operating voltage to greatly increase perfor-
mance will probably require significant changes to the operating
voltage level. To ensure predictable behavior the recommended
procedure is to bring the processor to the sleep operating mode
before substantially varying the voltage.

The user must ensure a stable voltage and give the PLL time to re-lock at
the new voltage level. This can be done by running the core in a loop for a
certain amount of time before leaving active mode.
8-16 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
After the voltage has been changed to the new level, the processor can
safely return to any operational mode—so long as the operating parame-
ters, such as core clock frequency (CCLK), are within the limits specified
in the processor data sheet for the new operating voltage level.

See “Changing Voltage Levels” on page 8-42 for more details on mode
transitions and changing voltage levels.

The VSTAT bit in the PLL_STAT register can be used to indicate whether
VDDINT is stable and ready to use. The VSTAT bit works in conjunction
with the PG (Power Good) input signal of the ADSP-BF51x. The inverted
version of a "power good" signal from the external regulator is fed to the
ADSP-BF51x to indicate that the voltage has reached its programmed
value. That in turn will set the VSAT bit, which should be considered the
end of your "wait" state for the voltage regulator to settle.

Powering Down the Core (Hibernate State)

The external regulator can be signaled to shut off VDDINT using the
EXT_WAKE signal. Writing b#00 to the FREQ bits of the VR_CTL register,
which disables CCLK and SCLK, will also make EXT_WAKE go low. EXT_WAKE
will transition high if any wakeup sources occur, which will signal the
external voltage regulator to turn VDDINT on again. The wakeup sources
are several user-selectable events, all of which are controlled in the VR_CTL
register:

• Assertion of the RESET pin always exits hibernate state and requires
no modification to VR_CTL.

• RTC event. Set the wake-up enable control bit (WAKE) to enable
wake-up upon an RTC interrupt. This can be any of the RTC
interrupts (alarm, daily alarm, day, hour, minute, second, or
stopwatch).
ADSP-BF51x Blackfin Processor Hardware Reference 8-17

Dynamic Power Management Controller
• External GP event or Ethernet PHY event. Set the PHY wakeup
enable control (PHYWE) bit to enable wakeup upon assertion of the
PHY_INT/PF15 pin by an external PHY device. If no external PHY
interrupt is needed, set this bit to enable a general-purpose external
event via the PF15 pin.

• Pin EXT_WAKE is provided to indicate the occurrence of wakeup.
EXT_WAKE is an output pin, which is a logical OR of the above
wakeup sources, except hardware reset. The pin follows the wakeup
signal of the various wakeup sources.

 When the core is powered down, VDDINT is set to 0 V, and the
internal state of the processor is not maintained, with the exception
of the VR_CTL register. Therefore, any critical information stored
internally (memory contents, register contents, and so on) must be
written to a non-volatile storage device prior to removing power.
Be sure to set the drive SCKE low during reset control (SCKELOW) bit
in VR_CTL to protect against the default reset state behavior of set-
ting the EBIU pins to their inactive state. Failure to set the SCKELOW
bit results in the SCKE pin going high during reset, which takes the
SDRAM out of self-refresh mode, resulting in data decay in the
SDRAM due to loss of refresh rate.

Powering down VDDINT does not affect VDDEXT or VDDMEM. While
VDDEXT and VDDMEM are still applied to the processor, external pins are
maintained at a three-state level unless specified otherwise.

 The SCKE pin will be three-stated during hibernate. In addition to
setting the SCKELOW bit in VR_CTL prior to entering the hibernate
state, an external pull-down resistor on the SCKE pin is required to
also keep the pin low when the Blackfin processor is not driving it.
8-18 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
To signal the external regulator to power down VDDINT:

1. Write 0 to the appropriate bits in the SIC_IWRx registers to prevent
enabled peripheral resources from interrupting the hibernate
process.

2. Call the bfrom_SysControl() routine; ensure that the FREQ bits in
the VR_CTL variable are set to b#00, and the appropriate wake-up
bit(s) to 1 (WAKE and/or Ethernet Phy). Optionally, set the SCKELOW
bit if SDRAM data should be maintained.

3. The bfrom_SysControl() routine executes until VDDINT transi-
tions to 0 V. bfrom_SysControl() never returns.

4. When the processor is woken up, the PLL relocks and the boot
sequence defined by the BMODE[2:0] pin settings takes effect.

The WURESET in the SYSCTRL register is set and stays set until the next hard-
ware reset. The WURESET bit may control a conditional boot process.

 If the CLKBUFOE bit is set, the crystal oscillator and CLKBUF signals
remain enabled during hibernate and draw current.

PLL and VR Registers
The user interface to the PLL and VR registers is through the system con-
trol ROM function (bfrom_SysControl()) described in “System Control
ROM Function” on page 8-24. The memory-mapped registers (MMRs)
are shown in Table 8-7 and illustrated in Figure 8-3 through Figure 8-7.

Table 8-7 shows the functions of the PLL/VR registers.
ADSP-BF51x Blackfin Processor Hardware Reference 8-19

PLL and VR Registers
Table 8-7. PLL/VR Register Mapping

Register Name Function Notes For More Information See:

PLL_CTL PLL control register Requires reprogramming
sequence when written

Figure 8-4 on page 8-21

PLL_DIV PLL divisor register Can be written freely Figure 8-3 on page 8-21

PLL_STAT PLL status register Monitors active modes of
operation

Figure 8-5 on page 8-22

PLL_LOCKCNT PLL lock count register Number of SCLKs
allowed for PLL to relock

Figure 8-6 on page 8-22

VR_CTL Voltage regulator
control register

Requires PLL reprogram-
ming sequence when writ-
ten

Figure 8-7 on page 8-23
8-20 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
PLL_DIV Register

PLL_CTL Register

Figure 8-3. PLL Divide Register

Figure 8-4. PLL Control Register

PLL Divide Register (PLL_DIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

0 - Reserved
1-15 - SCLK = VCO / X

CSEL[1:0] (Core Select)

0 0 0 0 0 0 0 0 0 0 0 0 1 0

00 - CCLK = VCO / 1
01 - CCLK = VCO / 2
10 - CCLK = VCO / 4
11 - CCLK = VCO / 8

SSEL[3:0] (System Select)

Reset = 0x000400xFFC0 0004

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 1 0 1 0 0 0 0 0 0 0

See Table 8-1 on page 8-4 for
CLKIN/VCO multiplication
factors

PLL Control Register (PLL_CTL)

BYPASS
0 - Do not bypass PLL
1 - Bypass PLL

MSEL[5:0]
(Multiplier Select)

DF (Divide Frequency)
0 - Pass CLKIN to PLL
1 - Pass CLKIN/2 to PLL
PLL_OFF
0 - Enable control of PLL
1 - Disable control of PLL

STOPCK (Stop Clock)
0 - CCLK on
1 - CCLK off

PDWN (Power Down)
0 - All internal clocks on
1 - All internal clocks off

Reset = 0x0A000xFFC0 0000
ADSP-BF51x Blackfin Processor Hardware Reference 8-21

PLL and VR Registers
PLL_STAT Register

PLL_LOCKCNT Register

Figure 8-5. PLL Status Register

Figure 8-6. PLL Lock Count Register

0 00 000 0 0 0 0

PLL Status Register (PLL_STAT)
Read only. Unless otherwise noted, 1 - Processor operating in this mode. For more infor-
mation, see “Operating Modes” on page 8-7.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 1 Reset = 0x00A2

ACTIVE_PLLENABLED

FULL_ON

ACTIVE_PLLDISABLED
PLL_LOCKED

0xFFC0 000C

VSTAT
0: Voltage regulator is not stable.
1: Voltage regulator is stable.

1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

LOCKCNT[15:0]
Number of SCLK cycles
before PLL Lock Count
timer expires.

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Reset = 0x0200

PLL Lock Count Register (PLL_LOCKCNT)

0xFFC0 0010
8-22 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
VR_CTL Register
The CLKIN buffer output enable (CLKBUFOE) control bit allows another
device, most likely the Ethernet PHY, and the Blackfin processor to run
from a single crystal oscillator. Clearing this bit prevents the CLKBUF pin
from driving a buffered version of the input clock CLKIN.

Figure 8-7. Voltage Regulator Control Register

0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 1 1

Voltage Regulator Control Register (VR_CTL)

WAKE (Real Time Clock Wake Enable)

Do not modify.
Supported only by products that
feature an internal voltage
regulator

Reserved

00xFFC0 0008

SCKELOW
(SCKE Low
Reset)
0 - Allow SCKE to go
high (=1) during reset
1 - Maintain SCKE low
(=0) during reset

CLKBUFOE
(CLKIN Buffer
Output Enable)
0 - CLKIN buffer disabled
1 - CLKIN buffer enabled

Reserved

FREQ
00 - Hibernate
01 - Reserved
10 - Reserved
11 - Normal

PHYWE (PHY/PF15 Wake Enable)

Reset = 0x70B00

Reserved

1 0

0 - RTC wakeup disabled
1 - RTC wakeup enabled

0

0 - Ethernet PHY or PF15 wakeup
disabled
1 - Ethernet PHY or PF15 wakeup
enabled
ADSP-BF51x Blackfin Processor Hardware Reference 8-23

System Control ROM Function
System Control ROM Function
The PLL and voltage regulator registers should not be accessed directly.
Instead, use the bfrom_SysControl() function to alter or read the register
values. The function resides in the on-chip ROM and can be called by the
user following C-language style calling conventions.

Entry address: 0xEF00 0038

Arguments:

• dActionFlags word in R0

• pSysCtrlSettings pointer in R1

• zero value in R2

A potential error message of internally called bfrom_OtpRead() function
forwarded and returned in R0.

 The system control ROM function does not verify the correctness
of the forwarded arguments. Therefore, it is up to the programmer
to choose the correct values.

C prototype: u32 bfrom_SysControl(u32 dActionFlags,
ADI_SYSCTRL_VALUES *pSysCtrlSettings, void *reserved);

The first argument (u32 dActionFlags) to the system control ROM func-
tion holds the instruction flags. The following flags are supported.

#define SYSCTRL_READ 0x00000000

#define SYSCTRL_WRITE 0x00000001

#define SYSCTRL_SYSRESET 0x00000002

#define SYSCTRL_SOFTRESET 0x00000004

#define SYSCTRL_VRCTL 0x00000010

#define SYSCTRL_EXTVOLTAGE 0x00000020

#define SYSCTRL_OTPVOLTAGE 0x00000040

#define SYSCTRL_PLLCTL 0x00000100
8-24 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
#define SYSCTRL_PLLDIV 0x00000200

#define SYSCTRL_LOCKCNT 0x00000400

#define SYSCTRL_PLLSTAT 0x00000800

With SYSCTRL_READ and SYSCTRL_WRITE, a read or a write operation is ini-
tialized. The SYSCTRL_SYSRESET flag performs a system reset, while the
SYSCTRL_SOFTRESET flag combines a core and system reset. The
SYSCTRL_EXTVOLTAGE flag indicates that VDDINT is supplied externally.
The SYSCTRL_OTPVOLTAGE flag is for factory purposes only. The last five
flags (_VRCTL, _PLLCTL, _PLLDIV, _LOCKCNT, _PLLSTAT) tells the system con-
trol ROM function which registers to be written to or read from. Note
that SYSCTRL_PLLSTAT flag is read-only.

The second argument (ADI_SYSCTRL_VALUES *pSysCtrlSettings) to the
system control ROM function passes a pointer to a special structure,
which has entries for all PLL and voltage regulator registers. It is pre-
defined in the bfrom.h header file as follows.

typedef struct

{

u16 uwVrCtl;

u16 uwPllCtl;

u16 uwPllDiv;

u16 uwPllLockCnt;

u16 uwPllStat;

} ADI_SYSCTRL_VALUES;

The third argument to the system control ROM function is reserved and
should be kept zero (NULL pointer).

The function’s return value is described in the following bfrom_OtpRead()
ROM routine descriptions; whereby a single-bit warning is suppressed.

 The system control ROM function executes the correct steps and
programming sequence for the Dynamic Power Management Sys-
tem of the Blackfin processor.
ADSP-BF51x Blackfin Processor Hardware Reference 8-25

System Control ROM Function
Programming Model
The programming model for the system control ROM function in C/C++
and Assembly is described in the following sections.

Accessing the System Control ROM Function in
C/C++

To read the PLL_DIV and PLL_CTL register values, for example, specify the
SYSCTRL_READ instruction flag along with the SYSCTRL_PLLCTL and
SYSCTRL_PLLDIV register flags. The bfrom_OtpRead() function then only
updates the uwPllCtl and uwPllDiv variables:

ADI_SYSCTRL_VALUES read;

bfrom_SysControl (SYSCTRL_READ | SYSCTRL_PLLCTL | SYSCTRL_PLLDIV,

&read, NULL);

The read.uwPllCtl and read.uwPllDiv variables access the PLL_CTL and
PLL_DIV register values, respectively. To update the register values, specify
the SYSCTRL_WRITE instruction flag along with the register flags of those
registers that should be modified and have valid data in the respective
ADI_SYSCTRL_VALUES variables:

ADI_SYSCTRL_VALUES write;

write.uwPllCtl = 0x0A00;

write.uwPllDiv = 0x0004;

bfrom_SysControl (SYSCTRL_WRITE | SYSCTRL_PLLCTL |SYSCTRL_PLLDIV,

&write, NULL);
8-26 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
Accessing the System Control ROM Function in
Assembly

The assembler supports C structs, which is required to import the file
bfrom.h:

#include <bfrom.h>

.IMPORT "bfrom.h";

.STRUCT ADI_SYSCTRL_VALUES dpm;

You can pre-load the struct:

.STRUCT ADI_SYSCTRL_VALUES dpm = { 0x70B0, 0x0A00, 0x0004,

0x0200, 0x00A2 };

or load the values dynamically inside the code:

P5.H = hi(dpm);

P5.L = lo(dpm->uwVrCtl);

R7 = 0x70B0 (z);

w[P5] = R7;

P5.L = lo(dpm->uwPllCtl);

R7 = 0x0A00 (z);

w[P5] = R7;

P5.L = lo(dpm->uwPllDiv);

R7 = 0x0004 (z);

w[P5] = R7;

P5.L = lo(dpm->uwPllLockCnt);

R7 = 0x0200 (z);

w[P5] = R0;
ADSP-BF51x Blackfin Processor Hardware Reference 8-27

System Control ROM Function
The function u32 bfrom_SysControl(u32 dActionFlags,
ADI_SYSCTRL_VALUES *pSysCtrlSettings, void *reserved); can be
accessed by BFROM_SYSCONTROL. Following the C/C++ run-time environ-
ment conventions, the parameters passed are hold by the data registers R0,
R1, and R2.

/* 10 = sizeof(ADI_SYSCTRL_VALUES). uimm18m4: 18-bit unsigned

field that must be a multiple of 4, with a range of 8 through

262,152 bytes (0x00000 through 0x3FFFC) */

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

/* Allocate at least 12 bytes on the stack for outgoing argu-

ments, even if the function being called requires less than this.

*/

SP += -12;

R0 = SYSCTRL_WRITE |

SYSCTRL_VRCTL |

SYSCTRL_EXTVOLTAGE |

SYSCTRL_PLLCTL |

SYSCTRL_PLLDIV ;

R1.H = hi(dpm);

R1.L = lo(dpm);

R2 = 0 (z);

P5.H = hi(BFROM_SYSCONTROL);

P5.L = lo(BFROM_SYSCONTROL);

call(P5);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;
8-28 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
The processor’s internal scratchpad memory can be used as an alternative
for taking a C struct. Therefore, the stack/frame pointer must be loaded
and passed.

/* 10 = sizeof(ADI_SYSCTRL_VALUES). uimm18m4: 18-bit unsigned

field that must be a multiple of 4, with a range of 8 through

262,152 bytes (0x00000 through 0x3FFFC) */

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

/* Allocate at least 12 bytes on the stack for outgoing argu-

ments, even if the function being called requires less than this.

*/

SP += -12;

R7 = 0;

R7.L = 0x70B0;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwVrCtl)] = R7;

R7.L = 0x0A00;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllCtl)] = R7;

R7.L = 0x0004;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllDiv)] = R7;

R7.L = 0x0200;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllLockCnt)] = R7;

R0 = SYSCTRL_WRITE |

SYSCTRL_VRCTL |

SYSCTRL_EXTVOLTAGE |

SYSCTRL_PLLCTL |

SYSCTRL_PLLDIV ;
ADSP-BF51x Blackfin Processor Hardware Reference 8-29

Programming Examples
R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0;

P5.H = hi(BFROM_SYSCONTROL);

P5.L = lo(BFROM_SYSCONTROL);

call(P5);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

Programming Examples
The following code examples illustrate how to use the system control
ROM function to effect various operating mode transitions.

 The following examples are only meant to demonstrate how to pro-
gram the PLL registers. Do not assume that the voltages and
frequencies shown in the examples are supported by your proces-
sor. Instead, check your product's data sheet for supported voltages
and frequencies.

Some setup code has been removed for clarity, and the following assump-
tions are made.

• PLL control (PLL_CTL) register setting: 0x0A00

• PLL divider (PLL_DIV) register setting: 0x0004

• PLL lock count (PLL_LOCKCNT) register setting: 0x0200

• Clock in (CLKIN) frequency: 25 MHz
8-30 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
VCO frequency is 125 MHz, core clock frequency is 125 MHz, and sys-
tem clock frequency is 31.25 MHz.

• Voltage regulator control (VR_CTL) register setting: 0x70B0

• Logical voltage level (VDDINT) is at 1.20 V

For operating mode transition and voltage regulator examples:

• C

• #include <blackfin.h>

• #include <bfrom.h>

• Assembly

• #include <blackfin.h>

• #include <bfrom.h>

• .IMPORT "bfrom.h";

• #define IMM32(reg,val) reg##.H=hi(val);

• reg##.L=lo(val);
ADSP-BF51x Blackfin Processor Hardware Reference 8-31

Programming Examples
Full-on Mode to Active Mode and Back
Listing 8-1 and Listing 8-2 provide code for transitioning from the full-on
operating mode to active mode in C and Blackfin assembly code,
respectively.

Listing 8-1. Transitioning from Full-on Mode to Active Mode (C)

void active(void)

{

ADI_SYSCTRL_VALUES active;

bfrom_SysControl(SYSCTRL_READ | SYSCTRL_EXTVOLTAGE |

SYSCTRL_PLLCTL, &active, NULL);

active.uwPllCtl |= (BYPASS | PLL_OFF); /* PLL_OFF bit optional */

bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE |

SYSCTRL_PLLCTL, &active, NULL);|

return;

}

Listing 8-2. Transitioning from Full-on Mode to Active Mode (ASM)

__active:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

R0 = (SYSCTRL_READ | SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);
8-32 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
R0 = w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllCtl)];

bitset(R0,bitpos(BYPASS));

bitset(R0,bitpos(PLL_OFF)); /* optional */

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllCtl)] = R0;

R0 = (SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

__active.end:

To return from active mode (go back to full-on mode), the BYPASS bit and
the PLL_OFF bit must be cleared again, respectively.

Transition to Sleep Mode or Deep Sleep Mode
Listing 8-3 and Listing 8-4 provide code for transitioning from the full-on
operating mode to sleep or deep sleep mode in C and Blackfin assembly
code, respectively.
ADSP-BF51x Blackfin Processor Hardware Reference 8-33

Programming Examples
Listing 8-3. Transitioning to Sleep Mode or Deep Sleep Mode (C)

void sleep(void)

{

ADI_SYSCTRL_VALUES sleep;

bfrom_SysControl(SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL |

SYSCTRL_READ, &sleep, NULL);

sleep.uwPllCtl |= STOPCK; /* either: Sleep Mode */

sleep.uwPllCtl |= PDWN; /* or: Deep Sleep Mode */

bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE |

SYSCTRL_PLLCTL, &sleep, NULL);

return;

}

Listing 8-4. Transitioning to Sleep Mode or Deep Sleep Mode (ASM)

__sleep:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

R0 = (SYSCTRL_READ | SYSCTRL_EXTVOLTAGE |

SYSCTRL_PLLCTL);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

R0 = w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllCtl)];

bitset(R0,bitpos(STOPCK)); /* either: Sleep Mode */

bitset(R0,bitpos(PDWN)); /* or: Deep Sleep Mode */
8-34 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllCtl)] = R0;

R0 = (SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

__sleep.end:

Set Wakeups and Entering Hibernate State
Listing 8-5 and Listing 8-6 provide code for configuring the regulator
wakeups (RTC wakeup) and placing the regulator in the hibernate state in
C and Blackfin assembly code, respectively.
ADSP-BF51x Blackfin Processor Hardware Reference 8-35

Programming Examples
Listing 8-5. Configuring Regulator Wakeups and Entering Hibernate
State (C)

void hibernate(void)

{

ADI_SYSCTRL_VALUES hibernate;

/* SCKELOW = 1: Enable Drive SCKE Low During Reset */

/* Protect SDRAM contents during reset after wakeup */

hibernate.uwVrCtl=SCKELOW |

WAKE | /* RTC/Reset Wake-Up Enable */

HIBERNATE;/ *Powerdown */

bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_VRCTL |

SYSCTRL_EXTVOLTAGE, &hibernate, NULL);

/* Hibernate State: no code executes until wakeup triggers reset

*/

}

8-36 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
Listing 8-6. Configuring Regulator Wakeups and Entering Hibernate
State (ASM)

__hibernate:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

cli R6; /* disable interrupts, copy IMASK to R6 */

/* SCKELOW = 1: Enable Drive SCKE Low During Reset */

/* Protect SDRAM contents during reset after wakeup */

R0.L = SCKELOW |

 WAKE | /* RTC/Reset Wake-Up Enable */

 HIBERNATE ; /* Powerdown */

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwVrCtl)] = R0;

R0 = (SYSCTRL_WRITE | SYSCTRL_VRCTL | SYSCTRL_EXTVOLTAGE);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

/* Hibernate State: no code executes until wakeup triggers reset

*/

__hibernate.end:
ADSP-BF51x Blackfin Processor Hardware Reference 8-37

Programming Examples
Perform a System Reset or Soft-Reset
Listing 8-7 and Listing 8-8 provide code for executing a system reset or a
soft-reset (system and core reset) in C and Blackfin assembly code,
respectively.

Listing 8-7. Execute a System Reset or a Soft-Reset (C)

void reset(void)

{

bfrom_SysControl(SYSCTRL_SYSRESET, NULL, NULL); /* either */

bfrom_SysControl(SYSCTRL_SOFTRESET, NULL, NULL); /* or */

return;

}

8-38 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
Listing 8-8. Execute a System Reset or a Soft-Reset (ASM)

__reset:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

R0 = SYSCTRL_SYSRESET; /* either */

R0 = SYSCTRL_SOFTRESET; /* or */

R1 = 0 (z);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

__reset.end:

In Full-on Mode, Change VCO Frequency, Core
Clock Frequency, and System Clock Frequency

Listing 8-9 and Listing 8-10 provide C and Blackfin assembly code for
changing the CLKIN to VCO multiplier (from 10x to 21x), keeping the
CSEL divider at 1, and changing the SSEL divider (from 5 to 4) in the
full-on operating mode.
ADSP-BF51x Blackfin Processor Hardware Reference 8-39

Programming Examples
Listing 8-9. Transition of Frequencies (C)

void frequency(void)

{

ADI_SYSCTRL_VALUES frequency;

/* Set MSEL = 0-63 --> VCO = CLKIN*MSEL */

frequency.uwPllCtl = SET_MSEL(21) ;

/* Set SSEL = 1-15 --> SCLK = VCO/SSEL */

/* CCLK = VCO / 1 */

frequency.uwPllDiv = SET_SSEL(4) |

CSEL_DIV1 ;

frequency.uwPllLockCnt = 0x0200;

bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE |

SYSCTRL_PLLCTL | SYSCTRL_PLLDIV | SYSCTRL_LOCKCNT, &frequency,

NULL);

return;

}

8-40 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
Listing 8-10. Transition of Frequencies (ASM)

__frequency:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

/* write the struct */

R0 = 0;

R0.L = SET_MSEL(21) ; /* Set MSEL = 0-63 --> VCO = CLKIN*MSEL */

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllCtl)] = R0;

R0.L = SET_SSEL(4) | /* Set SSEL = 1-15 --> SCLK = VCO/SSEL */

 CSEL_DIV1 ; /* CCLK = VCO / 1 */

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllDiv)] = R0;

R0.L = 0x0200;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllLockCnt)] = R0;

/* argument 1 in R0 */

R0 = (SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL |

SYSCTRL_PLLDIV);

/* argument 2 in R1: structure lays on local stack */

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

/* argument 3 must always be NULL */

R2 = 0;
ADSP-BF51x Blackfin Processor Hardware Reference 8-41

Programming Examples
/* call of SysControl function */

IMM32(P4,BFROM_SYSCONTROL);

call (P4); /* R0 contains the result from SysControl */

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

__frequency.end:

Changing Voltage Levels
Listing 8-11 provides C code for changing the voltage level dynamically.
The User must include his own code for accessing the external voltage
regulator.
8-42 ADSP-BF51x Blackfin Processor Hardware Reference

Dynamic Power Management
Listing 8-11. Changing Core Voltage (C)

void voltage(void)

{

ADI_SYSCTRL_VALUES voltage;

u32 ulCnt = 0;

bfrom_SysControl(SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL |

SYSCTRL_READ, &init, NULL);

init.uwPllCtl |= BYPASS;

init.uwPllLockCnt = 0x0200;

bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_PLLCTL | SYSCTRL_LOCKCNT

| SYSCTRL_EXTVOLTAGE, &voltage, NULL);

/* Put your code for accessing the external voltage regulator

here */

/* A delay loop is required to ensure VDDint is stable and the

PLL has re-locked. As this is depending on the external voltage

regulator circuitry the user must ensure timings are kept. The

compiler (no optimization enabled) will create a loop that takes

about 10 cycles. Time base is CLKIN as the PLL is bypassed. We

need 0x0200 CLKIN cycles that represent PLL_LOCKCNT and addition-

ally the time required by the circuitry */

ulCnt = 0x0200 + 0x0200;

while (ulCnt != 0) {ulCnt--;}

init.uwPllCtl &= ~BYPASS;

bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_PLLCTL |

SYSCTRL_EXTVOLTAGE, &voltage, NULL);

return;

}
ADSP-BF51x Blackfin Processor Hardware Reference 8-43

Programming Examples

8-44 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
9 GENERAL-PURPOSE PORTS

This chapter describes the general-purpose ports. Following an overview
and a list of key features is a block diagram of the interface and a descrip-
tion of operation. The chapter concludes with a programming model,
consolidated register definitions, and programming examples.

Overview
The ADSP-BF51x Blackfin processors feature a rich set of peripherals,
which, through a powerful pin multiplexing scheme, provides great flexi-
bility to the external application space.

Table 9-1 shows all the peripheral signals that can be accessed off-chip.
ADSP-BF51x processors feature 42 peripheral pins through which all
on-chip peripheral are multiplexed.
ADSP-BF51x Blackfin Processor Hardware Reference 9-1

Features
Features
The peripheral pins are functionally organized into general-purpose ports
designated port F, port G, and port H.

Port F provides 16 pins:

• MII/RMII signals (ADSP-BF516 and ADSP-BF518 only)

• PPI data signals

• PWM signals

• Primary Timer signals

Table 9-1. General-Purpose and Special Function Signals

Peripheral Signals

10/100 Ethernet MAC1 with

IEEE-15882

MII interface (18) or RMII (11), IEEE-1588(3)

RSI interface3 Data (8), clock (1), command (1)

PWM Channels (6), sync (1), trip (1)

PPI Interface Data (16), frame sync (3), clock (1)

SPI Interface Data (4), clock (2), slave select (2), slave enable (9)

SPORTs Data (8), clock (4), frame sync (4)

UARTs Data (4)

Timers PWM/capture/clock (8), alternate clock input (4), alternate cap-
ture input (7)

General-Purpose I/O GPIO (40)

Handshake MemDMA MemDMA request (2)

1 ADSP-BF516 and ADSP-BF518 only.
2 ADSP-BF518 only.
3 ADSP-BF514, ADSP-BF516, and ADSP-BF518 only.
9-2 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
• Additional SPI0 and SPI1 slave selects

• GPIOs

Port G provides 16 pins:

• SPORT0 signals

• Primary SPI0 signals

• UART0 signals

• RSI signals (ADSP-BF514, ADSP-BF516, and ADSP-BF518 only)

• Handshake memDMA request signals

• PPI Clock and Frame Sync signals

• GPIOs

Port H provides 8 pins:

• SPORT1 signals

• UART1 signals

• SPI1 primary signals

• Up/Down Counter

• Primary Timer signals

• GPIOs

Interface Overview
By default, all port F, port G, and port H pins are in general-purpose I/O
(GPIO) mode. Port J does not provide GPIO functionality. In this mode,
a pin can function as a digital input, digital output, or interrupt input.
ADSP-BF51x Blackfin Processor Hardware Reference 9-3

Interface Overview
See “General-Purpose I/O Modules” on page 9-14 for details. Peripheral
functionality must be explicitly enabled by the function enable registers
(PORTF_FER, PORTG_FER, and PORTH_FER). The competing peripherals on
port F, port G, and port H are controlled by the respective multiplexer
control register (PORTF_MUX, PORTG_MUX, PORTH_MUX).

 In this chapter, the naming convention for registers and bits uses a
lowercase x to represent F, G, or H. For example, the name
PORTx_FER represents PORTF_FER, PORTG_FER, and PORTH_FER. The
bit name Px0 represents PF0, PG0, and PH0. This convention is used
to discuss registers common to these three ports.

External Interface
The external interface of the general-purpose ports are described in the
following sections.

Port F Structure

Table 9-2 shows the multiplexer scheme for port F. Port F is controlled by
the PORTF_MUX and the PORTF_FER registers.

Port F consists of 16 pins, referred to as PF0 to PF15, as shown in
Table 9-2. Besides the 16 GPIOs, this port houses all the PPI data signals
(PPID15-0) and MII/RMII signals. The PPI signals are multiplexed with
PWM signals. With an 8-bit PPI, there is no restriction to use the 4 chan-
nels of PWM. All the input signals in the “Additional Use” column are
enabled by their module only, regardless of the state of the PORTx_MUX and
PORTx_FER registers.

Any GPIO can be enabled individually and overrides the peripheral func-
tion if the respective bit in PORTF_FER is cleared.
9-4 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
 Bits 13-15 in the PORTF_MUX register are reserved. If TMRCLK is used
as an input to a GP Timer but the PPI is disabled, then bit 12 of
PORTF_MUX should be set.

Port G Structure

Table 9-3 shows the multiplexer scheme for port G. Port G is controlled
by the PORTG_MUX and PORTG_FER registers.

Port G consists of 16 pins, referred to as PG0 to PG15, as shown in
Table 9-3. Besides the 16 GPIOs, this port houses SPORT0 and SPI0
signals along with the RSI data, clock, and command signals. If a second-
ary channel on SPORT0 is not required, you can enable UART0 signals
or an additional timer.

Table 9-2. Port F Multiplexing Scheme

PORTF_MUX 00 01 10 11

1st Function 2nd Function 3rd Function 4th Function Additional Use GPIO

Bit[1:0] MII ETxD2 PPI D0 SPI1SSEL2 - TACLK6 PF0

Bit[3:2] MII ERxD2
MII ETxD3
MII ERxD3
MII ERxCLK
MII ERxDV
MII COL

PPI D1
PPI D2
PPI D3
PPI D4
PPI D5
PPI D6

PWM_AH
PWM_AL
PWM_BH
PWM_BL
PWM_CH
PWM_CL

-
-
-
-
-
-

TACLK7

TACLK0
TACLK1
TACI0
TACI1

PF1
PF2
PF3
PF4
PF5
PF6

Bit[5:4] SPI0SSEL1 PPI D7 PWM_SYNC - PF7

Bit[7:6] RMII MDC
RMII MDIO
RMII ETxD0

PPI D8
PPI D9
PPI D10

SPI1SSEL4
TMR2
TMR3

-
-
-

PF8
PF9
PF10

Bit[9:8] RMII ERxD0
RMII ETxD1
RMII ERxD1
RMII ETxEN

PPI D11
PPI D12
PPI D13
PPI D14

PWM_AH
PWM_AL
PWM_BH
PWM_BL

-
-
-
-

TACI3 PF11
PF12
PF13
PF14

Bit[11:10] RMII PHYINT PPI D15 PWM_SYNC - PF15
ADSP-BF51x Blackfin Processor Hardware Reference 9-5

Interface Overview

PIO

G0
G1
G2

G3

G4

G5
G6
G7

G8

G9
G10

G11

G12
G13
G14
G15
Special attention is required for the use of the timers with PPI enabled.
Timer0 and Timer1 are typically used for PPI frame sync generation.

Any GPIO can be enabled individually and overrides the peripheral func-
tion if the respective bit in the PORTG_FER register is cleared.

Port H Structure

Table 9-4 shows the multiplexer scheme for port H. Port H is controlled
by the PORTH_MUX and PORTH_FER registers.

Port H consists of 9 pins. PH0 to PH7 (shown in Table 9-4) are GPIO capa-
ble and operate in the same fashion as the Port F and Port G pins. PH8 has
limited GPIO capability and connects to the chip enable of the optional
internal SPI flash in the ADSP-BF51x package. Port H also houses the

Table 9-3. Port G Multiplexing Scheme

PORTG_MUX 00 01 10 11

1st Function 2nd Function 3rd Function 4th Function Additional
Use

G

Bit[1:0] RMII CRS
MRII ERxER
RMII TxCLK

HWAIT
DMAR1
DMAR0

SPI1SSEL3
PWM_CH
PWM_CL

-
-
-

P
P
P

Bit[3:2] DR0PRI RSI_DATA0 SPI0SSEL5 - TACLK3 P

Bit[5:4] RSCLK0 RSI_DATA1 TMR5 - TACI5 P

Bit[7:6] RFS0
TFS0
DT0PRI

RSI_DATA2
RSI_DATA3
RSI_CMD

PPICLK/TMRCLK
TMR0/PPIFS1
TMR1/PPIFS2

-
-

P
P
P

Bit[9:8] TSCLK0 RSI_CLK TMR6 - TACI6 P

Bit[11:10] DT0SEC
DR0SEC

UART0 TX
UART0 RX

TMR4
PWM_TRIPB

-
- TACI4

P
P

Bit[13:12] SPI0 SS AMS2 SPI1SSEL5 - TACLK2 P

Bit[15:14] SPI0 SCK
SPI0 MISO
SPI0 MOSI
SPI0SSEL2

PPICLK/TMRCLK
TMR0/PPIFS1
TMR1/PPIFS2
PPI FS3

PTP_PPS
PTP_CLKOUT
PWM_TRIPB
AMS3

-
-
-
-

PTP_AUXIN

P
P
P
P

9-6 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
SPORT1 and SPI signals. If a secondary channel on SPORT1 is not
required, you can enable UART1 signals, or an additional SPI1 slave
enable signal or an additional timer.

Any GPIO can be enabled individually and overrides the peripheral func-
tion if the respective bit in the PORTH_FER register is cleared.

 Bits 8-15 in the PORTH_MUX register are reserved.

Input Tap Considerations

Input taps are shown in Table 9-2, Table 9-3 and Table 9-4 under the
“Additional Use” column. When input taps (as well as GPIO based taps)
are used with other functionality enabled on the GPIO pins, the signals
seen by the input tap modules might be different from what is seen on the
pins. This is because different pin functions have different signal require-
ments with respect to when the signal is latched, if at all. Because of this,
input taps multiplexed on certain pins may behave differently than those

Table 9-4. Port H Multiplexing Scheme

PORTH_MUX 00 01 10 11

1st Function 2nd Function 3rd Function 4th Function Additional Use GPIO

Bit[1:0] DR1PRI
RFS1
RSCLK1
DT1PRI

SPI1 SS
SPI1 MISO
SPI1 SCK
SPI1 MOSI

RSI_DATA4
RSI_DATA5
RSI_DATA6
RSI_DATA7

-
-
-
-

PH0
PH1
PH2
PH3

Bit[3:2] TFS1
TSCLK1

AOE
ARDY

SPI0SSEL3
ECLK

-
-

CUD
CDG

PH4
PH5

Bit[5:4] DT1SEC UART1 TX SPI1SSEL1 - CZM PH6

Bit[7:6] DR1SEC UART1 RX TMR7 - TACI2 PH7
ADSP-BF51x Blackfin Processor Hardware Reference 9-7

Interface Overview
on other pins, depending on which pin function is selected. The input
taps will see different signals than at the pins in the following cases:

• All GPIO inputs except PG2, PG4, PG8, PG9, PG11, PG12, PH2, PH6
when GPIO is tapped with PORTx_FER set to 1.

• TACLK6 if PORTF_FER[0] = 1 and PORTF_MUX[1:0] = b#01

• TACLK7 if PORTF_FER[1] = 1 and PORTF_MUX[3:2] = b#00, b#01

• TACLK0 if PORTF_FER[3] = 1 and PORTF_MUX[3:2] = b#00, b#01

• TACLK1 if PORTF_FER[4] = 1 and PORTF_MUX[3:2] = b#01

• TACLK3 if PORTG_FER[3] = 1 and PORTG_MUX[3:2] = b#00

• TACI0 if PORTF_FER[5] = 1 and PORTF_MUX[3:2] = b#00, b#01

• TACI1 if PORTF_FER[6] = 1 and PORTF_MUX[3:2] = b#01

• TACI3 if PORTF_FER[11] = 1 and PORTF_MUX[9:8] = b#00, b#01

• TACI4 if PORTG_FER[10] = 1 and PORTG_MUX[11:10] = b#00

• TACI2 if PORTH_FER[7] = 1 and PORTH_MUX[7:6] = b#00

• PTP_AUXIN if PORTG_FER[14] = 1 and PORTG_MUX[15:14] = b#00,
b#01

• CUD if PORTH_FER[4] =1 and PORTH_MUX[3:2] = b#00

• CDG if PORTH_FER[5] = 1 and PORTH_MUX[3:2] = b#01

PWM Unit Considerations

PWM signals that appear in multiple ports, if selected on both, will have
inputs and outputs enabled only on PF1–PF7. PWM_TRIPB appears twice
within Port G: on PG10 and PG14. If both are configured as PWM_TRIPB and
selected, inputs will only be enabled on PG10.
9-8 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
If PWM_TRIPB is not selected on either PG14 or PG10, then the internal
PWM_TRIPB signal to the PWM module will be driven low. That is, the
PWM unit will be tripped if neither of these PWM_TRIPB signals is selected
via the PORTG_MUX register.

RSI Considerations

Pull up/pull down enabling for RSI:

• Pull down for RSI_DATA[3] will be enabled only if RSI is selected
on PG6 (that is, PORTG_MUX[7:6] == b#01) and the PD_Dat3 bit is set
in the RSI_CONFIG register.

• Pull up for RSI_DATA[3] will be enabled only if RSI is selected on
PG6 (that is, PORTG_MUX[7:6] == b#01) and the PU_Dat3 bit is set in
the RSI_CONFIG register.

• Pull up for RSI_DATA[0] will be enabled only if RSI_DATA[0] is
selected on PG3 (that is, PORTG_MUX[3:2] == b#01) and the PU_Dat
bit is set in the RSI_CONFIG register.

• Pull up for RSI_DATA[1] will be enabled only if RSI_DATA[1] is
selected on PG4 (that is, PORTG_MUX[5:4] == b#01) and the PU_Dat
bit is set in the RSI_CONFIG register.

• Pull up for RSI_DATA[2] will be enabled only if RSI DATA[2] is
selected on PG5 (that is, PORTG_MUX[7:6] == b#01) and the PU_Dat
bit is set in the RSI_CONFIG register.

• Pull up for RSI_DATA[7:4] will be enabled only if RSI_DATA[7:4] is
selected on PH[3:0] (that is, PORTH_MUX[1:0] == b#10) and the
PU_Dat bit is set in the RSI_CONFIG register.

If RSI_DATA[3] is not selected on PG6 (that is, PG_MUX[7:6] b#01) then
the RSI_DATA[3] signal to RSI module will be driven low. This is to pre-
vent a spurious card detect interrupt generated by RSI due to data
ADSP-BF51x Blackfin Processor Hardware Reference 9-9

Interface Overview
toggling on the PG6 pin when it is selected for SPORT/PPI/TMR/GPIO
operation.

Internal Interfaces
Port control and GPIO registers are part of the system memory-mapped
registers (MMRs). The addresses of the GPIO module MMRs appear in
Appendix B. Core access to the GPIO configuration registers is through
the system bus.

The PORTx_MUX registers control the muxing schemes of port F, port G,
and port H.

The function enable registers (PORTF_FER, PORTG_FER, PORTH_FER) enable
the peripheral functionality for each individual pin of port x.

SPI0 and Internal Flash Usage

PH8 has limited GPIO capability and connects to the chip enable of the
optional internal SPI flash in the ADSP-BF51x package.

 On ADSP-BF51x parts, with and without external flash,
PORTH_FER[8] must always be set to b#1 for SPI0 to function prop-
erly—unless PH8 is used to select the internal SPI flash.

Table 9-5. SPI0 Usage Scenarios

Scenario PORTH_FER[8] PORTHIO_DIR[8] Processors Additional Information

SPI0 master
external access
using SPI_FLG

b#1 b#0 ADSP-BF51x
and
ADSP-BF51xF

SPI0 master
external access
using GPIO
slave selection

b#1 b#0 ADSP-BF51x
and
ADSP-BF51xF
9-10 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
Broadcast mode is restricted for SPI0. SPI0 can broadcast to all slaves
except the internal SPI flash (FLS4 in the SPI0_FLG register). Therefore,
in broadcast mode, FLS4 of SPI_FLG register should be set to b#0 and all
other slave selects (FLS1–3 and FLS5) may be set to b#1.

GP Timer Interaction With Other Blocks

The TACLKx and TACIx inputs of the GP Timers connect to several differ-
ent subsystems of the ADSP-BF51x processor. Following are the details of
these connections.

Buffered CLKIN (CLKBUF)

TACLK5 and TACLK4 connect internally to the CLKBUF pin

GP Counter

TACI7 connects to the COUNTER0 TO output internally.

SPI0 slave
access

b#1 b#0 ADSP-BF51x
and
ADSP-BF51xF

SPI0 master
internal flash
access using
SPI_FLG FLS4

b#1 b#0 ADSP-BF51xF
only

SPI0 master
internal flash
access using
GPIO slave
selection

b#0 b#1 ADSP-BF51xF
only

Use PORTHIO_SET[8],
PORTHIO_CLEAR[8],
PORTHIO_TOGGLE[8]
to access internal flash

Table 9-5. SPI0 Usage Scenarios (Continued)

Scenario PORTH_FER[8] PORTHIO_DIR[8] Processors Additional Information
ADSP-BF51x Blackfin Processor Hardware Reference 9-11

Interface Overview
PPI

TMR0 is internally looped back to PPI_FS1 (to be used as internally gener-
ated frame sync). In this case, PPI_CLK is the clock input for the Timer0
module.

TMR1 is internally looped back to PPI_FS2 (to be used as internally gener-
ated frame sync) In this case, PPI_CLK is the clock input for the Timer1
module.

PPI_CLK/TMRCLK can be used as a clock input for any of the timers. If
TMRCLK is used as an input to a GP Timer but the PPI is disabled, then
bit 12 of PORTF_MUX should be set.

PPI/TMR signals (PPICLK/TMRCLK, TMR0/PPIFS1, TMR1/PPIFS2) that appear
in multiple ports, if selected on both, will have inputs and outputs enabled
only on PG12–PG14.

UART

TACI4 can be used for autobaud detection of UART0 RX.

TACI2 can be used for autobaud detection of UART1 RX.

SPORT

If TMR5 is configured as an output and PORTG_MUX[5:4] == b#10 and
SPORT0’s RSCLK0 input enable is active, then TMR5 is the clock input for
RSCLK0.

If TMR6 is configured as an output and PORTG_MUX[9:8] == b#10, and
SPORT0’s TSCLK0 input enable is active, then TMR6 is the clock input for
TSCLK0.

If SPORT0’s RSCLK0 is configured as an output and PORTG_MUX[5:4] ==
b#00 and TMR5 input enable is active, then RSCLK0 is the clock input for
TMR5.
9-12 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
If SPORT0’s TSCLK0 is configured as an output and PORTG_MUX[9:8] ==
b#00 and TMR6 input enable is active, then TSCLK0 is the clock input for
TMR6.

If TACI5 is selected in the TMR5 module, then the signal from the PG4 pin is
fed to both SPORT0’s RSCLK0 and TACI5.

If TACI6 is selected in the TMR6 module, then the signal from the PG8 pin is
fed to both SPORT0’s TSCLK0 and TACI6.

Performance/Throughput
The PFx, PGx, and PHx pins are synchronized to the system clock (SCLK).
When configured as outputs, the GPIOs can transition once every system
clock cycle.

When configured as inputs, the overall system design should take into
account the potential latency between the core and system clocks. Changes
in the state of port pins have a latency of 3 SCLK cycles before being detect-
able by the processor. When configured for level-sensitive interrupt
generation, there is a minimum latency of 4 SCLK cycles between the time
the signal is asserted on the pin and the time that program flow is inter-
rupted. When configured for edge-sensitive interrupt generation, an
additional SCLK cycle of latency is introduced, giving a total latency of 5
SCLK cycles between the time the edge is asserted and the time that the
core program flow is interrupted.

Description of Operation
The operation of the general-purpose ports is described in the following
sections.
ADSP-BF51x Blackfin Processor Hardware Reference 9-13

Description of Operation
Operation
The GPIO pins on port F, port G, and port H can be controlled individu-
ally by the function enable registers (PORTx_FER). With a control bit in
these registers cleared, the peripheral function is fully decoupled from the
pin. It functions as a GPIO pin only. To drive the pin in GPIO output
mode, set the respective direction bit in the PORTxIO_DIR register. To
make the pin a digital input or interrupt input, enable its input driver in
the PORTxIO_INEN register.

 By default all peripheral pins are configured as inputs after reset.
port F, port G, and port H pins are in GPIO mode. However,
GPIO input drivers are disabled to minimize power consumption
and any need of external pulling resistors.

When the control bit in the function enable registers (PORTx_FER) is set,
the pin is set to its peripheral functionality and is no longer controlled by
the GPIO module. However, the GPIO module can still sense the state of
the pin. When using a particular peripheral interface, pins required for the
peripheral must be individually enabled. Keep the related function enable
bit cleared if a signal provided by the peripheral is not required by your
application. This allows it to be used in GPIO mode.

General-Purpose I/O Modules
The processor supports 40 bidirectional or general-purpose I/O (GPIO)
signals. These 40 GPIOs are managed by three different GPIO modules,
which are functionally identical. One is associated with port F, one with
port G, and one with port H. Port F and port G each consist of 16 GPIOs
(PF15–0 and PG15–0), respectively. Port H consists of eight GPIOs
(PH7-0).

Each GPIO can be individually configured as either an input or an output
by using the GPIO direction registers (PORTxIO_DIR).
9-14 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
When configured as output, the GPIO data registers (PORTFIO, PORTGIO,
and PORTHIO) can be directly written to specify the state of the GPIOs.

The GPIO direction registers are read-write registers with each bit posi-
tion corresponding to a particular GPIO. A logic 1 configures a GPIO as
an output, driving the state contained in the GPIO data register if the
peripheral function is not enabled by the function enable registers. A logic
0 configures a GPIO as an input.

 Note when using the GPIO as an input, the corresponding bit
should also be set in the GPIO input enable register. Otherwise,
changes at the input pins will not be recognized by the processor.

The GPIO input enable registers (PORTFIO_INEN, PORTGIO_INEN, and
PORTHIO_INEN) are used to enable the input buffers on any GPIO that is
being used as an input. Leaving the input buffer disabled eliminates the
need for pull-ups and pull-downs when a particular PFx, PGx, or PHx pin is
not used in the system. By default, the input buffers are disabled.

 Once the input driver of a GPIO pin is enabled, the GPIO is not
allowed to operate as an output anymore. Never enable the input
driver (by setting PORTxIO_INEN bits) and the output driver (by set-
ting PORTxIO_DIR bits) for the same GPIO.

A write operation to any of the GPIO data registers sets the value of all
GPIOs in this port that are configured as outputs. GPIOs configured as
inputs ignore the written value. A read operation returns the state of the
GPIOs defined as outputs and the sense of the inputs, based on the polar-
ity and sensitivity settings, if their input buffers are enabled. Table 9-6
helps to interpret read values in GPIO mode, based on the settings of the
PORTxIO_POLAR, PORTxIO_EDGE, and PORTxIO_BOTH registers.
ADSP-BF51x Blackfin Processor Hardware Reference 9-15

Description of Operation
 For GPIOs configured as edge-sensitive, a readback of 1 from one
of these registers is sticky. That is, once it is set it remains set until
cleared by user code. For level-sensitive GPIOs, the pin state is
checked every cycle, so the readback value will change when the
original level on the pin changes.

The state of the output is reflected on the associated pin only if the func-
tion enable bit in the PORTx_FER register is cleared.

Write operations to the GPIO data registers modify the state of all GPIOs
of a port. In cases where only one or a few GPIOs need to be changed, the
user may write to the GPIO set registers, PORTxIO_SET, the GPIO clear
registers, PORTxIO_CLEAR, or to the GPIO toggle registers, PORTxIO_TOGGLE
instead.

While a direct write to a GPIO data register alters all bits in the register,
writes to a GPIO set register can be used to set a single or a few bits only.
No read-modify-write operations are required. The GPIO set registers are
write-1-to-set registers. All 1s contained in the value written to a GPIO set
register sets the respective bits in the GPIO data register. The 0s have no
effect. For example, assume that PF0 is configured as an output. Writing
0x0001 to the GPIO set register drives a logic 1 on the PF0 pin without

Table 9-6. GPIO Value Register Pin Interpretation

POLAR EDGE BOTH Effect of MMR Settings

0 0 X Pin that is high reads as 1; pin that is low
reads as 0

0 1 0 If rising edge occurred, pin reads as 1;
otherwise, pin reads as 0

1 0 X Pin that is low reads as 1; pin that is high
reads as 0

1 1 0 If falling edge occurred, pin reads as 1;
otherwise, pin reads as 0

X 1 1 If any edge occurred, pin reads as 1; oth-
erwise, pin reads as 0
9-16 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
affecting the state of any other PFx pins. The GPIO set registers are typi-
cally also used to generate GPIO interrupts by software. Read operations
from the GPIO set registers return the content of the GPIO data registers.

The GPIO clear registers provide an alternative port to manipulate the
GPIO data registers. While a direct write to a GPIO data register alters all
bits in the register, writes to a GPIO clear register can be used to clear
individual bits only. No read-modify-write operations are required. The
clear registers are write-1-to-clear registers. All 1s contained in the value
written to the GPIO clear register clears the respective bits in the GPIO
data register. The 0s have no effect. For example, assume that PF4 and PF5
are configured as outputs. Writing 0x0030 to the PORTFIO_CLEAR register
drives a logic 0 on the PF4 and PF5 pins without affecting the state of any
other PFx pins.

 If an edge-sensitive pin generates an interrupt request, the service
routine must acknowledge the request by clearing the respective
GPIO latch. This is usually performed through the clear registers.

Read operations from the GPIO clear registers return the content of the
GPIO data registers.

The GPIO toggle registers provide an alternative port to manipulate the
GPIO data registers. While a direct write to a GPIO data register alters all
bits in the register, writes to a toggle register can be used to toggle individ-
ual bits. No read-modify-write operations are required. The GPIO toggle
registers are write-1-to-toggle registers. All 1s contained in the value writ-
ten to a GPIO toggle register toggle the respective bits in the GPIO data
register. The 0s have no effect. For example, assume that PG1 is configured
as an output. Writing 0x0002 to the PORTGIO_TOGGLE register changes the
pin state (from logic 0 to logic 1, or from logic 1 to logic 0) on the PG1 pin
without affecting the state of any other PGx pins. Read operations from the
GPIO toggle registers return the content of the GPIO data registers.

The state of the GPIOs can be read through any of these data, set, clear, or
toggle registers. However, the returned value reflects the state of the input
ADSP-BF51x Blackfin Processor Hardware Reference 9-17

Description of Operation
pin only if the proper input enable bit in the PORTxIO_INEN register is set.
Note that GPIOs can still sense the state of the pin when the function
enable bits in the PORTx_FER registers are set.

Since function enable registers and GPIO input enable registers reset to
zero, no external pull-ups or pull-downs are required on the unused pins
of port F, port G, and port H.

GPIO Interrupt Processing
Each GPIO can be configured to generate an interrupt. The processor can
sense up to 40 asynchronous off-chip signals, requesting interrupts
through five interrupt channels. To make a pin function as an interrupt
pin, the associated input enable bit in the PORTxIO_INEN register must be
set. The function enable bit in the PORTx_FER register is typically cleared.
Then, an interrupt request can be generated according to the state of the
pin (either high or low), an edge transition (low to high or high to low), or
on both edge transitions (low to high and high to low). Input sensitivity is
defined on a per-bit basis by the GPIO polarity registers (PORTFIO_POLAR,
PORTGIO_POLAR, and PORTHIO_POLAR), and the GPIO interrupt sensitivity
registers (PORTFIO_EDGE, PORTGIO_EDGE, and PORTHIO_EDGE). If configured
for edge sensitivity, the GPIO set on both edges registers (PORTFIO_BOTH,
PORTGIO_BOTH, and PORTHIO_BOTH) let the interrupt request generate on
both edges.

The GPIO polarity registers are used to configure the polarity of the
GPIO input source. To select active high or rising edge, set the bits in the
GPIO polarity register to 0. To select active low or falling edge, set the
bits in the GPIO polarity register to 1. This register has no effect on
GPIOs that are defined as outputs. The contents of the GPIO polarity
registers are cleared at reset, defaulting to active high polarity.

The GPIO interrupt sensitivity registers are used to configure each of the
inputs as either a level-sensitive or an edge-sensitive source. When using
an edge-sensitive mode, an edge detection circuit is used to prevent a
9-18 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
situation where a short event is missed because of the system clock rate.
The GPIO interrupt sensitivity register has no effect on GPIOs that are
defined as outputs. The contents of the GPIO interrupt sensitivity regis-
ters are cleared at reset, defaulting to level sensitivity.

The GPIO set on both edges registers are used to enable interrupt genera-
tion on both rising and falling edges. When a given GPIO has been set to
edge-sensitive in the GPIO interrupt sensitivity register, setting the
respective bit in the GPIO set on both edges register to both edges results
in an interrupt being generated on both the rising and falling edges. This
register has no effect on GPIOs that are defined as level-sensitive or as
outputs. See Table 9-6 for information on how the GPIO set on both
edges register interacts with the GPIO polarity and GPIO interrupt sensi-
tivity registers.

When the GPIO’s input drivers are enabled while the GPIO direction reg-
isters configure it as an output, software can trigger a GPIO interrupt by
writing to the data/set/toggle registers. The interrupt service routine
should clear the GPIO to acknowledge the request.

Each of the three GPIO modules provides two independent interrupt
channels. Identical in functionality, these are called interrupt A and inter-
rupt B. Both interrupt channels have their own mask register which lets
you assign the individual GPIOs to none, either, or both interrupt
channels.

Since all mask registers reset to zero, none of the GPIOs is assigned any
interrupt by default. Each GPIO represents a bit in each of these registers.
Setting a bit means enabling the interrupt on this channel.

Interrupt A and interrupt B operate independently. For example, writing
1 to a bit in the mask interrupt A register does not affect interrupt channel
B. This facility allows GPIOs to generate GPIO interrupt A, GPIO inter-
rupt B, both GPIO interrupts A and B, or neither.

A GPIO interrupt is generated by a logical OR of all unmasked GPIOs for
that interrupt. For example, if PF0 and PF1 are both unmasked for GPIO
ADSP-BF51x Blackfin Processor Hardware Reference 9-19

Description of Operation
interrupt channel A, GPIO interrupt A will be generated when triggered
by PF0 or PF1. The interrupt service routine must evaluate the GPIO data
register to determine the signaling interrupt source. Figure 9-1 illustrates
the interrupt flow of any GPIO module's interrupt A channel.

 When using either rising or falling edge-triggered interrupts, the
interrupt condition must be cleared each time a corresponding
interrupt is serviced by writing 1 to the appropriate bit in the
GPIO clear register.

At reset, all interrupts are masked and disabled.

Similarly to the GPIOs themselves, the mask register can either be written
through the GPIO mask data registers (PORTxIO_MASKA, PORTxIO_MASKB) or
be controlled by the mask A/mask B set, clear and toggle registers.

The GPIO mask interrupt set registers (PORTxIO_MASKA_SET,
PORTxIO_MASKB_SET) provide an alternative port to manipulate the GPIO
mask interrupt registers. While a direct write to a mask interrupt register
alters all bits in the register, writes to a mask interrupt set register can be
used to set a single or a few bits only. No read-modify-write operations are
required.

The mask interrupt set registers are write-1-to-set registers. All ones con-
tained in the value written to the mask interrupt set register set the
respective bits in the mask interrupt register. The zeroes have no effect.
Writing a one to any bit enables the interrupt for the respective GPIO.
9-20 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
The GPIO mask interrupt clear registers (PORTxIO_MASKA_CLEAR,
PORTxIO_MASKB_CLEAR) provide an alternative port to manipulate the
GPIO mask interrupt registers. While a direct write to a mask interrupt
register alters all bits in the register, writes to the mask interrupt clear

Figure 9-1. GPIO Interrupt Generation Flow for Interrupt Channel A

NO
(INPUT)

YES

YES

YES

YES

GENERATE INTERRUPT A

START

IS THE GPIO SET
AS AN OUTPUT IN

PORTxIO_DIR?

IS THE GPIO
EDGE-SENSITIVE

AS DEFINED IN
PORTxIO_EDGE?

IS THE INPUT
AN ACTIVE LEVEL

AS DEFINED IN
PORTxIO_POLAR?

IS THE GPIO
SET TO ONE?

YES

IS EDGE
DETECTED

AS DEFINED IN
PORTxIO_POLAR &

PORTxIO_BOTH?

IS THE INPUT
DRIVER ENABLED IN

PORTxIO_INEN?

IS THE
GPIO ENABLED IN

PORTxIO_MASKA_D?

NO
(LEVEL SENSITIVE)

YES
(OUTPUT)

YES
(EDGE SENSITIVE)
ADSP-BF51x Blackfin Processor Hardware Reference 9-21

Description of Operation
register can be used to clear a single bit or a few bits only. No read-mod-
ify-write operations are required.

The mask interrupt clear registers are write-1-to-clear registers. All ones
contained in the value written to the mask interrupt clear register clear the
respective bits in the mask interrupt register. The zeroes have no effect.
Writing a one to any bit disables the interrupt for the respective GPIO.

The GPIO mask interrupt toggle registers (PORTxIO_MASKA_TOGGLE,
PORTxIO_MASKB_TOGGLE) provide an alternative port to manipulate the
GPIO mask interrupt registers. While a direct write to a mask interrupt
register alters all bits in the register, writes to a mask interrupt toggle reg-
ister can be used to toggle a single bit or a few bits only. No
read-modify-write operations are required.

The mask interrupt toggle registers are write-1-to-clear registers. All ones
contained in the value written to the mask interrupt toggle register toggle
the respective bits in the mask interrupt register. The zeroes have no
effect. Writing a one to any bit toggles the interrupt for the respective
GPIO.

Figure 9-1 illustrates the interrupt flow of any GPIO module’s interrupt A
channel. The interrupt B channel behaves identically.

All GPIOs assigned to the same interrupt channel are OR’ed. If multiple
GPIOs are assigned to the same interrupt channel, it is up to the interrupt
service routine to evaluate the GPIO data registers to determine the sig-
naling interrupt source.

All GPIOs assigned to the same interrupt channel are OR’ed. (See
Figure 9-2.) If multiple GPIOs are assigned to the same interrupt channel,
it is up to the interrupt service routine to evaluate the GPIO data registers
to determine the signaling interrupt source.
9-22 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
Figure 9-2. GPIO Interrupt Channels

IRQ40

P
F

0

PORTFIO_MASKA_D
P

F
1

P
F

2

P
F

3

P
F

4

P
F

5

P
F

6

P
F

7

P
F

8

P
F

9

P
F

10

P
F

11

P
F

12

P
F

13

P
F

14

P
F

15

PORTFIO_MASKB_D

P
G

0

PORTGIO_MASKA_D

P
G

1

P
G

2

P
G

3

P
G

4

P
G

5

P
G

6

P
G

7

P
G

8

P
G

9

P
G

10

P
G

11

P
G

12

P
G

13

P
G

14

P
G

15

PORTGIO_MASKB_D

P
H

0

PORTHIO_MASKA_D

P
H

1

P
H

2

P
H

3

P
H

4

P
H

5

P
H

6

P
H

7

PORTHIO_MASKB_D

IRQ45

IRQ46

IRQ41

IRQ29

IRQ31
ADSP-BF51x Blackfin Processor Hardware Reference 9-23

Programming Model
Programming Model
Figure 9-3 and Figure 9-4 show the programming model for the gen-
eral-purpose ports.

Figure 9-3. GPIO Flow Chart (Part 1 of 2)

WRITE PORTx_MUX, WRITE PORTx_FER
TO SET APPROPRIATE PERIPHERAL BITS

PERIPHERAL

GPIO

GPIO OR
PERIPHERAL?

WRITE PORTx_FER TO CLEAR
APPROPRIATE PFx, PGx, AND PHx BITS

SEE PERIPHERAL FOR MORE DETAILS

OUTPUT

INPUT

GPIO OUTPUT
OR INPUT?

WRITE PORTxIO_DIR TO CLEAR
APPROPRIATE BITS FOR INPUT DIRECTION

WRITE PORTxIO_INEN TO SET APPROPRIATE
BITS TO ENABLE INPUT DRIVERS DIRECTION

A

WRITE PORTxIO_DIR TO SET
APPROPRIATE BITS FOR OUTPUT DIRECTION

SET

CLEAR

SET OR CLEAR
GPIO?

WRITE PORTxIO_CLEAR TO SET
APPROPRIATE BITS TO LOWER INDIVIDUAL GPIO

WRITE PORTxIO_SET TO SET
APPROPRIATE BITS TO RAISE INDIVIDUAL GPIO
9-24 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
Figure 9-4. GPIO Flow Chart (Part 2 of 2)

WRITE PORTxIO_EDGE TO SET
APPROPRIATE BITS FOR EDGE SENSITIVITY

EDGE

LEVEL

EDGE OR LEVEL
SENSITIVE?

WRITE PORTxIO_EDGE TO CLEAR
APPROPRIATE BITS FOR LEVEL SENSITIVITY

LOW

LEVEL HIGH
 OR LOW?

WRITE PORTxIO_POLAR TO SET
APPROPRIATE BITS FOR LOW LEVEL SENSITIVITY

WRITE PORTxIO_POLAR TO CLEAR APPROPRIATE
BITS FOR HIGH LEVEL SENSITIVITY

A

NO

YES

INTERRUPT
ABILITY?

SOFTWARE CAN INTERROGATE
PORTx_DATA BITS TO
DETERMINE EVENTS

RISING OR FALLING

BOTH

EDGE RISING/
FALLING OR BOTH?

WRITE PORTxIO_BOTH TO SET
APPROPRIATE BITS FOR BOTH EDGE SENSITIVITY

WRITE PORTxIO_BOTH TO CLEAR APPROPRIATE
BITS FOR EDGE SENSITIVITY

RISING

FALLING

EDGE RISING
OR FALLING?

WRITE PORTxIO_POLAR TO SET
APPROPRIATE BITS FOR FALLING EDGE SENSITIVITY

WRITE PORTxIO_POLAR TO CLEAR APPROPRIATE
BITS FOR RISING EDGE SENSITIVITY

HIGH

WRITE EITHER PORTxIO_MASKA, PORTxIO_MASKB, PORTxIO_MASKA_SET,
PORTxIO_MASKB_SET, PORTxIO_MASKA_TOGGLE, OR PORTxIO_MASKB_TOGGLE

TO SET APPROPRIATE BITS ON WHICH TO GENERATE AN INTERRUPT

INTERRUPTS MUST THEN BE CONFIGURED AT THE
SYSTEM INTERRUPT CONTROLLER AND

CORE EVENT CONTROLLER
ADSP-BF51x Blackfin Processor Hardware Reference 9-25

Memory-Mapped GPIO Registers
Memory-Mapped GPIO Registers
The GPIO registers are part of the system memory-mapped registers
(MMRs). Figure 9-10 through Figure 9-30 on page 9-44 illustrate the
GPIO registers. The addresses of the programmable flag MMRs appear in
Appendix B.

 In Figure 9-10 through Figure 9-30, bits 8-15 are reserved for
Port H register descriptions.

PORTx Hysteresis Control (PORTx_HYSTERESIS)
Register

The ADSP-BF51x contains additional registers controlling the hysteresis
(via Schmitt triggering) for Port F, Port G and Port H. These are also
included for several pins other than GPIOs. Figure 9-5 to Figure 9-7 show
the bit descriptions of these registers.

This register configures Schmitt triggering (SE) for the PORTx inputs.
The Schmitt trigger can be set only for pin groups, classified by the pin
muxing controls. For each controlled group of pins, b#00 will disable
Schmitt triggering, while b#01 will enable it. Combinations of b#1x are
reserved.

Figure 9-5. Port F Hysteresis Register

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Port F Hysteresis Register (PORTF_HYSTERESIS)

Reserved

PF15 SE

PF0 SE

PF6 to PF1 SE

PF14 to PF11 SE PF10 to PF8 SE

PF7 SE
9-26 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
Figure 9-6. Port G Hysteresis Register

Figure 9-7. Port H Hysteresis Register

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Port G Hysteresis Register (PORTG_HYSTERESIS)

PG11 SE

PG8 SE

PG3 SE

PG10 to PG9 SE

PG7 to PG5 SE

PG4 SE

PG2 to PG0 SEPG15 to PG12 SE

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Port H Hysteresis Register (PORTH_HYSTERESIS)

Reserved
PH3 to PH0 SE

PH5 to PH4 SEPH7 SE

PH6 SE
ADSP-BF51x Blackfin Processor Hardware Reference 9-27

Memory-Mapped GPIO Registers
Non-GPIO Drive Strength Control Register
This register sets the drive strength and tolerance for the TWI signals on
the ADSP-BF51x as specified in the diagram.

Figure 9-8. Non-GPIO Drive Strength Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Non-GPIO Ports Drive Strength Control Register (NONGPIO_DRIVE)

Reset = 0x0011

Reserved

TWI_DT
Reserved

Drive/tolerate for TWI pins SCL and SDA
000: 3.3V Vddext 3.3V Vbustwi
001: 1.8 V Vddext 1.8V Vbustwi
010: 2.5 V Vddext 3.3V Vbustwi
011: 1.8V Vddext 3.3V Vbustwi
100: 3.3V Vddext 5 V Vbustwi
101: 1.8V Vddext 2.5V Vbustwi
110: 2.5 V Vddext 2.5V Vbustwi
111: Reserved

0 10 0 0 0 0 0 0 0 0 0 1 0 0 0
9-28 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
Non-GPIO Hysteresis (NONGPIO_HYSTERESIS)
Register

This register sets the Schmitt trigger (SE) for various ADSP-BF51x sig-
nals. The bits relating to SPI flash (on parts with on-chip SPI flash) are
intended for power conservation where possible.

Figure 9-9. Non-GPIO Hysteresis Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Non-GPIO Hysteresis Register (NONGPIO_HYSTERESIS)

Reset = 0x0000

Reserved Reserved

JTAG_SE

NMI_RST_BMODE_SE

00 - Disable hysteresis for
JTAG input signals
01 - Enable hysteresis for
JTAG input signals
1x Reserved

00 - Enable hysteresis for NMI,
RESET, and BMODE signals
01 - Disable hysteresis NMI,
RESET, and BMODE signals
1x Reserved

Reserved

SPISO_PUPEN

SPISO_IEDSBL

0 - Disables the internal pull-up resistance on
the SPI0_MISO pin for the internal SPI flash
1 - Enables the internal pull-up resistance on
the SPI0_MISO pin for the internal SPI flash

0 - Enable input for SPI0_MISO pad connected to
internal SPI flash.
1 - Disable input for SPI0_MISO pad connected to
internal SPI flash.
ADSP-BF51x Blackfin Processor Hardware Reference 9-29

Memory-Mapped GPIO Registers
Port Multiplexer Control Register (PORTF_MUX)

Figure 9-10. Port F Multiplexer Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Port F Multiplexer Control Register (PORTF_MUX)

PF0_MUX

Reset = 0x0000

PF6to1_MUX

PF7_MUX

PF10to8_MUX

Reserved

PF15_MUX

PF14to11_MUX

For all bit fields:
00 = 1st Peripheral function
01 = 1st alternate peripheral function
10 = 2nd alternate peripheral function
11 = Reserved

Refer to Table 9-2 on page 9-5 to Table 9-4 on page 9-7 for reserved bits in the PORTF_MUX register.
9-30 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
Port Multiplexer Control Register (PORTG_MUX)

Figure 9-11. Port G Multiplexer Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Port G Multiplexer Control Register (PORTG_MUX)

PG2to0_MUX

Reset = 0x0000

PG3_MUX

PG4_MUX

PG7to5_MUX

PG15to12_MUX

PG11_MUX

PG10to9_MUX

PG8_MUX

For all bit fields:
00 = 1st Peripheral function
01 = 1st alternate peripheral function
10 = 2nd alternate peripheral function
11 = Reserved

Refer to Table 9-2 on page 9-5 to Table 9-4 on page 9-7 for reserved bits in the PORTG_MUX register.
ADSP-BF51x Blackfin Processor Hardware Reference 9-31

Memory-Mapped GPIO Registers
Port Multiplexer Control Register (PORTH_MUX)

Function Enable Registers (PORTx_FER)

Figure 9-12. Port H Multiplexer Control Register

Figure 9-13. Function Enable Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Port H Multiplexer Control Register (PORTH_MUX)

PH3to0_MUX

Reset = 0x0000

PH5to4_MUX

PH6_MUX

PH7_MUX

Reserved

For all bit fields:
00 = 1st Peripheral function
01 = 1st alternate peripheral function
10 = 2nd alternate peripheral function
11 = Reserved

Refer to Table 9-2 on page 9-5 to Table 9-4 on page 9-7 for reserved bits in the PORTH_MUX register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Function Enable Registers (PORTx_FER)

Px0

Px12

Px13

Px14

Px15

Px1

Px2

Px3

Px4

Px5

For all bits, 0 - GPIO mode, 1 - Enable peripheral function

Px6

Px7
Px11

Px10 Px9

Px8

Reset = 0x0000
9-32 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
GPIO Direction Registers (PORTxIO_DIR)

GPIO Input Enable Registers (PORTxIO_INEN)

Figure 9-14. GPIO Direction Registers

Figure 9-15. GPIO Input Enable Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Direction Registers (PORTxIO_DIR)

Px0 Direction

Px12 Direction

Px13 Direction

Px14 Direction

Px15 Direction

Px1 Direction

Px2 Direction

Px3 Direction

Px4 Direction

Px5 Direction

For all bits, 0 - Input, 1 - Output

Px6 Direction

Px7 Direction
Px11 Direction

Px10 Direction Px9 Direction
Px8 Direction

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Input Enable Registers (PORTxIO_INEN)

Px0 Input Enable

Px12 Input Enable

Px13 Input Enable

Px14 Input Enable

Px15 Input Enable

Px1 Input Enable

Px2 Input Enable

Px3 Input Enable

Px4 Input Enable

Px5 Input Enable

For all bits, 0 - Input Buffer Disabled, 1 - Input Buffer Enabled

Px6 Input Enable

Px7 Input Enable
Px11 Input Enable

Px10 Input Enable Px9 Input Enable
Px8 Input Enable

Reset = 0x0000
ADSP-BF51x Blackfin Processor Hardware Reference 9-33

Memory-Mapped GPIO Registers
GPIO Data Registers (PORTxIO)

GPIO Set Registers (PORTxIO_SET)

Figure 9-16. GPIO Data Registers

Figure 9-17. GPIO Set Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Data Registers (PORTxIO)

Program Px0

Program Px12

Program Px13

Program Px14

Program Px15

Program Px1

Program Px2

Program Px3

Program Px4

Program Px5

1 - Set, 0 - Clear

Program Px6

Program Px7
Program Px11

Program Px10 Program Px9
Program Px8

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Set Registers (PORTxIO_SET)

Set Px0

Set Px12

Set Px13

Set Px14

Set Px15

Set Px1

Set Px2

Set Px3

Set Px4

Set Px5

Write-1-to-set

Set Px6

Set Px7
Set Px11
Set Px10 Set Px9

Set Px8

Reset = 0x0000
9-34 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
GPIO Clear Registers (PORTxIO_CLEAR)

GPIO Toggle Registers (PORTxIO_TOGGLE)

Figure 9-18. GPIO Clear Registers

Figure 9-19. GPIO Toggle Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Clear Registers (PORTxIO_CLEAR)

Clear Px0

Clear Px12

Clear Px13

Clear Px14

Clear Px15

Clear Px1

Clear Px2

Clear Px3

Clear Px4

Clear Px5

Write-1-to-clear

Clear Px6

Clear Px7
Clear Px11

Clear Px10 Clear Px9
Clear Px8

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Toggle Registers (PORTxIO_TOGGLE)

Toggle Px0

Toggle Px12

Toggle Px13

Toggle Px14

Toggle Px15

Toggle Px1

Toggle Px2

Toggle Px3

Toggle Px4

Toggle Px5

Write-1-to-toggle

Toggle Px6

Toggle Px7
Toggle Px11

Toggle Px10 Toggle Px9

Toggle Px8

Reset = 0x0000
ADSP-BF51x Blackfin Processor Hardware Reference 9-35

Memory-Mapped GPIO Registers
GPIO Polarity Registers (PORTxIO_POLAR)

Interrupt Sensitivity Registers (PORTxIO_EDGE)

Figure 9-20. GPIO Polarity Registers

Figure 9-21. Interrupt Sensitivity Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Polarity Registers (PORTxIO_POLAR)

Px0 Polarity

Px12 Polarity

Px13 Polarity

Px14 Polarity

Px15 Polarity

Px1 Polarity

Px2 Polarity

Px3 Polarity

Px4 Polarity

Px5 Polarity

For all bits, 0 - Active high or rising edge, 1 - Active low or falling edge

Px6 Polarity

Px7 Polarity
Px11 Polarity

Px10 Polarity Px9 Polarity
Px8 Polarity

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Interrupt Sensitivity Registers (PORTxIO_EDGE)

Px0 Sensitivity

Px12 Sensitivity

Px13 Sensitivity

Px14 Sensitivity

Px15 Sensitivity

Px1 Sensitivity

Px2 Sensitivity

Px3 Sensitivity

Px4 Sensitivity

Px5 Sensitivity

For all bits, 0 - Level, 1 - Edge

Px6 Sensitivity

Px7 Sensitivity
Px11 Sensitivity

Px10 Sensitivity Px9 Sensitivity
Px8 Sensitivity

Reset = 0x0000
9-36 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
GPIO Set on Both Edges Registers (PORTxIO_BOTH)

GPIO Mask Interrupt Registers (PORTxIO_MASKA/B)

Figure 9-22. GPIO Set on Both Edges Registers

Figure 9-23. GPIO Mask Interrupt A Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Set on Both Edges Registers (PORTxIO_BOTH)

Px0 Both Edges

Px12 Both Edges

Px13 Both Edges

Px14 Both Edges

Px15 Both Edges

Px1 Both Edges

Px2 Both Edges

Px3 Both Edges

Px4 Both Edges

Px5 Both Edges

For all bits when enabled for edge-sensitivity, 0 - Single edge, 1 - Both edges

Px6 Both Edges

Px7 Both Edges
Px11 Both Edges

Px10 Both Edges Px9 Both Edges
Px8 Both Edges

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt A Registers (PORTxIO_MASKA)

Enable Px0 Interrupt A

Enable Px12 Interrupt A

Enable Px13 Interrupt A

Enable Px14 Interrupt A

Enable Px15 Interrupt
A

Enable Px1 Interrupt A

Enable Px2 Interrupt A

Enable Px3 Interrupt A

Enable Px4 Interrupt A

Enable Px5 Interrupt A

For all bits, 1 - Enable, 0 - Disable

Enable Px6 Interrupt A

Enable Px7 Interrupt A
Enable Px11 Interrupt A

Enable Px10 Interrupt A Enable Px9 Interrupt A

Enable Px8 Interrupt A

Reset = 0x0000
ADSP-BF51x Blackfin Processor Hardware Reference 9-37

Memory-Mapped GPIO Registers
Figure 9-24. GPIO Mask Interrupt B Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt B Registers (PORTxIO_MASKB)

Enable Px0 Interrupt B

Enable Px12 Interrupt B

Enable Px13 Interrupt B
Enable Px14 Interrupt B

Enable Px15
Interrupt B

Enable Px1 Interrupt B

Enable Px2 Interrupt B

Enable Px3 Interrupt B

Enable Px4 Interrupt B

Enable Px5 Interrupt B

For all bits, 1 - Enable

Enable Px6 Interrupt B

Enable Px7 Interrupt B
Enable Px11 Interrupt B

Enable Px10 Interrupt B Enable Px9 Interrupt B
Enable Px8 Interrupt B

Reset = 0x0000
9-38 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
GPIO Mask Interrupt Set Registers
(PORTxIO_MASKA/B_SET)

Figure 9-25. GPIO Mask Interrupt A Set Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt A Set Registers (PORTxIO_MASKA_SET)

Set Px0 Interrupt A
Enable

Set Px12 Interrupt A
Enable

Set Px13 Interrupt A
Enable

Set Px14 Interrupt A
Enable

Set Px15 Interrupt A
Enable

Set Px1 Interrupt A
Enable

Set Px2 Interrupt A
Enable

Set Px3 Interrupt A
Enable

Set Px4 Interrupt A
Enable

Set Px5 Interrupt A
Enable

For all bits, 1 - Set

Set Px6 Interrupt A
Enable

Set Px7 Interrupt A
Enable

Set Px11 Interrupt A
Enable
Set Px10 Interrupt A
Enable

Set Px9 Interrupt A
Enable

Set Px8 Interrupt A
Enable

Reset = 0x0000
ADSP-BF51x Blackfin Processor Hardware Reference 9-39

Memory-Mapped GPIO Registers
Figure 9-26. GPIO Mask Interrupt B Set Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt B Set Registers (PORTxIO_MASKB_SET)
For all bits, 1 - Set

Reset = 0x0000

Set Px0 Interrupt B
Enable
Set Px1 Interrupt B
Enable

Set Px2 Interrupt B
Enable

Set Px3 Interrupt B
Enable

Set Px4 Interrupt B
Enable

Set Px5 Interrupt B
Enable

Set Px6 Interrupt B
Enable

Set Px7 Interrupt B
Enable

Set Px9 Interrupt B
Enable

Set Px8 Interrupt B
Enable

Set Px12 Interrupt B
Enable

Set Px13 Interrupt B
Enable

Set Px14 Interrupt B
Enable

Set Px15 Interrupt B
Enable

Set Px11 Interrupt B
Enable
Set Px10 Interrupt B
Enable
9-40 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
GPIO Mask Interrupt Clear Registers
(PORTxIO_MASKA/B_CLEAR)

Figure 9-27. GPIO Mask Interrupt A Clear Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt A Clear Registers (PORTxIO_MASKA_CLEAR)

Clear Px0 Interrupt A Enable

Clear Px12 Interrupt A
Enable

Clear Px13 Interrupt A
Enable

Clear Px14 Interrupt A
Enable

Clear Px15 Interrupt A
Enable

Clear Px1 Interrupt A
Enable

Clear Px2 Interrupt A
Enable

Clear Px3 Interrupt A
Enable

Clear Px4 Interrupt A
Enable

Clear Px5 Interrupt A
Enable

For all bits, 1 - Clear

Clear Px6 Interrupt A
Enable

Clear Px7 Interrupt A
Enable

Clear Px11 Interrupt A
Enable
Clear Px10 Interrupt A
Enable

Clear Px9 Interrupt A Enable

Clear Px8 Interrupt A
Enable

Reset = 0x0000
ADSP-BF51x Blackfin Processor Hardware Reference 9-41

Memory-Mapped GPIO Registers
Figure 9-28. GPIO Mask Interrupt B Clear Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt B Clear Registers (PORTxIO_MASKB_CLEAR)
For all bits, 1 - Clear

Reset = 0x0000

Clear Px0 Interrupt B
Enable
Clear Px1 Interrupt B
Enable

Clear Px2 Interrupt B
Enable

Clear Px3 Interrupt B
Enable
Clear Px4 Interrupt B
Enable
Clear Px5 Interrupt B
Enable
Clear Px6 Interrupt B
Enable

Clear Px7 Interrupt B
Enable

Clear Px9 Interrupt B
Enable

Clear Px8 Interrupt B
Enable

Clear Px12 Interrupt B
Enable

Clear Px13 Interrupt B
Enable

Clear Px14 Interrupt B
Enable

Clear Px15 Interrupt B
Enable

Clear Px11 Interrupt B
Enable

Clear Px10 Interrupt B
Enable
9-42 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
GPIO Mask Interrupt Toggle Registers
(PORTxIO_MASKA/B_TOGGLE)

Figure 9-29. GPIO Mask Interrupt A Toggle Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt A Toggle Registers (PORTxIO_MASKA_TOGGLE)

Toggle Px0 Interrupt A
Enable

Toggle Px12 Interrupt A
Enable

Toggle Px13 Interrupt A
Enable

Toggle Px14
Interrupt A Enable

Toggle Px15
Interrupt A Enable

Toggle Px1 Interrupt A
Enable

Toggle Px2 Interrupt A
Enable

Toggle Px3 Interrupt A
Enable
Toggle Px4 Interrupt A
Enable
Toggle Px5 Interrupt A
Enable

For all bits, 1 - Toggle

Toggle Px6 Interrupt A
Enable
Toggle Px7 Interrupt A
Enable

Toggle Px11 Interrupt A
Enable

Toggle Px10 Interrupt A
Enable

Toggle Px9 Interrupt A
Enable

Toggle Px8 Interrupt A
Enable

Reset = 0x0000
ADSP-BF51x Blackfin Processor Hardware Reference 9-43

Programming Examples
Programming Examples
Listing 9-1 provides examples for using the general-purpose ports.

Listing 9-1. General-Purpose Ports

/* set port f function enable register to GPIO (not peripheral)

*/

p0.l = lo(PORTF_FER);

p0.h = hi(PORTF_FER);

R0.h = 0x0000;

r0.l = 0x0000;

Figure 9-30. GPIO Mask Interrupt B Toggle Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt B Toggle Registers (PORTxIO_MASKB_TOGGLE)
For all bits, 1 - Toggle

Reset = 0x0000

Toggle Px0 Interrupt B
Enable
Toggle Px1 Interrupt B
Enable

Toggle Px2 Interrupt B
Enable

Toggle Px3 Interrupt B
Enable
Toggle Px4 Interrupt B
Enable
Toggle Px5 Interrupt B
Enable
Toggle Px6 Interrupt B
Enable

Toggle Px7 Interrupt B
Enable

Toggle Px9 Interrupt B
Enable

Toggle Px8 Interrupt B
Enable

Toggle Px12 Interrupt B
Enable

Toggle Px13 Interrupt B
Enable

Toggle Px14
Interrupt B Enable

Toggle Px15
Interrupt B Enable

Toggle Px11 Interrupt B
Enable
Toggle Px10 Interrupt B
Enable
9-44 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Ports
w[p0] = r0;

/* set port f direction register to enable some GPIO as output,

remaining are input */

p0.l = lo(PORTFIO_DIR);

p0.h = hi(PORTFIO_DIR);

r0.h = 0x0000;

r0.l = 0x0FC0;

w[p0] = r0;

ssync;

/* set port f clear register */

p0.l = lo(PORTFIO_CLEAR);

p0.h = hi(PORTFIO_CLEAR);

r0.l = 0xFC0;

w[p0] = r0;

ssync;

/* set port f input enable register to enable input drivers of

some GPIOs */

p0.l = lo(PORTFIO_INEN);

p0.h = hi(PORTFIO_INEN);

r0.h = 0x0000;

r0.l = 0x003C;

w[p0] = r0;

ssync;

/* set port f polarity register */

p0.l = lo(PORTFIO_POLAR);

p0.h = hi(PORTFIO_POLAR);

r0 = 0x00000;

w[p0] = r0;

ssync;
ADSP-BF51x Blackfin Processor Hardware Reference 9-45

Programming Examples
9-46 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
10 GENERAL-PURPOSE TIMERS

This chapter describes the general-purpose (GP) timer module. Following
an overview and a list of key features is a description of operation and
functional modes of operation. The chapter concludes with a program-
ming model, consolidated register definitions, and programming
examples.

Specific Information for the ADSP-BF51x
For details regarding the number of GP timers for the ADSP-BF51x prod-
uct, refer to ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor
Data Sheet.

For GP Timer interrupt vector assignments, refer to Table 5-3 on
page 5-20 in Chapter 5, “System Interrupts”.

To determine how each of the GP Timers is multiplexed with other func-
tional pins, refer to Table 9-2 on page 9-5 through Table 9-4 on page 9-7
in Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for each GP Timer, refer to Chapter A, “Sys-
tem MMR Assignments”.
ADSP-BF51x Blackfin Processor Hardware Reference 10-1

Overview
GP timer behavior for the ADSP-BF51x that differs from the general
information in this chapter can be found at the end of this chapter in the
section “Unique Information for the ADSP-BF51x Processor” on
page 10-57.

Overview
The general-purpose timers support the following operating modes:

• Single-shot mode for interval timing and single pulse generation

• Pulse width modulation (PWM) generation with consistent update
of period and pulse width values

• External signal capture mode with consistent update of period and
pulse width values

• External event counter mode

Feature highlights are:

• Synchronous operation

• Consistent management of period and pulse width values

• Interaction with PPI module for video frame sync operation

• Autobaud detection for UART module

• Graceful bit pattern termination when stopping

• Support for center-aligned PWM patterns

• Error detection on implausible pattern values

• All read and write accesses to 32-bit registers are atomic
10-2 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

0

• Every timer has its dedicated interrupt request output

• Unused timers can function as edge-sensitive pin interrupts

The internal structure of the individual timers is illustrated by
Figure 10-1, which shows the details of timer 0 as a representative exam-
ple. The other timers have identical structure.

Figure 10-1. Internal Timer Structure

TIMER0_CONFIG

PERIOD
MATCH

SCLK

ENABLE
LATCH

32

TMRCLK
TACLK0

TMR0

TIMER0_PERIOD (WRITE)

TIMER0_PERIOD (READ)

COMPARATOR

TIMER0_COUNTER

COMPARATOR

TIMER0_WIDTH (READ)

TIMER0_WIDTH (WRITE)

32

32

32

32

32 INTERRUPT
CONTROL

PIN
CONTROL

EDGE
DETECTOR

32

TRAILING EDGE

LEADING EDGE

OVERFLOW

WIDTH MATCH

PAB

16

TIMEN0

TIMDIS0

TRUN0

TOVF_ERR

TIMIL0

TMR0

TACI0

TIMER 0
ADSP-BF51x Blackfin Processor Hardware Reference 10-3

Overview
External Interface
Every timer has a dedicated TMR pin. If enabled, the TMR pins output the
single-pulse or PWM signals generated by the timer. The TMR pins func-
tion as input in capture and counter modes. Polarity of the signals is
programmable.

When clocked internally, the clock source is the processor’s peripheral
clock (SCLK). Assuming the peripheral clock is running at 133 MHz, the
maximum period for the timer count is ((232-1) / 133 MHz) =
32.2 seconds.

Clock and capture input pins are sampled every SCLK cycle. The duration
of every low or high state must be at least one SCLK. Therefore, the maxi-
mum allowed frequency of timer input signals is SCLK/2.

Internal Interface
Timer registers are always accessed by the core through the 16-bit PAB
bus. Hardware ensures that all read and write operations from and to
32-bit timer registers are atomic.

Every timer has a dedicated interrupt request output that connects to the
system interrupt controller (SIC).
10-4 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
Description of Operation
The core of every timer is a 32-bit counter, that can be interrogated
through the read-only TIMER_COUNTER register. Depending on the mode of
operation, the counter is reset to either 0x0000 0000 or 0x0000 0001
when the timer is enabled. The counter always counts upward. Usually, it
is clocked by SCLK. In PWM mode it can be clocked by the alternate clock
input TACLK or, alternatively, the common timer clock input TMRCLK. In
counter mode, the counter is clocked by edges on the TMR input pin. The
significant edge is programmable.

After 232-1 clocks, the counter overflows. This is reported by the over-
flow/error bit TOVF_ERR in the TIMER_STATUS register. In PWM and
counter mode, the counter is reset by hardware when its content reaches
the values stored in the TIMER_PERIOD register. In capture mode, the coun-
ter is reset by leading edges on the TMR or TACI input pin. If enabled, these
events cause the interrupt latch TIMIL in the TIMER_STATUS register to be
set and issue a system interrupt request. The TOVF_ERR and TIMIL latches
are sticky and should be cleared by software using W1C (write-1-to-clear)
operations to clear the interrupt request. The global TIMER_STATUS register
is 32-bits wide. A single atomic 32-bit read can report the status of all cor-
responding timers.

Before a timer can be enabled, its mode of operation is programmed in the
individual timer-specific TIMER_CONFIG register. Then, the timers are
started by writing a “1” to the representative bits in the global
TIMER_ENABLE register.

The TIMER_ENABLE register can be used to enable all timers simultaneously.
The register contains W1S (write-1-to-set) control bits, one for each
timer. Correspondingly, the TIMER_DISABLE register contains W1C con-
trol bits to allow simultaneous or independent disabling of the timers.
Either register can be read to check the enable status of the timers. A “1”
indicates that the corresponding timer is enabled. The timer starts count-
ing three SCLK cycles after the TIMEN bit is set.
ADSP-BF51x Blackfin Processor Hardware Reference 10-5

Description of Operation
While the PWM mode is used to generate PWM patterns, the capture
mode (WDTH_CAP) is designed to “receive” PWM signals. A PWM pattern is
represented by a pulse width and a signal period. This is described by the
TIMER_WIDTH and TIMER_PERIOD register pair. In capture mode these regis-
ters are read only. Hardware always captures both values. Regardless of
whether in PWM or capture mode, shadow buffers always ensure consis-
tency between the TIMER_WIDTH and TIMER_PERIOD values. In PWM mode,
hardware performs a plausibility check by the time the timer is enabled. If
there is an error, the type is reported by the TIMER_CONFIG register and sig-
nalled by the TOVF_ERR bit.

Interrupt Processing
Each timer can generate a single interrupt. The resulting interrupt signals
are routed to the system interrupt controller block for prioritization and
masking. The timer status (TIMER_STATUS) register latches the timer inter-
rupts to provide a means for software to determine the interrupt source.
10-6 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers

R

Figure 10-2 shows the interrupt structure of the timers.

To enable interrupt generation, set the IRQ_ENA bit and unmask the inter-
rupt source in the IMASK and SIC_IMASK registers. To poll the TIMIL bit

Figure 10-2. Timers Interrupt Structure

TIMIL

TIMER
IRQ PROCESSO

CORE
TOVF_ERR

RST RST

SET SET

RESET

TOVF_ERR WRITE DATA

MMR WRITE TO
TIMER_STATUS

1 0 1 0

SYSTEM
INTERRUPT

CONTROLLER

ILLEGAL
TIMER_WIDTH COUNT = WIDTH

COUNT = PERIOD

ILLEGAL
TIMER _PERIOD

COUNTER
OVERFLOW

TRAILING
EDGE

LEADING
EDGE

PERIOD_CNT

EXT_CLKWDTH_CAP

PWM_OUT

PWM_OUT
TMODE

EXT_CLKWDTH_CAPPWM_OUT
TMODE

ERROR EVENT
INTERRUPT
EVENT

IRQ_ENA

TIMIL WRITE DATA
ADSP-BF51x Blackfin Processor Hardware Reference 10-7

Description of Operation
without interrupt generation, set IRQ_ENA but leave the interrupt masked
at the system level. If enabled by IRQ_ENA, interrupt requests are also gen-
erated by error conditions as reported by the TOVF_ERR bits.

The system interrupt controller enables flexible interrupt handling. All
timers may or may not share the same CEC interrupt channel, so that a
single interrupt routine services more than one timer. In PWM mode,
multiple timers may run with the same period settings and issue their
interrupt requests simultaneously. In this case, the service routine might
clear all TIMIL latch bits at once by writing 0x000F 000F to the
TIMER_STATUS register.

If interrupts are enabled, make sure that the interrupt service routine
(ISR) clears the TIMIL bit in the TIMER_STATUS register before the RTI
instruction executes. This ensures that the interrupt is not reissued.
Remember that writes to system registers are delayed. If only a few
instructions separate the TIMIL clear command from the RTI instruction,
an extra SSYNC instruction may be inserted. In EXT_CLK mode, reset the
TIMIL bit in the TIMER_STATUS register at the very beginning of the inter-
rupt service routine to avoid missing any timer events.

Illegal States
Every timer features an error detection circuit. It handles overflow situa-
tions but also performs pulse width vs. period plausibility checks. Errors
are reported by the TOVF_ERR bits in the TIMER_STATUS register and the
ERR_TYP bit field in the individual TIMER_CONFIG registers. Table 10-1 pro-
vides a summary of error conditions, using these terms:

• Startup. The first clock period during which the timer counter is
running after the timer is enabled by writing TIMER_ENABLE.

• Rollover. The time when the current count matches the value in
TIMER_PERIOD and the counter is reloaded with the value “1”.
10-8 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
• Overflow. The timer counter was incremented instead of doing a
rollover when it was holding the maximum possible count value of
0xFFFF FFFF. The counter does not have a large enough range to
express the next greater value and so erroneously loads a new value
of 0x0000 0000.

• Unchanged. No new error.

• When ERR_TYP is unchanged, it displays the previously
reported error code or 00 if there has been no error since
this timer was enabled.

• When TOVF_ERR is unchanged, it reads “0” if there has been
no error since this timer was enabled, or if software has per-
formed a W1C to clear any previous error. If a previous
error has not been acknowledged by software, TOVF_ERR
reads “1”.

Software should read TOVF_ERR to check for an error. If TOVF_ERR is set,
software can then read ERR_TYP for more information. Once detected,
software should write “1” to clear TOVF_ERR to acknowledge the error.

The following table can be read as: “In mode __ at event __, if
TIMER_PERIOD is __ and TIMER_WIDTH is __, then ERR_TYP is __ and
TOVF_ERR is __.”

 Startup error conditions do not prevent the timer from starting.
Similarly, overflow and rollover error conditions do not stop the
timer. Illegal cases may cause unwanted behavior of the TMR pin.
ADSP-BF51x Blackfin Processor Hardware Reference 10-9

Description of Operation

Table 10-1. Overview of Illegal States
M

od
e

Ev
en

t

TI
ME

R_
PE

RI
OD

TI
ME

R_
WI

DT
H

ER
R_

TY
P

TO
VF

_E
RR

PWM_OUT,
PERIOD_CNT = 1

Startup
(No boundary condition
tests performed on
TIMER_WIDTH)

== 0 Anything b#10 Set

== 1 Anything b#10 Set

 2 Anything No
change

No
change

Rollover == 0 Anything b#10 Set

== 1 Anything b#11 Set

 2 == 0 b#11 Set

 2 < TIMER_PERIOD No
change

No
change

 2 TIMER_PERIOD b#11 Set

Overflow, not possible
unless there is also
another error, such as
TIMER_PERIOD == 0

Anything Anything b#01 Set

PWM_OUT,
PERIOD_CNT = 0

Startup Anything == 0 b#01 Set

This case is not detected at startup, but results in an
overflow error once the counter counts through its
entire range.

Anything 1 No
change

No
change

Rollover Rollover is not possible in this mode.

Overflow, not possible
unless there is also
another error, such as
TIMER_WIDTH == 0

Anything Anything b#01 Set
10-10 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
Modes of Operation
The following sections provide a functional description of the gen-
eral-purpose timers in various operating modes.

Pulse Width Modulation (PWM_OUT) Mode
Use the PWM_OUT mode for PWM signal or single-pulse generation, for
interval timing or for periodic interrupt generation. Figure 10-3 illustrates
PWM_OUT mode.

WDTH_CAP Startup TIMER_PERIOD and TIMER_WIDTH are
read-only in this mode, no error possible.

Rollover TIMER_PERIOD and TIMER_WIDTH are
read-only in this mode, no error possible.

Overflow Anything Anything b#01 Set

EXT_CLK Startup == 0 Anything b#10 Set

 1 Anything No
change

No
change

Rollover == 0 Anything b#10 Set

 1 Anything No
change

No
change

Overflow, not possible
unless there is also
another error, such as
TIMER_PERIOD == 0

Anything Anything b#01 Set

Table 10-1. Overview of Illegal States (Continued)
M

od
e

Ev
en

t

TI
ME

R_
PE

RI
OD

TI
ME

R_
WI

DT
H

ER
R_

TY
P

TO
VF

_E
RR
ADSP-BF51x Blackfin Processor Hardware Reference 10-11

Modes of Operation
Setting the TMODE field to b#01 in the TIMER_CONFIG register enables
PWM_OUT mode. Here, the TMR pin is an output, but it can be disabled by
setting the OUT_DIS bit in the TIMER_CONFIG register.

In PWM_OUT mode, the bits PULSE_HI, PERIOD_CNT, IRQ_ENA, OUT_DIS,
CLK_SEL, EMU_RUN, and TOGGLE_HI enable orthogonal functionality. They
may be set individually or in any combination, although some combina-
tions are not useful (such as TOGGLE_HI = 1 with OUT_DIS = 1 or
PERIOD_CNT = 0).

Figure 10-3. Timer Flow Diagram, PWM_OUT Mode

TIN_SEL

DATA BUS

0

1 PWM_CLK

SCLK

CLK_SEL
EQUAL?

TIMER_ENABLE

EQUAL?

1

1

0

0

YES

CLOCK RESET

ASSERT DEASSERT

INTERRUPT

PERIOD_CNT

TMR
pin

PWMOUT
LOGIC

PULSE_HI
TOGGLE_HI
OUT_DIS

YES

TACLK

TMRCLK

TIMER_COUNTER

TIMER_PERIOD TIMER_WIDTH
10-12 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
Once a timer has been enabled, the timer counter register is loaded with a
starting value. If CLK_SEL = 0, the timer counter starts at 0x1. If
CLK_SEL = 1, it is reset to 0x0 as in EXT_CLK mode. The timer counts
upward to the value of the timer period register. For either setting of
CLK_SEL, when the timer counter equals the timer period, the timer coun-
ter is reset to 0x1 on the next clock.

In PWM_OUT mode, the PERIOD_CNT bit controls whether the timer generates
one pulse or many pulses. When PERIOD_CNT is cleared (PWM_OUT single
pulse mode), the timer uses the TIMER_WIDTH register, generates one assert-
ing and one deasserting edge, then generates an interrupt (if enabled) and
stops. When PERIOD_CNT is set (PWM_OUT continuous pulse mode), the
timer uses both the TIMER_PERIOD and TIMER_WIDTH registers and generates
a repeating (and possibly modulated) waveform. It generates an interrupt
(if enabled) at the end of each period and stops only after it is disabled. A
setting of PERIOD_CNT = 0 counts to the end of the width; a setting of
PERIOD_CNT = 1 counts to the end of the period.

 The TIMER_PERIOD and TIMER_WIDTH registers are read-only in some
operation modes. Be sure to set the TMODE field in the TIMER_CONFIG
register to b#01 before writing to these registers.

Output Pad Disable

The output pin can be disabled in PWM_OUT mode by setting the OUT_DIS
bit in the TIMER_CONFIG register. The TMR pin is then three-stated regard-
less of the setting of PULSE_HI and TOGGLE_HI. This can reduce power
consumption when the output signal is not being used. The TMR pin can
also be disabled by the function enable and the multiplexer control
registers.

Single Pulse Generation

If the PERIOD_CNT bit is cleared, the PWM_OUT mode generates a single pulse
on the TMR pin. This mode can also be used to implement a precise delay.
ADSP-BF51x Blackfin Processor Hardware Reference 10-13

Modes of Operation
The pulse width is defined by the TIMER_WIDTH register, and the
TIMER_PERIOD register is not used. See Figure 10-4.

At the end of the pulse, the timer interrupt latch bit TIMIL is set, and the
timer is stopped automatically. No writes to the TIMER_DISABLE register
are required in this mode. If the PULSE_HI bit is set, an active high pulse is
generated on the TMR pin. If PULSE_HI is not set, the pulse is active low.

The pulse width may be programmed to any value from 1 to (232-1),
inclusive.

Pulse Width Modulation Waveform Generation

If the PERIOD_CNT bit is set, the internally clocked timer generates rectan-
gular signals with well-defined period and duty cycle (PWM patterns).
This mode also generates periodic interrupts for real-time signal
processing.

Figure 10-4. Timer Enable and Automatic Disable Timing

EXAMPLE TIMER ENABLE AND AUTOMATIC DISABLE TIMING
(PWM_OUT MODE, PERIOD_CNT = 0)

3

21X 3

SCLK

TIMER_WIDTH

TIMER_COUNTER

TIMEN

TRUN

TMR, PULSE_HI = 0

TMR, PULSE_HI = 1

W1S TO
TIMER_ENABLE
10-14 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
The 32-bit TIMER_PERIOD and TIMER_WIDTH registers are programmed with
the values required by the PWM signal.

When the timer is enabled in this mode, the TMR pin is pulled to a deas-
serted state each time the counter equals the value of the pulse width
register, and the pin is asserted again when the period expires (or when the
timer gets started).

To control the assertion sense of the TMR pin, the PULSE_HI bit in the cor-
responding TIMER_CONFIG register is used. For a low assertion level, clear
this bit. For a high assertion level, set this bit. When the timer is disabled
in PWM_OUT mode, the TMR pin is driven to the deasserted level.

Figure 10-5 shows timing details.

If enabled, a timer interrupt is generated at the end of each period. An
interrupt service routine must clear the interrupt latch bit (TIMIL) and
might alter period and/or width values. In PWM applications, the soft-
ware needs to update period and pulse width values while the timer is

Figure 10-5. Timer Enable Timing

SCLK

TIMER_PERIOD 4 4 4

EXAMPLE TIMER ENABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

1 1 1

X 41 2 3 1 2 3

TIMER_WIDTH

TIMER_COUNTER

TIMEN

TRUN

TMR pin, PULSE_HI = 0

TMR pin, PULSE_HI = 1

W1S TO
TIMER_ENABLE
ADSP-BF51x Blackfin Processor Hardware Reference 10-15

Modes of Operation
running. When software updates either the TIMER_PERIOD or TIMER_WIDTH
registers, the new values are held by special buffer registers until the period
expires. Then the new period and pulse width values become active simul-
taneously. Reads from TIMER_PERIOD and TIMER_WIDTH registers return the
old values until the period expires.

The TOVF_ERR status bit signifies an error condition in PWM_OUT mode. The
TOVF_ERR bit is set if TIMER_PERIOD = 0 or TIMER_PERIOD = 1 at startup, or
when the timer counter register rolls over. It is also set if the timer pulse
width register is greater than or equal to the timer period register by the
time the counter rolls over. The ERR_TYP bits are set when the TOVF_ERR bit
is set.

Although the hardware reports an error if the TIMER_WIDTH value equals
the TIMER_PERIOD value, this is still a valid operation to implement PWM
patterns with 100% duty cycle. If doing so, software must generally ignore
the TOVL_ERR flags. Pulse width values greater than the period value are
not recommended. Similarly, TIMER_WIDTH = 0 is not a valid operation.
Duty cycles of 0% are not supported.

To generate the maximum frequency on the TMR output pin, set the period
value to “2” and the pulse width to “1”. This makes the pin toggle each
SCLK clock, producing a duty cycle of 50%. The period may be pro-
grammed to any value from 2 to (232 – 1), inclusive. The pulse width may
be programmed to any value from 1 to (period – 1), inclusive.

PULSE_HI Toggle Mode

The waveform produced in PWM_OUT mode with PERIOD_CNT = 1 normally
has a fixed assertion time and a programmable deassertion time (via the
TIMER_WIDTH register). When two or more timers are running synchro-
nously by the same period settings, the pulses are aligned to the asserting
edge as shown in Figure 10-6.
10-16 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
The TOGGLE_HI mode enables control of the timing of both the asserting
and deasserting edges of the output waveform produced. The phase
between the asserting edges of two timer outputs is programmable. The
effective state of the PULSE_HI bit alternates every period. The adjacent
active low and active high pulses, taken together, create two halves of a
symmetrical rectangular waveform. The effective waveform is active high
when PULSE_HI is set and active low when PULSE_HI is cleared. The value
of the TOGGLE_HI bit has no effect unless the mode is PWM_OUT and
PERIOD_CNT = 1.

In TOGGLE_HI mode, when PULSE_HI is set, an active low pulse is generated
in the first, third, and all odd-numbered periods, and an active high pulse
is generated in the second, fourth, and all even-numbered periods. When
PULSE_HI is cleared, an active high pulse is generated in the first, third,
and all odd-numbered periods, and an active low pulse is generated in the
second, fourth, and all even-numbered periods.

The deasserted state at the end of one period matches the asserted state at
the beginning of the next period, so the output waveform only transitions
when Count = Pulse Width. The net result is an output waveform pulse
that repeats every two counter periods and is centered around the end of
the first period (or the start of the second period).

Figure 10-6. Example of Timers With Pulses Aligned to Asserting Edge

TMR0

TMR1

PERIOD 1

TMR2

TOGGLE_HI = 0
PULSE_HI = 1

TOGGLE_HI = 0
PULSE_HI = 1

TOGGLE_HI = 0
PULSE_HI = 1

TIMER
ENABLE

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH
ADSP-BF51x Blackfin Processor Hardware Reference 10-17

Modes of Operation
Figure 10-7 shows an example with three timers running with the same
period settings. When software does not alter the PWM settings at
run-time, the duty cycle is 50%. The values of the TIMER_WIDTH registers
control the phase between the signals.

Similarly, two timers can generate non-overlapping clocks, by cen-
ter-aligning the pulses while inverting the signal polarity for one of the
timers (see Figure 10-8).

When TOGGLE_HI = 0, software updates the TIMER_PERIOD and
TIMER_WIDTH registers once per waveform period. When TOGGLE_HI = 1,
software updates the TIMER_PERIOD and TIMER_WIDTH registers twice per
waveform. Period values are half as large. In odd-numbered periods, write
(Period – Width) instead of Width to the TIMER_WIDTH register in order to
obtain center-aligned pulses.

Figure 10-7. Three Timers With Same Period Settings

TMR0

TMR1

TMR2

TIMER
PERIOD 1

TIMER
PERIOD 2

TIMER
PERIOD 3

TIMER
PERIOD 4

WAVEFORM
PERIOD 1

WAVEFORM
PERIOD 2

TIMER
ENABLE

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

TOGGLE_HI = 1
PULSE_HI = 1

TOGGLE_HI = 1
PULSE_HI = 1

TOGGLE_HI = 1
PULSE_HI = 1
10-18 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
For example, if the pseudo-code when TOGGLE_HI = 0 is:

int period, width;

for (;;) {

period = generate_period(...) ;

width = generate_width(...) ;

waitfor (interrupt) ;

write (TIMER_PERIOD, period) ;

write (TIMER_WIDTH, width) ;

}

Then when TOGGLE_HI = 1, the pseudo-code would be:

int period, width ;

int per1, per2, wid1, wid2 ;

for (;;) {

period = generate_period(...) ;

width = generate_width(...) ;

Figure 10-8. Two Timers With Non-overlapping Clocks

TMR0

TMR1

WAVEFORM
PERIOD 1

WAVEFORM
PERIOD 2

TIMER
ENABLE

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

TOGGLE_HI = 1
PULSE_HI = 0

TOGGLE_HI = 1
PULSE_HI = 1

TIMER
PERIOD 1

TIMER
PERIOD 2

TIMER
PERIOD 3

TIMER
PERIOD 4
ADSP-BF51x Blackfin Processor Hardware Reference 10-19

Modes of Operation
per1 = period/2 ;

wid1 = width/2 ;

per2 = period/2 ;

wid2 = width/2 ;

waitfor (interrupt) ;

write (TIMER_PERIOD, per1) ;

write (TIMER_WIDTH, per1 - wid1) ;

waitfor (interrupt) ;

write (TIMER_PERIOD, per2) ;

write (TIMER_WIDTH, wid2) ;

}

As shown in this example, the pulses produced do not need to be symmet-
ric (wid1 does not need to equal wid2). The period can be offset to adjust
the phase of the pulses produced (per1 does not need to equal per2).

The TRUN bit in the TIMER_STATUS register is updated only at the end of
even-numbered periods in TOGGLE_HI mode. When TIMER_DISABLE is writ-
ten to "1", the current pair of counter periods (one waveform period)
completes before the timer is disabled.

As when TOGGLE_HI = 0, errors are reported if the TIMER_PERIOD register is
either set to “0” or “1”, or when the width value is greater than or equal to
the period value.

Externally Clocked PWM_OUT

By default, the timer is clocked internally by SCLK. Alternatively, if the
CLK_SEL bit in the TIMER_CONFIG register is set, the timer is clocked by
10-20 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
PWM_CLK. The PWM_CLK is normally input from the TACLK pin, but may be
taken from the common TMRCLK pin regardless of whether the timers are
configured to work with the PPI. Different timers may receive different
signals on their PWM_CLK inputs, depending on configuration. As selected
by the PERIOD_CNT bit, the PWM_OUT mode either generates pulse width
modulation waveforms or generates a single pulse with pulse width
defined by the TIMER_WIDTH register.

When CLK_SEL is set, the counter resets to 0x0 at startup and increments
on each rising edge of PWM_CLK. The TMR pin transitions on rising edges of
PWM_CLK. There is no way to select the falling edges of PWM_CLK. In this
mode, the PULSE_HI bit controls only the polarity of the pulses produced.
The timer interrupt may occur slightly before the corresponding edge on
the TMR pin (the interrupt occurs on an SCLK edge, the pin transitions on a
later PWM_CLK edge). It is still safe to program new period and pulse width
values as soon as the interrupt occurs. After a period expires, the counter
rolls over to a value of 0x1.

The PWM_CLK clock waveform is not required to have a 50% duty cycle, but
the minimum PWM_CLK clock low time is one SCLK period, and the mini-
mum PWM_CLK clock high time is one SCLK period. This implies the
maximum PWM_CLK clock frequency is SCLK/2.

The alternate timer clock inputs (TACLK) are enabled when a timer is in
PWM_OUT mode with CLK_SEL = 1 and TIN_SEL = 0, without regard to the
content of the multiplexer control and function enable registers.

Using PWM_OUT Mode With the PPI

Some timers may be used to generate frame sync signals for certain PPI
modes. For detailed instructions on how to configure the timers for use
with the PPI, refer to “Frame Synchronization in GP Modes” on
page 20-19.
ADSP-BF51x Blackfin Processor Hardware Reference 10-21

Modes of Operation
Stopping the Timer in PWM_OUT Mode

In all PWM_OUT mode variants, the timer treats a disable operation (W1C to
TIMER_DISABLE) as a “stop is pending” condition. When disabled, it auto-
matically completes the current waveform and then stops cleanly. This
prevents truncation of the current pulse and unwanted PWM patterns at
the TMR pin. The processor can determine when the timer stops running by
polling for the corresponding TRUN bit in the TIMER_STATUS register to read
“0” or by waiting for the last interrupt (if enabled). Note the timer cannot
be reconfigured (TIMER_CONFIG cannot be written to a new value) until
after the timer stops and TRUN reads “0”.

In PWM_OUT single pulse mode (PERIOD_CNT = 0), it is not necessary to write
TIMER_DISABLE to stop the timer. At the end of the pulse, the timer stops
automatically, the corresponding bit in TIMER_ENABLE (and
TIMER_DISABLE) is cleared, and the corresponding TRUN bit is cleared. See
Figure 10-4 on page 10-14. To generate multiple pulses, write a “1” to
TIMER_ENABLE, wait for the timer to stop, then write another “1” to
TIMER_ENABLE.

In continuous PWM generation mode (PWM_OUT, PERIOD_CNT = 1) software
can stop the timer by writing to the TIMER_DISABLE register. To prevent
the ongoing PWM pattern from being stopped in an unpredictable way,
the timer does not stop immediately when the corresponding “1” has been
written to the TIMER_DISABLE register. Rather, the write simply clears the
enable latch and the timer still completes the ongoing PWM patterns
gracefully. It stops cleanly at the end of the first period when the enable
latch is cleared. During this final period the TIMEN bit returns “0”, but the
TRUN bit still reads as a “1”.

If the TRUN bit is not cleared explicitly, and the enable latch can be cleared
and re-enabled all before the end of the current period will continue to
run as if nothing happened. Typically, software should disable a PWM_OUT
timer and then wait for it to stop itself.
10-22 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
Figure 10-9 shows detailed timing.

If necessary, the processor can force a timer in PWM_OUT mode to abort
immediately. Do this by first writing a “1” to the corresponding bit in
TIMER_DISABLE, and then writing a “1” to the corresponding TRUN bit in
TIMER_STATUS. This stops the timer whether the pending stop was waiting
for the end of the current period (PERIOD_CNT = 1) or the end of the cur-
rent pulse width (PERIOD_CNT = 0). This feature may be used to regain
immediate control of a timer during an error recovery sequence.

 Use this feature carefully, because it may corrupt the PWM pattern
generated at the TMR pin.

When a timer is disabled, the TIMER_COUNTER register retains its state;
when a timer is re-enabled, the timer counter is reinitialized based on the
operating mode. The TIMER_COUNTER register is read-only. Software cannot
overwrite or preset the timer counter value directly.

Figure 10-9. Timer Disable Timing

7

EXAMPLE TIMER DISABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

5

7

5

7

5

7 1 2 3 5 6 74

W1C TO
TIMER_DISABLE

SCLK

TIMER_PERIOD

TIMER_WIDTH

TIMER_COUNTER

TIMEN

TRUN

TMR PIN, PULSE_HI = 0

TMR PIN, PULSE_HI = 1
ADSP-BF51x Blackfin Processor Hardware Reference 10-23

Modes of Operation
Pulse Width Count and Capture (WDTH_CAP) Mode
Use the WDTH_CAP mode, often simply called “capture mode,” to measure
pulse widths on the TMR or TACI input pins, or to “receive” PWM signals.
Figure 10-10 shows a flow diagram for WDTH_CAP mode.

In WDTH_CAP mode, the TMR pin is an input pin. The internally clocked
timer is used to determine the period and pulse width of externally applied
rectangular waveforms. Setting the TMODE field to b#10 in the
TIMER_CONFIG register enables this mode.

Figure 10-10. Timer Flow Diagram, WDTH_CAP Mode

SCLK

TIMER_ENABLE

RESET

INTERRUPT

PERIOD_CNT

TMR
PIN

INTERRUPT
LOGIC

PULSE_HI

TOVF_ERR

TMR
PIN

PULSE_HI

TRAILING
EDGE

DETECT

DATA BUS

LEADING
EDGE

DETECT

TIMER_COUNTER

TIMER_WIDTHTIMER_PERIOD
10-24 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
When enabled in this mode, the timer resets the count in the
TIMER_COUNTER register to 0x0000 0001 and does not start counting until
it detects a leading edge on the TMR pin.

When the timer detects the first leading edge, it starts incrementing.
When it detects a trailing edge of a waveform, the timer captures the cur-
rent 32-bit value of the TIMER_COUNTER register into the width buffer. At
the next leading edge, the timer transfers the current 32-bit value of the
TIMER_COUNTER register into the period buffer. The count register is reset
to 0x0000 0001 again, and the timer continues counting and capturing
until it is disabled.

In this mode, software can measure both the pulse width and the pulse
period of a waveform. To control the definition of leading edge and trail-
ing edge of the TMR pin, the PULSE_HI bit in the TIMER_CONFIG register is
set or cleared. If the PULSE_HI bit is cleared, the measurement is initiated
by a falling edge, the content of the counter register is captured to the
pulse width buffer on the rising edge, and to the period buffer on the next
falling edge. When the PULSE_HI bit is set, the measurement is initiated by
a rising edge, the counter value is captured to the pulse width buffer on
the falling edge, and to the period buffer on the next rising edge.

In WDTH_CAP mode, these three events always occur at the same time:

1. The TIMER_PERIOD register is updated from the period buffer.

2. The TIMER_WIDTH register is updated from the width buffer.

3. The TIMIL bit gets set (if enabled) but does not generate an error.

The PERIOD_CNT bit in the TIMER_CONFIG register controls the point in
time at which this set of transactions is executed. Taken together, these
three events are called a measurement report. The TOVF_ERR bit does not
get set at a measurement report. A measurement report occurs, at most,
once per input signal period.
ADSP-BF51x Blackfin Processor Hardware Reference 10-25

Modes of Operation
The current timer counter value is always copied to the width buffer and
period buffer registers at the trailing and leading edges of the input signal,
respectively, but these values are not visible to software. A measurement
report event samples the captured values into visible registers and sets the
timer interrupt to signal that TIMER_PERIOD and TIMER_WIDTH are ready to
be read. When the PERIOD_CNT bit is set, the measurement report occurs
just after the period buffer captures its value (at a leading edge). When the
PERIOD_CNT bit is cleared, the measurement report occurs just after the
width buffer captures its value (at a trailing edge).

If the PERIOD_CNT bit is set and a leading edge occurred (see Figure 10-11),
then the TIMER_PERIOD and TIMER_WIDTH registers report the pulse period
and pulse width measured in the period that just ended. If the PERIOD_CNT
bit is cleared and a trailing edge occurred (see Figure 10-12), then the
TIMER_WIDTH register reports the pulse width measured in the pulse that
just ended, but the TIMER_PERIOD register reports the pulse period mea-
sured at the end of the previous period.

If the PERIOD_CNT bit is cleared and the first trailing edge occurred, then
the first period value has not yet been measured at the first measurement
report, so the period value is not valid. Reading the TIMER_PERIOD value in
this case returns “0”, as shown in Figure 10-12. To measure the pulse
width of a waveform that has only one leading edge and one trailing edge,
set PERIOD_CNT = 0. If PERIOD_CNT = 1 for this case, no period value is cap-
tured in the period buffer. Instead, an error report interrupt is generated
(if enabled) when the counter range is exceeded and the counter wraps
around. In this case, both TIMER_WIDTH and TIMER_PERIOD read “0”
(because no measurement report occurred to copy the value captured in
the width buffer to TIMER_WIDTH). See the first interrupt in Figure 10-13.
10-26 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
Figure 10-11. Example of Period Capture Measurement Report Timing
(WDTH_CAP mode, PERIOD_CNT = 1)

STARTS
COUNTING

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMR PIN EDGES

AND BUFFER REGISTER UPDATES IS NOT SHOWN.

SCLK

1 3 1 2 3 4 6 7 8

TMR PIN, PULSE_HI = 0

TMR PIN, PULSE_HI = 1

2 4 5 1XTIMER_COUNTER

4TIMER_PERIOD BUFFER

2 3TIMER_WIDTH BUFFER

4TIMER_PERIOD

2

8

8

3TIMER_WIDTH

TIMIL

TOVF_ERR

TIMEN

X 0

X 0

X 0

X 0

MEASUREMENT
REPORT

MEASUREMENT
REPORT
ADSP-BF51x Blackfin Processor Hardware Reference 10-27

Modes of Operation
Figure 10-12. Example of Width Capture Measurement Report Timing
(WDTH_CAP mode, PERIOD_CNT = 0)

SCLK

1

TMR PIN, PULSE_HI = 0

TMR PIN, PULSE_HI = 1

2 3 5 6 8 3 4 34 7 1 2 1XTIMER_COUNTER

8 4

TIMER_PERIOD BUFFER

3

TIMER_WIDTH BUFFER

TIMER_PERIOD

TIMER_WIDTH

TIMIL

TOVF_ERR

TIMEN

2

1 2

0 4

3

8

1 2

X 0

X 0

X 0

X 0

STARTS
COUNTING

MEASUREMENT
REPORT

MEASUREMENT
REPORT

MEASUREMENT
REPORT

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMR PIN EDGES AND BUFFER

REGISTER UPDATES IS NOT SHOWN.
10-28 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
 When using the PERIOD_CNT = 0 mode described above to measure
the width of a single pulse, it is recommended to disable the timer
after taking the interrupt that ends the measurement interval. If
desired, the timer can then be reenabled as appropriate in
preparation for another measurement. This procedure prevents the
timer from free-running after the width measurement, and from
logging errors generated by the timer count overflowing.

A timer interrupt (if enabled) is generated if the TIMER_COUNTER register
wraps around from 0xFFFF FFFF to "0" in the absence of a leading edge.
At that point, the TOVF_ERR bit in the TIMER_STATUS register and the
ERR_TYP bits in the TIMER_CONFIG register are set, indicating a count over-
flow due to a period greater than the counter’s range. This is called an
error report. When a timer generates an interrupt in WDTH_CAP mode,
either an error has occurred (an error report) or a new measurement is
ready to be read (a measurement report), but never both at the same time.
The TIMER_PERIOD and TIMER_WIDTH registers are never updated at the
time an error is signaled.

Refer to Figure 10-13 and Figure 10-14 for more information.
ADSP-BF51x Blackfin Processor Hardware Reference 10-29

Modes of Operation
Figure 10-13. Example Timing for Period Overflow Followed by Period
Capture (WDTH_CAP mode, PERIOD_CNT = 1)

STARTS
COUNTING

SCLK

1

TMR PIN, PULSE_HI = 0

TMR PIN, PULSE_HI = 1

2 3 1 2 3 40XTIMER_COUNTER

4TIMER_PERIOD BUFFER

2TIMER_WIDTH BUFFER

TIMER_PERIOD

TIMER_WIDTH

TIMIL

TOVF_ERR

TIMEN

4

5

2

ERROR
REPORT

MEASUREMENT
REPORT

0xFFFF
FFFC

0xFFFF
FFFD

0xFFFF
FFFE

0xFFFF
FFFF

X 0

X 0

X 0

X 0

0

2

0

0

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMR PIN EDGES AND BUFFER

REGISTER UPDATES IS NOT SHOWN.
10-30 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
Figure 10-14. Example Timing for Width Capture Followed by Period
Overflow (WDTH_CAP mode, PERIOD_CNT = 0)

SCLK

1

TMR pin, PULSE_HI = 0

TMR pin, PULSE_HI = 1

2 1 2 3 40XTIMER_COUNTER

4X

TIMER_PERIOD BUFFER

3

TIMER_WIDTH BUFFER

TIMER_PERIOD

TIMER_WIDTH

TIMIL

TOVF_ERR

TIMEN

1 2

0

3

0

X 0

X 0

X 0

0

3

0

3

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMR PIN EDGES AND BUFFER

REGISTER UPDATES IS NOT SHOWN.

STARTS
COUNTING

ERROR
REPORT

MEASUREMENT
REPORT

0xFFFF
FFFC

0xFFFF
FFFD

0xFFFF
FFFE

0xFFFF
FFFF

3

ADSP-BF51x Blackfin Processor Hardware Reference 10-31

Modes of Operation
Both TIMIL and TOVF_ERR are sticky bits, and software must explicitly clear
them. If the timer overflowed and PERIOD_CNT = 1, neither the
TIMER_PERIOD nor the TIMER_WIDTH register were updated. If the timer
overflowed and PERIOD_CNT = 0, the TIMER_PERIOD and TIMER_WIDTH regis-
ters were updated only if a trailing edge was detected at a previous
measurement report.

Software can count the number of error report interrupts between mea-
surement report interrupts to measure input signal periods longer than
0xFFFF FFFF. Each error report interrupt adds a full 232 SCLK counts to
the total for the period, but the width is ambiguous. For example, in
Figure 10-13 the period is 0x1 0000 0004 but the pulse width could be
either 0x0 0000 0002 or 0x1 0000 0002.

The waveform applied to the TMR pin is not required to have a 50% duty
cycle, but the minimum TMR pin low time is one SCLK period and the min-
imum TMR pin high time is one SCLK period. This implies the maximum
TMR pin input frequency is SCLK/2 with a 50% duty cycle. Under these
conditions, the WDTH_CAP mode timer would measure Period = 2 and
Pulse Width = 1.

Autobaud Mode

On some devices, in WDTH_CAP mode, some of the timers can provide auto-
baud detection for the Universal Asynchronous Receiver/Transmitter
(UART) interface(s). The TIN_SEL bit in the TIMER_CONFIG register causes
the timer to sample the TACI pin instead of the TMR pin when enabled for
WDTH_CAP mode. Autobaud detection can be used for initial bit rate negoti-
ations as well as for detection of bit rate drifts while the interface is in
operation.
10-32 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
External Event (EXT_CLK) Mode
Use the EXT_CLK mode (sometimes referred to as the counter mode) to
count external events—that is, signal edges on the TMR pin (which is an
input in this mode). Figure 10-15 shows a flow diagram for EXT_CLK
mode.

The timer works as a counter clocked by an external source, which can
also be asynchronous to the system clock. The current count in
TIMER_COUNTER represents the number of leading edge events detected.
Setting the TMODE field to b#11 in the TIMER_CONFIG register enables this
mode. The TIMER_PERIOD register is programmed with the value of the
maximum timer external count.

The waveform applied to the TMR pin is not required to have a 50% duty
cycle, but the minimum TMR low time is one SCLK period, and the mini-
mum TMR high time is one SCLK period. This implies the maximum TMR
pin input frequency is SCLK/2.

Period may be programmed to any value from 1 to (232 – 1), inclusive.

After the timer has been enabled, it resets the TIMER_COUNTER register to
0x0 and then waits for the first leading edge on the TMR pin. This edge
causes the TIMER_COUNTER register to be incremented to the value 0x1.
Every subsequent leading edge increments the count register. After reach-
ing the period value, the TIMIL bit is set, and an interrupt is generated.
The next leading edge reloads the TIMER_COUNTER register again with 0x1.
The timer continues counting until it is disabled. The PULSE_HI bit deter-
mines whether the leading edge is rising (PULSE_HI set) or falling
(PULSE_HI cleared).

The configuration bits TIN_SEL and PERIOD_CNT have no effect in this
mode. The TOVF_ERR and ERR_TYP bits are set if the TIMER_COUNTER register
wraps around from 0xFFFF FFFF to “0” or if Period = “0” at startup or
when the TIMER_COUNTER register rolls over (from Count = Period to
Count = 0x1). The TIMER_WIDTH register is unused.
ADSP-BF51x Blackfin Processor Hardware Reference 10-33

Programming Model
Programming Model
The architecture of the timer block enables any of the timers within this
block to work individually or synchronously along with others as a group
of timers. Regardless of the operating mode, the programming model is
always straightforward. Because of the error checking mechanism, always
follow this order when enabling timers:

1. Set timer mode.

2. Write TIMER_WIDTH and TIMER_PERIOD registers as applicable.

3. Enable timer.

If this order is not followed, the plausibility check may fail because of
undefined width and period values, or writes to TIMER_WIDTH and
TIMER_PERIOD may result in an error condition, because the registers are
read-only in some modes. The timer may not start as expected.

Figure 10-15. Timer Flow Diagram, EXT_CLK Mode

CLOCKRESET

LEADING
EDGE

DETECT

TIMER_COUNTER

TIMER_PERIOD

TIMER_ENABLE

INTERRUPT

EQUAL?

Y

PULSE_HI TMR pin

DATA BUS
10-34 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
If in PWM_OUT mode the PWM patterns of the second period differ from
the patterns of the first one, the initialization sequence above might
become:

1. Set timer mode to PWM_OUT.

2. Write first TIMER_WIDTH and TIMER_PERIOD value pair.

3. Enable timer.

4. Immediately write second TIMER_WIDTH and TIMER_PERIOD value
pair.

Hardware ensures that the buffered width and period values become active
when the first period expires.

Once started, timers require minimal interaction with software, which is
usually performed by an interrupt service routine. In PWM_OUT mode soft-
ware must update the pulse width and/or settings as required. In WDTH_CAP
mode it must store captured values for further processing. In any case, the
service routine should clear the TIMIL bits of the timers it controls.

Timer Registers
The timer peripheral module provides general-purpose timer functional-
ity. It consists of multiple identical timer units.

Each timer provides four registers:

• TIMER_CONFIG[15:0] – timer configuration register

• TIMER_WIDTH[31:0] – timer pulse width register

• TIMER_PERIOD[31:0] – timer period register

• TIMER_COUNTER[31:0] – timer counter register
ADSP-BF51x Blackfin Processor Hardware Reference 10-35

Timer Registers
Additionally, three registers are shared between the timers within a block:

• TIMER_ENABLE[15:0] – timer enable register

• TIMER_DISABLE[15:0] – timer disable register

• TIMER_STATUS[31:0] – timer status register

The size of accesses is enforced. A 32-bit access to a TIMER_CONFIG register
or a 16-bit access to a TIMER_WIDTH, TIMER_PERIOD, or TIMER_COUNTER reg-
ister results in a memory-mapped register (MMR) error. Both 16- and
32-bit accesses are allowed for the TIMER_ENABLE, TIMER_DISABLE, and
TIMER_STATUS registers. On a 32-bit read of one of the 16-bit registers, the
upper word returns all 0s.

Timer Enable Register (TIMER_ENABLE)
Figure 10-16 shows an example of the TIMER_ENABLE register for a product
with eight timers. The register allows simultaneous enabling of multiple
timers so that they can run synchronously. For each timer there is a single
W1S control bit. Writing a “1” enables the corresponding timer; writing a
“0” has no effect. The bits can be set individually or in any combination.
A read of the TIMER_ENABLE register shows the status of the enable for the
corresponding timer. A “1” indicates that the timer is enabled. All unused
bits return “0” when read.
10-36 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
Timer Disable Register (TIMER_DISABLE)
Figure 10-17 shows an example of the TIMER_DISABLE register for a prod-
uct with eight timers. The register allows simultaneous disabling of
multiple timers. For each timer there is a single W1C control bit. Writing
a “1” disables the corresponding timer; writing a “0” has no effect. The
bits can be cleared individually or in any combination. A read of the
TIMER_DISABLE register returns a value identical to a read of the
TIMER_ENABLE register. A “1” indicates that the timer is enabled. All
unused bits return “0” when read.

Figure 10-16. Timer Enable Register

0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Enable Register (TIMER_ENABLE)

TIMEN0 (Timer0 Enable)

TIMEN1 (Timer1 Enable)

1 - Enable timer
Read as 1 when enabled

1 - Enable timer
Read as 1 when enabled

TIMEN2 (Timer2 Enable)
1 - Enable timer
Read as 1 when enabled

TIMEN3 (Timer3 Enable)
1 - Enable timer
Read as 1 when enabled

TIMEN7 (Timer7 Enable)

TIMEN6 (Timer6 Enable)

1 - Enable timer
Read as 1 when enabled

1 - Enable timer
Read as 1 when enabled

TIMEN5 (Timer5 Enable)
1 - Enable timer
Read as 1 when enabled

TIMEN4 (Timer4 Enable)
1 - Enable timer
Read as 1 when enabled

This diagram shows an example configuration for eight timers. Different products
have different numbers of timers.
ADSP-BF51x Blackfin Processor Hardware Reference 10-37

Timer Registers
In PWM_OUT mode, a write of a “1” to TIMER_DISABLE does not stop the cor-
responding timer immediately. Rather, the timer continues running and
stops cleanly at the end of the current period (if PERIOD_CNT = 1) or pulse
(if PERIOD_CNT = 0). If necessary, the processor can force a timer in
PWM_OUT mode to stop immediately by first writing a “1” to the corre-
sponding bit in TIMER_DISABLE, and then writing a “1” to the
corresponding TRUN bit in TIMER_STATUS. See “Stopping the Timer in
PWM_OUT Mode” on page 10-22.

In WDTH_CAP and EXT_CLK modes, a write of a “1” to TIMER_DISABLE stops
the corresponding timer immediately.

Timer Status Register (TIMER_STATUS)
The TIMER_STATUS register indicates the status of the timers and is used to
check the status of multiple timers with a single read. Status bits are sticky
and W1C. The TRUN bits can clear themselves, which they do when a
PWM_OUT mode timer stops at the end of a period. During a TIMER_STATUS

Figure 10-17. Timer Disable Register

0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Disable Register (TIMER_DISABLE)

TIMDIS0 (Timer0 Disable)

TIMDIS1 (Timer1 Disable)

1 - Disable timer
Read as 1 if this timer is enabled

1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS2 (Timer2 Disable)
1 - Disable timer
Read as 1 if this timer is enabled
TIMDIS3 (Timer3 Disable)
1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS7 (Timer7 Disable)

TIMDIS6 (Timer6 Disable)

1 - Disable timer
Read as 1 if this timer is enabled

1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS5 (Timer5 Disable)
1 - Disable timer
Read as 1 if this timer is enabled
TIMDIS4 (Timer4 Disable)
1 - Disable timer
Read as 1 if this timer is enabled

This diagram shows an example configuration for eight timers. Differ-
ent products have different numbers of timers.
10-38 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
register read access, all reserved or unused bits return a “0”. Figure 10-18
shows an example of the TIMER_STATUS register for a product with eight
timers.

For detailed behavior and usage of the TRUN bit see “Stopping the Timer in
PWM_OUT Mode” on page 10-22. Writing the TRUN bits has no effect in
other modes or when a timer has not been enabled. Writing the TRUN bits
to “1” in PWM_OUT mode has no effect on a timer that has not first been
disabled.

Error conditions are explained in “Illegal States” on page 10-8.

Timer Configuration Register (TIMER_CONFIG)
The operating mode for each timer is specified by its TIMER_CONFIG regis-
ter. The TIMER_CONFIG register, shown in Figure 10-19, may be written
only when the timer is not running. After disabling the timer in PWM_OUT
mode, make sure the timer has stopped running by checking its TRUN bit in
TIMER_STATUS before attempting to reprogram TIMER_CONFIG. The
TIMER_CONFIG registers may be read at any time. The ERR_TYP field is
read-only. It is cleared at reset and when the timer is enabled.

Each time TOVF_ERR is set, ERR_TYP[1:0] is loaded with a code that identi-
fies the type of error that was detected. This value is held until the next
error or timer enable occurs. For an overview of error conditions, see
Table 10-1 on page 10-10. The TIMER_CONFIG register also controls the
behavior of the TMR pin, which becomes an output in PWM_OUT mode
(TMODE = 01) when the OUT_DIS bit is cleared.

 When operating the PPI in GP output modes with internal frame
syncs, the CLK_SEL and the TIN_SEL bits for the timers involved
must be set to “1”.
ADSP-BF51x Blackfin Processor Hardware Reference 10-39

Timer Registers

)
est

)

)

n

est

est

n

)
est

st

rred

st

en

rred

en
Figure 10-18. Timer Status Register

0

0 0 00 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0

TIMIL4 (Timer4 Interrupt

Reset = 0x0000 00000

Timer Status Register (TIMER_STATUS)

Read as 1 if timer running, W1C to
abort in PWM_OUT mode

Indicates an interrupt requ
when IRQ_ENA is set
TIMIL5 (Timer5 Interrupt

TRUN6 (Timer6 Slave
Enable Status)

TIMIL6 (Timer6 Interrupt

Indicates that an error or a
overflow occurred

TOVF_ERR4 (Timer4
Counter Overflow)

Read as 1 if timer running, W1C
to abort in PWM_OUT mode

TRUN5 (Timer5 Slave
Enable Status)

Read as 1 if timer running, W1C to abort
in PWM_OUT mode

TRUN4 (Timer4 Slave Enable
Status)

TOVF_ERR5 (Timer5
Counter Overflow)

TOVF_ERR7 (Timer7 Counter Overflow)

Indicates an interrupt requ
when IRQ_ENA is set

Indicates an interrupt requ
when IRQ_ENA is set

Indicates that an error or a
overflow occurred

Indicates that an error or an overflow occurred

TIMIL7 (Timer7 Interrupt
Indicates an interrupt requ
when IRQ_ENA is set

Read as 1 if timer
running, W1C to abort in
PWM_OUT mode

TRUN7 (Timer7
Slave Enable Status)

TOVF_ERR6 (Timer6 Counter Overflow)

Indicates that an error or an overflow occurred

All bits are W1C

0 0 00 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

TIMIL0 (Timer0 Interrupt)

0

Read as 1 if timer running, W1C to
abort in PWM_OUT mode

Indicates an interrupt reque
when IRQ_ENA is set
TIMIL1 (Timer1 Interrupt)TRUN2 (Timer2 Slave Enable

Status)

TIMIL2 (Timer2 Interrupt)

Indicates that an error or an overflow occu
TOVF_ERR0 (Timer0 Counter Overflow)

Read as 1 if timer running, W1C to abort
in PWM_OUT mode

TRUN1 (Timer1 Slave Enable Status)

Read as 1 if timer running, W1C to abort in
PWM_OUT mode

TRUN0 (Timer0 Slave Enable Status)

TOVF_ERR1 (Timer1 Counter Overflow)
TOVF_ERR3 (Timer3 Counter Overflow)

Indicates an interrupt reque
when IRQ_ENA is set

Indicates an interrupt request wh
IRQ_ENA is set

Indicates that an error or an overflow occuIndicates that an error or an overflow occurred

TIMIL3 (Timer3 Interrupt)
Indicates an interrupt request wh
IRQ_ENA is set

Read as 1 if timer running, W1C
to abort in PWM_OUT mode

TRUN3 (Timer3
Slave Enable Status)

TOVF_ERR2 (Timer2 Counter Overflow)
Indicates that an error or an overflow occurred

This diagram shows an example configuration for eight timers. Different products have differ-
ent numbers of timers, therefore some of the bits may not be applicable to your device.
10-40 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
Timer Counter Register (TIMER_COUNTER)
This read-only register retains its state when disabled. When enabled, the
TIMER_COUNTER register is reinitialized by hardware based on configuration
and mode. The TIMER_COUNTER register, shown in Figure 10-20, may be
read at any time (whether the timer is running or stopped), and it returns
an atomic 32-bit value. Depending on the operating mode, the increment-
ing counter can be clocked by four different sources: SCLK, the TMR pin, the
alternative timer clock pin TACLK, or the common TMRCLK pin, which is
most likely used as the PPI clock (PPI_CLK).

Figure 10-19. Timer Configuration Register

0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Register (TIMER_CONFIG)

0 - Negative action pulse
1 - Positive action pulse

0 - Use system clock SCLK for counter
1 - Use PWM_CLK to clock counter

0 - The effective state of PULSE_HI
is the programmed state

1 - The effective state of PULSE_HI
alternates each period

00 - No error
01 - Counter overflow error
10 - Period register programming error
11 - Pulse width register programming error

00 - Reset state - unused
01 - PWM_OUT mode
10 - WDTH_CAP mode
11 - EXT_CLK mode

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI
Toggle Mode)

ERR_TYP[1:0] (Error
Type) - RO

PERIOD_CNT (Period
Count)

0 - Interrupt request disable
1 - Interrupt request enable

0 - Count to end of width
1 - Count to end of period

IRQ_ENA (Interrupt
Request Enable)

PWM_OUT Mode
0 - Clock from TACLK

input if CLK_SEL = 1
1 - Clock from TMRCLK

input if CLK_SEL = 1
WDTH_CAP Mode
0 - Sample TMR pin input
1 - Sample TACI input

TIN_SEL (Timer Input
Select)

0 - Enable TMR pad in PWM_OUT mode
1 - Disable pad in PWM_OUT mode

OUT_DIS (Output Pad Disable)

0 - Timer counter stops during emulation
1 - Timer counter runs during emulation

EMU_RUN (Emulation Behavior Select)
ADSP-BF51x Blackfin Processor Hardware Reference 10-41

Timer Registers
While the processor core is being accessed by an external emulator debug-
ger, all code execution stops. By default, the TIMER_COUNTER register also
halts its counting during an emulation access in order to remain synchro-
nized with the software. While stopped, the count does not advance—in
PWM_OUT mode, the TMR pin waveform is “stretched”; in WDTH_CAP mode,
measured values are incorrect; in EXT_CLK mode, input events on the TMR
pin may be missed. All other timer functions such as register reads and
writes, interrupts previously asserted (unless cleared), and the loading of
TIMER_PERIOD and TIMER_WIDTH in WDTH_CAP mode remain active during an
emulation stop.

Some applications may require the timer to continue counting asynchro-
nously to the emulation-halted processor core. Set the EMU_RUN bit in
TIMER_CONFIG to enable this behavior.

Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers

 When a timer is enabled and running, and the software writes new
values to the TIMER_PERIOD register and the TIMER_WIDTH register,
the writes are buffered and do not update the registers until the end
of the current period (when TIMER_COUNTER equals TIMER_WIDTH).

Figure 10-20. Timer Counter Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Counter[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Counter[31:16]

Reset = 0x0000 0001

Timer Counter Register (TIMER_COUNTER)
10-42 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
Usage of the TIMER_PERIOD register, shown in Figure 10-21, and the
TIMER_WIDTH register, shown in Figure 10-22, varies depending on the
mode of the timer:

• In PWM_OUT mode, both the TIMER_PERIOD and TIMER_WIDTH register
values can be updated “on-the-fly” since the values change
simultaneously.

• In WDTH_CAP mode, the timer period and timer pulse width buffer
values are captured at the appropriate time. The TIMER_PERIOD and
TIMER_WIDTH registers are then updated simultaneously from their
respective buffers. Both registers are read-only in this mode.

• In EXT_CLK mode, the TIMER_PERIOD register is writable and can be
updated “on-the-fly.” The TIMER_WIDTH register is not used.

If new values are not written to the TIMER_PERIOD register or the
TIMER_WIDTH register, the value from the previous period is reused. Writes
to the 32-bit TIMER_PERIOD register and TIMER_WIDTH register are atomic; it
is not possible for the high word to be written without the low word also
being written.

Values written to the TIMER_PERIOD registers or TIMER_WIDTH registers are
always stored in the buffer registers. Reads from the TIMER_PERIOD or
TIMER_WIDTH registers always return the current, active value of period or
pulse width. Written values are not read back until they become active.
When the timer is enabled, they do not become active until after the
TIMER_PERIOD and TIMER_WIDTH registers are updated from their respective
buffers at the end of the current period. See Figure 10-1 on page 10-3.

When the timer is disabled, writes to the buffer registers are immediately
copied through to the TIMER_PERIOD or TIMER_WIDTH register so that they
will be ready for use in the first timer period. For example, to change the
values for the TIMER_PERIOD and/or TIMER_WIDTH registers in order to use a
ADSP-BF51x Blackfin Processor Hardware Reference 10-43

Timer Registers
different setting for each of the first three timer periods after the timer is
enabled, the procedure to follow is:

1. Program the first set of register values.

2. Enable the timer.

3. Immediately program the second set of register values.

4. Wait for the first timer interrupt.

5. Program the third set of register values.

Each new setting is then programmed when a timer interrupt is received.

 In PWM_OUT mode with very small periods (less than 10 counts),
there may not be enough time between updates from the buffer
registers to write both the TIMER_PERIOD register and the
TIMER_WIDTH register. The next period may use one old value and
one new value. In order to prevent “pulse width period” errors,
write the TIMER_WIDTH register before the TIMER_PERIOD register
when decreasing the values, and write the TIMER_PERIOD register
before the TIMER_WIDTH register when increasing the value.

Figure 10-21. Timer Period Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Period[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Period[31:16]

Reset = 0x0000 0000

Timer Period Register (TIMER_PERIOD)
10-44 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
Summary
Table 10-2 summarizes control bit and register usage in each timer mode.

Figure 10-22. Timer Width Register

Table 10-2. Control Bit and Register Usage Chart

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

TIMER_ENABLE 1 - Enable timer
0 - No effect

1 - Enable timer
0 - No effect

1 - Enable timer
0 - No effect

TIMER_DISABLE 1 - Disable timer at end
of period
0 - No effect

1 - Disable timer
0 - No effect

1 - Disable timer
0 - No effect

TMODE b#01 b#10 b#11

PULSE_HI 1 - Generate high width
0 - Generate low width

1 - Measure high width
0 - Measure low width

1 - Count rising edges
0 - Count falling edges

PERIOD_CNT 1 - Generate PWM
0 - Single width pulse

1 - Interrupt after mea-
suring period
0 - Interrupt after mea-
suring width

Unused

IRQ_ENA 1 - Enable interrupt
0 - Disable interrupt

1 - Enable interrupt
0 - Disable interrupt

1 - Enable interrupt
0 - Disable interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Width[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Width[31:16]

Reset = 0x0000 0000

Timer Width Register (TIMER_WIDTH)
ADSP-BF51x Blackfin Processor Hardware Reference 10-45

Timer Registers
TIN_SEL Depends on CLK_SEL:

If CLK_SEL = 1,
1 - Count TMRCLK
clocks
0 - Count TACLK
clocks

If CLK_SEL = 0,
Unused

1 - Select TACI input
0 - Select TMR pin
input

Unused

OUT_DIS 1 - Disable TMR pin
0 - Enable TMR pin

Unused Unused

CLK_SEL 1 - PWM_CLK clocks
timer
0 - SCLK clocks timer

Unused Unused

TOGGLE_HI 1 - One waveform
period every two coun-
ter periods
0 - One waveform
period every one coun-
ter period

Unused Unused

ERR_TYP Reports b#00, b#01,
b#10, or b#11, as
appropriate

Reports b#00 or b#01,
as appropriate

Reports b#00, b#01, or
b#10, as appropriate

EMU_RUN 0 - Halt during
emulation
1 - Count during
emulation

0 - Halt during
emulation
1 - Count during
emulation

0 - Halt during
emulation
1 - Count during
emulation

TMR Pin Depends on
OUT_DIS:
1 - Three-state
0 - Output

Depends on TIN_SEL:
1 - Unused
0 - Input

Input

Period R/W: Period value RO: Period value R/W: Period value

Width R/W: Width value RO: Width value Unused

Table 10-2. Control Bit and Register Usage Chart (Continued)

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode
10-46 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
Counter RO: Counts up on
SCLK or PWM_CLK

RO: Counts up on
SCLK

RO: Counts up on
TMR pin event

TRUN Read: Timer slave
enable status
Write:
1 - Stop timer if dis-
abled
0 - No effect

Read: Timer slave
enable status
Write:
1 - No effect
0 - No effect

Read: Timer slave
enable status
Write:
1 - No effect
0 - No effect

TOVF_ERR Set at startup or roll-
over if period = 0 or 1
Set at rollover if width
>= Period
Set if counter wraps

Set if counter wraps Set if counter wraps or
set at startup or roll-
over if period = 0

IRQ Depends on
IRQ_ENA:
1 - Set when
TOVF_ERR set or
when counter equals
period and
PERIOD_CNT = 1 or
when counter equals
width and
PERIOD_CNT = 0
0 - Not set

Depends on
IRQ_ENA:
1 - Set when
TOVF_ERR set or
when counter captures
period and
PERIOD_CNT = 1 or
when counter captures
width and
PERIOD_CNT = 0
0 - Not set

Depends on
IRQ_ENA:
1 - Set when counter
equals period or
TOVF_ERR set
0 - Not set

Table 10-2. Control Bit and Register Usage Chart (Continued)

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode
ADSP-BF51x Blackfin Processor Hardware Reference 10-47

Programming Examples
Programming Examples
Listing 10-1 configures the port control registers in a way that enables TMR
pins associated with Port G. This example assumes TMR1-7 are connected
to Port G bits 5–11.

Listing 10-1. Port Setup

timer_port_setup:

[--sp] = (r7:7, p5:5);

p5.h = hi(PORTG_FER);

p5.l = lo(PORTG_FER);

r7.l = PG5|PG6|PG7|PG8|PG9|PG10|PG11;

w[p5] = r7;

p5.l = lo(PORTG_MUX);

r7.l = PFTE;

w[p5] = r7;

(r7:7, p5:5) = [sp++];

rts;

timer_port_setup.end:

Listing 10-2 generates signals on the TMR4 and TMR5 outputs. By default,
timer 5 generates a continuous PWM signal with a duty cycle of 50%
(period = 0x40 SCLKs, width = 0x20 SCLKs) while the PWM signal gen-
erated by timer 4 has the same period but 25% duty cycle (width = 0x10
SCLKs).

If the preprocessor constant SINGLE_PULSE is defined, every TMR pin out-
puts only a single high pulse of 0x20 (timer 4) and 0x10 SCLKs (timer 5)
duration.

In any case the timers are started synchronously and the rising edges are
aligned. That is, the pulses are left aligned.
10-48 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
Listing 10-2. Signal Generation

// #define SINGLE_PULSE

timer45_signal_generation:

[--sp] = (r7:7, p5:5);

p5.h = hi(TIMER_ENABLE);

p5.l = lo(TIMER_ENABLE);

#ifdef SINGLE_PULSE

r7.l = PULSE_HI | PWM_OUT;

#else

r7.l = PERIOD_CNT | PULSE_HI | PWM_OUT;

#endif

w[p5 + TIMER5_CONFIG - TIMER_ENABLE] = r7;

w[p5 + TIMER4_CONFIG - TIMER_ENABLE] = r7;

r7 = 0x10 (z);

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r7;

r7 = 0x20 (z);

[p5 + TIMER4_WIDTH - TIMER_ENABLE] = r7;

#ifndef SINGLE_PULSE

r7 = 0x40 (z);

[p5 + TIMER5_PERIOD - TIMER_ENABLE] = r7;

[p5 + TIMER4_PERIOD - TIMER_ENABLE] = r7;

#endif

r7.l = TIMEN5 | TIMEN4;

w[p5] = r7;

(r7:7, p5:5) = [sp++];

rts;

timer45_signal_generation.end:

All subsequent examples use interrupts. Therefore, Listing 10-3 illustrates
how interrupts are generated and how interrupt service routines can be
registered. In this example, the timer 5 interrupt is assigned to the IVG12
interrupt channel of the CEC controller.
ADSP-BF51x Blackfin Processor Hardware Reference 10-49

Programming Examples
Listing 10-3. Interrupt Setup

timer5_interrupt_setup:

[--sp] = (r7:7, p5:5);

p5.h = hi(IMASK);

p5.l = lo(IMASK);

/* register interrupt service routine */

r7.h = hi(isr_timer5);

r7.l = lo(isr_timer5);

[p5 + EVT12 - IMASK] = r7;

/* unmask IVG12 in CEC */

r7 = [p5];

bitset(r7, bitpos(EVT_IVG12));

[p5] = r7;

/* assign timer 5 IRQ (= IRQ37 in this example) to IVG12 */

p5.h = hi(SIC_IAR4);

p5.l = lo(SIC_IAR4);

/*SIC_IAR register mapping is processor dependent*/

r7.h = 0xFF5F;

r7.l = 0xFFFF;

[p5] = r7;

/* enable timer 5 IRQ */

p5.h = hi(SIC_IMASK1);

p5.l = lo(SIC_IMASK1);

/*SIC_IMASK register mapping is processor dependent*/

r7 = [p5];

bitset(r7, 5);

[p5] = r7;

/* enable interrupt nesting */

(r7:7, p5:5) = [sp++];

[--sp] = reti;

rts;

timer5_interrupt_setup.end:
10-50 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
The example shown in Listing 10-4 does not drive the TMR pin. It gener-
ates periodic interrupt requests every 0x1000 SCLK cycles. If the
preprocessor constant SINGLE_PULSE was defined, timer 5 requests an
interrupt only once. Unlike in a real application, the purpose of the inter-
rupt service routine shown in this example is just the clearing of the
interrupt request and counting interrupt occurrences.

Listing 10-4. Periodic Interrupt Requests

// #define SINGLE_PULSE

timer5_interrupt_generation:

[--sp] = (r7:7, p5:5);

p5.h = hi(TIMER_ENABLE);

p5.l = lo(TIMER_ENABLE);

#ifdef SINGLE_PULSE

r7.l = EMU_RUN | IRQ_ENA | OUT_DIS | PWM_OUT;

#else

r7.l = EMU_RUN | IRQ_ENA | PERIOD_CNT | OUT_DIS | PWM_OUT;

#endif

w[p5 + TIMER5_CONFIG - TIMER_ENABLE] = r7;

r7 = 0x1000 (z);

#ifndef SINGLE_PULSE

[p5 + TIMER5_PERIOD - TIMER_ENABLE] = r7;

r7 = 0x1 (z);

#endif

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r7;

r7.l = TIMEN5;

w[p5] = r7;

(r7:7, p5:5) = [sp++];

r0 = 0 (z);

rts;

timer5_interrupt_generation.end:

isr_timer5:

[--sp] = astat;
ADSP-BF51x Blackfin Processor Hardware Reference 10-51

Programming Examples
[--sp] = (r7:7, p5:5);

p5.h = hi(TIMER_STATUS);

p5.l = lo(TIMER_STATUS);

r7.h = hi(TIMIL5);

r7.l = lo(TIMIL5);

[p5] = r7;

r0+= 1;

ssync;

(r7:7, p5:5) = [sp++];

astat = [sp++];

rti;

isr_timer5.end:

Listing 10-5 illustrates how two timers can generate two non-overlapping
clock pulses as typically required for break-before-make scenarios. Both
timers are running in PWM_OUT mode with PERIOD_CNT = 1 and
PULSE_HI = 1.

Figure 10-23 explains how the signal waveform represented by the period
P and the pulse width W translates to timer period and width values.
Table 10-3 summarizes the register writes.

Since hardware only updates the written period and width values at the
end of periods, software can write new values immediately after the timers
have been enabled. Note that both timers’ period expires at exactly the

Table 10-3. Register Writes for Non-Overlapping Clock Pulses

Register Before Enable After
Enable

At IRQ1 At IRQ2

TIMER5_PERIOD P/2

TIMER5_WIDTH P/2 - W/2 W/2 P/2 - W/2 W/2

TIMER4_PERIOD P P/2

TIMER4_WIDTH P - W/2 W/2 P/2 - W-2
10-52 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
same times with the exception of the first timer 5 interrupt (at IRQ1)
which is not visible to timer 4.

Listing 10-5. Non-Overlapping Clock Pulses

#define P 0x1000 /* signal period */

#define W 0x0600 /* signal pulse width */

#define N 4 /* number of pulses before disable */

timer45_toggle_hi:

[--sp] = (r7:1, p5:5);

p5.h = hi(TIMER_ENABLE);

p5.l = lo(TIMER_ENABLE);

/* config timers */

r7.l = IRQ_ENA | PERIOD_CNT | TOGGLE_HI | PULSE_HI | PWM_OUT;

w[p5 + TIMER5_CONFIG - TIMER_ENABLE] = r7;

r7.l = PERIOD_CNT | TOGGLE_HI | PULSE_HI | PWM_OUT;

w[p5 + TIMER4_CONFIG - TIMER_ENABLE] = r7;

/* calculate timers widths and period */

r0.l = lo(P);

Figure 10-23. Non-Overlapping Clock Pulses

TMR5

ENABLE IRQ1 IRQ2

P/2 - W/2

TMR4

IRQ3

W/2 W/2 W/2 W/2

P/2 P/2 P/2 P/2

P - W/2

P W
ADSP-BF51x Blackfin Processor Hardware Reference 10-53

Programming Examples
r0.h = hi(P);

r1.l = lo(W);

r1.h = hi(W);

r2 = r1 >> 1; /* W/2 */

r3 = r0 >> 1; /* P/2 */

r4 = r3 - r2; /* P/2 - W/2 */

r5 = r0 - r2; /* P - W/2 */

/* write values for initial period */

[p5 + TIMER4_PERIOD - TIMER_ENABLE] = r0;

[p5 + TIMER4_WIDTH - TIMER_ENABLE] = r5;

[p5 + TIMER5_PERIOD - TIMER_ENABLE] = r3;

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r4;

/* start timers */

r7.l = TIMEN5 | TIMEN4 ;

w[p5 + TIMER_ENABLE - TIMER_ENABLE] = r7;

/* write values for second period */

[p5 + TIMER4_PERIOD - TIMER_ENABLE] = r3;

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r2;

/* r0 functions as signal period counter */

r0.h = hi(N * 2 - 1);

r0.l = lo(N * 2 - 1);

(r7:1, p5:5) = [sp++];

rts;

timer45_toggle_hi.end:

isr_timer5:

[--sp] = astat;

[--sp] = (r7:5, p5:5);

p5.h = hi(TIMER_ENABLE);

p5.l = lo(TIMER_ENABLE);

/* clear interrupt request */

r7.h = hi(TIMIL5);

r7.l = lo(TIMIL5);

[p5 + TIMER_STATUS - TIMER_ENABLE] = r7;

/* toggle width values (width = period - width) */
10-54 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
r7 = [p5 + TIMER5_PERIOD - TIMER_ENABLE];

r6 = [p5 + TIMER5_WIDTH - TIMER_ENABLE];

r5 = r7 - r6;

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r5;

r5 = [p5 + TIMER4_WIDTH - TIMER_ENABLE];

r7 = r7 - r5;

CC = r7 < 0;

if CC r7 = r6;

[p5 + TIMER4_WIDTH - TIMER_ENABLE] = r7;

/* disable after a certain number of periods */

r0+= -1;

CC = r0 == 0;

r5.l = 0;

r7.l = TIMDIS5 | TIMDIS4;

if !CC r7 = r5;

w[p5 + TIMER_DISABLE - TIMER_ENABLE] = r7;

(r7:5, p5:5) = [sp++];

astat = [sp++];

rti;

isr_timer5.end:

Listing 10-5 generates N pulses on both timer output pins. Disabling the
timers does not corrupt the generated pulse pattern anyhow.

Listing 10-6 configures timer 5 in WDTH_CAP mode. If looped back exter-
nally, this code might be used to receive N PWM patterns generated by
one of the other timers. Ensure that the PWM generator and consumer
both use the same PERIOD_CNT and PULSE_HI settings.

Listing 10-6. Timer Configured in WDTH_CAP Mode

.section L1_data_a;

.align 4;

#define N 1024

.var buffReceive[N*2];
ADSP-BF51x Blackfin Processor Hardware Reference 10-55

Programming Examples
.section L1_code;

timer5_capture:

[--sp] = (r7:7, p5:5);

/* setup DAG2 */

r7.h = hi(buffReceive);

r7.l = lo(buffReceive);

i2 = r7;

b2 = r7;

l2 = length(buffReceive)*4;

/* config timer for high pulses capture */

p5.h = hi(TIMER_ENABLE);

p5.l = lo(TIMER_ENABLE);

r7.l = EMU_RUN|IRQ_ENA|PERIOD_CNT|PULSE_HI|WDTH_CAP;

w[p5 + TIMER5_CONFIG - TIMER_ENABLE] = r7;

r7.l = TIMEN5;

w[p5 + TIMER_ENABLE - TIMER_ ENABLE] = r7;

(r7:7, p5:5) = [sp++];

rts;

timer5_capture.end:

isr_timer5:

[--sp] = astat;

[--sp] = (r7:7, p5:5);

/* clear interrupt request first */

p5.h = hi(TIMER_STATUS);

p5.l = lo(TIMER_STATUS);

r7.h = hi(TIMIL5);

r7.l = lo(TIMIL5);

[p5] = r7;

r7 = [p5 + TIMER5_PERIOD - TIMER_STATUS];

[i2++] = r7;

r7 = [p5 + TIMER5_WIDTH - TIMER_STATUS];

[i2++] = r7;

ssync;

(r7:7, p5:5) = [sp++];
10-56 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Timers
astat = [sp++];

rti;

isr_timer5.end:

Unique Information for the ADSP-BF51x
Processor

The ADSP-BF51x processor features one general-purpose timer module
that contains eight identical 32-bit timers. Each timer can be individually
configured to operate in various modes. Although the timers operate com-
pletely independently of each other, all of them can be started and stopped
simultaneously for synchronous operation.

Interface Overview
Figure 10-24 shows the ADSP-BF51x specific block diagram of the gen-
eral-purpose timer module.

External Interface

The TMRCLK input is common to all eight timers. The PPI unit is clocked
by the same pin; therefore any of the timers can be clocked by PPI_CLK.
Since timer 0 and timer 1 are often used in conjunction with the PPI, they
are internally looped back to the PPI module for frame sync generation.

The timer signals TMR0 and TMR1 are multiplexed with the PPI frame syncs
when the frame syncs are applied externally. PPI modes requiring only one
frame sync free up TMR1. For details, see the Parallel Peripheral Interface
chapter.
ADSP-BF51x Blackfin Processor Hardware Reference 10-57

Unique Information for the ADSP-BF51x Processor
 If the PPI frame syncs are applied externally, timer 0 and timer 1
are still fully functional and can be used for other purposes not
involving the TMRx pins. Timer 0 and timer 1 must not drive their
TMR0 and TMR1 pins. If operating in PWM_OUT mode, the OUT_DIS bit
in the TIMER0_CONFIG and TIMER1_CONFIG registers must be set.

Figure 10-24. Timer Block Diagram

T
IM

E
R

 7
SIC CONTROLLER

PAB

T
IM

E
R

 6

T
IM

E
R

 5

T
IM

E
R

 4

T
IM

E
R

 3

T
IM

E
R

 2

T
IM

E
R

 1

T
IM

E
R

 0

TIMER_DISABLE

TIMER_ENABLE

TIMER_STATUS

PORT CONTROL

IR
Q

 3
9

IR
Q

 3
8

IR
Q

 3
7

IR
Q

 3
6

IR
Q

 3
5

IR
Q

 3
4

IR
Q

 3
3

IR
Q

 3
2

P
H

7

P
F

1

P
F

0

P
F

10

P
F

11

P
G

4

P
F

6

P
F

9
P

H
7

(U
A

R
T

1
R

X
)

P
G

9
P

G
10

 (
U

A
R

T
0

R
X

)

P
G

14

P
G

8

P
G

3

P
G

11

P
G

13
P

F
5

P
F

4

P
F

3

T
M

R
7

C
O

U
N

T
E

R
0

TO
TA

C
I7

TA
C

L
K

7

TA
C

L
K

6

T
M

R
6

TA
C

I6

TA
C

I5

T
M

R
5

T
M

R
4

T
M

R
3

T
M

R
2

T
M

R
1

T
M

R
0

TA
C

L
K

3

TA
C

L
K

2

TA
C

L
K

1

TA
C

I0

TA
C

I1

TA
C

L
K

0

TA
C

I4

TA
C

I3

TA
C

I2

P
G

12
 (

P
P

IC
L

K
)

GP TIMERS

BLACKFIN

TA
C

L
K

4

TA
C

L
K

5
C

L
K

B
U

F

10-58 ADSP-BF51x Blackfin Processor Hardware Reference

Core Timer
11 CORE TIMER

This chapter describes the core timer. Following an overview, functional
description, and consolidated register definitions, the chapter concludes
with a programming example.

Specific Information for the ADSP-BF51x
For details regarding the number of core timers for the ADSP-BF51x
product, refer to ADSP-BF512/BF514/BF516/BF518(F) Embedded Proces-
sor Data Sheet.

For Core Timer interrupt vector assignments, refer to Table 5-3 on
page 5-20 in Chapter 5, “System Interrupts”.

For a list of MMR addresses for each Core Timer, refer to Appendix A,
“System MMR Assignments”.

Core timer behavior for the ADSP-BF51x that differs from the general
information in this chapter can be found at the end of this chapter in the
section “Unique Information for the ADSP-BF51x Processor” on
page 11-9.
ADSP-BF51x Blackfin Processor Hardware Reference 11-1

Overview and Features
Overview and Features
The core timer is a programmable 32-bit interval timer which can gener-
ate periodic interrupts. Unlike other peripherals, the core timer resides
inside the Blackfin core and runs at the core clock (CCLK) rate. Core timer
features include:

• 32-bit timer with 8-bit prescaler

• Operates at core clock (CCLK) rate

• Dedicated high-priority interrupt channel

• Single-shot or continuous operation

Timer Overview
Figure 11-1 provides a block diagram of the core timer.

Figure 11-1. Core Timer Block Diagram

DEC

TSCALE

CCLK TIMER ENABLE
AND PRESCALE

LOGIC
ZEROTCOUNT

TCNTL TPERIOD

COUNT REGISTER
LOAD LOGIC

TIMER
INTERRUPT

T
IN

T

T
M

R
E

N

CORE REGISTER ACCESS BUS (RAB)

32
11-2 ADSP-BF51x Blackfin Processor Hardware Reference

Core Timer
External Interfaces
The core timer does not directly interact with any pins of the chip.

Internal Interfaces
The core timer is accessed through the 32-bit register access bus (RAB).
The module is clocked by the core clock CCLK. The timer’s dedicated inter-
rupt request is a higher priority than requests from all other peripherals.

Description of Operation
The software should initialize the TCOUNT register before the timer is
enabled. The TCOUNT register can be written directly, but writes to the
TPERIOD register are also passed through to TCOUNT.

When the timer is enabled by setting the TMREN bit in the core timer con-
trol register (TCNTL), the TCOUNT register is decremented once every time
the prescaler TSCALE expires, that is, every TSCALE + 1 number of CCLK
clock cycles. When the value of the TCOUNT register reaches 0, an interrupt
is generated and the TINT bit is set in the TCNTL register.

If the TAUTORLD bit in the TCNTL register is set, then the TCOUNT register is
reloaded with the contents of the TPERIOD register and the count begins
again. If the TAUTORLD bit is not set, the timer stops operation.

The core timer can be put into low power mode by clearing the TMPWR bit
in the TCNTL register. Before using the timer, set the TMPWR bit. This
restores clocks to the timer unit. When TMPWR is set, the core timer may
then be enabled by setting the TMREN bit in the TCNTL register.

 Hardware behavior is undefined if TMREN is set when TMPWR = 0.
ADSP-BF51x Blackfin Processor Hardware Reference 11-3

Core Timer Registers
Interrupt Processing
The timer’s dedicated interrupt request is a higher priority than requests
from all other peripherals. The request goes directly to the core event con-
troller (CEC) and does not pass through the system interrupt controller
(SIC). Therefore, the interrupt processing is also completely in the CCLK
domain.

 The core timer interrupt request is edge-sensitive and cleared by
hardware automatically as soon as the interrupt is serviced.

The TINT bit in the TCNTL register indicates that an interrupt has been gen-
erated. Note that this is not a W1C bit. Write a 0 to clear it. However, the
write is optional. It is not required to clear interrupt requests. The core
time module does not provide any further interrupt enable bit. When the
timer is enabled, interrupts can be masked in the CEC controller.

Core Timer Registers
The core timer includes four core memory-mapped registers, the timer
control register (TCNTL), the timer count register (TCOUNT), the timer
period register (TPERIOD), and the timer scale register (TSCALE). As with all
core MMRs, these registers are always accessed by 32-bit read and write
operations.
11-4 ADSP-BF51x Blackfin Processor Hardware Reference

Core Timer
Core Timer Control Register (TCNTL)
The TCNTL register, shown in Figure 11-2, functions as control and status
register.

Core Timer Count Register (TCOUNT)
The TCOUNT register, shown in Figure 11-3, decrements once every
TSCALE + 1 clock cycles. When the value of TCOUNT reaches 0, an interrupt
is generated and the TINT bit of the TCNTL register is set.

Values written to the TPERIOD register are automatically copied to the
TCOUNT register. Nevertheless, the TCOUNT register can be written directly.
In auto reload mode the value written to TCOUNT may differ from the
TPERIOD value to let the initial period be shorter or longer than following
periods. To do this, write to TPERIOD first and overwrite TCOUNT afterward.

Figure 11-2. Core Timer Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0X X X X X X X X X X X X 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

TMPWR

Core Timer Control Register (TCNTL)

Reset = Undefined

TMREN

0 - Puts the timer in low
power mode

1 - Active state. Timer can be
enabled using the TMREN
bit

Meaningful only when
TMPWR = 1
0 - Disable timer
1 - Enable timer

TINT

TAUTORLD

Sticky status bit
0 - Timer has not generated an interrupt
1 - Timer has generated an interrupt

0 - Disable auto-reload feature. When TCOUNT
reaches zero, the timer generates an interrupt and halts

1 - Enable auto-reload feature. When TCOUNT reaches zero
and the timer generates an interrupt, TCOUNT is
automatically reloaded with the contents of TPERIOD
and the timer continues to count
ADSP-BF51x Blackfin Processor Hardware Reference 11-5

Core Timer Registers
Writes to TCOUNT are ignored once the timer is running.

Core Timer Period Register (TPERIOD)
The TPERIOD register is shown in Figure 11-4. When auto-reload is
enabled, the TCOUNT register is reloaded with the value of the TPERIOD reg-
ister whenever TCOUNT reaches 0. Writes to TPERIOD are ignored when the
timer is running.

Figure 11-3. Core Timer Count Register

Figure 11-4. Core Timer Period Register

Core Timer Count Register (TCOUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Count Value[31:16]

Count Value[15:0]

Core Timer Period Register (TPERIOD)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Period Value[31:16]

Period Value[15:0]
11-6 ADSP-BF51x Blackfin Processor Hardware Reference

Core Timer
Core Timer Scale Register (TSCALE)
The TSCALE register is shown in Figure 11-5. The register stores the scal-
ing value that is one less than the number of cycles between decrements of
TCOUNT. For example, if the value in the TSCALE register is 0, the counter
register decrements once every CCLK clock cycle. If TSCALE is 1, the counter
decrements once every two cycles.

Programming Examples
Listing 11-1 configures the core timer in auto-reload mode. Assuming a
CCLK of 500 MHz, the resulting period is 1 second. The initial period is
twice as long as the others.

Listing 11-1. Core Timer Configuration

#include <defBF527.h>/*ADSP-BF527 product is used as an example*/

.section L1_code;

.global _main;

_main:

/* Register service routine at EVT6 and unmask interrupt */

p1.l = lo(IMASK);

p1.h = hi(IMASK);

Figure 11-5. Core Timer Scale Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Core Timer Scale Register (TSCALE)

Reset = Undefined

Scale Value[7:0]
ADSP-BF51x Blackfin Processor Hardware Reference 11-7

Programming Examples
r0.l = lo(isr_core_timer);

r0.h = hi(isr_core_timer);

[p1 + EVT6 - IMASK] = r0;

r0 = [p1];

bitset(r0, bitpos(EVT_IVTMR));

[p1] = r0;

/* Prescaler = 50, Period = 10,000,000, First Period = 20,000,000

*/

p1.l = lo(TCNTL);

p1.h = hi(TCNTL);

r0 = 50 (z);

[p1 + TSCALE - TCNTL] = r0;

r0.l = lo(10000000);

r0.h = hi(10000000);

[p1 + TPERIOD - TCNTL] = r0;

r0 <<= 1;

[p1 + TCOUNT - TCNTL] = r0;

/* R6 counts interrupts */

r6 = 0 (z);

/* start in auto-reload mode */

r0 = TAUTORLD | TMPWR | TMREN (z);

[p1] = r0;

_main.forever:

jump _main.forever;

_main.end:

/* interrupt service routine simple increments R6 */

isr_core_timer:

[--sp] = astat;

r6+= 1;

astat = [sp++];

rti;

isr_core_timer.end:
11-8 ADSP-BF51x Blackfin Processor Hardware Reference

Core Timer
Unique Information for the ADSP-BF51x
Processor

None.
ADSP-BF51x Blackfin Processor Hardware Reference 11-9

Unique Information for the ADSP-BF51x Processor
11-10 ADSP-BF51x Blackfin Processor Hardware Reference

Watchdog Timer
12 WATCHDOG TIMER

This chapter describes the watchdog timer. Following an overview, func-
tional description, and consolidated register definitions, the chapter
concludes with programming examples.

Specific Information for the ADSP-BF51x
For details regarding the number of watchdog timers for the ADSP-BF51x
product, refer to ADSP-BF512/BF514/BF516/BF518(F) Embedded Proces-
sor Data Sheet.

For Watchdog Timer interrupt vector assignments, refer to Table 5-3 on
page 5-20 in Chapter 5, “System Interrupts”.

For a list of MMR addresses for each Watchdog Timer, refer to
Appendix A, “System MMR Assignments”.

Watchdog timer behavior for the ADSP-BF51x that differs from the gen-
eral information in this chapter can be found at the end of this chapter in
the section “Unique Information for the ADSP-BF51x Processor” on
page 12-11.
ADSP-BF51x Blackfin Processor Hardware Reference 12-1

Overview and Features
Overview and Features
The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
reliability by generating an event to the processor core if the watchdog
expires before being updated by software.

Watchdog timer key features include:

• 32-bit watchdog timer

• 8-bit disable bit pattern

• System reset on expire option

• NMI on expire option

• General-purpose interrupt option

Typically, the watchdog timer is used to supervise stability of the system
software. When used in this way, software reloads the watchdog timer in a
regular manner so that the downward counting timer never expires (never
becomes 0). An expiring timer then indicates that system software might
be out of control. At this point a special error handler may recover the sys-
tem. For safety, however, it is often better to reset and reboot the system
directly by hardware control.

Especially in slave boot configurations, a processor reset cannot automati-
cally force the Blackfin device to be rebooted. In this case, the processor
may reset without booting again and may negotiate with the host device
by the time program execution starts. Alternatively, a watchdog event can
cause an NMI event. The NMI service routine may request the host device
reset and/or reboot the Blackfin processor.

The watchdog timer is often programmed to let the processor wake up
from sleep mode after a programmable period of time.
12-2 ADSP-BF51x Blackfin Processor Hardware Reference

Watchdog Timer

T

 For easier debugging, the watchdog timer does not decrement
(even if enabled) when the processor is in emulation mode.

Interface Overview
Figure 12-1 provides a block diagram of the watchdog timer.

External Interface
The watchdog timer does not directly interact with any pins of the chip.

Internal Interface
The watchdog timer is clocked by the system clock SCLK. Its registers are
accessed through the 16-bit peripheral access bus (PAB). The 32-bit regis-

Figure 12-1. Watchdog Timer Block Diagram

EVENT
CONTROL

WRITE

SCLK

WDOG_CNT

32

PAB

READ

RELOAD

RESE
WDOG_STAT

WDOG_CTL

WDEV

WDEN

16

EXPIRE

WDRO

NMI

IRQ
ADSP-BF51x Blackfin Processor Hardware Reference 12-3

Description of Operation
ters WDOG_CNT and WDOG_STAT must always be accessed by 32-bit read/write
operations. Hardware ensures that those accesses are atomic.

When the counter expires, one of three event requests can be generated.
Either a reset or an NMI request is issued to the core event controller
(CEC) or a general-purpose interrupt request is passed to the system inter-
rupt controller (SIC).

Description of Operation
If enabled, the 32-bit watchdog timer counts downward every SCLK cycle.
If it becomes 0, one of three event requests can be issued to either the
CEC or the SIC. Depending on how the WDEV bit field in the WDOG_CTL
register is programmed, the event that is generated may be a reset, a
non-maskable interrupt, or a general-purpose interrupt.

The counter value can be read through the 32-bit WDOG_STAT register. The
WDOG_STAT register cannot, however, be written directly. Rather, software
writes the watchdog period value into the 32-bit WDOG_CNT register before
the watchdog is enabled. Once the watchdog is started, the period value
cannot be altered.

To start the watchdog timer:

1. Set the count value for the watchdog timer by writing the count
value into the watchdog count register (WDOG_CNT). Since the
watchdog timer is not enabled yet, the write to the WDOG_CNT regis-
ters automatically pre-loads the WDOG_STAT register as well.

2. In the watchdog control register (WDOG_CTL), select the event to be
generated upon timeout.

3. Enable the watchdog timer in WDOG_CTL. The watchdog timer then
begins counting down, decrementing the value in the WDOG_STAT
register.
12-4 ADSP-BF51x Blackfin Processor Hardware Reference

Watchdog Timer
If software does not service the watchdog in time, WDOG_STAT continues
decrementing until it reaches 0. Then, the programmed event is gener-
ated. The counter stops decrementing and remains at zero. Additionally,
the WDRO latch bit in the WDOG_CTL register is set and can be interrogated by
software in case event generation is not enabled.

When the watchdog is programmed to generate a reset, it resets the pro-
cessor core and peripherals. If the NOBOOT bit in the SYSCR register was set
by the time the watchdog resets the part, the chip is not rebooted. This is
recommended behavior in slave boot configurations. The reset handler
may evaluate the RESET_WDOG bit in the software reset register SWRST to
detect a reset caused by the watchdog. For details, see the System Reset and
Booting chapter.

To prevent the watchdog from expiring, software services the watchdog by
performing dummy writes to the WDOG_STAT register. The values written
are ignored, but the write commands cause the WDOG_STAT register to be
reloaded from the WDOG_CNT register.

If the watchdog is enabled with a zero value loaded to the counter and the
WDRO bit was cleared, the WDRO bit of the watchdog control register is set
immediately and the counter remains at zero without further decrements.
If, however, the WDRO bit was set by the time the watchdog is enabled, the
counter decrements to 0xFFFF FFFF and continues operation.

Software can disable the watchdog timer only by writing a 0xAD value to
the WDEN field in the WDOG_CTL register.

Register Definitions
The watchdog timer is controlled by three registers.
ADSP-BF51x Blackfin Processor Hardware Reference 12-5

Register Definitions
Watchdog Count (WDOG_CNT) Register
The WDOG_CNT register, shown in Figure 12-2, holds the 32-bit unsigned
count value. The WDOG_CNT register must always be accessed with 32-bit
read/writes.

A valid write to the WDOG_CNT register also preloads the watchdog counter.
For added safety, the WDOG_CNT register can be updated only when the
watchdog timer is disabled. A write to the WDOG_CNT register while the
timer is enabled does not modify the contents of this register.

Watchdog Status (WDOG_STAT) Register
The 32-bit WDOG_STAT register, shown in Figure 12-3, contains the current
count value of the watchdog timer. Reads to WDOG_STAT return the current
count value. Values cannot be stored directly in WDOG_STAT, but are instead
copied from WDOG_CNT. This can happen in two ways.

• While the watchdog timer is disabled, writing the WDOG_CNT register
pre-loads the WDOG_STAT register.

• While the watchdog timer is enabled, but not rolled over yet,
writes to the WDOG_STAT register load it with the value in WDOG_CNT.

Figure 12-2. Watchdog Count Register

Watchdog Count Register (WDOG_CNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0000

Watchdog Count[31:16]

Watchdog Count[15:0]
12-6 ADSP-BF51x Blackfin Processor Hardware Reference

Watchdog Timer
 Enabling the watchdog timer does not automatically reload
WDOG_STAT from WDOG_CNT.

The WDOG_STAT register is a 32-bit unsigned system MMR that must be
accessed with 32-bit reads and writes.

Watchdog Control (WDOG_CTL) Register
The WDOG_CTL register, shown in Figure 12-4, is a 16-bit system MMR
used to control the watchdog timer.

The watchdog event (WDEV[1:0]) bit field is used to select the event that is
generated when the watchdog timer expires. Note that if the general-pur-
pose interrupt option is selected, the SIC_IMASK register that holds the
watchdog timer mask bit should be appropriately configured to unmask
that interrupt. If the generation of watchdog events is disabled, the watch-
dog timer operates as described, except that no event is generated when
the watchdog timer expires.

The watchdog enable (WDEN[7:0]) bit field is used to enable and disable
the watchdog timer. Writing any value other than the disable key (0xAD)
into this field enables the watchdog timer. This multibit disable key mini-
mizes the chance of inadvertently disabling the watchdog timer.

Figure 12-3. Watchdog Status Register

Watchdog Status Register (WDOG_STAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x0000 0000

Watchdog Status[31:16]

Watchdog Status[15:0]
ADSP-BF51x Blackfin Processor Hardware Reference 12-7

Programming Examples
Software can determine whether the watchdog has expired by interrogat-
ing the WDRO status bit of the WDOG_CTL register. This is a sticky bit that is
set whenever the watchdog timer count reaches 0. It can be cleared only by
writing a “1” to the bit when the watchdog has been disabled first.

Programming Examples
Listing 12-1 shows how to configure the watchdog timer so that it resets
the chip when it expires. At startup, the code evaluates whether the recent
reset event has been caused by the watchdog. Additionally, the example
sets the NOBOOT bit to prevent the memory from being rebooted.

Listing 12-1. Watchdog Timer Configuration

#include <defBF527.h>/*ADSP-BF527 product is used as an example*/

#define WDOGPERIOD 0x00200000

.section L1_code;

.global _reset;

_reset:

Figure 12-4. Watchdog Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 1 0 1 1 0 1 0 0 0

Watchdog Control Register (WDOG_CTL)

WDEV[1:0]
00 - Generate reset event
01 - Generate NMI
10 - Generate GP interrupt
11 - Disable event

generation

WDEN[7:0]
0xAD - Counter disabled
All other values - Counter
enabled

WDRO - W1C
0 - Watchdog timer has not expired
1 - Watchdog timer has expired

Reset = 0x0AD0
12-8 ADSP-BF51x Blackfin Processor Hardware Reference

Watchdog Timer
 ...

/* optionally, test whether reset was caused by watchdog */

p0.h=hi(SWRST);

p0.l=lo(SWRST);

r6 = w[p0] (z);

CC = bittst(r6, bitpos(RESET_WDOG));

if !CC jump _reset.no_watchdog_reset;

/* optionally, warn at system level or host device here */

_reset.no_watchdog_reset:

/* optionally, set NOBOOT bit to avoid reboot in case */

p0.h=hi(SYSCR);

p0.l=lo(SYSCR);

r0 = w[p0](z);

bitset(r0,bitpos(NOBOOT));

w[p0] = r0;

/* start watchdog timer, reset if expires */

p0.h = hi(WDOG_CNT);

p0.l = lo(WDOG_CNT);

r0.h = hi(WDOGPERIOD);

r0.l = lo(WDOGPERIOD);

[p0] = r0;

p0.l = lo(WDOG_CTL);

r0.l = WDEN | WDEV_RESET;

w[p0] = r0;

...

jump _main;

_reset.end:

The subroutine shown in Listing 12-2 can be called by software to service
the watchdog. Note that the value written to the WDOG_STAT register does
not matter.
ADSP-BF51x Blackfin Processor Hardware Reference 12-9

Programming Examples
Listing 12-2. Service Watchdog

service_watchdog:

[--sp] = p5;

p5.h = hi(WDOG_STAT);

p5.l = lo(WDOG_STAT);

[p5] = r0;

p5 = [sp++];

rts;

service_watchdog.end:

Listing 12-3 is an interrupt service routine that restarts the watchdog.
Note that the watchdog must be disabled first.

Listing 12-3. Watchdog Restarted by Interrupt Service Routine

isr_watchdog:

[--sp] = astat;

[--sp] = (p5:5, r7:7);

p5.h = hi(WDOG_CTL);

p5.l = lo(WDOG_CTL);

r7.l = WDDIS;

w[p5] = r7;

bitset(r7, bitpos(WDRO));

w[p5] = r7;

r7 = [p5 + WDOG_CNT - WDOG_CTL];

[p5 + WDOG_CNT - WDOG_CTL] = r7;

r7.l = WDEN | WDEV_GPI;

w[p5] = r7;

(p5:5, r7:7) = [sp++];

astat = [sp++];

rti;

isr_watchdog.end:
12-10 ADSP-BF51x Blackfin Processor Hardware Reference

Watchdog Timer
Unique Information for the ADSP-BF51x
Processor

None.
ADSP-BF51x Blackfin Processor Hardware Reference 12-11

Unique Information for the ADSP-BF51x Processor
12-12 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
13 GENERAL-PURPOSE
COUNTER

This chapter describes the general-purpose up/down counter. The counter
provides support for manually controlled rotary controllers, such as the
volume wheel on a radio device. This unit also supports industrial encod-
ers. Following the overview and list of key features is a description of the
operating modes.

This chapter concludes with a programming model, consolidated register
definitions, and programming examples.

Specific Information for the ADSP-BF51x
For details regarding the number of GP counters for the ADSP-BF51x
product, refer to ADSP-BF512/BF514/BF516/BF518(F) Embedded Proces-
sor Data Sheet.

For GP counter interrupt vector assignments, refer to Table 5-3 on
page 5-20 in Chapter 5, “System Interrupts”.

To determine how each of the GP counters is multiplexed with other
functional pins, refer to Table 9-2 on page 9-5 through Table 9-4 on
page 9-7 in Chapter 9, “General-Purpose Ports”.
ADSP-BF51x Blackfin Processor Hardware Reference 13-1

Overview
For a list of MMR addresses for each GP counter, refer to Appendix A,
“System MMR Assignments”.

GP counter behavior for the ADSP-BF51x that differs from the general
information in this chapter can be found at the end of this chapter in the
section “Unique Information for the ADSP-BF51x Processor” on
page 13-38

Overview
The purpose of this interface is to convert pulses from incremental posi-
tion encoders into data that is representative of the actual position. This is
done by integrating (counting) pulses on one or two inputs. Since integra-
tion provides relative position, some devices also feature a zero position
input (zero marker) that can be used to establish a reference point to verify
that the acquired position does not drift over time.

In addition, the incremental position information can be used to deter-
mine speed, if the time intervals are measured.

The GP counter provides flexible ways to establish position information.
When used in conjunction with the GP timer block, the GP counter
allows for the acquisition of coherent position/time-stamp information
that enables speed calculation.

Features
The GP counter includes the following features:

• 32-bit up/down counter

• Quadrature encoder mode (Gray code)

• Binary encoder mode
13-2 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
• Alternative frequency-direction mode

• Timed direction and up/down counting modes

• Zero marker/push button support

• Capture event timing in association with general purpose timer

• Boundary comparison and boundary setting features

• Input pin noise filtering (debouncing)

• Flexible error detection/signaling

Interface Overview
A block diagram of the GP counter is shown in Figure 13-1. There are
two input pins, the count up and direction (CUD) pin and the count down
and gate (CDG) pin, that accept various forms of incremental inputs and are
processed by the 32-bit counter. The third input, count zero marker (CZM),
is the zero marker input. The module interfaces to the processor by way of
the peripheral access bus (PAB) and can optionally generate an interrupt
ADSP-BF51x Blackfin Processor Hardware Reference 13-3

Description of Operation
request through the IRQ line. There is also an output that can be used by
the timer module to generate time-stamps on certain events.

Description of Operation
The GP counter has five modes of operation that are described in this
section.

With the exception of the timed direction mode, the GP counter can
operate with the GP timer block to capture additional timing information
(time-stamps) associated with events detected by this block.

The third input (CZM) may be used as a zero marker or to sense the press-
ing of a push button. Refer to “Zero Marker (Push Button) Operation” on
page 13-9 for more details.

The three input pins may be filtered (debounced) before being evaluated
by the GP counter. Refer to “Input Noise Filtering (Debouncing)” on
page 13-8 for more details.

Figure 13-1. Block Diagram of the GP Counter Interface

 QUADRATURE
 32-BIT

NOISE FILTERING
PROGRAMMABLE

 AND
 CONTROL BLOCK

 PROCESSOR
 LOGIC AND EVENT
 BOUNDARY DETECTION

 GENERATION

CUD

CDG

CZM

IRQ

TO GP TIMER
OUTPUT

 COUNTER

 INTERFACE

PAB BUS
13-4 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
The GP counter also features a flexible boundary comparison. In all of the
operating modes, the counter can be compared to an upper and lower
limit. A variety of actions can be taken when these limits are reached.
Refer to “Boundary Comparison Modes” on page 13-11 for more details.

Quadrature Encoder Mode
In this mode, the CUD and CDG inputs expect a quadrature-encoded signal
that is interpreted as a 2-bit Gray code. The order of transitions of the CUD
and CDG inputs determines whether the counter increments or decrements.
The CNT_COUNTER register contains the number of transitions that have
occurred. Refer to Table 13-1 for more details.

Optionally, an interrupt is generated if both inputs change within one
SCLK cycle. Such transitions are not allowed by Gray coding. Therefore,
the CNT_COUNTER register remains unchanged and an error condition is
signaled.

It is possible to reverse the count direction of the Gray coded signal. This
can be achieved by enabling the polarity inverter of either the CUD pin or
the CDG pin. Inverting both pins will not alter the behavior. This feature
can be enabled with the CDGINV and CUDINV bits in the CNT_CONFIG register.

As an example, if the CDG:CUD inputs are 00 respectively and the next tran-
sition is to 01, this would normally increment the counter as is shown in
Table 13-1. If the CUD polarity is inverted this generates a received input of
01 followed by 00. This will result in a decrement of the counter, altering
the behavior of the connected hardware.

Table 13-1. Quadrature Events and Counting Mechanism

CNT_COUNTER Register Value –4 –3 –2 –1 0 +1 +2 +3 +4

CDG:CUD Inputs 00 01 11 10 00 01 11 10 00
ADSP-BF51x Blackfin Processor Hardware Reference 13-5

Description of Operation
Binary Encoder Mode
This mode is almost identical to the previous mode, with the exception
that the CUD and CDG inputs expect a binary-encoded signal. The order of
transitions of the CUD and CDG inputs determines whether the counter
increments or decrements. The CNT_COUNTER register contains the number
of transitions that have occurred. Refer to Table 13-2.

Optionally, an interrupt is generated if the detected code steps by more
than 1 (in binary arithmetic) within one SCLK cycle. Such transitions are
considered erroneous. Therefore, the CNT_COUNTER register remains
unchanged and an error condition is signaled.

Reversing the CUD and CDG pin polarity has a different effect for the binary
encoder mode than for the quadrature encoder mode. Inverting the polar-
ity of the CUD pin only, or inverting both the CUD and CDG pins, will result
in reversing the count direction.

Up/Down Counter Mode
In this mode, the counter is incremented or decremented at every active
edge of the input pins.

If an active edge is detected at the CUD input, the counter increments. The
active edge can be selected by the CUDINV bit in the CNT_CONFIG register. If
this bit is cleared, a rising edge will increment the counter. If this bit is set,
a falling edge will increment the counter.

If an active edge is detected at the CDG input, the counter decrements. The
active edge can be selected by the CDGINV bit in the CNT_CONFIG register. If

Table 13-2. Binary Events and Counting Mechanism

CNT_COUNTER Register Value –4 –3 –2 –1 0 +1 +2 +3 +4

CDG:CUD Inputs 00 01 10 11 00 01 10 11 00
13-6 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
this bit is cleared, a rising edge will decrement the counter. If this bit is
set, a falling edge will decrement the counter.

If simultaneous edges occur on pin CDG and pin CUD, the counter remains
unchanged and both up-count and down-count events are signaled in the
CNT_STATUS register.

Direction Counter Mode
In this mode, the counter is incremented or decremented at every active
edge of the CDG input pin.

The state of the CUD input determines whether the counter increments or
decrements. The polarity can be selected by the CUDINV bit in the
CNT_CONFIG register. If this bit is cleared, a high CUD input will increment,
a low input will decrement. If this bit is set, the polarity is inverted.

If an active edge is detected at the CDG input, the counter value changes by
one in the selected direction. The active edge can be selected by the
CDGINV bit in the CNT_CONFIG register. If this bit is cleared, a rising edge
will decrement the counter. If this bit is set, a falling edge will decrement
the counter.

Timed Direction Mode
In this mode, the counter is incremented or decremented at each SCLK
cycle.

The state of the CUD input determines whether the counter increments or
decrements. The polarity can be selected by the CUDINV bit in the
CNT_CONFIG register. If this bit is cleared, a high CUD input will increment
the counter, a low input will decrement it. If this bit is set, the polarity is
inverted.
ADSP-BF51x Blackfin Processor Hardware Reference 13-7

Functional Description
The CDG pin can be used to gate the clock. The polarity can be selected by
the CDGINV bit in the CNT_CONFIG register. If this bit is cleared, a high CDG
input will enable the counter, a low input will stop it. If this bit is set, the
polarity is inverted.

Functional Description
The following sections describe the various functions in more detail.

Input Noise Filtering (Debouncing)
In all modes, the three input pins can be filtered to present clean signals to
the GP counter logic. This filtering can be enabled or disabled by the DEBE
bit in the CNT_CONFIG register. Figure 13-2 shows the filtering operation
for the CUD pin.

The filtering mechanism is implemented using counters for each pin. The
counter for each pin is initialized from the DPRESCALE field of the
CNT_DEBOUNCE register. When a transition is detected on a pin, the corre-
sponding counter starts counting up to the programmed number of SCLK
cycles. The state of the pin is latched after time tfilter and passed on to the
GP counter logic.

Figure 13-2. Programmable Noise Filtering

NOISY EDGES

CUD FILTERED

CUD

tfilter
13-8 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
The 5-bit DPRESCALE field in the CNT_DEBOUNCE register programs the
desired number of cycles and therefore the debouncing time. The number
of SCLK cycles for each pin can be selected in 18 steps ranging from 1 ×
128 SCLK periods to 131072 × 128 SCLK periods (see Figure 13-9 on
page 13-25).

The time tfilter is determined, given SCLK and the DPRESCALE value con-
tained in the CNT_DEBOUNCE register, by the following formula:

where DPRESCALE can contain values from 0 (minimum filtering) to 17
(maximum filtering).

Assuming an SCLK frequency of 133 MHz, the filter time range is shown
by the following equations:

DPRESCALE = 0b0000

DPRESCALE = 0b10001

Zero Marker (Push Button) Operation
The CZM input pin can be used to sense the zero marker output of a rotary
device or to detect the pressing of a push button. There are four program-
ming schemes which are functional in all counter modes:

• Push button mode–This mode is enabled by setting the CZMIE bit
in the CNT_IMASK register. An active edge at the CZM input will set
the CZMII bit in the CNT_STATUS register. If enabled at the

tfilter 128 2DPRESCALE SCLK =

tfilter 128*1*7.5ns 960ns (approx.) 1s ===

tfilter 128 131072 *7.5ns 125829s (approx.) 126ms===
ADSP-BF51x Blackfin Processor Hardware Reference 13-9

Functional Description
system interrupt controller, this will generate an interrupt request.
The active edge is selected by the CZMINV bit in the CNT_CONFIG reg-
ister (rising edge if cleared, falling edge if set to one).

• Zero-marker-zeros-counter mode–This mode is enabled by setting
the ZMZC bit in the CNT_CONFIG register. An active level at the CZM
input clears the CNT_COUNTER register and holds it until the CZM pin
is deactivated. In addition, if enabled by the CZMZIE bit in the
CNT_IMASK register, it will set the CZMZII bit in the CNT_STATUS reg-
ister. If enabled by the peripheral interrupt controller, this will
generate an interrupt request. The active level is selected by the
CZMINV bit in the CNT_CONFIG register (active high if cleared, active
low if set to one).

• Zero-marker-error mode–This mode is used to detect discrepan-
cies between counter value and the zero marker output of certain
rotary encoder devices. It is enabled by setting the CZMEIE bit in the
CNT_IMASK register. When an active edge is detected at the CZM
input pin, the four LSBs of the CNT_COUNTER register are compared
to zero. If they are not zero, a mismatch is signaled by way of the
CZMEII bit in the CNT_STATUS register. If enabled by the peripheral
interrupt controller, this will generate an interrupt request. The
active edge is selected by the CZMINV bit in the CNT_CONFIG register:
(rising edge if cleared, falling edge if set to one).

• Zero-once mode–This mode is used to perform an initial reset of
the counter value when an active zero marker is detected. After
that, the zero marker is ignored (the counter is not reset anymore).
This mode is enabled by setting the W1ZMONCE bit in the
CNT_COMMAND register. The CNT_COUNTER register and the W1ZMONCE
bit are cleared on the next active edge on the CZM pin. Thus, the
W1ZMONCE bit can be read to check whether the event has already
occurred, if desired. The active edge of the CZM pin is selected by
the CZMINV bit in the CNT_CONFIG register (rising edge if cleared,
falling edge if set to one).
13-10 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
Boundary Comparison Modes
The GP counter includes two boundary registers, CNT_MIN (lower) and
CNT_MAX (upper). The counter value is compared to the lower and upper
boundary. Depending on which mode is selected, different actions are
taken if the count value reaches either of the boundary values.

There are four boundary modes:

• Boundary-compare mode–The two boundary registers are simply
compared to the CNT_COUNTER register. If, after incrementing,
CNT_COUNTER equals CNT_MAX then the MAXCII bit in the CNT_STATUS
register is set. If the MAXCIE bit in the CNT_IMASK register is set, an
interrupt request is generated. Similarly if, after decrementing,
CNT_COUNTER equals CNT_MIN then the MINCII status bit is set. If the
MINCIE bit in the CNT_IMASK register is set, an interrupt request is
generated. The MAXCII and MINCII bits are not set if the CNT_MAX
and CNT_MIN registers are updated by software.

• Boundary-zero mode–This mode is similar to the boundary-com-
pare mode. In addition to setting the status bits and requesting
interrupts, the counter value in the CNT_COUNTER register is also set
to zero.

• Boundary auto-extend mode–In this mode, the boundary registers
are modified by hardware whenever the counter value reaches
either of them. The CNT_MAX register is loaded with the current
CNT_COUNTER value if the latter increments beyond the CNT_MAX
value. Similarly, the CNT_MIN register is loaded with the
CNT_COUNTER value if the latter decrements below the CNT_MIN
value. This mode may be used to keep track of the widest angle the
wheel ever reported, even if the software did not serve interrupts.
At startup, the application software should set both boundary regis-
ADSP-BF51x Blackfin Processor Hardware Reference 13-11

Functional Description
ters to the initial CNT_COUNTER value. The MAXCII and MINCII status
bits are still set when the counter value matches the boundary
register.

• Boundary-capture mode–In this mode, the CNT_COUNTER value is
latched into the CNT_MIN register at one detected edge of the CZM
input pin, and latched into CNT_MAX at the opposite edge. If the
CZMINV bit in the CNT_CONFIG register is cleared, a rising edge cap-
tures into CNT_MIN and a falling edge into CNT_MAX. If the CZMINV bit
is set, the edges are inverted. The MAXCII and MINCII status bits
report the capture event.

The comparison is performed with signed arithmetic. The boundary regis-
ters and the counter value are all treated as signed integer values.

Control and Signaling Events
Eleven events can be signaled to the processor using status information
and optional interrupt requests. The interrupts are enabled by the respec-
tive bits in the CNT_IMASK register. Dedicated bits in the CNT_STATUS
register report events. When an interrupt from the GP counter is acknowl-
edged, the application software is responsible for correct interpretation of
the events. It is recommended to logically AND the content of the
CNT_IMASK and CNT_STATUS registers to identify pending interrupts. Inter-
rupt requests are cleared by write-one-to-clear (W1C) operations to the
CNT_STATUS register. Hardware does not clear the status bits automatically,
unless the counter module is disabled.

Illegal Gray/Binary Code Events

When the illegal transitions described in “Quadrature Encoder Mode” on
page 13-5 or “Binary Encoder Mode” on page 13-6 occur, the ICII bit in
the CNT_STATUS register is set. If enabled by the ICIE bit in the CNT_IMASK
register, an interrupt request is generated. The ICIE bit should only be set
in the quadrature encoder or binary encoder modes.
13-12 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
Up/Down Count Events

The UCII bit in the CNT_STATUS register indicates whether the counter has
been incremented. Similarly, the DCII bit reports decrements. The two
events are independent. For instance, if the counter first increments by
one and then decrements by two, both bits remain set, even though the
resulting counter value shows a decrement by one. In up/down counter
mode, hardware may detect simultaneous active edges on the CUD and CDG
inputs. In that case, the CNT_COUNTER remains unchanged, but both the
UCII and DCII bits are set.

Interrupt requests for these events may be enabled through the UCIE and
DCIE bits. This feature should be used carefully when the counter is
clocked at high rates. This is especially critical when the counter operates
in DIR_TMR mode, as interrupts would be generated every SCLK cycle.

These events can also be used for additional push buttons, if GP counter
features are not needed. When up/down counter mode is enabled, these
count events can be used to report interrupts from push buttons that con-
nect to the CUD and CDG inputs.

Zero-Count Events

The CZEROII status bit indicates that the CNT_COUNTER has reached a value
equal to 0x0000 0000 after an increment or decrement. This bit is not set
when the counter value is set to zero by a write to CNT_COUNTER or by set-
ting the W1LCNT_ZERO bit in the CNT_COMMAND register. If enabled by the
CZEROIE bit, an interrupt request is generated.

Overflow Events

There are two status bits that indicate whether the signed counter register
has overflowed from a positive to a negative value or vice versa.

The COV31II bit reports that the 32-bit CNT_COUNT register has either incre-
mented from 0x7FFF FFFF to 0x8000 0000, or decremented from
ADSP-BF51x Blackfin Processor Hardware Reference 13-13

Functional Description
0x8000 0000 to 0x7FFF FFFF. If enabled by the COV31IE bit, an interrupt
request is generated.

Similarly, in applications where only the lower 16 bits of the counter are
of interest, the COV15II status bit reports counter transitions from
0xXXXX 7FFF to 0xXXXX 8000, or from 0xXXXX 8000 to
0xXXXX 7FFF. If enabled by the COV15IE bit, an interrupt request is
generated.

Boundary Match Events

The MINCII and MAXCII status bits report boundary events as described in
“Boundary Comparison Modes” on page 13-11. These bits are not set if
the CNT_COUNTER, CNT_MAX or CNT_MIN registers are updated by software or
the CNT_COMMAND register is written to.

The MINCIE and MAXCIE bits in the CNT_IMASK register enable interrupt
generation on boundary events.

Zero Marker Events

There are three status bits CZMII, CZMEII and CZMZII associated with zero
marker events, as described in “Zero Marker (Push Button) Operation” on
page 13-9. Each of these events can optionally generate an interrupt
request, if enabled by the corresponding CZMIE, CZMEIE and CZMZIE bits in
the CNT_IMASK register.

Capturing Timing Information
To calculate speed, many applications may wish to measure the time
between two count events—in addition to accurately counting encoder
pulses. For more accuracy, particularly at very low speeds, it is also neces-
sary to obtain the time that has elapsed since the last count event. This
additional information allows for estimating how much the GP counter
has advanced since the last counter event.
13-14 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
For this purpose, the GP counter has an internal signal that connects to
the alternate capture input (TACIx) of one of the GP timers. It is func-
tional in all modes, with the exception of the timed direction mode. Refer
to “Internal Interfaces” section of Chapter 9, “General-Purpose Ports” for
information regarding which GP timer(s) are associated with which GP
counter module(s) for your device.

In order to use the timing measurements, the associated GP timer must be
used in the WDTH_CAP mode. The alternate capture input is selected by set-
ting the TIN_SEL bit in the GP timer’s TIMER_CONFIG register. For more
information about the GP timers and their operating modes, refer to the
General-Purpose Timer chapter.

Capturing Time Interval Between
Successive Counter Events

When the only timing information of interest is the interval between suc-
cessive count events, the associated timer should be programmed in
WDTH_CAP mode with PULSE_HI = 1, PERIOD_CNT = 1 and TIN_SEL = 1. Typ-
ically, this information is sufficient if the speed of GP counter events is
known not to reach very low values. Figure 13-3 shows the operation of
the GP counter and the GP timer in this mode. TO generates a pulse
every time a count event occurs. The GP timer will update its
TIMER_PERIOD register with the period (measured from rising edge to rising
edge) of the TO signal. The TIMER_PERIOD register is updated at every ris-
ing edge of the TO signal and contains the number of system clock (SCLK)
cycles that have elapsed since the previous rising edge.

Incidentally, the TIMER_WIDTH register is also updated at the same time,
but is generally of no interest in this mode of operation. If no reads of the
CNT_COUNTER register occur between counter events, the TIMER_WIDTH regis-
ter only contains the width of the TO pulse. If a read of CNT_COUNTER has
occurred between events, the TIMER_WIDTH register will contain the time
between the read of CNT_COUNTER and the next event.
ADSP-BF51x Blackfin Processor Hardware Reference 13-15

Functional Description
This mode can also be used with PULSE_HI = 0. In this case, the period of
TO is measured between falling edges. It will result in the same values as
in the previous case, only the latching occurs one SCLK cycle later.

Capturing Counter Interval and
CNT_COUNTER Read Timing

It is possible to also capture the time elapsed since the last count event. In
this mode, the associated timer should be programmed in WDTH_CAP mode
with PULSE_HI = 0, PERIOD_CNT = 0 and TIN_SEL = 1. Typically, this addi-
tional information is used to estimate the advancement of the GP counter

Figure 13-3. Operation With GP Timer Module

SCLK

CUD

CDG

TO

CNT_COUNTER

TIMER_COUNTER

TIMER_PERIOD BUFFER

TIMER_WIDTH BUFFER

TIMER_PERIOD

TIMER_PERIOD

TIMER_WIDTH

Measurement
reports available

1 2 3 4 5

10 3 7 3 4

11111

10 3 7 3 4

11111

1 2 3 1 2 3 4 5 6 7 1 2 3 1 2 3 4 1 2
13-16 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
since the last count event, when the speed is very low. Figure 13-4 shows
the operation of the GP counter module and the GP timer module in this
mode. TO generates a pulse every time a count event occurs.

In addition, when the processor reads the CNT_COUNTER register, the TO
signal presents a pulse which is extended (high) until the next count event.

Figure 13-4. Capturing Counter Interval

SCLK

CUD

CDG

TO

CNT_COUNTER

CNT_COUNTER READ

TIMER_COUNTER

TIMER_PERIOD BUFFER

TIMER_WIDTH BUFFER

TIMER_PERIOD

TIMER_PERIOD

TIMER_WIDTH

Measurement
report of interest
due to read of
CNT_COUNTER

1 2 3 4 5 6

12 3 3 8

142211

x 2 3 3 8

142211

12 1 2 1 2 3 1 2 3 1 2 3 4 5 6 7 8 1 2

X 2

1

12

1

ADSP-BF51x Blackfin Processor Hardware Reference 13-17

Programming Model
The GP timer will update its TIMER_PERIOD register with the period (mea-
sured from falling edge to falling edge, because PULSE_HI = 0) of the TO
signal. The TIMER_WIDTH register is updated with the pulse width (the por-
tion where TO is low, again because PULSE_HI = 0). Both registers are
updated at every rising edge of the TO signal (because PERIOD_CNT = 0).
Therefore, the TIMER_PERIOD register contains the period between the last
two count events and the TIMER_WIDTH register contains the time since the
last count event and the read of the CNT_COUNTER register, both measured
in number of SCLK cycles.

The result is that when reading the CNT_COUNTER register, the two time
measurements are also latched and the user has a coherent triplet of infor-
mation to calculate speed and position.

 Restrictions apply to the use of the TO signal in terms of speed.
Therefore, the user must take care to not operate at very high count
events. For instance, if CNT_COUNTER is incremented/decremented
every SCLK cycle (timed direction mode), the TO signal is
incorrect.

Programming Model
In a typical application, the user will initialize the GP counter for the
desired mode, without enabling it. Normally the events of interest will be
processed using interrupts rather than polling the status bit. In that case,
clear all status bits and activate the generation of interrupt requests with
the CNT_IMASK register. Set up the system interrupt controller and core
interrupts. If timing information is required, set up the relevant GP timer
in WDTH_CAP mode with the settings described in the “Capturing Timing
Information” on page 13-14. Then, enable the interrupts and the periph-
eral itself.
13-18 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
Registers
The GP counter interface has eight memory-mapped registers (MMRs)
that regulate its operation. Descriptions and bit diagrams for MMRs is
provided in the sections that follow.

Counter Module Register Overview
Refer to Table 13-3 for an overview of all MMRs associated with the GP
counter interface.

Table 13-3. Counter Module Register Overview

Register Name Width PAB Operation Reset Value

CNT_CONFIG 16 bits R/W 0x0000

CNT_IMASK 16 bits R/W 0x0000

CNT_STATUS 16 bits R/W1C 0x0000

CNT_COMMAND 16 bits R/W1A 0x0000

CNT_DEBOUNCE 16 bits R/W 0x0000

CNT_COUNTER 32 bits R/W (16/32 bits) 0x0000 0000

CNT_MAX 32 bits R/W (16/32 bits) 0x0000 0000

CNT_MIN 32 bits R/W (16/32 bits) 0x0000 0000
ADSP-BF51x Blackfin Processor Hardware Reference 13-19

Registers
Counter Configuration Register (CNT_CONFIG)
This register is used to configure counter modes and input pins, as well as
to enable the peripheral. It can be accessed at any time with 16-bit read
and write operations.

Figure 13-5. Counter Configuration Register

Counter Configuration (CNT_CONFIG) Register

Reset = 0x0000
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

CNTE (Counter
Enable)
0 = Disabled
1 = Enabled

0 = Disabled
1 = Enabled

CDGINV (CDG Pin
Polarity Invert)
0 = Active high, rising
 edge
1 = Active low, falling
 edge

CUDINV (CUD Pin
Polarity Invert)
0 = Active high, rising
 edge
1 = Active low, falling
 edge

CNTMODE (Counter Operating Mode)
000: QUAD_ENC - quadrature encoder mode
001: BIN_ENC - binary encoder mode
010: UD_CNT - up/down counter mode
011: Reserved
100: DIR_CNT - direction counter mode
101: DIR_TMR - direction timer mode
110: Reserved
111: Reserved

ZMZC (CZM Zeroes Counter
Enable)

BNDMODE
(Boundary Register Mode)
00: BND_COMP
01: BIN_ENC
10: BND_CAPT
11: BND_AEXT

INPDIS (CUD and
CDG Input
Disable)

DEBE (Debounce
Enable)

0 = Enabled
1 = Disabled

Level sensitive - active CZM
pin zeroes CNT_COUNTER

CZMINV (CZM Pin
Polarity Invert)
0 = Active high, rising
 edge
1 = Active low, falling
 edge
13-20 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
Counter Interrupt Mask Register (CNT_IMASK)
This register is used to enable interrupt request generation from each of
the eleven events. It can be accessed at any time with 16-bit read and write
operations. For explanations of the register bits, refer to “Control and Sig-
naling Events” on page 13-12.

Counter Status Register (CNT_STATUS)
This register provides status information for each of the eleven events
where 0 = no interrupt pending and 1 = interrupt pending. When an event
is detected, the corresponding bit in this register is set. It remains set until
either software writes a “1” to the bit (write-1-to-clear) or the GP counter
is disabled. For explanations of the register bits, refer to “Control and Sig-
naling Events” on page 13-12.

Figure 13-6. Counter Interrupt Mask Register

Counter Interrupt Mask (CNT_IMASK) Register

Reset = 0x0000
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

ICIE
 (Illegal Gray/binary code interrupt
enable)

UCIE
 (Upcount interrupt enable)

DCIE
 (Downcount interrupt enable)

MINCIE
(Min count interrupt enable)

MAXCIE
(Max count interrupt enable)

COV31IE
(Bit 31 overflow interrupt enable)

COV15IE
(Bit 15 overflow interrupt enable)

CZMZIE
(Counter zeroed by zero marker
interrupt enable)

CZMEIE
(Zero marker error interrupt enable)

CZMIE
(CZM pin interrupt enable/push-button interrupt)

CZEROIE
(CNT_COUNTER counts to zero interrupt enable

For all bits:
0 = Interrupt disabled
1 = Interrupt enabled
ADSP-BF51x Blackfin Processor Hardware Reference 13-21

Registers
Counter Command Register (CNT_COMMAND)
The CNT_COMMAND register (shown in Figure 13-8) configures the GP coun-
ter, enabling operations such as zeroing a counter register and copying or
swapping boundary registers. These actions are taken by writing a “one” to
the appropriate bit.

Read operations from this register will not return meaningful values, with
the exception of the W1ZONCE bit, where a “1” indicates that the bit has
been set by software before, but no zero marker event has been detected on
the CZM pin yet. Refer to “Zero Marker (Push Button) Operation” on
page 13-9 for more details.

The CNT_COUNTER, CNT_MIN and CNT_MAX registers can be initialized to zero
by writing a “one” to the W1LCNT_ZERO, W1LMIN_ZERO and W1LMAX_ZERO
fields. In addition to clearing registers, CNT_COMMAND allows the boundary
registers to be modified in a number of ways. The current counter value in
CNT_COUNT can be captured and loaded into either of the two boundary

Figure 13-7. Counter Status Register

Counter Status (CNT_STATUS) Register

Reset = 0x0000
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

COV31II
(Bit 31 overflow
interrupt) (W1C)

COV15II
(Bit 15 overflow interrupt) (W1C)

CZMZIE
(Counter zeroed by zero marker) (W1C)
CZMEII
(Zero marker error interrupt) (W1C)
CZMII
(CZM pin interrupt/ Push-button interrupt) (W1C)
CZEROII
(CNT_COUNTER counts to zero interrupt) (W1C)

ICII
(Illegal Gray/binary code
interrupt) (W1C)
UCII
(Upcount interrupt) (W1C)
DCII
(Downcount interrupt) (W1C)
MINCII
(Min interrupt) (W1C)
MAXCII
(Max interrupt) (W1C)

For all bits:
0 = No Interrupt pending
1 = Interrupt pending
13-22 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
registers CNT_MAX and CNT_MIN to create new boundary limits. This is per-
formed by setting the W1LMAX_CNT and W1LMIN_CNT bits. Alternatively, the
counter can be loaded from CNT_MAX or CNT_MIN via the W1LCNT_MAX and
W1LCNT_MIN bits. It is also possible to transfer the current CNT_MAX value
into CNT_MIN (or vice versa) through the W1LMIN_MAX and W1LMAX_MIN bits.
The final supported operation is the ability to only have the zero marker
clear the CNT_COUNT register once, as described in “Zero Marker (Push But-
ton) Operation” on page 13-9.

It is possible for multiple actions to be performed simultaneously by set-
ting multiple bits in the CNT_COMMAND register. However, there are
restrictions. The bits associated with each command have been grouped
together such that all bits that involve a write to the CNT_COUNTER register
are located within bits 3:0 of the CNT_COMMAND register. All commands that
involve a write to the CNT_MIN register are located within bits 7:4 of the
CNT_COMMAND register, and all commands that involve a write to the
CNT_MAX register are located within bits 11:8 of the CNT_COMMAND register.

 A maximum of three commands can be issued at any one time,
excluding the W1ZMONCE command. Note that (W1LCNT_MIN,
W1LCNT_MAX and W1LCNT_ZERO) have to be used exclusively. Never
set more than one of them at the same time. The same rule applies
for (W1LMAX_MIN, W1LMAX_CNT and W1LMAX_ZERO) and for
(W1LMIN_MAX, W1LMIN_CNT, and W1LMIN_ZERO).
ADSP-BF51x Blackfin Processor Hardware Reference 13-23

Registers
Counter Debounce Register (CNT_DEBOUNCE)
This register is used to select the noise filtering characteristic of the three
input pins (see “Input Noise Filtering (Debouncing)” on page 13-8). Bits
[4:0] determine the filter time. The register can be accessed at any time
with 16-bit read and write operations.

Figure 13-8. Counter Command Register

Counter Command (CNT_COMMAND) Register

Reset = 0x0000
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

W1LCNT_ZERO
(Write one to zero
CNT_COUNTER) (W1A)
W1LCNT_MIN
(Write one to zero
CNT_COUNTER (W1A)
W1LCNT_MAX
(Write one to load
CNT_COUNTER
from CNT_MAX) (W1A)
W1LMIN_ZERO
(Write one to zero CNT_MIN
Register) (W1A)
W1LMIN_CNT
(Write one to capture
CNT_COUNTER to CNT_MIN
Register) (W1A)

W1LMIN_MAX
(Write one to copy former CNT_MAX
to new CNT_MIN (W1A)

W1LMAX_ZERO
(Write one to zero CNT_MAX Register) (W1A)

W1LMAX_CNT
(Write one to capture CNT_COUNTER to
CNT_MAX Register) (W1A)

W1LMAX_MIN
(Write one to copy former CNT_MIN
to new CNT_MAX) (W1A)

W1ZMONCE
(Write one to enable single Zero
marker clear CNT_COUNT
action (W1A/R)

tfilter 128 2DPRESCALE SCLK =
13-24 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
Counter Count Value Register (CNT_COUNTER)
This register holds the 32-bit, twos-complement, count value. It can be
read and written at any time. Hardware ensures that reads and write are
atomic, by providing respective shadow registers. This register can be
accessed with either 32-bit or 16-bit operations. This allows use of the GP
counter as a 16-bit counter if sufficient for the application.

Figure 13-9. Counter Debounce Register

00

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 00

15

0

Counter Debounce (CNT_DEBOUNCE) Register

Reset = 0x0000

DPRESCALE (DEBOUNCE DELAY)
00000: 1 x 128 SCLK cycles
00001: 2 x 128 SCLK cycles
00010: 4 x 128 SCLK cycles
00011: 8 x 128 SCLK cycles
00100: 16 x 128 SCLK cycles
00101: 32 x 128 SCLK cycles
00110: 64 x 128 SCLK cycles
00111: 128 x 128 SCLK cycles
01000: 256 x 128 SCLK cycles
01001: 512 x 128 SCLK cycles
01010: 1024 x 128 SCLK cycles
01011: 2048 x 128 SCLK cycles
01100: 4096 x 128 SCLK cycles
01101: 8192 x 128 SCLK cycles
01110: 16384 x 128 SCLK cycles
01111: 32768 x 128 SCLK cycles
10000: 65536 x 128 SCLK cycles
10001: 131072 x 128 SCLK cycles
Others: Reserved
ADSP-BF51x Blackfin Processor Hardware Reference 13-25

Registers
Counter Boundary Registers (CNT_MIN and
CNT_MAX)

These registers hold the 32-bit, twos-complement, lower and upper
boundary values. They can be read and written at any time. Hardware
ensures that reads and write are atomic, by providing respective shadow
registers. This register can be accessed with either 32-bit or 16-bit opera-
tions. This allows for using the GP counter as a 16-bit counter if sufficient
for the application.

Figure 13-10. Counter Count Value Register

Counter Count Value (CNT_COUNTER) Register

Count Value

Reset = 0x0000 0000

31 30 29 28 27 26

00 0 0 0 0 0 0 0 0 0 0 0 00

16171819202122232425

0

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

Count Value
13-26 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
Figure 13-11. Counter Maximal Count Register

Figure 13-12. Counter Minimal Count Register

Counter Maximal Count (CNT_MAX) Register

Reset = 0x0000 0000

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

CNT_MAX
(Counter Max)

31 30 29 28 27 26

00 0 0 0 0 0 0 0 0 0 0 0 00

16171819202122232425

0

CNT_MAX
(Counter Max)

Counter Minimal Count (CNT_MIN) Register

Reset = 0x0000 0000

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

31 30 29 28 27 26

00 0 0 0 0 0 0 0 0 0 0 0 00

16171819202122232425

0

CNT_MIN[31:16]
(Counter Min)

CNT_MIN[15:0]
(Counter Min)
ADSP-BF51x Blackfin Processor Hardware Reference 13-27

Programming Examples
Programming Examples
Listing 13-1 illustrates how to initialize the GP counter for various modes.
The required interrupts are first unmasked. The GP counter is then con-
figured for the required mode of operation. Note that at this point we do
not yet enable the counter. Finally, some GP counter MMRs are cleared,
as well as any interrupts that may be pending in the CNT_STATUS register.

Listing 13-1. Initializing the GP Counter

/* Setup Counter Interrupts */

P5.H = hi(CNT_IMASK);

P5.L = lo(CNT_IMASK);

R5 = nCZMZIE /* Counter zeroed by zero marker interrupt */

| CZMEIE /* Zero marker error interrupt */

| CZMIE /* CZM pin interrupt (push-button) */

| CZEROIE /* Counts to zero interrupt */

| nCOV15IE /* Counter bit 15 overflow interrupt */

| nCOV31IE /* Counter bit 31 overflow interrupt */

| MAXCIE /* Max count interrupt */

| MINCIE /* Min count interrupt */

| DCIE /* Downcount interrupt */

| UCIE /* Upcount interrupt */

| ICIE (z); /* Illegal gray/binary code interrupt */

w[P5] = R5;

/* Configure the GP Counter mode of operation */

P5.H = hi(CNT_CONFIG);

P5.L = lo(CNT_CONFIG);

R5 = nINPDIS /* Enable CUD and CDG inputs */

| BNDMODE_COMP /* Boundary compare mode */

| nZMZC /* Disable Zero Counter Enable */

| CNTMODE_QUADENC /* Quadrature Encoder Mode */

| CZMINV /* Polarity of CZM pin */
13-28 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
| nCUDINV /* Polarity of CUD pin */

| nCDGINV /* Polarity of CDG Pin */

| nDEBE /* Disable the debounce */

| nCNTE (z); /* Disable the counter */

w[P5] = R5;

/* Zero the CNT_COUNT, CNT_MIN and CNT_MAX registers

This is optional as after reset they are default to zero */

P5.H = hi(CNT_COMMAND);

P5.L = lo(CNT_COMMAND);

R5 = W1LCNT_ZERO | W1LMIN_ZERO | W1LMAX_ZERO (z);

w[P5] = R5;

/* Clear any identified interrupts */

P5.H = hi(CNT_STATUS);

P5.L = lo(CNT_STATUS);

R5.L = ICII /* Illegal Gray/Binary Code Interrupt Identifier

*/

| UCII /* Up count Interrupt Identifier */

| DCII /* Down count Interrupt Identifier */

| MINCII /* Min Count Interrupt Identifier */

| MAXCII /* Max Count Interrupt Identifier */

| COV31II /* Bit 31 Overflow Interrupt Identifier */

| COV15II /* Bit 15 Overflow Interrupt Identifier */

| CZEROII /* Count to Zero Interrupt Identifier */

| CZMII /* CZM Pin Interrupt Identifier */

| CZMEII /* CZM Error Interrupt Identifier */

| CZMZII; /* CZM Zeroes Counter Interrupt Identifier */

w[P5] = R5;

Listing 13-2 illustrates how to set up the peripheral and core interrupts for
the GP counter. This example assumes the counter interrupts are gener-
ated on IRQ27, which is assumed to be mapped to the IVG11 interrupt.
Finally, the system and peripheral interrupts are unmasked, and then the
ADSP-BF51x Blackfin Processor Hardware Reference 13-29

Programming Examples
GP counter is enabled. This example can be easily tailored to processors
with different SIC register mappings.

Listing 13-2. Setting Up the Interrupts for the GP Counter

/* Assign the CNT interrupt to IVG11 */

P5.H = hi(SIC_IAR3);

P5.L = lo(SIC_IAR3);

R6.H = hi(0xFFFF4FFF);

R6.L = lo(0xFFFF4FFF);

R7.H = hi(0x00000000);

R7.L = lo(0x00000000);

R5 = [P5];

R5 = R5 & R6; /* zero the counter interrupt field */

R5 = R5 | R7; /* set Counter interrupt to required priority */

[P5] = R5;

/* Set up the interrupt vector for the counter */

R5.H = hi(_IVG11_handler);

R5.L = lo(_IVG11_handler);

P5.H = hi(EVT11);

P5.L = lo(EVT11);

[P5] = R5;

/* Unmask IVG11 interrupt in the IMASK register */

P5.H = hi(IMASK);

P5.L = lo(IMASK);

R5 = [P5];

bitset(R5, bitpos(EVT_IVG11));

[P5] = R5;

/* Unmask interrupt 27 generated by the counter */

P5.H = hi(SIC_IMASK0);

P5.L = lo(SIC_IMASK0);
13-30 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
R5 = [P5];

bitset(R5, bitpos(IRQ_CNT));

[P5] = R5;

/* Enable the counter */

P5.H = hi(CNT_CONFIG);

P5.L = lo(CNT_CONFIG);

R5 = w[P5](z);

bitset(R5, bitpos(CNTE));

w[P5] = R5.L;

Using the same assumptions from the previous example, Listing 13-3
illustrates a sample interrupt handler that is responsible for servicing the
GP counter interrupts. On entry to the handler, the SIC_ISR0 register is
interrogated to determine if the counter is waiting for an interrupt to be
serviced. If so, the handler responsible for processing all counter interrupts
is called.

Listing 13-3. Sample Interrupt Handler for GP Counter Interrupts

_IVG11_handler:

/* Stack management */

[--SP] = RETS;

[--SP] = ASTAT;

[--SP] = (R7:0, P5:0);

/* Was it a counter interrupt? */

P5.H = hi(SIC_ISR0);

P5.L = lo(SIC_ISR0);

R5 = [P5];

CC = bittst(R5, bitpos(IRQ_CNT));

IF !CC JUMP _IVG11_handler.completed;

CALL _IVG11_handler.counter;

_IVG11_handler.completed:
ADSP-BF51x Blackfin Processor Hardware Reference 13-31

Programming Examples
SSYNC;

/* Restore from stack */

(R7:0, P5:0) = [SP++];

ASTAT = [SP++];

RETS = [SP++];

RTI; /* Exit the interrupt service routine */

_IVG11_handler.end:

_IVG11_handler.counter:

/* Stack management */

[--SP] = RETS;

[--SP] = (R7:0, P5:0);

/* Determine what counter interrupts we wish to service */

R5 = w[P5](z);

P5.H = hi(CNT_IMASK);

P5.L = lo(CNT_IMASK);

R5 = w[P5](z);

P5.H = hi(CNT_STATUS);

P5.L = lo(CNT_STATUS);

R6 = w[P5](z);

R5 = R5 & R6;

/* Interrupt handlers for all GP counter interrupts */

_IVG11_handler.counter.illegal_code:

CC = bittst(R5, bitpos(ICII));

IF !CC JUMP _IVG11_handler.counter.up_count;

/* Clear the serviced request */

R6 = ICII (z);

w[P5] = R6;
13-32 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
/* insert illegal code handler here */

_IVG11_handler.counter.illegal_code.end:

_IVG11_handler.counter.up_count:

CC = bittst(R5, bitpos(UCII));

IF !CC JUMP _IVG11_handler.counter.down_count;

/* Clear the serviced request */

R6 = UCII (z);

w[P5] = R6;

/* insert up count handler here */

_IVG11_handler.counter.up_count.end:

_IVG11_handler.counter.down_count:

CC = bittst(R5, bitpos(DCII));

IF !CC JUMP _IVG11_handler.counter.min_count;

/* Clear the serviced request */

R6 = DCII (z);

w[P5] = R6;

/* insert down count handler here */

_IVG11_handler.counter.down_count.end:

_IVG11_handler.counter.min_count:

CC = bittst(R5, bitpos(MINCII));

IF !CC JUMP _IVG11_handler.counter.max_count;

/* Clear the serviced request */
ADSP-BF51x Blackfin Processor Hardware Reference 13-33

Programming Examples
R6 = MINCII (z);

w[P5] = R6;

/* insert min count handler here */

_IVG11_handler.counter.min_count.end:

_IVG11_handler.counter.max_count:

CC = bittst(R5, bitpos(MAXCII));

IF !CC JUMP _IVG11_handler.counter.b31_overflow;

/* Clear the serviced request */

R6 = MAXCII (z);

w[P5] = R6;

/* insert max count handler here */

_IVG11_handler.counter.max_count.end:

_IVG11_handler.counter.b31_overflow:

CC = bittst(R5, bitpos(COV31II));

IF !CC JUMP _IVG11_handler.counter.b15_overflow;

/* Clear the serviced request */

R6 = COV31II (z);

w[P5] = R6;

/* insert bit 31 overflow handler here */

_IVG11_handler.counter.b31_overflow.end:

_IVG11_handler.counter.b15_overflow:

CC = bittst(R5, bitpos(COV15II));
13-34 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
IF !CC JUMP _IVG11_handler.counter.count_to_zero;

/* Clear the serviced request */

R6 = COV15II (z);

w[P5] = R6;

/* insert bit 15 overflow handler here */

_IVG11_handler.counter.b15_overflow.end:

_IVG11_handler.counter.count_to_zero:

CC = bittst(R5, bitpos(CZEROII));

IF !CC JUMP _IVG11_handler.counter.czm;

/* Clear the serviced request */

R6 = CZEROII (z);

w[P5] = R6;

/* insert count to zero handler here */

_IVG11_handler.counter.count_to_zero.end:

_IVG11_handler.counter.czm:

CC = bittst(R5, bitpos(CZMII));

IF !CC JUMP _IVG11_handler.counter.czm_error;

/* Clear the serviced request */

R6 = CZMII (z);

w[P5] = R6;

/* insert czm handler here */

_IVG11_handler.counter.czm.end:
ADSP-BF51x Blackfin Processor Hardware Reference 13-35

Programming Examples
_IVG11_handler.counter.czm_error:

CC = bittst(R5, bitpos(CZMEII));

IF !CC JUMP _IVG11_handler.counter.czm_zeroes_counter;

/* Clear the serviced request */

R6 = CZMEII (z);

w[P5] = R6;

/* insert czm error handler here */

_IVG11_handler.counter.czm_error.end:

_IVG11_handler.counter.czm_zeroes_counter:

CC = bittst(R5, bitpos(CZMZII));

IF !CC JUMP _IVG11_handler.counter.all_serviced;

/* Clear the serviced request */

R6 = CZMZII (z);

w[P5] = R6;

/* insert czm zeroes counter handler here */

_IVG11_handler.counter.czm_zeroes_counter.end:

_IVG11_handler.counter.all_serviced:

/* Restore from stack */

(R7:0, P5:0) = [SP++];

RETS = [SP++];
RTS;

_IVG11_handler.counter.end:
13-36 ADSP-BF51x Blackfin Processor Hardware Reference

General-Purpose Counter
Listing 13-4 shows how to set up timer 7 (as an example) to capture the
period of counter events. Refer to "Internal Interfaces" in Chapter 9,
“General-Purpose Ports” for information regarding which GP timer(s) are
associated with which GP counter module(s) for your device. The timer is
configured for WDTH_CAP mode, and the period between the last two suc-
cessive counter events is read from within the up count interrupt handler
that was provided in Listing 13-3 on page 13-31.

Listing 13-4. Setting Up Timer 7 for Counter Event Period Capture

/* configure the timer for WDTH_CAP mode */

P5.H = hi(TIMER7_CONFIG);

P5.l = lo(TIMER7_CONFIG);

R5 = PULSE_HI | PERIOD_CNT | TIN_SEL | WDTH_CAP (z);

w[P5] = R5.l;

/* Enable Timer 7

P5.H = hi(TIMER_ENABLE0);

P5.L = lo(TIMER_ENABLE0);

R5 = TIMEN7 (z);

w[P5] = R5.L;

...

_IVG11_handler.counter.up_count:

CC = bittst(R5, bitpos(UCII));

IF !CC JUMP _IVG11_handler.counter.down_count;

/* Clear the serviced request */

R6 = UCII (z);

w[P5] = R6;

/* insert up count handler here */
ADSP-BF51x Blackfin Processor Hardware Reference 13-37

Unique Information for the ADSP-BF51x Processor
/* Read the period between the last two successive events */

P5.H = hi(TIMER7_PERIOD);

P5.L = lo(TIMER7_PERIOD);

R5 = [P5];

P5.H = hi(_event_period);

P5.L = lo(_event_period);

[P5] = R5;

_IVG11_handler.counter.up_count.end:

Unique Information for the ADSP-BF51x
Processor

None.
13-38 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
14 PWM CONTROLLER

This chapter describes the PWM controller module. Following an over-
view and a list of key features is a description of operation and functional
modes of operation. The chapter concludes with a programming model
discussion and consolidated register definitions.

Specific Information for the ADSP-BF51x
For details regarding the number of PWMs for the ADSP-BF51x product,
refer to ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor Data
Sheet.

For PWM Controller interrupt vector assignments, refer to Table 5-3 on
page 5-20 in Chapter 5, “System Interrupts”.

To determine how the PWM Controller is multiplexed with other func-
tional pins, refer to Table 9-2 on page 9-5 through Table 9-4 on page 9-7
in Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for the PWM Controller, refer to
Appendix A, “System MMR Assignments”.
ADSP-BF51x Blackfin Processor Hardware Reference 14-1

Overview
Overview
The PWM controller is a flexible, programmable, three-phase PWM
waveform generator that can be programmed to generate the required
switching patterns to drive a three-phase voltage source inverter for ac
induction motor (ACIM) or permanent magnet synchronous motor
(PMSM) control.

In addition, the PWM block contains functions that considerably simplify
the generation of the required PWM switching patterns for control of
electronically commutated motors (ECMs) or brushless dc motors
(BDCMs).

Programming the PWM_SRMODE bit of the PWM_CTRL register to 0 enables a
special mode used for switched reluctance motors (SRMs). Figure 14-1
shows a block diagram that represents the main functional blocks of the
PWM Controller.

The following six blocks control the generation of the six output PWM
signals (PWM_AH, PWM_AL, PWM_BH, PWM_BL, PWM_CH, and PWM_CL):

• Three-Phase PWM Timing Unit. As the core of the PWM
Controller, this block generates three pairs of complemented,
center-based PWM signals and PWM_SYNC coordination.

• Dead Time Control Unit. This block inserts emergency dead time
after the “ideal” PWM output pair, including crossover, is
generated.

• Output Control Unit. This block permits the redirection of the
outputs of the Three-Phase Timing Unit for each channel to the
high-side or the low-side output. In addition, the Output Control
Unit allows individual enabling/disabling of each of the six PWM
output signals.
14-2 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
• Gate Drive Unit. This block provides the correct polarity output
PWM signals, based on the state of the PWM_POLARITY bit of the
PWM_CTRL register. The Gate Drive Unit also permits the generation
of the high-frequency chopping waveform and its subsequent mix-
ing with the PWM output signals.

Figure 14-1. PWM Controller Block Diagram

PWM
CONFIGURATION
REGISTERS

PWM DUTY
CYCLE
REGISTERS

PWM_STAT2

PWM_CTRL

PWM_TM PWM_CHA
PWM_CHB
PWM_CHC

PWM_DT

PWM_SEG[8:6]
PWM_SEG[5:0] PWM_GATE

THREE-PHASE
PWM TIMING
UNIT

DEAD
TIME
CONTROL
UNIT

OUTPUT
CONTROL
UNIT

GATE
DRIVE
UNIT

PWM
SYNC PULSE
CONTROL
UNIT

PWM
SHUTDOWN
AND INTERRUPT
CONTROL
UNIT

PWM_SYNCWT

PAB BUS

CLKSYNC SR RESET

SYNC CLKSR POL

PWM_AH

PWM_AL

PWM_BH

PWM_BL

PWM_CH

PWM_CL

PWM_TRIPB

PWM_TRIP_IRQ

PWM_SYNC_IRQ

RESETB

FIO_COMP_TRIPB

CLK

PWM_POLARITY

PWM_SRMODE
ADSP-BF51x Blackfin Processor Hardware Reference 14-3

Overview
• PWM Shutdown & Interrupt Control Unit. This block takes care
of the various PWM shutdown modes (via the PWM_TRIPB pin and
the PWM_CTRL register). This unit generates the correct reset signal
for the Three-Phase PWM Timing Unit and interrupt signals for
the Interrupt Control Unit

• PWM Sync Pulse Control Unit. This block generates the internal
PWM synchronization pulse and also controls whether an external
PWM_SYNC pulse is used.

The PWM Controller is driven by a clock, whose period is tSCLK. The
PWM generator produces three pairs (PWM_AH, PWM_AL, PWM_BH, PWM_BL,
PWM_CH, and PWM_CL) of PWM signals on the six PWM output pins. There
are three high-side drive signals (PWM_AH, PWM_BH, and PWM_CH) and three
low-side drive signals (PWM_AL, PWM_BL, and PWM_CL). The polarity of the
generated PWM signals may be programmed by the PWM_POLARITY bit of
the PWM_CTRL register to generate active high or active low PWM patterns.
The switching frequency and dead time of the generated PWM patterns
are programmable via the PWM_TM and PWM_DT registers. In addition, three
duty-cycle control registers (PWM_CHA, PWM_CHB, and PWM_CHC) directly con-
trol the duty cycles of the three pairs of PWM signals.

Each of the six PWM output signals can be enabled or disabled via sepa-
rate output enable bits of the PWM_SEG register. In addition, three control
bits of the PWM_SEG register permit independent crossover of the two sig-
nals of a PWM pair for easy control of ECMs or BDCMs. In crossover
mode, the PWM signal destined for the high-side switch is diverted to the
complementary low-side output, and the signal destined for the low-side
switch is diverted to the corresponding high-side output signal for ECM
or BDCM modes of operation. A typical configuration for these types of
motors is shown in Figure 14-2.

In common three-phase inverters, it is necessary to insert a so-called “dead
time” between turning off one switch and turning on the other switch in
the same leg, to prevent shoot-through. This dead time is inserted by an
emergency dead-time insertion circuit, which enforces a dead time defined
14-4 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
by the PWM_DT register between the high- and low-side drive signals of each
PWM channel. This ensures that the correct dead time occurs at the
power inverter.

In many applications, there is a need to provide an isolation barrier in the
gate-drive circuits that turn on the power devices of the inverter. In gen-
eral, there are two common isolation techniques: optical isolation using
opto-isolators, and transformer isolation using pulse transformers. The
PWM Controller permits the mixing of the output PWM signals with a
high-frequency chopping signal, which provides an simple interface to

Figure 14-2. Active Low PWM Signals for ECM Control

PWMCHA=PWMCHB PWMCHA=PWMCHB

2*PWMDT

PWM_AH

PWM_AL

PWM_BH

PWM_BL

PWM_CH

PWM_CL

+PWMTM/2 +PWMTM/2-PWMTM/2

COUNT

0 0
ADSP-BF51x Blackfin Processor Hardware Reference 14-5

Overview
pulse transformers. The features of gate-drive-chopping mode are con-
trolled by the PWM_GATE register. An 8-bit value (GDCLK) within the
PWM_GATE register directly controls the chopping frequency. In addition,
high-frequency chopping can be independently enabled for the high- and
low-side outputs using separate control bits in the PWM_GATE register. In
addition, all PWM outputs require sufficient sink and source capability to
directly drive most opto-isolators.

The PWM generator is capable of operating in two distinct modes:

• Single-Update Mode. In single-update mode, duty cycle values are
programmable only once per PWM period; resultant PWM pat-
terns are symmetrical about the mid-point of the PWM period.

• Double-Update Mode. In double-update mode, a second updating
of the PWM registers is implemented at the midpoint of the PWM
period. In double-update mode, it is possible to produce asymmet-
rical PWM patterns that produce lower harmonic distortion in
three-phase PWM inverters. This technique also permits
closed-loop controllers to change the average voltage applied to the
machine windings at a faster rate, thus permitting faster
closed-loop bandwidths to be achieved.

The operating mode of the PWM block (single- or double-update mode)
is selected by the PWM_DBL bit in the PWM_CTRL register. Setting PWM_DBL
to 1 selects double-update mode, and 0 selects single-update mode.

The PWM generator can provide an internal synchronization pulse on the
PWM_SYNC pin that is synchronized to the PWM switching frequency. In
single-update mode, a PWM_SYNC pulse is produced at the start of each
PWM period. In double-update mode, an additional PWM_SYNC pulse is
also produced at the midpoint of each PWM period. The width of the
PWM_SYNC pulse is programmable through the PWM_SYNCWT register.

The PWM generator can also accept an external synchronization pulse on
the PWM_SYNC pin. External synchronization is selected by setting the
PWM_EXTSYNC bit in the PWM_CTRL register. The PWM_SYNC input timing can
14-6 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
be synchronized to the internal system clock, which is selected by setting
the PWM_SYNCSEL bit of the PWM_CTRL register. If the external synchroniza-
tion pulse from the chip pin is asynchronous to the internal system clock
(typical case), the external PWM_SYNC is considered asynchronous and
should be synchronized. If the PWM_SYNC is actually received from another
PWM on the same chip controlled by the same system clock, the PWM_SYNC
can usually be considered synchronous. Synchronization logic will add
latency and jitter from the external sync pulse to the actual PWM outputs.
If the same asynchronous external sync pulse is received by two indepen-
dent PWM Controllers, synchronization of PWM_SYNC is also done
independently and the jitter between the PWM Controllers will not be in
unison. The size of the sync pulse on PWM_SYNC must be greater than two
system clock periods.

The produced PWM output signals can be shut off via:

• Hardware. A dedicated asynchronous PWM shutdown pin
(PWM_TRIPB) that when brought low (provided it is not disabled by
the PWMTRIP_DSBL bit of the PWM_CTRL register) instantaneously
places all six PWM outputs in the “off” state (as determined by the
state of the PWM_POLARITY bit of the PWM_CTRL register). This hard-
ware shutdown mechanism is asynchronous so that the associated
PWM disable circuitry does not go through any clocked logic,
thereby ensuring correct PWM shutdown even in the event of a
loss of the processor system clock. A trip shutdown in hardware
resets the PWM_EN bit in the PWM_CTRL register, but all the other pro-
grammable registers maintain their current state.

• Software. The PWM system may be shut down in software by
disabling the PWM_ENABLE bit in the PWM_CTRL register.
ADSP-BF51x Blackfin Processor Hardware Reference 14-7

General Operation
 On many processors, the PWM pins are multiplexed with other
functionality. Because they can be in a high-impedance state before
the PORTx_MUX registers are programmed to select the PWM func-
tionality, there should be external pull-down logic for the
PWM_TRIPB pin in these cases. For these and other questions about
pin multiplexing, see ADSP-BF512/BF514/BF516/BF518(F)
Embedded Processor Data Sheet.

The PWM unit is capable of generating two different interrupt types. One
interrupt (PWM_SYNCINT) is generated on the occurrence of a rising edge on
the PWM_SYNC pulse, which is internally generated. The other interrupt
(PWM_TRIPINT) is generated on the occurrence of PWM_TRIPB, the PWM
shut-down action. Both interrupts are generated only when the corre-
sponding enable bits (PWMSYNCINT_EN and PWMTRIPINT_EN) are set in the
PWM_CTRL register.

The PWM_STAT register provides status information about the PWM sys-
tem. In particular, the state of the PWM_TRIPB pin (PWM_TRIP bit),
PWM_POLARITY (PWM_POL bit), and PWM_SRMODE (PWM_SR bit) are available, as
well as a status bit (PWM_PHASE) that indicates whether operation is in the
first half or the second half of the PWM period. The PWM_STAT register
also reflects the status of the PWM_SYNCINT and PWM_TRIPINT interrupts,
which are set if enabled in the PWM_CTRL register. The latter two bits are
sticky; hence, the interrupt service routine must write-1-to-clear (W1C)
these bits.

General Operation
Typically, the PWM_SYNCINT interrupt is used to periodically execute an
interrupt service routine (ISR) to update the three PWM channel duties,
according to a control algorithm based on expected motor operation and
sampled data of the existing motor operation. PWM_SYNC can also trigger
the ADC to sample data for use during the ISR. During processor boot,
the PWM Controller is initialized and program flow enters a wait loop.
14-8 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
When a PWM_SYNCINT interrupt occurs, the ADC samples data, the data is
algorithmically interpreted, and then the new PWM channel duties are
calculated and written to the PWM registers. More sophisticated imple-
mentations include different start-up, run-time, and shut-down
algorithms to determine PWM channel duties, based on expected behavior
and further features.

During initialization, the PWM_TM register is written to define the PWM
period, and the PWM_CHA, PWM_CHB and PWM_CHC registers are written to
define the initial channel pulse widths. The PWM_SYNCWT, PWM_GATE,
PWM_SEG, PWM_CHAL, PWM_CHBL and PWM_CHCL registers are written, depend-
ing on the system configuration and modes. The PWM_STAT register can be
read to determine polarity, and whether switched reluctance (SR) mode
(PWM_SR bit) is enabled, and whether an external trip situation is prevent-
ing the correct start-up of the PWM Controller. An active external trip
event must be resolved prior to PWM startup. The PWM_CTRL register is
then written to define the major operating mode and to enable the PWM
outputs and PWM sync pulse.

During the PWM_SYNCINT interrupt-driven control loop, only the PWM_CHx
duty values are updated typically. The PWM_SEG register may also be
updated for other system implementations requiring output crossover.

During an external trip event (if not disabled), the PWM outputs will be
turned off (that is, set to the opposite of the “on” polarity configured by
the PWM_POLARITY bit of the PWM_CTRL register), and the PWM sync pulse
will continue to operate if already enabled. A PWM_TRIPINT interrupt will
occur if unmasked, notifying the software of this event. To handle cases
where clock signal integrity is an issue, external trips will turn off the
PWM outputs, with or without clocks.
ADSP-BF51x Blackfin Processor Hardware Reference 14-9

Functional Description
Functional Description
This section describes the function of the following PWM features:

• “Three-Phase PWM Timing Unit and Dead Time Control Unit”
on page 14-11

• “PWM Switching Frequency (PWM_TM) Register” on
page 14-11

• “PWM Switching Dead Time (PWM_DT) Register” on
page 14-12

• “PWM Operating Mode (PWM_CTRL and PWM_STAT) Regis-
ters” on page 14-13

• “PWM Duty Cycle (PWM_CHA, PWM_CHB, and PWM_CHC)
Registers” on page 14-15

• “Special Consideration for PWM Operation in Over-Modulation”
on page 14-20

• “Three-Phase PWM Timing Unit Operation” on page 14-23

• “Effective PWM Accuracy” on page 14-23

• “Switched Reluctance Mode” on page 14-25

• “Output Control Unit” on page 14-25

• “Switched Reluctance (SR) Mode” on page 14-32

• “PWM Sync Operation” on page 14-35

• “PWM Shutdown and Interrupt Control Unit” on page 14-37
14-10 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
Three-Phase PWM Timing Unit and Dead Time
Control Unit

The 16-bit Three-Phase PWM Timing Unit is the core of the PWM Con-
troller and produces three pairs of pulse-width modulated signals with
high resolution and minimal processor overhead. The outputs of this unit
are such that a low level is interpreted as a command to turn on
(active-low) the associated power device. Three configuration registers
(PWM_CTRL, PWM_TM, and PWM_DT) determine the fundamental characteristics
of the PWM outputs. These registers, in conjunction with the three 16-bit
duty cycle registers (PWM_CHA, PWM_CHB, and PWM_CHC), control the output
of the Three-Phase PWM Timing Unit.

PWM Switching Frequency (PWM_TM) Register
The 16-bit read/write PWM period register (PWM_TM) controls the PWM
switching frequency. The fundamental timing unit of the PWM
Controller is tSCLK. Therefore, for a 100 MHz system clock (SCLK), fSCLK,
the fundamental time increment (tSCLK) is 10 ns. The value written to the
PWM_TM register is effectively the number of tSCLK clock increments in half
a PWM period. The required PWM_TM value as a function of the desired
PWM switching frequency (fPWM) is given by:

PWM_TM
fSCLK

2 fPWM
---------------------=
ADSP-BF51x Blackfin Processor Hardware Reference 14-11

Functional Description
Therefore, the PWM switching period (Ts) can be written as:

For example, for an fSCLK of 100 MHz and a desired PWM switching fre-
quency (fPWM) of 10 kHz (Ts = 100 s), the correct value to load into the
PWM_TM register is:

The largest value that can be written to the 16-bit PWM_TM register is
0xFFFF = 65,535, which, at an fSCLK of 100 MHz, corresponds to a min-
imum PWM switching frequency of:

 PWM_TM values of 0 and 1 are not defined and should not be used
when the PWM outputs or PWM sync is enabled.

PWM Switching Dead Time (PWM_DT) Register
The second important parameter that must be set up in the initial config-
uration of the PWM Controller is the switching dead time. This is a short
delay introduced between turning off one PWM signal (for example, AH)
and turning on the complementary signal (for example, AL). This short
time delay permits the power switch being turned off (AH in this case) to
completely recover its blocking capability before the complementary
switch is turned on. This time delay prevents a potentially destructive
short-circuit condition from developing across the dc link capacitor of a
typical voltage source inverter.

TS 2 PWM_TM tSCLK=

PWM_TM
100 10

6

2 10 103
------------------------------ 5000= =

fPWM min
100 106
2 65535
------------------------ 762Hz= =
14-12 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
The 10-bit, read/write PWM_DT register controls the dead time. This register
controls the dead time inserted into the three pairs of PWM output sig-
nals. Dead time (Td) is related to the value in the PWM_DT register by:

Therefore, a PWM_DT value of 0x00A introduces a 200 ns delay (for a SCLK
of 100 MHz) between turning off any PWM signal (for example, AH) and
then turning on its complementary signal (for example, AL). The length of
the dead time can therefore be programmed in increments of 2 x tSCLK
(or 20 ns for an SCLK of 100 MHz). The PWM_DT register is a 10-bit register
whose maximum value of 0x3FF (1023 decimal) corresponds to a maxi-
mum programmed dead time of:

for an fSCLK rate of 100 MHz. The dead time can be programmed to be
zero by writing 0 to the PWM_DT register.

PWM Operating Mode (PWM_CTRL and PWM_STAT)
Registers

The PWM Controller can operate in two distinct modes: single-update
mode and double-update mode. The mode is determined by the state of
PWM_DBL bit of the PWM_CTRL register. When this bit is cleared, the PWM
Controller operates in single-update mode. Setting the PWM_DBL bit places
the PWM Controller in double-update mode. Following a peripheral reset
or power on, the PWM_DBL bit is cleared; thus, PWM Controller operation
defaults to single-update mode.

In single-update mode, a PWM_SYNC pulse is produced during each PWM
period. The rising edge of this signal marks the start of a new PWM cycle
and is used to latch new values from the PWM configuration registers
(PWM_TM, PWM_DT, and PWM_SYNCWT), and the PWM duty cycle registers

Td PWM_DT 2 tSCLK=

Td max 1023 2 tSCLK 1023 2 10 10
9– 20.5s= = =
ADSP-BF51x Blackfin Processor Hardware Reference 14-13

Functional Description
(PWM_CHA, PWM_CHB, PWM_CHC, PWM_CHAL, PWM_CHBL, and PWM_CHCL) into the
Three-Phase PWM Timing Unit. In addition, the PWM_SEG register is also
latched into the Output Control Unit on the rising edge of the PWM_SYNC
pulse. In effect, this means that the characteristics and resultant duty
cycles of the PWM signals can be updated only once per PWM period at
the start of each cycle. This results in PWM patterns that are symmetrical
about the midpoint of the switching period.

In double-update mode, an additional PWM_SYNC pulse is produced at the
midpoint of each PWM period. The rising edge of this second PWM_SYNC
pulse is again used to latch new values of the PWM configuration regis-
ters, duty cycle registers, and the PWM_SEG register. As a result, it is possible
to alter both the characteristics (switching frequency, dead time, and
PWM_SYNC pulse width) and the output duty cycles at the midpoint of each
PWM cycle. Consequently, it is possible to produce PWM switching pat-
terns that are no longer symmetrical about the midpoint of the period
(asymmetrical PWM patterns).

In double-update mode, it may be necessary to know whether operation at
any point in time is in the first or second half of the PWM cycle. This
information is provided by the PWM_PHASE bit of the PWM_STAT register,
which is cleared during operation in the first half of each PWM period
(between the rising edge of the original PWM_SYNC pulse and the rising edge
of the second PWM_SYNC pulse introduced in double-update mode). The
PWM_PHASE bit is set during operation in the second half of each PWM
period. This status bit allows determination of the particular half-cycle
during implementation of the PWM_SYNC interrupt service routine.

The advantage of double-update mode is that the PWM process can pro-
duce lower harmonic voltages, and faster control bandwidths are possible.
However, for a given PWM switching frequency, PWM_SYNC pulses occur at
twice the rate in double-update mode. Since new duty cycle values are
computed in each PWM_SYNCINT interrupt service routine, double-update
mode places a larger computational burden on the processor.
14-14 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
Alternatively, the same PWM update rate may be maintained at half the
switching frequency, yielding lower switching losses.

The PWM_STAT2 status register is provided for software simulation. This
register contains the output values of all the three pairs of PWM signals
(PWM_AH, PWM_AL, PWM_BH, PWM_BL, PWM_CH, and PWM_CL).

PWM Duty Cycle (PWM_CHA, PWM_CHB, and
PWM_CHC) Registers

Three 16-bit read/write duty cycle registers (PWM_CHA, PWM_CHB, and
PWM_CHC) control the duty cycles of the six PWM output signals on the
PWM_AH, PWM_AL, PWM_BH, PWM_BL, PWM_CH, and PWM_CL pins when not in
switched reluctance mode. The two’s complement integer value in the
PWM_CHA register controls the duty cycle of the signals on the PWM_AH and
PWM_AL outputs; in PWM_CHB, it controls the duty cycle of the signals on
PWM_BH and PWM_BL; in PWM_CHC, it controls the duty cycle of the signals on
PWM_CH and PWM_CL. The duty cycle registers are programmed in two’s
complement integer counts of the fundamental time unit (tSCLK) and
define the desired on-time of the high-side PWM signal produced by the
Three-Phase PWM Timing Unit over half the PWM period.

Each duty cycle register range is from (–PWMTM/2 – PWMDT) to
(+PWMTM/2 + PWMDT), which, by definition, is scaled such that a
value of 0 represents a 50% PWM duty cycle.

The switching signals produced by the Three-Phase PWM Timing Unit
are also adjusted to incorporate the programmed dead time value in the
PWM_DT register by programming active low polarity in PWM_CTRL. The
Three-Phase PWM Timing Unit produces active-low signals to turn on
the associated power device.

Figure 14-3 shows a typical pair of PWM outputs (in this case, for PWM_AH
and PWM_AL) from the Three-Phase PWM Timing Unit for operation in
single-update mode. All illustrated time values indicate the integer value
ADSP-BF51x Blackfin Processor Hardware Reference 14-15

Functional Description
in the associated register and can be converted to time by multiplying by
the fundamental time increment (tSCLK) and comparing to the two’s com-
plement counter.

Notice that the switching patterns are perfectly symmetrical about the
midpoint of the switching period in single-update mode, since the same
values of PWM_CHA, PWM_TM, and PWM_DT are used to define the signals in
both half cycles of the period.

Figure 14-3. Typical PWM Outputs of Three-Phase Timing Unit
in Single-Update Mode (Active-Low Waveforms)

PWMCHA PWMCHA

2*PWMDT

PWM_AH

PWM_AL

+PWMTM/2 +PWMTM/2-PWMTM/2

COUNT

0 0

2*PWMDT

PWMTM PWMTM

PWM_PHASE

PWMSYNC_OUT
14-16 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
As implied by Figure 14-3, the programmed duty cycles are adjusted to
incorporate the desired dead time into the resultant pair of PWM signals
by moving the switching instants of both PWM signals (PWM_AH and
PWM_AL) away from the instant set by the PWM_CHA register. Both switching
edges are moved by an equal amount (PWMDT*tSCLK) to preserve the sym-
metrical output patterns. Figure 14-3 shows the PWM_SYNC pulse whose
rising edge denotes the beginning of the switching period and whose
width is set by the PWM_SYNCWT register. Also shown is the PWM_PHASE bit of
the PWM_STAT register, which indicates whether operation is in the first half
cycle or second half cycle of the PWM period.

The resultant on-times (active low) of the PWM signals over the full
PWM period (two half periods) produced by the Three-Phase PWM Tim-
ing Unit and illustrated in Figure 14-3, may be written as:

TAH PWMTM 2 PWMCHA PWMDT– + tSCLK=

Range of TAH 0 2 PWMTM tSCLK[,]=

TAL PWMTM 2 PWMCHA PWMDT+ – tSCLK=

Range of TAL 0 2 PWMTM tSCLK[,]=
ADSP-BF51x Blackfin Processor Hardware Reference 14-17

Functional Description

TAH
 tSCLK=

TAL
 tSCLK=
The corresponding duty cycles are:

Obviously, negative values of TAH and TAL are not permitted, and the
minimal permissible value is zero (corresponding to a 0% duty cycle). In a
similar fashion, the maximal value is Ts, which is the PWM switching
period that corresponds to a 100% duty cycle.

Figure 14-4 shows the output signals from the Three-Phase PWM Timing
Unit in double-update mode. This figure illustrates a completely general
case in which the switching frequency, dead time, and duty cycle are
changed in the second half of the PWM period. Of course, the same value
for any or all of these quantities may be used in both halves of the PWM
cycle. However, it can be seen that there is no guarantee that a symmetri-
cal PWM signal will be produced by the Three-Phase PWM Timing Unit
in double-update mode. Additionally, it is seen that the dead time is
inserted into the PWM signals similarly to single-update mode.

In general, the on-times (active low) of the PWM signals over the full
PWM period in double-update mode can be defined as:

dAH

TAH

TS
---------- 1

2
--- PWMCHA PWMDT–

PWMTM
---+= =

dAL

TAL

TS
--------- 1

2
--- PWMCHA PWMDT+

PWMTM
---–= =

PWMTM1

2

PWMTM2

2
-------------------------- PWMCHA1 PWMCHA2 PWMDT1– PWMDT2–+ + +

PWMTM1

2

PWMTM2

2
-------------------------- PWMCHA1– PWMCHA2– PWMDT1– PWMDT2–+

14-18 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
where subscript 1 refers to the value of that register during the first half
cycle and subscript 2 refers to the value during the second half cycle. The
corresponding duty cycles are:

Figure 14-4. Typical PWM Outputs of Three-Phase Timing Unit
in Double-Update Mode (Active Low Waveforms)

PWMCHA1
PWMCHA2

2*PWMDT1

PWM_AH

PWM_AL

+PWMTM1/2 +PWMTM2/2

-PWMTM1/2

COUNT

0 0

2*PWMDT2

PWMTM1 PWMTM2

PWM_PHASE

PWMSYNC_OUT

-PWMTM2/2

TS PWMTM1 PWMTM2+ tSCLK=

dAH

TAH

TS
---------- 1

2

PWMCHA1 PWMCHA2 PWMDT1– PWMDT2–+
PWMTM1 PWMTM2+

---+= =
ADSP-BF51x Blackfin Processor Hardware Reference 14-19

Functional Description
since for the completely general case in double-update mode, the switch-
ing period is given by:

Again, the values of TAH and TAL are constrained to lie between zero
and Ts. Similar PWM signals to those illustrated in Figure 14-2 on
page 14-5 and in Figure 14-3 on page 14-16 can be produced on the BH,
BL, CH, and CL outputs by programming the PWM_CHB and PWM_CHC registers
in a manner identical to that described for PWM_CHA.

Special Consideration for PWM Operation in
Over-Modulation

The Three-Phase PWM Timing Unit can produce PWM signals with
variable duty-cycle values at the PWM output pins. At the extremities of
the modulation process, both 0% and 100% modulation (termed
full off mode and full on mode, respectively) are possible. In between, for
other duty cycle values, the operation is termed normal modulation.

• Full On Mode. The PWM for any pair of PWM signals is said to
operate in full on mode when the desired high side output of the
Three-Phase PWM Timing Unit is in the “on” state (low or high as
specified by PWM_POLARITY bit of the PWM_CTRL register) between
successive PWM_SYNC rising edges. This state may be entered by vir-
tue of the commanded duty cycle values (in conjunction with the
PWM_DT register).

dAL

TAL

TS
--------- 1

2

PWMCHA1 PWMCHA2 PWMDT1 PWMDT2+ + +
PWMTM1 PWMTM2+

--–= =

TS PWMTM1 PWMTM2+ tSCLK=
14-20 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
• Full Off Mode. The PWM for any pair of PWM signals is said to
operate in full off mode when the desired high side output of the
Three-Phase PWM Timing Unit is in the “off” state (high or low as
specified by the PWM_POLARITY bit of the PWM_CTRL register) between
successive PWM_SYNC pulses. This state may be entered by virtue of
the commanded duty cycle values (in conjunction with the PWM_DT
register).

• Normal Modulation. The PWM for any pair of PWM signals is
said to operate in normal modulation when the desired output duty
cycle is other than 0% or 100% between successive PWM_SYNC
pulses.

Certain situations exist whereby it is necessary to transition into or out of
full on mode or full off mode in order to insert additional “emergency
dead time” delays to prevent potential shoot-through conditions in the
inverter. Crossover usage also can potentially cause outputs to violate
shoot-through condition criteria, as described in “Crossover Feature” on
page 14-25. These transitions are detected automatically and, if appropri-
ate for safety, emergency dead-time is inserted to prevent shoot-through
conditions.

The insertion of additional emergency dead time into one of the PWM
signals of a given pair during these transitions is necessary only when both
PWM signals are required to toggle within a dead time of each other.
The additional emergency dead time delay is inserted into the PWM sig-
nal that is toggling into the “on” state. In effect, the turn on (if turning on
during this dead time region) of this signal is delayed by an amount
(2*PWM_DT*tSCLK) from the rising edge of the opposite output. After this
delay, the PWM signal is allowed to turn on, provided the desired output
is still scheduled to be in the on state after the emergency dead time delay.

Figure 14-5 illustrates two examples of such transitions. In the top half
(marked A) of Figure 14-5, no special action (dead time) is needed when
transitioning from normal modulation to full on mode at the half cycle
boundary in double-update mode. However, in the bottom half
ADSP-BF51x Blackfin Processor Hardware Reference 14-21

Functional Description
(marked B) of Figure 14-5, when transitioning from normal modulation
into full off mode at the same boundary, it can be seen that an additional
emergency dead time is necessary (inserted by the PWM Controller).
Clearly, this inserted dead time is different from the normal dead time as
it is impossible to move one of the switching events back in time, because
this would take it into the previous modulation cycle. Therefore, the
entire emergency dead time is inserted by delaying the turn on of the
appropriate signal by the full amount.

Figure 14-5. Examples of Transitioning from Normal Modulation to
Full On Mode (A) or Full Off Mode (B)

PWMCHA1

2*PWMDT

PWM_AH

PWM_AL

+PWMTM/2 +PWMTM/2-PWMTM/2

COUNT

0 0

2*PWMDT

PWM_AL

PWM_AH

DEADTIME INSERTED HERE

A

B

14-22 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
Three-Phase PWM Timing Unit Operation
The internal operation of the PWM Controller is controlled by the
Three-Phase PWM Timing Unit, which is clocked at the system clock rate
with period tSCLK. The operation of the Three-Phase PWM Timing Unit
over one full PWM period is illustrated in Figure 14-6.

During the first half cycle (when the PWM_PHASE bit of the PWM_STAT
register is cleared), the Three-Phase PWM Timing Unit decrements from
+PWMTM/2 to -PWMTM/2 using a two’s complement count. Then the
count direction changes, and the unit increments from -PWMTM/2 to
the +PWMTM/2 value.

Figure 14-6 also shows the PWM SYNC pulses during single-update
mode and double-update mode. Clearly, an additional PWM SYNC pulse
is generated at the midpoint of the PWM cycle in double-update mode. If
the value of the PWM_TM register is altered at the midpoint in double-update
mode, the duration of the second half period (when the PWM_PHASE bit of
the PWM_STAT register is set) may differ from that of the first half cycle.
PWM_TM is double-buffered; a change in one half of the PWM switching
period will only take effect in the next half period.

Effective PWM Accuracy
The PWM Controller has 16-bit resolution, but accuracy depends on the
PWM period. In single-update mode, the same values of PWM_CHA,
PWM_CHB, and PWM_CHC define the on-times in both half cycles of the PWM
period. As a result, the effective accuracy of the PWM generation process
is 2 tSCLK (20 ns for a 100 MHz fSCLK). Incrementing one of the duty
cycle registers by 1 changes the resultant on-time of the associated PWM
signals by tSCLK in each half period (2 tSCLK for the full period). In dou-
ble-update mode, improved accuracy is possible since different values of
the duty cycles registers are used to specify the on-times in both the first
half and second half of the PWM period. As a result, it is possible to
adjust the on-time over the entire period in increments of tSCLK. This
ADSP-BF51x Blackfin Processor Hardware Reference 14-23

Functional Description
corresponds to an effective PWM accuracy of tSCLK in double-update
mode (10 ns for a 100 MHz fSCLK). The minimum achievable PWM
switching frequency at a given PWM accuracy is shown in Table 14-1 for
SCLK = 100 MHz.

Figure 14-6. Operation of Internal PWM Timer

PWM TIMER DECREMENTS FROM
PWMTM÷2 TO –PWMTM÷2

PWM TIMER INCREMENTS FROM
–PWMTM÷2 TO PWMTM÷2

PWMTM÷2

–PWMTM÷2

1

tCK

PWM_SYNC_OUT
DOUBLE_UPDATE MODE

PWM_SYNC_OUT
SINGLE-UPDATE MODE

PWM_PHASE
14-24 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
Switched Reluctance Mode
A general-purpose mode utilizing independent edge placement of upper
and lower signals of each of the three PWM channels is incorporated into
the Three-Phase PWM Timing Unit. This mode is provided for SR motor
operation and is described in detail in “Switched Reluctance (SR) Mode”
on page 14-32.

Output Control Unit
The operation of the Output Control Unit is controlled by the 9-bit
read/write PWM_SEG register (on page 14-46) that controls two distinct
features that are useful in the control of ECMs or BDCMs.

Crossover Feature

The PWM_SEG register contains three crossover bits—one for each pair of
PWM outputs. Setting the AHAL_XOVR bit of the PWM_SEG register enables
crossover mode for the AH/AL pair of PWM signals, setting BHBL_XOVR
enables crossover on the BH/BL pair, and setting CHCL_XOVR enables

Table 14-1. Minimum Achievable PWM Frequency Versus
Bit Resolution for SCLK = 100 MHz

Resolution (bits) PWM Frequency (kHz) in
Single-Update Mode

PWM Frequency (kHz) in
Double-Update Mode

8 195.3 390.6

9 97.7 195.3

10 48.8 97.7

11 24.4 48.8

12 12.2 24.4

13 6.1 12.2

14 3.05 6.1
ADSP-BF51x Blackfin Processor Hardware Reference 14-25

Functional Description
crossover on the CH/CL pair. If crossover mode is enabled for any pair of
PWM signals, the high-side PWM signal (for example, AH) from the
Three-Phase PWM Timing Unit is diverted to the associated low-side out-
put of the Output Control Unit so that the signal ultimately appears at
the AL pin. The corresponding low-side output of the Three-Phase PWM
Timing Unit is also diverted to the complementary high-side output of
the Output Control Unit so that the signal appears at the AH pin. Follow-
ing a reset, the three crossover bits are cleared, disabling crossover mode
on all three pairs of PWM signals. Even though crossover is considered an
output control feature, dead time insertion occurs after crossover transi-
tions (as necessary to eliminate shoot-through safety issues).

Mode Bits (POLARITY and SRMODE)

PWM_POLARITY and PWM_SRMODE are programmable bits of the PWM_CTRL
register.

 The incorrect programming of these two mode-select signals can
have destructive consequences on the external power inverter con-
nected to the PWM unit. Since PWM_POLARITY and PWM_SRMODE are
software programmable bits, accidental power inverter
shoot-through current may occur from incorrect programming.

Output Enable Function

The PWM_SEG register also contains six bits (bits 0 to 5) that can be used to
individually enable or disable each of the six PWM outputs. The PWM
signal of the AL pin is enabled by clearing the AL_EN bit of the PWM_SEG reg-
ister, the AH_EN bit controls AH, the BL_EN bit controls BL, the BH_EN bit
controls BH, the CL_EN bit controls CL, and the CH_EN bit controls the CH
output. If the associated bit of the PWM_SEG register is set, the correspond-
ing PWM output is disabled irrespective of the value of the corresponding
duty cycle register. This PWM output signal will remain in the off state as
long as the corresponding enable/disable bit of the PWM_SEG register is set.
This output enable function is implemented after the crossover function.
14-26 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
Following a reset, all six enable bits of the PWM_SEG register are cleared so
that all PWM outputs are enabled by default. In a manner identical to the
duty cycle registers, the PWM_SEG register is latched on the rising edge of
the PWM_SYNC signal so that changes to this register only become effective
at the start of each PWM cycle in single-update mode. In double-update
mode, the PWM_SEG register can also be updated at the midpoint of the
PWM cycle.

Brushless DC Motor (Electronically Commutated Motor)
Control

In the control of an electronically commutated motor (ECM), only two
inverter legs are switched at any time. Often, the high-side device in one
leg must be switched on at the same time as the low-side driver in a second
leg. Therefore, by programming identical duty cycles values for two PWM
channels (for example, PWM_CHA = PWM_CHB) and setting the BHBL_XOVR bit
of the PWM_SEG register to crossover the BH/BL pair if PWM signals, it is
possible to turn on the high-side switch of phase A and the low-side
switch of phase B at the same time.

In ECM control, usually the third inverter leg (phase C in this example) is
disabled for a number of PWM cycles. This is implemented by disabling
the CH and CL outputs by setting the CH_EN and CL_EN bits of the PWM_SEG
register.

This is illustrated in Figure 14-7 where it can be seen that both the AH and
BL signals are identical (since PWM_CHA = PWM_CHB and the crossover bit for
phase B is set). In addition, the other four signals (AL, BH, CH, and CL) are
disabled by setting the appropriate enable/disable bits of the PWM_SEG
register.
ADSP-BF51x Blackfin Processor Hardware Reference 14-27

Functional Description
For the situation illustrated in Figure 14-7, an appropriate value for the
PWM_SEG register is 0x00A7. In normal ECM operation, each inverter leg is
disabled for certain lengths of time, such that the PWM_SEG register is
changed, based upon the position of the rotor shaft (motor commutation).

Gate Drive Unit
The Gate Drive Unit is described in the following sections:

• “High-Frequency Chopping” on page 14-29

• “PWM Polarity Control” on page 14-31

Figure 14-7. Example of Active Low Signals for ECM Control

PWMCHA=PWMCHB PWMCHA=PWMCHB

2*PWMDT

PWM_AH

PWM_AL

PWM_BH

PWM_BL

PWM_CH

PWM_CL

+PWMTM/2 +PWMTM/2-PWMTM/2

COUNT

0 0
14-28 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
High-Frequency Chopping

The Gate Drive Unit of the PWM Controller simplifies the design of
isolated gate drive circuits for PWM inverters. If a transformer-coupled
power device gate drive amplifier is used, the active PWM signal must be
chopped at a high frequency. The 10-bit read/write PWM_GATE register
allows you to specify this high-frequency chopping mode.

Chopped active PWM signals may be required for high-side drivers only,
for low-side drivers only, or for both high-side and low-side switches.
Therefore, independent control of this mode for both high- and low-side
switches is included with two separate control bits (CHOPHI and CHOPLO) in
the PWM_GATE register.

Typical PWM output signals with high-frequency chopping enabled on
both high- and low-side signals are shown in Figure 14-8. Chopping the
high-side PWM outputs (AH, BH, and CH) is enabled by setting the CHOPHI
bit of the PWM_GATE register; chopping the low-side PWM outputs (AL, BL,
and CL) is enabled by setting the CHOPLO bit of the PWMGATE register. The
high-frequency chopping frequency is controlled by the 8-bit word placed
in bits 0 to 7 (GDCLK) of the PWM_GATE register. The period of this high-fre-
quency carrier is:

and the chopping frequency is therefore an integral subdivision of the
system clock frequency:

Tchop 4 GDCLK 1+ tSCLK=
ADSP-BF51x Blackfin Processor Hardware Reference 14-29

Functional Description
fchop

fSCLK

4 GDCLK 1+
---=
14-30 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
The GDCLK value may range from 0 to 255, which corresponds to a pro-
grammable chopping frequency rate from 97.7 kHz to 25 MHz for a
100 MHz fSCLK rate. The gate drive features must be programmed before
operation of the PWM Controller and typically are not changed during
normal operation of the PWM Controller. Following a reset, all bits of the
PWM_GATE register are cleared so that high-frequency chopping is disabled,
by default.

PWM Polarity Control

The polarity of the PWM signals produced at output pins AH to CL can be
programmed via the PWM_POLARITY bit of the PWM_CTRL register. Setting
this bit to 0 selects active low PWM outputs, such that a low level is inter-
preted as a command to turn on the associated power device. Conversely,
setting the PWM_POLARITY bit to 1 selects active high PWM outputs, such
that a high level at the PWM outputs turns on the associated power
devices. The status of the polarity may be read from the PWM_POL bit of the
PWM_STAT register, where a zero indicates a measured low level at the
PWM_POLARITY bit.

Figure 14-8. Example of Active Low PWM Signals for Gate Chopping

PWMCHA PWMCHA

2*PWMDT

PWM_AH

PWM_AL

+PWMTM/2 +PWMTM/2-PWMTM/2

COUNT

0 0

2*PWMDT
ADSP-BF51x Blackfin Processor Hardware Reference 14-31

Functional Description
Output Control Feature Precedence
It is important to understand the order in which output control features
are applied to the PWM signal. The following hierarchy indicates the
order (from most important to least important) in which signal features
are applied to the PWM output signal.

1. Channel duty generation

2. Channel crossover

3. Low-side invert

4. Output enable

5. Emergency dead time insertion

6. Active signal chopping

7. Polarity

Switched Reluctance (SR) Mode
The PWM Controller provides a switched reluctance (SR) mode that is
enabled by setting the PWM_SRMODE bit in the PWM_CTRL register to 0. This
mode is not enabled by default. The state of this switched reluctance mode
may be read from the PWM_SR bit of the PWM_STAT register. If the
PWM_SRMODE bit is high (such that SR mode is disabled) the PWM_SR bit of
the PWM_STAT register is set (indicating that the mode is disabled). Con-
versely, if the PWM_SRMODE bit is low and SR mode is enabled, the PWM_SR
bit of PWM_STAT register is cleared.

 Since this is a software programmable bit, be careful not to write it
to an active state in a non-SR mode system and cause
shoot-through at the power inverters, possibly leading to an unsafe
situation.
14-32 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
In the typical power converter configuration for switched or variable
reluctance motors, the motor winding is connected between the two
power switches of a given inverter leg. Therefore, to allow for a complete
circuit in the motor winding, it is necessary to turn on both switches at
the same time.

SR mode provides four mode types: hard chop, alternate chop, soft
chop-bottom on, and soft chop-top on (see Table 14-2 on page 14-35).
Three registers (PWM_CHAL, PWM_CHBL, and PWM_CHCL) are used to define
edge placement of the low side of the channel. The PWM_DT register, which
is not used, is internally forced to 0 by hardware when SR mode is active.
The four switched reluctance (SR) chop modes are specified via three bits
(PWM_SR_LSI_A, PWM_SR_LSI_B, and PWM_SR_LSI_C) of the PWM_LSI register,
full on mode, and full off mode.

The PWM_CHA and PWM_CHAL registers are programmed independently;
PWM_CHA specifies edge placement for the high side of the channel, and
PWM_CHAL specifies edge placement for the low side of the channel.
Similarly, the PWM_CHB and PWM_CHBL pair, and the PWM_CHC and PWM_CHCL
pair, respectively, specify high-side and low-side edge placement.
ADSP-BF51x Blackfin Processor Hardware Reference 14-33

Functional Description
Figure 14-9 shows the four SR mode types as active-high PWM output
signals, and Table 14-2 describes the four mode types.

Figure 14-9. Four SR Mode Types

SOFT
CHOP-
TOP
ON

SOFT
CHOP-
BOTTOM
ON

HARD
CHOP

ALTER-
NATE
CHOP

PWMCHA1
PWMCHA2

PWMCHAL1

PWM_AL

PWM_AH

PWM_AL

PWM_AH

PWM_AL

PWM_AH

PWM_AL

PWMCHA1

PWMCHAL1

PWMCHA1

PWMCHAL1

PWMCHAL2

PWMCHA2

PWMCHA2

PWMCHAL2

PWMCHAL2

PWMTM1
PWMTM2

+PWMTM/2 +PWMTM/2-PWMTM/2

PWM_AH

COUNT

0 0
14-34 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
PWM Sync Operation
The PWM sync can be internally generated as a function of the PWM_TM
and PWM_SYNCWT register values, or the PWM sync can be input externally.
Multiple PWM configurations can be established, each of which can oper-
ate with its own independent PWM sync (or from its own external PWM
sync signal or a shared external PWM sync signal). The external PWM
sync can be synchronous to the internal clock, as in the case of a primary
PWM Controller generating an internal PWM_SYNC signal that drives a
secondary PWM Controller's PWM_SYNC pin. The external PWM sync can
also be asynchronous to the internal clock, as is typically the case of an
off-chip PWM_SYNC signal used to drive each PWM Controller’s PWM_SYNC
pin.

Table 14-2. Switched Reduction Mode (SR Mode) Types

Mode Description

Hard
chop

Contains independently programmed rising edges of channels’ high and low signals
in the same PWM half cycle, and both contain independently programmed falling
edges in the next PWM half cycle. The PWM_CHA duty register is used for the high
channel, and the PWM_CHAL duty register is used for the low channel. A similar
structure is present for the B and C channels.

Alternate
chop

Similar to normal PWM operation, but the PWM channel high and low signal
edges are opposite and are independently programmed. The PWM_CHA duty register
is used for the high channel, and the PWM_CHAL duty register is used for the low
channel. A similar structure is present for the B and C channels. The PWM_CTRL
and PWM_LSI registers are used to independently invert the low side of each PWM
channel. The low-side invert is the only difference between hard chop mode and
alternate chop mode

Soft chop-
bottom on

Utilizes a 100% duty on the low side of the channel. Similar to hard chop mode,
the PWM_CHA duty register is used for the high channel and the PWM_CHAL duty reg-
ister is used for the low channel. A similar structure is present for the B and C
channels.

Soft chop-
top on

Utilizes a 100% duty on the high side of the channel. Similar to hard chop mode,
the PWM_CHA duty register is used for the high channel and the PWM_CHAL duty reg-
ister is used for the low channel. A similar structure is present for the B and C
channels.
ADSP-BF51x Blackfin Processor Hardware Reference 14-35

Functional Description
Internal PWM SYNC Generation

The PWM Controller produces an output PWM synchronization pulse at
a rate equal to the PWM switching frequency in single-update mode and
at twice the PWM frequency in double-update mode. This pulse is avail-
able for external use at the PWM_SYNC pin. The width of this PWM SYNC
pulse is programmable by the 10-bit read/write PWM_SYNCWT register. The
width of the PWM SYNC pulse (TPWM_SYNC) is given by:

so that the width of the pulse is programmable from tSCLK to 1024*tSCLK
(corresponding to 10 ns to 10.24 s for an fSCLK rate of 100 MHz).
Following a reset, the PWM_SYNCWT register contains 0x3FF (1023 decimal)
so that the default PWM_SYNC width is 10.24 s, again for an fSCLK of
100 MHz.

External PWM SYNC Generation

By setting the PWM_EXTSYNC bit of the PWM_CTRL register, the PWM is set up
in a mode to expect an external PWM SYNC on the PWM_SYNC pin. The
external sync should be synchronized by setting the PWM_SYNCSEL bit of the
PWM_CTRL register to 0, which assumes the selected external PWM SYNC is
asynchronous.

The external PWM SYNC period is expected to be an integer multiple of
the internal PWM SYNC period. When the rising edge of the external
PWM_SYNC is detected, the PWM Controller is restarted at the beginning of
the PWM cycle. If the external PWM SYNC period is not an integer mul-
tiple of the internal PWM SYNC, the behavior of the PWM channel
outputs will be clipping. Note that a small amount of jitter inherent in the
synchronization logic cannot be avoided when the external PWM SYNC
is synchronized.

TPWMSYNC tSCLK PWMSYNCWT 1+ =
14-36 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
The latency from PWM_SYNC to the effect in PWM outputs is 3 SCLK cycles
in synchronous mode and 5 SCLK cycles in asynchronous mode.

 In external sync pulse mode, do not allow changes in PWM_SYNCSEL
(which selects between asynchronous/synchronous external sync
pulse) ± 10 SCLK cycles of the toggling of an external sync pulse. If
this rule is not followed, unexpected behavior may occur.

PWM Shutdown and Interrupt Control Unit
In the event of an external fault condition, it is essential that the PWM
Controller be shut down instantaneously in a safe fashion. A falling edge
on the PWM_TRIPB pin (assuming it is not disabled by the PWM_TRIP_DSBL
bit of the PWM_CTRL register) provides an instantaneous, asynchronous
(independent of the processor clock) shutdown of the PWM controller.
All six PWM outputs are placed in the off state (as defined by the
PWM_POLARITY bit of the PWM_CTRL register). However, the PWM_SYNC pulse
occurs if it was previously enabled, and the associated interrupt is also not
stopped.

 The processor’s PWM_TRIPB signal should have an external
pull-down resistor; if the pin becomes disconnected, the PWM
Controller will be disabled. The state of the PWM_TRIPB pin can be
read from the PWM_TRIP bit of the PWMSTAT register.

On the occurrence of a PWM shutdown command (or from a signal on
the PWM_TRIPB pin), a PWM_TRIP interrupt will be generated if enabled.
In addition, if PWM_SYNC_EN is enabled in the PWM_CTRL register, the
PWM_SYNC pulse will continue to appear at the output pin. Following a
PWM shutdown, the PWM can be re-enabled (by a PWM_TRIP interrupt
service routine, for example) by writing to the PWM_EN bit of the PWM_CTRL
register. The PWM Controller will restart in a manner identical to that
prior to the PWM shutdown, provided that the external fault has been
cleared and PWM_TRIPB returned to a high level. That is, except for the
ADSP-BF51x Blackfin Processor Hardware Reference 14-37

PWM Registers
PWM_EN bit in the PWM_CTRL register, all PWM registers retain their values
during the PWM shutdown.

 The dead time counters will be reset when a trip occurs, and the
user is expected to restart the PWM only after waiting the required
dead time. If restarting a PWM immediately after trip, for high
dead time period cases, the dead time will not be met.

 Do not allow changes in the PWM_TRIP_DSBL bit of the PWM_CTRL
register (which is to select between trip enable and disable) ± 10
SCLK cycles of the toggling of an external trip pulse. If this rule is
not followed, unexpected behavior may occur.

Between the time that the PWM_EN bit is written to 0 and the time the
waveforms are disabled, the latency is 2 SCLK cycles. After enabling the
PWM_EN bit, output waveforms will begin to appear from the next PWM
pulse.

PWM Registers
Descriptions and bit diagrams for each of the PWM memory-mapped
registers (MMRs) are provided in the following sections.

Table 14-3. PWM Registers

Name Description

PWM_CTRL PWM control register on page 14-39

PWM_STAT PWM status register on page 14-41

PWM_TM PWM period register on page 14-42

PWM_DT PWM dead time register on page 14-43

PWM_GATE PWM chopping control on page 14-43

PWM_CHA PWM channel A duty control on page 14-44

PWM_CHB PWM channel B duty control on page 14-44
14-38 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
PWM Control (PWM_CTRL) Register
The PWM_CTRL register is used for configuration of the PWM block. Bit
diagrams and descriptions are provided in Figure 14-10 and Table 14-4.

PWM_CHC PWM channel C duty control on page 14-44

PWM_SEG PWM crossover and output enable on page 14-46

PWM_SYNCWT PWM sync pulse width control on page 14-48

PWM_CHAL PWM channel AL duty control (SR mode only) on page 14-48

PWM_CHBL PWM channel BL duty control (SR mode only) on page 14-48

PWM_CHCL PWM channel CL duty control (SR mode only) on page 14-48

PWM_LSI PWM low side invert (SR mode only) on page 14-50

PWM_STAT2 PWM simulation status register on page 14-51

Figure 14-10. PWM Control Register

Table 14-3. PWM Registers (Continued)

Name Description

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 1 1 0 0 0

PWM Control Register (PWM_CTRL)

PWM_EN

PWM_SYNC_EN

PWM_DBL

PWM_EXTSYNC

PWM_SYNCSEL

PWM_POLARITY

PWM_SRMODE

PWMTRIPINT_EN
PWMSYNCINT_EN

Reset = 0x0070

Reserved

PWMTRIP_DSBL
ADSP-BF51x Blackfin Processor Hardware Reference 14-39

PWM Registers
Table 14-4. PWM_CTRL Register

Bit Name Function Type Default

0 PWM_EN
Hardware modifiable bit.

PWM enable
0 = disabled
1 = enabled
reset by PWM_TRIPB

RW 0

1 PWM_SYNC_EN PWM sync enable
0 = disabled
1 = enabled

RW 0

2 PWM_DBL Double-update mode
0 = single-update mode
1 = double-update mode

RW 0

3 PWM_EXTSYNC External sync
0 = internal sync
1 = external sync

RW 0

4 PWM_SYNCSEL External sync select
0 = asynchronous
1 = synchronous

RW 1

5 PWM_POLARITY PWM output polarity
1 = active high
0 = active low

RW 1

6 PWM_SRMODE PWM SR Mode
0 = enabled
1 = disabled

RW 1

7 PWMTRIPINT_EN Interrupt enable for trip
1 = enabled
0 = disabled

RW 0

8 PWMSYNCINT_EN Interrupt enable for sync
1 = enabled
0 = disabled

RW 0

9 PWMTRIP_DSBL Disable for trip input
1 = disabled
0 = enabled

RW 0

15:10 Reserved 0
14-40 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
PWM Status (PWM_STAT) Register
The PWM_STAT register provides status information regarding PWM opera-
tion. Bit diagrams and descriptions are provided in Figure 14-11 and
Table 14-5.

Figure 14-11. PWM Status Register

Table 14-5. PWM_STAT Register

Bit Name Function Type Default

0 PWM_PHASE PWM phase
0 = first half
1 = second half

RO 0

1 PWM_POL PWM polarity
1 = active high
0 = active low

RO 1

2 PWM_SR PWM SR mode
0 = active
1 = inactive

RO 1

3 PWM_TRIP PWM trip RO 0

7:4 Reserved 0

8 PWM_TRIPINT PWM trip interrupt
(via hardware pin or software)

R/W1C 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 1 1

PWM Status Register (PWM_STAT)

PWM_PHASE

PWM_POL

PWM_SR

PWM_TRIP

Reserved

Reset = 0x0006

Reserved

PWM_TRIPINT

PWM_SYNCINT
ADSP-BF51x Blackfin Processor Hardware Reference 14-41

PWM Registers
PWM Period (PWM_TM) Register
The PWM_TM register controls the switching frequency of the generated
PWM patterns. Bit diagrams and descriptions are provided in
Figure 14-12 and Table 14-6.

9 PWM_SYNCINT PWM sync interrupt R/W1C 0

15:10 Reserved 0

Figure 14-12. PWM Period Register

Table 14-6. PWM_TM Register

Bit Name Function Type Default

15:0 PWM_TM PWM period (unsigned) RW 0

Table 14-5. PWM_STAT Register (Continued)

Bit Name Function Type Default

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Period Register (PWM_TM)

PWM_TM

Reset = 0x0000
14-42 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
PWM Dead Time (PWM_DT) Register
The PWM_DT register controls the dead time interval of the generated PWM
patterns. Bit diagrams and descriptions are provided in Figure 14-13 and
Table 14-7.

PWM Chopping Control (PWM_GATE) Register
The PWM controller permits the mixing of the output PWM signals with
a high-frequency chopping signal. The features of gate-drive-chopping
mode are controlled by the PWM_GATE register. Bit diagrams and descrip-
tions are provided in Figure 14-14 and Table 14-8.

Figure 14-13. PWM Dead Time Register

Table 14-7. PWM_DT Register

Bit Name Function Type Default

9:0 PWM_DT PWM dead time (unsigned) RW 0

15:10 Reserved 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Dead Time Register (PWM_DT)

Reserved

Reset = 0x0000

PWM_DT
ADSP-BF51x Blackfin Processor Hardware Reference 14-43

PWM Registers
PWM Channel A, B, C Duty Control
(PWM_CHA, PWM_CHB, PWM_CHC) Registers

The three duty-cycle control registers (PWM_CHA , PWM_CHB, and PWM_CHC)
directly control the duty cycles of the three pairs of PWM signals. Bit dia-
grams and descriptions for each are provided in Figure 14-15 through
Figure 14-17, and Table 14-9 through Table 14-11.

Figure 14-14. PWM Chopping Control Register

Table 14-8. PWM_GATE Register

Bit Name Function Type Default

7:0 GDCLK PWM gate chopping period (unsigned) RW 0

8 CHOPHI Gate chopping enable high side RW 0

9 CHOPLO Gate chopping enable low side RW 0

15:10 Reserved 0

Figure 14-15. PWM Channel A Duty Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Chopping Control Register (PWM_GATE)

Reset = 0x0000

Reserved GDCLK

CHOPLO
CHOPHI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Channel A Duty Control Register (PWM_CHA)

PWMCHA

Reset = 0x0000
14-44 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
Table 14-9. PWM_CHA Register

Bit Name Function Type Default

15:0 PWMCHA Channel A duty (two’s complement) RW 0

Figure 14-16. PWM Channel B Duty Control Register

Table 14-10. PWM_CHB Register

Bit Name Function Type Default

15:0 PWMCHB Channel B duty (two’s complement) RW 0

Figure 14-17. PWM Channel C Duty Control Register

Table 14-11. PWM_CHC Register

Bit Name Function Type Default

15:0 PWMCHC Channel C duty (two’s complement) RW 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Channel B Duty Control Register (PWM_CHB)

PWMCHB

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Channel C Duty Control Register (PWM_CHC)

PWMCHC

Reset = 0x0000
ADSP-BF51x Blackfin Processor Hardware Reference 14-45

PWM Registers
PWM Crossover and Output Enable (PWM_SEG)
Register

The PWM_SEG register controls output enabling of the high-side and
low-side PWM outputs, and it also permits configuration of crossover
mode for each output pair. Bit diagrams and descriptions are provided in
Figure 14-18 and Table 14-12.

Figure 14-18. PWM Crossover and Output Enable Register

Table 14-12. PWM_SEG Register

Bit Name Function Type Default

0 CH_EN CH output enable
1 = disabled
0 = enabled

RW 0

1 CL_EN CL output enable
1 = disabled
0 = enabled

RW 0

2 BH_EN BH output enable
1 = disabled
0 = enabled

RW 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Crossover and Output Enable Register (PWM_SEG)

CH_EN

CL_EN

BH_EN

BL_EN

AH_EN

AL_EN

CHCL_XOVR

BHBL_XOVR
AHAL_XOVR

Reset = 0x0000

Reserved
14-46 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
3 BL_EN BL output enable
1 = disabled
0 = enabled

RW 0

4 AH_EN AH output enable
1 = disabled
0 = enabled

RW 0

5 AL_EN AL output enable
1 = disabled
0 = enabled

RW 0

6 CHCL_XOVR Channel C output crossover
1 = XOVR
0 = not XOVR

RW 0

7 BHBL_XOVR Channel B output crossover
1 = XOVR
0 = not XOVR

RW 0

8 AHAL_XOVR Channel A output crossover
1 = XOVR
0 = not XOVR

RW 0

15:9 Reserved 0

Table 14-12. PWM_SEG Register (Continued)

Bit Name Function Type Default
ADSP-BF51x Blackfin Processor Hardware Reference 14-47

PWM Registers
PWM Sync Pulse Width Control (PWM_SYNCWT)
Register

The PWM_SYNCWT register allows programming of the PWM_SYNC pulse
width. Bit diagrams and descriptions are provided in Figure 14-19 and
Table 14-13.

PWM Channel AL, BL, CL Duty Control
(PWM_CHAL, PWM_CHBL, PWM_CHCL) Registers

These registers are used to program duty cycle for a low-side channel in
SR (switched reluctance) mode only. Bit diagrams and descriptions for
each register are provided in Figure 14-20 through Figure 14-22, and
Table 14-14 through Table 14-16.

Figure 14-19. PWM Sync Pulse Width Control Register

Table 14-13. PWM_SYNCWT Register

Bit Name Function Type Default

9:0 PWMSYNCWT PWM sync pulse width (unsigned) RW 0x03FF

15:10 Reserved 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 1 1 1 1 1 1 1 1 1

PWM Sync Pulse Width Control Register (PWM_SYNCWT)

Reserved

Reset = 0x03FF

PWMSYNCWT
14-48 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
Figure 14-20. PWM Channel AL Duty Control Register

Table 14-14. PWM_CHAL Register

Bit Name Function Type Default

15:0 PWM_CHAL Channel A duty (two’s complement) RW 0

Figure 14-21. PWM Channel BL Duty Control Register

Table 14-15. PWM_CHBL Register

Bit Name Function Type Default

15:0 PWM_CHBL Channel B duty (two’s complement) RW 0

Figure 14-22. PWM Channel CL Duty Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Channel AL Duty Control Register (PWM_CHAL)

PWM_CHAL

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Channel BL Duty Control Register (PWM_CHBL)

PWM_CHBL

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Channel CL Duty Control Register (PWM_CHCL)

PWM_CHCL

Reset = 0x0000
ADSP-BF51x Blackfin Processor Hardware Reference 14-49

PWM Registers
PWM Low Side Invert (PWM_LSI) Register
The PWM_LSI register is used for specifying switched reluctance (SR) chop
modes. Bit diagrams and descriptions are provided in Figure 14-23 and
Table 14-17.

Table 14-16. PWM_CHCL Register

Bit Name Function Type Default

15:0 PWM_CHCL Channel C duty (two’s complement) RW 0

Figure 14-23. PWM Low Side Invert Register

Table 14-17. PWM_LSI Register

Bit Name Function Type Default

0 PWM_SR_LSI_A PWM SR mode low side invert channel A RW 0

1 PWM_SR_LSI_B PWM SR mode low side invert channel B RW 0

2 PWM_SR_LSI_C PWM SR mode low side invert channel C RW 0

15:3 Reserved 0

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Low Side Invert Register (PWM_LSI)

Reserved

PWM_SR_LSI_B

PWM_SR_LSI_C

Reset = 0x0000

PWM_SR_LSI_A
14-50 ADSP-BF51x Blackfin Processor Hardware Reference

PWM Controller
PWM Simulation Status (PWM_STAT2) Register
The PWM_STAT2 register provides a way to observe the status of the PWM
high-side and low-side output channels via software. This can be useful for
debug operation. Bit diagrams and descriptions are provided in
Figure 14-24 and Table 14-18.

Figure 14-24. PWM Simulation Status Register

Table 14-18. PWM_STAT2 Register

Bit Name Function Type Default

0 PWM_AL PWM_AL output signal for S/W observation RO 0

1 PWM_AH PWM_AH output signal for S/W observation RO 0

2 PWM_BL PWM_BL output signal for S/W observation RO 0

3 PWM_BH PWM_BH output signal for S/W observation RO 0

4 PWM_CL PWM_CL output signal for S/W observation RO 0

5 PWM_CH PWM_CH output signal for S/W observation RO 0

15:6 Reserved 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PWM Simulation Status Register (PWM_STAT2)

Reserved

PWM_AH

PWM_BL

PWM_BH

PWM_CL

PWM_CH

Reset = 0x0000

PWM_AL
ADSP-BF51x Blackfin Processor Hardware Reference 14-51

Unique Information for the ADSP-BF51x Processor
Unique Information for the ADSP-BF51x
Processor

None
14-52 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
15 UART PORT CONTROLLERS

This chapter describes the universal asynchronous receiver/transmitter
(UART) module. Following an overview and a list of key features is a
description of operation. The chapter concludes with a programming
model, consolidated register definitions, and programming examples.

Specific Information for the ADSP-BF51x
For details regarding the number of UARTs for the ADSP-BF51x prod-
uct, refer to ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor
Data Sheet.

For UART DMA channel assignments, refer to Table 6-7 on page 6-103
in Chapter 6, “Direct Memory Access”.

For UART interrupt vector assignments, refer to Table 5-3 on page 5-20
in Chapter 5, “System Interrupts”.

To determine how each of the UARTs is multiplexed with other func-
tional pins, refer to Table 9-2 on page 9-5 through Table 9-4 on page 9-7
in Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for each UART, refer to Appendix A, “Sys-
tem MMR Assignments”.
ADSP-BF51x Blackfin Processor Hardware Reference 15-1

Overview
UART behavior for the ADSP-BF51x that differs from the general infor-
mation in this chapter can be found at the end of this chapter in the
section “Unique Information for the ADSP-BF51x Processor” on
page 15-42.

Overview
The UART module is a full-duplex peripheral compatible with PC-style
industry-standard UARTs, sometimes called serial controller interfaces
(SCI). UARTs convert data between serial and parallel formats. The serial
communication follows an asynchronous protocol that supports various
word length, stop bits, bit rate, and parity generation options.

Features
Each UART includes these features:

• 5 – 8 data bits

• 1 or 2 stop bits (1½ in 5-bit mode)

• Even, odd, and sticky parity bit options

• 3 interrupt outputs for reception, transmission, and status

• Independent DMA operation for receive and transmit

• SIR IrDA operation mode

• Internal loop back

The UART is logically compliant to EIA-232E, EIA-422, EIA-485 and
LIN standards, but usually requires an external transceiver device to meet
electrical requirements. In IrDA® (Infrared Data Association) mode, the
UART meets the half-duplex IrDA SIR (9.6/115.2 Kbps rate) protocol.
15-2 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
Interface Overview
Figure 15-1 shows a simplified block diagram of a UART module and
how it interconnects to the Blackfin architecture and to the outside world.

External Interface
Each UART features an RX and a TX pin. These two pins usually connect
to an external transceiver device that meets the electrical requirements of
full duplex (for example, EIA-232, EIA-422, 4-wire EIA-485) or half
duplex (for example, 2-wire EIA-485, LIN) standards.

Figure 15-1. UART Block Diagram

UART_IER

UART_THR

UART_RBR

UART_LSR

UART_LCR

UART_IIR

UART_MCR

SIC CONTROLLER

UART_DLL

UART_DLH

DMA CONTROLLER

UART_SCR

UART_GCTL

TSR

RSR I/O
 P

O
R

T
TRANSCEIVER

UART

R
X

R
E

Q

T
X

R
E

Q

PA
B

D
A

B

E
R

R
E

Q

8 8

++

BLACKFIN

RX

TX
ADSP-BF51x Blackfin Processor Hardware Reference 15-3

Description of Operation
The RX and TX pins do not need to be used together. If only receive or
transmit functionality of a UART module is needed, the unused pin may
be used for an alternate function, depending on the port multiplexing
scheme of a specific processor. For more details on functionality multi-
plexed with the UART pins, see Chapter 9, “General-Purpose Ports”.

 Modem status and control functionality is not supported by the
UART modules, but may be implemented using GPIO pins.

Internal Interface
UARTs are DMA-capable peripherals with support for separate TX and
RX DMA master channels. They can be used in either DMA or pro-
grammed non-DMA mode of operation. The non-DMA mode requires
software management of the data flow using either interrupts or polling.
The DMA method requires minimal software intervention as the DMA
engine itself moves the data. Each UART has its own separate transmit
and receive DMA channels. For more information on DMA, see the
Direct Memory Access chapter.

All UART registers are eight bits wide. They connect to the peripheral
bus. However, some registers share their address as controlled by the DLAB
bit in the UART_LCR register. The UART_RBR and UART_THR registers also
connect to the DAB bus

A hardware-assisted autobaud detection mechanism is accomplished by
coupling a specific GP Timer with a specific UART. For information on
GP Timer - UART pairings for autobaud detection, see General-Purpose
Ports chapter.

Description of Operation
The following sections describe the operation of the UART.
15-4 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
UART Transfer Protocol
UART communication follows an asynchronous serial protocol, consisting
of individual data words. A word has 5 to 8 data bits.

All data words require a start bit and at least one stop bit. With the
optional parity bit, this creates a 7- to 12-bit range for each word. The for-
mat of received and transmitted character frames is controlled by the line
control register (UART_LCR). Data is always transmitted and received least
significant bit (LSB) first.

Figure 15-2 shows a typical physical bitstream measured on one of the TX
pins.

Aside from the standard UART functionality, the UART also supports
half-duplex serial data communication via infrared signals, according to
the recommendations of the Infrared Data Association (IrDA). The physi-
cal layer known as IrDA SIR (9.6/115.2 Kbps rate) is based on
return-to-zero-inverted (RZI) modulation. Pulse position modulation is
not supported.

Using the 16× data rate clock, RZI modulation is achieved by inverting
and modulating the non-return-to-zero (NRZ) code normally transmitted
by the UART. On the receive side, the 16× clock is used to determine an
IrDA pulse sample window, from which the RZI-modulated NRZ code is
recovered.

Figure 15-2. Bitstream on a TX Pin Transmitting an “S” Character (0x53)

DATA BITS STOP BIT(S)

START BIT LSB PARITY BIT (OPTIONAL, ODD OR EVEN)

D0 D1 D2 D3 D4 D5 D6 D7
ADSP-BF51x Blackfin Processor Hardware Reference 15-5

Description of Operation
IrDA support is enabled by setting the IREN bit in the UART_GCTL register.
The IrDA application requires external transceivers.

UART Transmit Operation
Receive and transmit paths operate independently except that the bit rate
and the frame format are identical for both transfer directions.

Transmission is initiated by writes to the UART_THR register. If no former
operation is pending, the data is immediately passed from the UART_THR
register to the internal TSR register where it is shifted out at a bit rate equal
to SCLK/(16 × Divisor) (see “Bit Rate Generation” on page 15-12 for
information about the divisor) with start, stop, and parity bits appended
as defined the UART_LCR register. The least significant bit (LSB) is always
transmitted first. This is bit 0 of the value written to UART_THR.

Writes to the UART_THR register clear the THRE flag. Transfers of data from
UART_THR to the transmit shift registers (TSR) set this status flag in
UART_LSR again.

When enabled by the ETBEI bit in the UART_IER register, a 0 to 1 transition
of the THRE flag requests an interrupt on the dedicated TXREQ output. This
signal is routed through the DMA controller. If the associated DMA chan-
nel is enabled, the TXREQ signal functions as a DMA request, otherwise the
DMA controller simply forwards it to the system interrupt controller
(SIC).

The UART_THR register and the internal TSR register can be seen as a
two-stage transmit buffer. When data is pending in either one of these reg-
isters, the TEMT flag is low. As soon as the data has left the TSR register, the
TEMT bit goes high again and indicates that all pending transmit operation
has finished. At that time it is safe to disable the UCEN bit or to three-state
off-chip line drivers.
15-6 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
UART Receive Operation
The receive operation uses the same data format as the transmit configura-
tion, except that one valid stop bit is always sufficient. That is, the STB bit
has no impact to the receiver.

After detection of the start bit, the received word is shifted into the inter-
nal shift register (RSR) at a bit rate of SCLK/(16 × Divisor). Once the
appropriate number of bits (including one stop bit) is received, the con-
tent of the RSR register is transferred to the UART_RBR registers, shown in
Figure 15-11 on page 15-26. Finally, the data ready (DR) bit and the status
flags are updated in the UART_LSR register, to signal data reception, parity,
and also error conditions, if required.

The RSR and the UART_RBR registers can be seen as almost a two-stage
receive buffer. If the stop bit of a second byte is received before software
reads the first byte from the UART_RBR register, an overrun error is reported
and the first byte is overwritten.

If enabled by the ERBFI bit in the UART_IER register, a 0 to 1 transition of
the DR flag requests an interrupt on the dedicated RXREQ output. This sig-
nal is routed through the DMA controller. If the associated DMA channel
is enabled, the RXREQ signal functions as a DMA request, otherwise the
DMA controller simply forwards it to the system interrupt controller.

If errors are detected during reception, an interrupt can be requested to a
separate error interrupt output. This error request goes directly to the sys-
tem interrupt controller. However, it is hard-wired with the error requests
of other modules. The error handler routine may need to interrogate mul-
tiple modules as to whether they requested the event. Error requests must
be enabled by the ELSI bit in the UART_IER register. The following error
situations are detected. Every error has an indicating bit in the UART_LSR
register.

• Overrun error (OE bit)

• Parity error (PE bit)
ADSP-BF51x Blackfin Processor Hardware Reference 15-7

Description of Operation
• Framing error/Invalid stop bit (FE bit)

• Break indicator (BI bit)

Reception is started when a falling edge is detected on the RX input pin.
The receiver attempts to see a start bit. For better immunity against noise
and hazards on the line, the receiver oversamples every bit 16 times and
does a majority decision based on the middle three samples. The data is
shifted immediately into the internal RSR register. After the 9th sample of
the first stop bit is processed, the received data is copied to the UART_RBR
register and the receiver recovers itself for further data.

The sampling clock, equal to 16 times the bit rate, samples the data bits
close to their midpoint. Because the receiver clock is usually asynchronous
to the transmitter’s data rate, the sampling point may drift relative to the
center of the data bits. The sampling point is synchronized again with
each start bit, so the error accumulates only over the length of a single
word. A receive filter removes spurious pulses of less than two times the
sampling clock period.

IrDA Transmit Operation
To generate the IrDA pulse transmitted by the UART, the normal NRZ
output of the transmitter is first inverted if the TPOLC bit is cleared, so a 0
is transmitted as a high pulse of 16 UART clock periods and a 1 is trans-
mitted as a low pulse for 16 UART clock periods. The leading edge of the
pulse is then delayed by six UART clock periods. Similarly, the trailing
edge of the pulse is truncated by eight UART clock periods. This results in
the final representation of the original 0 as a high pulse of only 3 clock
periods out of 16 clock periods in the cycle. The pulse is centered around
the middle of the bit time, as shown in Figure 15-3. The final IrDA pulse
is fed to the off-chip infrared driver.
15-8 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
This modulation approach ensures a pulse width output from the UART
of three cycles high out of every 16 UART clock cycles. As shown in
Table 15-1 on page 15-13, the error terms associated with the bit rate gen-
erator are very small and well within the tolerance of most infrared
transceiver specifications.

IrDA Receive Operation
The IrDA receiver function is more complex than the transmit function.
The receiver must discriminate the IrDA pulse and reject noise. To do
this, the receiver looks for the IrDA pulse in a narrow window centered
around the middle of the expected pulse.

Glitch filtering is accomplished by counting 16 system clocks from the
time an initial pulse is seen. If the pulse is absent when the counter
expires, it is considered a glitch. Otherwise, it is interpreted as a 0. This is
acceptable because glitches originating from on-chip capacitive cross-cou-
pling typically do not last for more than a fraction of the system clock
period. Sources outside of the chip and not part of the transmitter can be
avoided by appropriate shielding. The only other source of a glitch is the
transmitter itself. The processor relies on the transmitter to perform
within specification. If the transmitter violates the specification, unpre-
dictable results may occur. The 4-bit counter adds an extra level of
protection at a minimal cost. Note that because the system clock can

Figure 15-3. IrDA Transmit Pulse

 0

 1

 0

8/16

9/167/16

16/16

NRZ

INVERTED

FINAL
IrDA

8/16

9/167/16

16/16
ADSP-BF51x Blackfin Processor Hardware Reference 15-9

Description of Operation
change across systems, the longest glitch tolerated is inversely proportional
to the system clock frequency.

The receive sampling window is determined by a counter that is clocked at
the 16× bit-time sample clock. The sampling window is re-synchronized
with each start bit by centering the sampling window around the start bit.

The polarity of receive data is selectable, using the IRPOL bit. Figure 15-4
gives examples of each polarity type.

• IRPOL = 0 assumes that the receive data input idles 0 and each
active 1 transition corresponds to a UART NRZ value of 0.

• IRPOL = 1 assumes that the receive data input idles 1 and each
active 0 transition corresponds to a UART NRZ value of 0.

Figure 15-4. IrDA Receiver Pulse Detection

 0

 1

16/16

PULSE
DETECT

OR
OUTPUT

SAMPLING
WINDOW

8/16 16/16

RECOVERED
NRZ INPUT

1

 0

8/16

 0

 1RECEIVED
IrDA

PULSE
IR POL = 1

RECEIVED
IrDA

PULSE
IR POL = 0
15-10 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
Interrupt Processing
Each UART module has three interrupt outputs. One is dedicated for
transmission, one for reception, and the third is used to report line status.
As shown in Figure 15-1 on page 15-3, the transmit and receive requests
are routed through the DMA controller. The status request goes directly
to the system interrupt controller after being ORed with interrupt signals
from other modules.

If the associated DMA channel is enabled, the request functions as a DMA
request. If the DMA channel is disabled, it simply forwards the request to
the system interrupt controller. Note that a DMA channel must be associ-
ated with the UART module to enable TX and RX interrupts. Otherwise,
the transmit and receive requests cannot be forwarded. Refer to the
description of the peripheral map registers in the Direct Memory Access
chapter.

Transmit interrupts are enabled by the ETBEI bit in the UART_IER register.
If set, the transmit request is asserted when the THRE bit in the UART_LSR
register transitions from 0 to 1, indicating that the TX buffer is ready for
new data.

Note that the THRE bit resets to 1. When the ETBEI bit is set in the
UART_IER register, the UART module immediately issues an interrupt or
DMA request. In this way, no special handling of the first character is
required when transmission of a string is initiated. Simply set the ETBEI
bit and let the interrupt service routine load the first character from mem-
ory and write it to the UART_THR register in the normal manner.
Accordingly, the ETBEI bit can be cleared if the string transmission has
completed. For more information, see “DMA Mode” on page 15-17.

The THRE bit is cleared by hardware when new data is written to the
UART_THR register. These writes also clear the TX interrupt request. How-
ever, they also initiate further transmission. If software doesn’t want to
continue transmission, the TX request can alternatively be cleared by
either clearing the ETBEI bit or by reading the UART_IIR register.
ADSP-BF51x Blackfin Processor Hardware Reference 15-11

Description of Operation
Receive interrupts are enabled by the ERBFI bit in the UART_IER register. If
set, the receive request is asserted when the DR bit in the UART_LSR register
transitions from 0 to 1, indicating that new data is available in the
UART_RBR register. When software reads the UART_RBR, hardware clears the
DR bit again. Reading UART_RBR also clears the RX interrupt request.

Status interrupts are enabled by the ELSI bit in the UART_IER register. If
set, the status interrupt request is asserted when any error bit in the
UART_LSR register transitions from 0 to 1. Refer to “UART Line Status
(UART_LSR) Register” on page 15-24 for details. Reading the UART_LSR
register clears the error bits destructively. These reads also clear the status
interrupt request.

For legacy reasons, the UART_IIR registers still reflect the UART interrupt
status. Legacy operation may require bundling all UART interrupt sources
to a single interrupt channel and servicing them all by the same software
routine. This can be established by globally assigning all UART interrupts
to the same interrupt priority, by using the system interrupt controller.

 If either the line status interrupt or the receive data interrupt has
been assigned a lower interrupt priority by the system interrupt
controller, a deadlock condition can occur. To avoid this, always
assign the lowest priority of the enabled UART interrupts to the
UART_THR empty event.

Bit Rate Generation
The UART clock is enabled by the UCEN bit in the UART_GCTL register.

The bit rate is characterized by the system clock (SCLK) and the 16-bit
divisor. The divisor is split into the UART_DLL and the UART_DLH registers.
These registers form a 16-bit divisor. The bit clock is divided by 16 so
that:

bit rate = SCLK/(16 × divisor)
divisor = 65536 when UART_DLL = UART_DLH = 0
15-12 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
Table 15-1 provides example divide factors required to support most stan-
dard baud rates.

 Careful selection of SCLK frequencies, that is, even multiples of
desired bit rates, can result in lower error percentages.

Note that the UART module is clocked 16 times faster than the bit clock.
This is required to oversample bits on reception and to generate RZI code
in IrDA mode.

Autobaud Detection
At the chip level, the UART RX pin is routed to the alternate capture
input (TACIx) of a general purpose timer. When working in WDTH_CAP
mode this timer can be used to automatically detect the bit rate applied to
the RX pin by an external device. For more information, see Chapter 9,
“General-Purpose Ports”.

The capture capabilities of the timers are often used to supervise the bit
rate at runtime. If the Blackfin UART talks to a device supplied by a weak

Table 15-1. UART Bit Rate Examples With 100 MHz SCLK

Bit Rate DL Actual % Error

2400 2604 2400.15 0.006

4800 1302 4800.31 0.007

9600 651 9600.61 0.006

19200 326 19171.78 0.147

38400 163 38343.56 0.147

57600 109 57339.45 0.452

115200 54 115740.74 0.469

921600 7 892857.14 3.119

6250000 1 6250000 –
ADSP-BF51x Blackfin Processor Hardware Reference 15-13

Description of Operation
clock oscillator that drifts over time, the Blackfin can re-adjust its UART
bit rate dynamically.

Often, autobaud detection is used for initial bit rate negotiations. In this
case, the Blackfin processor is most likely a slave device waiting for the
host to send a predefined autobaud character (see below). This is the sce-
nario used for UART booting. In this scenario, the UART clock enable bit
UCEN should not be enabled while autobaud detection is performed. This
prevents the UART from starting reception with incorrect bit rate match-
ing. Alternatively, the UART can be disconnected from the RX pin by
setting the LOOP_ENA bit.

A software routine can detect the pulse widths of serial stream bit cells.
Because the sample base of the timers is synchronous with the UART
operation—all derived from SCLK—the pulse widths can be used to calcu-
late the baud rate divider for the UART.

divisor = TIMER_WIDTH/(16 × number of captured UART bits)

In order to increase the number of timer counts and therefore the resolu-
tion of the captured signal, it is recommended not to measure just the
pulse width of a single bit, but to enlarge the pulse of interest over more
bits. Traditionally, a NULL character (ASCII 0x00) was used in autobaud
detection, as shown in Figure 15-5.

Because the example frame in Figure 15-5 encloses 8 data bits and 1 start
bit, apply the formula:

divisor = TIMER_WIDTH/(16 × 9)

Figure 15-5. Autobaud Detection Character 0x00

FRAME WIDTH

S 1 2 3 4 5 6 7 STOP0
15-14 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
Real UART RX signals often have asymmetrical falling and rising edges,
and the sampling logic level is not exactly in the middle of the signal volt-
age range. At higher bit rates, such pulse width-based autobaud detection
might not return adequate results without additional analog signal condi-
tioning. Measuring signal periods works around this issue and is strongly
recommended.

For example, predefine ASCII character “@” (0x40) as the autobaud
detection character and measure the period between two subsequent fall-
ing edges. As shown in Figure 15-6, measure the period between the
falling edge of the start bit and the falling edge after bit 6. Since this
period encloses eight bits, apply the formula:

divisor = TIMER_PERIOD> > 7

An example is provided in Listing 15-2 on page 15-33.

Programming Model
The following sections describe a programming model for the UART.

Non-DMA Mode
In non-DMA mode, data is moved to and from the UART by the proces-
sor core. To transmit a character, load it into UART_THR. Received data can
be read from UART_RBR. The processor must write and read one character
at time.

Figure 15-6. Autobaud Detection Character 0x40

PERIOD

STOPS 1 2 3 4 5 6 70
ADSP-BF51x Blackfin Processor Hardware Reference 15-15

Programming Model
To prevent any loss of data and misalignments of the serial datastream, the
UART_LSR register provides two status flags for handshaking—THRE and DR.

The THRE flag is set when UART_THR is ready for new data and cleared when
the processor loads new data into UART_THR. Writing UART_THR when it is
not empty overwrites the register with the new value and the previous
character is never transmitted.

The DR flag signals when new data is available in UART_RBR. This flag is
cleared automatically when the processor reads from UART_RBR. Reading
UART_RBR when it is not full returns the previously received value. When
UART_RBR is not read in time, newly received data overwrites UART_RBR and
the OE flag is set.

With interrupts disabled, these status flags can be polled to determine
when data is ready to move. Note that because polling is processor inten-
sive, it is not typically used in real-time signal processing environments.
Be careful if transmit and receive are served by different software threads,
because read operations on the UART_LSR and UART_IIR registers are
destructive. Polling the SIC_ISR register without enabling the interrupts
by SIC_MASK is an alternate method of operation to consider. Software can
write up to two words into the UART_THR register before enabling the
UART clock. As soon as the UCEN bit is set, those two words are sent.

Alternatively, UART writes and reads can be accomplished by interrupt
service routines. Separate interrupt lines are provided for UART TX,
UART RX, and UART error/status. The independent interrupts can be
enabled individually by the UART_IER register.

The ISRs can evaluate the status bit field within the UART_IIR register to
determine the signalling interrupt source. If more than one source is sig-
nalling, the status field displays the one with the highest priority.
Interrupts also must be assigned and unmasked by the processor’s inter-
rupt controller. The ISRs must clear the interrupt latches explicitly. See
Figure 15-13 on page 15-29.
15-16 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
DMA Mode
In this mode, separate receive (RX) and transmit (TX) DMA channels
move data between the UART and memory. The software does not have
to move data, it just has to set up the appropriate transfers either through
the descriptor mechanism or through autobuffer mode.

DMA channels provide a 4-deep FIFO, resulting in total buffer capabili-
ties of 6 words at both the transmit and receive sides. In DMA mode, the
latency is determined by the bus activity and arbitration mechanism and
not by the processor loading and interrupt priorities.

DMA interrupt routines must explicitly write “1” to the corresponding
DMA_IRQ_STATUS registers to clear the latched request of the pending
interrupt.

The UART’s DMA is enabled by first setting up the system DMA control
registers and then enabling the UART ERBFI and/or ETBEI interrupts in
the UART_IER register. This is because the interrupt request lines double as
DMA request lines. Depending on whether DMA is enabled or not, upon
receiving these requests, the DMA control unit either generates a direct
memory access or passes the UART interrupt on to the system interrupt
handling unit. The UART’s error interrupt goes directly to the system
interrupt handling unit, bypassing the DMA unit completely.

For transmit DMA, it is recommended that the SYNC bit in the DMA_CONFIG
register be set. With this bit set, the interrupt generation is delayed until
the entire DMA FIFO has been drained to the UART module. The
UART TX DMA interrupt service routine is allowed to start another
DMA sequence or to clear the ETBEI control bit only when the SYNC bit is
set.

If another DMA is started while data is still pending in the UART trans-
mitter, there is no need to pulse the ETBEI bit to initiate the second DMA.
If, however, the recent byte has already been loaded into the TSR registers
ADSP-BF51x Blackfin Processor Hardware Reference 15-17

Programming Model
(that is, the THRE bit is set), then the ETBEI bit must be cleared and set
again to let the second DMA start.

In DMA transmit mode, the ETBEI bit enables the peripheral request to
the DMA FIFO. The strobe on the memory side is still enabled by the
DMAEN bit. If the DMA count is less than the DMA FIFO depth, which
is 4, then the DMA interrupt might be requested before the ETBEI bit is
set. If this is not wanted, set the SYNC bit in the DMA_CONFIG register.

 Regardless of the SYNC setting, the DMA stream has not left the
UART transmitter completely at the time the interrupt is gener-
ated. If the UART clock was disabled without additional polling of
the TEMT bit, transmission may abort in the middle of the stream—
causing data loss.

The UART’s DMA supports 8-bit and 16-bit operation, but not 32-bit
operation. Sign extension is not supported.

Mixing Modes
Especially on the transmit side, switching from DMA mode to non-DMA
operation on the fly requires some thought. By default, the interrupt tim-
ing of the DMA is synchronized with the memory side of the DMA
FIFOs. The TX DMA completion interrupt is generated after the last byte
has been copied from the memory into the DMA FIFO. The TX DMA
interrupt service routine is not yet permitted to start other DMA
sequences or to switch to non-DMA transmission. The interrupt is
requested by the time the DMA_DONE bit is set. The DMA_RUN bit, however,
remains set until the data has completely left the TX DMA FIFO.

Therefore, when planning to switch from DMA to non-DMA of opera-
tion, always set the SYNC bit in the DMA_CONFIG word of the last descriptor
or work unit before handing over control to non-DMA mode. Then, after
the interrupt occurs, software can write new data into the UART_THR regis-
ter as soon as the THRE bit permits. If the SYNC bit cannot be set, software
can poll the DMA_RUN bit instead.
15-18 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
When switching from non-DMA to DMA operation, take care that the
very first DMA request is issued properly. If the DMA is enabled while the
UART is still transmitting, no precaution is required. If, however, the
DMA is enabled after the TEMT bit became high, the ETBEI bit should be
pulsed to initiate DMA transmission.

UART Registers
The processor provides a set of PC-style industry-standard control and
status registers for each UART. These memory-mapped registers (MMRs)
are byte-wide registers that are mapped as half words with the most signif-
icant byte zero filled. Table 15-2 provides an overview of the UART
registers.

Consistent with industry-standard devices, multiple registers are mapped
to the same address location. The UART_DLH and UART_DLL registers share
their addresses with the UART_THR registers, the UART_RBR registers, and the
UART_IER registers. The DLAB bit in the UART_LCR register controls which
set of registers is accessible at a given time. Software must use 16-bit word
load/store instructions to access these registers.

Transmit and receive channels are both buffered. The UART_THR registers
buffer the transmit shift register (TSR) and the UART_RBR registers buffer
the receive shift register (LSR). The shift registers are not directly accessible
by software.
ADSP-BF51x Blackfin Processor Hardware Reference 15-19

UART Registers
Table 15-2. UART Register Overview

Name Address
Offset

DLAB
Bit
Setting

Operation Reset
Value

Function

UART_RBR 0x0000 0 R 0x00 Receive buffer register

UART_THR 0x0000 0 W 0x00 Transmit holding register

UART_DLL 0x0000 1 R/W 0x01 Divisor latch low byte

UART_IER 0x0004 0 R/W 0x00 Interrupt enable register

UART_DLH 0x0004 1 R/W 0x00 Divisor latch high byte

UART_IIR 0x0008 X R
Read operations
are destructive

0x01 Interrupt identification register

UART_LCR 0x000C X R/W 0x00 Line control register

UART_MCR 0x0010 X R/W 0x00 Modem control register

UART_LSR 0x0014 X R
Read operations
are destructive

0x60 Line status register

UART_SCR 0x001C X R/W 0x00 Scratch register

UART_GCTL 0x0024 X R/W 0x00 Global control register
15-20 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
UART Line Control (UART_LCR) Register
The UART_LCR register, shown in Figure 15-7, controls the format of
received and transmitted character frames.

The 2-bit WLS field determines whether the transmitted and received
UART word consists of 5, 6, 7 or 8 data bits.

The STB bit controls how many stop bits are appended to transmitted
data. When STB = 0, one stop bit is transmitted. If WLS is non zero, STB = 1
instructs the transmitter to add one additional stop bit, two stop bits in
total. If WLS = 0 and 5-bit operation is chosen, STB = 1 forces the transmit-
ter to append one additional half bit, 1½ stop bits in total. Note that this
bit does not impact data reception—the receiver is always satisfied with
one stop bit.

Figure 15-7. UART Line Control Register

DLAB (Divisor Latch Access)
0 - Enables access to UART_THR,

UART_RBR, and UART_IER
1 - Enables access to UART_DLL

and UART_DLH

SB (Set Break)
0 - No force
1 - Force TX pin to 0

STP (Stick Parity)
Forces parity to defined value if set and PEN = 1
EPS = 0, parity transmitted and checked as 1
EPS = 1, parity transmitted and checked as 0

EPS (Even Parity Select)
0 - Odd parity when PEN = 1 and STP = 0
1 - Even parity

WLS[1:0] (Word Length Select)
00 - 5-bit word
01 - 6-bit word
10 - 7-bit word
11 - 8-bit word

STB (Stop Bits)
0 - 1 stop bit
1 - 2 stop bits for non-5-bit

word length or 1 1/2 stop
bits for 5-bit word length

PEN (Parity Enable)
0 - Parity not transmitted or

checked
1 - Transmit and check parity

UART Line Control Register (UART_LCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ADSP-BF51x Blackfin Processor Hardware Reference 15-21

UART Registers
The PEN bit inserts one additional bit between the most significant data bit
and the first stop bit. The polarity of this so-called parity bit depends on
data and the STP and EPS control bits. Both transmitter and receiver calcu-
late the parity value. The receiver compares the received parity bit with
the expected value and issues a parity error if they don’t match. If PEN is
cleared, the STP and the EPS bits are ignored.

The STP bit controls whether the parity is generated by hardware based on
the data bits or whether it is set to a fixed value. If STP = 0 the hardware
calculates the parity bit value based on the data bits. Then, the EPS bit
determines whether odd or even parity mode is chosen. If EPS = 0, odd
parity is used. That means that the total count of logical–1 data bits
including the parity bit must be an odd value. Even parity is chosen by
STP = 0 and EPS = 1. Then, the count of logical–1 bits must be a even
value. If the STP bit is set, then hardware parity calculation is disabled. In
this case, the sent and received parity equals the inverted EPS bit. The
example in Table 15-3 summarizes polarity behavior assuming 8-bit data
words (WLS = 3).

Table 15-3. UART Parity

PEN STP EPS Data (hex) Data (binary, LSB
first)

Parity

0 x x x x None

1 0 0 0x60 0000 0110 1

1 0 0 0x57 1110 1010 0

1 0 1 0x60 0000 0110 0

1 0 1 0x57 1110 1010 1

1 1 0 x x 1

1 1 1 x x 0
15-22 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
If set, the SB bit forces the TX pin to low asynchronously, regardless of
whether or not data is currently transmitted. It functions even when the
UART clock is disabled. Since the TX pin normally drives high, it can be
used as a flag output pin, if the UART is not used.

The DLAB bit controls whether the UART_RBR, UART_THR and UART_IER regis-
ters are accessible by the peripheral bus (DLAB = 0) or the divisor latch
registers UART_DLH and UART_DLL alternatively (DLAB = 1).

UART Modem Control (UART_MCR) Register
The UART_MCR register controls the UART port, as shown in Figure 15-8.
Even if modem functionality is not supported, the UART_MCR register is
available in order to support the loopback mode.

Loopback mode disconnects the receiver’s input from the RX pin, but
redirects it to the transmit output internally.

Figure 15-8. UART Modem Control Registers

LOOP_ENA (Loopback mode enable)
Disconnects RX pin from RSR register

UART Modem Control Register (UART_MCR)

Reset = 0x0000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ADSP-BF51x Blackfin Processor Hardware Reference 15-23

UART Registers
UART Line Status (UART_LSR) Register
The UART_LSR register contains UART status information as shown in
Figure 15-9.

The DR bit indicates that data is available in the receiver and can be read
from the UART_RBR register. The bit is set by hardware when the receiver
detects the first valid stop bit. It is cleared by hardware when the UART_RBR
register is read.

The OE bit indicates that a start bit condition has been detected, but the
internal receive shift register (RSR) and the receive buffer (UART_RBR)
already contain data. New data overwrites the content of the buffers. To
avoid overruns read the UART_RBR register in time. The OE bit cleared when
the UART_LSR register is read.

Figure 15-9. UART Line Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 1 0 0 0 0

DR (Data Ready)

TEMT (TSR and UART_THR Empty)

UART Line Status Register (UART_LSR)

0 - Full
1 - Both empty

0 - UART_THR not empty
1 - UART_THR empty

0 - No break interrupt
1 - Break interrupt; this

indicates RX was held low
for more than the maximum
word length

BI (Break Interrupt)

THRE (UART_THR Empty)

FE (Framing Error)

0 - No new data
1 - UART_RBR holds

new data

OE (Overrun Error)
0 - No overrun
1 - UART_RBR overwritten

before read

PE (Parity Error)
0 - No parity error
1 - Parity error

0 - No error
1 - Invalid stop bit error

Reset = 0x0060

read only
15-24 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
The PE bit indicates that the received parity bit does not match the
expected value. The PE bit is set simultaneously with the DR bit. The PE bit
cleared when the UART_LSR register is read. Invalid parity bits can be simu-
lated by setting the FPE bit in the UART_GCTL register.

The FE bit indicates that the first stop bit has been sampled low. It is
cleared by hardware when the UART_RBR register is read. Invalid stop bits
can be simulated by setting the FFE bit in the UART_GCTL register.

The BI bit indicates that the first stop bit has been sampled low and the
entire data word, including parity bit, consists of low bits only. It is
cleared by hardware when the UART_RBR register is read.

 Because of the destructive nature of these read operations, special
care should be taken. For more information, see the Memory chap-
ter in ADSP-BF51x Blackfin Processor Hardware Reference.

The THRE bit indicates that the UART transmit channel is ready for new
data and software can write to UART_THR. Writes to UART_THR clear the THRE
bit. It is set again when data is passed from UART_THR to the internal TSR
register.

The TEMT bit indicates that both the UART_THR register and the internal TSR
register are empty. In this case the program is permitted to write to the
UART_THR register twice without losing data. The TEMT bit can also be used
as an indicator that pending UART transmission has been completed. At
that time it is safe to disable the UCEN bit or to three-state the off-chip line
driver.

UART Transmit Holding (UART_THR) Register
The write-only UART_THR register, shown in Figure 15-10, is mapped to
the same address as the read-only UART_RBR and UART_DLL registers. To
access UART_THR, the DLAB bit in UART_LCR must be cleared. When the DLAB
bit is cleared, writes to this address target the UART_THR register, and reads
from this address return the UART_RBR register.
ADSP-BF51x Blackfin Processor Hardware Reference 15-25

UART Registers
UART Receive Buffer (UART_RBR) Register
The read-only UART_RBR register, shown in Figure 15-11, is mapped to the
same address as the write-only UART_THR and UART_DLL registers. To access
UART_RBR, the DLAB bit in UART_LCR must be cleared. When the DLAB bit is
cleared, writes to this address target the UART_THR register, while reads
from this address return the value in the UART_RBR register.

UART Interrupt Enable (UART_IER) Register
The UART_IER register, shown in Figure 15-12, is used to enable requests
for system handling of empty or full states of UART data registers. Unless
polling is used as a means of action, the ERBFI and/or ETBEI bits in this
register are normally set.

Figure 15-10. UART Transmit Holding Register

Figure 15-11. UART Receive Buffer Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Hold[7:0]

UART Transmit Holding Register (UART_THR)
write only

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Buffer[7:0]

UART Receive Buffer Register (UART_RBR)
read only

Reset = 0x0000
15-26 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
Setting this register without enabling system DMA causes the UART to
notify the processor of data inventory state by means of interrupts. For
proper operation in this mode, system interrupts must be enabled, and
appropriate interrupt handling routines must be present. For backward
compatibility, the UART_IIR still reflects the correct interrupt status.

 Each UART features three separate interrupt channels to handle
data transmit, data receive, and line status events independently,
regardless of whether DMA is enabled or not. On some processors,
the status interrupt channels from multiple UARTs may be ORed
prior to being connected to the system interrupt controller. See
Chapter 5, “System Interrupts” for more information.

With system DMA enabled, the UART uses DMA to transfer data to or
from the processor. Dedicated DMA channels are available to receive and
transmit operation. Line error handling can be configured completely
independently from the receive/transmit setup.

The UART_IER registers are mapped to the same address as the UART_DLH
registers. To access UART_IER, the DLAB bit in UART_LCR must be cleared.

Figure 15-12. UART Interrupt Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ERBFI (Enable Receive
Buffer Full Interrupt)

UART Interrupt Enable Register (UART_IER)

ETBEI (Enable Transmit
Buffer Empty Interrupt)

ELSI (Enable RX Status Interrupt)
0 - No interrupt
1 - Generate RX interrupt if

DR bit in UART_LSR is
set

0 - No interrupt
1 - Generate TX interrupt if

THRE bit in UART_LSR is
set

0 - No interrupt
1 - Generate line status interrupt if
any of UART_LSR[4:1] is set

Reset = 0x0000
ADSP-BF51x Blackfin Processor Hardware Reference 15-27

UART Registers
The UART’s DMA is enabled by first setting up the system DMA control
registers and then enabling the UART ERBFI and/or ETBEI interrupts in
the UART_IER register. This is because the interrupt request lines double as
DMA request lines. Depending on whether DMA is enabled or not, upon
receiving these requests, the DMA control unit either generates a direct
memory access or passes the UART interrupt on to the system interrupt
handling unit. However, UART’s error interrupt goes directly to the sys-
tem interrupt handling unit, bypassing the DMA unit completely.

The ELSI bit enables interrupt generation on an independent interrupt
channel when any of the following conditions are raised by the respective
bit in the UART_LSR register:

• Receive overrun error (OE)

• Receive parity error (PE)

• Receive framing error (FE)

• Break interrupt (BI)

UART Interrupt Identification (UART_IIR) Register
The UART_IIR register conveys interrupt status within the UART. When
cleared, the NINT bit signals that an interrupt is pending. The STATUS field
indicates the highest priority pending interrupt. The receive line status has
the highest priority; the UART_THR empty interrupt has the lowest priority.
In the case where both interrupts are signaling, the UART_IIR reads 0x06.

When a UART interrupt is pending, the interrupt service routine needs to
clear the interrupt latch explicitly. Figure 15-13 shows how to clear any of
the three latches.
15-28 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
The TX interrupt request is cleared by writing new data to the UART_THR
register or by reading the UART_IIR register. Note the special role of the
UART_IIR register read in the case where the service routine does not want
to transmit further data.

If software stops transmission, it must read the UART_IIR register to reset
the interrupt request. As long as the UART_IIR register reads 0x04 or 0x06
(indicating that another interrupt of higher priority is pending), the
UART_THR empty latch cannot be cleared by reading UART_IIR.

 Because of the destructive nature of these read operations, special
care should be taken. For more information, see the Memory chap-
ter in ADSP-BF51x Blackfin Processor Hardware Reference.

Figure 15-13. UART Interrupt Identification Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NINT (Pending interrupt)

UART Interrupt Identification Register (UART_IIR)
read only

STATUS[1:0]

0 - Interrupt pending
1 - No interrupt pending

00 - Reserved
01 - UART_THR empty. Write UART_THR or read UART_IIR to clear

interrupt request.
10 - Receive data ready. Read UART_RBR to clear interrupt request.
11 - Receive line status. Read UART_LSR to clear interrupt request.

Reset = 0x0001
ADSP-BF51x Blackfin Processor Hardware Reference 15-29

UART Registers
UART Divisor Latch
(UART_DLL and UART_DLH) Registers

The UART_DLL register is mapped to the same address as the UART_THR and
UART_RBR registers. The UART_DLH register is mapped to the same address as
the UART_IER register. The DLAB bit in UART_LCR must be set before the
UART_DLL and UART_DLH registers, shown in Figure 15-14, can be accessed.

 Note the 16-bit divisor formed by UART_DLH and UART_DLL resets to
0x0001, resulting in the highest possible clock frequency by
default. If the UART is not used, disabling the UART clock saves
power. The UART_DLH and UART_DLL registers can be programmed
by software before or after setting the UCEN bit.

Figure 15-14. UART Divisor Latch Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Divisor Latch Low Byte[7:0]

Divisor Latch High Byte[15:8]

UART Divisor Latch Low Byte Register (UART_DLL)

UART Divisor Latch High Byte Register (UART_DLH)

Reset = 0x0001

Reset = 0x0000
15-30 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
UART Scratch (UART_SCR) Register
The 8-bit UART_SCR register, shown in Figure 15-15, is used for gen-
eral-purpose data storage and does not control the UART hardware in any
way. The contents are reset to 0x00.

UART Global Control (UART_GCTL) Register
The UART_GCTL register, shown in Figure 15-16, contains the enable bit for
internal UART clocks and for the IrDA mode of operation of the UART.

Figure 15-15. UART Scratch Register

Figure 15-16. UART Global Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Scratch[7:0]

UART Scratch Register (UART_SCR)

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UCEN (UART Controller Enable)
0 - Disable UART
1 - Enable UART

Reset = 0x0000

IREN (Enable IrDA Mode)
0 - Disable IrDA
1 - Enable IrDAFPE (Force Parity Error on Transmit)

0 - Normal operation
1 - Force error

FFE (Force Framing Error on Transmit)
0 - Normal operation
1 - Force error

UART Global Control Register (UART_GCTL)

TPOLC (IrDA TX Polarity Change)
0 - Serial line idles low
1 - Serial line idles highRPOLC (IrDA RX Polarity Change)

0 - Serial line idles low
1 - Serial line idles high
ADSP-BF51x Blackfin Processor Hardware Reference 15-31

Programming Examples
The UCEN bit enables the UART clocks. It also resets the state machine and
control registers when cleared.

This bit has been introduced to save power if the UART is not used.
When porting code, be sure to enable this bit.

The IrDA TX polarity change bit and the IrDA RX polarity change bit are
effective only in IrDA mode. The two force error bits, FPE and FFE, are
intended for test purposes. They are useful for debugging software, espe-
cially in loopback mode.

Programming Examples
The subroutine in Listing 15-1 shows a typical UART initialization
sequence.

Listing 15-1. UART Initialization

/**

 * Configures UART in 8 data bits, no parity, 1 stop bit mode.

 * Input parameters: r0 holds divisor latch value to be

 * written into

 * DLH:DLL registers.

 * p0 contains the UART_GCTL register address

 * Return values: none

 ***/

uart_init:

[--sp] = r7;

r7 = UCEN (z); /* First of all, enable UART clock */

w[p0+UART0_GCTL-UART0_GCTL] = r7;

r7 = DLAB (z); /* to set bit rate */

w[p0+UART0_LCR-UART0_GCTL] = r7; /* set DLAB bit first */

w[p0+UART0_DLL-UART0_GCTL] = r0; /* write lower byte to DLL */
15-32 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
r7 = r0 >> 8;

w[p0+UART0_DLH-UART0_GCTL] = r7; /* write upper byte to DLH */

r7 = STB | WLS(8) (z); /* clear DLAB again and config to */

w[p0+UART0_LCR-UART0_GCTL] = r7;

/* 8 bits, no parity, 2 stop bits */

r7 = [sp++];

rts;

uart_init.end:

The subroutine in Listing 15-2 performs autobaud detection similarly to
UART boot.

Listing 15-2. UART Autobaud Detection Subroutine

/***

 * Assuming 8 data bits, this functions expects a '@'

 * (ASCII 0x40) character

 * on the UART RX pin. A Timer performs the autobaud detection.

 * Input parameters: p0 contains the UART_GCTL register address

 * p1 contains the TIMER_CONFIG register

 * address

 * Return values: r0 holds timer period value (equals 8 bits)

***/

uart_autobaud:

[--sp] = (r7:5,p5:5);

r5.h = hi(TIMER0_CONFIG); /* for generic timer use calculate

*/

r5.l = lo(TIMER0_CONFIG); /* specific bits first */

r7 = p1;

r7 = r7 - r5;

r7 >>= 4; /* r7 holds the 'x' of TIMERx_CONFIG now */

r5 = TIMEN0 (z);

r5 <<= r7; /* r5 holds TIMENx/TIMDISx now */
ADSP-BF51x Blackfin Processor Hardware Reference 15-33

Programming Examples
r6 = TRUN0 | TOVL_ERR0 | TIMIL0 (z);

r6 <<= r7;

CC = r7 <= 3;

r7 = r6 << 12;

if !CC r6 = r7; /* r6 holds TRUNx | TOVL_ERRx | TIMILx */

p5.h = hi(TIMER_STATUS);

p5.l = lo(TIMER_STATUS);

w[p5 + TIMER_DISABLE - TIMER_STATUS] = r5; /* disable Timer x

*/

[p5 + TIMER_STATUS - TIMER_STATUS] = r6;

/* clear pending latches */

/* period capture, falling edge to falling edge */

r7 = TIN_SEL | IRQ_ENA | PERIOD_CNT | WDTH_CAP (z);

w[p1 + TIMER0_CONFIG - TIMER0_CONFIG] = r7;

w[p5+TIMER_ENABLE-TIMER_STATUS] = r5;

uart_autobaud.wait: /* wait for timer event */

r7 = w[p5 + TIMER_STATUS - TIMER_STATUS] (z);

r7 = r7 & r5;

CC = r7 == 0;

if CC jump uart_autobaud.wait;

w[p5 + TIMER_DISABLE - TIMER_STATUS] = r5; /* disable Timer x

*/

[p5 + TIMER_STATUS - TIMER_STATUS] = r6;

/* clear pending latches */

/* Save period value to R0 */

r0 = [p1 + TIMER0_PERIOD - TIMER0_CONFIG];

/* delay processing as autobaud character is still ongoing */

r7 = OUT_DIS | IRQ_ENA | PERIOD_CNT | PWM_OUT (z);

w[p1 + TIMER0_CONFIG - TIMER0_CONFIG] = r7;

w[p5 + TIMER_ENABLE - TIMER_STATUS] = r5;
15-34 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
uart_autobaud.delay:

r7 = w[p5 + TIMER_STATUS - TIMER_STATUS] (z);

r7 = r7 & r5;

CC = r7 == 0;

if CC jump uart_autobaud.delay;

w[p5 + TIMER_DISABLE - TIMER_STATUS] = r5;

[p5 + TIMER_STATUS - TIMER_STATUS] = r6;

(r7:5,p5:5) = [sp++];

rts;

uart_autobaud.end:

The parent routine in Listing 15-3 performs autobaud detection, using as
an example a processor whose TIMER4 is mapped to UART0 for this pur-
pose. Note also that this example assumes the processor’s UART0 pins are
mapped to PORT G (PG7 and PG8).

Listing 15-3. UART Autobaud Detection Parent Routine

p0.l = lo(PORTG_FER);

/* function enable on UART0 pins PG7 and PG8 */

p0.h = hi(PORTG_FER);

r0 = PG7 | PG8 (z)

w[p0] = r0;

 p0.l = lo(PORTG_MUX);
 p0.h = hi(PORTG_MUX);
 r0.l = 0x0020;
 r0.h = 0x0000;
 w[p0] = r0;

p0.l = lo(UART0_GCTL); /* select UART 0 */

p0.h = hi(UART0_GCTL);

p1.l = lo(TIMER4_CONFIG); /* select TIMER 4 */

p1.h = hi(TIMER4_CONFIG);

call uart_autobaud;

r0 >>= 7; /* divide PERIOD value by (16 x 8) */
ADSP-BF51x Blackfin Processor Hardware Reference 15-35

Programming Examples
call uart_init;

...

The subroutine in Listing 15-4 on page 15-36 transmits a character by
polling operation.

Listing 15-4. UART Character Transmission

/***

 * Transmit a single byte by polling the THRE bit.

 * Input parameters: r0 holds the character to be transmitted

 * p0 contains UART_GCTL register address

 * Return values: none

***/

uart_putc:

[--sp] = r7;

uart_putc.wait:

r7 = w[p0+UART0_LSR-UART0_GCTL] (z);

CC = bittst(r7, bitpos(THRE));

if !CC jump uart_putc.wait;

w[p0+UART0_THR-UART0_GCTL] = r0; /* write initiates transfer

*/

r7 = [sp++];

rts;

uart_putc.end:

Use the routine shown in Listing 15-5 to transmit a C-style string that is
terminated by a null character.

Listing 15-5. UART String Transmission

/**

 * Transmit a null-terminated string.

 * Input parameters: p1 points to the string

 * p0 contains UART_GCTL register address
15-36 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
 * Return values: none

***/

uart_puts:

[--sp] = rets;

[--sp] = r0;

uart_puts.loop:

r0 = b[p1++] (z);

CC = r0 == 0;

if CC jump uart_puts.exit;

call uart_putc;

jump uart_puts.loop;

uart_puts.exit:

r0 = [sp++];

rets = [sp++];

rts;

uart_puts.end:

Note that polling the UART0_LSR register for transmit purposes may clear
the receive error latch bits. It is, therefore, not recommended to poll
UART0_LSR for transmission this way while data is being received. In that
case, write a polling loop that reads UART_LSR once and then evaluates all
status bits of interest, as shown in Listing 15-6.

Listing 15-6. UART Polling Loop

uart_loop:

r7 = w[p0+UART0_LSR-UART0_GCTL] (z);

CC = bittst(r7, bitpos(DR));

if !CC jump uart_loop.transmit;

r6 = w[p0+UART0_RBR-UART0_GCTL] (z);

r5 = BI | OE | FE | PE (z);

r5 = r5 & r7;

CC = r5 == 0;

if !CC jump uart_loop.error;

b[p1++] = r6; /* store byte */
ADSP-BF51x Blackfin Processor Hardware Reference 15-37

Programming Examples
uart_loop.transmit:

CC = bittst(r7, bitpos(THRE));

if !CC jump uart_loop;

r5 = b[p2++] (z); /* load next byte */

w[p0+UART0_THR-UART0_GCTL] = r5;

jump uart_loop;

uart_loop.error:

...

jump uart_loop;

In non-DMA interrupt operation, the three UART interrupt request lines
may or may not be ORed together in the system interrupt controller. If
they had three different service routines, they may look as shown in
Listing 15-7.

Listing 15-7. UART Non-DMA Interrupt Operation

isr_uart_rx:

[--sp] = astat;

[--sp] = r7;

r7 = w[p0+UART0_RBR-UART0_GCTL] (z);

b[p4++] = r7;

ssync;

r7 = [sp++];

astat = [sp++];

rti;

isr_uart_rx.end:

isr_uart_tx:

[--sp] = astat;

[--sp] = r7;

r7 = b[p3++] (z);

CC = r7 == 0;

if CC jump isr_uart_tx.final;

w[p0+UART0_THR-UART0_GCTL] = r7;
15-38 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
r7 = [sp++];

astat = [sp++];

ssync;

rti;

isr_uart_tx.final:

r7 = w[p0+UART0_IER-UART0_GCTL] (z);

/* clear TX interrupt enable */

bitclr(r7, bitpos(ETBEI)); /* ensure this sequence is not */

w[p0+UART0_IER-UART0_GCTL] = r7;

/* interrupted by other IER accesses */

ssync;

r7 = [sp++];

astat = [sp++];

rti;

isr_uart_tx.end:

isr_uart_error:

[--sp] = astat;

[--sp] = r7;

r7 = w[p0+UART0_LSR-UART0_GCTL] (z);

/* read clears interrupt request */

/* do something with the error */

r7 = [sp++];

astat = [sp++];

ssync;

rti;

isr_uart_error.end:

Listing 15-8 transmits a string by DMA operation, waits until DMA com-
pletes and sends an additional string by polling. Note the importance of
the SYNC bit.
ADSP-BF51x Blackfin Processor Hardware Reference 15-39

Programming Examples
Listing 15-8. UART Transmission SYNC Bit Use

.section data;

.byte sHello[] = 'Hello Blackfin User',13,10,0;

.byte sWorld[] = 'How is life?',13,10,0;

.section program;

...

p1.l = lo(IMASK);

p1.h = hi(IMASK);

r0.l = lo(isr_uart_tx); /* register service routine */

r0.h = hi(isr_uart_tx); /*Assume UART0 TX defaults to IVG10*/

r0 = [p1 + IMASK - IMASK]; /* unmask interrupt in CEC */

bitset(r0, bitpos(EVT_IVG10));

[p1] = r0;

p1.l = lo(SIC_IMASK0);

p1.h = hi(SIC_IMASK0);

/* unmask interrupt in SIC */

/* (assume SIC_IMASK0 for this example)*/

r0.l = 0x0080;

r0.h = 0x0000;

[p1] = r0;

[--sp] = reti; /* enable nesting of interrupts */

p5.l = lo(DMA9_CONFIG);

/* setup DMA in STOP mode */

/* (assume DMA channel 9 for this example)*/

p5.h = hi(DMA9_CONFIG);

r7.l = lo(sHello);

r7.h = hi(sHello);

[p5+DMA9_START_ADDR-DMA9_CONFIG] = r7;

r7 = length(sHello) (z);

r7+= -1; /* do not send trailing null character */

w[p5+DMA9_X_COUNT-DMA9_CONFIG] = r7;
15-40 ADSP-BF51x Blackfin Processor Hardware Reference

UART Port Controllers
r7 = 1;

w[p5+DMA9_X_MODIFY-DMA9_CONFIG] = r7;

r7 = FLOW_STOP | WDSIZE_8 | DI_EN | SYNC | DMAEN (z);

w[p5] = r7;

p0.l = lo(UART0_GCTL); /* select UART 0 */

p0.h = hi(UART0_GCTL);

r0 = ETBEI (z); /* enable and issue first request */

w[p0+UART0_IER-UART0_GCTL] = r0;

wait4dma: /* just one way to synchronize with the service rou-

tine */

r0 = w[p5+DMA9_IRQ_STATUS-DMA9_CONFIG] (z);

CC = bittst(r0,bitpos(DMA_RUN));

if CC jump wait4dma;

p1.l=lo(sWorld);

p1.h=hi(sWorld);

call uart_puts;

forever: jump forever;

isr_uart_tx:

[--sp] = astat;

[--sp] = r7;

r7 = DMA_DONE (z); /* W1C interrupt request */

w[p5+DMA9_IRQ_STATUS-DMA9_CONFIG] = r7;

r7 = 0; /* pulse ETBEI for general case */

w[p0+UART0_IER-UART0_GCTL] = r7;

ssync;

r7 = [sp++];

astat = [sp++];

rti;

isr_uart_tx.end:
ADSP-BF51x Blackfin Processor Hardware Reference 15-41

Unique Information for the ADSP-BF51x Processor
Unique Information for the ADSP-BF51x
Processor

None.
15-42 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
16 TWO-WIRE INTERFACE
CONTROLLER

This chapter describes the two-wire interface (TWI) port. Following an
overview and a list of key features is a description of operation and func-
tional modes of operation. The chapter concludes with a programming
model, consolidated register definitions, and programming examples.

Specific Information for the ADSP-BF51x
For details regarding the number of TWIs for the ADSP-BF51x product,
refer to ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor Data
Sheet.

For TWI interrupt vector assignments, refer to Table 5-3 on page 5-20 in
Chapter 5, “System Interrupts”.

To determine how each of the TWIs is multiplexed with other functional
pins, refer to Table 9-2 on page 9-5 through Table 9-4 on page 9-7 in
Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for each TWI, refer to Appendix A, “System
MMR Assignments”.
ADSP-BF51x Blackfin Processor Hardware Reference 16-1

Overview
TWI behavior for the ADSP-BF51x that differs from the general informa-
tion in this chapter can be found at the end of this chapter in the section
“Unique Information for the ADSP-BF51x Processor” on page 16-61.

Overview
The TWI controller allows a device to interface to an inter IC bus as spec-
ified by the Philips I2C Bus Specification version 2.1 dated January 2000.

The TWI is fully compatible with the widely used I2C bus standard. It
was designed with a high level of functionality and is compatible with
multi-master, multi-slave bus configurations. To preserve processor band-
width the TWI controller can be set up with transfer initiated interrupts
only to service FIFO buffer data reads and writes. Protocol related inter-
rupts are optional.

The TWI externally moves 8-bit data while maintaining compliance with
the I2C bus protocol. The TWI controller includes these features:

• Simultaneous master and slave operation on multiple device
systems

• Support for multi-master bus arbitration

• 7-bit addressing

• 100K bits/second and 400K bits/second data rates

• General call address support

• Master clock synchronization and support for clock low extension

• Separate multiple-byte receive and transmit FIFOs

• Low interrupt rate
16-2 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
• Individual override control of data and clock lines in the event of
bus lock-up

• Input filter for spike suppression

• Serial camera control bus support as specified in OmniVision Serial
Camera Control Bus (SCCB) Functional Specification version 2.1.

Interface Overview
Figure 16-1 provides a block diagram of the TWI controller. The interface
is essentially a shift register that serially transmits and receives data bits,
one bit at a time at the SCL rate, to and from other TWI devices. The SCL
signal synchronizes the shifting and sampling of the data on the serial data
pin.
ADSP-BF51x Blackfin Processor Hardware Reference 16-3

Interface Overview
External Interface
The SDA (serial data) and SCL (serial clock) signals are open drain and as
such require pull-up resistors.

Serial Clock Signal (SCL)

In slave mode this signal is an input and an external master is responsible
for providing the clock.

In master mode the TWI controller must set this signal to the desired fre-
quency. The TWI controller supports the standard mode of operation (up
to 100 KHz) or fast mode (up to 400 KHz).

Figure 16-1. TWI Block Diagram

PAB

TWI INTERFACE LOGIC

CLOCK
GENERATION

Tx REG

2-DEEP FIFO 2-DEEP FIFO

Rx REG

Tx SHIFT REG Rx SHIFT REG

ARBITRATIONPRESCALERADDRESS
COMPARE

SCLSDA
16-4 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
The TWI control register (TWI_CONTROL) is used to set the PRESCALE value
which gives the relationship between the system clock (SCLK) and the TWI
controller’s internally timed events. The internal time reference is derived
from SCLK using a prescaled value.

PRESCALE = fSCLK/10MHz

The PRESCALE value is the number of system clock (SCLK) periods used in
the generation of one internal time reference. The value of PRESCALE must
be set to create an internal time reference with a period of 10 MHz. It is
represented as a 7-bit binary value.

 It is not always possible to achieve 10 MHz accuracy. In such cases,
it is safe to round up the PRESCALE value to the next highest integer.
For example, if SCLK is 133 MHz, the PRESCALE value is calculated
as 133 MHz/10 MHz = 13.3. In this case, a PRESCALE value of 14
ensures that all timing requirements are met.

Serial Data Signal (SDA)

This is a bidirectional signal on which serial data is transmitted or received
depending on the direction of the transfer.

TWI Pins

Table 16-1 shows the pins for the TWI. Two bidirectional pins externally
interface the TWI controller to the I2C bus. The interface is simple and
no other external connections or logic are required.

Table 16-1. TWI Pins

Pin Description

SDA In/Out TWI serial data, high impedance reset value.

SCL In/Out TWI serial clock, high impedance reset value.
ADSP-BF51x Blackfin Processor Hardware Reference 16-5

Interface Overview
Internal Interfaces
The peripheral bus interface supports the transfer of 16-bit wide data and
is used by the processor in the support of register and FIFO buffer reads
and writes.

The register block contains all control and status bits and reflects what can
be written or read as outlined by the programmer’s model. Status bits can
be updated by their respective functional blocks.

The FIFO buffer is configured as a 1-byte-wide 2-deep transmit FIFO
buffer and a 1-byte-wide 2-deep receive FIFO buffer.

The transmit shift register serially shifts its data out externally off chip.
The output can be controlled for generation of acknowledgements or it
can be manually overwritten.

The receive shift register receives its data serially from off chip. The
receive shift register is 1 byte wide and data received can either be trans-
ferred to the FIFO buffer or used in an address comparison.

The address compare block supports address comparison in the event the
TWI controller module is accessed as a slave.

The prescaler block must be programmed to generate a 10 MHz time ref-
erence relative to the system clock. This time base is used for filtering of
data and timing events specified by the electrical data sheet (See the Phil-
ips Specification), as well as for SCL clock generation.

The clock generation module is used to generate an external SCL clock
when in master mode. It includes the logic necessary for synchronization
in a multi-master clock configuration and clock stretching when config-
ured in slave mode.
16-6 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
Description of Operation
The following sections describe the operation of the TWI interface.

TWI Transfer Protocols
The TWI controller follows the transfer protocol of the Philips I2C Bus
Specification version 2.1 dated January 2000. A simple complete transfer is
diagrammed in Figure 16-2.

To better understand the mapping of TWI controller register contents to
a basic transfer, Figure 16-3 details the same transfer as above noting the
corresponding TWI controller bit names. In this illustration, the TWI
controller successfully transmits one byte of data. The slave has acknowl-
edged both address and data.

Figure 16-2. Basic Data Transfer

Figure 16-3. Data Transfer With Bit Illustration

ACKR/W

ACK = ACKNOWLEDGE

S P8-BIT DATA ACK7-BIT ADDRESS

P = STOP
S = START

ACKMDIR

ACK = ACKNOWLEDGE

S PXMITDATA8[7:0] ACKMADDR[6:0]

P = STOP
S = START
ADSP-BF51x Blackfin Processor Hardware Reference 16-7

Description of Operation
Clock Generation and Synchronization

The TWI controller implementation only issues a clock during master
mode operation and only at the time a transfer has been initiated. If arbi-
tration for the bus is lost, the serial clock output immediately three-states.
If multiple clocks attempt to drive the serial clock line, the TWI controller
synchronizes its clock with the other remaining clocks. This is shown in
Figure 16-4.

The TWI controller’s serial clock (SCL) output follows these rules:

• Once the clock high (CLKHI) count is complete, the serial clock out-
put is driven low and the clock low (CLKLOW) count begins.

• Once the clock low count is complete, the serial clock line is
three-stated and the clock synchronization logic enters into a delay
mode (shaded area) until the SCL line is detected at a logic 1 level.
At this time the clock high count begins.

Figure 16-4. TWI Clock Synchronization

HIGH
COUNT

LOW
COUNT

TWI CONTROLLER
CLOCK

SECOND MASTER
CLOCK

SCL
RESULT
16-8 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
Bus Arbitration

The TWI controller initiates a master mode transmission (MEN) only when
the bus is idle. If the bus is idle and two masters initiate a transfer, arbitra-
tion for the bus begins. This is shown in Figure 16-5.

The TWI controller monitors the serial data bus (SDA) while SCL is high
and if SDA is determined to be an active logic 0 level while the TWI con-
troller’s data is a logic 1 level, the TWI controller has lost arbitration and
ends generation of clock and data. Note arbitration is not performed only
at serial clock edges, but also during the entire time SCL is high.

Start and Stop Conditions

Start and stop conditions involve serial data transitions while the serial
clock is a logic 1 level. The TWI controller generates and recognizes these
transitions. Typically start and stop conditions occur at the beginning and
at the conclusion of a transmission with the exception repeated start
“combined” transfers, as shown in Figure 16-6.

Figure 16-5. TWI Bus Arbitration

START

SCL (BUS)

TWI CONTROLLER
DATA

SECOND MASTER
DATA

SDA (BUS)
ARBITRATION
LOST
ADSP-BF51x Blackfin Processor Hardware Reference 16-9

Description of Operation
The TWI controller’s special case start and stop conditions include:

• TWI controller addressed as a slave-receiver

If the master asserts a stop condition during the data phase of a
transfer, the TWI controller concludes the transfer (SCOMP).

• TWI controller addressed as a slave-transmitter

If the master asserts a stop condition during the data phase of a
transfer, the TWI controller concludes the transfer (SCOMP) and
indicates a slave transfer error (SERR).

• TWI controller as a master-transmitter or master-receiver

If the stop bit is set during an active master transfer, the TWI con-
troller issues a stop condition as soon as possible avoiding any error
conditions (as if data transfer count had been reached).

Figure 16-6. TWI Start and Stop Conditions

START

SCL (BUS)

SDA (BUS)

STOP
16-10 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
General Call Support

The TWI controller always decodes and acknowledges a general call
address if it is enabled as a slave (SEN) and if general call is enabled (GEN).
general call addressing (0x00) is indicated by the GCALL bit being set and
by nature of the transfer the TWI controller is a slave-receiver. If the data
associated with the transfer is to be NAK’ed, the NAK bit can be set.

If the TWI controller is to issue a general call as a master-transmitter the
appropriate address and transfer direction can be set along with loading
transmit FIFO data.

 The byte following the general call address usually defines what
action needs to be taken by the slaves in response to the call. The
command in the second byte is interpreted based on the value of its
LSB. For a TWI slave device, this is not applicable, and the bytes
received after the general call address are considered data.

Fast Mode

Fast mode essentially uses the same mechanics as standard mode of opera-
tion. It is the electrical specifications and timing that are most affected.
When fast mode is enabled (FAST) the following timings are modified to
meet the electrical requirements.

• Serial data rise times before arbitration evaluation (tr)

• Stop condition set-up time from serial clock to serial data
(tSU;STO)

• Bus free time between a stop and start condition (tBUF)
ADSP-BF51x Blackfin Processor Hardware Reference 16-11

Functional Description
Functional Description
The following sections describe the functional operation of the TWI.

General Setup
General setup refers to register writes that are required for both slave
mode operation and master mode operation. General setup should be per-
formed before either the master or slave enable bits are set.

• Program the TWI_CONTROL register to enable the TWI controller
and set the prescale value. Program the prescale value to the binary
representation of fSCLK/10MHz

All values should be rounded up to the next whole number. The TWI_ENA
bit enable must be set. Note once the TWI controller is enabled a bus
busy condition may be detected. This condition should clear after tBUF
has expired assuming no additional bus activity has been detected.

Slave Mode
When enabled, slave mode operation supports both receive and transmit
data transfers. It is not possible to enable only one data transfer direction
and not acknowledge (NAK) the other. This is reflected in the following
setup.

1. Program TWI_SLAVE_ADDR. The appropriate 7 bits are used in deter-
mining a match during the address phase of the transfer.

2. Program TWI_XMT_DATA8 or TWI_XMT_DATA16. These are the initial
data values to be transmitted in the event the slave is addressed and
a transmit is required. This is an optional step. If no data is written
and the slave is addressed and a transmit is required, the serial
clock (SCL) is stretched and an interrupt is generated until data is
written to the transmit FIFO.
16-12 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
3. Program TWI_INT_MASK. Enable bits are associated with the desired
interrupt sources. As an example, programming the value 0x000F
results in an interrupt output to the processor in the event that a
valid address match is detected, a valid slave transfer completes, a
slave transfer has an error, a subsequent transfer has begun yet the
previous transfer has not been serviced.

4. Program TWI_SLAVE_CTL. Ultimately this prepares and enables slave
mode operation. As an example, programming the value 0x0005
enables slave mode operation, requires 7-bit addressing, and indi-
cates that data in the transmit FIFO buffer is intended for slave
mode transmission.

Table 16-2 shows what the interaction between the TWI controller and
the processor might look like using this example.

Master Mode Clock Setup
Master mode operation is set up and executed on a per-transfer basis. An
example of programming steps for a receive and for a transmit are given
separately in following sections. The clock setup programming step listed
here is common to both transfer types.

• Program TWI_CLKDIV. This defines the clock high duration and
clock low duration.

Table 16-2. Slave Mode Setup Interaction

TWI Controller Master Processor

Interrupt: SINIT – Slave transfer in progress. Acknowledge: Clear interrupt source bits.

Interrupt: RCVFULL – Receive buffer is full. Read receive FIFO buffer.
Acknowledge: Clear interrupt source bits.

... ...

Interrupt: SCOMP – Slave transfer complete. Read receive FIFO buffer.
Acknowledge: Clear interrupt source bits.
ADSP-BF51x Blackfin Processor Hardware Reference 16-13

Functional Description
Master Mode Transmit
Follow these programming steps for a single master mode transmit:

1. Program TWI_MASTER_ADDR. This defines the address transmitted
during the address phase of the transfer.

2. Program TWI_XMT_DATA8 or TWI_XMT_DATA16. This is the initial data
transmitted. It is considered an error to complete the address phase
of the transfer and not have data available in the transmit FIFO
buffer.

3. Program TWI_FIFO_CTL. Indicate if transmit FIFO buffer interrupts
should occur with each byte transmitted (8-bits) or with each two
bytes transmitted (16-bits).

4. Program TWI_INT_MASK. Enable bits associated with the desired
interrupt sources. As an example, programming the value 0x0030
results in an interrupt output to the processor in the event that the
master transfer completes, and the master transfer has an error.

5. Program TWI_MASTER_CTL. Ultimately this prepares and enables
master mode operation. As an example, programming the value
0x0201 enables master mode operation, generates a 7-bit address,
sets the direction to master-transmit, uses standard mode timing,
and transmits 8 data bytes before generating a Stop condition.

Table 16-3 shows what the interaction between the TWI controller and
the processor might look like using this example.

Table 16-3. Master Mode Transmit Setup Interaction

TWI Controller Master Processor

Interrupt: XMTEMPTY – Transmit buffer is
empty.

Write transmit FIFO buffer.
Acknowledge: Clear interrupt source bits.
16-14 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
Master Mode Receive
Follow these programming steps for a single master mode receive:

1. Program TWI_MASTER_ADDR. This defines the address transmitted
during the address phase of the transfer.

2. Program TWI_FIFO_CTL. Indicate if receive FIFO buffer interrupts
should occur with each byte received (8-bits) or with each two
bytes received (16-bits).

3. Program TWI_INT_MASK. Enable bits associated with the desired
interrupt sources. For example, programming the value 0x0030
results in an interrupt output to the processor in the event that the
master transfer completes, and the master transfer has an error.

4. Program TWI_MASTER_CTL. Ultimately this prepares and enables
master mode operation. As an example, programming the value
0x0205 enables master mode operation, generates a 7-bit address,
sets the direction to master-receive, uses standard mode timing,
and receives 8 data bytes before generating a Stop condition.

 After the TWI_DCNT bit is decremented to zero, the TWI master
device sends a NAK to indicate to the slave transmitter that the bus
should be released. This allows the master to send the STOP signal
to terminate the transfer.

... ...

Interrupt: MCOMP – Master transfer com-
plete.

Acknowledge: Clear interrupt source bits.

Table 16-3. Master Mode Transmit Setup Interaction (Continued)

TWI Controller Master Processor
ADSP-BF51x Blackfin Processor Hardware Reference 16-15

Functional Description
Table 16-4 shows what the interaction between the TWI controller and
the processor might look like using this example.

Repeated Start Condition

In general, a repeated start condition is the absence of a stop condition
between two transfers. The two transfers can be of any direction type.
Examples include a transmit followed by a receive, or a receive followed by
a transmit. The following sections guide the programmer in developing a
service routine.

Transmit/Receive Repeated Start Sequence

Figure 16-7 shows a repeated start data transmit followed by a data receive
sequence.

Table 16-4. Master Mode Receive Setup Interaction

TWI Controller Master Processor

Interrupt: RCVFULL – Receive buffer is full. Read receive FIFO buffer.
Acknowledge: Clear interrupt source bits.

... ...

Interrupt: MCOMP – Master transfer com-
plete.

Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

Figure 16-7. Transmit/Receive Data Repeated Start

ACKACKS S8-BIT DATA

SHADING INDICATES SLAVE HAS THE BUS

7-BIT ADDRESS ACK P8-BIT DATA ACK7-BIT ADDRESS

MCOMP INTERRUPT

XMTSERV INTERRUPT RCVSERV INTERRUPT

MCOMP INTERRUPT

R/W R/W
16-16 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
The following tasks are performed at each interrupt.

• XMTSERV interrupt

This interrupt was generated due to a FIFO access. Since this is the
last byte of this transfer, FIFO_STATUS indicates the transmit FIFO
is empty. When read, DCNT would be zero. Set the RSTART bit to
indicate a repeated start and set the MDIR bit if the following trans-
fer is a data receive.

• MCOMP interrupt

This interrupt was generated because all data has been transferred
(DCNT = 0). If no errors were generated, a start condition is initi-
ated. Clear the RSTART bit and program the DCNT with the desired
number of bytes to receive.

• RCVSERV interrupt

This interrupt is generated due to the arrival of a byte in the receive
FIFO. Simple data handling is all that is required.

• MCOMP interrupt

The transfer is complete.
ADSP-BF51x Blackfin Processor Hardware Reference 16-17

Functional Description
Receive/Transmit Repeated Start Sequence

Figure 16-8 on page 16-18 illustrates a repeated start data receive followed
by a data transmit sequence.

The tasks performed at each interrupt are:

• RCVSERV interrupt

This interrupt is generated due to the arrival of a data byte in the
receive FIFO. Set the RSTART bit to indicate a repeated start and
clear the MDIR bit if the following transfer is a data transmit.

• MCOMP interrupt

This interrupt has occurred due to the completion of the data
receive transfer. If no errors were generated, a start condition is ini-
tiated. Clear the RSTART bit and program the DCNT with the desired
number of bytes to transmit.

• XMTSERV interrupt

This interrupt is generated due to a FIFO access. Simple data han-
dling is all that is required.

• MCOMP interrupt

The transfer is complete.

Figure 16-8. Receive/Transmit Data Repeated Start

NACKACKS S8-BIT DATA

SHADING INDICATES SLAVE HAS THE BUS

7-BIT ADDRESS ACK P8-BIT DATA ACK7-BIT ADDRESS

MCOMP INTERRUPT

RCVSERV INTERRUPT XMTSERV INTERRUPT

MCOMP INTERRUPT

R/W R/W
16-18 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
 There is no timing constraint to meet the above conditions—the
user can program the bits as required. Refer to “Clock Stretching
During Repeated Start Condition” on page 16-22 for more on how
the controller stretches the clock during repeated start transfers.

Clock Stretching

Clock stretching is an added functionality of the TWI controller in master
mode operation. This new behavior utilizes self-induced stretching of the
I2C clock while waiting on servicing interrupts. Stretching is done auto-
matically by the hardware and no programming is required for this. The
TWI Controller as master supports three modes of clock stretching:

• “Clock Stretching During FIFO Underflow” on page 16-19

• “Clock Stretching During FIFO Overflow” on page 16-20

• “Clock Stretching During Repeated Start Condition” on
page 16-22

Clock Stretching During FIFO Underflow

During a master mode transmit, an interrupt is generated at the instant
the transmit FIFO becomes empty. At this time, the most recent byte
begins transmission. If the XMTSERV interrupt is not serviced, the con-
cluding acknowledge phase of the transfer is stretched. Stretching of the
clock continues until new data bytes are written to the transmit FIFO
(TWI_XMT_DATA8 or TWI_XMT_DATA16). No other action is required to release
the clock and continue the transmission. This behavior continues until the
transmission is complete (DCNT = 0) at which time the transmission is con-
cluded (MCOMP) as shown in Figure 16-9 and described in Table 16-5.
ADSP-BF51x Blackfin Processor Hardware Reference 16-19

Functional Description
Clock Stretching During FIFO Overflow

During a master mode receive, an interrupt is generated at the instant the
receive FIFO becomes full. It is during the acknowledge phase of this
received byte that clock stretching begins. No attempt is made to initiate
the reception of an additional byte. Stretching of the clock continues until
the data bytes previously received are read from the receive FIFO buffer
(TWI_RCV_DATA8, TWI_RCV_DATA16). No other action is required to release
the clock and continue the reception of data. This behavior continues

Figure 16-9. Clock Stretching During FIFO Underflow

Table 16-5. FIFO Underflow Case

TWI Controller Processor

Interrupt: XMTSERV – Transmit FIFO buffer
is empty.

Acknowledge: Clear interrupt source bits.
Write transmit FIFO buffer.

... ...

Interrupt: MCOMP – Master transmit com-
plete (DCNT= 0x00).

Acknowledge: Clear interrupt source bits.

S ADDRESS DATA
ACK WITH
STRETCH

ACKR/W DATA ACK DATA

11 01 00

XMTSTAT[1:0]

TWI_XMT_DATA IS READ AT THIS TIME AND
CLOCK STRETCHING IS RELEASED.

ACKNOWLEDGE WITH STRETCH

01

SCL

ACKNOWLEDGE "STRETCH" BEGINS SOON AFTER SCL FALL.
16-20 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
until the reception is complete (DCNT = 0x00) at which time the reception
is concluded (MCOMP) as shown in Figure 16-10 and described in
Table 16-6.

Figure 16-10. Clock Stretching During FIFO Overflow

Table 16-6. FIFO Overflow Case

TWI Controller Processor

Interrupt: RCVSERV – Receive FIFO buffer is
full.

Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

... ...

Interrupt: MCOMP – Master receive complete. Acknowledge: Clear interrupt source bits.

S ADDRESS DATA
ACK WITH
STRETCH

ACKR/W DATA ACK DATA

00 01 11

RCVSTAT[1:0]

TWI_RCV_DATA IS READ AT THIS TIME AND
CLOCK STRETCHING IS RELEASED.

ACKNOWLEDGE WITH STRETCH

00

SCL

ACKNOWLEDGE "STRETCH" BEGINS SOON AFTER SCL FALL.
ADSP-BF51x Blackfin Processor Hardware Reference 16-21

Functional Description
Clock Stretching During Repeated Start Condition

The repeated start feature in I2C protocol requires transitioning between
two subsequent transfers. With the use of clock stretching, the task of
managing transitions becomes simpler, and common to all transfer types.

Once an initial TWI master transfer has completed (transmit or receive)
the clock initiates a stretch during the repeated start phase between trans-
fers. Concurrent with this event the initial transfer generates a transfer
complete interrupt (MCOMP) to signify the initial transfer has completed
(DCNT = 0). This initial transfer is handled without any special bit setting
sequences or timings. The clock stretching logic described above applies
here. With no system related timing constraints the subsequent transfer
(receive or transmit) is setup and activated. This sequence can be repeated
as many times as required to string a series of repeated start transfers
together. This is shown in Figure 16-11 and described in Table 16-7.
16-22 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
Figure 16-11. Clock Stretching during Repeated Start Condition

Table 16-7. Repeated Start Case

TWI Controller Processor

Interrupt: MCOMP – Initial transmit has com-
pleted and DCNT = 0x00.

Note: transfer in progress, RSTART previously
set.

Acknowledge: Clear interrupt source bits.

Write TWI_MASTER_CTL, setting MDIR
(receive), clearing RSTART, and setting new
DCNT value (nonzero).

Interrupt: RCVSERV – Receive FIFO is full. Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

... ...

Interrupt: MCOMP – Master receive complete. Acknowledge: Clear interrupt source bits.

S ADDRESS RSTART/
STRETCH

ADDRESSACKR/W DATA ACK DATA

0x01 0x00 0x80

DCNT[7:0]

MDIR (DIRECTION) AND DCNT ARE
WRITTEN AT THIS TIME.
CLOCK STRETCHING

IS RELEASED.

REPEATED START WITH STRETCH

0x7F

SCL

REPEATED START "STRETCH" BEGINS SOON AFTER SCL FALL
DUE TO DCNT=0X00 AND RSTART.

MCOMP IS SET AT THIS TIME INDICATING
INITIAL TRANSFER HAS COMPLETED.

ACK ACK
ADSP-BF51x Blackfin Processor Hardware Reference 16-23

Programming Model
Programming Model
Figure 16-12 and Figure 16-13 illustrate the programming model for the
TWI.

Figure 16-12. TWI Slave Mode

WRITE TO TWI_CONTROL TO SET
 PRESCALE AND ENABLE THE TWI

WRITE TO TWI_SLAVE_ADDR

DONE

WRITE DATA INTO
TWI_XMT_DATA

 REGISTER

INTERRUPT
SOURCE

SCOMP

XMTSERV

WRITE TO TWI_XMT_DATA REGISTER
TO PRE-LOAD THE TX FIFO

WRITE TO TWI_FIFO_CTL TO SELECT WHETHER
 1 OR 2 BYTES GENERATE INTERRUPTS

WRITE TO TWI_INT_MASK TO UNMASK
TWI EVENTS TO GENERATE INTERRUPTS

WRITE TO TWI_SLAVE_CTL TO
ENABLE SLAVE FUNCTIONALITY

WAIT FOR INTERRUPTS

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

READ DATA FROM
TWI_RCV_DATA

REGISTER

RCVSERV

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

WRITE TWI_INT_STAT TO CLEAR INTERRUPT
16-24 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
Figure 16-13. TWI Master Mode

WRITE TO TWI_CONTROL TO SET
 PRESCALE AND ENABLE THE TWI

WRITE TO TWI_CLK_DIV

DONE

WRITE DATA INTO
TWI_XMT_DATA

 REGISTER

TRANSFER
DIRECTION

MERR

TRANSMIT

WRITE TO TWI_MASTER_ADDR WITH THE
ADDRESS OF THE TARGETED DEVICE

WRITE TO TWI_FIFO_CTL TO SELECT WHETHER
 1 OR 2 BYTES GENERATE INTERRUPTS

WRITE TO TWI_INT_MASK TO UNMASK
TWI EVENTS TO GENERATE INTERRUPTS

WAIT FOR INTERRUPTS

WRITE TWI_MASTER_CTL WITH COUNT,
MDIR CLEARED, AND MEN SET. THIS

STARTS THE TRANSFER

RECEIVE

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

INTERRUPT
SOURCE

XMTSERV
MCOMP

WRITE TWI_MASTER_CTL WITH COUNT,
MDIR SET, AND MEN SET. THIS

STARTS THE TRANSFER

WAIT FOR INTERRUPTS

INTERRUPT
SOURCE

MCOMP
RCVSERV

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

READ DATA FROM
TWI_RCV_DATA

 REGISTER

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

MERR

READ TWI_MASTER_STAT TO GET ERROR CAUSE

HANDLE ERROR AS APPROPRIATE AND W1C THE
CORRESPONDING BIT IN TWI_MASTER_STAT

WRITE TWI_INT_STAT TO CLEAR MERR BIT

WAIT FOR INTERRUPTS
ADSP-BF51x Blackfin Processor Hardware Reference 16-25

Register Descriptions
Register Descriptions
The TWI controller has 16 registers described in the following sections.
Figure 16-14 through Figure 16-31 on page 16-48 illustrate the registers.

TWI CONTROL Register (TWI_CONTROL)
The TWI_CONTROL register is used to enable the TWI module as well as to
establish a relationship between the system clock (SCLK) and the TWI con-
troller’s internally timed events. The internal time reference is derived
from SCLK using a prescaled value.

PRESCALE = fSCLK/10MHz

SCCB compatibility is an optional feature and should not be used in an
I2C bus system. This feature is turned on by setting the SCCB bit in the
TWI_CONTROL register. When this feature is set all slave asserted acknowl-
edgement bits are ignored by this master. This feature is valid only during
transfers where the TWI is mastering an SCCB bus. Slave mode transfers
should be avoided when this feature is enabled because the TWI controller
always generates an acknowledge in slave mode.

For either master and/or slave mode of operation, the TWI controller is
enabled by setting the TWI_ENA bit in the TWI_CONTROL register. It is recom-
mended that this bit be set at the time PRESCALE is initialized and remain
set. This guarantees accurate operation of bus busy detection logic.

The PRESCALE field of the TWI_CONTROL register specifies the number of
system clock (SCLK) periods used in the generation of one internal time
reference. The value of PRESCALE must be set to create an internal time ref-
erence with a period of 10 MHz. It is represented as a 7-bit binary value.
16-26 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
SCL Clock Divider Register (TWI_CLKDIV)
The clock signal SCL is an output in master mode and an input in slave
mode.

During master mode operation, the TWI_CLKDIV register values are used to
create the high and low durations of the serial clock (SCL). Serial clock fre-
quencies can vary from 400 KHz to less than 20 KHz. The resolution of
the clock generated is 1/10 MHz or 100 ns.

CLKDIV = TWI SCL period / 10 MHz time reference

For example, for an SCL of 400 KHz (period = 1/400 KHz = 2500 ns) and
an internal time reference of 10 MHz (period = 100 ns):

CLKDIV = 2500 ns / 100 ns = 25

For an SCL with a 30% duty cycle, then CLKLOW = 17 and CLKHI = 8. Note
that CLKLOW and CLKHI add up to CLKDIV.

Figure 16-14. TWI Control Register

TWI Control Register (TWI_CONTROL)

Reset = 0x0000

PRESCALE[6:0]
(SCLK Prescale Value)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCCB (SCCB Compatibility)
0 - Master transfers are not SCCB
compatible
1 - Master transfers are SCCB compati-
ble. All slave-asserted acknowledgement
bits are ignored by this master.

TWI_ENA (TWI Enable)
0 - TWI is disabled
1 - TWI is enabled
ADSP-BF51x Blackfin Processor Hardware Reference 16-27

Register Descriptions
The CLKHI field of the TWI_CLKDIV register specifies the number of 10
MHz time reference periods the serial clock (SCL) waits before a new clock
low period begins, assuming a single master. It is represented as an 8-bit
binary value.

The CLKLOW field of the TWI_CLKDIV register specifies the number of inter-
nal time reference periods the serial clock (SCL) is held low. It is
represented as an 8-bit binary value.

TWI Slave Mode Control Register (TWI_SLAVE_CTL)
The TWI_SLAVE_CTL register controls the logic associated with slave mode
operation. Settings in this register do not affect master mode operation
and should not be modified to control master mode functionality.

Figure 16-15. SCL Clock Divider Register

Figure 16-16. TWI Slave Mode Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCL Clock Divider Register (TWI_CLKDIV)

CLKLOW[7:0]

Reset = 0x0000

CLKHI[7:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Slave Mode Control Register (TWI_SLAVE_CTL)

Reset = 0x0000

SEN (Slave Enable)
STDVAL (Slave Transmit
Data Valid)

NAK
GEN (General Call Enable)
16-28 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
Additional information for the TWI_SLAVE_CTL register bits includes:

• General call enable (GEN)

General call address detection is available only when slave mode is
enabled.

[0] General call address matching is not enabled.

[1] General call address matching is enabled. A general call slave
receive transfer is accepted. All status and interrupt source bits
associated with transfers are updated.

• NAK (NAK)

[0] Slave receive transfers generate an ACK at the conclusion of a
data transfer.

[1] Slave receive transfers generate a data NAK (not acknowledge)
at the conclusion of a data transfer. The slave is still considered to
be addressed.

• Slave transmit data valid (STDVAL)

[0] Data in the transmit FIFO is for master mode transmits and is
not allowed to be used during a slave transmit, and the transmit
FIFO is treated as if it is empty.

[1] Data in the transmit FIFO is available for a slave transmission.

• Slave enable (SEN)

[0] The slave is not enabled. No attempt is made to identify a valid
address. If cleared during a valid transfer, clock stretching ceases,
the serial data line is released, and the current byte is not
acknowledged.

[1] The slave is enabled. Enabling slave and master modes of oper-
ation concurrently is allowed.
ADSP-BF51x Blackfin Processor Hardware Reference 16-29

Register Descriptions
TWI Slave Mode Address Register
(TWI_SLAVE_ADDR)

The TWI_SLAVE_ADDR register holds the slave mode address, which is the
valid address that the slave-enabled TWI controller responds to. The TWI
controller compares this value with the received address during the
addressing phase of a transfer.

TWI Slave Mode Status Register (TWI_SLAVE_STAT)

Figure 16-17. TWI Slave Mode Address Register

Figure 16-18. TWI Slave Mode Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Slave Mode Address Register (TWI_SLAVE_ADDR)

SADDR[6:0] (Slave Mode
Address)

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Slave Mode Status Register (TWI_SLAVE_STAT)

Reset = 0x0000

SDIR (Slave Transfer
Direction) - RO

GCALL (General Call) - RO
16-30 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
During and at the conclusion of register slave mode transfers, the
TWI_SLAVE_STAT register holds information on the current transfer. Gener-
ally slave mode status bits are not associated with the generation of
interrupts. Master mode operation does not affect slave mode status bits.

• General call (GCALL)

This bit self clears if slave mode is disabled (SEN = 0).

[0] At the time of addressing, the address was not determined to be
a general call.

[1] At the time of addressing, the address was determined to be a
general call.

• Slave transfer direction (SDIR)

This bit self clears if slave mode is disabled (SEN = 0).

[0] At the time of addressing, the transfer direction was determined
to be slave receive.

[1] At the time of addressing, the transfer direction was determined
to be slave transmit.

TWI Master Mode Control Register
(TWI_MASTER_CTL)

The TWI_MASTER_CTL register controls the logic associated with master
mode operation. Bits in this register do not affect slave mode operation
and should not be modified to control slave mode functionality.
ADSP-BF51x Blackfin Processor Hardware Reference 16-31

Register Descriptions
Additional information for the TWI_MASTER_CTL register bits includes:

• Serial clock override (SCLOVR)

This bit can be used when direct control of the serial clock line is
required. Normal master and slave mode operation should not
require override operation.

[0] Normal serial clock operation under the control of master
mode clock generation and slave mode clock stretching logic.

[1] Serial clock output is driven to an active 0 level overriding all
other logic. This state is held until this bit is cleared.

• Serial data (SDA) override (SDAOVR)

This bit can be used when direct control of the serial data line is
required. Normal master and slave mode operation should not
require override operation.

[0] Normal serial data operation under the control of the transmit
shift register and acknowledge logic.

[1] Serial data output is driven to an active 0 level overriding all
other logic. This state is held until this bit is cleared.

Figure 16-19. TWI Master Mode Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Master Mode Control Register (TWI_MASTER_CTL)

Reset = 0x0000

MEN (Master Mode Enable)
MDIR (Master Transfer
Direction)SDAOVR (Serial

Data Override)

SCLOVR (Serial
Clock Override)

DCNT[7:0] (Data
Transfer Count)

FAST (Fast Mode)
STOP (Issue Stop
Condition)
RSTART (Repeat Start)
16-32 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
• Data transfer count (DCNT[7:0])

Indicates the number of data bytes to transfer. As each data word is
transferred, DCNT is decremented. When DCNT is 0, a stop condition
is generated. Setting DCNT to 0xFF disables the counter. In this
transfer mode, data continues to be transferred until it is concluded
by setting the STOP bit.

• Repeat start (RSTART)

[0] Transfer concludes with a stop condition.

[1] Issue a repeat start condition at the conclusion of the current
transfer (DCNT = 0) and begin the next transfer. The current transfer
concludes with updates to the appropriate status and interrupt bits.
If errors occurred during the previous transfer, a repeat start does
not occur. In the absence of any errors, master enable (MEN) does
not self clear on a repeat start.

• Issue stop condition (STOP)

[0] Normal transfer operation.

[1] The transfer concludes as soon as possible avoiding any error
conditions (as if data transfer count had been reached) and at that
time the TWI interrupt mask register (TWI_INT_MASK) is updated
along with any associated status bits.

• Fast mode (FAST)

[0] Standard mode (up to 100K bits/s) timing specifications in use.

[1] Fast mode (up to 400K bits/s) timing specifications in use.

• Master transfer direction (MDIR)

[0] The initiated transfer is master transmit.

[1] The initiated transfer is master receive.
ADSP-BF51x Blackfin Processor Hardware Reference 16-33

Register Descriptions
• Master mode enable (MEN)

This bit self clears at the completion of a transfer (after the DCNT bit
decrements to zero), including transfers terminated due to errors.

[0] Master mode functionality is disabled. If this bit is cleared dur-
ing operation, the transfer is aborted and all logic associated with
master mode transfers are reset. Serial data and serial clock (SDA,
SCL) are no longer driven. Write-1-to-clear status bits are not
affected.

[1] Master mode functionality is enabled. A start condition is gen-
erated if the bus is idle.

TWI Master Mode Address Register
(TWI_MASTER_ADDR)

During the addressing phase of a transfer, the TWI controller, with its
master enabled, transmits the contents of the TWI_MASTER_ADDR register.
When programming this register, omit the read/write bit. That is, only the
upper 7 bits that make up the slave address should be written to this regis-
ter. For example, if the slave address is b#1010000X, where X is the
read/write bit, then TWI_MASTER_ADDR is programmed with b#1010000,
which corresponds to 0x50. When sending out the address on the bus, the
TWI controller appends the read/write bit as appropriate based on the
state of the MDIR bit in the master mode control register.

Figure 16-20. TWI Master Mode Address Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Master Mode Address Register (TWI_MASTER_ADDR)

Reset = 0x0000

MADDR[6:0] (Master
Mode Address)
16-34 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
TWI Master Mode Status Register
(TWI_MASTER_STAT)

The TWI_MASTER_STAT register holds information during master mode
transfers and at their conclusion. Generally, master mode status bits are
not directly associated with the generation of interrupts but offer informa-
tion on the current transfer. Slave mode operation does not affect master
mode status bits.

Note that—while the SCLSEN bit is set (this could be due to having no
pull-up resistor on SCL or another agent is driving SCL low)—the acknowl-
edge bits (ANAK and DNAK) do not update. This result occurs because the
acknowledge conditions are sampled during the high phase of SCL.

• Bus busy (BUSBUSY)

Indicates whether the bus is currently busy or free. This indication
is not limited to only this device but is for all devices. Upon a start
condition, the setting of the register value is delayed due to the
input filtering. Upon a stop condition the clearing of the register
value occurs after tBUF.

Figure 16-21. TWI Master Mode Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Master Mode Status Register (TWI_MASTER_STAT)

Reset = 0x0000

MPROG (Master Transfer
in Progress) - RO
LOSTARB (Lost Arbitration) -
W1C

SCLSEN (Serial Clock Sense) - RO
BUSBUSY (Bus Busy) - RO

SDASEN (Serial Data Sense) - RO

ANAK (Address Not
Acknowledged) - W1C
DNAK (Data Not
Acknowledged) - W1C

BUFWRERR (Buffer Write Error) - W1C
BUFRDERR (Buffer Read Error) - W1C
ADSP-BF51x Blackfin Processor Hardware Reference 16-35

Register Descriptions
[0] The bus is free. The clock and data bus signals have been inac-
tive for the appropriate bus free time.

[1] The bus is busy. Clock or data activity has been detected.

• Serial clock sense (SCLSEN)

This status bit can be used when direct sensing of the serial clock
line is required. The register value is delayed due to the input filter
(nominally 50 ns). Normal master and slave mode operation
should not require this feature.

[0] An inactive “one” is currently being sensed on the serial clock.

[1] An active “zero” is currently being sensed on the serial clock.
The source of the active driver is not known and can be internal or
external.

• Serial data sense (SDASEN)

This status bit can be used when direct sensing of the serial data
line is required. The register value is delayed due to the input filter
(nominally 50 ns). Normal master and slave mode operation
should not require this feature.

[0] An inactive “one” is currently being sensed on the serial data
line.

[1] An active “zero” is currently being sensed on the serial data line.
The source of the active driver is not known and can be internal or
external.
16-36 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
• Buffer write error (BUFWRERR)

[0] The current master receive has not detected a receive buffer
write error.

[1] The current master transfer was aborted due to a receive buffer
write error. The receive buffer and receive shift register were both
full at the same time. This bit is W1C.

• Buffer read error (BUFRDERR)

[0] The current master transmit has not detected a buffer read
error.

[1] The current master transfer was aborted due to a transmit buf-
fer read error. At the time data was required by the transmit shift
register the buffer was empty. This bit is W1C.

• Data not acknowledged (DNAK)

[0] The current master receive has not detected a NAK during data
transmission.

[1] The current master transfer was aborted due to the detection of
a NAK during data transmission. This bit is W1C.

• Address not acknowledged (ANAK)

[0] The current master transmit has not detected NAK during
addressing.

[1] The current master transfer was aborted due to the detection of
a NAK during the address phase of the transfer. This bit is W1C.
ADSP-BF51x Blackfin Processor Hardware Reference 16-37

Register Descriptions
• Lost arbitration (LOSTARB)

[0] The current transfer has not lost arbitration with another
master.

[1] The current transfer was aborted due to the loss of arbitration
with another master. This bit is W1C.

• Master transfer in progress (MPROG)

[0] Currently no transfer is taking place. This can occur once a
transfer is complete or while an enabled master is waiting for an
idle bus.

[1] A master transfer is in progress.

TWI FIFO Control Register (TWI_FIFO_CTL)
The TWI_FIFO_CTL register control bits affect only the FIFO and are not
tied in any way with master or slave mode operation.

Figure 16-22. TWI FIFO Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Control Register (TWI_FIFO_CTL)

XMTFLUSH (Transmit Buffer
Flush)

Reset = 0x0000

RCVFLUSH (Receive Buffer
Flush)

RCVINTLEN (Receive Buffer
Interrupt Length)
XMTINTLEN (Transmit Buffer
Interrupt Length)
16-38 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
Additional information for the TWI_FIFO_CTL register bits includes:

• Receive buffer interrupt length (RCVINTLEN)

This bit determines the rate at which receive buffer interrupts are
to be generated. Interrupts may be generated with each byte
received or after two bytes are received.

[0] An interrupt (RCVSERV) is set when RCVSTAT indicates one or
two bytes in the FIFO are full (01 or 11).

[1] An interrupt (RCVSERV) is set when the RCVSTAT field in the
TWI_FIFO_STAT register indicates two bytes in the FIFO are full
(11).

• Transmit buffer interrupt length (XMTINTLEN)

This bit determines the rate at which transmit buffer interrupts are
to be generated. Interrupts may be generated with each byte trans-
mitted or after two bytes are transmitted.

[0] An interrupt (XMTSERV) is set when XMTSTAT indicates one or
two bytes in the FIFO are empty (01 or 00).

[1] An interrupt (XMTSERV) is set when the XMTSTAT field in the
TWI_FIFO_STAT register indicates two bytes in the FIFO are empty
(00).

• Receive buffer flush (RCVFLUSH)

[0] Normal operation of the receive buffer and its status bits.

[1] Flush the contents of the receive buffer and update the RCVSTAT
status bit to indicate the buffer is empty. This state is held until
this bit is cleared. During an active receive the receive buffer in this
state responds to the receive logic as if it is full.
ADSP-BF51x Blackfin Processor Hardware Reference 16-39

Register Descriptions
• Transmit buffer flush (XMTFLUSH)

[0] Normal operation of the transmit buffer and its status bits.

[1] Flush the contents of the transmit buffer and update the
XMTSTAT status bit to indicate the buffer is empty. This state is held
until this bit is cleared. During an active transmit the transmit buf-
fer in this state responds as if the transmit buffer is empty.

TWI FIFO Status Register (TWI_FIFO_STAT)

TWI FIFO Status

The fields in the TWI_FIFO_STAT register indicate the state of the FIFO
buffers’ receive and transmit contents. The FIFO buffers do not discrimi-
nate between master data and slave data. By using the status and control
bits provided, the FIFO can be managed to allow simultaneous master and
slave operation.

• Receive FIFO status (RCVSTAT[1:0])

The RCVSTAT field is read only. It indicates the number of valid data
bytes in the receive FIFO buffer. The status is updated with each
FIFO buffer read using the peripheral data bus or write access by
the receive shift register. Simultaneous accesses are allowed.

Figure 16-23. TWI FIFO Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Status Register (TWI_FIFO_STAT)
All bits are RO.

XMTSTAT[1:0] (Transmit
FIFO Status)

Reset = 0x0000

RCVSTAT[1:0] (Receive FIFO Status)
16-40 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
[00] The FIFO is empty.

[01] The FIFO contains one byte of data. A single byte peripheral
read of the FIFO is allowed.

[10] Reserved

[11] The FIFO is full and contains two bytes of data. Either a sin-
gle or double byte peripheral read of the FIFO is allowed.

• Transmit FIFO status (XMTSTAT[1:0])

The XMTSTAT field is read only. It indicates the number of valid data
bytes in the FIFO buffer. The status is updated with each FIFO
buffer write using the peripheral data bus or read access by the
transmit shift register. Simultaneous accesses are allowed.

[00] The FIFO is empty. Either a single or double byte peripheral
write of the FIFO is allowed.

[01] The FIFO contains one byte of data. A single byte peripheral
write of the FIFO is allowed.

[10] Reserved

[11] The FIFO is full and contains two bytes of data.

TWI Interrupt Mask Register (TWI_INT_MASK)
The TWI_INT_MASK register enables interrupt sources to assert the interrupt
output. Each mask bit corresponds with one interrupt source bit in the
TWI_INT_STAT register. Reading and writing the TWI_INT_MASK register
does not affect the contents of the TWI_INT_STAT register.
ADSP-BF51x Blackfin Processor Hardware Reference 16-41

Register Descriptions
TWI Interrupt Status Register (TWI_INT_STAT)

Figure 16-24. TWI Interrupt Mask Register

Figure 16-25. TWI Interrupt Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Interrupt Mask Register (TWI_INT_MASK)
For all bits, 0 = Interrupt generation disabled, 1 = Interrupt generation enabled.

SINITM (Slave Transfer
Initiated Interrupt Mask)

Reset = 0x0000

SCOMPM (Slave Transfer
Complete Interrupt Mask)
SERRM (Slave Transfer Error
Interrupt Mask)

SOVFM (Slave Overflow
Interrupt Mask)

RCVSERVM (Receive FIFO
Service Interrupt Mask)
XMTSERVM (Transmit FIFO
Service Interrupt Mask)
MERRM (Master Transfer Error
Interrupt Mask)
MCOMPM (Master Transfer
Complete Interrupt Mask)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Interrupt Status Register (TWI_INT_STAT)
All bits are sticky and W1C.

SINIT (Slave Transfer
Initiated)

Reset = 0x0000

SCOMP (Slave Transfer
Complete)
SERR (Slave Transfer Error)
SOVF (Slave Overflow)

RCVSERV (Receive FIFO Service)
XMTSERV (Transmit FIFO Service)
MERR (Master Transfer Error)
MCOMP (Master Transfer Complete)
16-42 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
The TWI_INT_STAT register contains information about functional areas
requiring servicing. Many of the bits serve as an indicator to further read
and service various status registers. After servicing the interrupt source
associated with a bit, the user must clear that interrupt source bit by writ-
ing a 1 to it.

• Receive FIFO service (RCVSERV)

If RCVINTLEN in the TWI_FIFO_CTL register is 0, this bit is set each
time the RCVSTAT field in the TWI_FIFO_STAT register is updated to
either 01 or 11. If RCVINTLEN is 1, this bit is set each time RCVSTAT
is updated to 11.

[0] The receive FIFO does not require servicing or the RCVSTAT
field has not changed since this bit was last cleared.

[1] The receive FIFO has one or two 8-bit locations available to be
read.

• Transmit FIFO service (XMTSERV)

If XMTINTLEN in the TWI_FIFO_CTL register is 0, this bit is set each
time the XMTSTAT field in the TWI_FIFO_STAT register is updated to
either 01 or 00. If XMTINTLEN is 1, this bit is set each time XMTSTAT
is updated to 00.

[0] FIFO does not require servicing or XMTSTAT field has not
changed since this bit was last cleared.

[1] The transmit FIFO buffer has one or two 8-bit locations avail-
able to be written.

• Master transfer error (MERR)

[0] No errors have been detected.

[1] A master error has occurred. The conditions surrounding the
error are indicated by the master status register (TWI_MASTER_STAT).
ADSP-BF51x Blackfin Processor Hardware Reference 16-43

Register Descriptions
• Master transfer complete (MCOMP)

[0] The completion of a transfer has not been detected.

[1] The initiated master transfer has completed. In the absence of a
repeat start, the bus has been released.

• Slave overflow (SOVF)

[0] No overflow has been detected.

[1] The slave transfer complete (SCOMP) bit was set at the time a
subsequent transfer has acknowledged an address phase. The trans-
fer continues, however, it may be difficult to delineate data of one
transfer from another.

• Slave transfer error (SERR)

[0] No errors have been detected.

[1] A slave error has occurred. A restart or stop condition has
occurred during the data receive phase of a transfer.

• Slave transfer complete (SCOMP)

[0] The completion of a transfer has not been detected.

[1] The transfer is complete and either a stop, or a restart was
detected.

• Slave transfer initiated (SINIT)

[0] A transfer is not in progress. An address match has not occurred
since the last time this bit was cleared.

[1] The slave has detected an address match and a transfer has been
initiated.
16-44 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
TWI FIFO Transmit Data Single Byte
Register (TWI_XMT_DATA8)

The TWI_XMT_DATA8 register holds an 8-bit data value written into the
FIFO buffer.

Transmit data is entered into the corresponding transmit buffer in a
first-in first-out order. For 16-bit PAB writes, a write access to
TWI_XMT_DATA8 adds only one transmit data byte to the FIFO buffer. With
each access, the transmit status (XMTSTAT) field in the TWI_FIFO_STAT regis-
ter is updated. If an access is performed while the FIFO buffer is full, the
write is ignored and the existing FIFO buffer data and its status remains
unchanged.

Figure 16-26. TWI FIFO Transmit Data Single Byte Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Transmit Data Single Byte Register (TWI_XMT_DATA8)
All bits are WO. This register always reads as 0x0000.

XMTDATA8[7:0] (Transmit
FIFO 8-Bit Data)

Reset = 0x0000
ADSP-BF51x Blackfin Processor Hardware Reference 16-45

Register Descriptions
TWI FIFO Transmit Data Double Byte
Register (TWI_XMT_DATA16)

The TWI_XMT_DATA16 register holds a 16-bit data value written into the
FIFO buffer.

To reduce interrupt output rates and peripheral bus access times, a double
byte transfer data access can be performed. Two data bytes can be written,
effectively filling the transmit FIFO buffer with a single access.

The data is written in little endian byte order as shown in Figure 16-27
where byte 0 is the first byte to be transferred and byte 1 is the second byte
to be transferred. With each access, the transmit status (XMTSTAT) field in
the TWI_FIFO_STAT register is updated. If an access is performed while the
FIFO buffer is not empty, the write is ignored and the existing FIFO buf-
fer data and its status remains unchanged.

Figure 16-27. Transmit Little Endian Byte Order

Figure 16-28. TWI FIFO Transmit Data Double Byte Register

B1

TRANSMIT DATA REGISTER

B0

TRANSMISSION LINE

B1 B0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Transmit Data Double Byte Register (TWI_XMT_DATA16)
All bits are WO. This register always reads as 0x0000.

XMTDATA16[15:0] (Transmit
FIFO 16-Bit Data)

Reset = 0x0000
16-46 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
TWI FIFO Receive Data Single Byte
Register (TWI_RCV_DATA8)

The TWI_RCV_DATA8 register holds an 8-bit data value read from the FIFO
buffer. Receive data is read from the corresponding receive buffer in a
first-in first-out order. Although peripheral bus reads are 16 bits, a read
access to TWI_RCV_DATA8 accesses only one transmit data byte from the
FIFO buffer. With each access, the receive status (RCVSTAT) field in the
TWI_FIFO_STAT register is updated. If an access is performed while the
FIFO buffer is empty, the data is unknown and the FIFO buffer status
remains indicating it is empty.

Figure 16-29. TWI FIFO Receive Data Single Byte Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Receive Data Single Byte Register (TWI_RCV_DATA8)
All bits are RO.

RCVDATA8[7:0] (Receive
FIFO 8-Bit Data)

Reset = 0x0000
ADSP-BF51x Blackfin Processor Hardware Reference 16-47

Register Descriptions
TWI FIFO Receive Data Double Byte
Register (TWI_RCV_DATA16)

The TWI_RCV_DATA16 register holds a 16-bit data value read from the FIFO
buffer. To reduce interrupt output rates and peripheral bus access times, a
double byte receive data access can be performed. Two data bytes can be
read, effectively emptying the receive FIFO buffer with a single access.

The data is read in little endian byte order as shown in Figure 16-30
where byte 0 is the first byte received and byte 1 is the second byte
received. With each access, the receive status (RCVSTAT) field in the
TWI_FIFO_STAT register is updated to indicate it is empty. If an access is
performed while the FIFO buffer is not full, the read data is unknown and
the existing FIFO buffer data and its status remains unchanged.

Figure 16-30. Receive Little Endian Byte Order

Figure 16-31. TWI FIFO Receive Data Double Byte Register

RECEIVE DATA REGISTER

B1 B0

TRANSMISSION LINE

B1 B0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Receive Data Double Byte Register (TWI_RCV_DATA16)
All bits are WO.

RCVDATA16[15:0] (Receive
FIFO 16-Bit Data)

Reset = 0x0000
16-48 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
Programming Examples
The following sections include programming examples for general setup,
slave mode, and master mode, as well as guidance for repeated start
conditions.

Master Mode Setup
Listing 16-1 shows how to initiate polled receive and transmit transfers in
master mode.

Listing 16-1. Master Mode Receive/Transmit Transfer

/***

 Macro for the count field of the TWI_MASTER_CTL register

 x can be any value between 0 and 0xFE (254). A value of

 0xFF disables the counter.
***/

#define TWICount(x) (DCNT & ((x) << 6))

.section L1_data_b;

.byte TX_file[file_size] = "DATA.hex";

.BYTE RX_CHECK[file_size];

.byte rcvFirstWord[2];

.SECTION program;

_main:

/***

TWI Master Initialization subroutine

***/

TWI_INIT:

/***

Enable the TWI controller and set the Prescale value
ADSP-BF51x Blackfin Processor Hardware Reference 16-49

Programming Examples
Prescale = 10 (0xA) for an SCLK = 100 MHz (CLKIN = 50MHz)

Prescale = SCLK / 10 MHz

P1 points to the base of the system MMRs

***/

R1 = TWI_ENA | 0xA (z);

W[P1 + LO(TWI_CONTROL)] = R1;

/***

Set CLKDIV:

For example, for an SCL of 400 KHz (period = 1/400 KHz = 2500 ns)

and an internal time reference of 10 MHz (period = 100 ns):

CLKDIV = 2500 ns / 100 ns = 25

For an SCL with a 30% duty cycle, then CLKLOW = 17 (0x11) and

CLKHI = 8.

***/

R5 = CLKHI(0x8) | CLKLOW(0x11) (z);

W[P1 + LO(TWI_CLKDIV)] = R5;

/***

enable these signals to generate a TWI interrupt: optional

***/

R1 = RCVSERV | XMTSERV | MERR | MCOMP (z);

W[P1 + LO(TWI_INT_MASK)] = R1;

/***

The address needs to be shifted one place to the right

e.g., 1010 001x becomes 0101 0001 (0x51) the TWI controller

actually sends out 1010 001x where x is either a 0 for

writes or 1 for reads

***/

R6 = 0xBF;

R6 = R6 >> 1;
16-50 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
TWI_INIT.END: W[P1 + LO(TWI_MASTER_ADDR)] = R6;

/******************** END OF TWI INIT **********************/

/***

Starting the Read transfer

Program the Master Control register with:

1. the number of bytes to transfer: TWICount(x)

2. Repeated Start (RESTART): optional

3. speed mode: FAST or SLOW

4. direction of transfer:

MDIR = 1 for reads, MDIR = 0 for writes

5. Master Enable MEN. This kicks off the master transfer

***/

R1 = TWICount(0x2) | FAST | MDIR | MEN;

W[P1 + LO(TWI_MASTER_CTL)] = R1;

ssync;

/***

Poll the FIFO Status register to know when

2 bytes have been shifted into the RX FIFO

***/

Rx_stat:

R1 = W[P1 + LO(TWI_FIFO_STAT)](Z);

R0 = 0xC;

R1 = R1 & R0;

CC = R1 == R0;

IF ! cc jump Rx_stat;

R0 = W[P1 + LO(TWI_RCV_DATA16)](Z); /* Read data from the RX fifo
*/
ssync;

/***

check that master transfer has completed
ADSP-BF51x Blackfin Processor Hardware Reference 16-51

Programming Examples
MCOMP is set when Count reaches zero

***/

M_COMP:

R1 = W[P1 + LO(TWI_INT_STAT)](z);

CC = BITTST (R1, bitpos(MCOMP));

if ! CC jump M_COMP;

M_COMP.END: W[P1 + LO(TWI_INT_STAT)] = R1;

/* load the pointer with the address of the transmit buffer */

P2.H = TX_file;

P2.L = TX_file;

/***

Pre-load the tx FIFO with the first two bytes: this is

necessary to avoid the generation of the Buffer Read Error

(BUFRDERR) which occurs whenever a transmit transfer is

initiated while the transmit buffer is empty

***/

R3 = W[P2++](Z);

W[P1 + LO(TWI_XMT_DATA16)] = R3;

/***

Initiating the Write operation

Program the Master Control register with:

1. the number of bytes to transfer: TWICount(x)

2. Repeated Start (RESTART): optional

3. speed mode: FAST or Standard

4. direction of transfer:

MDIR = 1 for reads, MDIR = 0 for writes

5. Master Enable MEN. Setting this bit kicks off the transfer

***/

R1 = TWICount(0xFE) | FAST | MEN;

W[P1 + LO(TWI_MASTER_CTL)] = R1;
16-52 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
SSYNC;

/***

loop to write data to a TWI slave device P3 times

***/

P3 = length(TX_file);

LSETUP (Loop_Start1, Loop_End1) LC0 = P3;

Loop_Start1:

/***

check that there's at least one byte location empty in

the tx fifo

***/

XMTSERV_Status:

R1 = W[P1 + LO(TWI_INT_STAT)](z);

CC = BITTST (R1, bitpos(XMTSERV)); /* test XMTSERV bit */

if ! CC jump XMTSERV_Status;

W[P1 + LO(TWI_INT_STAT)] = R1; /* clear status */

SSYNC;

/***

write byte into the transmit FIFO

***/

R3 = B[P2++](Z);

W[P1 + LO(TWI_XMT_DATA8)] = R3;

Loop_End1: SSYNC;

/* check that master transfer has completed */

M_COMP1:

R1 = W[P1 + LO(TWI_INT_STAT)](z);

CC = BITTST (R1, bitpos(MCOMP1));

if ! CC jump M_COMP;

M_COMP1.END:W[P1 + LO(TWI_INT_STAT)] = R1;
ADSP-BF51x Blackfin Processor Hardware Reference 16-53

Programming Examples
idle;

_main.end:

Slave Mode Setup
Listing 16-2 shows how to configure the slave for interrupt based trans-
fers. The interrupts are serviced in the subroutine _TWI_ISR shown in
Listing 16-3.

Listing 16-2. Slave Mode Setup

#include <defBF527.h>

/*BF527 is used here as an example—change as appropriate.*/

#include "startup.h"

#define file_size 254

#define SYSMMR_BASE 0xFFC00000

#define COREMMR_BASE 0xFFE00000

.GLOBAL _main;

.EXTERN _TWI_ISR;

.section L1_data_b;

.BYTE TWI_RX[file_size];

.BYTE TWI_TX[file_size] = "transmit.dat";

.section L1_code;

_main:

/***

TWI Slave Initialization subroutine

***/

TWI_SLAVE_INIT:
16-54 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
/***

Enable the TWI controller and set the Prescale value

Prescale = 10 (0xA) for an SCLK = 100 MHz (CLKIN = 50MHz)

Prescale = SCLK / 10 MHz

P1 points to the base of the system MMRs

P0 points to the base of the core MMRs

***/

R1 = TWI_ENA | 0xA (z);

W[P1 + LO(TWI_CONTROL)] = R1;

/***

Slave address

program the address to which this slave responds to.

this is an arbitrary 7-bit value

***/

R1 = 0x5F;

W[P1 + LO(TWI_SLAVE_ADDR)] = R1;

/***

Pre-load the TX FIFO with the first two bytes to be

transmitted in the event the slave is addressed and a transmit

is required

***/

R3=0xB537(Z);

W[P1 + LO(TWI_XMT_DATA16)] = R3;

/***

FIFO Control determines whether an interrupt is generated

for every byte transferred or for every two bytes.

A value of zero which is the default, allows for single byte

events to generate interrupts

***/

R1 = 0;
ADSP-BF51x Blackfin Processor Hardware Reference 16-55

Programming Examples
 W[P1 + LO(TWI_FIFO_CTL)] = R1;

/***

enable these signals to generate a TWI interrupt

***/

R1 = RCVSERV | XMTSERV | SOVF | SERR | SCOMP | SINIT (z);

W[P1 + LO(TWI_INT_MASK)] = R1;

/***

Enable the TWI Slave

Program the Slave Control register with:

1. Slave transmit data valid (STDVAL) set so that the contents of

the TX FIFO can be used by this slave when a master requests data

from it.

2. Slave Enable SEN to enable Slave functionality

***/

R1 = STDVAL | SEN;

W[P1 + LO(TWI_SLAVE_CTL)] = R1;

TWI_SLAVE_INIT.END:

P2.H = HI(TWI_RX);

P2.L = LO(TWI_RX);

P4.H = HI(TWI_TX);

P4.L = LO(TWI_TX);

/***

Remap the vector table pointer from the default __I10HANDLER

to the new _TWI_ISR interrupt service routine

***/

R1.H = HI(_TWI_ISR);

R1.L = LO(_TWI_ISR);

[P0 + LO(EVT10)] = R1; /* note that P0 points to the base of

the core MMR registers */
16-56 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
/***

ENABLE TWI generate to interrupts at the system level

***/

R1 = [P1 + LO(SIC_IMASK)];

BITSET(R1,BITPOS(IRQ_TWI));

[P1 + LO(SIC_IMASK)] = R1;

/***

ENABLE TWI to generate interrupts at the core level

***/

R1 = [P0 + LO(IMASK)];

BITSET(R1,BITPOS(EVT_IVG10));

[P0 + LO(IMASK)] = R1;

/***

 wait for interrupts

***/

idle;

_main.END:
ADSP-BF51x Blackfin Processor Hardware Reference 16-57

Programming Examples
Listing 16-3. TWI Slave Interrupt Service Routine

/***

Function: _ TWI_ISR

Description: This ISR is executed when the TWI controller

detects a slave initiated transfer. After an interrupt is ser-

viced, its corresponding bit is cleared in the TWI_INT_STAT

register. This done by writing a 1 to the particular bit posi-

tion. All bits are write 1 to clear.

***/

#include <defBF527.h>

/*BF527 is used here as an example—change as appropriate.*/

.GLOBAL _TWI_ISR;

.section L1_code;

_TWI_ISR:

/***

read the source of the interrupt

***/

R1 = W[P1 + LO(TWI_INT_STAT)](z);

/***

Slave Transfer Initiated

***/

CC = BITTST(R1, BITPOS(SINIT));

if ! CC JUMP RECEIVE;

R0 = SINIT (Z);

W[P1 + LO(TWI_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

/***

Receive service
16-58 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
***/

RECEIVE:

CC = BITTST(R1, BITPOS(RCVSERV));

if ! CC JUMP TRANSMIT;

R0 = W[P1 + LO(TWI_RCV_DATA8)] (Z); /* read data */

B[P2++] = R0; /* store bytes into a buffer pointed to by P2 */

R0 = RCVSERV(Z);

W[P1 + LO(TWI_INT_STAT)] = R0; /*clear interrupt source bit */

ssync;

JUMP _TWI_ISR.END; /* exit */

/***

Transmit service

***/

TRANSMIT:

CC = BITTST(R1, BITPOS(XMTSERV));

if ! CC JUMP SlaveError;

R0 = B[P4++](Z);

W[P1 + LO(TWI_XMT_DATA8)] = R0;

R0 = XMTSERV(Z);

W[P1 + LO(TWI_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

JUMP _TWI_ISR.END; /* exit */

/***

slave transfer error

***/

SlaveError:

CC = BITTST(R1, BITPOS(SERR));

if ! CC JUMP SlaveOverflow;

R0 = SERR(Z);

W[P1 + LO(TWI_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;
ADSP-BF51x Blackfin Processor Hardware Reference 16-59

Programming Examples
JUMP _TWI_ISR.END; /* exit */

/***

slave overflow

***/

SlaveOverflow:

CC = BITTST(R1, BITPOS(SOVF));

if !CC JUMP SlaveTransferComplete;

R0 = SOVF(Z);

W[P1 + LO(TWI_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

JUMP _TWI_ISR.END; /* exit */

/***

 slave transfer complete

***/

SlaveTransferComplete:

CC = BITTST(R1, BITPOS(SCOMP));

if !CC JUMP _TWI_ISR.END;

R0 = SCOMP(Z);

W[P1 + LO(TWI_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

/* Transfer complete read receive FIFO buffer and set/clear sema-

phores etc.... */

R0 = W[P1 + LO(TWI_FIFO_STAT)](z);

CC = BITTST(R0,BITPOS(RCV_HALF)); /* BIT 2 indicates whether

there's a byte in the FIFO or not */

if !CC JUMP _TWI_ISR.END;

R0 = W[P1 + LO(TWI_RCV_DATA8)] (Z); /* read data */

B[P2++] = R0; /* store bytes into a buffer pointed to by P2 */

_TWI_ISR.END:RTI;
16-60 ADSP-BF51x Blackfin Processor Hardware Reference

Two-Wire Interface Controller
Electrical Specifications
All logic complies with the Electrical Specification outlined in the Philips
I2C Bus Specification version 2.1 dated January 2000.

Unique Information for the ADSP-BF51x
Processor

None.
ADSP-BF51x Blackfin Processor Hardware Reference 16-61

Unique Information for the ADSP-BF51x Processor
16-62 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
17 SPI-COMPATIBLE PORT
CONTROLLER

This chapter describes the serial peripheral interface (SPI) port. Following
an overview and a list of key features is a description of operation and
functional modes of operation. The chapter concludes with a program-
ming model, consolidated register definitions, and programming
examples.

Specific Information for the ADSP-BF51x
For details regarding the number of SPIs for the ADSP-BF51x product,
refer to ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor Data
Sheet.

For SPI DMA channel assignments, refer to Table 6-7 on page 6-103 in
Chapter 6, “Direct Memory Access”.

For SPI interrupt vector assignments, refer to Table 5-3 on page 5-20 in
Chapter 5, “System Interrupts”.

To determine how each of the SPIs is multiplexed with other functional
pins, refer to Table 9-2 on page 9-5 through Table 9-4 on page 9-7 in
Chapter 9, “General-Purpose Ports”.
ADSP-BF51x Blackfin Processor Hardware Reference 17-1

Overview
For a list of MMR addresses for each SPI, refer to Appendix A, “System
MMR Assignments”.

SPI behavior for the ADSP-BF51x that differs from the general informa-
tion in this chapter can be found in the section “Unique Information for
the ADSP-BF51x Processor” on page 17-53.

Overview
The SPI port provides an I/O interface to a wide variety of SPI-compati-
ble peripheral devices.

With a range of configurable options, the SPI port provides a glueless
hardware interface with other SPI-compatible devices. SPI is a four-wire
interface consisting of two data signals, a device select signal, and a clock
signal. SPI is a full-duplex synchronous serial interface, supporting master
modes, slave modes, and multimaster environments. The SPI-compatible
peripheral implementation also supports programmable bit rate and clock
phase/polarities. The SPI features the use of open drain drivers to support
the multimaster scenario and to avoid data contention.

Features
The SPI includes these features:

• Full duplex, synchronous serial interface

• Supports 8- or 16-bit word sizes

• Programmable baud rate, clock phase, and polarity

• Supports multimaster environments

• Integrated DMA controller
17-2 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
• Double-buffered transmitter and receiver

• One SPI device select input and multiple chip select outputs

• Programmable shift direction of MSB or LSB first

• Interrupt generation on mode fault, overflow, and underflow

• Shadow register to aid debugging

Typical SPI-compatible peripheral devices that can be used to interface to
the SPI-compatible interface include:

• Other CPUs or microcontrollers

• Codecs

• A/D converters

• D/A converters

• Sample rate converters

• SP/DIF or AES/EBU digital audio transmitters and receivers

• LCD displays

• Shift registers

• FPGAs with SPI emulation
ADSP-BF51x Blackfin Processor Hardware Reference 17-3

Interface Overview
Interface Overview
Figure 17-1 provides a block diagram of the SPI. The interface is essen-
tially a shift register that serially transmits and receives data bits, one bit at
a time at the SCK rate, to and from other SPI devices. SPI data is transmit-
ted and received at the same time through the use of a shift register. When
an SPI transfer occurs, data is simultaneously transmitted (shifted serially
out of the shift register) as new data is received (shifted serially into the
other end of the same shift register). The SCK synchronizes the shifting and
sampling of the data on the two serial data pins.

External Interface
The following sections describe the external interface of the SPI.

Figure 17-1. SPI Block Diagram

MOSI MISO SCK

SPI INTERFACE LOGIC

SHIFT REGISTER

SPI_RDBR
RECEIVE

REGISTER

SPI_TDBR
TRANSMIT
REGISTER

SPI IRQ
OR DMA
REQUEST

SPI
INTERNAL

CLOCK
GENERATOR

SPI_CTL

SPI_FLG
SPI_BAUD

SPI_SHADOW

SPI_STAT

PAB

DAB

FOUR-DEEP FIFO

M S S M

SPISS
17-4 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
SPI Clock Signal (SCK)

The SCK signal is the serial clock signal. This control signal is driven by the
master and controls the rate at which data is transferred. The master may
transmit data at a variety of bit rates. The SCK signal cycles once for each
bit transmitted. It is an output signal if the device is configured as a mas-
ter, and an input signal if the device is configured as a slave.

The SCK is a gated clock that is active during data transfers only for the
length of the transferred word. The number of active clock edges is equal
to the number of bits driven on the data lines. Slave devices ignore the
serial clock if the SPISS input is driven inactive (high).

The SCK is used to shift out and shift in the data driven on the MISO and
MOSI lines. Clock polarity and clock phase relative to data are programma-
ble in the SPI_CTL register and define the transfer format.

Master-Out, Slave-In (MOSI) Signal

The master-out, slave-in (MOSI) signal is one of the bidirectional I/O data
pins. If the processor is configured as a master, the MOSI pin transmits data
out. If the processor is configured as a slave, the MOSI pin receives data in.
In an SPI interconnection, the data is shifted out from the MOSI output
pin of the master and shifted into the MOSI input(s) of the slave(s).

Master-In, Slave-Out (MISO) Signal

The master-in, slave-out (MISO) signal is one of the bidirectional I/O data
pins. If the processor is configured as a master, the MISO pin receives data
in. If the processor is configured as a slave, the MISO pin transmits data
out. In an SPI interconnection, the data is shifted out from the MISO out-
put pin of the slave and shifted into the MISO input pin of the master.

 Only one slave is allowed to transmit data at any given time.
ADSP-BF51x Blackfin Processor Hardware Reference 17-5

Interface Overview
The SPI configuration example in Figure 17-2 illustrates how the proces-
sor can be used as the slave SPI device. The 8-bit host microcontroller is
the SPI master.

 The processor can be booted through its SPI interface to allow user
application code and data to be downloaded before runtime.

SPI Slave Select Input Signal (SPISS)

The SPISS signal is the SPI slave select input signal. This is an active-low
signal used to enable a processor when it is configured as a slave device.
This input-only pin behaves like a chip select and is provided by the mas-
ter device for the slave devices. For a master device, it can act as an error
signal input in a multimaster environment. In multimaster mode, if the
SPISS input signal of a master is asserted (driven low), and the PSSE bit in
the SPI_CTL register is enabled, an error has occurred. This means that
another device is also trying to be the master device.

The enable lead time (T1), the enable lag time (T2), and the sequential
transfer delay time (T3) each must always be greater than or equal to
one-half the SCK period. See Figure 17-3. The minimum time between
successive word transfers (T4) is two SCK periods. This is measured from
the last active edge of SCK of one word to the first active edge of SCK of the
next word. This is independent of the configuration of the SPI (CPHA,
MSTR, and so on).

Figure 17-2. Blackfin Processor as Slave SPI Device

8-BIT HOST
MICROCONTROLLER

BLACKFIN PROCESSOR
SLAVE SPI DEVICE

SCLK

MOSI

MISO MISO

SCK

MOSI

SPISSS_SEL
17-6 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
For a master device with CPHA = 0, the slave select output is inactive (high)
for at least one-half the SCK period. In this case, T1 and T2 will each
always be equal to one-half the SCK period.

SPI Slave Select Enable Output Signals

When operating in master mode, Blackfin processors may use any GPIO
pin to enable individual SPI slave devices by software. In addition, the SPI
module provides hardware support to generate up to seven slave select
enable signals automatically (depending upon the configuration of the
specific processor). See Figure 17-14 on page 17-38 for details.

These signals are always active low in the SPI protocol. Since the respec-
tive pins are not driven during reset, it is recommended to pull them up
by a resistor.

If enabled as a master, the SPI uses the SPI_FLG register to enable gen-
eral-purpose port pins to be used as individual slave select lines. Before
manipulating this register, the port pins that are to be used as SPI
slave-select outputs must first be configured as such. To work as SPI out-
put pins, the port pins must be enabled for use by SPI in the appropriate
PORT_MUX register.

Figure 17-3. SPI Timing

T1 T2

SPISS
(TO SLAVE)

SCK
(CPOL = 1)

T4
T3
ADSP-BF51x Blackfin Processor Hardware Reference 17-7

Interface Overview
In slave mode, the SPI_FLG bits have no effect, and each SPI uses the
SPISS input as a slave select. Just as in the master mode case, the port pin
associated with SPISS must first be configured appropriately before use.
Figure 17-14 on page 17-38 shows the SPI_FLG register diagram.

Slave Select Inputs

If the SPI is in slave mode, SPISS acts as the slave select input. When
enabled as a master, SPISS can serve as an error detection input for the SPI
in a multimaster environment. The PSSE bit in SPI_CTL enables this fea-
ture. When PSSE = 1, the SPISS input is the master mode error input.
Otherwise, SPISS is ignored.

Use of FLS Bits in SPI_FLG for Multiple Slave SPI Systems

The FLSx bits in the SPI_FLG register are used in a multiple slave SPI envi-
ronment. For example, if there are eight SPI devices in the system
including a master processor equipped with seven slave selects, the master
processor can support the SPI mode transactions across the other seven
devices. This configuration requires only one master processor in this mul-
tislave environment. For example, assume that the SPI is the master. The
seven port pins that can be configured as SPI master mode slave-select
output pins can be connected to each of the slave SPI device’s SPISS pins.
In this configuration, the FLSx bits in SPI_FLG can be used in three cases.

In cases 1 and 2, the processor is the master and the seven microcon-
trollers/peripherals with SPI interfaces are slaves. The processor can:

1. Transmit to all seven SPI devices at the same time in a broadcast
mode. Here, all FLSx bits are set.

2. Receive and transmit from one SPI device by enabling only one
slave SPI device at a time.

In case 3, all eight devices connected through SPI ports can be
other processors.
17-8 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
3. If all the slaves are also processors, then the requester can receive
data from only one processor (enabled by clearing the EMISO bit in
the six other slave processors) at a time and transmit broadcast data
to all seven at the same time. This EMISO feature may be available in
some other microcontrollers. Therefore, it is possible to use the
EMISO feature with any other SPI device that includes this
functionality.

Figure 17-4 shows one processor as a master with three processors (or
other SPI-compatible devices) as slaves.

The transmit buffer becomes full after it is written to. It becomes empty
when a transfer begins and the transmit value is loaded into the shift regis-
ter. The receive buffer becomes full at the end of a transfer when the shift
register value is loaded into the receive buffer. It becomes empty when the
receive buffer is read.

 The SPIF bit in the SPI_STAT register is set when the SPI port is
disabled.

Figure 17-4. Single-Master, Multiple-Slave Configuration

MOSIMISO

SLAVE DEVICE

SCK MOSIMISO SCK MOSIMISO SCK

MOSIMISO SCK

MASTER
DEVICE

SLAVE DEVICE SLAVE DEVICE

PF/PG/PH

PF/PG/PH

PF/PG/PH

VDD

SPISS

SPISS

SPISS SPISS
ADSP-BF51x Blackfin Processor Hardware Reference 17-9

Interface Overview
Upon entering DMA mode, the transmit buffer and the receive
buffer become empty. That is, the TXS bit and the RXS bit in the
SPI_STAT register are initially cleared upon entering DMA mode.

When using DMA for SPI transmit, the DMA_DONE interrupt signi-
fies that the DMA FIFO is empty. However, at this point there
may still be data in the SPI DMA FIFO waiting to be transmitted.
Therefore, software needs to poll TXS in the SPI_STAT register until
it goes low for two successive reads, at which point the SPI DMA
FIFO will be empty. When the SPIF bit subsequently gets set, the
last word has been transferred.

Internal Interfaces
The SPI has dedicated connections to the processor’s peripheral bus (PAB)
and DAB.

The low-latency PAB bus is used to map the SPI resources into the system
MMR space. For PAB accesses to SPI MMRs, the primary performance
criteria is latency, not throughput. Transfer latencies for both read and
write transfers on the peripheral bus are two SCLK cycles.

The DAB bus provides a means for DMA SPI transfers to gain access to
on-chip and off-chip memory with little or no degradation in core band-
width to memory. The SPI peripheral, as a DMA master, is capable of
sourcing DMA accesses. The arbitration policy for access to the DAB is
described in the Chip Bus Hierarchy chapter.

DMA Functionality

The SPI has a single DMA engine which can be configured to support
either an SPI transmit channel or a receive channel, but not both simulta-
neously. Therefore, when configured as a transmit channel, the received
data will essentially be ignored.
17-10 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
When configured as a receive channel, what is transmitted is irrelevant. A
16-bit by four-word FIFO (without burst capability) is included to
improve throughput on the DAB.

 When using DMA for SPI transmit, the DMA_DONE interrupt signi-
fies that the DMA FIFO is empty. However, at this point there
may still be data in the SPI DMA FIFO waiting to be transmitted.
Therefore, software needs to poll TXS in the SPI_STAT register until
it goes low for two successive reads, at which point the SPI DMA
FIFO will be empty. When the SPIF bit subsequently gets set, the
last word has been transferred and the SPI can be disabled or
enabled for another mode.

The four-word FIFO is cleared when the SPI port is disabled.

Description of Operation
The following sections describe the operation of the SPI.
ADSP-BF51x Blackfin Processor Hardware Reference 17-11

Description of Operation
SPI Transfer Protocols
The SPI protocol supports four different combinations of serial clock
phase and polarity (SPI modes 0, 1, 2, 3). These combinations are selected
using the CPOL and CPHA bits in SPI_CTL as shown in Figure 17-5.

Figure 17-6 and Figure 17-7 demonstrate the two basic transfer formats as
defined by the CPHA bit. Two waveforms are shown for SCK—one for CPOL
= 0 and the other for CPOL = 1. The diagrams may be interpreted as master
or slave timing diagrams since the SCK, MISO, and MOSI pins are directly
connected between the master and the slave. The MISO signal is the output
from the slave (slave transmission), and the MOSI signal is the output from
the master (master transmission). The SCK signal is generated by the mas-
ter, and the SPISS signal is the slave device select input to the slave from
the master. The diagrams represent an 8-bit transfer (SIZE = 0) with the
most significant bit (MSB) first (LSBF = 0). Any combination of the SIZE
and LSBF bits of SPI_CTL is allowed. For example, a 16-bit transfer with
the least significant bit (LSB) first is another possible configuration.

Figure 17-5. SPI Modes of Operation

CLOCK PHASE (CPHA)

C
L

O
C

K
 P

O
L

A
R

IT
Y

 (
C

P
O

L
)

C
P

O
L

 =
 1

C
P

O
L

 =
 0

CPHA = 1CPHA = 0

SAMPLE
EDGE

DRIVE
EDGE

SAMPLE
EDGE

DRIVE
EDGE

SAMPLE
EDGE

DRIVE
EDGE

SAMPLE
EDGE

DRIVE
EDGE

MODE 0 MODE 1

MODE 2 MODE 3
17-12 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
The clock polarity and the clock phase should be identical for the master
device and the slave device involved in the communication link. The
transfer format from the master may be changed between transfers to
adjust to various requirements of a slave device.

When CPHA = 0, the slave select line, SPISS, must be inactive (high)
between each serial transfer. This is controlled automatically by the SPI
hardware logic. When CPHA = 1, SPISS may either remain active (low)
between successive transfers or be inactive (high). This must be controlled
by the software through manipulation of the SPI_FLG register.

Figure 17-6 shows the SPI transfer protocol for CPHA = 0. Note SCK starts
toggling in the middle of the data transfer, SIZE = 0, and LSBF = 0.

Figure 17-6. SPI Transfer Protocol for CPHA = 0

SPISS
(TO SLAVE)

SCK
(CPOL = 0)

SCK
(CPOL = 1)

MOSI
(FROM MASTER)

MISO
(FROM SLAVE)

1 2 3 4 85 6 7CLOCK CYCLE
NUMBER

(* = UNDEFINED)

MSB LSB6 5 4 3 2 1 **

MSB LSB6 5 4 3 2 1 *
ADSP-BF51x Blackfin Processor Hardware Reference 17-13

Description of Operation
Figure 17-7 shows the SPI transfer protocol for CPHA = 1. Note SCK starts
toggling at the beginning of the data transfer, SIZE = 0, and LSBF = 0.

SPI General Operation
The SPI can be used in single master as well as multimaster environments.
The MOSI, MISO, and the SCK signals are all tied together in both configura-
tions. SPI transmission and reception are always enabled simultaneously,
unless the broadcast mode has been selected. In broadcast mode, several
slaves can be enabled to receive, but only one of the slaves must be in
transmit mode driving the MISO line. If the transmit or receive is not
needed, it can simply be ignored. This section describes the clock signals,
SPI operation as a master and as a slave, and error generation.

Precautions must be taken to avoid data corruption when changing the
SPI module configuration. The configuration must not be changed during
a data transfer. The clock polarity should only be changed when no slaves
are selected. An exception to this is when an SPI communication link con-
sists of a single master and a single slave, CPHA = 1, and the slave select
input of the slave is always tied low. In this case, the slave is always

Figure 17-7. SPI Transfer Protocol for CPHA = 1

SPISS
(TO SLAVE)

SCK
(CPOL = 0)

SCK
(CPOL = 1)

MOSI
(FROM MASTER)

MISO
(FROM SLAVE)

1 2 3 4 85 6 7CLOCK CYCLE
NUMBER

(* = UNDEFINED)

MSB LSB6 5 4 3 2 1 **

MSB LSB6 5 4 3 2 1*
17-14 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
selected and data corruption can be avoided by enabling the slave only
after both the master and slave devices are configured.

In a multimaster or multislave SPI system, the data output pins (MOSI and
MISO) can be configured to behave as open drain outputs, which prevents
contention and possible damage to pin drivers. An external pull-up resis-
tor is required on both the MOSI and MISO pins when this option is
selected.

The WOM bit in the SPI_CTL register controls this option. When WOM is set
and the SPI is configured as a master, the MOSI pin is three-stated when
the data driven out on MOSI is a logic high. The MOSI pin is not
three-stated when the driven data is a logic low. Similarly, when WOM is set
and the SPI is configured as a slave, the MISO pin is three-stated if the data
driven out on MISO is a logic high.

During SPI data transfers, one SPI device acts as the SPI link master,
where it controls the data flow by generating the SPI serial clock and
asserting the SPI device select signal (SPISS). The other SPI device acts as
the slave and accepts new data from the master into its shift register, while
it transmits requested data out of the shift register through its SPI trans-
mit data pin. Multiple processors can take turns being the master device,
as can other microcontrollers or microprocessors. One master device can
also simultaneously shift data into multiple slaves (known as broadcast
mode). However, only one slave may drive its output to write data back to
the master at any given time. This must be enforced in broadcast mode,
where several slaves can be selected to receive data from the master, but
only one slave at a time can be enabled to send data back to the master.

In a multimaster or multidevice environment where multiple processors
are connected through their SPI ports, all MOSI pins are connected
together, all MISO pins are connected together, and all SCK pins are con-
nected together.
ADSP-BF51x Blackfin Processor Hardware Reference 17-15

Description of Operation
For a multislave environment, the processor can make use of up to seven
programmable flags that are dedicated SPI slave select signals for the SPI
slave devices.

 At reset, the SPI is disabled and configured as a slave.

Clock Signals
The SCK signal is a gated clock that is only active during data transfers for
the duration of the transferred word. The number of active edges is equal
to the number of bits driven on the data lines. The clock rate can be as
high as one-fourth of the SCLK rate. For master devices, the clock rate is
determined by the 16-bit value in the SPI_BAUD register. For slave devices,
the value in SPI_BAUD is ignored. When the SPI device is a master, SCK is
an output signal. When the SPI is a slave, SCK is an input signal. Slave
devices ignore the serial clock if the slave select input is driven inactive
(high).

The SCK signal is used to shift out and shift in the data driven onto the
MISO and MOSI lines. The data is always shifted out on one edge of the
clock and sampled on the opposite edge of the clock. Clock polarity and
clock phase relative to data are programmable in the SPI_CTL register and
define the transfer format. See Figure 17-5 on page 17-12.

Interrupt Output
The SPI has two interrupt output signals: a data interrupt and an error
interrupt.

The behavior of the SPI data interrupt signal depends on the TIMOD field
in the SPI_CTL register. In DMA mode (TIMOD = b#1X), the data interrupt
acts as a DMA request and is generated when the DMA FIFO is ready to
be written to (TIMOD = b#11) or read from (TIMOD = b#10). In non-DMA
mode (TIMOD = 0X), a data interrupt is generated when the SPI_TDBR regis-
17-16 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
ter is ready to be written to (TIMOD = b#01) or when the SPI_RDBR register
is ready to be read from (TIMOD = b#00).

An SPI error interrupt is generated in a master when a mode fault error
occurs, in both DMA and non-DMA modes. An error interrupt can also
be generated in DMA mode when there is an underflow (TXE when
TIMOD = b#11) or an overflow (RBSY when TIMOD = b#10) error condition.
In non-DMA mode, the underflow and overflow conditions set the TXE
and RBSY bits in the SPI_STAT register, respectively, but do not generate an
error interrupt.

For more information about this interrupt output, see the discussion of
the TIMOD bits in “SPI Control (SPI_CTL) Register” on page 17-36.

Functional Description
The following sections describe the functional operation of the SPI.

Master Mode Operation (Non-DMA)
When the SPI is configured as a master (and DMA mode is not selected),
the interface operates in the following manner.

1. The core writes to the appropriate port register(s) to properly con-
figure the SPI interface for master mode operation. The required
pins are configured for SPI use as slave-select outputs.

2. The core writes to SPI_FLG, setting one or more of the SPI flag
select bits (FLSx). This ensures that the desired slaves are properly
deselected while the master is configured.

3. The core writes to the SPI_BAUD and SPI_CTL registers, enabling the
device as a master and configuring the SPI system by specifying the
appropriate word length, transfer format, baud rate, and other nec-
essary information.
ADSP-BF51x Blackfin Processor Hardware Reference 17-17

Functional Description
4. If the CPHA bit in the SPI_CTL register = 1, the core activates the
desired slaves by clearing one or more of the SPI flag bits (FLGx) of
SPI_FLG.

5. The TIMOD bits in SPI_CTL determine the SPI transfer initiate
mode. The transfer on the SPI link begins upon either a data write
by the core to the SPI_TDBR register or a data read of the SPI_RDBR
register.

6. The SPI then generates the programmed clock pulses on SCK and
simultaneously shifts data out of MOSI and shifts data in from MISO.
Before a shift, the shift register is loaded with the contents of the
SPI_TDBR register. At the end of the transfer, the contents of the
shift register are loaded into the SPI_RDBR register.

7. With each new transfer initiate command, the SPI continues to
send and receive words, according to the SPI transfer initiate mode.

See Figure 17-8 on page 17-30 for additional information.

If the transmit buffer remains empty or the receive buffer remains full, the
device operates according to the states of the SZ and GM bits in SPI_CTL.

If SZ = 1 and the transmit buffer is empty, the device repeatedly transmits
zeros on the MOSI pin. One word is transmitted for each new transfer initi-
ate command. If SZ = 0 and the transmit buffer is empty, the device
repeatedly transmits the last word it transmitted before the transmit buffer
became empty.

If GM = 1 and the receive buffer is full, the device continues to receive new
data from the MISO pin, overwriting the older data in the SPI_RDBR regis-
ter. If GM = 0 and the receive buffer is full, the incoming data is discarded,
and SPI_RDBR is not updated.
17-18 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
Transfer Initiation From Master (Transfer Modes)
When a device is enabled as a master, the initiation of a transfer is defined
by the two TIMOD bits of SPI_CTL. Based on those two bits and the status of
the interface, a new transfer is started upon either a read of the SPI_RDBR
register or a write to the SPI_TDBR register. This is summarized in
Table 17-1.

 If the SPI port is enabled with TIMOD = b#01 or TIMOD = b#11, the
hardware immediately issues a first interrupt or DMA request.

Table 17-1. Transfer Initiation

TIMOD Function Transfer Initiated Upon Action, Interrupt

b#00 Transmit and
receive

Initiate new single word trans-
fer upon read of SPI_RDBR
and previous transfer com-
pleted.

Interrupt is active when the
receive buffer is full.

Read of SPI_RDBR clears
interrupt.

b#01 Transmit and
receive

Initiate new single word trans-
fer upon write to SPI_TDBR
and previous transfer com-
pleted.

Interrupt is active when the
transmit buffer is empty.

Writing to SPI_TDBR clears
interrupt.

b#10 Receive with
DMA

Initiate new multiword trans-
fer upon enabling SPI for DMA
mode. Individual word trans-
fers begin with a DMA read of
SPI_RDBR, and last transfer
completed.

Request DMA reads as long as
the SPI DMA FIFO is not
empty.

b#11 Transmit with
DMA

Initiate new multiword trans-
fer upon enabling SPI for DMA
mode. Individual word trans-
fers begin with a DMA write to
SPI_TDBR, and last transfer
completed.

Request DMA writes as long as
the SPI DMA FIFO is not full.
ADSP-BF51x Blackfin Processor Hardware Reference 17-19

Functional Description
Slave Mode Operation (Non-DMA)
When a device is enabled as a slave (and DMA mode is not selected), the
start of a transfer is triggered by a transition of the SPISS select signal to
the active state (low), or by the first active edge of the clock (SCK), depend-
ing on the state of the CPHA bit in the SPI_CTL register.

These steps illustrate SPI operation in the slave mode:

1. The core writes to the appropriate port register(s) to properly con-
figure the SPI for slave mode operation.

2. The core writes to SPI_CTL to define the mode of the serial link to
be the same as the mode set up in the SPI master.

3. To prepare for the data transfer, the core writes data to be trans-
mitted into SPI_TDBR.

4. Once the SPISS falling edge is detected, the slave starts shifting
data out on MISO and in from MOSI on SCK edges, depending upon
the states of CPHA and CPOL.

5. Reception/transmission continues until SPISS is released or until
the slave has received the proper number of clock cycles.

6. The slave device continues to receive/transmit with each new fall-
ing edge transition on SPISS and/or SCK clock edge.

See Figure 17-8 on page 17-30 for additional information.

If the transmit buffer remains empty or the receive buffer remains full, the
device operates according to the states of the SZ and GM bits in SPI_CTL. If
SZ = 1 and the transmit buffer is empty, the device repeatedly transmits
zeros on the MISO pin. If SZ = 0 and the transmit buffer is empty, it repeat-
edly transmits the last word it transmitted before the transmit buffer
became empty. If GM = 1 and the receive buffer is full, the device continues
to receive new data from the MOSI pin, overwriting the older data in the
17-20 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
SPI_RDBR register. If GM = 0 and the receive buffer is full, the incoming
data is discarded, and the SPI_RDBR register is not updated.

Slave Ready for a Transfer
When a device is enabled as a slave, the actions shown in Table 17-2 are
necessary to prepare the device for a new transfer.

Programming Model
The following sections describe the SPI programming model.

Beginning and Ending an SPI Transfer
The start and finish of an SPI transfer depend on whether the device is
configured as a master or a slave, which CPHA mode is selected, and which
transfer initiation mode (TIMOD) is selected. For a master SPI with
CPHA = 0, a transfer starts when either SPI_TDBR is written to or SPI_RDBR
is read, depending on TIMOD. At the start of the transfer, the enabled slave
select outputs are driven active (low). However, the SCK signal remains

Table 17-2. Transfer Preparation

TIMOD Function Action, Interrupt

b#00 Transmit and
receive

Interrupt is active when the receive buffer is full.
Read of SPI_RDBR clears interrupt.

b#01 Transmit and
receive

Interrupt is active when the transmit buffer is empty.
Writing to SPI_TDBR clears interrupt.

b#10 Receive with
DMA

Request DMA reads as long as SPI DMA FIFO is not empty.

b#11 Transmit with
DMA

Request DMA writes as long as SPI DMA FIFO is not full.
ADSP-BF51x Blackfin Processor Hardware Reference 17-21

Programming Model
inactive for the first half of the first cycle of SCK. For a slave with CPHA = 0,
the transfer starts as soon as the SPISS input goes low.

For CPHA = 1, a transfer starts with the first active edge of SCK for both
slave and master devices. For a master device, a transfer is considered
finished after it sends the last data and simultaneously receives the last
data bit. A transfer for a slave device ends after the last sampling edge of
SCK.

The RXS bit defines when the receive buffer can be read. The TXS bit
defines when the transmit buffer can be filled. The end of a single word
transfer occurs when the RXS bit is set, indicating that a new word has just
been received and latched into the receive buffer, SPI_RDBR. For a master
SPI, RXS is set shortly after the last sampling edge of SCK. For a slave SPI,
RXS is set shortly after the last SCK edge, regardless of CPHA or CPOL. The
latency is typically a few SCLK cycles and is independent of TIMOD and the
baud rate. If configured to generate an interrupt when SPI_RDBR is full
(TIMOD = b#00), the interrupt goes active one SCLK cycle after RXS is set.
When not relying on this interrupt, the end of a transfer can be detected
by polling the RXS bit.

To maintain software compatibility with other SPI devices, the SPIF bit is
also available for polling. This bit may have a slightly different behavior
from that of other commercially available devices. For a slave device, SPIF
is cleared shortly after the start of a transfer (SPISS going low for CPHA = 0,
first active edge of SCK on CPHA = 1), and is set at the same time as RXS. For
a master device, SPIF is cleared shortly after the start of a transfer (either
by writing the SPI_TDBR or reading the SPI_RDBR, depending on TIMOD),
and is set one-half SCK period after the last SCK edge, regardless of CPHA or
CPOL.

The time at which SPIF is set depends on the baud rate. In general, SPIF is
set after RXS, but at the lowest baud rate settings (SPI_BAUD < 4). The SPIF
bit is set before RXS is set, and consequently before new data is latched into
SPI_RDBR, because of the latency. Therefore, for SPI_BAUD = 2 or
17-22 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
SPI_BAUD = 3, RXS must be set before SPIF to read SPI_RDBR. For larger
SPI_BAUD settings, RXS is guaranteed to be set before SPIF is set.

If the SPI port is used to transmit and receive at the same time, or to
switch between receive and transmit operation frequently, then the
TIMOD = b#00 mode may be the best operation option. In this mode,
software performs a dummy read from the SPI_RDBR register to initiate the
first transfer. If the first transfer is used for data transmission, software
should write the value to be transmitted into the SPI_TDBR register before
performing the dummy read. If the transmitted value is arbitrary, it is
good practice to set the SZ bit in the SPI_CTL register to ensure zero data is
transmitted rather than random values. When receiving the last word of
an SPI stream, software should ensure that the read from the SPI_RDBR
register does not initiate another transfer. It is recommended that the SPI
port be disabled before the final SPI_RDBR read access. Reading the
SPI_SHADOW register is not sufficient, as it does not clear the interrupt
request.

In master mode with the CPHA bit set, software should manually assert the
required slave select signal before starting the transaction. After all data
has been transferred, software typically releases the slave select again. If the
SPI slave device requires the slave select line to be asserted for the
complete transfer, this can be done in the SPI interrupt service routine
only when operating in TIMOD = b#00 or TIMOD = b#10 mode. With
TIMOD = b#01 or TIMOD = b#11, the interrupt is requested while the trans-
fer is still in progress.
ADSP-BF51x Blackfin Processor Hardware Reference 17-23

Programming Model
Master Mode DMA Operation
When enabled as a master with the DMA engine configured to transmit or
receive data, the SPI interface operates as follows.

1. The core writes to the appropriate port register(s) to properly con-
figure the SPI for master mode operation. The appropriate pins can
be configured for SPI use as slave-select outputs.

2. The processor core writes to the appropriate DMA registers to
enable the SPI DMA channel and to configure the necessary work
units, access direction, word count, and so on. For more informa-
tion, see the Direct Memory Access chapter.

3. The processor core writes to the SPI_FLG register, setting one or
more of the SPI flag select bits (FLSx).

4. The processor core writes to the SPI_BAUD and SPI_CTL registers,
enabling the device as a master and configuring the SPI system by
specifying the appropriate word length, transfer format, baud rate,
and so on. The TIMOD field should be configured to select either
“receive with DMA” (TIMOD = b#10) or “transmit with DMA”
(TIMOD = b#11) mode.

5. If configured for receive, a receive transfer is initiated upon
enabling of the SPI. Subsequent transfers are initiated as the SPI
reads data from the SPI_RDBR register and writes to the SPI DMA
FIFO. The SPI then requests a DMA write to memory. Upon a
DMA grant, the DMA engine reads a word from the SPI DMA
FIFO and writes to memory.

If configured for transmit, the SPI requests a DMA read from
memory. Upon a DMA grant, the DMA engine reads a word from
memory and writes to the SPI DMA FIFO. As the SPI writes data
from the SPI DMA FIFO into the SPI_TDBR register, it initiates a
transfer on the SPI link.
17-24 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
6. The SPI then generates the programmed clock pulses on SCK and
simultaneously shifts data out of MOSI and shifts data in from MISO.
For receive transfers, the value in the shift register is loaded into
the SPI_RDBR register at the end of the transfer. For transmit trans-
fers, the value in the SPI_TDBR register is loaded into the shift
register at the start of the transfer.

7. In receive mode, as long as there is data in the SPI DMA FIFO (the
FIFO is not empty), the SPI continues to request a DMA write to
memory. The DMA engine continues to read a word from the SPI
DMA FIFO and writes to memory until the SPI DMA word count
register transitions from “1” to “0”. The SPI continues receiving
words until SPI DMA mode is disabled.

In transmit mode, as long as there is room in the SPI DMA FIFO
(the FIFO is not full), the SPI continues to request a DMA read
from memory. The DMA engine continues to read a word from
memory and write to the SPI DMA FIFO until the SPI DMA word
count register transitions from “1” to “0”. The SPI continues trans-
mitting words until the SPI DMA FIFO is empty.

See Figure 17-9 on page 17-31 for additional information.

For receive DMA operations, if the DMA engine is unable to keep up with
the receive datastream, the receive buffer operates according to the state of
the GM bit in the SPI_CTL register. If GM = 1 and the DMA FIFO is full, the
device continues to receive new data from the MISO pin, overwriting the
older data in the SPI_RDBR register. If GM = 0, and the DMA FIFO is full,
the incoming data is discarded, and the SPI_RDBR register is not updated.
While performing receive DMA, the transmit buffer is assumed to be
empty (and TXE is set). If SZ = 1, the device repeatedly transmits zeros on
the MOSI pin. If SZ = 0, it repeatedly transmits the contents of the
SPI_TDBR register. The TXE underrun condition cannot generate an error
interrupt in this mode.
ADSP-BF51x Blackfin Processor Hardware Reference 17-25

Programming Model
For transmit DMA operations, the master SPI initiates a word transfer
only when there is data in the DMA FIFO. If the DMA FIFO is empty,
the SPI waits for the DMA engine to write to the DMA FIFO before start-
ing the transfer. All aspects of SPI receive operation should be ignored
when configured in transmit DMA mode, including the data in the
SPI_RDBR register, and the status of the RXS and RBSY bits. The RBSY over-
run conditions cannot generate an error interrupt in this mode. The TXE
underrun condition cannot happen in this mode (master DMA TX mode),
because the master SPI will not initiate a transfer if there is no data in the
DMA FIFO.

Writes to the SPI_TDBR register during an active SPI transmit DMA opera-
tion should not occur because the DMA data will be overwritten. Writes
to the SPI_TDBR register during an active SPI receive DMA operation are
allowed. Reads from the SPI_RDBR register are allowed at any time.

DMA requests are generated when the DMA FIFO is not empty (when
TIMOD = b#10), or when the DMA FIFO is not full (when TIMOD = b#11).

Error interrupts are generated when there is an RBSY overflow error condi-
tion (when TIMOD = b#10).

A master SPI DMA sequence may involve back-to-back transmission
and/or reception of multiple DMA work units. The SPI controller sup-
ports such a sequence with minimal core interaction.

Slave Mode DMA Operation
When enabled as a slave with the DMA engine configured to transmit or
receive data, the start of a transfer is triggered by a transition of the SPISS
signal to the active-low state or by the first active edge of SCK, depending
on the state of CPHA.
17-26 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
The following steps illustrate the SPI receive or transmit DMA sequence
in an SPI slave (in response to a master command).

1. The core writes to the appropriate port register(s) to properly con-
figure the SPI for slave mode operation.

2. The processor core writes to the appropriate DMA registers to
enable the SPI DMA channel and configure the necessary work
units, access direction, word count, and so on. For more informa-
tion, see the Direct Memory Access chapter.

3. The processor core writes to the SPI_CTL register to define the
mode of the serial link to be the same as the mode set up in the SPI
master. The TIMOD field will be configured to select either “receive
with DMA” (TIMOD = b#10) or “transmit with DMA”
(TIMOD = b#11) mode.

4. If configured for receive, once the slave select input is active, the
slave starts receiving and transmitting data on SCK edges. The value
in the shift register is loaded into the SPI_RDBR register at the end
of the transfer. As the SPI reads data from the SPI_RDBR register
and writes to the SPI DMA FIFO, it requests a DMA write to
memory. Upon a DMA grant, the DMA engine reads a word from
the SPI DMA FIFO and writes to memory.

If configured for transmit, the SPI requests a DMA read from
memory. Upon a DMA grant, the DMA engine reads a word from
memory and writes to the SPI DMA FIFO. The SPI then reads
data from the SPI DMA FIFO and writes to the SPI_TDBR register,
awaiting the start of the next transfer. Once the slave select input is
ADSP-BF51x Blackfin Processor Hardware Reference 17-27

Programming Model
active, the slave starts receiving and transmitting data on SCK edges.
The value in the SPI_TDBR register is loaded into the shift register at
the start of the transfer.

5. In receive mode, as long as there is data in the SPI DMA FIFO
(FIFO not empty), the SPI slave continues to request a DMA write
to memory. The DMA engine continues to read a word from the
SPI DMA FIFO and writes to memory until the SPI DMA word
count register transitions from “1” to “0”. The SPI slave continues
receiving words on SCK edges as long as the slave select input is
active.

In transmit mode, as long as there is room in the SPI DMA FIFO
(FIFO not full), the SPI slave continues to request a DMA read
from memory. The DMA engine continues to read a word from
memory and write to the SPI DMA FIFO until the SPI DMA word
count register transitions from “1” to “0”. The SPI slave continues
transmitting words on SCK edges as long as the slave select input is
active.

See Figure 17-9 on page 17-31 for additional information.

For receive DMA operations, if the DMA engine is unable to keep up with
the receive datastream, the receive buffer operates according to the state of
the GM bit in the SPI_CTL register. If GM = 1 and the DMA FIFO is full, the
device continues to receive new data from the MOSI pin, overwriting the
older data in the SPI_RDBR register. If GM = 0 and the DMA FIFO is full,
the incoming data is discarded, and the SPI_RDBR register is not updated.
While performing receive DMA, the transmit buffer is assumed to be
empty and TXE is set. If SZ = 1, the device repeatedly transmits zeros on
the MISO pin. If SZ = 0, it repeatedly transmits the contents of the
SPI_TDBR register. The TXE underrun condition cannot generate an error
interrupt in this mode.

For transmit DMA operations, if the DMA engine is unable to keep up
with the transmit stream, the transmit port operates according to the state
17-28 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
of the SZ bit. If SZ = 1 and the DMA FIFO is empty, the device repeatedly
transmits zeros on the MISO pin. If SZ = 0 and the DMA FIFO is empty, it
repeatedly transmits the last word it transmitted before the DMA buffer
became empty. All aspects of SPI receive operation should be ignored
when configured in transmit DMA mode, including the data in the
SPI_RDBR register, and the status of the RXS and RBSY bits. The RBSY over-
run conditions cannot generate an error interrupt in this mode.

Writes to the SPI_TDBR register during an active SPI transmit DMA opera-
tion should not occur because the DMA data will be overwritten. Writes
to the SPI_TDBR register during an active SPI receive DMA operation are
allowed. Reads from the SPI_RDBR register are allowed at any time.

DMA requests are generated when the DMA FIFO is not empty (when
TIMOD = b#10), or when the DMA FIFO is not full (when TIMOD = b#11).

Error interrupts are generated when there is an RBSY overflow error condi-
tion (when TIMOD = b#10), or when there is a TXE underflow error
condition (when TIMOD = b#11).
ADSP-BF51x Blackfin Processor Hardware Reference 17-29

Programming Model
Figure 17-8. Core-Driven SPI Flow Chart

WRITE PORTF_FER TO ENABLE SPI SIGNALS

MASTER OR SLAVE?

CPHA = 1
AND

MSTR = 1

TIMOD = 00

MASTER

SLAVE, MSTR = 0N

X
T J
R
VES

MULTISLAVE
SUPPORT?

Y

SET APPROPRIATE FLSx BITS

TO SET DESIRED SPI BIT RATE

MSTR = 1

TE SPI_CTL TO CONFIGURE SPI HARDWARE AND ENABLE SPI PORT

Y

N

PI_FLG
SLAVE(S)
x BITS

TBDR WITH DATA TO SEND OVER SPI

Y_RDBR
ART

MASTER OR SLAVE?

CPHA = 1
AND

MSTR = 1

TIMOD = 00

MASTER

SLAVE, MSTR = 0N

MULTISLAVE
SUPPORT?

Y

WRITE SPI_FLG TO SET APPROPRIATE FLSx BITS

WRITE SPI_BAUD TO SET DESIRED SPI BIT RATE

MSTR = 1

WRITE SPI_CTL TO CONFIGURE SPI HARDWARE AND ENABLE SPI PORT

Y

N

WRITE SPI_FLG
TO SELECT SLAVE(S)

USING FLGx BITS

WRITE SPI_TBDR WITH DATA TO SEND OVER SPI

Y

N

READ SPI_RDBR
TO START
TRANSFER

WAIT FOR TRANSFER COMPLETE

LAST TRANSFER?
Y

N

TIMOD = 01
Y

N

READ NEW DATA
FROM SPI_RDBR

CPHA = 1
AND

MSTR = 1

N

Y
WRITE SPI_FLG
TO DESELECT

SLAVE(S) USING
FLGx BITS

WRITE SPI_CTL TO DISABLE SPI PORT

WRITE TO PORT REGISTERS TO ENABLE
AND SELECT THE APPROPRIATE SLAVE

SELECT SIGNALS.

WRITE TO PORT REGISTERS TO ENABLE SPI
SIGNALS AND SELECT THE REQUIRED SIGNALS.
17-30 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
Figure 17-9. SPI DMA Flow Chart (Part 1 of 3)

WRITE DESIRED DMA CHANNEL'S
DMA_PERIPHERAL_MAP TO SET AS SPI.

(REPLACE ALL MENTION OF DMA7 REGISTER NAMES
IN THIS FLOW CHART WITH CHOSEN DMAx PREFIX.)

DMA7_CONFIG
FLOW = ?

WRITE DMA7_CONFIG TO CONFIGURE DMA ENGINE

0x4 ARRAY
0x6 SMALL LIST
0x7 LARGE LIST

0x0 STOP
0x1 AUTOBUFFER

POPULATE
DESCRIPTORS

IN MEMORY

WRITE DMA REGISTERS:
DMA7_START_ADDR

DMA7_X_COUNT
DMA7_X_MODIFY

DMA7_CONFIG'S NDSIZE FIELD DETERMINES
WHICH DMA REGISTERS TO INITIALIZE STATICALLY

DMA7_CONFIG
FLOW = ?

0x6 SMALL LIST
0x7 LARGE LIST

0x4 ARRAY

SET
DMA7_CURR_DESC_PTR

TO ADDRESS OF
FIRST DESCRIPTOR

SET
DMA7_NEXT_DESC_PTR

TO ADDRESS OF
FIRST DESCRIPTOR

A

WRITE TO PORT REGISTERS TO ENABLE SPI
SIGNALS AND SELECT THE REQUIRED SIGNALS.
ADSP-BF51x Blackfin Processor Hardware Reference 17-31

Programming Model
Figure 17-10. SPI DMA Flow Chart (Part 2 of 3)

2D DMA?

IS SPI MASTER
OR SLAVE?

Y

N

WRITE DMA REGISTERS:
DMA7_Y_COUNT
DMA7_Y_MODIFY

MASTER

MULTI-SLAVE
SUPPORT?

N

A

SLAVE,
MSTR = 0

Y

WRITE SPI_FLG TO SET APPROPRIATE FLSx BITS

WRITE SPI_BAUD TO SET DESIRED SPI BIT RATE

MSTR = 1

WRITE SPI_CTL TO CONFIGURE SPI PORT

CPHA = 1
AND

MSTR = 1

Y

N

WRITE SPI_FLG
TO SELECT SLAVE(S)

USING FLGx BITS

WRITE DMA7_CONFIG TO ENABLE DMA

WRITE SPI_CTL TO ENABLE SPI

B

WRITE TO PORT
REGISTERS

TO ENABLE SLAVES
17-32 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
Figure 17-11. SPI DMA Flow Chart (Part 3 of 3)

INTERRUPT
REQUESTED?

TERMINATE DMA?

Y

N

CLEAR INTERRUPT BY
WRITING THE DMA_DONE
BIT IN DMA7_IRQ_STATUS

N

TX OR RX DMA?

TX

B

Y

N

WRITE DMA7_CONFIG
TO ENABLE DMA

AGAIN

WAIT FOR DMA_RUN = 0 IN DMA7_IRQ_STATUS

WAIT FOR TWO STRAIGHT READS
OF TXS = 0 IN SPI_STAT

WAIT FOR SPIF = 1 IN SPI_STAT

CPHA = 1
AND

MSTR = 1

Y

N

WRITE SPI_FLG TO
DESELECT SLAVE(S)

VIA FLGx BITS

WRITE SPI_CTL TO DISABLE SPI PORT

WRITE DMA7_CONFIG TO DISABLE DMA

FLOW = STOP

Y

RX
ADSP-BF51x Blackfin Processor Hardware Reference 17-33

SPI Registers
SPI Registers
The SPI peripheral includes a number of user-accessible registers. Some of
these registers are also accessible through the DMA bus. Four registers
contain control and status information: SPI_BAUD, SPI_CTL, SPI_FLG, and
SPI_STAT. Two registers are used for buffering receive and transmit data:
SPI_RDBR and SPI_TDBR. The shift register, SFDR, is internal to the SPI
module and is not directly accessible.

Table 17-3 shows the functions of the SPI registers. Figure 17-12 through
Figure 17-18 on page 17-44 provide details.

Table 17-3. SPI Register Mapping

Register Name Function Notes

SPI_BAUD SPI port
baud control

Value of “0” or “1” disables the serial clock

SPI_CTL SPI port
control

SPE and MSTR bits can also be modified by hardware
(when MODF is set)

SPI_FLG SPI port
flag

Bits 0 and 8 are reserved

SPI_STAT SPI port
status

SPIF bit can be set by clearing SPE in SPI_CTL

SPI_TDBR SPI port
transmit data buffer

Register contents can also be modified by hardware (by
DMA and/or when SZ = 1 in SPI_CTL)

SPI_RDBR SPI port
receive data buffer

When register is read, hardware events can be triggered

SPI_SHADOW SPI port
data

Register has the same contents as SPI_RDBR, but no
action is taken when it is read
17-34 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
SPI Baud Rate (SPI_BAUD) Register
The SPI_BAUD register is used to set the bit transfer rate for a master
device. When configured as a slave, the value written to this register is
ignored.

The serial clock frequency is determined by this formula:

SCK frequency = (peripheral clock frequency SCLK)/(2 × SPI_BAUD)

Writing a value of “0” or “1” to the register disables the serial clock.
Therefore, the maximum serial clock rate is one-fourth the system clock
rate.

Table 17-4 lists several possible baud rate values for SPI_BAUD.

Table 17-4. SPI Master Baud Rate Example

SPI_BAUD Decimal Value SPI Clock (SCK) Divide
Factor

Baud Rate for
SCLK at 100 MHz

0 N/A N/A

1 N/A N/A

2 4 25 MHz

3 6 16.7 MHz

4 8 12.5 MHz

65,535 (0xFFFF) 131,070 763 Hz

Figure 17-12. SPI Baud Rate Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Baud Rate[15:0]
SCLK/(2 SPI_BAUD)

Reset = 0x0000

SPI Baud Rate Register (SPI_BAUD)
ADSP-BF51x Blackfin Processor Hardware Reference 17-35

SPI Registers
SPI Control (SPI_CTL) Register
The SPI_CTL register is used to configure and enable the SPI system. This
register is used to enable the SPI interface, select the device as a master or
slave, and determine the data transfer format and word size.

The term “word” refers to a single data transfer of either 8 bits or 16 bits,
depending on the word length (SIZE) bit in SPI_CTL. There are two special
bits which can also be modified by the hardware: SPE and MSTR.

The TIMOD field is used to specify the action that initiates transfers to/from
the receive/transmit buffers. When set to b#00, a SPI port transaction is
begun when the receive buffer is read. Data from the first read will need to
be discarded since the read is needed to initiate the first SPI port transac-
tion. When set to b#01, the transaction is initiated when the transmit
buffer is written. A value of b#10 selects DMA receive mode and the first
transaction is initiated by enabling the SPI for DMA receive mode. Subse-
quent individual transactions are initiated by a DMA read of the SPI_RDBR
register. A value of 11 selects DMA transmit mode and the transaction is
initiated by a DMA write of the SPI_TDBR register.

The PSSE bit is used to enable the SPISS input for an external master.
When not used, SPISS can be disabled, freeing up a pin for an alternate
function.

The EMISO bit enables the MISO pin as an output. This is needed in an
environment where the master wishes to transmit to various slaves at one
time (broadcast). Only one slave is allowed to transmit data back to the
master. Except for the slave from whom the master wishes to receive, all
other slaves should have this bit cleared.

The SPE and MSTR bits can be modified by hardware when the MODF bit of
the SPI_STAT register is set. See “Mode Fault Error (MODF)” on
page 17-41.
17-36 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
Figure 17-13 provides the bit descriptions for SPI_CTL.

Figure 17-13. SPI Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 0 0 0 0 0 0 0 00

TIMOD[1:0] (Transfer Initiation
Mode)
00 - Start transfer with read of

SPI_RDBR, interrupt when
SPI_RDBR is full

01 - Start transfer with write of
SPI_TDBR, interrupt when
SPI_TDBR is empty

10 - Start transfer with DMA read
of SPI_RDBR, request further
DMA reads as long as SPI DMA
FIFO is not empty

11 - Start transfer with DMA write
of SPI_TDBR, request further
DMA writes as long as SPI DMA
FIFO is not full

SZ (Send Zero)
Send zero or last word when
SPI_TDBR is empty
0 - Send last word
1 - Send zeros

GM (Get More Data)
When SPI_RDBR is full, get
data or discard incoming data
0 - Discard incoming data
1 - Get more data, overwrite

previous data

PSSE (Slave Select Enable)
0 - Disable
1 - Enable

EMISO (Enable MISO)
0 - MISO disabled
1 - MISO enabled

Reset = 0x0400

SPE (SPI Enable)
0 - Disabled
1 - Enabled

WOM (Write Open Drain
Master)
0 - Normal
1 - Open drain

MSTR (Master)
Sets the SPI module as
master or slave
0 - Slave
1 - Master

CPOL (Clock Polarity)
0 - Active high SCK
1 - Active low SCK

CPHA (Clock Phase)
Selects transfer format and
operation mode
0 - SCK toggles from middle

of the first data bit, slave select
pins controlled by hardware

1 - SCK toggles from beginning
of first data bit, slave select
pins controlled by software

LSBF (LSB First)
0 - MSB sent/received first
1 - LSB sent/received first

SIZE (Size of Words)
0 - 8 bits
1 - 16 bits

SPI Control Register (SPI_CTL)
ADSP-BF51x Blackfin Processor Hardware Reference 17-37

SPI Registers
SPI Flag (SPI_FLG) Register
The SPI_FLG register consists of two sets of bits that function as follows.

• Slave select enable (FLSx) bits

Each FLSx bit corresponds to a general purpose port pin. When an
FLSx bit is set, the corresponding port pin is driven as a slave select.
For example, if FLS1 is set in SPI_FLG, the port pin corresponding
to SPISSEL1 is driven as a slave select.

Figure 17-14. SPI Flag Register (example with 7 slave selects)

Reset = 0xFF00

FLS1 (Slave Select Enable 1)
0 - SPISSEL1 disabled
1 - SPISSEL1 enabled

FLS2 (Slave Select Enable 2)
0 - SPISSEL2 disabled
1 - SPISSEL2 enabled

FLS3 (Slave Select Enable 3)
0 - SPISSEL3 disabled
1 - SPISSEL3 enabled

FLS4 (Slave Select Enable 4)
0 - SPISSEL4 disabled
1 - SPISSEL4 enabled

FLS5 (Slave Select Enable 5)
0 - SPISSEL5 disabled
1 - SPISSEL5 enabled

FLS6 (Slave Select Enable 6)
0 - SPISSEL6 disabled
1 - SPISSEL6 enabled

FLS7 (Slave Select Enable 7)
0 - SPISSEL7 disabled
1 - SPISSEL7 enabled

FLG7 (Slave
Select Value 7)
SPISSEL7 value

FLG6 (Slave Select
Value 6)
SPISSEL6 value

FLG5 (Slave Select
Value 5)
SPISSEL5 value

FLG4 (Slave Select
 Value 4)
SPISSEL4 value

FLG3 (Slave Select Value 3)
SPISSEL3 value

FLG2 (Slave Select Value 2)
SPISSEL2 value

FLG1 (Slave Select Value 1)
SPISSEL1 value

SPI Flag Register (SPI_FLG)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 0 0 0 0 0 0 0

(shown for an SPI instance with seven slave selects)
17-38 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
If the FLSx bit is not set, the general-purpose port registers configure and
control the corresponding port pins.

• Slave select value (FLGx) bits

When a port pin is configured as a slave select output, the FLGx bits
can determine the value driven onto the output. If the CPHA bit in
SPI_CTL is set, the output value is set by software control of the
FLGx bits. The SPI protocol permits the slave select line to either
remain asserted (low) or be deasserted between transferred words.
The user must set or clear the appropriate FLGx bits. For example,
setting FLS3 in the SPI_FLG register drives the SPISSEL3 pin as a
slave select. Then, clearing FLG3 in the SPI_FLG register drives the
pin low, and setting FLG3 drives it high. The pin can be cycled high
and low between transfers by setting and clearing FLG3. Otherwise,
the pin remains active (low) between transfers.

If CPHA = 0, the SPI hardware sets the output value and the FLGx
bits are ignored. The SPI protocol requires that the slave select be
deasserted between transferred words. In this case, the SPI hard-
ware controls the pins. For example, to use the slave select function
on a port pin to which it is mapped, it is only necessary to set the
appropriate FLS bit in SPI_FLG. It is not necessary to write to an FLG
bit, because the SPI hardware automatically drives the port pin.
ADSP-BF51x Blackfin Processor Hardware Reference 17-39

SPI Registers
SPI Status (SPI_STAT) Register
The SPI_STAT register is used to detect when an SPI transfer is complete or
if transmission/reception errors occur. The SPI_STAT register can be read
at any time.

Some of the bits in SPI_STAT are read-only and other bits are sticky. Bits
that provide information only about the SPI are read-only. These bits are
set and cleared by the hardware. Sticky bits are set when an error condi-
tion occurs. These bits are set by hardware and must be cleared by
software. To clear a sticky bit, the user must write a “1” to the desired bit
position of SPI_STAT. For example, if the TXE bit is set, the user must write
a “1” to bit 2 of SPI_STAT to clear the TXE error condition. This allows the
user to read SPI_STAT without changing its value.

 Sticky bits are cleared on a reset, but are not cleared on an SPI
disable.

See Figure 17-15 on page 17-40 for more information.

Figure 17-15. SPI Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0001

SPIF (SPI Finished) - RO
Set when SPI single word
transfer complete

MODF (Mode Fault Error) - W1C
Set in a master device when
some other device tries to
become the master

TXE (Transmission Error) - W1C
Set when transmission
occurred with no new data in
SPI_TDBR

SPI Status Register (SPI_STAT)

TXCOL (Transmit Collision Error) - W1C
When set, corrupt data may
have been transmitted

RXS (RX Data Buffer Status) - RO
0 - Empty
1 - Full

RBSY (Receive Error) - W1C
Set when data is received with
receive buffer full

TXS (SPI_TDBR Data Buffer Status) - RO
0 - Empty
1 - Full
17-40 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
Mode Fault Error (MODF)

The MODF bit is set in SPI_STAT when the SPISS input pin of a device
enabled as a master is driven low by some other device in the system. This
occurs in multimaster systems when another device is also trying to be the
master. To enable this feature, the PSSE bit in SPI_CTL must be set. This
contention between two drivers can potentially damage the driving pins.
As soon as this error is detected, these actions occur:

• The MSTR control bit in SPI_CTL is cleared, configuring the SPI
interface as a slave

• The SPE control bit in SPI_CTL is cleared, disabling the SPI system

• The MODF status bit in SPI_STAT is set

• An SPI error interrupt is generated

These four conditions persist until the MODF bit is cleared by software.
Until the MODF bit is cleared, the SPI cannot be re-enabled, even as a slave.
Hardware prevents the user from setting either SPE or MSTR while MODF is
set.

When MODF is cleared, the interrupt is deactivated. Before attempting to
re-enable the SPI as a master, the state of the SPISS input pin should be
checked to make sure the pin is high. Otherwise, once SPE and MSTR are
set, another mode fault error condition immediately occurs.

When SPE and MSTR are cleared, the SPI data and clock pin drivers (MOSI,
MISO, and SCK) are disabled. However, the slave select output pins revert to
being controlled by the general-purpose I/O port registers. This could lead
to contention on the slave select lines if these lines are still driven by the
processor. To ensure that the slave select output drivers are disabled once
an MODF error occurs, the program must configure the general-purpose I/O
port registers appropriately.

When enabling the MODF feature, the program must configure as inputs all
of the port pins that will be used as slave selects. Programs can do this by
ADSP-BF51x Blackfin Processor Hardware Reference 17-41

SPI Registers
configuring the direction of the port pins prior to configuring the SPI.
This ensures that, once the MODF error occurs and the slave selects are auto-
matically reconfigured as port pins, the slave select output drivers are
disabled.

Transmission Error (TXE)

The TXE bit is set in SPI_STAT when all the conditions of transmission are
met, and there is no new data in SPI_TDBR (SPI_TDBR is empty). In this
case, the contents of the transmission depend on the state of the SZ bit in
SPI_CTL. The TXE bit is sticky (W1C).

Reception Error (RBSY)

The RBSY flag is set in the SPI_STAT register when a new transfer is com-
pleted, but before the previous data can be read from SPI_RDBR. The state
of the GM bit in the SPI_CTL register determines whether SPI_RDBR is
updated with the newly received data. The RBSY bit is sticky (W1C).

Transmit Collision Error (TXCOL)

The TXCOL flag is set in SPI_STAT when a write to SPI_TDBR coincides with
the load of the shift register. The write to SPI_TDBR can be by software or
the DMA. The TXCOL bit indicates that corrupt data may have been loaded
into the shift register and transmitted. In this case, the data in SPI_TDBR
may not match what was transmitted. This error can easily be avoided by
proper software control. The TXCOL bit is sticky (W1C).

SPI Transmit Data Buffer (SPI_TDBR) Register
The SPI_TDBR register is a 16-bit read-write register. Data is loaded into
this register before being transmitted. Just prior to the beginning of a data
transfer, the data in SPI_TDBR is loaded into the internal shift register
SFDR. A read of SPI_TDBR can occur at any time and does not interfere with
or initiate SPI transfers.
17-42 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
When the DMA is enabled for transmit operation, the DMA engine loads
data into this register for transmission just prior to the beginning of a data
transfer. A write to SPI_TDBR should not occur in this mode because this
data will overwrite the DMA data to be transmitted.

When the DMA is enabled for receive operation, the contents of SPI_TDBR
are repeatedly transmitted. A write to SPI_TDBR is permitted in this mode,
and this data is transmitted.

If the SZ control bit in the SPI_CTL register is set, SPI_TDBR may be reset to
zero under certain circumstances.

If multiple writes to SPI_TDBR occur while a transfer is already in progress,
only the last data written is transmitted. None of the intermediate values
written to SPI_TDBR are transmitted. Multiple writes to SPI_TDBR are pos-
sible, but not recommended.

SPI Receive Data Buffer (SPI_RDBR) Register
The SPI_RDBR register is a 16-bit read-only register. At the end of a data
transfer, the data in the shift register is loaded into SPI_RDBR. During a
DMA receive operation, the data in SPI_RDBR is automatically read by the
DMA controller. When SPI_RDBR is read by software, the RXS bit in the
SPI_STAT register is cleared and an SPI transfer may be initiated (if
TIMOD = b#00).

Figure 17-16. SPI Transmit Data Buffer Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Transmit Data Buffer[15:0]

SPI Transmit Data Buffer Register (SPI_TDBR)
ADSP-BF51x Blackfin Processor Hardware Reference 17-43

Programming Examples
SPI RDBR Shadow (SPI_SHADOW) Register
The SPI_SHADOW register is provided for use in debugging software. This
register is at a different address than the receive data buffer, SPI_RDBR, but
its contents are identical to that of SPI_RDBR. When a software read of
SPI_RDBR occurs, the RXS bit in SPI_STAT is cleared and an SPI transfer
may be initiated (if TIMOD = b#00 in SPI_CTL). No such hardware action
occurs when the SPI_SHADOW register is read. The SPI_SHADOW register is
read-only.

Programming Examples
This section includes examples (Listing 17-1 through Listing 17-8 on
page 17-52) for both core-generated and DMA-based transfers. Each code
example assumes that the appropriate processor header files are included.

Figure 17-17. SPI Receive Data Buffer Register

Figure 17-18. SPI RDBR Shadow Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Receive Data Buffer[15:0]

SPI Receive Data Buffer Register (SPI_RDBR)
Read Only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SPI_RDBR Shadow[15:0]

SPI RDBR Shadow Register (SPI_SHADOW)
Read Only

Reset = 0x0000
17-44 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
Core-Generated Transfer
The following core-driven master-mode SPI example shows how to initial-
ize the hardware, signal the start of a transfer, handle the interrupt and
issue the next transfer, and generate a stop condition.

Initialization Sequence

Before the SPI can transfer data, the registers must be configured as
follows.

Listing 17-1. SPI Register Initialization

SPI_Register_Initialization:

P0.H = hi(SPI_FLG);

P0.L = lo(SPI_FLG);

R0 = W[P0] (Z);

BITSET (R0,0x7); /* FLS7 */

W[P0] = R0; /* Enable slave-select output pin */

P0.H = hi(SPI_BAUD);

P0.L = lo(SPI_BAUD);

R0.L = 0x208E; /* Write to SPI Baud rate register */

W[P0] = R0.L; ssync; /* If SCLK = 133 MHz, SPI clock ~= 8 kHz

*/

/* Setup SPI Control Register */

/***

 * TIMOD [1:0] = 00 : Transfer On RDBR Read.

 * SZ [2] = 0 : Send Last Word When TDBR Is Empty

 * GM [3] = 1 : Overwrite Previous Data If RDBR Is Full

 * PSSE [4] = 0 : Disables Slave-Select As Input (Master)

 * EMISO [5] = 0 : MISO Disabled For Output (Master)

 * [7] and [6] = 0 : RESERVED

 * SIZE [8] = 1 : 16 Bit Word Length Select
ADSP-BF51x Blackfin Processor Hardware Reference 17-45

Programming Examples
 * LSBF [9] = 0 : Transmit MSB First

 * CPHA [10] = 0 : Hardware Controls Slave-Select Outputs

 * CPOL [11] = 1 : Active Low Serial Clock

 * MSTR [12] = 1 : Device Is Master

 * WOM [13] = 0 : Normal MOSI/MISO Data Output (No Open Drain)

 * SPE [14] = 1 : SPI Module Is Enabled

 * [15] = 0 : RESERVED

 ***/

P0.H = hi(SPI_CTL) ;

P0.L = lo(SPI_CTL) ;

R0 = 0x5908;

W[P0] = R0.L; ssync; /* Enable SPI as MASTER */

Starting a Transfer

After the initialization procedure in the given master mode, a transfer
begins following a dummy read of SPI_RDBR. Typically, known data which
is desired to be transmitted to the slave is preloaded into the SPI_TDBR. In
the following code, P1 is assumed to point to the start of the 16-bit trans-
mit data buffer and P2 is assumed to point to the start of the 16-bit receive
data buffer. In addition, the user must ensure appropriate interrupts are
enabled for SPI operation.

Listing 17-2. Initiate Transfer

Initiate_Transfer:

P0.H = hi(SPI_FLG);

P0.L = lo(SPI_FLG);

R0 = W[P0] (Z);

BITCLR (R0,0xF); /* FLG7 */

W[P0] = R0; /* Drive 0 on enabled slave-select pin */

P0.H = hi(SPI_TDBR); /* SPI Transmit Register */

P0.L = lo(SPI_TDBR);
17-46 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
R0 = W[P1++] (z); /* Get First Data To Be Transmitted

And Increment Pointer */

W[P0] = R0; /* Write to SPI_TDBR */

P0.H = hi(SPI_RDBR);

P0.L = lo(SPI_RDBR);

R0 = W[P0] (z); /* Dummy read of SPI_RDBR kicks off transfer */

Post Transfer and Next Transfer

Following the transfer of data, the SPI generates an interrupt, which is ser-
viced if the interrupt is enabled during initialization. In the interrupt
routine, software must write the next value to be transmitted prior to
reading the byte received. This is because a read of the SPI_RDBR initiates
the next transfer.

Listing 17-3. SPI Interrupt Handler

SPI_Interrupt_Handler:

Process_SPI_Sample:

P0.H = hi(SPI_TDBR); /* SPI transmit register */

P0.L = lo(SPI_TDBR);

R0 = W[P1++](z); /* Get next data to be transmitted */

W[P0] = R0.l; /* Write that data to SPI_TDBR */

Kick_Off_Next:

P0.H = hi(SPI_RDBR); /* SPI receive register */

P0.L = lo(SPI_RDBR);

R0 = W[P0] (z); /* Read SPI receive register (also kicks off

next transfer) */

W[P2++] = R0; /* Store received data to memory */

RTI; /* Exit interrupt handler */
ADSP-BF51x Blackfin Processor Hardware Reference 17-47

Programming Examples
Stopping

In order for a data transfer to end after the user has transferred all data,
the following code can be used to stop the SPI. Note that this is typically
done in the interrupt handler to ensure the final data has been sent in its
entirety.

Listing 17-4. Stopping SPI

Stopping_SPI:

P0.H = hi(SPI_CTL);

P0.L = lo(SPI_CTL);

R0 = W[P0];

BITCLR(R0, 14); /* Clear SPI enable bit */

W[P0] = R0.L; ssync; /* Disable SPI */

DMA-Based Transfer
The following DMA-driven master-mode SPI autobuffer example shows
how to initialize DMA, initialize SPI, signal the start of a transfer, and
generate a stop condition.

DMA Initialization Sequence

The following code initializes the DMA to perform a 16-bit memory read
DMA operation in autobuffer mode, and generates an interrupt request
when the buffer has been sent. This code assumes that P1 points to the
start of the data buffer to be transmitted and that NUM_SAMPLES is a defined
macro indicating the number of elements being sent.

Listing 17-5. DMA Initialization

Initialize_DMA: /* Assume DMA7 as the channel for SPI DMA */

P0.H = hi(DMA7_CONFIG);

P0.L = lo(DMA7_CONFIG);
17-48 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
R0 = 0x1084(z); /* Autobuffer mode, IRQ on complete, linear

16-bit, mem read */

w[P0] = R0;

P0.H = hi(DMA7_START_ADDR);

P0.L = lo(DMA7_START_ADDR);

[p0] = p1; /* Start address of TX buffer */

P0.H = hi(DMA7_X_COUNT);

P0.L = lo(DMA7_X_COUNT);

R0 = NUM_SAMPLES;

w[p0] = R0; /* Number of samples to transfer */

R0 = 2;

P0.H = hi(DMA7_X_MODIFY);

P0.L = lo(DMA7_X_MODIFY);

w[p0] = R0; /* 2 byte stride for 16-bit words */

R0 = 1; /* single dimension DMA means 1 row */

P0.H = hi(DMA7_Y_COUNT);

P0.L = lo(DMA7_Y_COUNT);

w[p0] = R0;

SPI Initialization Sequence

Before the SPI can transfer data, the registers must be configured as
follows.

Listing 17-6. SPI Initialization

SPI_Register_Initialization:

P0.H = hi(SPI_FLG);

P0.L = lo(SPI_FLG);

R0 = W[P0] (Z);
ADSP-BF51x Blackfin Processor Hardware Reference 17-49

Programming Examples
BITSET (R0,0x7); /* FLS7 */

W[P0] = R0; /* Enable slave-select output pin */

P1.H = hi(SPI_BAUD);

P1.L = lo(SPI_BAUD);

R0.L = 0x208E; /* Write to SPI baud rate register */

W[P0] = R0.L; ssync; /* If SCLK = 133MHz, SPI clock ~= 8kHz */

/* Setup SPI Control Register */

/***

 * TIMOD [1:0] = 11 : Transfer on DMA TDBR write

 * SZ [2] = 0 : Send last word when TDBR is empty

 * GM [3] = 1 : Discard incoming data if RDBR is full

 * PSSE [4] = 0 : Disables slave-select as input (master)

 * EMISO [5] = 0 : MISO disabled for output (master)

 * [7] and [6] = 0 : RESERVED

 * SIZE [8] = 1 : 16 Bit word length select

 * LSBF [9] = 0 : Transmit MSB first

 * CPHA [10] = 0 : Hardware Controls Slave-Select Outputs

 * CPOL [11] = 1 : Active LOW serial clock

 * MSTR [12] = 1 : Device is master

 * WOM [13] = 0 : Normal MOSI/MISO data output (no open

drain)

 * SPE [14] = 0 : SPI module is disabled

 * [15] = 0 : RESERVED

 ***/

/* Configure SPI as MASTER */

R1 = 0x190B(z); /* Leave disabled until DMA is enabled */

P1.L = lo(SPI_CTL);

W[P1] = R1; ssync;
17-50 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
Starting a Transfer

After the initialization procedure in the given master mode, a transfer
begins following enabling of SPI. However, the DMA must be enabled
before enabling the SPI.

Listing 17-7. Starting a Transfer

Initiate_Transfer:

P0.H = hi(DMA7_CONFIG);

P0.L = lo(DMA7_CONFIG);

R2 = w[P0](z);

BITSET (R2, 0); /*Set DMA enable bit */

w[p0] = R2.L; /* Enable TX DMA */

P4.H = hi(SPI_CTL);

P4.L = lo(SPI_CTL);

R2=w[p4](z);

BITSET (R2, 14); /* Set SPI enable bit */

w[p4] = R2; /* Enable SPI */

Stopping a Transfer

In order for a data transfer to end after the DMA has transferred all
required data, the following code is executed in the SPI DMA interrupt
handler. The example code below clears the DMA interrupt, then waits
for the DMA engine to stop running. When the DMA engine has
completed, SPI_STAT is polled to determine when the transmit buffer is
empty. If there is data in the SPI Transmit FIFO, it is loaded as soon as
the TXS bit clears. A second consecutive read with the TXS bit clear indi-
cates the FIFO is empty and the last word is in the shift register. Finally,
polling for the SPIF bit determines when the last bit of the last word has
been shifted out. At that point, it is safe to shut down the SPI port and the
DMA engine.
ADSP-BF51x Blackfin Processor Hardware Reference 17-51

Programming Examples
Listing 17-8. Stopping a Transfer

SPI_DMA_INTERRUPT_HANDLER:

P0.L = lo(DMA7_IRQ_STATUS);

P0.H = hi(DMA7_IRQ_STATUS);

R0 = 1 ;

W[P0] = R0 ; /* Clear DMA interrupt */

/* Wait for DMA to complete */

P0.L = lo(DMA7_IRQ_STATUS);

P0.H = hi(DMA7_IRQ_STATUS);

R0 = DMA_RUN; /* 0x08 */

CHECK_DMA_COMPLETE: /* Poll for DMA_RUN bit to clear */

R3 = W[P0] (Z);

R1 = R3 & R0;

CC = R1 == 0;

IF !CC JUMP CHECK_DMA_COMPLETE;

/* Wait for TXS to clear */

P0.L = lo(SPI_STAT);

P0.H = hi(SPI_STAT);

R1 = TXS; /* 0x08 */

Check_TXS: /* Poll for TXS = 0 */

R2 = W[P0] (Z);

R2 = R2 & R1;

CC = R0 == 0;

IF !CC JUMP Check_TXS;

R2 = W[P0] (Z); /* Check if TXS stays clear for 2 reads */

R2 = R2 & R1;

CC = R0 == 0;
17-52 ADSP-BF51x Blackfin Processor Hardware Reference

SPI-Compatible Port Controller
IF !CC JUMP Check_TXS;

/* Wait for final word to transmit from SPI */

Final_Word:

R0 = W[P0](Z);

R2 = SPIF; /* 0x01 */

R0 = R0 & R2;

CC = R0 == 0;

IF CC JUMP Final_Word;

Disable_SPI:

P0.L = lo(SPI_CTL);

P0.H = hi(SPI_CTL);

R0 = W[P0] (Z);

BITCLR (R0,0xe); /* Clear SPI enable bit */

W[P0] = R0; /* Disable SPI */

Disable_DMA:

P0.L = lo(DMA7_CONFIG);

P0.H = hi(DMA7_CONFIG);

R0 = W[P0](Z);

BITCLR (R0,0x0); /* Clear DMA enable bit */

W[P0] = R0; /* Disable DMA */

RTI; /* Exit Handler */

Unique Information for the ADSP-BF51x
Processor

None.
ADSP-BF51x Blackfin Processor Hardware Reference 17-53

Unique Information for the ADSP-BF51x Processor

17-54 ADSP-BF51x Blackfin Processor Hardware Reference

SPI Serial Flash
18 SPI SERIAL FLASH

The ADSP-BF512F/ADSP-BF514F/ADSP-BF516F/ADSP-BF518F pro-
cessors contain a SPI flash memory (internal functional block diagram, see
Figure 18-1) within the package of the processor and connected to SPI0
(see Figure 18-2). See “SPI0 and Internal Flash Usage” in Chapter 9, Gen-
eral-Purpose Ports for information on configuring the ports to
communicate with the SPI flash.

The SPI flash memory has a 4M bit capacity and 1.8 V (nominal) operat-
ing voltage. The program/erase endurance is 100,000 cycles per block, and
this memory has greater than 100 years data retention capability. Also
included are support for software write protection and support for fast
erase and byte-program.

The processors internally connect to the flash memory die with the
SPI0SCK, SPI0SEL4 or PH8, SPI0MOSI, and SPI0MISO signals similar to an
external SPI flash (for signal descriptions, see Table 18-1). To further pro-
vide a secure processing environment, these internally connected signals
are not exposed outside of the package. For this reason, programming the
ADSP-BF51xF flash memory is performed by running code on the proces-
sor. It cannot be programmed from external signals and data transfers
between the SPI flash and the processor cannot be probed externally. The
flash memory has the following additional features:
ADSP-BF51x Blackfin Processor Hardware Reference 18-1

• Serial Interface Architecture—SPI compatible with mode 0 and
mode 3

• Superior Reliability—endurance of 100,000 cycles and greater than
100 years data retention

• Flexible Erase Capability—uniform 4K byte sectors and uniform
32 and 64K byte overlay blocks

• Fast Erase and Byte-Program—chip-erase time=125 ms (typical),
sector-/block-erase time=62 ms (typical), byte-program time=50 ?S
(typical)

• Auto Address Increment (AAI) Programming—decreases total
chip programming time over byte-program operations

• End-of-Write Detection—software polling the BUSY bit in status
register, busy status readout on SO pin

• Software Write Protection—write protection through block-pro-
tection bits in status register
18-2 ADSP-BF51x Blackfin Processor Hardware Reference

SPI Serial Flash
Figure 18-1. SPI Flash Internal Functional Block Diagram

ADDRESS
BUFFERS

AND
LATCHES

CONTROL LOGIC

FLASH
MEMORY

X-DECODER

I/O BUFFERS
AND

DATA LATCHES

Y-DECODER

SERIAL INTERFACE

CE SOSISCK RST
ADSP-BF51x Blackfin Processor Hardware Reference 18-3

Figure 18-2. Flash Memory Block Diagram

MISO_EXT

SPICLK_EXT

SEL4

Combinational Logic

SPICLK_INT

MOSI_INT

SPISS

MOSI_EXT

MISO_INT

SEL4

SPICLK

MOSI

MISO

M
U
X

L
O
G
I
C

SPISS

VDD

GND

RST

SPI Flash Die

SO

SCK

CE

SI

VDDFLASH

GND

RESET

PG13-SPI0MISO

PG12-SPI0SCK

PG14-SPI0MOSI

PG11-SPI0SS

SEL4 PH8

RESET

SEL4 or PH8 MISO_EXT, SPICLK_EXT, MOSI_EXT

0

1

Three-state

As programmed

Combinational Logic
Truth Table

ADSP-BF51xF
Package

Signals between the processor and the flash
operate at the VDDFLASH voltage level.

SPI0 signals external
to the processor
operate at the
VDDEXT voltage
level.

SPI0

ADSP-BF51x Die
18-4 ADSP-BF51x Blackfin Processor Hardware Reference

SPI Serial Flash
Memory Organization
The memory array is organized in uniform 4K byte sectors with 16K byte,
32K byte, and 64K byte overlay erasable blocks.

Device Operation
The memory is accessed through the SPI (serial peripheral interface) bus
compatible protocol. The SPI bus consist of four control lines; chip enable
(CE) is used to select the device, and data is accessed through the serial data
input (SI), serial data output (SO), and serial clock (SCK).

The memory supports both mode 0 (0,0) and mode 3 (1,1) of SPI bus
operations. The difference between the two modes, as shown in
Figure 18-3, is the state of the SCK signal when the bus master is in
standby mode and no data is being transferred. The SCK signal is low for

Table 18-1. Internal Flash Memory Signal Descriptions

Symbol Pin Name Function

SCK Serial Clock To provide the timing of the serial interface.
Commands, addresses, or input data are latched on the rising edge
of the clock input, while output data is shifted out on the falling
edge of the clock input.

SI Serial Data Input Transfers commands, addresses, or data serially into the device.
Inputs are latched on the rising edge of the serial clock.

SO Serial Data Output Transfers data serially out of the device.
Data is shifted out on the falling edge of the serial clock.
Flash busy status pin in AAI mode if SO is configured as a hardware
RY/BY pin.

CE Chip Enable The device is enabled by a high-to-low transition on CE. CE must
remain low for the duration of any command sequence.

RST Reset Resets the operation of the device and the internal logic. This sig-
nal is tied to the ADSP-BF51x RESET signal.
ADSP-BF51x Blackfin Processor Hardware Reference 18-5

Reset Mode
mode 0 and SCK signal is high for mode 3. For both modes, the serial data
in (SI) is sampled at the rising edge of the SCK clock signal and the serial
data output (SO) is driven after the falling edge of the SCK clock signal.

Reset Mode
Driving the RESET pin low resets the flash device. Driving the RESET pin
high puts the device in normal operating mode. The SO pin is in high
impedance state while the device is in reset. The status register is reset to
its power-up state upon a successful reset. See Table 18-3 for default
power-up modes. A device reset during an active program or erase opera-
tion aborts the operation and data of the targeted address range may be
corrupted or lost due to the aborted erase or program operation. The
device exits AAI programming mode in progress and places the SO pin in
high impedance state.

Figure 18-3. SPI Protocol

MODE 3

SCK

SI

SO

CE

MODE 3

DON'T CARE

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

MODE 0MODE 0

HIGH IMPEDANCE
MSB

MSB
18-6 ADSP-BF51x Blackfin Processor Hardware Reference

SPI Serial Flash
Figure 18-4. Reset Timing Diagram

Table 18-2. Conditions to Execute Write-Status-Register (WRSR)
Instruction

BPL Execute WRSR Instruction

1 Not Allowed

0 Allowed

CE

SO

SI

SCK

RST

tRECR
tRECP
tRECE

tRST

tRHZ
ADSP-BF51x Blackfin Processor Hardware Reference 18-7

Status Register
Status Register
The software status register provides status on whether the flash memory
array is available for any read or write operation, whether the device is
write enabled, and the state of the memory write protection. During an
internal erase or program operation, the status register may be read only to
determine the completion of an operation in progress. Table 18-3
describes the function of each bit in the software status register.

Table 18-3. Software Status Register

Bit Name Function Default at
Power-up

Read/Write

0 BUSY 1 = Internal write operation is in progress
0 = No internal write operation is in progress

0 R

1 WEL 1 = Device is memory write-enabled
0 = Device is not memory write-enabled

0 R

2 BP0 Indicate current level of block write protection
(See Table 18-4.)

1 R/W

3 BP1 Indicate current level of block write protection
(See Table 18-4.)

1 R/W

4 BP2 Indicate current level of block write protection
(See Table 18-4.)

1 R/W

5 RES Reserved for future use 0 N/A

6 AAI Auto address increment programming status
1 = AAI programming mode
0 = Byte-program mode

0 R

7 BPL 1 = BP1 and BP0 are read-only bits
0 = BP1 and BP0 are read/writable

0 R/W
18-8 ADSP-BF51x Blackfin Processor Hardware Reference

SPI Serial Flash
Busy
The BUSY bit determines whether there is an internal erase or program
operation in progress. A ‘1’ for the BUSY bit indicates the device is busy
with an operation in progress. A ‘0’ indicates the device is ready for the
next valid operation.

Write Enable Latch (WEL)
The write-enable-latch bit indicates the status of the internal
write-enable-latch memory. If the WEL bit is set to ‘1’, it indicates the
device is write-enabled. If the bit is set to ‘0’ (reset), it indicates the device
is not write-enabled and does not accept any write (program/erase) com-
mands. The write-enable-latch bit is automatically reset under the
following conditions:

• Device reset

• Power-up

• Write-disable (WRDI) instruction completion

• Byte-program instruction completion

• Auto address increment (AAI) programming is completed or
reached its highest unprotected memory address

• Sector-erase instruction completion

• Block-erase instruction completion

• Chip-erase instruction completion

• Write-status-register instructions
ADSP-BF51x Blackfin Processor Hardware Reference 18-9

Status Register
Auto Address Increment (AAI)
The auto address increment programming status bit provides status on
whether the device is in AAI programming mode or byte-program mode.
The default at power-up is byte-program mode.

Block-Protection (BP2, BP1, BP0)
The block-protection (BP1, BP0) bits define the size of the memory area to
be software-protected against any memory write (program or erase) opera-
tion. The write-status-register (WRSR) instruction is used to program the
BP1 and BP0 bits as long as WP is high or the block-protect-lock (BPL) bit is
‘0’. Chip-erase can only be executed if block-protection bits are all ‘0’.
After power-up, BP2, BP1, and BP0 are set to defaults. See Table 18-3 for
defaults at power-up.

Block-Protection Lock-Down (BPL)
When BPL is set to ‘1’, it prevents any further alteration of the BPL, BP1,
and BP0 bits. After power-up, the BPL bit is reset to ‘0’.

Table 18-4. Software Status Register Block-Protection

Status Register Bit Protected Memory Address

Protection Level Protected Blocks BP2 BP1 BP0 4M bit

None None 0 0 0 None

1 (Upper Eighth Memory) Blocks 14 through 15 0 0 1 0x70000–0x7FFFF

2 (Upper Quarter Memory) Blocks 12 through 15 0 1 0 0x60000–0x7FFFF

3 (Upper Half Memory) Blocks 8 through 15 0 1 1 0x40000–0x7FFFF

4 (Full Memory) Blocks 0 through 15 1 0 0 0x00000–0x7FFFF

5 (Full Memory) Blocks 0 through 15 1 0 1 0x00000–0x7FFFF

6 (Full Memory) Blocks 0 through 15 1 1 0 0x00000–0x7FFFF

7 (Full Memory) Blocks 0 through 15 1 1 1 0x00000–0x7FFFF
18-10 ADSP-BF51x Blackfin Processor Hardware Reference

SPI Serial Flash

Instructions
Instructions are used to read, write (erase and program), and configure the
flash memory. The instruction bus cycles are 8 bits each for commands
(op code), data, and addresses. The write-enable (WREN) instruction must
be executed prior to byte-program, auto-address-increment (AAI) pro-
gramming, sector-erase, block-erase, write-status-register, or chip-erase
instructions. The complete instructions are provided in Table 18-5. All
instructions are synchronized off a high-to-low transition of CE. Inputs are
accepted on the rising edge of SCK starting with the most significant bit. CE
must be driven low before an instruction is entered and must be driven
high after the last bit of the instruction has been shifted in (except for
read, read-ID, and read-status-register instructions). Any low-to-high
transition on CE, before receiving the last bit of an instruction bus cycle,
terminates the instruction in progress and returns the device to standby
mode. Instruction commands (op code), addresses, and data are all input
from the most significant bit (MSB) first.

Table 18-5. Device Operation Instructions

Instruction Description Op Code
Cycle1

Address
Cycle(s)2

Dummy
Cycle(s)

Data
Cycle(s)

Maximum
Frequency

Read Read memory b#0000 0011
(0x03)

3 0 1 to 20 MHz

High-Speed Read Read memory at
higher speed

b#0000 1011
(0x0B)

3 1 1 to 25 MHz

4K Byte
Sector-Erase3

Erase 4K byte of
memory array

b#0010 0000
(0x20)

3 0 0

32K Byte
Block-Erase4

Erase 32K byte
block of memory
array

b#0101 0010
(0x52)

3 0 0
ADSP-BF51x Blackfin Processor Hardware Reference 18-11

Instructions

64K Byte
Block-Erase5

Erase 64K byte
block of memory
array

b#1101 1000
(0xD8)

3 0 0 25 MHz

Chip-Erase Erase full memory
array

b#0110 0000
(0x60) or
b#1100 0111
(0xC7)

0 0 0

Byte-Program To program one
data byte

b#0000 0010
(0x02)

3 0 1

AAI Word
Program6

Auto address
increment
programming

b#1010 1101
(0xAD)

3 0 2 to

RDSR7 Read-Status-
Register

b#0000 0101
(0x05)

0 0 1 to

EWSR8 Enable-Write-
Status-Register

b#0110 0000
(0x50)

0 0 0

WRSR Write-Status-
Register

b#0000 0001
(0x01)

0 0 1

WREN8 Write-Enable b#0000 0110
(0x06)

0 0 0

WRDI Write-Disable b#0000 0100
(0x04)

0 0 0

RDID9 Read-ID b#1001 0000
(0x90) or
b#1010 1011
(0xAB)

3 0 1 to

Table 18-5. Device Operation Instructions (Continued)

Instruction Description Op Code
Cycle1

Address
Cycle(s)2

Dummy
Cycle(s)

Data
Cycle(s)

Maximum
Frequency
18-12 ADSP-BF51x Blackfin Processor Hardware Reference

SPI Serial Flash

r

-

-

,

.

-

EBSY Enable SO to
output RY/BY
status during AAI
programming

b#0111 0000
(0x70)

0 0 0 25 MHz

DBSY Disable SO to out-
put RY/BY status
during AAI pro-
gramming

b#1000 0000
(0x80)

0 0 0

JEDEC-ID JEDEC ID read b#1001 1111
(0x9F)

0 0 3 to

1 One bus cycle is eight clock periods.
2 Address bits above the most significant bit of each density can be VIL or VIH.
3 4K byte sector-erase addresses: use AMS-A12, remaining addresses are don’t care but must be set eithe

at VIL or VIH.
4 32K byte block-erase addresses: use AMS-A15, remaining addresses are don’t care but must be set ei

ther at VIL or VIH.
5 64K byte block-erase addresses: use AMS-A16, remaining addresses are don’t care but must be set ei

ther at VIL or VIH.
6 To continue programming to the next sequential address location, enter the 8-bit command, ADH

followed by 2 bytes of data to be programmed. Data byte 0 is programmed into the initial address
[A23-A1] with A0 = 0, and data byte 1 is programmed into the initial address [A23-A1] with A0 = 1

7 The read-status-register is continuous with ongoing clock cycles until terminated by a low-to-high
transition on CE.

8 Either EWSR or WREN followed by WRSR writes to the status register. The EWSR-WRSR se-
quence provides backward compatibility. The WREN-WRSR sequence is recommended for new de
signs.

9 Manufacturer’s ID is read with A0 = 0, and Device ID is read with A0 = 1. All other address bits are
0x00. The manufacturer’s ID and device ID output stream is continuous until terminated by a
low-to-high transition on CE.

Table 18-5. Device Operation Instructions (Continued)

Instruction Description Op Code
Cycle1

Address
Cycle(s)2

Dummy
Cycle(s)

Data
Cycle(s)

Maximum
Frequency
ADSP-BF51x Blackfin Processor Hardware Reference 18-13

Instructions
Read (20 MHz)
The read instruction, 0x03, supports up to 20 MHz read. The device out-
puts a data stream starting from the specified address location. The data
stream is continuous through all addresses until terminated by a
low-to-high transition on CE. The internal address pointer automatically
increments until the highest memory address is reached. Once the highest
memory address is reached, the address pointer automatically increments
to the beginning (wraparound) of the address space. For example, for
2M bit density, once the data from the address location 0x3FFFF is read,
the next output is from address location 0x000000. The read instruction
is initiated by executing an 8-bit command, 0x03, followed by address bits
A23-A0. CE must remain active low for the duration of the read cycle. See
Figure 18-5 for the read sequence.

Figure 18-5. Read Sequence

CE

SO

SI

SCK

ADD.

0 1 2 3 4 5 6 7 8

ADD. ADD.03

HIGH IMPEDANCE

15 16 23 24 31 32 39 40 7047 48 55 56 63 64

N+2 N+3 N+4N N+1
DOUT

MSB MSB

MSB

MODE 0

MODE 3

DOUT DOUT DOUT DOUT
18-14 ADSP-BF51x Blackfin Processor Hardware Reference

SPI Serial Flash
High-Speed-Read (25 MHz)
The high-speed-read instruction supporting up to 25 MHz read is initi-
ated by executing an 8-bit command, 0x0B, followed by address bits
[A23-A0] and a dummy byte. CE must remain active low for the duration
of the high-speed-read cycle. See Figure 18-6 for the high-speed-read
sequence.

Following a dummy cycle, the high-speed-read instruction outputs the
data starting from the specified address location. The data output stream
is continuous through all addresses until terminated by a low-to-high
transition on CE. The internal address pointer automatically increments
until the highest memory address is reached. Once the highest memory
address is reached, the address pointer automatically increments to the
beginning (wraparound) of the address space.

Figure 18-6. High-Speed-Read Sequence

CE

SO

SI

SCK

ADD.

0 1 2 3 4 5 6 7 8

ADD. ADD.0B

HIGH IMPEDANCE

15 16 23 24 31 32 39 40 47 48 55 56 63 64

N+2 N+3 N+4N N+1

X

MSB

MODE 0

MODE 3

DOUT DOUT DOUT DOUT

8071 72

DOUT

MSB
ADSP-BF51x Blackfin Processor Hardware Reference 18-15

Instructions
Byte-Program
The byte-program instruction programs the bits in the selected byte to the
desired data. The selected byte must be in the erased state (0xFF) when
initiating a program operation. A byte-program instruction applied to a
protected memory area is ignored.

Prior to any write operation, the write-enable (WREN) instruction must be
executed. CE must remain active low for the duration of the byte-program
instruction. The byte-program instruction is initiated by executing an
8-bit command, 0x02, followed by address bits [A23-A0]. Following the
address, the data is input in order from MSB (bit 7) to LSB (bit 0). CE
must be driven high before the instruction is executed. The user may poll
the BUSY bit in the software status register or wait tBP for the completion
of the internal self-timed byte-program operation. See Figure 18-7 for the
byte-program sequence.

Figure 18-7. Byte-Program Sequence

CE

SO

SI

SCK

ADD.

0 1 2 3 4 5 6 7 8

ADD. ADD. DIN02

HIGH IMPEDANCE

15 16 23 24 31 32 39

MSB LSB

MODE 3

MODE 0

MSB
18-16 ADSP-BF51x Blackfin Processor Hardware Reference

SPI Serial Flash
Auto Address Increment (AAI) Word Program
The AAI program instruction allows multiple bytes of data to be pro-
grammed without re-issuing the next sequential address location. This
feature decreases total programming time when multiple bytes or the
entire memory array is to be programmed. An AAI word program instruc-
tion pointing to a protected memory area is ignored. The selected address
range must be in the erased state (0xFF) when initiating an AAI word pro-
gram operation. While within AAI word programming sequence, the only
valid instructions are AAI Word (0xAD), RDSR (0x05), or WRDI (0x04).
Users have three options to determine the completion of each AAI word
program cycle: hardware detection by reading the serial output, software
detection by polling the BUSY bit in the software status register or wait tBP.
Refer to “End-of-Write Detection” on page 18-18 for details.

Prior to any write operation, the write-enable (WREN) instruction must be
executed. The AAI word program instruction is initiated by executing an
8-bit command, 0xAD, followed by address bits [A23-A0]. Following the
addresses, two bytes of data are input sequentially, each one from MSB
(bit 7) to LSB (bit 0). The first byte of data (D0) is programmed into the
initial address [A23-A1] with A0=0, and the second byte of data (D1) is
programmed into the initial address [A23-A1] with A0=1. CE must be
driven high before the AAI word program instruction is executed. The
user must check the busy status before entering the next valid command.
Once the device indicates it is no longer busy, data for the next two
sequential addresses may be programmed and so on. When the last desired
byte had been entered, check the busy status using the hardware method
or the RDSR instruction and execute the write-disable (WRDI) instruction,
0x04, to terminate AAI. Check the busy status after WRDI to determine if
the device is ready for any command. See Figure 18-10 on page 18-19 and
Figure 18-11 on page 18-20 for AAI word programming sequences.

There is no wrap mode during AAI programming; once the highest unpro-
tected memory address is reached, the device exits AAI operation and
resets the write-enable-latch bit (WEL=0) and the AAI bit (AAI=0).
ADSP-BF51x Blackfin Processor Hardware Reference 18-17

Instructions
End-of-Write Detection

There are three methods to determine completion of a program cycle dur-
ing AAI word programming: hardware detection by reading the serial
output, software detection by polling the BUSY bit in the software status
register or wait tBP.

Hardware End-of-Write Detection

The hardware end-of-write detection method eliminates the overhead of
polling the BUSY bit in the software status register during an AAI word
program operation. The 8-bit command, 0x70, configures the serial
output (SO) pin to indicate flash busy status during AAI word program-
ming, as shown in Figure 18-8. The 8-bit command, 0x70, must be
executed prior to executing an AAI word program instruction. Once an
internal programming operation begins, asserting CE immediately drives
the status of the internal flash status on the SO pin. A ‘0’ indicates the
device is busy and a ‘1’ indicates the device is ready for the next instruc-
tion. Deasserting CE returns the SO pin to tristate.

Figure 18-8. Enable SO as Hardware RY/BY During AAI Programming

CE

SO

SI

SCK
0 1 2 3 4 5 6 7

70

HIGH IMPEDANCE

MODE 0

MODE 3

MSB
18-18 ADSP-BF51x Blackfin Processor Hardware Reference

SPI Serial Flash

8 16

DOUT

put Status
ister Data

DOUT
The 8-bit command, 0x80, disables the serial output (SO) pin to output
busy status during AAI word program operation, and reconfigures SO as an
output pin. In this state, the SO pin functions as a normal serial output
pin. At this time, the RDSR command can poll the status of the software
status register. This is shown in Figure 18-9.

Figure 18-9. Disable SO as Hardware RY/BY During AAI Programming

Figure 18-10. Auto Address Increment (AAI) Word Program Sequence
With Hardware End-of-Write Detection

CE

SO

SI

SCK
0 1 2 3 4 5 6 7

80

HIGH IMPEDANCE

MODE 0

MODE 3

MSB

0 8 32 244816 24 0400 8

8

8 16 0 8 16 24 0 08

CE

SI

SCK

AA A DA0DDA

SO

D1 D2 D3 AD Dn-1 Dn WRDI RDSR

Last 2
Data Bytes

WRDI to exit
AAI Mode

Out
Reg

Check for Flash Busy Status to load next valid command

Load AAI command, Address, 2 bytes data

Note: 1. Valid commands during AAI programming: AAI command or WRDI command
 2. User must configure the SO pin to output Flash Busy status during AAI programming

WREN

ADSP-BF51x Blackfin Processor Hardware Reference 18-19

Instructions

16

DOUT

ut Status
ster Data
Figure 18-11. Auto Address Increment (AAI) Word Program Sequence
With Software End-of-Write Detection

0 8 32 244816 24 0400 8

8

8 16 0 8 16 24 0 08 8

CE

SI

SCK

AA A DA0DDA

SO

D1 D2 D3 AD Dn-1 Dn WRDI RDSR

Last 2
Data Bytes

WRDI to exit
AAI Mode

Outp
Regi

Check for Flash Busy Status to load next valid command

Load AAI command, Address, 2 bytes data

Note: Valid commands during AAI programming: AAI command, Read Status Register command, or WRDI command

WREN
18-20 ADSP-BF51x Blackfin Processor Hardware Reference

SPI Serial Flash
Sector-Erase
The sector-erase instruction clears all bits in the selected 4K byte sector to
0xFF. A sector-erase instruction applied to a protected memory area is
ignored. Prior to any write operation, the write-enable (WREN) instruction
must be executed. CE must remain active low for the duration of any com-
mand sequence. The sector-erase instruction is initiated by executing an
8-bit command, 0x20, followed by address bits [A23-A0]. Address bits
[AMS-A12] (AMS = most significant address) are used to determine the sec-
tor address (SAX), remaining address bits can be VIL or VIH. CE must be
driven high before the instruction is executed. The user may poll the BUSY
bit in the software status register or wait tSE for the completion of the
internal self-timed sector-erase cycle. See Figure 18-12 for the sector-erase
sequence.

Figure 18-12. Sector-Erase Sequence

CE

SO

SI

SCK

ADD.

0 1 2 3 4 5 6 7 8

ADD. ADD.20

HIGH IMPEDANCE

15 16 23 24 31

MODE 0

MODE 3

MSBMSB
ADSP-BF51x Blackfin Processor Hardware Reference 18-21

Instructions
32K Byte Block-Erase
The block-erase instruction clears all bits in the selected 32K byte block to
0xFF. A block-erase instruction applied to a protected memory area is
ignored. Prior to any write operation, the write-enable (WREN) instruction
must be executed. CE must remain active low for the duration of any com-
mand sequence. The block-erase instruction is initiated by executing an
8-bit command, 0x52, followed by address bits [A23-A0]. Address bits
[AMS-A15] (AMS = most significant address) are used to determine block
address (BAX), remaining address bits can be VIL or VIH. CE must be
driven high before the instruction is executed. Poll the BUSY bit in the
software status register or wait tBE for the completion of the internal
self-timed block-erase. See Figure 18-13 for the block-erase sequence.

Figure 18-13. 32K Byte Block-Erase Sequence

CE

SO

SI

SCK

ADDR

0 1 2 3 4 5 6 7 8

ADDR ADDR52

HIGH IMPEDANCE

15 16 23 24 31

MODE 0

MODE 3

BSMBSM
18-22 ADSP-BF51x Blackfin Processor Hardware Reference

SPI Serial Flash
64K Byte Block-Erase
The block-erase instruction clears all bits in the selected 64K byte block to
0xFF. A block-erase instruction applied to a protected memory area is
ignored. Prior to any write operation, the write-enable (WREN) instruction
must be executed. CE must remain active low for the duration of any com-
mand sequence. The block-erase instruction is initialized by executing an
8-bit command, 0xD8, followed by address bits [A23-A0]. Address bits
[AMS-A16] (AMS = most significant address) are used to determine block
address (BAX), remaining address bits can be VIL or VIH. CE must be
driven high before the instruction is executed. Poll the BUSY bit in the
software status register or wait tBE for the completion of the internal
self-timed block-erase. See Figure 18-14 for the block-erase sequence.

Figure 18-14. 64K Byte Block-Erase Sequence

CE

SO

SI

SCK

ADDR

0 1 2 3 4 5 6 7 8

ADDR ADDRD8

HIGH IMPEDANCE

15 16 23 24 31

MODE 0

MODE 3

BSMBSM
ADSP-BF51x Blackfin Processor Hardware Reference 18-23

Instructions
Chip-Erase
The chip-erase instruction clears all bits in the device to 0xFF. A
chip-erase instruction is ignored if any of the memory area is protected.
Prior to any write operation, the write-enable (WREN) instruction must be
executed. CE must remain active low for the duration of the chip-erase
instruction sequence. The chip-erase instruction is initiated by executing
an 8-bit command, 0x60 or 0xC7. CE must be driven high before the
instruction is executed. The user may poll the BUSY bit in the software
status register or wait tCE for the completion of the internal self-timed
chip-erase cycle. See Figure 18-15 for the chip-erase sequence.

Figure 18-15. Chip-Erase Sequence

CE

SO

SI

SCK
0 1 2 3 4 5 6 7

60 or C7

HIGH IMPEDANCE

MODE 0

MODE 3

MSB
18-24 ADSP-BF51x Blackfin Processor Hardware Reference

SPI Serial Flash
Read-Status-Register (RDSR)
The read-status-register (RDSR) instruction, 0x05, allows reading of the
status register. The status register may be read at any time, even during a
write (program/erase) operation. When a write operation is in progress,
the BUSY bit may be checked before sending any new commands to assure
that the new commands are properly received by the device. CE must be
driven low before the RDSR instruction is entered and remain low until the
status data is read. Read-status-register is continuous with ongoing clock
cycles until it is terminated by a low-to-high transition of the CE. See
Figure 18-16 for the RDSR instruction sequence.

Figure 18-16. Read-Status-Register (RSDR) Sequence

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14MODE 3

SCK

SI

SO

CE

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

05

MODE 0

HIGH IMPEDANCE

Status
Register Out

MSB

MSB
ADSP-BF51x Blackfin Processor Hardware Reference 18-25

Instructions
Write-Enable (WREN)
The write-enable (WREN) instruction, 0x06H, sets the write-enable-latch
bit in the status register to ‘1’, allowing write operations to occur. The
WREN instruction must be executed prior to any write (program/erase)
operation. The WREN instruction may also be used to allow execution of the
write-status-register (WRSR) instruction; however, the write-enable-latch bit
in the status register is cleared upon the rising edge CE of the WRSR instruc-
tion. CE must be driven high before the WREN instruction is executed. See
Figure 18-17 for the WREN instruction sequence.

Figure 18-17. Write-Enable (WREN) Sequence

CE

SO

SI

SCK
0 1 2 3 4 5 6 7

06

HIGH IMPEDANCE

MODE 0

MODE 3

MSB
18-26 ADSP-BF51x Blackfin Processor Hardware Reference

SPI Serial Flash
Write-Disable (WRDI)
The write-disable (WRDI) instruction, 0x04, resets the write-enable-latch
bit and AAI to ‘0’, disabling any new write operations from occurring.
The WRDI instruction does not terminate any programming operation in
progress. Any program operation in progress may continue up to tBP after
executing the WRDI instruction. CE must be driven high before the WRDI
instruction is executed. See Figure 18-18 for the WRDI instruction
sequence.

Figure 18-18. Write-Disable (WRDI) Sequence

CE

SO

SI

SCK
0 1 2 3 4 5 6 7

04

HIGH IMPEDANCE

MODE 0

MODE 3

MSB
ADSP-BF51x Blackfin Processor Hardware Reference 18-27

Instructions
Enable-Write-Status-Register (EWSR)
The enable-write-status-register (EWSR) instruction arms the write-sta-
tus-register (WRSR) instruction and opens the status register for alteration.
The write-status-register instruction must be executed immediately after
the execution of the enable-write-status-register instruction. This two-step
instruction sequence of the EWSR instruction followed by the WRSR instruc-
tion works like SDP (software data protection) command structure which
prevents any accidental alteration of the status register values. CE must be
driven low before the EWSR instruction is entered and must be driven high
before the EWSR instruction is executed. See Figure 18-19 for EWSR instruc-
tion followed by WRSR instruction.

Figure 18-19. Enable-Write-Status-Register (EWSR) or Write-Enable
(WREN) and Write-Status-Register (WRSR) Sequence

MODE 3

HIGH IMPEDANCE

MODE 0

STATUS
REGISTER IN

7 6 5 4 3 2 1 0

MSBMSBMSB

01

MODE 3

SCK

SI

SO

CE

MODE 0

50 or 06

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
18-28 ADSP-BF51x Blackfin Processor Hardware Reference

SPI Serial Flash
Write-Status-Register (WRSR)
The write-status-register instruction writes new values to the BP1, BP0, and
BPL bits of the status register. CE must be driven low before the command
sequence of the WRSR instruction is entered and driven high before the
WRSR instruction is executed. See Figure 18-19 for EWSR or WREN and WRSR
instruction sequences.

Executing the write-status-register instruction is ignored when the BPL bit
is set to ‘1’. The BPL bit can only be set from ‘0’ to ‘1’ to lock-down the
status register, but cannot be reset from ‘1’ to ‘0’. As long as the BPL bit is
set to ‘0’ prior to the low-to-high transition of the CE pin at the end of the
WRSR instruction, the bits in the status register can all be altered by the
WRSR instruction. In this case, a single WRSR instruction can set the BPL bit
to ‘1’ to lock down the status register as well as altering the BP0 and BP1
bits at the same time. See Table 18-2 on page 18-7 for a summary descrip-
tion of the BPL functions.
ADSP-BF51x Blackfin Processor Hardware Reference 18-29

Instructions
Read-ID
The device information is read by executing an 8-bit command, 0x90 or
0xAB, followed by address bits [A23-A0]. Following the Read-ID
instruction, the manufacturer’s ID is located in address 0x000000 and the
device ID is located in address 0x000001. Once the device is in read-ID
mode, the manufacturer’s and device ID output data toggles between
address 0x000000 and 0x000001 until terminated by a low-to-high transi-
tion on CE. See Table 18-6 and Figure 18-20.

Table 18-6. Product Identification

Address Data

Manufacturer’s ID 0x000000 0xBF

Device ID 0x000001 0x04

Figure 18-20. Read-ID Sequence

CE

SO

SI

SCK

00

0 1 2 3 4 5 6 7 8

00 ADD90 or AB

HIGH IMPEDANCE

15 16 23 24 31 32 39 40 47 48 55 56 63

BF Device ID BF Device ID

Note: 1. The manufacturer's and device ID output stream is continuous until terminated by a low to high transition on CE.
 2. 0x00 will output the manfacturer's ID first and 0x01 will output device ID first before toggling between the two.

HIGH
IMPEDANCE

MODE 3

MODE 0

BSMBSM

MSB
18-30 ADSP-BF51x Blackfin Processor Hardware Reference

SPI Serial Flash
JEDEC Read-ID
The device information can be read from executing the 8-bit command,
0x9F. Following the JEDEC read-ID instruction, the 8-bit manufacturer’s
ID, 0xBF, is output from the device. After that, a 16-bit device ID is
shifted out on the SO pin. The device ID is assigned by the manufacturer
and contains the type of memory in the first byte and the memory capac-
ity of the device in the second byte. See Figure 18-21 for the instruction
sequence. The JEDEC read-ID instruction is terminated by a low-to-high
transition on CE at any time during data output.

Figure 18-21. JEDEC Read-ID Sequence

Table 18-7. JEDEC Read-ID Data-Out

Device ID

Product Manufacturer’s ID (Byte 1) Memory Type (Byte 2) Memory Capacity (Byte 3)

SPI serial flash 0xBF 0x25 0x4

25 Byte 3

Note: See Table 1-8 for Device ID Byte 3 value.

CE

SO

SI

SCK
0 1 2 3 4 5 6 7 8

HIGH IMPEDANCE

41 6151 28 29 30 31

BF

MODE 3

MODE 0

MSBMSB

9 10 11 12 13 17 18 32 34

9F

19 20 21 22 23 3324 25 26 27
ADSP-BF51x Blackfin Processor Hardware Reference 18-31

Instructions

18-32 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
19 SPORT CONTROLLER

This chapter describes the synchronous serial peripheral port (SPORT).
Following an overview and a list of key features is a description of opera-
tion and functional modes of operation. The chapter concludes with a
programming model, consolidated register definitions, and programming
examples.

Specific Information for the ADSP-BF51x
For details regarding the number of SPORTs for the ADSP-BF51x prod-
uct, refer to ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor
Data Sheet.

For SPORT DMA channel assignments, refer to Table 6-7 on page 6-103
in Chapter 6, “Direct Memory Access”.

For SPORT interrupt vector assignments, refer to Table 5-3 on page 5-20
in Chapter 5, “System Interrupts”.

To determine how each of the SPORTs is multiplexed with other func-
tional pins, refer to Table 9-2 on page 9-5 through Table 9-4 on page 9-7
in Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for each SPORT, refer to Appendix A, “Sys-
tem MMR Assignments”.
ADSP-BF51x Blackfin Processor Hardware Reference 19-1

Overview
SPORT behavior for the ADSP-BF51x that differs from the general infor-
mation in this chapter can be found at the end of this chapter in the
section “Unique Information for the ADSP-BF51x Processor” on
page 19-75.

Overview
Unlike the SPI interface which has been designed for SPI-compatible
communication only, the SPORT modules support a variety of serial data
communication protocols, for example:

• A-law or µ-law companding according to G.711 specification

• Multichannel or time-division-multiplexed (TDM) modes

• Stereo audio I2S mode

• H.100 telephony standard support

In addition to these standard protocols, the SPORT module provides
modes to connect to standard peripheral devices, such as ADCs or codecs,
without external glue logic. With support for high data rates, independent
transmit and receive channels, and dual data paths, the SPORT interface
is a perfect choice for direct serial interconnection between two or more
processors in a multiprocessor system. Many processors provide compati-
ble interfaces, including processors from Analog Devices and other
manufacturers.

Each SPORT has its own set of control registers and data buffers.
19-2 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
Features
A SPORT can operate at up to ½ the system clock (SCLK) rate for an inter-
nally generated or external serial clock. The SPORT external clock must
always be less than the SCLK frequency. Independent transmit and receive
clocks provide greater flexibility for serial communications.

A SPORT offers these features and capabilities:

• Provides independent transmit and receive functions.

• Transfers serial data words from 3 to 32 bits in length, either MSB
first or LSB first.

• Provides alternate framing and control for interfacing to I2S serial
devices, as well as other audio formats (for example, left-justified
stereo serial data).

• Has FIFO plus double buffered data (both receive and transmit
functions have a data buffer register and a shift register), providing
additional time to service the SPORT.

• Provides two synchronous transmit and two synchronous receive
data signals and buffers to double the total supported datastreams.

• Performs A-law and -law hardware companding on transmitted
and received words. (See “Companding” on page 19-28 for more
information.)

• Internally generates serial clock and frame sync signals in a wide
range of frequencies or accepts clock and frame sync input from an
external source.

• Operates with or without frame synchronization signals for each
data word, with internally generated or externally generated frame
signals, with active high or active low frame signals, and with either
of two configurable pulse widths and frame signal timing.
ADSP-BF51x Blackfin Processor Hardware Reference 19-3

Interface Overview
• Performs interrupt-driven, single word transfers to and from
on-chip memory under processor control.

• Provides direct memory access transfer to and from memory under
DMA master control. DMA can be autobuffer-based (a repeated,
identical range of transfers) or descriptor-based (individual or
repeated ranges of transfers with differing DMA parameters).

• Has a multichannel mode for TDM interfaces. A SPORT can
receive and transmit data selectively from a time-division-multi-
plexed serial bitstream on 128 contiguous channels from a stream
of up to 1024 total channels. This mode can be useful as a network
communication scheme for multiple processors. The 128 channels
available to the processor can be selected to start at any channel
location from 0 to 895 (= 1023 – 128). Note the multichannel
select registers and the WSIZE register control which subset of the
128 channels within the active region can be accessed.

Interface Overview
A SPORT provides an I/O interface to a wide variety of peripheral serial
devices. SPORTs provide synchronous serial data transfer only. Each
SPORT has one group of signals (primary data, secondary data, clock, and
frame sync) for transmit and a second set of signals for receive. The receive
and transmit functions are programmed separately. A SPORT is a full
duplex device, capable of simultaneous data transfer in both directions. A
SPORT can be programmed for bit rate, frame sync, and number of bits
per word by writing to memory-mapped registers.

Figure 19-1 on page 19-6 shows a simplified block diagram of a single
SPORT. Data to be transmitted is written from an internal processor reg-
ister to the SPORT_TX register via the peripheral bus. This data is optionally
compressed by the hardware and automatically transferred to the TX shift
register. The bits in the shift register are shifted out on the DTPRI/DTSEC
pin, MSB first or LSB first, synchronous to the serial clock on the TSCLK
19-4 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
pin. The receive portion of the SPORT accepts data from the DRPRI/DRSEC
pin synchronous to the serial clock on the RSCLK pin. When an entire word
is received, the data is optionally expanded, then automatically transferred
to the SPORT_RX register, and then into the RX FIFO where it is available
to the processor. Table 19-1 shows the signals for each SPORT.

A SPORT receives serial data on its DRPRI and DRSEC inputs and transmits
serial data on its DTPRI and DTSEC outputs. It can receive and transmit
simultaneously for full-duplex operation. For transmit, the data bits
(DTPRI and DTSEC) are synchronous to the transmit clock (TSCLK). For
receive, the data bits (DRPRI and DRSEC) are synchronous to the receive
clock (RSCLK). The serial clock is an output if the processor generates it, or
an input if the clock is externally generated. Frame synchronization signals
RFS and TFS are used to indicate the start of a serial data word or stream of
serial words.

The primary and secondary data pins, if enabled by a specific processor
port configuration, provide a method to increase the data throughput of
the serial port. They do not behave as totally separate SPORTs; rather,
they operate in a synchronous manner (sharing clock and frame sync) but
on separate data. The data received on the primary and secondary signals

Table 19-1. SPORT Signals

Pin Description

DTxPRI Transmit Data Primary

DTxSEC Transmit Data Secondary

TSCLKx Transmit Clock

TFSx Transmit Frame Sync

DRxPRI Receive Data Primary

DRxSEC Receive Data Secondary

RSCLKx Receive Clock

RFSx Receive Frame Sync
ADSP-BF51x Blackfin Processor Hardware Reference 19-5

Interface Overview
is interleaved in main memory and can be retrieved by setting a stride in
the data address generators (DAG) unit. For more information about
DAGs, see the Data Address Generators chapter in Blackfin Processor Pro-
gramming Reference. Similarly, for TX, data should be written to the TX
register in an alternating manner—first primary, then secondary, then pri-
mary, then secondary, and so on. This is easily accomplished with the
processor’s powerful DAGs.

Figure 19-1. SPORT Block Diagram1, 2, 3

1 All wide arrow data paths are 16- or 32-bits wide, depending on SLEN. for SLEN = 2 to 15, a 16-bit
data path with 8-deep fifo is used. for SLEN = 16 to 31, a 32-bit data path with 4-deep fifo is used.

2 TX register is the bottom of the TX fifo, RX register is the top of the RX fifo.
3 In multichannel mode, the TFS pin acts as transmit data valid (TDV). For more information, see

“Multichannel Operation” on page 19-14.

COMPANDING
HARDWARE

COMPANDING
HARDWARE

TFS

RX FIFO
4 x 32 OR 8 x 16

TSCLK RSCLK RFS

PAB

DAB

TX FIFO
4 x 32 OR 8 x 16

SERIAL
CONTROL

DTSECDTPRI DRSECDRPRI

TX REGISTER RX REGISTER

TX PRI
SHIFT REG

TX SEC
SHIFT REG

TX PRI
HOLD REG

TX SEC
HOLD REG

RX PRI
HOLD REG

RX SEC
HOLD REG

RX PRI
SHIFT REG

RX SEC
SHIFT REG

INTERNAL
CLOCK

GENERATOR
19-6 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
In addition to the serial clock signal, data must be signalled by a frame
synchronization signal. The framing signal can occur either at the begin-
ning of an individual word or at the beginning of a block of words.

Figure 19-2 shows a possible port connection for a device with at least two
SPORTs. Note serial devices A and B must be synchronous, as they share
common frame syncs and clocks. The same is true for serial devices 1, 2,
…N.

Figure 19-2. Example SPORT Connections

(SPORT0 is Standard Mode, SPORT1 is Multichannel Mode)1, 2

1 In multichannel mode, TFS functions as a transmit data valid (TDV) output. See “Multichannel Op-
eration” on page 19-14.

2 Although shown as an external connection, the TSCLK1/RSCLK1 connection is internal in multi-
channel mode. See “Multichannel Operation” on page 19-14.

RSCLK0

TSCLK0

TFS0

RFS0

SPORT0

DT0SEC

DR0SEC

DR0PRI

DT0PRI

TFS1 (TDV1)

TSCLK1

RSCLK1

RFS1

DT1SEC
DR1SEC

DR1PRI
DT1PRI

BLACKFIN

SPORT1

SERIAL
DEVICE 1

SERIAL
DEVICE B

(SECONDARY)

SERIAL
DEVICE A

(PRIMARY)

SERIAL
DEVICE 2

SERIAL
DEVICE N
ADSP-BF51x Blackfin Processor Hardware Reference 19-7

Interface Overview
Figure 19-3 shows an example of a stereo serial device with three transmit
and two receive channels connected to a processor with two SPORTs.

SPORT Pin/Line Terminations
The processor has very fast drivers on all output pins, including the
SPORTs. If connections on the data, clock, or frame sync lines are longer
than six inches, consider using a series termination for strip lines on
point-to-point connections. This may be necessary even when using low
speed serial clocks, because of the edge rates.

Figure 19-3. Stereo Serial Connection

DBCLK
DLRCLK

DSDATA1

ALRCLK

ABCLK

DSDATA3
DSDATA2

ASDATA1

ASDATA2

AD1836
STEREO SERIAL

DEVICE BLACKFIN

RSCLK0

TSCLK0

TFS0

RFS0

DT0SEC

DR0PRI

DT0PRI

RSCLK1

TSCLK1

TFS1

RFS1

DT1SEC

DR1PRI

DT1PRI

SPORT1

DR1SEC

SPORT0

DR0SEC
19-8 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
Description of Operation
This section describes general SPORT operation, illustrating the most
common use of a SPORT. Since the SPORT functionality is configurable,
this description represents just one of many possible configurations.

Writing to a SPORT_TX register readies the SPORT for transmission. The
TFS signal initiates the transmission of serial data. Once transmission has
begun, each value written to the SPORT_TX register is transferred through
the FIFO to the internal transmit shift register. The bits are then sent,
beginning with either the MSB or the LSB as specified in the SPORT_TCR1
register. Each bit is shifted out on the driving edge of TSCLK. The driving
edge of TSCLK can be configured to be rising or falling. The SPORT gener-
ates the transmit interrupt or requests a DMA transfer as long as there is
space in the TX FIFO.

As a SPORT receives bits, they accumulate in an internal receive register.
When a complete word has been received, it is written to the SPORT
FIFO register and the receive interrupt for that SPORT is generated or a
DMA transfer is initiated. Interrupts are generated differently if DMA
block transfers are performed.

SPORT Disable
The SPORTs are automatically disabled by a processor hardware or soft-
ware reset. A SPORT can also be disabled directly by clearing the
SPORT’s transmit or receive enable bits (TSPEN in the SPORT_TCR1 register
and RSPEN in the SPORT_RCR1 register, respectively). Each method has a
different effect on the SPORT.

A processor reset disables the SPORTs by clearing the SPORT_TCR1,
SPORT_TCR2, SPORT_RCR1, and SPORT_RCR2 registers (including the TSPEN
and RSPEN enable bits) and the SPORT_TCLKDIV, SPORT_RCLKDIV,
SPORT_TFSDIVx, and SPORT_RFSDIVx clock and frame sync divisor registers.
Any ongoing operations are aborted.
ADSP-BF51x Blackfin Processor Hardware Reference 19-9

Description of Operation
Clearing the TSPEN and RSPEN enable bits disables the SPORTs and aborts
any ongoing operations. Status bits are also cleared. Configuration bits
remain unaffected and can be read by the software in order to be altered or
overwritten. To disable the SPORT output clock, set the SPORT to be
disabled.

 Note that disabling a SPORT via TSPEN/RSPEN may shorten any
currently active pulses on the TFS/RFS and TSCLK/RSCLK outputs, if
these signals are configured to be generated internally.

When disabling the SPORT from multichannel operation, first disable
TSPEN and then disable RSPEN. Note both TSPEN and RSPEN must be dis-
abled before re-enabling. Disabling only TX or RX is not allowed.

Setting SPORT Modes
SPORT configuration is accomplished by setting bit and field values in
configuration registers. A SPORT must be configured prior to being
enabled. Once the SPORT is enabled, further writes to the SPORT con-
figuration registers are disabled (except for SPORT_RCLKDIV,
SPORT_TCLKDIV, and multichannel mode channel select registers). To
change values in all other SPORT configuration registers, disable the
SPORT by clearing TSPEN in SPORT_TCR1 and/or RSPEN in SPORT_RCR1.

Each SPORT has its own set of control registers and data buffers. These
registers are described in detail in “SPORT Registers” on page 19-45. All
control and status bits in the SPORT registers are active high unless other-
wise noted.

Stereo Serial Operation
Several stereo serial modes can be supported by the SPORT, including the
popular I2S format. To use these modes, set bits in the SPORT_RCR2 or
SPORT_TCR2 registers. Setting RSFSE or TSFSE in SPORT_RCR2 or SPORT_TCR2
changes the operation of the frame sync pin to a left/right clock as
19-10 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
required for I2S and left-justified stereo serial data. Setting this bit enables
the SPORT to generate or accept the special LRCLK-style frame sync. All
other SPORT control bits remain in effect and should be set appropri-
ately. Figure 19-4 on page 19-13 and Figure 19-5 on page 19-14 show
timing diagrams for stereo serial mode operation.

Table 19-2 shows several modes that can be configured using bits in
SPORT_TCR1 and SPORT_RCR1. The table shows bits for the receive side of
the SPORT, but corresponding bits are available for configuring the trans-
mit portion of the SPORT. A control field which may be either set or
cleared depending on the user’s needs, without changing the standard, is
indicated by an “X.”

 Blackfin SPORTs are designed such that, in I2S master mode,
LRCLK is held at the last driven logic level and does not transition,
to provide an edge, after the final data word is driven out. There-
fore, while transmitting a fixed number of words to an I2S receiver
that expects an LRCLK edge to receive the incoming data word, the
SPORT should send a dummy word after transmitting the fixed
number of words. The transmission of this dummy word toggles
LRCLK, generating an edge. Transmission of the dummy word is not
required when the I2S receiver is a Blackfin SPORT.

Table 19-2. Stereo Serial Settings

Bit Field Stereo Audio Serial Scheme

I2S Left-Justified DSP Mode

RSFSE 1 1 0

RRFST 0 0 0

LARFS 0 1 0

LRFS 0 1 0

RFSR 1 1 1

RCKFE 1 0 0
ADSP-BF51x Blackfin Processor Hardware Reference 19-11

Description of Operation
Note most bits shown as a 0 or 1 may be changed depending on the user’s
preference, creating many other “almost standard” modes of stereo serial
operation. These modes may be of use in interfacing to codecs with
slightly non-standard interfaces. The settings shown in Table 19-2 pro-
vide glueless interfaces to many popular codecs.

Note RFSDIV or TFSDIV must still be greater than or equal to SLEN. For I2S
operation, RFSDIV or TFSDIV is usually 1/64 of the serial clock rate. With
RSFSE set, the formulas to calculate frame sync period and frequency (dis-
cussed in “Clock and Frame Sync Frequencies” on page 19-25) still apply,
but now refer to one half the period and twice the frequency. For instance,
setting RFSDIV or TFSDIV = 31 produces an LRCLK that transitions every 32
serial clock cycles and has a period of 64 serial clock cycles.

The LRFS bit determines the polarity of the RFS or TFS frame sync pin for
the channel that is considered a “right” channel. Thus, setting LRFS = 0
(meaning that it is an active high signal) indicates that the frame sync is
high for the “right” channel, thus implying that it is low for the “left”
channel. This is the default setting.

The RRFST and TRFST bits determine whether the first word received or
transmitted is a left or a right channel. If the bit is set, the first word
received or transmitted is a right channel. The default is to receive or
transmit the left channel word first.

SLEN 2 – 31 2 – 31 2 – 31

RLSBIT 0 0 0

RFSDIV
(If internal FS is selected.)

2 – Max 2 – Max 2 – Max

RXSE
(Secondary Enable is available for RX and TX.)

X X X

Table 19-2. Stereo Serial Settings (Continued)

Bit Field Stereo Audio Serial Scheme

I2S Left-Justified DSP Mode
19-12 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller

TSC

DT

TSC

DT

TSC

DT
The secondary DRSEC and DTSEC pins are useful extensions of the SPORT
which pair well with stereo serial mode. Multiple I2S streams of data can
be transmitted or received using a single SPORT. Note the primary and
secondary pins are synchronous, as they share clock and LRCLK (frame
sync) pins. The transmit and receive sides of the SPORT need not be
synchronous, but may share a single clock in some designs. See
Figure 19-3 on page 19-8, which shows multiple stereo serial connections
being made between the processor and an AD1836 codec.

Figure 19-4. SPORT Stereo Serial Modes, Transmit1, 2, 3

1 DSP mode does not identify channel.
2 TFS normally operates at fS except for DSP mode which is 2 x fS.
3 TSCLK frequency is normally 64 x TFS but may be operated in burst mode.

TFS

LK

PRI

TFS

LK

PRI

TFS

LK

PRI

LEFT CHANNEL
RIGHT CHANNEL

LEFT CHANNEL
RIGHT CHANNEL

MSB MSB

MSB MSB

MSB MSB

LSB LSB

LSB LSB

LSB LSB

LEFT-JUSTIFIED MODE—3 TO 32 BITS PER CHANNEL

I2S MODE—3 TO 32 BITS PER CHANNEL

DSP MODE—3 TO 32 BITS PER CHANNEL

1/fS
ADSP-BF51x Blackfin Processor Hardware Reference 19-13

Description of Operation

RSC

DR

RSC

DR

RSC

DR
Multichannel Operation
The SPORT offers a multichannel mode of operation which allows the
SPORT to communicate in a time-division-multiplexed (TDM) serial sys-
tem. In multichannel communications, each data word of the serial
bitstream occupies a separate channel. Each word belongs to the next con-
secutive channel so that, for example, a 24-word block of data contains
one word for each of 24 channels.

The SPORT can automatically select words for particular channels while
ignoring the others. Up to 128 channels are available for transmitting or
receiving; each SPORT can receive and transmit data selectively from any
of the 128 channels. These 128 channels can be any 128 out of the 1024

Figure 19-5. SPORT Stereo Serial Modes, Receive1, 2, 3

1 DSP mode does not identify channel.
2 RFS normally operates at fS except for DSP mode which is 2 x fS.
3 RSCLK frequency is normally 64 × RFS but may be operated in burst mode.

RFS

LK

PRI

RFS

LK

PRI

RFS

LK

PRI

LEFT CHANNEL
RIGHT CHANNEL

LEFT CHANNEL
RIGHT CHANNEL

MSB MSB

MSB MSB

MSB MSB

LSB LSB

LSB LSB

LSB LSB

LEFT-JUSTIFIED MODE—3 TO 32 BITS PER CHANNEL

I2S MODE—3 TO 32 BITS PER CHANNEL

DSP MODE—3 TO 32 BITS PER CHANNEL
1/fS
19-14 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
total channels. RX and TX must use the same 128-channel region to selec-
tively enable channels. The SPORT can do any of the following on each
channel:

• Transmit data

• Receive data

• Transmit and receive data

• Do nothing

Data companding and DMA transfers can also be used in multichannel
mode.

The DTPRI pin is always driven (not three-stated) if the SPORT is enabled
(TSPEN = 1 in the SPORT_TCR1 register), unless it is in multichannel mode
and an inactive time slot occurs. The DTSEC pin is always driven (not
three-stated) if the SPORT is enabled and the secondary transmit is
enabled (TXSE = 1 in the SPORT_TCR2 register), unless the SPORT is in
multichannel mode and an inactive time slot occurs.

In multichannel mode, RSCLK can either be provided externally or gener-
ated internally by the SPORT, and it is used for both transmit and receive
functions. Leave TSCLK disconnected if the SPORT is used only in multi-
channel mode. If RSCLK is externally or internally provided, it will be
internally distributed to both the receiver and transmitter circuitry.

 The SPORT multichannel transmit select register and the SPORT
multichannel receive select register must be programmed before
enabling SPORT_TX or SPORT_RX operation for multichannel mode.
This is especially important in “DMA data unpacked mode,” since
SPORT FIFO operation begins immediately after RSPEN and TSPEN
are set, enabling both RX and TX. The MCMEN bit (in SPORT_MCMC2)
must be enabled prior to enabling SPORT_TX or SPORT_RX operation.
When disabling the SPORT from multichannel operation, first
ADSP-BF51x Blackfin Processor Hardware Reference 19-15

Description of Operation
disable TSPEN and then disable RSPEN. Note both TSPEN and RSPEN
must be disabled before re-enabling. Disabling only TX or RX is
not allowed.

Figure 19-6 shows example timing for a multichannel transfer that has
these characteristics:

• Use TDM method where serial data is sent or received on different
channels sharing the same serial bus

• Can independently select transmit and receive channels

• RFS signals start of frame

• TFS is used as “transmit data valid” for external logic, true only dur-
ing transmit channels

• Receive on channels 0 and 2, transmit on channels 1 and 2

• Multichannel frame delay is set to 1

See “Timing Examples” on page 19-39 for more examples.

Figure 19-6. Multichannel Operation

RSCLK

B3 B2 B1 B2DR

RFS

B0 IGNORED B3

DT
B2B3 B0 B3 B2B1

CHANNEL 2CHANNEL 1CHANNEL 0

TFS

MFD = 1
19-16 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
Multichannel Enable

Setting the MCMEN bit in the SPORT_MCM2 register enables multichannel
mode. When MCMEN = 1, multichannel operation is enabled; when
MCMEN = 0, all multichannel operations are disabled.

 Setting the MCMEN bit enables multichannel operation for both the
receive and transmit sides of the SPORT. Therefore, if a receiving
SPORT is in multichannel mode, the transmitting SPORT must
also be in multichannel mode.

 When in multichannel mode, do not enable the stereo serial frame
sync modes or the late frame sync feature, as these features are
incompatible with multichannel mode.

Table 19-3 shows the dependencies of bits in the SPORT configuration
register when the SPORT is in multichannel mode.

Table 19-3. Multichannel Mode Configuration

SPORT_RCR1 or
SPORT_RCR2

SPORT_TCR1 or
SPORT_TCR2

Notes

RSPEN TSPEN Set or clear both

IRCLK - Independent

- ITCLK Independent

RDTYPE TDTYPE Independent

RLSBIT TLSBIT Independent

IRFS - Independent

- ITFS Ignored

RFSR TFSR Ignored

- DITFS Ignored

LRFS LTFS Independent

LARFS LATFS Both must be 0

RCKFE TCKFE Set or clear both to same value
ADSP-BF51x Blackfin Processor Hardware Reference 19-17

Description of Operation
Frame Syncs in Multichannel Mode

All receiving and transmitting devices in a multichannel system must have
the same timing reference. The RFS signal is used for this reference, indi-
cating the start of a block or frame of multichannel data words.

When multichannel mode is enabled on a SPORT, both the transmitter
and the receiver use RFS as a frame sync. This is true whether RFS is gener-
ated internally or externally. The RFS signal is used to synchronize the
channels and restart each multichannel sequence. Assertion of RFS indi-
cates the beginning of the channel 0 data word.

Since RFS is used by both the SPORT_TX and SPORT_RX channels of the
SPORT in multichannel mode configuration, the corresponding bit pairs
in SPORT_RCR1 and SPORT_TCR1, and in SPORT_RCR2 and SPORT_TCR2,
should always be programmed identically, with the possible exception of
the RXSE and TXSE pair and the RDTYPE and TDTYPE pair. This is true even if
SPORT_RX operation is not enabled.

In multichannel mode, RFS timing similar to late (alternative) frame mode
is entered automatically; the first bit of the transmit data word is available
and the first bit of the receive data word is sampled in the same serial clock
cycle that the frame sync is asserted, provided that MFD is set to 0.

The TFS signal is used as a transmit data valid signal which is active during
transmission of an enabled word. The SPORT’s data transmit pin is
three-stated when the time slot is not active, and the TFS signal serves as an

SLEN SLEN Set or clear both to same value

RXSE TXSE Independent

RSFSE TSFSE Both must be 0

RRFST TRFST Ignored

Table 19-3. Multichannel Mode Configuration (Continued)

SPORT_RCR1 or
SPORT_RCR2

SPORT_TCR1 or
SPORT_TCR2

Notes
19-18 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
output-enabled signal for the data transmit pin. The SPORT drives TFS in
multichannel mode whether or not ITFS is cleared. The TFS pin in multi-
channel mode still obeys the LTFS bit. If LTFS is set, the transmit data valid
signal will be active low—a low signal on the TFS pin indicates an active
channel.

Once the initial RFS is received, and a frame transfer has started, all other
RFS signals are ignored by the SPORT until the complete frame has been
transferred.

If MFD > 0, the RFS may occur during the last channels of a previous frame.
This is acceptable, and the frame sync is not ignored as long as the delayed
channel 0 starting point falls outside the complete frame.

In multichannel mode, the RFS signal is used for the block or frame start
reference, after which the word transfers are performed continuously with
no further RFS signals required. Therefore, internally generated frame
syncs are always data independent.

The Multichannel Frame

A multichannel frame contains more than one channel, as specified by the
window size and window offset. A complete multichannel frame consists
of 1 – 1024 channels, starting with channel 0. The particular channels of
the multichannel frame that are selected for the SPORT are a combination
ADSP-BF51x Blackfin Processor Hardware Reference 19-19

Description of Operation
of the window offset, the window size, and the multichannel select regis-
ters. See Figure 19-7.

Multichannel Frame Delay

The 4-bit MFD field in SPORT_MCMC2 specifies a delay between the frame
sync pulse and the first data bit in multichannel mode. The value of MFD is
the number of serial clock cycles of the delay. Multichannel frame delay
allows the processor to work with different types of interface devices.

A value of 0 for MFD causes the frame sync to be concurrent with the first
data bit. The maximum value allowed for MFD is 15. A new frame sync may
occur before data from the last frame has been received, because blocks of
data occur back-to-back.

Window Size

The window size (WSIZE[3:0]) defines the number of channels that can be
enabled/disabled by the multichannel select registers. This range of words

Figure 19-7. Relationships for Multichannel Parameters

FRAME
SYNC

DATA DATA IGNORED

CHANNEL

RSCLK

DATA IGNORED DATA IGNORED

MULTICHANNEL FRAME

WINDOW OFFSET WINDOW
SPORT_MCMCn

REG FIELDS
SIZE

UNITS:

MFD

RANGE:

NOTE: FRAME LENGTH IS SET BY FRAME SYNC DIVIDE OR EXTERNAL FRAME SYNC PERIOD.

BITS WORDS MULTIPLES OF 8 WORDS
0–15 0–1015 8–128
19-20 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
is called the active window. The number of channels can be any value in
the range of 0 to 15, corresponding to active window size of 8 to 128, in
increments of 8; the default value of 0 corresponds to a minimum active
window size of 8 channels. To calculate the active window size from the
WSIZE register, use this equation:

Number of words in active window = 8 × (WSIZE + 1)

Since the DMA buffer size is always fixed, it is possible to define a smaller
window size (for example, 32 words), resulting in a smaller DMA buffer
size (in this example, 32 words instead of 128 words) to save DMA band-
width. The window size cannot be changed while the SPORT is enabled.

Multichannel select bits that are enabled but fall outside the window
selected are ignored.

Window Offset

The window offset (WOFF[9:0]) specifies where in the 1024-channel range
to place the start of the active window. A value of 0 specifies no offset and
896 is the largest value that permits using all 128 channels. As an example,
a program could define an active window with a window size of 8
(WSIZE = 0) and an offset of 93 (WOFF = 93). This 8-channel window
would reside in the range from 93 to 100. Neither the window offset nor
the window size can be changed while the SPORT is enabled.

If the combination of the window size and the window offset would place
any portion of the window outside of the range of the channel counter,
none of the out-of-range channels in the frame are enabled.

Other Multichannel Fields in SPORT_MCMC2

The FSDR bit in the SPORT_MCMC2 register changes the timing relationship
between the frame sync and the clock received. This change enables the
SPORT to comply with the H.100 protocol.
ADSP-BF51x Blackfin Processor Hardware Reference 19-21

Description of Operation
Normally (When FSDR = 0), the data is transmitted on the same edge that
the TFS is generated. For example, a positive edge on TFS causes data to be
transmitted on the positive edge of the TSCLK—either the same edge or the
following one, depending on when LATFS is set.

When the frame sync/data relationship is used (FSDR = 1), the frame sync
is expected to change on the falling edge of the clock and is sampled on
the rising edge of the clock. This is true even though data received is sam-
pled on the negative edge of the receive clock.

Channel Selection Register

A channel is a multibit word from 3 to 32 bits in length that belongs to
one of the TDM channels. Specific channels can be individually enabled
or disabled to select which words are received and transmitted during mul-
tichannel communications. Data words from the enabled channels are
received or transmitted, while disabled channel words are ignored. Up to
128 contiguous channels may be selected out of 1024 available channels.
The SPORT_MRCSn and SPORT_MTCSn multichannel select registers are used
to enable and disable individual channels; the SPORT_MRCSn registers
specify the active receive channels, and the SPORT_MTCSn registers specify
the active transmit channels.

Four registers make up each multichannel select register. Each of the four
registers has 32 bits, corresponding to 32 channels. Setting a bit enables
that channel, so the SPORT selects its word from the multiple word block
of data (for either receive or transmit). See Figure 19-8.

Figure 19-8. Multichannel Select Registers

CHANNEL SELECT 0-127

MCS0 MCS1 MCS2 MCS3
0

0

31

31 0 31 0 31 0 31

32 63 64 95 96 127
19-22 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
Channel select bit 0 always corresponds to the first word of the active win-
dow. To determine a channel’s absolute position in the frame, add the
window offset words to the channel select position. For example, setting
bit 7 in MCS2 selects word 71 of the active window to be enabled. Setting
bit 2 in MCS1 selects word 34 of the active window, and so on.

Setting a particular bit in the SPORT_MTCSn register causes the SPORT to
transmit the word in that channel’s position of the datastream. Clearing
the bit in the SPORT_MTCSn register causes the SPORT’s data transmit pin
to three-state during the time slot of that channel.

Setting a particular bit in the SPORT_MRCSn register causes the SPORT to
receive the word in that channel’s position of the datastream; the received
word is loaded into the SPORT_RX buffer. Clearing the bit in the
SPORT_MRCSn register causes the SPORT to ignore the data.

Companding may be selected for all channels or for no channels. A-law or
-law companding is selected with the TDTYPE field in the SPORT_TCR1 reg-
ister and the RDTYPE field in the SPORT_RCR1 register, and applies to all
active channels. (See “Companding” on page 19-28 for more information
about companding.)

Multichannel DMA Data Packing

Multichannel DMA data packing and unpacking are specified with the
MCDTXPE and MCDRXPE bits in the SPORT_MCMC2 multichannel configuration
register.

If the bits are set, indicating that data is packed, the SPORT expects the
data contained by the DMA buffer corresponds only to the enabled
SPORT channels. For example, if an MCM frame contains 10 enabled
channels, the SPORT expects the DMA buffer to contain 10 consecutive
words for each frame. It is not possible to change the total number of
enabled channels without changing the DMA buffer size, and reconfigura-
tion is not allowed while the SPORT is enabled.
ADSP-BF51x Blackfin Processor Hardware Reference 19-23

Description of Operation
If the bits are cleared (the default, indicating that data is not packed), the
SPORT expects the DMA buffer to have a word for each of the channels
in the active window, whether enabled or not, so the DMA buffer size
must be equal to the size of the window. For example, if channels 1 and 10
are enabled, and the window size is 16, the DMA buffer size would have
to be 16 words (unless the secondary side is enabled). The data to be
transmitted or received would be placed at addresses 1 and 10 of the buf-
fer, and the rest of the words in the DMA buffer would be ignored. This
mode allows changing the number of enabled channels while the SPORT
is enabled, with some caution. First read the channel register to make sure
that the active window is not being serviced. If the channel count is 0,
then the multichannel select registers can be updated.

Support for H.100 Standard Protocol
The processor supports the H.100 standard protocol. The following
SPORT parameters must be set to support this standard.

• Set for external frame sync. Frame sync generated by external bus
master.

• TFSR/RFSR set (frame syncs required)

• LTFS/LRFS set (active low frame syncs)

• Set for external clock

• MCMEN set (multichannel mode selected)

• MFD = 0 (no frame delay between frame sync and first data bit)

• SLEN = 7 (8-bit words)

• FSDR = 1 (set for H.100 configuration, enabling half-clock-cycle
early frame sync)
19-24 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
2× Clock Recovery Control

The SPORT can recover the data rate clock from a provided 2× input
clock. This enables the implementation of H.100 compatibility modes for
MVIP-90 (2 Mbps data) and HMVIP (8 Mbps data), by recovering
2 MHz from 4 MHz or 8 MHz from the 16 MHz incoming clock with
the proper phase relationship. A 2-bit mode signal (MCCRM[1:0] in the
SPORT_MCMC2 register) chooses the applicable clock mode, which includes a
non-divide or bypass mode for normal operation. A value of MCCRM = 00
chooses non-divide or bypass mode (H.100-compatible), MCCRM = 10
chooses MVIP-90 clock divide (extract 2 MHz from 4 MHz), and
MCCRM = 11 chooses HMVIP clock divide (extract 8 MHz from 16 MHz).

Functional Description
The following sections provide a functional description of the SPORT.

Clock and Frame Sync Frequencies
The maximum serial clock frequency (for either an internal source or an
external source) is SCLK/2. The frequency of an internally generated clock
is a function of the system clock frequency (SCLK) and the value of the
16-bit serial clock divide modulus registers, SPORT_TCLKDIV and
SPORT_RCLKDIV.

TSCLK frequency = (SCLK frequency)/(2 × (SPORT_TCLKDIV + 1))

RSCLK frequency = (SCLK frequency)/(2 × (SPORT_RCLKDIV + 1))

If the value of SPORT_TCLKDIV or SPORT_RCLKDIV is changed while the
internal serial clock is enabled, the change in TSCLK or RSCLK frequency
takes effect at the start of the drive edge of TSCLK or RSCLK that follows the
next leading edge of TFS or RFS.
ADSP-BF51x Blackfin Processor Hardware Reference 19-25

Functional Description
When an internal frame sync is selected (ITFS = 1 in the SPORT_TCR1 regis-
ter or IRFS = 1 in the SPORT_RCR1 register) and frame syncs are not
required, the first frame sync does not update the clock divider if the value
in SPORT_TCLKDIV or SPORT_RCLKDIV has changed. The second frame sync
will cause the update.

The SPORT_TFSDIV and SPORT_RFSDIV registers specify the number of
transmit or receive clock cycles that are counted before generating a TFS or
RFS pulse (when the frame sync is internally generated). This enables a
frame sync to initiate periodic transfers. The counting of serial clock
cycles applies to either internally or externally generated serial clocks.

The formula for the number of cycles between frame sync pulses is:

of transmit serial clocks between frame sync assertions = TFSDIV + 1

of receive serial clocks between frame sync assertions = RFSDIV + 1

Use the following equations to determine the correct value of TFSDIV or
RFSDIV, given the serial clock frequency and desired frame sync frequency:

SPORT TFS frequency = (TSCLK frequency)/(SPORT_TFSDIV + 1)

SPORT RFS frequency = (RSCLK frequency)/(SPORT_RFSDIV + 1)

The frame sync would thus be continuously active (for transmit if
TFSDIV = 0 or for receive if RFSDIV = 0). However, the value of TFSDIV (or
RFSDIV) should not be less than the serial word length minus 1 (the value
of the SLEN field in SPORT_TCR2 or SPORT_RCR2). A smaller value could
cause an external device to abort the current operation or have other
unpredictable results. If a SPORT is not being used, the TFSDIV (or
RFSDIV) divisor can be used as a counter for dividing an external clock or
for generating a periodic pulse or periodic interrupt. The SPORT must be
enabled for this mode of operation to work.
19-26 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
Maximum Clock Rate Restrictions

Externally generated late transmit frame syncs also experience a delay from
arrival to data output, and this can limit the maximum serial clock speed.
See ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor Data Sheet
for exact timing specifications.

Word Length
Each SPORT channel (transmit and receive) independently handles word
lengths of 3 to 32 bits. The data is right-justified in the SPORT data reg-
isters if it is fewer than 32 bits long, residing in the LSB positions. The
value of the serial word length (SLEN) field in the SPORT_TCR2 and
SPORT_RCR2 registers of each SPORT determines the word length accord-
ing to this formula:

Serial Word Length = SLEN + 1

 The SLEN value should not be set to 0 or 1; values from 2 to 31 are
allowed. Continuous operation (when the last bit of the current
word is immediately followed by the first bit of the next word) is
restricted to word sizes of 4 or longer (so SLEN 3).

Bit Order
Bit order determines whether the serial word is transmitted MSB first or
LSB first. Bit order is selected by the RLSBIT and TLSBIT bits in the
SPORT_RCR1 and SPORT_TCR1 registers. When RLSBIT (or TLSBIT) = 0, serial
words are received (or transmitted) MSB first. When RLSBIT (or
TLSBIT) = 1, serial words are received (or transmitted) LSB first.
ADSP-BF51x Blackfin Processor Hardware Reference 19-27

Functional Description
Data Type
The TDTYPE field of the SPORT_TCR1 register and the RDTYPE field of the
SPORT_RCR1 register specify one of four data formats for both single and
multichannel operation. See Table 19-4.

These formats are applied to serial data words loaded into the SPORT_RX
and SPORT_TX buffers. SPORT_TX data words are not actually zero filled or
sign extended, because only the significant bits are transmitted.

Companding
Companding (a contraction of COMpressing and exPANDing) is the pro-
cess of logarithmically encoding and decoding data to minimize the
number of bits that must be sent. The SPORT supports the two most
widely used companding algorithms, -law and A-law. The processor
compands data according to the CCITT G.711 specification. The type of
companding can be selected independently for each SPORT.

When companding is enabled, valid data in the SPORT_RX register is the
right-justified, expanded value of the eight LSBs received and sign
extended to 16 bits. A write to SPORT_TX causes the 16-bit value to be
compressed to eight LSBs (sign extended to the width of the transmit
word) and written to the internal transmit register. Although the com-
panding standards support only 13-bit (A-law) or 14-bit (-law)

Table 19-4. TDTYPE, RDTYPE, and Data Formatting

TDTYPE or
RDTYPE

SPORT_TCR1 Data Formatting SPORT_RCR1 Data Formatting

00 Normal operation Zero fill

01 Reserved Sign extend

10 Compand using -law Compand using -law

11 Compand using A-law Compand using A-law
19-28 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
maximum word lengths, up to 16-bit word lengths can be used. If the
magnitude of the word value is greater than the maximum allowed, the
value is automatically compressed to the maximum positive or negative
value.

Lengths greater than 16 bits are not supported for companding operation.

Clock Signal Options
Each SPORT has a transmit clock signal (TSCLK) and a receive clock signal
(RSCLK). The clock signals are configured by the TCKFE and RCKFE bits of
the SPORT_TCR1 and SPORT_RCR1 registers. Serial clock frequency is config-
ured in the SPORT_TCLKDIV and SPORT_RCLKDIV registers.

 The receive clock pin may be tied to the transmit clock if a single
clock is desired for both receive and transmit.

Both transmit and receive clocks can be independently generated inter-
nally or input from an external source. The ITCLK bit of the SPORT_TCR1
configuration register and the IRCLK bit in the SPORT_RCR1 configuration
register determines the clock source.

When IRCLK or ITCLK = 1, the clock signal is generated internally by the
processor, and the TSCLK or RSCLK pin is an output. The clock frequency is
determined by the value of the serial clock divisor in the SPORT_RCLKDIV
register.

When IRCLK or ITCLK = 0, the clock signal is accepted as an input on the
TSCLK or RSCLK pins, and the serial clock divisors in the
SPORT_TCLKDIV/SPORT_RCLKDIV registers are ignored. The externally gener-
ated serial clocks do not need to be synchronous with the system clock or
with each other. The system clock must have a higher frequency than
RSCLK and TSCLK.
ADSP-BF51x Blackfin Processor Hardware Reference 19-29

Functional Description
 When the SPORT uses external clocks, it must be enabled for a
minimal number of stable clock pulses before the first active frame
sync is sampled. Failure to allow for these clocks may result in a
SPORT malfunction. See ADSP-BF512/BF514/BF516/
BF518(F) Embedded Processor Data Sheet for details.

The first internal frame sync will occur one frame sync delay after
the SPORTs are ready. External frame syncs can occur as soon as
the SPORT is ready.

Frame Sync Options
Framing signals indicate the beginning of each serial word transfer. The
framing signals for each SPORT are TFS (transmit frame sync) and RFS
(receive frame sync). A variety of framing options are available; these
options are configured in the SPORT configuration registers (SPORT_TCR1,
SPORT_TCR2, SPORT_RCR1 and SPORT_RCR2). The TFS and RFS signals of a
SPORT are independent and are separately configured in the control
registers.

Framed Versus Unframed

The use of multiple frame sync signals is optional in SPORT communica-
tions. The TFSR (transmit frame sync required select) and RFSR (receive
frame sync required select) control bits determine whether frame sync sig-
nals are required. These bits are located in the SPORT_TCR1 and SPORT_RCR1
registers.

When TFSR = 1 or RFSR = 1, a frame sync signal is required for every data
word. To allow continuous transmitting by the SPORT, each new data
word must be loaded into the SPORT_TX hold register before the previous
word is shifted out and transmitted.
19-30 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
When TFSR = 0 or RFSR = 0, the corresponding frame sync signal is not
required. A single frame sync is needed to initiate communications but is
ignored after the first bit is transferred. Data words are then transferred
continuously, unframed.

 With frame syncs not required, interrupt or DMA requests may
not be serviced frequently enough to guarantee continuous
unframed data flow. Monitor status bits or check for a SPORT
Error interrupt to detect underflow or overflow of data.

Figure 19-9 illustrates framed serial transfers, which have these
characteristics:

• TFSR and RFSR bits in the SPORT_TCR1 and SPORT_RCR1 registers
determine framed or unframed mode.

• Framed mode requires a framing signal for every word. Unframed
mode ignores a framing signal after the first word.

• Unframed mode is appropriate for continuous reception.

• Active low or active high frame syncs are selected with the LTFS and
LRFS bits of the SPORT_TCR1 and SPORT_RCR1 registers.

See “Timing Examples” on page 19-39 for more timing examples.
ADSP-BF51x Blackfin Processor Hardware Reference 19-31

Functional Description
Internal Versus External Frame Syncs

Both transmit and receive frame syncs can be independently generated
internally or can be input from an external source. The ITFS and IRFS bits
of the SPORT_TCR1 and SPORT_RCR1 registers determine the frame sync
source.

When ITFS = 1 or IRFS = 1, the corresponding frame sync signal is gener-
ated internally by the SPORT, and the TFS pin or RFS pin is an output.
The frequency of the frame sync signal is determined by the value of the
frame sync divisor in the SPORT_TFSDIV or SPORT_RFSDIV register.

When ITFS = 0 or IRFS = 0, the corresponding frame sync signal is
accepted as an input on the TFS pin or RFS pin, and the frame sync divisors
in the SPORT_TFSDIV/SPORT_RFSDIV registers are ignored.

All of the frame sync options are available whether the signal is generated
internally or externally.

Figure 19-9. Framed Versus Unframed Data

B3 B2 B1 B0

B3 B2 B1 B0 B3 B2 B1 B0 B3 B2 B1

B3 B2 B1 B0

FRAMED
DATA

UNFRAMED
DATA

TFS
OR

RFS

TFS
OR

RFS

DATA

TSCLK
OR

RSCLK
19-32 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
Active Low Versus Active High Frame Syncs

Frame sync signals may be either active high or active low (in other words,
inverted). The LTFS and LRFS bits of the SPORT_TCR1 and SPORT_RCR1 regis-
ters determine frame sync logic levels:

• When LTFS = 0 or LRFS = 0, the corresponding frame sync signal is
active high.

• When LTFS = 1 or LRFS = 1, the corresponding frame sync signal is
active low.

Active high frame syncs are the default. The LTFS and LRFS bits are initial-
ized to 0 after a processor reset.

Sampling Edge for Data and Frame Syncs

Data and frame syncs can be sampled on either the rising or falling edges
of the SPORT clock signals. The TCKFE and RCKFE bits of the SPORT_TCR1
and SPORT_RCR1 registers select the driving and sampling edges of the serial
data and frame syncs.

For the SPORT transmitter, setting TCKFE = 1 in the SPORT_TCR1 register
selects the falling edge of TSCLK to drive data and internally generated
frame syncs and selects the rising edge of TSCLK to sample externally gener-
ated frame syncs. Setting TCKFE = 0 selects the rising edge of TSCLK to drive
data and internally generated frame syncs and selects the falling edge of
TSCLK to sample externally generated frame syncs.

For the SPORT receiver, setting RCKFE = 1 in the SPORT_RCR1 register
selects the falling edge of RSCLK to drive internally generated frame syncs
and selects the rising edge of RSCLK to sample data and externally gener-
ated frame syncs. Setting RCKFE = 0 selects the rising edge of RSCLK to drive
internally generated frame syncs and selects the falling edge of RSCLK to
sample data and externally generated frame syncs.
ADSP-BF51x Blackfin Processor Hardware Reference 19-33

Functional Description
 Note externally generated data and frame sync signals should
change state on the opposite edge than that selected for sampling.
For example, for an externally generated frame sync to be sampled
on the rising edge of the clock (TCKFE = 1 in the SPORT_TCR1 regis-
ter), the frame sync must be driven on the falling edge of the clock.

The transmit and receive functions of two SPORTs connected together
should always select the same value for TCKFE in the transmitter and RCKFE
in the receiver, so that the transmitter drives the data on one edge and the
receiver samples the data on the opposite edge.

In Figure 19-10, TCKFE = RCKFE = 0 and transmit and receive are con-
nected together to share the same clock and frame syncs.

In Figure 19-11, TCKFE = RCKFE = 1 and transmit and receive are con-
nected together to share the same clock and frame syncs.

Figure 19-10. Example of TCKFE = RCKFE = 0, Transmit and Receive
Connected

B1 B2 B3B0

B1 B2 B3B0

TSCLK = RSCLK
INTERNAL OR EXTERNAL

TFS = RFS
INTERNAL OR EXTERNAL

DT

DR

DRIVE
EDGE

SAMPLE
EDGE
19-34 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
Early Versus Late Frame Syncs (Normal Versus
Alternate Timing)

Frame sync signals can occur during the first bit of each data word (late)
or during the serial clock cycle immediately preceding the first bit (early).
The LATFS and LARFS bits of the SPORT_TCR1 and SPORT_RCR1 registers con-
figure this option.

When LATFS = 0 or LARFS = 0, early frame syncs are configured; this is the
normal mode of operation. In this mode, the first bit of the transmit data
word is available and the first bit of the receive data word is sampled in the
serial clock cycle after the frame sync is asserted, and the frame sync is not
checked again until the entire word has been transmitted or received. In
multichannel operation, this corresponds to the case when multichannel
frame delay is 1.

If data transmission is continuous in early framing mode (in other words,
the last bit of each word is immediately followed by the first bit of the next
word), then the frame sync signal occurs during the last bit of each word.
Internally generated frame syncs are asserted for one clock cycle in early
framing mode. Continuous operation is restricted to word sizes of 4 or
longer (SLEN 3).

Figure 19-11. Example of TCKFE = RCKFE = 1, Transmit and Receive
Connected

B1 B2 B3

TSCLK = RSCLK
INTERNAL OR EXTERNAL

TFS = RFS
INTERNAL OR EXTERNAL

DT B0

B1 B2 B3DR B0

DRIVE
EDGE

SAMPLE
EDGE
ADSP-BF51x Blackfin Processor Hardware Reference 19-35

Functional Description
When LATFS = 1 or LARFS = 1, late frame syncs are configured; this is the
alternate mode of operation. In this mode, the first bit of the transmit data
word is available and the first bit of the receive data word is sampled in the
same serial clock cycle that the frame sync is asserted. In multichannel
operation, this is the case when frame delay is 0. Receive data bits are sam-
pled by serial clock edges, but the frame sync signal is only checked during
the first bit of each word. Internally generated frame syncs remain asserted
for the entire length of the data word in late framing mode. Externally
generated frame syncs are only checked during the first bit.

Figure 19-12 illustrates the two modes of frame signal timing. In
summary:

• For the LATFS or LARFS bits of the SPORT_TCR1 or SPORT_RCR1 regis-
ters: LATFS = 0 or LARFS = 0 for early frame syncs, LATFS = 1 or
LARFS = 1 for late frame syncs.

• For early framing, the frame sync precedes data by one cycle. For
late framing, the frame sync is checked on the first bit only.

• Data is transmitted MSB first (TLSBIT = 0 or RLSBIT = 0) or LSB
first (TLSBIT = 1 or RLSBIT = 1).

• Frame sync and clock are generated internally or externally.

See “Timing Examples” on page 19-39 for more examples.
19-36 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
Data Independent Transmit Frame Sync

Normally the internally generated transmit frame sync signal (TFS) is out-
put only when the SPORT_TX buffer has data ready to transmit. The
data-independent transmit frame sync select bit (DITFS) allows the contin-
uous generation of the TFS signal, with or without new data. The DITFS bit
of the SPORT_TCR1 register configures this option.

When DITFS = 0, the internally generated TFS is only output when a new
data word has been loaded into the SPORT_TX buffer. The next TFS is gen-
erated once data is loaded into SPORT_TX. This mode of operation allows
data to be transmitted only when it is available.

When DITFS = 1, the internally generated TFS is output at its programmed
interval regardless of whether new data is available in the SPORT_TX buffer.
Whatever data is present in SPORT_TX is transmitted again with each asser-
tion of TFS. The TUVF (transmit underflow status) bit in the SPORT_STAT
register is set when this occurs and old data is retransmitted. The TUVF sta-
tus bit is also set if the SPORT_TX buffer does not have new data when an
externally generated TFS occurs. Note that in this mode of operation, data
is transmitted only at specified times.

If the internally generated TFS is used, a single write to the SPORT_TX data
register is required to start the transfer.

Figure 19-12. Normal Versus Alternate Framing

B3 B2 B1 B0 ...

RSCLK
or

TSCLK

DATA

EARLY
FRAME

SYNC

LATE
FRAME

SYNC
ADSP-BF51x Blackfin Processor Hardware Reference 19-37

Functional Description
Moving Data Between SPORTs and Memory
Transmit and receive data can be transferred between the SPORTs and
on-chip memory in one of two ways: with single word transfers or with
DMA block transfers.

If no SPORT DMA channel is enabled, the SPORT generates an interrupt
every time it has received a data word or needs a data word to transmit.
SPORT DMA provides a mechanism for receiving or transmitting an
entire block or multiple blocks of serial data before the interrupt is gener-
ated. The SPORT’s DMA controller handles the DMA transfer, allowing
the processor core to continue running until the entire block of data is
transmitted or received. Interrupt service routines (ISRs) can then operate
on the block of data rather than on single words, significantly reducing
overhead.

SPORT RX, TX, and Error Interrupts
The SPORT RX interrupt is asserted when RSPEN is enabled and any
words are present in the RX FIFO. If RX DMA is enabled, the SPORT
RX interrupt is turned off and DMA services the RX FIFO.

The SPORT TX interrupt is asserted when TSPEN is enabled and the TX
FIFO has room for words. If TX DMA is enabled, the SPORT TX inter-
rupt is turned off and DMA services the TX FIFO.

The SPORT error interrupt is asserted when any of the sticky status bits
(ROVF, RUVF, TOVF, TUVF) are set. The ROVF and RUVF bits are cleared by
writing 0 to RSPEN. The TOVF and TUVF bits are cleared by writing 0 to
TSPEN.
19-38 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
Peripheral Bus Errors
The SPORT generates a peripheral bus error for illegal register read or
write operations. Examples include:

• Reading a write-only register (for example, SPORT_TX)

• Writing a read-only register (for example, SPORT_RX)

• Writing or reading a register with the wrong size (for example,
32-bit read of a 16-bit register)

• Accessing reserved register locations

Timing Examples
Several timing examples are included within the text of this chapter (in the
sections “Framed Versus Unframed” on page 19-30, “Early Versus Late
Frame Syncs (Normal Versus Alternate Timing)” on page 19-35, and
“Frame Syncs in Multichannel Mode” on page 19-18). This section con-
tains additional examples to illustrate other possible combinations of the
framing options.

These timing examples show the relationships between the signals but are
not scaled to show the actual timing parameters of the processor. Consult
ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor Data Sheet for
actual timing parameters and values.

These examples assume a word length of four bits (SLEN = 3). Framing sig-
nals are active high (LRFS = 0 and LTFS = 0).

Figure 19-13 through Figure 19-18 show framing for receiving data.
ADSP-BF51x Blackfin Processor Hardware Reference 19-39

Functional Description
In Figure 19-13 and Figure 19-14, the normal framing mode is shown for
non-continuous data (any number of TSCLK or RSCLK cycles between
words) and continuous data (no TSCLK or SCLK cycles between words).

Figure 19-15 and Figure 19-16 show non-continuous and continuous
receiving in the alternate framing mode. These four figures show the input
timing requirement for an externally generated frame sync and also the
output timing characteristic of an internally generated frame sync. Note
the output meets the input timing requirement; therefore, with two
SPORT channels used, one SPORT channel could provide RFS for the
other SPORT channel.

Figure 19-13. SPORT Receive, Normal Framing

Figure 19-14. SPORT Continuous Receive, Normal Framing

B3B3 B2 B1 B0 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DR REPRESENTS DRPRI AND/OR DRSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLK

RFS OUTPUT

DR

RFS INPUT

RSCLK

RFS OUTPUT

RFS INPUT

DR B3 B2 B1 B0 B3 B2 B1 B0 B3 B2

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DR REPRESENTS DRPRI AND/OR DRSEC, DEPENDING ON DESIRED CONFIGURATION.

:

19-40 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
Figure 19-17 and Figure 19-18 show the receive operation with normal
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one
RSCLK before the first bit (in normal mode) or at the same time as the first
bit (in alternate mode). This mode is appropriate for multiword bursts
(continuous reception).

Figure 19-15. SPORT Receive, Alternate Framing

Figure 19-16. SPORT Continuous Receive, Alternate Framing

B3B3 B2 B1 B0 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DR REPRESENTS DRPRI AND/OR DRSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLK

RFS OUTPUT

DR

RFS INPUT

RSCLK

RFS OUTPUT

RFS INPUT

DR B3 B2 B1 B0 B3 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DR REPRESENTS DRPRI AND/OR DRSEC, DEPENDING ON DESIRED CONFIGURATION.
ADSP-BF51x Blackfin Processor Hardware Reference 19-41

Functional Description
Figure 19-19 through Figure 19-24 show framing for transmitting data
and are very similar to Figure 19-13 through Figure 19-18.

In Figure 19-19 and Figure 19-20, the normal framing mode is shown for
non-continuous data (any number of TSCLK cycles between words) and
continuous data (no TSCLK cycles between words). Figure 19-21 and
Figure 19-22 show non-continuous and continuous transmission in the
alternate framing mode. As noted previously for the receive timing dia-
grams, the RFS output meets the RFS input timing requirement.

Figure 19-17. SPORT Receive, Unframed Mode, Normal Framing

Figure 19-18. SPORT Receive, Unframed Mode, Alternate Framing

RSCLK

RFS

DR B3 B2 B1 B0 B3 B2 B1 B0 B2B3

DR REPRESENTS DRPRI AND/OR DRSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLK

RFS

DR B3 B2 B1 B0 B3 B2 B1 B0 B2B3

DR REPRESENTS DRPRI AND/OR DRSEC, DEPENDING ON DESIRED CONFIGURATION.
19-42 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
Figure 19-19. SPORT Transmit, Normal Framing

Figure 19-20. SPORT Continuous Transmit, Normal Framing

Figure 19-21. SPORT Transmit, Alternate Framing

TSCLK

TFS OUTPUT

DT B2 B1 B0B3 B2 B1 B0B3

TFS INPUT

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DT REPRESENTS DTPRI AND/OR DTSEC, DEPENDING ON DESIRED CONFIGURATION.

B2 B1 B0B3 B2 B1 B0B3 B3 B2

TSCLK

TFS OUTPUT

TFS INPUT

TR

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DT REPRESENTS DTPRI AND/OR DTSEC, DEPENDING ON DESIRED CONFIGURATION.

B2 B1 B0B3 B2 B1 B0B3

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DT REPRESENTS DTPRI AND/OR DTSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLK

TFS OUTPUT

DT

TFS INPUT
ADSP-BF51x Blackfin Processor Hardware Reference 19-43

Functional Description
Figure 19-23 and Figure 19-24 show the transmit operation with normal
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one
TSCLK before the first bit (in normal mode) or at the same time as the first
bit (in alternate mode).

Figure 19-22. SPORT Continuous Transmit, Alternate Framing

Figure 19-23. SPORT Transmit, Unframed Mode, Normal Framing

Figure 19-24. SPORT Transmit, Unframed Mode, Alternate Framing

B2 B1 B0B3 B0B3 B2 B1

TSCLK

TFS OUTPUT

TFS INPUT

TR

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DT REPRESENTS DTPRI AND/OR DTSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLK

TFS

DT B3 B3B0B1B2 B1 B0 B3B2 B2

DT REPRESENTS DTPRI AND/OR DTSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLK

TFS

DT B3 B3B0B1B2 B1 B0 B3B2 B2

DT REPRESENTS DTPRI AND/OR DTSEC, DEPENDING ON DESIRED CONFIGURATION.
19-44 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
SPORT Registers
The following sections describe the SPORT registers. Table 19-5 provides
an overview of the available control registers.

Table 19-5. SPORT Register Mapping

Register Name Function Notes

SPORT_TCR1 Primary transmit
configuration register

Bits [15:1] can only be written if
bit 0 = 0

SPORT_TCR2 Secondary transmit
configuration register

SPORT_TCLKDIV Transmit clock
divider register

Ignored if external SPORT clock
mode is selected

SPORT_TFSDIV Transmit frame sync divider register Ignored if external frame sync mode
is selected

SPORT_TX Transmit data register See description of FIFO buffering at
“SPORT Transmit Data
(SPORT_TX) Register” on
page 19-57.

SPORT_RCR1 Primary receive
configuration register

Bits [15:1] can only be written if
bit 0 = 0

SPORT_RCR2 Secondary receive
configuration register

SPORT_RCLK_DIV Receive clock
divider register

Ignored if external SPORT clock
mode is selected

SPORT_RFSDIV Receive frame sync
 divider register

Ignored if external frame sync mode
is selected

SPORT_RX Receive data register See description of FIFO buffering at
“SPORT Receive Data
(SPORT_RX) Register” on
page 19-59.

SPORT_STAT Receive and transmit status

SPORT_MCM1 Primary multichannel mode
configuration register

Configure this register before
enabling the SPORT
ADSP-BF51x Blackfin Processor Hardware Reference 19-45

SPORT Registers
Register Writes and Effective Latency
When the SPORT is disabled (TSPEN and RSPEN cleared), SPORT register
writes are internally completed at the end of the SCLK cycle in which they
occurred, and the register reads back the newly-written value on the next
cycle.

When the SPORT is enabled to transmit (TSPEN set) or receive (RSPEN set),
corresponding SPORT configuration register writes are disabled (except
for SPORT_RCLKDIV, SPORT_TCLKDIV, and multichannel mode channel select
registers). The SPORT_TX register writes are always enabled; SPORT_RX,
SPORT_CHNL, and SPORT_STAT are read-only registers.

After a write to a SPORT register, while the SPORT is disabled, any
changes to the control and mode bits generally take effect when the
SPORT is re-enabled.

 Most configuration registers can only be changed while the
SPORT is disabled (TSPEN/RSPEN = 0). Changes take effect after the
SPORT is re-enabled. The only exceptions to this rule are the
TCLKDIV/RCLKDIV registers and multichannel select registers.

SPORT_MCM2 Secondary multichannel
mode configuration register

Configure this register before
enabling the SPORT

SPORT_MRCSn Receive channel selection registers Select or deselect channels in a mul-
tichannel frame

SPORT_MTCSn Transmit channel selection registers Select or deselect channels in a mul-
tichannel frame

SPORT_CHNL Currently serviced channel
in a multichannel frame

Table 19-5. SPORT Register Mapping (Continued)

Register Name Function Notes
19-46 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
SPORT Transmit Configuration
(SPORT_TCR1 and SPORT_TCR2) Registers

The main control registers for the transmit portion of each SPORT are
the transmit configuration registers, SPORT_TCR1 and SPORT_TCR2, shown
in Figure 19-25 and Figure 19-26.

A SPORT is enabled for transmit if bit 0 (TSPEN) of the transmit configu-
ration 1 register is set to 1. This bit is cleared during either a hard reset or
a soft reset, disabling all SPORT transmission.

When the SPORT is enabled to transmit (TSPEN set), corresponding
SPORT configuration register writes are not allowed except for
SPORT_TCLKDIV and multichannel mode channel select registers. Writes to
disallowed registers have no effect. While the SPORT is enabled,
SPORT_TCR1 is not written except for bit 0 (TSPEN). For example,

write (SPORT_TCR1, 0x0001) ; /* SPORT TX Enabled */

write (SPORT_TCR1, 0xFF01) ; /* ignored, no effect */

write (SPORT_TCR1, 0xFFF0) ; /* SPORT disabled, SPORT_TCR1

still equal to 0x0000 */
ADSP-BF51x Blackfin Processor Hardware Reference 19-47

SPORT Registers
Figure 19-25. SPORT Transmit Configuration 1 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORT Transmit Configuration 1 Register (SPORT_TCR1)

0 - Transmit disabled
1 - Transmit enabled

ITFS (Internal Transmit
Frame Sync Select)

ITCLK (Internal Transmit
Clock Select)

TDTYPE[1:0] (Data Format-
ting Type Select)

TLSBIT (Transmit Bit Order)

TSPEN (Transmit Enable)

LTFS (Low Transmit
Frame Sync Select)

LATFS (Late Transmit
 Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

TCKFE (Clock Falling
Edge Select)

0 -External transmit clock
selected

1 - Internal transmit clock
selected

00 - Normal operation
01 - Reserved
10 - Compand using -law
11 - Compand using A-law

0 - Transmit MSB first
1 - Transmit LSB first

Reset = 0x0000

0 - External TFS used
1 - Internal TFS used

0 - Drive data and internal
frame syncs with rising
edge of TSCLK. Sample
external frame syncs with
falling edge of TSCLK.

1 - Drive data and internal
frame syncs with falling
edge of TSCLK. Sample
external frame syncs
with rising edge of TSCLK.

0 - Active high TFS
1 - Active low TFS

TFSR (Transmit Frame Sync
Required Select)

DITFS (Data-Independent
Transmit Frame Sync Select)
0 - Data-dependent TFS generated
1 - Data-independent TFS generated

0 - Does not require TFS for
every data word

1 - Requires TFS for every
data word
19-48 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
Additional information for the SPORT_TCR1 and SPORT_TCR2 transmit con-
figuration register bits includes:

• Transmit enable (TSPEN). This bit selects whether the SPORT is
enabled to transmit (if set) or disabled (if cleared).

Setting TSPEN causes an immediate assertion of a SPORT TX inter-
rupt, indicating that the TX data register is empty and needs to be
filled. This is normally desirable because it allows centralization of
the transmit data write code in the TX interrupt service routine
(ISR). For this reason, the code should initialize the ISR and be
ready to service TX interrupts before setting TSPEN.

Similarly, if DMA transfers are used, DMA control should be con-
figured correctly before setting TSPEN. Set all DMA control
registers before setting TSPEN.

Clearing TSPEN causes the SPORT to stop driving data, TSCLK, and
frame sync pins; it also shuts down the internal SPORT circuitry.
In low power applications, battery life can be extended by clearing
TSPEN whenever the SPORT is not in use.

Figure 19-26. SPORT Transmit Configuration 2 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORT Transmit Configuration 2 Register (SPORT_TCR2)

SLEN[4:0] (SPORT Word
Length)

TSFSE (Transmit Stereo
Frame Sync Enable)

TRFST (Left/Right Order)
00000 - Illegal value
00001 - Illegal value
Serial word length is value in
this field plus 1

Reset = 0x0000

0 - Left stereo channel first
1 - Right stereo channel first

0 - Normal mode
1 - Frame sync becomes L/R clock

TXSE (TxSEC Enable)

0 - Secondary side disabled
1 - Secondary side enabled
ADSP-BF51x Blackfin Processor Hardware Reference 19-49

SPORT Registers
 All SPORT control registers should be programmed before TSPEN is
set. Typical SPORT initialization code first writes all control regis-
ters, including DMA control if applicable. The last step in the code
is to write SPORT_TCR1 with all of the necessary bits, including
TSPEN.

• Internal transmit clock select. (ITCLK). This bit selects the internal
transmit clock (if set) or the external transmit clock on the TSCLK
pin (if cleared). The TCLKDIV MMR value is not used when an
external clock is selected.

• Data formatting type select. The two TDTYPE bits specify data for-
mats used for single and multichannel operation.

• Bit order select. (TLSBIT). The TLSBIT bit selects the bit order of
the data words transmitted over the SPORT.

• Serial word length select. (SLEN). The serial word length (the num-
ber of bits in each word transmitted over the SPORTs) is
calculated by adding 1 to the value of the SLEN field:

 Serial Word Length = SLEN + 1;

The SLEN field can be set to a value of 2 to 31; 0 and 1 are illegal
values for this field. Three common settings for the SLEN field are
15, to transmit a full 16-bit word; 7, to transmit an 8-bit byte; and
23, to transmit a 24-bit word. The processor can load 16- or 32-bit
values into the transmit buffer via DMA or an MMR write
instruction; the SLEN field tells the SPORT how many of those bits
to shift out of the register over the serial link. The SPORT always
transfers the SLEN+1 lower bits from the transmit buffer.

 The frame sync signal is controlled by the SPORT_TFSDIV and
SPORT_RFSDIV registers, not by SLEN. To produce a frame sync pulse
on each byte or word transmitted, the proper frame sync divider
19-50 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
must be programmed into the frame sync divider register; setting
SLEN to 7 does not produce a frame sync pulse on each byte
transmitted.

• Internal transmit frame sync select. (ITFS). This bit selects
whether the SPORT uses an internal TFS (if set) or an external TFS
(if cleared).

• Transmit frame sync required select. (TFSR). This bit selects
whether the SPORT requires (if set) or does not require (if cleared)
a transmit frame sync for every data word.

 The TFSR bit is normally set during SPORT configuration. A frame
sync pulse is used to mark the beginning of each word or data
packet, and most systems need a frame sync to function properly.

• Data-Independent transmit frame sync select. (DITFS). This bit
selects whether the SPORT generates a data-independent TFS (sync
at selected interval) or a data-dependent TFS (sync when data is
present in SPORT_TX) for the case of internal frame sync select
(ITFS = 1). The DITFS bit is ignored when external frame syncs are
selected.

The frame sync pulse marks the beginning of the data word. If
DITFS is set, the frame sync pulse is issued on time, whether the
SPORT_TX register has been loaded or not; if DITFS is cleared, the
frame sync pulse is only generated if the SPORT_TX data register has
been loaded. If the receiver demands regular frame sync pulses,
DITFS should be set, and the processor should keep loading the
SPORT_TX register on time. If the receiver can tolerate occasional
late frame sync pulses, DITFS should be cleared to prevent the
SPORT from transmitting old data twice or transmitting garbled
data if the processor is late in loading the SPORT_TX register.

• Low transmit frame sync select. (LTFS). This bit selects an active
low TFS (if set) or active high TFS (if cleared).
ADSP-BF51x Blackfin Processor Hardware Reference 19-51

SPORT Registers
• Late transmit frame sync. (LATFS). This bit configures late frame
syncs (if set) or early frame syncs (if cleared).

• Clock drive/sample edge select. (TCKFE). This bit selects which
edge of the TCLKx signal the SPORT uses for driving data, for driv-
ing internally generated frame syncs, and for sampling externally
generated frame syncs. If set, data and internally generated frame
syncs are driven on the falling edge, and externally generated frame
syncs are sampled on the rising edge. If cleared, data and internally
generated frame syncs are driven on the rising edge, and externally
generated frame syncs are sampled on the falling edge.

• TxSec enable. (TXSE). This bit enables the transmit secondary side
of the SPORT (if set).

• Stereo serial enable. (TSFSE). This bit enables the stereo serial oper-
ating mode of the SPORT (if set). By default this bit is cleared,
enabling normal clocking and frame sync.

• Left/Right order. (TRFST). If this bit is set, the right channel is
transmitted first in stereo serial operating mode. By default this bit
is cleared, and the left channel is transmitted first.

SPORT Receive Configuration
(SPORT_RCR1 and SPORT_RCR2) Registers

The main control registers for the receive portion of each SPORT are the
receive configuration registers, SPORT_RCR1 and SPORT_RCR2, shown in
Figure 19-27 and Figure 19-28.

A SPORT is enabled for receive if bit 0 (RSPEN) of the receive configura-
tion 1 register is set to 1. This bit is cleared during either a hard reset or a
soft reset, disabling all SPORT reception.
19-52 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
When the SPORT is enabled to receive (RSPEN set), corresponding
SPORT configuration register writes are not allowed except for
SPORT_RCLKDIV and multichannel mode channel select registers. Writes to
disallowed registers have no effect. While the SPORT is enabled,
SPORT_RCR1 is not written except for bit 0 (RSPEN). For example,

write (SPORT_RCR1, 0x0001) ; /* SPORT RX Enabled */

write (SPORT_RCR1, 0xFF01) ; /* ignored, no effect */

write (SPORT_RCR1, 0xFFF0) ; /* SPORT disabled, SPORT_RCR1

still equal to 0x0000 */

Figure 19-27. SPORT Receive Configuration 1 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORT Receive Configuration 1 Register (SPORT_RCR1)

0 - Receive disabled
1 - Receive enabled

IRFS (Internal Receive Frame
Sync Select)

IRCLK (Internal Receive
Clock Select)

RDTYPE[1:0] (Data
Formatting Type Select)

RLSBIT (Receive Bit Order)

RSPEN (Receive Enable)

LRFS (Low Receive Frame
Sync Select)

LARFS (Late Receive
Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

RCKFE (Clock Falling
Edge Select)

0 -External receive clock
selected

1 - Internal receive clock
selected

00 - Zero fill
01 - Sign-extend
10 - Compand using -law
11 - Compand using A-law

0 - Receive MSB first
1 - Receive LSB first

Reset = 0x0000

0 - External RFS used
1 - Internal RFS used

0 - Drive internal frame sync
on rising edge of RSCLK.
Sample data and external
frame sync with falling
edge of RSCLK.

1 - Drive internal frame sync
on falling edge of RSCLK.
Sample data and external
frame sync with rising
edge of RSCLK.

0 - Active high RFS
1 - Active low RFS

RFSR (Receive Frame Sync
Required Select)
0 - Does not require RFS for

every data word
1 - Requires RFS for every data

word
ADSP-BF51x Blackfin Processor Hardware Reference 19-53

SPORT Registers
Additional information for the SPORT_RCR1 and SPORTRCR2 receive config-
uration register bits:

• Receive enable. (RSPEN). This bit selects whether the SPORT is
enabled to receive (if set) or disabled (if cleared). Setting the RSPEN
bit turns on the SPORT and causes it to sample data from the data
receive pins as well as the receive bit clock and receive frame sync
pins if so programmed.

Setting RSPEN enables the SPORT receiver, which can generate a
SPORT RX interrupt. For this reason, the code should initialize
the ISR and the DMA control registers, and should be ready to ser-
vice RX interrupts before setting RSPEN. Setting RSPEN also
generates DMA requests if DMA is enabled and data is received.
Set all DMA control registers before setting RSPEN.

Clearing RSPEN causes the SPORT to stop receiving data; it also
shuts down the internal SPORT receive circuitry. In low power
applications, battery life can be extended by clearing RSPEN when-
ever the SPORT is not in use.

Figure 19-28. SPORT Receive Configuration 2 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORT Receive Configuration 2 Register (SPORT_RCR2)

SLEN[4:0] (SPORT Word
Length)

RSFSE (Receive Stereo
Frame Sync Enable)

RRFST (Left/Right Order)
00000 - Illegal value
00001 - Illegal value
Serial word length is value in
this field plus 1

Reset = 0x0000

0 - Left stereo channel first
1 - Right stereo channel first

0 - Normal mode
1 - Frame sync becomes L/R clock

RXSE (RxSEC Enable)

0 - Secondary side disabled
1 - Secondary side enabled
19-54 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
 All SPORT control registers should be programmed before RSPEN is
set. Typical SPORT initialization code first writes all control regis-
ters, including DMA control if applicable. The last step in the code
is to write SPORT_RCR1 with all of the necessary bits, including
RSPEN.

• Internal receive clock select. (IRCLK). This bit selects the internal
receive clock (if set) or external receive clock (if cleared). The RCLK-
DIV MMR value is not used when an external clock is selected.

• Data formatting type select. (RDTYPE). The two RDTYPE bits specify
one of four data formats used for single and multichannel
operation.

• Bit order select. (RLSBIT). The RLSBIT bit selects the bit order of
the data words received over the SPORTs.

• Serial word length select. (SLEN). The serial word length (the num-
ber of bits in each word received over the SPORTs) is calculated by
adding 1 to the value of the SLEN field. The SLEN field can be set to
a value of 2 to 31; 0 and 1 are illegal values for this field.

 The frame sync signal is controlled by the SPORT_TFSDIV and
SPORT_RFSDIV registers, not by SLEN. To produce a frame sync pulse
on each byte or word transmitted, the proper frame sync divider
must be programmed into the frame sync divider register; setting
SLEN to 7 does not produce a frame sync pulse on each byte
transmitted.

• Internal receive frame sync select. (IRFS). This bit selects whether
the SPORT uses an internal RFS (if set) or an external RFS (if
cleared).

• Receive frame sync required select. (RFSR). This bit selects whether
the SPORT requires (if set) or does not require (if cleared) a receive
frame sync for every data word.
ADSP-BF51x Blackfin Processor Hardware Reference 19-55

SPORT Registers
• Low receive frame sync select. (LRFS). This bit selects an active low
RFS (if set) or active high RFS (if cleared).

• Late receive frame sync. (LARFS). This bit configures late frame
syncs (if set) or early frame syncs (if cleared).

• Clock drive/sample edge select. (RCKFE). This bit selects which
edge of the RSCLK clock signal the SPORT uses for sampling data,
for sampling externally generated frame syncs, and for driving
internally generated frame syncs. If set, internally generated frame
syncs are driven on the falling edge, and data and externally gener-
ated frame syncs are sampled on the rising edge. If cleared,
internally generated frame syncs are driven on the rising edge, and
data and externally generated frame syncs are sampled on the fall-
ing edge.

• RxSec enable. (RXSE). This bit enables the receive secondary side of
the SPORT (if set).

• Stereo serial enable. (RSFSE). This bit enables the stereo serial oper-
ating mode of the SPORT (if set). By default this bit is cleared,
enabling normal clocking and frame sync.

• Left/Right order. (RRFST). If this bit is set, the right channel is
received first in stereo serial operating mode. By default this bit is
cleared, and the left channel is received first.

Data Word Formats
The format of the data words transferred over the SPORTs is configured
by the combination of transmit SLEN and receive SLEN; RDTYPE; TDTYPE;
RLSBIT; and TLSBIT bits of the SPORT_TCR1, SPORT_TCR2, SPORT_RCR1, and
SPORT_RCR2 registers.
19-56 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
SPORT Transmit Data (SPORT_TX) Register
The SPORT_TX register is a write-only register. Reads produce a peripheral
bus error. Writes to this register cause writes into the transmitter FIFO.
The 16-bit wide FIFO is 8 deep for word length 16 and 4 deep for word
length > 16. The FIFO is common to both primary and secondary data
and stores data for both. Data ordering in the FIFO is shown in the
Figure 19-29. The SPORT_TX register is shown in Figure 19-30.

It is important to keep the interleaving of primary and secondary data in
the FIFO as shown. This means that peripheral bus/DMA writes to the
FIFO must follow an order of primary first, and then secondary, if sec-
ondary is enabled. DAB/peripheral bus writes must match their size to the
data word length. For word length up to and including 16 bits, use a
16-bit write. Use a 32-bit write for word length greater than 16 bits.

When transmit is enabled, data from the FIFO is assembled in the TX
Hold register based on TXSE and SLEN, and then shifted into the primary
and secondary shift registers. From here, the data is shifted out serially on
the DTPRI and DTSEC pins.

Figure 19-29. SPORT Transmit FIFO Data Ordering

015

015

015

015

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W7

W6
W5

W4

W3

W2
W1

W0

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W3 LOW

W3 HIGH
W2 LOW

W2 HIGH

W1 LOW

W1 HIGH
W0 LOW

W0 HIGH

SECONDARY W3

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY
PRIMARY

PRIMARY

PRIMARY

SECONDARY

SECONDARY

SECONDARY

W3
W2

W2

W1

W1
W0

W0

SECONDARY W1 LOW

SECONDARY

SECONDARY

SECONDARY

W1 HIGH
W1 LOW

W1 HIGH

W0 LOW

W0 HIGH
W0 LOW

W0 HIGH

ONLY PRIMARY ENABLED
DATA LENGTH <= 16 BITS

ONLY PRIMARY ENABLED
DATA LENGTH > 16 BITS

8 WORDS OF
PRIMARY DATA

IN FIFO

4 WORDS OF
PRIMARY DATA

IN FIFO

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH <= 16 BITS

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH > 16 BITS

4 WORDS OF
PRIMARY DATA AND

4 WORDS OF
SECONDARY DATA

IN FIFO

2 WORDS OF
PRIMARY DATA AND

2 WORDS OF
SECONDARY DATA

IN FIFO
ADSP-BF51x Blackfin Processor Hardware Reference 19-57

SPORT Registers
The SPORT TX interrupt is asserted when TSPEN = 1 and the TX FIFO
has room for additional words. This interrupt does not occur if SPORT
DMA is enabled.

The transmit underflow status bit (TUVF) is set in the SPORT_STAT register
when a transmit frame sync occurs and no new data has been loaded into
the serial shift register. In multichannel mode (MCM), TUVF is set when-
ever the serial shift register is not loaded, and transmission begins on the
current enabled channel. The TUVF status bit is a sticky write-1-to-clear
(W1C) bit and is also cleared by disabling the SPORT (writing
TSPEN = 0).

If software causes the core processor to attempt a write to a full TX FIFO
with a SPORT_TX write, the new data is lost and no overwrites occur to data
in the FIFO. The TOVF status bit is set and a SPORT error interrupt is
asserted. The TOVF bit is a sticky bit; it is only cleared by disabling the
SPORT TX. To find out whether the core processor can access the
SPORT_TX register without causing this type of error, read the register’s sta-
tus first. The TXF bit in the SPORT_STAT register is 0 if space is available for
another word in the FIFO.

The TXF and TOVF status bits in the SPORT_STAT register are updated upon
writes from the core processor, even when the SPORT is disabled.

Figure 19-30. SPORT Transmit Data Register

SPORT Transmit Data Register (SPORT_TX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Data[31:16]

Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Data[15:0]
19-58 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
SPORT Receive Data (SPORT_RX) Register
The SPORT_RX register is a read-only register. Writes produce a peripheral
bus error. The same location is read for both primary and secondary data.
Reading from this register space causes reading of the receive FIFO. This
16-bit FIFO is 8 deep for receive word length 16 and 4 deep for
length > 16 bits. The FIFO is shared by both primary and secondary
receive data. The order for reading using peripheral bus/DMA reads is
important since data is stored in differently depending on the setting of
the SLEN and RXSE configuration bits.

Data storage and data ordering in the FIFO are shown in Figure 19-31.

Figure 19-31. SPORT Receive FIFO Data Ordering

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W7

0

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH <= 16 BITS

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH > 16 BITS

15

W6
W5

W4

W3

W2
W1

W0

W3 LOW

015

W3 HIGH
W2 LOW

W2 HIGH

W1 LOW

W1 HIGH
W0 LOW

W0 HIGH

SECONDARY W3

015

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY
PRIMARY

PRIMARY

PRIMARY

SECONDARY

SECONDARY

SECONDARY

W3
W2

W2

W1

W1
W0

W0

SECONDARY W1 LOW

015

SECONDARY

SECONDARY

SECONDARY

W1 HIGH
W1 LOW

W1 HIGH

W0 LOW

W0 HIGH
W0 LOW

W0 HIGH

4 WORDS OF
PRIMARY DATA AND

4 WORDS OF
SECONDARY DATA

IN FIFO

2 WORDS OF
PRIMARY DATA AND

2 WORDS OF
SECONDARY DATA

IN FIFO

FROM Rx HOLD REGISTER

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

FROM Rx HOLD REGISTER

FROM Rx HOLD REGISTER

FROM Rx HOLD REGISTER

ONLY PRIMARY ENABLED
DATA LENGTH <= 16 BITS

ONLY PRIMARY ENABLED
DATA LENGTH > 16 BITS

8 WORDS OF
PRIMARY DATA

IN FIFO

4 WORDS OF
PRIMARY DATA

IN FIFO
ADSP-BF51x Blackfin Processor Hardware Reference 19-59

SPORT Registers
The SPORT_RX register is shown in Figure 19-32.

When reading from the FIFO for both primary and secondary data, read
primary first, followed by secondary. DAB/peripheral bus reads must
match their size to the data word length. For word length up to and
including 16 bits, use a 16-bit read. Use a 32-bit read for word length
greater than 16 bits.

When receiving is enabled, data from the DRPRI pin is loaded into the RX
primary shift register, while data from the DRSEC pin is loaded into the RX
secondary shift register. At transfer completion of a word, data is shifted
into the RX hold registers for primary and secondary data, respectively.
Data from the hold registers is moved into the FIFO based on RXSE and
SLEN.

The SPORT RX interrupt is generated when RSPEN = 1 and the RX FIFO
has received words in it. When the core processor has read all the words in
the FIFO, the RX interrupt is cleared. The SPORT RX interrupt is set
only if SPORT RX DMA is disabled; otherwise, the FIFO is read by
DMA reads.

If the program causes the core processor to attempt a read from an empty
RX FIFO, old data is read, the RUVF flag is set in the SPORT_STAT register,
and the SPORT error interrupt is asserted. The RUVF bit is a sticky bit and

Figure 19-32. SPORT Receive Data Register

SPORT Receive Data Register (SPORT_RX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Data[31:16]

Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Data[15:0]
19-60 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
is cleared only when the SPORT is disabled. To determine if the core can
access the RX registers without causing this error, first read the RX FIFO
status (RXNE in the SPORT_STAT register). The RUVF status bit is updated
even when the SPORT is disabled.

The ROVF status bit is set in the SPORT_STAT register when a new word is
assembled in the RX shift register and the RX hold register has not moved
the data to the FIFO. The previously written word in the hold register is
overwritten. The ROVF bit is a sticky bit; it is only cleared by disabling the
SPORT RX.

SPORT Status (SPORT_STAT) Register
The SPORT_STAT register is used to determine if the access to a SPORT RX
or TX FIFO can be made by determining their full or empty status. This
register is shown in Figure 19-33.

The TXF bit in the SPORT_STAT register indicates whether there is room in
the TX FIFO. The RXNE status bit indicates whether there are words in the
RX FIFO. The TXHRE bit indicates if the TX hold register is empty.

Figure 19-33. SPORT Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 0 0 0 0 0

SPORT Status Register (SPORT_STAT)

0 - Disabled
1 - Enabled

RUVF (Sticky Receive Under-
flow Status) - W1C

RXNE (Receive FIFO Not
Empty Status)

ROVF (Sticky Receive Over-
flow Status) - W1C

TUVF (Sticky Transmit Underflow Status) - W1C 0 - Disabled
1 - Enabled

0 - Empty
1 - Data present in FIFO

Reset = 0x0040

0 - Disabled
1 - Enabled

TOVF (Sticky Transmit Overflow Status) - W1C
0 - Disabled
1 - Enabled

TXF (Transmit FIFO Full Status)
0 - Not full
1 - Full

TXHRE (Transmit Hold Register Empty)

0 - Not empty
1 - Empty
ADSP-BF51x Blackfin Processor Hardware Reference 19-61

SPORT Registers
The transmit underflow status bit (TUVF) is set whenever the TFS signal
occurs (from either an external or internal source) while the TX shift regis-
ter is empty. The internally generated TFS may be suppressed whenever
SPORT_TX is empty by clearing the DITFS control bit in the SPORT_TCR1 reg-
ister. The TUVF status bit is a sticky write-1-to-clear (W1C) bit and is also
cleared by disabling the SPORT (writing TSPEN = 0).

For continuous transmission (TFSR = 0), TUVF is set at the end of a trans-
mitted word if no new word is available in the TX hold register.

The TOVF bit is set when a word is written to the TX FIFO when it is full.
It is a sticky W1C bit and is also cleared by writing TSPEN = 0. Both TXF
and TOVF are updated even when the SPORT is disabled.

When the SPORT RX hold register is full, and a new receive word is
received in the shift register, the receive overflow status bit (ROVF) is set in
the SPORT_STAT register. It is a sticky W1C bit and is also cleared by dis-
abling the SPORT (writing RSPEN = 0).

The RUVF bit is set when a read is attempted from the RX FIFO and it is
empty. It is a sticky W1C bit and is also cleared by writing RSPEN = 0. The
RUVF bit is updated even when the SPORT is disabled.

SPORT Transmit and Receive Serial Clock Divider
(SPORT_TCLKDIV and SPORT_RCLKDIV) Registers

The frequency of an internally generated clock is a function of the system
clock frequency (as seen at the SCLK pin) and the value of the 16-bit serial
clock divide modulus registers (the SPORT_TCLKDIV register, shown in
Figure 19-34, and the SPORT_RCLKDIV register, shown in Figure 19-35).
19-62 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
SPORT Transmit and Receive Frame Sync Divider
(SPORT_TFSDIV and SPORT_RFSDIV) Registers

The 16-bit SPORT_TFSDIV and SPORT_RFSDIV registers specify how many
transmit or receive clock cycles are counted before generating a TFS or RFS
pulse when the frame sync is internally generated. In this way, a frame
sync can be used to initiate periodic transfers. The counting of serial clock
cycles applies to either internally or externally generated serial clocks.
These registers are shown in Figure 19-36 and Figure 19-37.

Figure 19-34. SPORT Transmit Serial Clock Divider Register

Figure 19-35. SPORT Receive Serial Clock Divider Register

SPORT Transmit Serial Clock Divider Register (SPORT_TCLKDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial Clock Divide
Modulus[15:0]

Reset = 0x0000

SPORT Receive Serial Clock Divider Register (SPORT_RCLKDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial Clock Divide
Modulus[15:0]

Reset = 0x0000
ADSP-BF51x Blackfin Processor Hardware Reference 19-63

SPORT Registers
SPORT Multichannel Configuration
(SPORT_MCMC1 and SPORT_MCMC2) Registers

There are two multichannel configuration registers for each SPORT,
shown in Figure 19-38 and Figure 19-39. These registers are used to con-
figure the multichannel operation of the SPORT. The two control
registers are shown below.

Figure 19-36. SPORT Transmit Frame Sync Divider Register

Figure 19-37. SPORT Receive Frame Sync Divider Register

SPORT Transmit Frame Sync Divider Register (SPORT_TFSDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Frame Sync Divider[15:0]

Reset = 0x0000

Number of transmit clock cycles
counted before generating TFS pulse

SPORT Receive Frame Sync Divider Register (SPORT_RFSDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Frame Sync Divider[15:0]

Reset = 0x0000

Number of receive clock cycles counted
before generating RFS pulse
19-64 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
Figure 19-38. SPORT Multichannel Configuration Register 1

Figure 19-39. SPORT Multichannel Configuration Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORT Multichannel Configuration Register 1 (SPORT_MCMC1)

WSIZE[3:0] (Window Size) WOFF[9:0] (Window Offset)

Reset = 0x0000

Places start of window anywhere in
the 0 to 1023 channel rangeValue in field = [(Desired window size)/8 –1]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORT Multichannel Configuration Register 2 (SPORT_MCMC2)

0x - Bypass mode
10 - Recover 2 MHz clock

from 4 MHz
11 - Recover 8 MHz clock

from 16 MHz

MCDTXPE (Multichannel
DMA Transmit Packing)

MCCRM[1:0] (2X Clock
Recovery Mode)

FSDR (Frame Sync to Data Relationship)

0 - Disabled
1 - Enabled

Reset = 0x0000

0 - Normal
1 - Reversed, H.100 mode

MCDRXPE (Multichannel
DMA Receive Packing)
0 - Disabled
1 - Enabled

Delay between frame sync pulse and the
first data bit in Multichannel mode

MFD[3:0] (Multichannel
Frame Delay)

0 - Multichannel operations disabled
1 - Multichannel operations enabled

MCMEN (Multichannel Frame Mode Enable)
ADSP-BF51x Blackfin Processor Hardware Reference 19-65

SPORT Registers
SPORT Current Channel (SPORT_CHNL) Register
The 10-bit CHNL field in the SPORT_CHNL register indicates which channel is
currently being serviced during multichannel operation. This field is a
read-only status indicator. The CHNL[9:0] field increments by one as each
channel is serviced. The counter stops at the upper end of the defined win-
dow. The channel select register restarts at 0 at each frame sync. As an
example, for a window size of 8 and an offset of 148, the counter displays
a value between 0 and 156.

Once the window size has completed, the channel counter resets to 0 in
preparation for the next frame. Because there are synchronization delays
between RSCLK and the processor clock, the channel register value is
approximate. It is never ahead of the channel being served, but it may lag
behind. See Figure 19-40.

SPORT Multichannel Receive Selection
(SPORT_MRCSn) Registers

The SPORT_MRCSn registers (shown in Figure 19-41) are used to enable and
disable individual channels. They specify the active receive channels.
There are four registers, each with 32 bits, corresponding to the 128 chan-
nels. Setting a bit enables that channel so that the SPORT selects that
word for receive from the multiple word block of data. For example, set-
ting bit 0 selects word 0, setting bit 12 selects word 12, and so on.

Figure 19-40. SPORT Current Channel Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORT Current Channel Register (SPORT_CHNL)

CHNL[9:0] (Current
Channel Indicator)

Reset = 0x0000

RO
19-66 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
Setting a particular bit in the SPORT_MRCSn register causes the SPORT to
receive the word in that channel’s position of the datastream; the received
word is loaded into the RX buffer. When the secondary receive side is
enabled by the RXSE bit, both inputs are processed on enabled channels.
Clearing the bit in the SPORT_MRCSn register causes the SPORT to ignore
the data on either channel.

SPORT Multichannel Transmit Selection
(SPORT_MTCSn) Registers

The SPORT_MTCSn registers (shown in Figure 19-42) are used to enable and
disable individual channels. They specify the active transmit channels.
There are four registers, each with 32 bits, corresponding to the 128 chan-

Figure 19-41. SPORT Multichannel Receive Select Registers

For all bits, 0 - Channel disabled, 1 - Channel
enabled, so SPORT selects that word from multi-
ple word block of data.

31

31

0

0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

31

63

0

32

31

95

0

64

31

127

0

96

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

MRCS0

MRCS1

MRCS2

MRCS3

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

SPORT Multichannel Receive Select Registers (SPORT_MRCSn)
ADSP-BF51x Blackfin Processor Hardware Reference 19-67

SPORT Registers
nels. Setting a bit enables that channel so that the SPORT selects that
word for transmit from the multiple word block of data. For example, set-
ting bit 0 selects word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit in a SPORT_MTCSn register causes the SPORT to
transmit the word in that channel’s position of the datastream. When the
secondary transmit side is enabled by the TXSE bit, both sides transmit a
word on the enabled channel. Clearing the bit in the SPORT_MTCSn register
causes a SPORT controllers’ data transmit pins to three-state during the
time slot of that channel.

Figure 19-42. SPORT Multichannel Transmit Select Registers

SPORT Multichannel Transmit Select Registers (SPORT_MTCSn)
For all bits, 0 - Channel disabled, 1 - Channel enabled, so SPORT
selects that word from multiple word block of data.

31

31

0

0

31

63

0

32

31

95

0

64

31

127

0

96

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

MTCS0

MTCS1

MTCS2

MTCS3

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0
19-68 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
Programming Examples
This section shows an example of typical usage of the SPORT peripheral
in conjunction with the DMA controller. See Listing 19-1 through
Listing 19-4. These listings assume a processor with at least two SPORTs,
SPORT0 and SPORT1.

The SPORT is usually employed for high-speed, continuous serial trans-
fers. The example reflects this, in that the SPORT is set-up for
auto-buffered, repeated DMA transfers.

Because of the many possible configurations, the example uses generic
labels for the content of the SPORT’s configuration registers (SPORT_RCRn
and SPORT_TCRn) and the DMA configuration. An example value is given
in the comments, but for the meaning of the individual bits the user is
referred to the detailed explanation in this chapter.

The example configures both the receive and the transmit section. Since
they are completely independent, the code uses separate labels.

SPORT Initialization Sequence
The SPORT’s receiver and transmitter are configured, but they are not
enabled yet.

Listing 19-1. SPORT Initialization

Program_SPORT_TRANSMITTER_Registers:

/* Set P0 to SPORT0 Base Address */

P0.h = hi(SPORT0_TCR1);

P0.l = lo(SPORT0_TCR1);

/* Configure Clock speeds */

R1 = SPORT_TCLK_CONFIG; /* Divider SCLK/TCLK (value 0 to

65535) */
ADSP-BF51x Blackfin Processor Hardware Reference 19-69

Programming Examples
W[P0 + (SPORT0_TCLKDIV - SPORT0_TCR1)] = R1;

/* TCK divider register */

/* number of Bitclocks between FrameSyncs -1 (value SPORT_SLEN

to 65535) */

R1 = SPORT_TFSDIV_CONFIG;

W[P0 + (SPORT0_TFSDIV - SPORT0_TCR1)] = R1;

/* TFSDIV register */

/* Transmit configuration */

/* Configuration register 2 (for instance 0x000E for 16-bit

wordlength) */

R1 = SPORT_TRANSMIT_CONF_2;

W[P0 + (SPORT0_TCR2 - SPORT0_TCR1)] = R1;

/* Configuration register 1 (for instance 0x4E12 for inter-

nally generated clk and framesync) */

R1 = SPORT_TRANSMIT_CONF_1;

W[P0] = R1;

ssync;

/* NOTE: SPORT0 TX NOT enabled yet (bit 0 of TCR1 must be zero) */

Program_SPORT_RECEIVER_Registers:

/* Set P0 to SPORT0 Base Address */

P0.h = hi(SPORT0_RCR1);

P0.l = lo(SPORT0_RCR1);

/* Configure Clock speeds */

R1 = SPORT_RCLK_CONFIG; /* Divider SCLK/RCLK (value 0 to

65535) */

W[P0 + (SPORT0_RCLKDIV - SPORT0_RCR1)] = R1; /* RCK divider

register */

/* number of Bitclock between FrameSyncs -1 (value SPORT_SLEN

to 65535) */

R1 = SPORT_RFSDIV_CONFIG;
19-70 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
W[P0 + (SPORT0_RFSDIV - SPORT0_RCR1)] = R1;

/* RFSDIV register */

/* Receive configuration */

/* Configuration register 2 (for instance 0x000E for 16-bit

wordlength) */

R1 = SPORT_RECEIVE_CONF_2;

W[P0 + (SPORT0_RCR2 - SPORT0_RCR1)] = R1;

/* Configuration register 1 (for instance 0x4410 for external

clk and framesync) */

R1 = SPORT_RECEIVE_CONF_1;

W[P0] = R1;

ssync; /* NOTE: SPORT0 RX NOT enabled yet (bit 0 of RCR1 must

be zero) */

DMA Initialization Sequence
Next the DMA channels for receive (channel3 in this example) and for
transmit (channel4 in this example) are set up for auto-buffered,
one-dimensional, 32-bit transfers. Again, there are other possibilities, so
generic labels have been used, with a particular value shown in the
comments.

Note that the DMA channels can be enabled at the end of the configura-
tion since the SPORT is not enabled yet. However, if preferred, the user
can enable the DMA later, immediately before enabling the SPORT. The
only requirement is that the DMA channel be enabled before the associ-
ated peripheral is enabled to start the transfer.

Listing 19-2. DMA Initialization

Program_DMA_Controller:

/* Receiver (DMA channel 3) */
ADSP-BF51x Blackfin Processor Hardware Reference 19-71

Programming Examples
/* Set P0 to DMA Base Address */

P0.l = lo(DMA3_CONFIG);

P0.h = hi(DMA3_CONFIG);

/* Configuration (for instance 0x108A for Autobuffer, 32-bit

wide transfers) */

R0 = DMA_RECEIVE_CONF(z);

W[P0] = R0; /* configuration register */

/* rx_buf = Buffer in Data memory (divide count by four because

of 32-bit DMA transfers) */

R1 = (length(rx_buf)/4)(z);

W[P0 + (DMA3_X_COUNT - DMA3_CONFIG)] = R1;

/* X_count register */

R1 = 4(z); /* 4 bytes in a 32-bit transfer */

W[P0 + (DMA3_X_MODIFY - DMA3_CONFIG)] = R1;

/* X_modify register */

/* start_address register points to memory buffer

to be filled */

R1.l = rx_buf;

R1.h = rx_buf;

[P0 + (DMA3_START_ADDR - DMA3_CONFIG)] = R1;

BITSET(R0,0); /* R0 still contains value of CONFIG register -

set bit 0 */

W[P0] = R0; /* enable DMA channel (SPORT not enabled yet) */

/* Transmitter (DMA channel 4) */

/* Set P0 to DMA Base Address */

P0.l = lo(DMA4_CONFIG);

P0.h = hi(DMA4_CONFIG);

/* Configuration (for instance 0x1088 for Autobuffer, 32-bit

wide transfers) */
19-72 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
R0 = DMA_TRANSMIT_CONF(z);

W[P0] = R0; /* configuration register */

/* tx_buf = Buffer in Data memory (divide count by four because

of 32-bit DMA transfers) */

R1 = (length(tx_buf)/4)(z);

W[P0 + (DMA4_X_COUNT - DMA4_CONFIG)] = R1;

/* X_count register */

R1 = 4(z); /* 4 bytes in a 32-bit transfer */

W[P0 + (DMA4_X_MODIFY - DMA4_CONFIG)] = R1;

/* X_modify register */

/* start_address register points to memory buffer to be

transmitted from */

R1.l = tx_buf;

R1.h = tx_buf;

[P0 + (DMA4_START_ADDR - DMA4_CONFIG)] = R1;

BITSET(R0,0); /* R0 still contains value of CONFIG register -

set bit 0 */

W[P0] = R0; /* enable DMA channel (SPORT not enabled yet) */

Interrupt Servicing
The receive channel and the transmit channel will each generate an inter-
rupt request if so programmed. The following code fragments show the
minimum actions that must be taken. Not shown is the programming of
the core and system event controllers.

Listing 19-3. Servicing an Interrupt

RECEIVE_ISR:

[--SP] = RETI; /* nesting of interrupts */
ADSP-BF51x Blackfin Processor Hardware Reference 19-73

Programming Examples
/* clear DMA interrupt request */

P0.h = hi(DMA3_IRQ_STATUS);

P0.l = lo(DMA3_IRQ_STATUS);

R1 = 1;

W[P0] = R1.l; /* write one to clear */

RETI = [SP++];

rti;

TRANSMIT_ISR:

[--SP] = RETI; /* nesting of interrupts */

/* clear DMA interrupt request */

P0.h = hi(DMA4_IRQ_STATUS);

P0.l = lo(DMA4_IRQ_STATUS);

R1 = 1;

W[P0] = R1.l; /* write one to clear */

RETI = [SP++];

rti;

Starting a Transfer
After the initialization procedure outlined in the previous sections, the
receiver and transmitter are enabled. The core may just wait for interrupts.

Listing 19-4. Starting a Transfer

/* Enable Sport0 RX and TX */

P0.h = hi(SPORT0_RCR1);

P0.l = lo(SPORT0_RCR1);

R1 = W[P0](Z);

BITSET(R1,0);

W[P0] = R1;
19-74 ADSP-BF51x Blackfin Processor Hardware Reference

SPORT Controller
ssync; /* Enable Receiver (set bit 0) */

P0.h = hi(SPORT0_TCR1);

P0.l = lo(SPORT0_TCR1);

R1 = W[P0](Z);

BITSET(R1,0);

W[P0] = R1;

ssync; /* Enable Transmitter (set bit 0) */

/* dummy wait loop (do nothing but waiting for interrupts) */

wait_forever:

jump wait_forever;

Unique Information for the ADSP-BF51x
Processor

None.
ADSP-BF51x Blackfin Processor Hardware Reference 19-75

Unique Information for the ADSP-BF51x Processor
19-76 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
20 PARALLEL PERIPHERAL
INTERFACE

This chapter describes the parallel peripheral interface (PPI). Following an
overview and a list of key features are a description of operation and func-
tional modes of operation. The chapter concludes with a programming
model, consolidated register definitions, and programming examples.

Specific Information for the ADSP-BF51x
For details regarding the number of PPIs for the ADSP-BF51x product,
refer to ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor Data
Sheet.

For PPI DMA channel assignments, refer to Table 6-7 on page 6-103 in
Chapter 6, “Direct Memory Access”.

For PPI interrupt vector assignments, refer to Table 5-3 on page 5-20 in
Chapter 5, “System Interrupts”.

To determine how each of the PPIs is multiplexed with other functional
pins, refer to Table 9-2 on page 9-5 through Table 9-4 on page 9-7 in
Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for each PPI, refer to Appendix A, “System
MMR Assignments”.
ADSP-BF51x Blackfin Processor Hardware Reference 20-1

Overview
PPI behavior for the ADSP-BF51x that differs from the general informa-
tion in this chapter can be found in the section “Unique Information for
the ADSP-BF51x Processor” on page 20-37.

Overview
The PPI is a half-duplex, bidirectional port accommodating up to 16 bits
of data. It has a dedicated clock pin and three multiplexed frame sync
pins. The highest system throughput is achieved with 8-bit data, since two
8-bit data samples can be packed as a single 16-bit word. In such a case,
the earlier sample is placed in the 8 least significant bits (LSBs).

Features
The PPI includes these features:

• Half-duplex, bidirectional parallel port

• Supports up to 16 bits of data

• Programmable clock and frame sync polarities

• ITU-R 656 support

• Interrupt generation on overflow and underrun

Typical peripheral devices that can be interfaced to the PPI port:

• A/D converters

• D/A converters

• LCD panels

• CMOS sensors
20-2 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
• Video encoders

• Video decoders

Interface Overview
Figure 20-1 shows a block diagram of the PPI.

The PPI_CLK pin accepts an external clock input. It cannot source a clock
internally.

 When the PPI_CLK is not free-running, there may be additional
latency cycles before data gets received or transmitted. In RX and
TX modes, there may be at least 2 cycles latency before valid data is
received or transmitted.

Figure 20-1. PPI Block Diagram

DATA BUS

PPI_CLK

16 BITS
*

16-DEEP
FIFO

FS1

PPI_CONTROL

PACK/
UNPACK

PPI_COUNT

PPI_STATUS

PPI_DELAY

PPI_FRAME

GATE SYNC
FS2

FS3

DMA
CONTROLLER

PAB

DAB
ADSP-BF51x Blackfin Processor Hardware Reference 20-3

Description of Operation
The PPI_CLK not only supplies the PPI module itself, but it also can clock
one or more GP Timers to work synchronously with the PPI. Depending
on PPI operation mode, the PPI_CLK can either equal or invert the TMRCLK
input. For more information, see Chapter 10, “General-Purpose Timers”.

Description of Operation
Table 20-1 shows all the possible modes of operation for the PPI.

Table 20-1. PPI Possible Operating Modes

PPI Mode # of Syncs PORT_DIR PORT_CFG XFR_TYPE POLC POLS FLD_ SEL

RX mode, 0 frame
syncs, external
trigger

0 0 11 11 0 or 1 0 or
1

0

RX mode, 0 frame
syncs, internal
trigger

0 0 11 11 0 or 1 0 or
1

1

RX mode, 1
external frame sync

1 0 00 11 0 or 1 0 or
1

0

RX mode, 2 or 3
external frame syncs

3 0 10 11 0 or 1 0 or
1

0

RX mode, 2 or 3
internal frame syncs

3 0 01 11 0 or 1 0 or
1

0

RX mode, ITU-R
656, active field
only

embedded 0 00 00 0 or 1 0 0 or 1

RX mode, ITU-R
656, vertical
blanking only

embedded 0 00 10 0 or 1 0 0

RX mode, ITU-R
656, entire field

embedded 0 00 01 0 or 1 0 0

TX mode, 0 frame
syncs

0 1 00 00 0 or 1 0 or
1

0

20-4 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
Functional Description
The following sections describe the function of the PPI.

ITU-R 656 Modes
The PPI supports three input modes for ITU-R 656-framed data. These
modes are described in this section. Although the PPI does not explicitly
support an ITU-R 656 output mode, recommendations for using the PPI
for this situation are provided as well.

ITU-R 656 Background

According to the ITU-R 656 recommendation (formerly known as
CCIR-656), a digital video stream has the characteristics shown in
Figure 20-2, and Figure 20-3 for 525/60 (NTSC) and 625/50 (PAL) sys-
tems. The processor supports only the bit-parallel mode of ITU-R 656.
Both 8- and 10-bit video element widths are supported.

TX mode, 1
internal or external
frame sync

1 1 00 11 0 or 1 0 or
1

0

TX mode, 2
external frame syncs

2 1 01 11 0 or 1 0 or
1

0

TX mode, 2 or 3
internal frame
syncs, FS3 sync’ed
to FS1 assertion

3 1 01 11 0 or 1 0 or
1

0

TX mode, 2 or 3
internal frame
syncs, FS3 sync’ed
to FS2 assertion

3 1 11 11 0 or 1 0 or
1

0

Table 20-1. PPI Possible Operating Modes (Continued)

PPI Mode # of Syncs PORT_DIR PORT_CFG XFR_TYPE POLC POLS FLD_ SEL
ADSP-BF51x Blackfin Processor Hardware Reference 20-5

Functional Description
In this mode, the horizontal (H), vertical (V), and field (F) signals are sent
as an embedded part of the video datastream in a series of bytes that form
a control word. The start of active video (SAV) and end of active video
(EAV) signals indicate the beginning and end of data elements to read in
on each line. SAV occurs on a 1-to-0 transition of H, and EAV begins on a
0-to-1 transition of H. An entire field of video is comprised of active video
+ horizontal blanking (the space between an EAV and SAV code) and ver-
tical blanking (the space where V = 1). A field of video commences on a
transition of the F bit. The “odd field” is denoted by a value of F = 0,
whereas F = 1 denotes an even field. Progressive video makes no distinc-
tion between field 1 and field 2, whereas interlaced video requires each
field to be handled uniquely, because alternate rows of each field combine
to create the actual video image.

Figure 20-2. ITU-R 656 8-Bit Parallel Data Stream for NTSC (PAL)
Systems

4 268 (280 FOR PAL) 4 1440

F
F

0
0

0
0

X
Y

8
0

1
0

8
0

1
0

8
0

1
0

F
F

0
0

0
0

X
Y

C
B

Y C
R

Y C
B

Y C
R

Y C
R

Y F
F

DIGITAL
VIDEO
STREAM

START OF
NEXT LINE

EAV
CODE
(H = 1)

SAV
CODE
(H = 0)

HORIZONTAL
BLANKING

END OF ACTIVE VIDEO START OF ACTIVE VIDEO

1716 (1728 FOR PAL)
20-6 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
The SAV and EAV codes are shown in more detail in Table 20-2. Note
there is a defined preamble of three bytes (0xFF, 0x00, 0x00), followed by
the XY status word, which, aside from the F (field), V (vertical blanking)
and H (horizontal blanking) bits, contains four protection bits for sin-
gle-bit error detection and correction. Note F and V are only allowed to
change as part of EAV sequences (that is, transition from H = 0 to H = 1).
The bit definitions are as follows:

• F = 0 for field 1

• F = 1 for field 2

Figure 20-3. Typical Video Frame Partitioning for NTSC/PAL Systems for
ITU-R BT.656-4

LINE 4

FIELD 1
ACTIVE VIDEO

FIELD 1
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 1

FIELD 2

LINE 266

LINE 313

LINE 625

LINE 3

LINE 1

EAV SAV

EAV SAV

1

20

264

283

525

1

23

311

336

624

625

LINE
NUMBER

LINE
NUMBER

F H
(SAV)

H
(EAV)

H
(SAV)

H
(EAV)

F

V

V

1-3,
266-282

4-19,
264-265

20-263

283-525

1-22,
311-312

23-310

313-335,
624-625

336-623

1

1 1

1

1

1

1

1

0

0 0

0

0

0

0

0

0

0

0

01

1

1

1

1

1

0

0

1

1

0

0

LINE #

VERTICAL
BLANKING

VERTICAL
BLANKING

VERTICAL
BLANKING

VERTICAL
BLANKING

VERTICAL
BLANKING

H
O

R
IZ

O
N

TA
L

B
L

A
N

K
IN

G
H

O
R

IZ
O

N
TA

L
B

L
A

N
K

IN
G

FIELD 1

FIELD 2
ADSP-BF51x Blackfin Processor Hardware Reference 20-7

Functional Description
• V = 1 during vertical blanking

• V = 0 when not in vertical blanking

• H = 0 at SAV

• H = 1 at EAV

• P3 = V XOR H

• P2 = F XOR H

• P1 = F XOR V

• P0 = F XOR V XOR H

In many applications, video streams other than the standard NTSC/PAL
formats (for example, CIF, QCIF) can be employed. Because of this, the
processor interface is flexible enough to accommodate different row and
field lengths. In general, as long as the incoming video has the proper
EAV/SAV codes, the PPI can read it in. In other words, a CIF image
could be formatted to be “656-compliant,” where EAV and SAV values
define the range of the image for each line, and the V and F codes can be
used to delimit fields and frames.

Table 20-2. Control Byte Sequences for 8-bit and 10-bit ITU-R 656
Video

8-bit Data 10-bit Data

D9
(MSB)

D8 D7 D6 D5 D4 D3 D2 D1 D0

Preamble 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Control Byte 1 F V H P3 P2 P1 P0 0 0
20-8 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
ITU-R 656 Input Modes

Figure 20-4 shows a general illustration of data movement in the ITU-R
656 input modes. In the figure, the clock CLK is either provided by the
video source or supplied externally by the system.

There are three submodes supported for ITU-R 656 inputs: entire field,
active video only, and vertical blanking interval only. Figure 20-5 shows
these three submodes.

Entire Field

In this mode, the entire incoming bitstream is read in through the PPI.
This includes active video as well as control byte sequences and ancillary
data that may be embedded in horizontal and vertical blanking intervals.

Figure 20-4. ITU-R 656 Input Modes

Figure 20-5. ITU-R 656 Input Submodes

PPIx

PPI_CLK

PPI

CLK

'656
COMPATIBLE

VIDEOSOURCE

ITU-R 656 INPUT MODE

8- OR 10-BIT DATA WITH
EMBEDDED CONTROL

BLANKING BLANKING BLANKING

BLANKING BLANKING

BLANKING BLANKING BLANKING

FIELD 1
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 1
ACTIVE VIDEO

FIELD 1
ACTIVE VIDEO

ENTIRE FIELD SENT BLANKING ONLY SENTACTIVE VIDEO ONLY SENT

BLANKING
ADSP-BF51x Blackfin Processor Hardware Reference 20-9

Functional Description
Data transfer starts immediately after synchronization to field 1 occurs,
but does not include the first EAV code that contains the F = 0
assignment.

 Note the first line transferred in after enabling the PPI will be miss-
ing its first 4-byte preamble. However, subsequent lines and frames
should have all control codes intact.

One side benefit of this mode is that it enables a “loopback” feature
through which a frame or two of data can be read in through the PPI and
subsequently output to a compatible video display device. Of course, this
requires multiplexing on the PPI pins, but it enables a convenient way to
verify that 656 data can be read into and written out from the PPI.

Active Video Only

This mode is used when only the active video portion of a field is of inter-
est, and not any of the blanking intervals. The PPI ignores (does not read
in) all data between EAV and SAV, as well as all data present when V = 1.
In this mode, the control byte sequences are not stored to memory; they
are filtered out by the PPI. After synchronizing to the start of field 1, the
PPI ignores incoming samples until it sees an SAV.

 In this mode, the user specifies the number of total (active plus ver-
tical blanking) lines per frame in the PPI_FRAME MMR.

Vertical Blanking Interval (VBI) Only

In this mode, data transfer is only active while V = 1 is in the control byte
sequence. This indicates that the video source is in the midst of the verti-
cal blanking interval (VBI), which is sometimes used for ancillary data
transmission. The ITU-R 656 recommendation specifies the format for
these ancillary data packets, but the PPI is not equipped to decode the
packets themselves. This task must be handled in software. Horizontal
blanking data is logged where it coincides with the rows of the VBI.
20-10 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
Control byte sequence information is always logged. The user specifies the
number of total lines (active plus vertical blanking) per frame in the
PPI_FRAME MMR.

Note the VBI is split into two regions within each field. From the PPI’s
standpoint, it considers these two separate regions as one contiguous
space. However, keep in mind that frame synchronization begins at the
start of field 1, which does not necessarily correspond to the start of verti-
cal blanking. For instance, in 525/60 systems, the start of field 1 (F = 0)
corresponds to line 4 of the VBI.

ITU-R 656 Output Mode

The PPI does not explicitly provide functionality for framing an ITU-R
656 output stream with proper preambles and blanking intervals. How-
ever, with the TX mode with 0 frame syncs, this process can be supported
manually. Essentially, this mode provides a streaming operation from
memory out through the PPI. Data and control codes can be set up in
memory prior to sending out the video stream. With the 2D DMA
engine, this could be performed in a number of ways. For instance, one
line of blanking (H + V) could be stored in a buffer and sent out N times by
the DMA controller when appropriate, before proceeding to DMA active
video. Alternatively, one entire field (with control codes and blanking) can
be set up statically in a buffer while the DMA engine transfers only the
active video region into the buffer, on a frame-by-frame basis.

Frame Synchronization in ITU-R 656 Modes

Synchronization in ITU-R 656 modes always occurs at the falling edge
of F, the field indicator. This corresponds to the start of field 1. Conse-
quently, up to two fields might be ignored (for example, if field 1 just
started before the PPI-to-camera channel was established) before data is
received into the PPI.
ADSP-BF51x Blackfin Processor Hardware Reference 20-11

Functional Description
Because all H and V signaling is embedded in the datastream in ITU-R 656
modes, the PPI_COUNT register is not necessary. However, the PPI_FRAME
register is used in order to check for synchronization errors. The user pro-
grams this MMR for the number of lines expected in each frame of video,
and the PPI keeps track of the number of EAV-to-SAV transitions that
occur from the start of a frame until it decodes the end-of-frame condition
(transition from F = 1 to F = 0). At this time, the actual number of lines
processed is compared against the value in PPI_FRAME. If there is a mis-
match, the FT_ERR bit in the PPI_STATUS register is asserted. For instance,
if an SAV transition is missed, the current field will only have NUM_ROWS –

1 rows, but resynchronization will reoccur at the start of the next frame.

Upon completing reception of an entire field, the field status bit is toggled
in the PPI_STATUS register. This way, an interrupt service routine (ISR)
can discern which field was just read in.

General-Purpose PPI Modes
The general-purpose PPI modes are intended to suit a wide variety of data
capture and transmission applications. Table 20-3 summarizes these
modes. If a particular mode shows a given PPI_FSx frame sync not being
used, this implies that the pin is available for its alternate, multiplexed
functions.

Table 20-3. General-Purpose PPI Modes

GP PPI Mode PPI_FS1
Direction

PPI_FS2
Direction

PPI_FS3
Direction

Data
Direction

RX mode, 0 frame syncs, external
trigger

Input Not used Not used Input

RX mode, 0 frame syncs, internal
trigger

Not used Not used Not used Input

RX mode, 1 external frame sync Input Not used Not used Input

RX mode, 2 or 3 external frame syncs Input Input Input (if
used)

Input
20-12 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
Figure 20-6 illustrates the general flow of the general purpose PPI modes.
The top of the diagram shows an example of RX mode with one external
frame sync. After the PPI receives the hardware frame sync pulse
(PPI_FS1), it delays for the duration of the PPI_CLK cycles programmed
into PPI_DELAY. The DMA controller then transfers in the number of sam-
ples specified by PPI_COUNT. Every sample that arrives after this, but before
the next PPI_FS1 frame sync arrives, is ignored and not transferred onto
the DMA bus.

 If the next PPI_FS1 frame sync arrives before the specified
PPI_COUNT samples have been read in, the sample counter reinitial-
izes to 0 and starts to count up to PPI_COUNT again. This situation
can cause the DMA channel configuration to lose synchronization
with the PPI transfer process.

The bottom of Figure 20-6 shows an example of TX mode, one internal
frame sync. After PPI_FS1 is asserted, there is a latency of one PPI_CLK
cycle, and then there is a delay for the number of PPI_CLK cycles pro-
grammed into PPI_DELAY. Next, the DMA controller transfers out the
number of samples specified by PPI_COUNT. No further DMA takes place
until the next PPI_FS1 sync and programmed delay occur.

RX mode, 2 or 3 internal frame syncs Output Output Output (if
used)

Input

TX mode, 0 frame syncs Not used Not used Not used Output

TX mode, 1 external frame sync Input Not used Not used Output

TX mode, 2 external frame syncs Input Input Not used Output

TX mode, 1 internal frame sync Output Not used Not used Output

TX mode, 2 or 3 internal frame syncs Output Output Output (if
used)

Output

Table 20-3. General-Purpose PPI Modes (Continued)

GP PPI Mode PPI_FS1
Direction

PPI_FS2
Direction

PPI_FS3
Direction

Data
Direction
ADSP-BF51x Blackfin Processor Hardware Reference 20-13

Functional Description
 If the next PPI_FS1 frame sync arrives before the specified
PPI_COUNT samples have been transferred out, the sync has priority
and starts a new line transfer sequence. This situation can cause the
DMA channel configuration to lose synchronization with the PPI
transfer process.

Data Input (RX) Modes

The PPI supports several modes for data input. These modes differ chiefly
by the way the data is framed. Refer to Table 20-1 on page 20-4 for infor-
mation on how to configure the PPI for each mode.

Figure 20-6. General Flow for GP Modes (Assumes Positive Assertion of
PPI_FS1)

INPUT

OUTPUT

PPI_COUNT

PPI_COUNT1 CYCLE
DELAY

PROG
DELAY

(PPI_DELAY)

PROG
DELAY

(PPI_DELAY)

FRAME
SYNC

(PPI_FS1)

FRAME
SYNC

(PPI_FS1)

SAMPLES
IGNORED
20-14 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
No Frame Syncs

These modes cover the set of applications where periodic frame syncs are
not generated to frame the incoming data. There are two options for start-
ing the data transfer, both configured by the PPI_CONTROL register.

• External trigger: An external source sends a single frame sync (tied
to PPI_FS1) at the start of the transaction, when FLD_SEL = 0 and
PORT_CFG = b#11.

• Internal trigger: Software initiates the process by setting
PORT_EN = 1 with FLD_SEL = 1 and PORT_CFG = b#11.

All subsequent data manipulation is handled via DMA. For example, an
arrangement could be set up between alternating 1K byte memory buffers.
When one fills up, DMA continues with the second buffer, at the same
time that another DMA operation is clearing the first memory buffer for
reuse.

 Due to clock domain synchronization in RX modes with no frame
syncs, there may be a delay of at least two PPI_CLK cycles between
when the mode is enabled and when valid data is received. There-
fore, detection of the start of valid data should be managed by
software.

1, 2, or 3 External Frame Syncs

The frame syncs are level-sensitive signals. The 1-sync mode is intended
for analog-to-digital converter (ADC) applications. The top part of
Figure 20-7 shows a typical illustration of the system setup for this mode.

The 3-sync mode shown at the bottom of Figure 20-7 supports video
applications that use hardware signaling (HSYNC, VSYNC, FIELD) in accor-
dance with the ITU-R 601 recommendation. The mapping for the frame
syncs in this mode is PPI_FS1 = HSYNC, PPI_FS2 = VSYNC, PPI_FS3 = FIELD.
Refer to “Frame Synchronization in GP Modes” on page 20-19 for more
information about frame syncs in this mode.
ADSP-BF51x Blackfin Processor Hardware Reference 20-15

Functional Description
A 2-sync mode is supported by not enabling the PPI_FS3 pin. See the
Product Specific Implementation section for information on how this is
achieved on this processor.

2 or 3 Internal Frame Syncs

This mode can be useful for interfacing to video sources that can be slaved
to a master processor. In other words, the processor controls when to read
from the video source by asserting PPI_FS1 and PPI_FS2, and then reading
data into the PPI. The PPI_FS3 frame sync provides an indication of
which field is currently being transferred, but since it is an output, it can
simply be left floating if not used. Figure 20-8 shows a sample application
for this mode.

Figure 20-7. RX Mode, External Frame Syncs

PPI
VIDEO

SOURCE

A/D
CONVERTER

PPIx

PPIx

PPI_CLK

PPI_CLKCLK

CLK

PPI_FS1

PPI_FS2

PPI_FS3

PPI_FS1

HSYNC

VSYNC

FIELD

FRAMESYNC

8–16 BITS DATA

8–16 BITS DATA

DATA

DATA

PPI
20-16 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
Data Output (TX) Modes

The PPI supports several modes for data output. These modes differ
chiefly by the way the data is framed. Refer to Table 20-1 on page 20-4
for information on how to configure the PPI for each mode.

No Frame Syncs

In this mode, data blocks specified by the DMA controller are sent out
through the PPI with no framing. That is, once the DMA channel is con-
figured and enabled, and the PPI is configured and enabled, data transfers
will take place immediately, synchronized to PPI_CLK. See Figure 20-9 for
an illustration of this mode.

 In this mode, there is a delay of up to 16 SCLK cycles (for > 8-bit
data) or 32 SCLK cycles (for 8-bit data) between enabling the PPI
and transmission of valid data. Furthermore, DMA must be config-
ured to transmit at least 16 samples (for > 8-bit data) or 32 samples
(for 8-bit data).

Figure 20-8. RX Mode, Internal Frame Syncs

Figure 20-9. TX Mode, 0 Frame Syncs

PPI
IMAGE

SOURCE

PPIx

CLKPPI_CLK

PPI_FS1

PPI_FS2

HSYNC

VSYNC

8–16 BITS DATA DATA

CLK

PPIx

PPI_CLK

RECEIVER8- TO 16-BIT DATA
ADSP-BF51x Blackfin Processor Hardware Reference 20-17

Functional Description
1 or 2 External Frame Syncs

In these modes, an external receiver can frame data sent from the PPI.
Both 1-sync and 2-sync modes are supported. The top diagram in
Figure 20-10 shows the 1-sync case, while the bottom diagram illustrates
the 2-sync mode.

 There is a mandatory delay of 1.5 PPI_CLK cycles, plus the value
programmed in PPI_DELAY, between assertion of the external frame
sync(s) and the transfer of valid data out through the PPI.

1, 2, or 3 Internal Frame Syncs

The 1-sync mode is intended for interfacing to digital-to-analog convert-
ers (DACs) with a single frame sync. The top part of Figure 20-11 shows
an example of this type of connection.

The 3-sync mode is useful for connecting to video and graphics displays,
as shown in the bottom part of Figure 20-11. A 2-sync mode is implicitly
supported by leaving PPI_FS3 unconnected in this case.

Figure 20-10. TX Mode, 1 or 2 External Frame Syncs

DATA
RECEIVER

DATA
RECEIVER

PPIx

CLK

CLK

PPI_CLK

PPI_FS1

PPI_FS2

8–16 BITS DATA

8–16 BITS DATA

DATA

DATA

PPI

PPI

PPI_CLK

PPIx

PPI_FS1FRAMESYNC

FRAMESYNC1

FRAMESYNC2
20-18 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
Frame Synchronization in GP Modes

Frame synchronization in general purpose modes operates differently in
modes with internal frame syncs than in modes with external frame syncs.

Modes With Internal Frame Syncs

In modes with internal frame syncs, PPI_FS1 and PPI_FS2 link directly to
the pulsewidth modulation (PWM) circuits of general purpose timers. See
Chapter 10, “General-Purpose Timers” for information on how this is
achieved on this processor. This allows for arbitrary pulse widths and peri-
ods to be programmed for these signals using the existing TIMERx registers.
This capability accommodates a wide range of timing needs. Note these
PWM circuits are clocked by PPI_CLK, not by SCLK (as during conven-
tional timer PWM operation). If PPI_FS2 is not used in the configured
PPI mode, its corresponding timer operates as it normally would, unre-

Figure 20-11. PPI GP Output

PPI VIDEO DISPLAY

PPIx CLK

PPI_CLK

PPI_CLK

PPI_FS1

PPI_FS2

HSYNC

VSYNC

8–16 BITS DATA

8–16 BITS DATA

D/A
CONVERTER

PPI_FS3

PPIx

PPI_FS1

CLK

FIELD

FRAMESYNC

1 FRAME
SYNC

3 FRAME
SYNCS

PPI

DATA
ADSP-BF51x Blackfin Processor Hardware Reference 20-19

Functional Description
stricted in functionality. The state of PPI_FS3 depends completely on the
state of PPI_FS1 and/or PPI_FS2, so PPI_FS3 has no inherent
programmability.

 To program PPI_FS1 and/or PPI_FS2 for operation in an internal
frame sync mode:

1. Configure and enable DMA for the PPI. See “DMA Operation” on
page 20-22.

2. Configure the width and period for each frame sync signal via the
appropriate TIMER_WIDTH and TIMER_PERIOD registers.

3. Set up the appropriate TIMER_CONFIG register(s) for PWM_OUT mode.
This includes setting CLK_SEL to 1 and TIN_SEL to 1 for each timer
involved.

4. Write to PPI_CONTROL to configure and enable the PPI.

5. Write to TIMER_ENABLE to enable the appropriate timer(s).

 It is important to guarantee proper frame sync polarity between the
PPI and timer peripherals. To do this, make sure that if
PPI_CONTROL[15:14] = b#10 or b#11, the PULSE_HI bit is cleared in
the appropriate TIMER_CONFIG register(s). Likewise, if
PPI_CONTROL[15:14] = b#00 or b#01, the PULSE_HI bit should be
set in the appropriate TIMER_CONFIG register(s).

To switch to another PPI mode not involving internal frame syncs:

1. Disable the PPI (using PPI_CONTROL).

2. Disable the appropriate timer(s) (using TIMER_DISABLE).

Modes With External Frame Syncs

In RX modes with external frame syncs, the PPI_FS1 and PPI_FS2 pins
become edge-sensitive inputs. In such modes the timers associated with
the PPI_FS1 and PPI_FS2 pins can still be used for a purpose not involving
20-20 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
the actual pin. However, timer access to a TMRx pin is disabled when the
PPI is using that pin for a PPI_FSx frame sync input function. For modes
that do not require PPI_FS2, the associated timer is not restricted in func-
tionality and can be operated as if the PPI were not being used (that is, the
TMR1 pin becomes available for timer use as well). For more information
on configuring and using the timers, refer to the General-Purpose Timers
chapter.

 In RX mode with 3 external frame syncs, the start of frame detec-
tion occurs where a PPI_FS2 assertion is followed by an assertion of
PPI_FS1 while PPI_FS3 is low. This happens at the start of field 1.
Note that PPI_FS3 only needs to be low when PPI_FS1 is asserted,
not when PPI_FS2 asserts. Also, PPI_FS3 is only used to synchro-
nize to the start of the very first frame after the PPI is enabled. It is
subsequently ignored.

In TX modes with external frame syncs, the PPI_FS1 and PPI_FS2 pins are
treated as edge-sensitive inputs. In this mode, it is not necessary to config-
ure the timer(s) associated with the frame sync(s) as input(s), or to enable
them via the TIMER_ENABLE register. Additionally, the actual timers them-
selves are available for use, even though the timer pin(s) are taken over by
the PPI. In this case, there is no requirement that the timebase (configured
by TIN_SEL in TIMERx_CONFIG) be PPI_CLK.

However, if using a timer whose pin is connected to an external frame
sync, be sure to disable the pin via the OUT_DIS bit in TIMER_CONFIG. Then
the timer itself can be configured and enabled for non-PPI use without
affecting PPI operation in this mode. For more information, see the Gen-
eral-Purpose Timers chapter.

Programming Model
The following sections describe the PPI programming model.
ADSP-BF51x Blackfin Processor Hardware Reference 20-21

Programming Model
DMA Operation
The PPI must be used with the processor’s DMA engine. This section dis-
cusses how the two interact. For additional information about the DMA
engine, including explanations of DMA registers and DMA operations,
refer to the Direct Memory Access chapter.

The PPI DMA channel can be configured for either transmit or receive
operation, and it has a maximum throughput of (PPI_CLK) ×
(16 bits/transfer). In modes where data lengths are greater than eight bits,
only one element can be clocked in per PPI_CLK cycle, and this results in
reduced bandwidth (since no packing is possible). The highest throughput
is achieved with 8-bit data and PACK_EN = 1 (packing mode enabled). Note
for 16-bit packing mode, there must be an even number of data elements.

Configuring the PPI’s DMA channel is a necessary step toward using the
PPI interface. It is the DMA engine that generates interrupts upon com-
pletion of a row, frame, or partial-frame transfer. It is also the DMA
engine that coordinates the origination or destination point for the data
that is transferred through the PPI.

The processor’s 2D DMA capability allows the processor to be interrupted
at the end of a line or after a frame of video has been transferred, as well as
if a DMA error occurs. In fact, the specification of the DMA_XCOUNT and
DMA_YCOUNT MMRs allows for flexible data interrupt points. For example,
assume the DMA registers XMODIFY = YMODIFY = 1. Then, if a data frame
contains 320 x 240 bytes (240 rows of 320 bytes each), these conditions
hold:

• Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 1 (the DI_SEL
bit is located in DMA_CONFIG) interrupts on every row transferred,
for the entire frame.

• Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 0 interrupts
only on the completion of the frame (when 240 rows of 320 bytes
have been transferred).
20-22 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
• Setting XCOUNT = 38,400 (320 x 120), YCOUNT = 2, and DI_SEL = 1
causes an interrupt when half of the frame has been transferred,
and again when the whole frame has been transferred.

The general procedure for setting up DMA operation with the PPI
follows.

1. Configure DMA registers as appropriate for desired DMA operat-
ing mode.

2. Enable the DMA channel for operation.

3. Configure appropriate PPI registers.

4. Enable the PPI by writing a 1 to bit 0 in PPI_CONTROL.

5. If internally generated frame syncs are used, write to the
TIMER_ENABLE register to enable the timers linked to the PPI frame
syncs.

Figure 20-12 shows a flow diagram detailing the steps on how to config-
ure the PPI for the various modes of operation.
ADSP-BF51x Blackfin Processor Hardware Reference 20-23

Programming Model
Figure 20-12. PPI Flow Diagram

2D DMA?
Y

N

PROGRAM
Y_COUNT AND

Y_MODIFY

START

Enable necessary PPI pins through
PORT_MUX and PORT_FER registers

GP?
Y

N

PROGRAM
PPI_FRAME

FS?

N

PROGRAM
PPI_DELAY

EXTERNAL
TRIGGER?

N

Y

PROGRAM
PPI_COUNT

INTERNAL FS?

N

Y PROGRAM TIMER(S)
LINKED WITH FS

Y

WRITE DMA_CONFIG TO ENABLE DMA

WRITE PPI_CONTROL TO ENABLE PPI

INTERNAL FS?

N

Y
WRITE TIMER_ENABLE TO ENABLE TIMERS

END
20-24 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
PPI Registers
The PPI has five memory-mapped registers (MMRs) that regulate its oper-
ation. These registers are the PPI control register (PPI_CONTROL), the PPI
status register (PPI_STATUS), the delay count register (PPI_DELAY), the
transfer count register (PPI_COUNT), and the lines per frame register
(PPI_FRAME).

Descriptions and bit diagrams for each of these MMRs are provided in the
following sections.

 PPI Control Register (PPI_CONTROL)
The PPI_CONTROL register configures the PPI for operating mode, control
signal polarities, and data width of the port. See Figure 20-13 for a bit dia-
gram of this MMR.

The POLC and POLS bits allow for selective signal inversion of the PPI_CLK
and PPI_FS1/PPI_FS2 signals, respectively. This provides a mechanism to
connect to data sources and receivers with a wide array of control signal
polarities. Often, the remote data source/receiver also offers configurable
signal polarities, so the POLC and POLS bits simply add increased flexibility.

The DLEN[2:0] field is programmed to specify the width of the PPI port in
any mode. Note any width from 8 to 16 bits is supported, with the excep-
tion of a 9-bit port width. Any pins unused by the PPI as a result of the
DLEN setting are free for use in their other functions.

 In ITU-R 656 modes, the DLEN field should not be configured for
anything greater than a 10-bit port width. If it is, the PPI will
reserve extra pins, making them unusable by other peripherals.

The SKIP_EN bit, when set, enables the selective skipping of data elements
being read in through the PPI. By ignoring data elements, the PPI is able
to conserve DMA bandwidth.
ADSP-BF51x Blackfin Processor Hardware Reference 20-25

PPI Registers
Figure 20-13. PPI Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI Control Register (PPI_CONTROL)

0 - PPI disabled
1 - PPI enabled

FLD_SEL (Active Field Select)

PORT_DIR (Direction)

XFR_TYPE[1:0] (Transfer
Type)

PORT_CFG[1:0] (Port
Configuration)

PORT_EN (Enable)

DLEN[2:0] (Data Length)
000 - 8 bits
001 - 10 bits
010 - 11 bits
011 - 12 bits
100 - 13 bits
101 - 14 bits
110 - 15 bits
111 - 16 bits

POLS

0 - PPI in Receive mode (input)
1 - PPI in Transmit mode

(output)

In Input mode:
00 - ITU-R 656, Active Field Only
01 - ITU-R 656, Entire Field
10 - ITU-R 656, Vertical Blanking

Only
11 - Non-ITU-R 656 mode
In Output mode:
00, 01, 10 - Sync-less Output

mode
11 - Output mode with 1, 2, or

3 frame syncs

Reset = 0x0000

In ITU-R 656 modes, when XFR_TYPE = 00:
0 - Field 1
1 - Fields 1 and 2
In RX mode with external frame sync, when PORT_CFG = 11:
0 - External trigger
1 - Internal trigger

0 - PPI_FS1 and
PPI_FS2 are treated
as rising edge
asserted

1 - PPI_FS1 and
PPI_FS2 are treated
as falling edge
asserted

SKIP_EN (Skip Enable)

SKIP_EO (Skip Even Odd)
In ITU-R 656 and GP Input modes:
0 - Skip odd-numbered elements
1 - Skip even-numbered elements

In ITU-R 656 and GP Input modes:
0 - Skipping disabled
1 - Skipping enabled
PACK_EN (Packing Mode Enable)
0 - Disabled
1 - Output mode, unpacking enabled;

Input mode, packing enabled

In non-ITU-R 656 Input modes
(PORT_DIR = 0, XFR_TYPE = 11):
00 - 1 external frame sync
01 - 2 or 3 internal frame syncs
10 - 2 or 3 external frame syncs
11 - 0 frame syncs, triggered
In Output modes with frame syncs
(PORT_DIR = 1, XFR_TYPE = 11):
00 - 1 frame sync
01 - 2 or 3 frame syncs
10 - Reserved
11 - Sync PPI_FS3 to assertion of

PPI_FS2 rather than of
PPI_FS1.

POLC
0 - PPI samples data on rising

edge and drives data on
falling edge of PPI_CLK

1 - PPI samples data on falling
edge and drives data on
rising edge of PPI_CLK
20-26 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
When the SKIP_EN bit is set, the SKIP_EO bit allows the PPI to ignore
either the odd or the even elements in an input datastream. This is useful,
for instance, when reading in a color video signal in YCbCr format (Cb,
Y, Cr, Y, Cb, Y, Cr, Y...). Skipping every other element allows the PPI to
only read in the luma (Y) or chroma (Cr or Cb) values. This could also be
useful when synchronizing two processors to the same incoming video
stream. One processor could handle luma processing and the other (whose
SKIP_EO bit is set differently from the first processor’s) could handle
chroma processing. This skipping feature is valid in ITU-R 656 modes
and RX modes with external frame syncs.

The PACK_EN bit only has meaning when the PPI port width (selected by
DLEN[2:0]) is eight bits. Every PPI_CLK-initiated event on the DMA bus
(that is, an input or output operation) handles 16-bit entities. In other
words, an input port width of ten bits still results in a 16-bit input word
for every PPI_CLK; the upper 6 bits are 0s. Likewise, a port width of eight
bits also results in a 16-bit input word, with the upper eight bits all 0s. In
the case of 8-bit data, it is usually more efficient to pack this information
so that there are two bytes of data for every 16-bit word. This is the func-
tion of the PACK_EN bit. When set, it enables packing for all RX modes.

Consider this data transported into the PPI via DMA:
0xCE, 0xFA, 0xFE, 0xCA....

• With PACK_EN set:

This is read into the PPI, configured for an 8-bit port width:
0xCE, 0xFA, 0xFE, 0xCA...

• This is transferred onto the DMA bus:
0xFACE, 0xCAFE,...

• With PACK_EN cleared:

This is read into the PPI:
0xCE, 0xFA, 0xFE, 0xCA,...
ADSP-BF51x Blackfin Processor Hardware Reference 20-27

PPI Registers
• This is transferred onto the DMA bus:
0x00CE, 0x00FA, 0x00FE, 0x00CA,...

For TX modes, setting PACK_EN enables unpacking of bytes. Consider this
data in memory, to be transported out through the PPI via DMA:
0xFACE CAFE....
(0xFA and 0xCA are the two most significant bits (MSBs) of their respec-
tive 16-bit words)

• With PACK_EN set:

This is DMA’ed to the PPI:
0xFACE, 0xCAFE,...

• This is transferred out through the PPI, configured for an 8-bit
port width (note LSBs are transferred first):

0xCE, 0xFA, 0xFE, 0xCA,...

• With PACK_EN cleared:

This is DMA’ed to the PPI:
0xFACE, 0xCAFE,...

• This is transferred out through the PPI, configured for an 8-bit
port width:

0xCE, 0xFE,...

The FLD_SEL bit is used primarily in the active field only ITU-R 656
mode. The FLD_SEL bit determines whether to transfer in only field 1 of
each video frame, or both fields 1 and 2. Thus, it allows a savings in DMA
bandwidth by transferring only every other field of active video.

The PORT_CFG[1:0] field is used to configure the operating mode of the
PPI. It operates in conjunction with the PORT_DIR bit, which sets the
direction of data transfer for the port. The XFR_TYPE[1:0] field is also
used to configure operating mode and is discussed below. See Table 20-1
on page 20-4 for the possible operating modes for the PPI.
20-28 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
The XFR_TYPE[1:0] field configures the PPI for various modes of opera-
tion. Refer to Table 20-1 on page 20-4 to see how XFR_TYPE[1:0]
interacts with other bits in PPI_CONTROL to determine the PPI operating
mode.

The PORT_EN bit, when set, enables the PPI for operation.

 When configured as an input port, the PPI does not start data
transfer after being enabled until the appropriate synchronization
signals are received. If configured as an output port, transfer
(including the appropriate synchronization signals) begins as soon
as the frame syncs (timer units) are enabled, so all frame syncs must
be configured before this happens. Refer to “Frame Synchroniza-
tion in GP Modes” on page 20-19 for more information.

PPI Status Register (PPI_STATUS)
The PPI_STATUS register, shown in Figure 20-14, contains bits that pro-
vide information about the current operating state of the PPI.

The ERR_DET bit is a sticky bit that denotes whether or not an error was
detected in the ITU-R 656 control word preamble. The bit is valid only in
ITU-R 656 modes. If ERR_DET = 1, an error was detected in the preamble.
If ERR_DET = 0, no error was detected in the preamble.

The ERR_NCOR bit is sticky and is relevant only in ITU-R 656 modes. If
ERR_NCOR = 0 and ERR_DET = 1, all preamble errors that have occurred have
been corrected. If ERR_NCOR = 1, an error in the preamble was detected but
not corrected. This situation generates a PPI error interrupt, unless this
condition is masked off in the SIC_IMASK register.
ADSP-BF51x Blackfin Processor Hardware Reference 20-29

PPI Registers
The FT_ERR bit is sticky and indicates, when set, that a frame track error
has occurred. In this condition, the programmed number of lines per
frame in PPI_FRAME does not match up with the “frame start detect” con-
dition (see the information note on page 20-34). A frame track error
generates a PPI error interrupt, unless this condition is masked off in the
SIC_IMASK register.

Figure 20-14. PPI Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI Status Register (PPI_STATUS)

0 - Field 1
1 - Field 2

FT_ERR (Frame Track Error)
- W1C

OVR (FIFO Overflow) - W1C

FLD (Field Indicator)

ERR_DET (Error
Detected) - W1C

Used only in ITU-R 656
modes
0 - No preamble error
detected
1 - Preamble error
detected

ERR_NCOR (Error
Not Corrected)
- W1C

0 - No interrupt
1 - Frame Track Error

interrupt occurred

Reset = 0x0000

Used only in ITU-R 656
modes
0 - No uncorrected

preamble error
has occurred

1 - Preamble error
detected but not
corrected

0 - No interrupt
1 - FIFO Overflow Error

interrupt occurred

UNDR (FIFO Underrun)
- W1C
0 - No interrupt
1 - FIFO Underrun Error

interrupt occurred

0 - No horizontal tracking
underflow error

1 - PPI_FS1 (or SAV code)
received before
PPI_COUNT expired for
that line

LT_ERR_OVR (Horizontal Tracking
Overflow Error) - W1C

LT_ERR_UNDR (Horizontal Track-
ing Underflow Error) - W1C

Used only in ITU-R 656
modes
0 - No horizontal tracking

overflow error
1 - PPI_COUNT expired before

receiving SAV code
20-30 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
The FLD bit is set or cleared at the same time as the change in state of F (in
ITU-R 656 modes) or PPI_FS3 (in other RX modes). It is valid for input
modes only. The state of FLD reflects the current state of the F or PPI_FS3
signals. In other words, the FLD bit always reflects the current video field
being processed by the PPI.

The OVR bit is sticky and indicates, when set, that the PPI FIFO has over-
flowed and can accept no more data. A FIFO overflow error generates a
PPI error interrupt, unless this condition is masked off in the SIC_IMASK
register.

 The PPI FIFO is 16 bits wide and has 16 entries.

The UNDR bit is sticky and indicates, when set, that the PPI FIFO has
underrun and is data-starved. A FIFO underrun error generates a PPI
error interrupt, unless this condition is masked off in the SIC_IMASK
register.

The LT_ERR_OVR and LT_ERR_UNDR bits are sticky and indicate, when set,
that a line track error has occurred. These bits are valid for RX modes with
recurring frame syncs only. If one of these bits is set, the programmed
number of samples in PPI_COUNT did not match up with the actual number
of samples counted between assertions of PPI_FS1 (for general-purpose
modes) or start of active video (SAV) codes (for ITU-R 656 modes). If the
PPI error interrupt is enabled in the SIC_IMASK register, an interrupt
request is generated when one of these bits is set.

The LT_ERR_OVR flag signifies that a horizontal tracking overflow has
occurred, where the value in PPI_COUNT was reached before a new SAV
code was received. This flag does not apply for non ITU-R 656 modes; in
this case, once the value in PPI_COUNT is reached, the PPI simply stops
counting until receiving the next PPI_FS1 frame sync.

The LT_ERR_UNDR flag signifies that a horizontal tracking underflow has
occurred, where a new SAV code or PPI_FS1 assertion occurred before the
value in PPI_COUNT was reached.
ADSP-BF51x Blackfin Processor Hardware Reference 20-31

PPI Registers
PPI Delay Count Register (PPI_DELAY)
The PPI_DELAY register, shown in Figure 20-15, can be used in all config-
urations except ITU-R 656 modes and GP modes with 0 frame syncs. It
contains a count of how many PPI_CLK cycles to delay after assertion of
PPI_FS1 before starting to read in or write out data.

 Note in TX modes using at least one frame sync, there is a
one-cycle delay beyond what is specified in the PPI_DELAY register.

PPI Transfer Count Register (PPI_COUNT)
The PPI_COUNT register, shown in Figure 20-16, is used in all modes
except “RX mode with 0 frame syncs, external trigger” and “TX mode
with 0 frame syncs.” For RX modes, this register holds the number of sam-
ples to read into the PPI per line, minus one. For TX modes, it holds the
number of samples to write out through the PPI per line, minus one. The
register itself does not actually decrement with each transfer. Thus, at the
beginning of a new line of data, there is no need to rewrite the value of
this register. For example, to receive or transmit 100 samples through the
PPI, set PPI_COUNT to 99.

 Take care to ensure that the number of samples programmed into
PPI_COUNT is in keeping with the number of samples expected dur-
ing the “horizontal” interval specified by PPI_FS1.

Figure 20-15. PPI Delay Count Register

PPI Delay Count Register (PPI_DELAY)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI_DELAY[15:0]

Reset = 0x0000

Number of PPI_CLK cycles to
delay after assertion of
PPI_FS1 before latching in or
sending out data
20-32 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
PPI Lines Per Frame Register (PPI_FRAME)
The PPI_FRAME register, shown in Figure 20-17, is used in all TX and RX
modes with two or three frame syncs. For ITU-R 656 modes, this register
holds the number of lines expected per frame of data, where a frame is
defined as field 1 and field 2 combined, designated by the F indicator in
the ITU-R stream. Here, a line is defined as a complete ITU-R 656
SAV-EAV cycle.

For non ITU-R 656 modes with external frame syncs, a frame is defined as
the data bounded between PPI_FS2 assertions, regardless of the state of
PPI_FS3. A line is defined as a complete PPI_FS1 cycle. In these modes,
PPI_FS3 is used only to determine the original “frame start” each time the
PPI is enabled. It is ignored on every subsequent field and frame, and its
state (high or low) is not important except during the original frame start.

If the start of a new frame (or field, for ITU-R 656 mode) is detected
before the number of lines specified by PPI_FRAME have been transferred, a
frame track error results, and the FT_ERR bit in PPI_STATUS is set. How-
ever, the PPI still automatically reinitializes to count to the value
programmed in PPI_FRAME, and data transfer continues.

Figure 20-16. PPI Transfer Count Register

PPI Transfer Count Register (PPI_COUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI_COUNT[15:0]

Reset = 0x0000

In RX modes, holds one less
than the number of samples to
read in to the PPI per line. In
TX modes, holds one less
than the number of samples to
write out through the PPI per
line.
ADSP-BF51x Blackfin Processor Hardware Reference 20-33

Programming Examples
 In ITU-R 656 modes, a frame start detect happens on the falling
edge of F, the field indicator. This occurs at the start of field 1.

In RX mode with three external frame syncs, a frame start detect
refers to a condition where a PPI_FS2 assertion is followed by an
assertion of PPI_FS1 while PPI_FS3 is low. This occurs at the start
of field 1. Note that PPI_FS3 only needs to be low when PPI_FS1 is
asserted, not when PPI_FS2 asserts. Also, PPI_FS3 is only used to
synchronize to the start of the very first frame after the PPI is
enabled. It is subsequently ignored.

When using RX mode with three external frame syncs, and only
two syncs are needed, configure the PPI for 3-frame-sync operation
and provide an external pull-down to GND for the PPI_FS3 pin.

Programming Examples
The PPI can be configured to receive data from a video source in several
RX modes. The following programming examples (Listing 20-1 through
Listing 20-5) describe the ITU-R 656 entire field input mode.

Figure 20-17. PPI Lines Per Frame Register

PPI Lines Per Frame Register (PPI_FRAME)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI_FRAME[15:0]

Reset = 0x0000

Holds the number of lines
expected per frame of data
20-34 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
Listing 20-1. Configure DMA Registers

config_dma:

/*Assumes PPI is mapped to DMA channel 0.*/

/* DMA0_START_ADDR */

R0.L = rx_buffer;

R0.H = rx_buffer;

P0.L = lo(DMA0_START_ADDR);

P0.H = hi(DMA0_START_ADDR);

[P0] = R0;

/* DMA0_CONFIG */

R0.L = DI_EN | WNR;

P0.L = lo(DMA0_CONFIG);

P0.H = hi(DMA0_CONFIG);

W[P0] = R0.L;

/* DMA0_X_COUNT */

R0.L = 256;

P0.L = lo(DMA0_X_COUNT);

P0.H = hi(DMA0_X_COUNT);

W[P0] = R0.L;

/* DMA0_X_MODIFY */

R0.L = 0x0001;

P0.L = lo(DMA0_X_MODIFY);

P0.H = hi(DMA0_X_MODIFY);

W[P0] = R0.L;

ssync;

config_dma.END: RTS;
ADSP-BF51x Blackfin Processor Hardware Reference 20-35

Programming Examples
Listing 20-2. Configure PPI Registers

config_ppi:

/* PPI_CONTROL */

P0.L = lo(PPI_CONTROL);

P0.H = hi(PPI_CONTROL);

R0.L = 0x0004;

W[P0] = R0.L;

ssync;

config_ppi.END: RTS;

Listing 20-3. Enable DMA

/* DMA0_CONFIG */

P0.L = lo(DMA0_CONFIG);

P0.H = hi(DMA0_CONFIG);

R0.L = W[P0];

bitset(R0,0);

W[P0] = R0.L;

ssync;

Listing 20-4. Enable PPI

/* PPI_CONTROL */

P0.L = lo(PPI_CONTROL);

P0.H = hi(PPI_CONTROL);

R0.L = W[P0];

bitset(R0,0);

W[P0] = R0.L;

ssync;
20-36 ADSP-BF51x Blackfin Processor Hardware Reference

Parallel Peripheral Interface
Listing 20-5. Clear DMA Completion Interrupt

/* DMA0_IRQ_STATUS */

P2.L = lo(DMA0_IRQ_STATUS);

P2.H = hi(DMA0_IRQ_STATUS);

R2.L = W[P2];

BITSET(R2,0);

W[P2] = R2.L;

ssync;

Unique Information for the ADSP-BF51x
Processor

None.
ADSP-BF51x Blackfin Processor Hardware Reference 20-37

Unique Information for the ADSP-BF51x Processor
20-38 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
21 REMOVABLE STORAGE
INTERFACE

This chapter describes the ADSP-BF51x Blackfin processor removable
storage interface (RSI) and includes the following sections:

• “Overview”

• “Interface Overview” on page 21-3

• “Description of Operation” on page 21-7

• “Functional Description” on page 21-9

• “Programming Model” on page 21-32

• “RSI Registers” on page 21-53

Overview
ADSP-BF51x Blackfin processors provide an RSI interface for multimedia
cards (MMC), secure digital memory cards (SD), secure digital input/out-
put cards (SDIO) and consumer electronic ATA devices (CE-ATA). All of
these storage solutions use similar interface protocols. The main difference
between MMC and SD support is the initialization sequence. The main
difference between SD and SDIO support is the use of interrupt and read
ADSP-BF51x Blackfin Processor Hardware Reference 21-1

Overview
wait signals for SDIO. CE-ATA devices require handling of larger block
sizes of 4K bytes and implement a device interrupt scheme known as the
command completion signal (CCS).

Features of the RSI interface include:

• Support for a single SD or SDIO card

• Support for a single MMC device (removable or embedded)

• Support for 1- and 4-bit SD modes (SPI mode is not supported)

• Support for 1-, 4-, and 8-bit MMC modes (SPI mode is not
supported)

• Support for 4- and 8-bit CE-ATA devices

• Programmable clock frequency generated from SCLK

• Card detection capabilities

• SDIO interrupt and read wait features

• Command completion signal recognition and disable for CE-ATA
device support

• High-capacity card support such as SDHC implemented within
software

• 512-bit transmit/receive FIFO

• DMA channel with 32-bit DMA access bus
21-2 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
Interface Overview
The RSI interface handles the multimedia and secure digital card func-
tions. This includes clock generation, power management, command
transfer, and data transfer. The bus interface converts 16-bit PAB accesses
to 32-bit register accesses to the memory-mapped registers, and generates
interrupt requests to the processor core and system. The RSI has two
interrupt signals (IRQ0 and IRQ1), that are fed to the system interrupt con-
troller (SIC) IRQ51 and IRQ52 respectively.

The RSI block has 22 individual status bits in the RSI_STATUS register that
can be configured to generate an interrupt. The status bits can be mapped
to either of the two interrupts fed to the system interrupt controller. This
allows for greater flexibility in system configuration.

To generate an interrupt on IRQ0, the interrupt should be enabled by set-
ting the corresponding bit in the RSI_MASK0 register. Interrupts that are
required to be generated on IRQ1 are enabled by setting the corresponding
bit in the RSI_MASK1 register.

In addition to the status flags in the RSI_STATUS register generating inter-
rupts, each of the flags in the RSI_ESTAT register are also capable of
generating an interrupt. Interrupts for the RSI_ESTAT flags are enabled by
setting the corresponding bit in the RSI_EMASK register. The interrupts are
sent to the SIC through IRQ51.

The 32-bit DAB bus allows for efficient transfer of data, both to and from
internal memory, through DMA channel 4 that is shared with the
SPORT0 TX. The peripheral used by this DMA channel is the peripheral
that is enabled for pin multiplexing.
ADSP-BF51x Blackfin Processor Hardware Reference 21-3

Interface Overview
The RSI (Figure 21-1) is a 10-pin interface consisting of:

• RSI_CLK

The clock signal applied to the card from the RSI. All command
and data signal transfers are synchronous to this clock. The fre-
quency can vary between zero and the maximum clock frequency.
Refer to ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor
Data Sheet for the maximum supported clock frequencies.

• RSI_CMD

A bidirectional command signal used for command transfer and
card initialization. The RSI uses this signal to send commands to
the cards, and the card uses the signal to send responses back to the
RSI. This signal can be configured for both push-pull mode and
open-drain mode, but only MMC cards support the open-drain
mode. The open-drain mode allows for multiple MMC cards to
share data and command signals on the RSI interface and allows for
the initialization sequence to take place on all cards.

• RSI_DATA7—0

These are the configurable bidirectional data channels used for all
data transfers both to and from the card. The data bus width can
be configured as 1-, 4-, or 8-bit.

 Although earlier revisions of the MMC specifications allowed for
multiple MMC cards to be bused to a single RSI interface, it is
strongly recommended that only a single device be interfaced to
any given RSI interface. Multiple devices sharing a single com-
mand and data bus is now actively discouraged by the device
specifications.
21-4 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
Table 21-1 and Table 21-2 list the RSI interface pins functional opera-
tions for all supported protocol modes.

Figure 21-1. RSI Block Diagram

Table 21-1. RSI Protocol Interface (MMC and CE-ATA)

Signal Name MMC
(1-bit)

MMC
(4-bit)

MMC
(8-bit)

CE-ATA
(4-bit)

CE-ATA
(8-bit)

Direction

RSI_DATA7 Not Used Not Used Dat7 Not Used Dat7 Bidirectional

RSI_DATA6 Not Used Not Used Dat6 Not Used Dat6 Bidirectional

RSI_DATA7 Not Used Not Used Dat7 Not Used Dat7 Bidirectional

RSI_DATA6 Not Used Not Used Dat6 Not Used Dat6 Bidirectional

RSI_DATA5 Not Used Not Used Dat5 Not Used Dat5 Bidirectional

RSI_DATA4 Not Used Not Used Dat4 Not Used Dat4 Bidirectional

RSI_DATA3 Not Used/
Card Detect

Dat3/
Card Detect

Dat3/
Card Detect

Dat3 Dat3 Bidirectional

RSI_DATA2 Not Used Dat2 Dat2 Dat2 Dat2 Bidirectional

512-BYTE FIFO

TX AND RX LOGIC

CLOCK DIVIDER
AND SYNC LOGIC

RSI_CLK RSI_CMD RSI_DATAX

IRQ0

IRQ1

REMOVABLE STORAGE INTERFACE

DAB1

PAB 16

32
ADSP-BF51x Blackfin Processor Hardware Reference 21-5

Interface Overview
RSI_DATA1 Not Used Dat1 Dat1 Dat1 Dat1 Bidirectional

RSI_DATA0 Dat0 Dat0 Dat0 Dat0 Dat0 Bidirectional

RSI_CMD Command/
Response

Command/
Response

Command/
Response

Command/
Response/
CCS/CCSD

Command/
Response/
CCS/CCSD

Bidirectional

RSI_CLK CLK CLK CLK CLK CLK Output

Table 21-2. RSI Protocol Interface (SD and SDIO)

Signal Name SD
(1-bit)

SD
(4-bit)

SDIO
(1-bit)

SDIO
(4-bit)

Direction

RSI_DATA7 Not Used Not Used Not Used Not Used Bidirectional

RSI_DATA6 Not Used Not Used Not Used Not Used Bidirectional

RSI_DATA5 Not Used Not Used Not Used Not Used Bidirectional

RSI_DATA4 Not Used Not Used Not Used Not Used Bidirectional

RSI_DATA3 Not Used/
Card Detect

Dat3/
Card Detect

Not Used/
Card Detect

Dat3/
Card Detect

Bidirectional

RSI_DATA2 Not Used Dat2 Read Wait Dat2/
Read Wait

Bidirectional

RSI_DATA1 Not Used Dat1 Interrupt Dat1/
Interrupt

Bidirectional

RSI_DATA0 Dat0 Dat0 Dat0 Dat0 Bidirectional

RSI_CMD Command/
Response

Command/
Response

Command Command Bidirectional

RSI_CLK CLK CLK CLK CLK Output

Table 21-1. RSI Protocol Interface (MMC and CE-ATA) (Continued)

Signal Name MMC
(1-bit)

MMC
(4-bit)

MMC
(8-bit)

CE-ATA
(4-bit)

CE-ATA
(8-bit)

Direction
21-6 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
Description of Operation
The RSI controller is a fast, synchronous peripheral that uses various
protocols to communicate with MMC, SD, and SDIO cards as well as
CE-ATA hard drives. The RSI is compatible with the following protocols.

• MMC (Multimedia Card) bus protocol

• SD (Secure Digital) bus protocol

• SDIO (Secure Digital Input Output) bus protocol

• CE-ATA (Consumer Electronic ATA)

 The RSI does not support the SPI bus protocol.

Communication is through a master and slave configuration, where the
RSI is the master and the card is the slave device. The RSI communicates
with the device using a message-based bus protocol in which the host
sends commands serially using the RSI_CMD signal. Some commands
require that the card provide a response back to the host. This response is
also sent serially by the RSI_CMD signal.

Data transfers, both to and from the card, occur using the RSI_DATAx sig-
nals. The number of data lines used for the data transfer can be configured
to 1, 4, or 8 using RSI_DATA0, RSI_DATA3—0, or RSI_DATA7—0. All RSI_CMD
and RSI_DATAx transfers are synchronous with RSI_CLK.

Cyclic redundancy codes (CRC) are used to protect commands, responses
and data transfers from transmission errors. A CRC7 code is generated for
every command sent by the host and for almost every response returned by
the card on the RSI_CMD signal. A CRC16 code is used on the RSI_DATAx
signals to protect block data transfers. In 4- and 8-bit bus configurations,
CRC16 is calculated for each individual data signal.
ADSP-BF51x Blackfin Processor Hardware Reference 21-7

Description of Operation
When a device connected to the RSI is first powered and detected by the
host or has been reset—the device must first be identified and initialized
by the host. The software determines whether the device is compatible
with the RSI controller and the implemented software drivers. This phase
in the procedure is known commonly as the card identification mode.

When a device is in card identification mode, the host may be required to
perform the following actions.

• Reset the device

• Validate the device operating voltage range

• Identify the device type

• Assign/request a relative card address (RCA)

All communications between the host and card during the card identifica-
tion phase occur using the RSI_CMD signal. The maximum clock
frequencies during this identification phase is typically far lower than the
maximum data transfer frequency for the card.

The card will only transition to a stand-by state, known as the data trans-
fer mode, when it has been assigned an RCA. Data transfers can only take
place when the device has entered the data transfer mode.

Once the device is in data transfer mode, communication takes place
through the RSI_CMD and the RSI_DATAx signals. The card is further inter-
rogated to identify bus widths, maximum clock frequency, and the device
capacity. At this point the bus width can be altered and the clock fre-
quency can be increased.

Data may be written to the device or read from the device using the
following two methods.

• Stream reads and writes

• Block reads and writes
21-8 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
Stream transfers produce a continuous stream of data until the RSI stops
the transfer by setting a specific command.

For stream read and write operations, additional maximum operating fre-
quency limitations may be imposed by the device. Stream write operations
may also have restrictions that are dependent upon writable block
boundaries.

Block based transfers result in a block of a pre-configured size being trans-
ferred. The block size depends on the device and is obtained by reading
registers contained on the device during the device detection procedure.

Functional Description
The following sections describe the functions and features of the RSI
controller as well as the MMC, SD, SDIO, and CE-ATA protocols.
For detailed information on timing parameters and protocol require-
ments, refer to ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor
Data Sheet and the following standards and specifications.

• MMCA System Specification

• JESD84 series of JEDEC standards

• SD Specifications Part 1 Physical Layer Specification

• SD Specifications Part 1 Physical Layer Simplified Specification

• SD Specifications Part E1 SDIO Specification

RSI Clock Configuration
The RSI is a fast, synchronous peripheral with a programmable clock fre-
quency that is supplied by the RSI_CLK signal. The interface between the
RSI and the PAB/DAB busses operates at SCLK frequency. Communica-
tion between the clock domain that is supplied externally from the RSI on
ADSP-BF51x Blackfin Processor Hardware Reference 21-9

Functional Description
the RSI_CLK signal and the internal RSI access to the PAB and DAB busses
is accomplished using synchronizers in the RSI module. The RSI_CLK fre-
quency is configured by the 8-bit CLKDIV field and the CLKDIV_BYPASS bit
of the RSI_CLK_CONTROL register (see “RSI Clock Control Register
(RSI_CLK_CONTROL)” on page 21-56).

If CLKDIV_BYPASS is set, the clock frequency driven on the RSI_CLK signal
is derived directly from SCLK.

If CLKDIV_BYPASS is cleared, the clock divider logic provides an RSI_CLK
frequency as shown below, where CLKDIV is an 8-bit value ranging between
0 and 255.

The RSI_CLK output is enabled or disabled by the CLK_EN bit in the
RSI_CLK_CONTROL register and a power save feature is implemented by set-
ting PWR_SV_EN, which disables the RSI_CLK output when there are no
transfers taking place on the RSI interface.

RSI Interface Configuration
The RSI supports multiple card types under various protocols. Different
card types may require slightly different interface configurations.

The command signal on MMC cards operates in two different modes
depending upon the operating mode of the card. During the card identifi-
cation mode, the command signal operates in open-drain configuration;
but when the card enters data transfer mode, the signal is configured to
push-pull mode.

RSI_CLK
SCLK

2 CLKDIV 1+
--=
21-10 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
 The internal pull-up resistor of the RSI_CMD signal is only intended
to keep the signal from floating. The internal pull-up resistor is not
sufficient during the card identification phase when the MMC card
RSI_CMD signal is operating in open-drain mode. If support for
MMC devices is required, an external pull-up resistor should be
added to the SD_CMD signal as detailed in the JEDEC standard.

The bus width used for the data transfers is configurable to 1-bit, 4-bits,
or 8-bits using the BUS_MODE field in the RSI_CLK_CONTROL register (see
“RSI Clock Control Register (RSI_CLK_CONTROL)” on page 21-56).

To stop signals from floating when no card is inserted or during times
when all card drivers are in a high-impedance mode, various pull-up and
pull-down resistor configurations can be enabled on the RSI_DATAx signals.
The RSI_CONFIG register (see “RSI Configuration Register
(RSI_CONFIG)” on page 21-79) provides the following options.

• Enable or disable a pull-up resistor on the RSI_DATA3 signal

• Enable or disable pull-up resistors on the RSI_DATA7 through
RSI_DATA4 and RSI_DATA2 through RSI_DATA0 signals
ADSP-BF51x Blackfin Processor Hardware Reference 21-11

Functional Description
Card Detection

The RSI allows for software to detect when a card is inserted into its slot.
There are a number of ways that this card detection can be performed. See
Figure 21-2.

Figure 21-2. RSI Socket Interface

3.3 V
REQUIRED
FOR MMC
CARD
SUPPORT

REQUIRED ONLY IF CARD
DETECTION IS USING
THE DATA3 SIGNAL

RSI INTERFACE SD/MMC SOCKET

CARD
DETECT

WRITE
PROTECT

RSI_CLK

RSI_CMD

RSI_DATA0

RSI_DATA1

RSI_DATA2

RSI_DATA3

RSI_DATA4

RSI_DATA5

RSI_DATA6

RSI_DATA7

GPIO

GPIO

DATA1

DATA0

DATA2

DATA3

DATA5

DATA4

DATA6

DATA7

CMD

CLK
21-12 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
SD and SDIO cards use an internal pull-up resistor on the RSI_DATA3 line
as a card detect signal to indicate to the host that a card is present. In
order to use the RSI_DATA3 signal for card detection, an external pull down
resistor should be added to the pin to pull the pin low during the time a
card is not inserted. When a card is inserted into the slot, a rising edge is
detected on RSI_DATA3 by the RSI and SD_CARD_DET in the RSI_ESTAT reg-
ister is set. Once the card has been correctly identified, the SD_CARD_DET
interrupt should be cleared and disabled. The pull-up resistor in the SD
card should be disabled by issuing the SET_CLR_CARD_DETECT command.

 When using the RSI_DATA3 signal for card detection with an exter-
nal pull-down resistor, do not enable the internal pull-up resistor
by setting PU_DAT3.

The recommended method of detecting the insertion of a card is to use
the card detect feature that is made available through most sockets. Sock-
ets supporting this feature can have the card detect pin de-bounced and
connected to a GPIO pin in order to allow not only interrupt driven card
detection but also interrupt driven card removal. This is the most reliable
and efficient method of detecting the insertion and removal of a card as
some MMC devices may not implement the card detect pull-up resistor
on the RSI_DATA3 signal. Once a card is detected, the GPIO pin can have
the interrupt level inverted to then generate an interrupt on card removal.

The final approach to detecting the insertion and removal of a card is to
simply use software polling. Software would poll the slot periodically
using the card identification commands for the supported card types.
Once a card is inserted, this will result in valid responses being sent back
to the host; when the card is removed, command and data timeout errors
will be observed.
ADSP-BF51x Blackfin Processor Hardware Reference 21-13

Functional Description
RSI Power Saving Configuration
The RSI requires two internal clock signals that are derived directly from
SCLK. One of these clock signals is routed to the clock divider and gener-
ates the RSI_CLK clock.

These clocks must be enabled by setting RSI_CLK_EN in the RSI_CONFIG
register for the RSI to function. Clearing RSI_CLK_EN disables the RSI
regardless of other RSI clock configurations. The RSI_CLK signal can be
enabled or disabled using CLK_EN in the RSI_CLK_CONTROL register.

Additional power saving options can be implemented by setting
PWR_SV_EN which disables the RSI_CLK output when there are no transfers
taking place on the RSI interface. These configurations are shown in
Table 21-3.

Table 21-3. RSI Power Saving Configurations

CLKS_EN CLK_EN PWR_SV_E RSI State RSI_CLK Output

0 0 0 Disabled No clock

0 0 1 Disabled No clock

0 1 0 Disabled No clock

0 1 1 Disabled No clock

1 0 0 Enabled No clock

1 0 1 Enabled No clock

1 1 0 Enabled Continuous clock1

1 The PWR_ON field of the RSI_PWR_CTL register must be set to 0x3. If PWR_ON is
0x0—the clock will not output.

1 1 1 Enabled Clock only driven during transfers1
21-14 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
RSI Commands and Responses
The RSI sends commands to and receives responses from the card using
the RSI_CMD signal. The command to be sent to the card is issued by writ-
ing to the RSI_COMMAND register (see “RSI Command Register
(RSI_COMMAND)” on page 21-58). This register contains a 6-bit
CMD_IDX field that contains the command index to be sent to the card. The
command index provides support for a total of 64 commands—0
(CMD0) to 63 (CMD63). Some commands require an argument to be
sent along with the command, such as an address for a read transaction.
An argument is always sent with the command and it is the responsibility
of the card to either ignore or use the argument field based on the com-
mand that is received. The argument sent with the command is provided
using the RSI_ARGUMENT register (see “RSI Argument Register
(RSI_ARGUMENT)” on page 21-58).

All command transfers are protected by a 7-bit cyclic redundancy check
(CRC) code, more commonly referred to as a CRC7 checksum. This
allows for transmission errors to be detected and for the command to be
re-issued to the card in the event of an error. All commands sent to the
card are composed of 48-bits as shown in Table 21-4.

Table 21-4. RSI Command Format

Bit Position Width Value Description

47 1 0 Start bit

46 1 1 Transmitter bit

[45:40] 6 - Command index

[39:8] 32 - Argument

[7:1] 7 - CRC7 checksum

0 1 1 End bit
ADSP-BF51x Blackfin Processor Hardware Reference 21-15

Functional Description
The RSI_COMMAND register also provides configuration information about
whether a response is to be expected back from the card and the type of
response.

The RSI can be configured using the CMD_RESP and CMD_L_RESP fields of
the RSI_COMMAND register to expect the following response types.

• No response

• Short response (see Table 21-5)

• Long response (see Table 21-6)

Table 21-5. RSI Short Response Format

Bit Position Width Value Description

47 1 0 Start bit

46 1 0 Transmitter bit

[45:40] 6 Command index or check bits1

1 Responses that do not contain the command index have b#111111 in the check bits field.

[39:8] 32 Card status, register contents or argument field

[7:1] 7 CRC7 checksum or check bits2

2 Responses that do not contain a CRC7 check sum have b#111111 in the check bits field.

0 1 1 End bit
21-16 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
Like the commands, all responses are sent on the RSI_CMD signal.
A response always has a “0” start bit followed by a “0” transmission bit
to indicate the transfer is from card to RSI. Unlike the commands issued
by the RSI, not all responses are protected by a CRC7 checksum. Refer
to the appropriate specification for full details on the response formats for
a specific device and whether they are protected by a CRC7 checksum.

When a short response is received, the response is broken down by the
RSI. The 32-bit field containing bits[39:8]is stored to RSI_RESPONSE0,
where bit 39 of the response corresponds to bit 31 of RSI_RESPONSE0 and
bit 8 of the response to bit 0 of RSI_RESPONSE0. Bits[45:40] of the
response are stored to the RESP_CMD field of the RSI_RESP_CMD register.

For a long response, bits[127:1] of the response are stored in
RSI_RESPONE3—0. Bit 31 of RSI_RESPONSE0 contains the most significant
bit (bit 127) of the response and bit 0 of RSI_RESPONSE3 contains bit 1 of
the response. Bit 31 of RSI_RESPONSE3 is always zero.

Figure 21-3 shows the command path state machine. For the state
machine to be active, the RSI must be enabled through RSI_CLK_EN. Dis-
abling the clocks to the RSI results in the state machine returning to the
IDLE state.

Table 21-6. RSI Long Response Format

Bit Position Width Value Description

135 1 0 Start bit

134 1 0 Transmitter bit

133:128 6 111111 Check bits1

127:1 127 - Register contents including internal CRC72

0 1 1 End bit

1 Responses that do not contain the command index have b#111111 in the check bits field.
2 Responses that do not contain a CRC7 check sum have b#111111 in the check bits field.
ADSP-BF51x Blackfin Processor Hardware Reference 21-17

Functional Description
The command path state machine is responsible for setting and clearing a
number of status flags in the RSI_STATUS register (see “RSI Status Register
(RSI_STATUS)” on page 21-66). Table 21-7 lists the status flags and
exception flags that are affected by the command path state machine.

Figure 21-3. RSI Command Path State Machine

IDLE

RSI_CLK_EN &&
CMD_PEND_EN &&
CMD_EN

RSI_CLK_EN &&
CMD_EN &&
!CMD_PEND_EN

PEND

DAT_END

SEND

CMD_RSP

!RSI_CLK_EN || RSI_RST

!RSI_CLK_EN || RSI_RST ||
CMD_SENT

!RSI_CLK_EN || RSI_RST ||
CMD_TIMEOUT

!RSI_CLK_EN || RSI_RST ||
CMD_CRC_FAIL ||
CMD_RESP_END

!RSI_CLK_EN || RSI_RST
|| CEATA_INT_DET

CEATA_INT_DIS

CEATA_TX_CCSD

CEATA_INT_WAIT

CEATA_EN && CEATA_INT_EN

RECEIVE

!CMD_TIMEOUT ||
(CMD_INT_EN && INTERRUPT REQUEST FROM CARD)

WAIT
21-18 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
The command path operates in a half-duplex mode, so that commands
and responses can either be sent or received. If the state machine is not in
the SEND state, the RSI_CMD output is in high impedance state.

 Figure 21-4 describes a typical command and response transfer, the
RSI_CMD signal is sampled by the card and the host on the rising edge of
RSI_CLK.

The following sections describes the RSI command path states.

Table 21-7. RSI Command Path Status Flags

RSI_STATUS Flag Description State Flag Set in

CMD_ACT Command transfer is in progress WAIT_S

CMD_SENT Command without response sent successfully SEND

CMD_TIMEOUT Response timeout occurred (64 RSI_CLK cycles) WAIT_S

CMD_CRC_FAIL Response CRC failure RECEIVE

CMD_RSP_END Response CRC successful RECEIVE

CEATA_INT_DET CE-ATA command completion signal detected CEATA_INT_WAIT

Figure 21-4. RSI Command Transfer

RSI_CMD S T TE ES

SEND WAIT RECEIVE IDLE
COMMAND
PATH
STATE

S = START BIT
T = TRANSMITTER BIT
E = END BIT
ADSP-BF51x Blackfin Processor Hardware Reference 21-19

Functional Description
IDLE State

The command path state machine remains in the IDLE state when it is
not active. The command path state machine is enabled and leaves the
IDLE state when the CMD_EN bit in the RSI_COMMAND register is set. The
state goes to the PEND state if the CMD_PEND_EN bit in the RSI_COMMAND is
set; otherwise it enters the SEND state.

When the command path state machine returns to the IDLE state from
another state and the return is not due to RSI being disabled or reset—the
state machine remains in the IDLE state for at least eight RSI_CLK cycles.
During this time, the RSI will continue to drive the RSI_CLK signal even if
the PWR_SV_EN feature is enabled. This allows the card to complete the cur-
rent operation. If enabled again, the state machine leaves the IDLE state
only after the eight RSI_CLK cycles have passed.

PEND State

The RSI enters the PEND state if the CMD_PEND_EN bit in the RSI_COMMAND
register is set. The state machine remains in the PEND state until it is
notified by the data path sub block that a data transfer has completed.
This is indicated by the DAT_END flag being set when RSI_DATA_CNT decre-
ments to zero. This mode allows for the automatic transmission of a
STOP_TRANSMISSION command after reading or writing the required
amount of data for stream-based transactions.

 The CMD_PEND_EN feature is not functional for block-based transfers
and cannot be used to automatically issue the STOP_TRANSMISSION
command for MULTIPLE_BLOCK_READ or MULTIPLE_BLOCK_WRITE
operations.
21-20 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
SEND State

During the SEND state, the RSI sets the CMD_ACT flag in the CMD_STATUS
register to indicate a transfer is in progress. The behavior of the state
machine after the command is sent, depends upon whether the command
expects a response back from the card.

If no response is expected, the RSI clears the CMD_ACT flag and sets the
CMD_SENT flag to indicate that a command operation without a response
has been completed. The state then goes to IDLE.

If a response is expected, the RSI enters the WAIT state.

WAIT State

In the WAIT state, the RSI waits for a response to be received on the
RSI_CMD signal. Upon entering this state, an internal timer starts. If the
response is not received within 64 RSI_CLK cycles, the CMD_TIMEOUT flag is
set and the CMD_ACT flag is cleared. The state machine then enters the
IDLE state, awaiting the next action.

A response, sent back from the card and indicated by the "0" start bit on
the RSI_CMD signal, transitions the RSI to the RECEIVE state to receive a
48- or 136-bit response.

The WAIT state can also detect card interrupts. This is an optional feature
that applies only to MMC cards. This feature is enabled by setting the
CMD_INT_EN bit within RSI_COMMAND. When CMD_INT_EN is set, the timeout
timer that is normally started upon entry to the WAIT state is disabled.
The RSI remains in this state until a card interrupt is detected. Cards that
implement this feature may have functions with a delayed response that is
triggered by an internal event in the card. Once the event is triggered the
card sends the response. The RSI then detects this start bit of the response
and proceeds to the RECEIVE state.
ADSP-BF51x Blackfin Processor Hardware Reference 21-21

Functional Description
RECEIVE State

In the RECEIVE state the RSI reads the response on the RSI_CMD signal
from the card. Upon receiving either the short or long response, if the
response passes the CRC check, the CMD_ACT flag is cleared and the
CMD_RESP_END flag is set. If the CRC check fails, the CMD_CRC_FAIL flag is
set. In either case, the state machine then goes to the IDLE state.

Some CE-ATA commands require additional functionality in this state. A
command completion signal must be sent back to the host upon comple-
tion of a specific task. For commands that require this functionality, the
CEATA_EN and CEATA_CCS_EN bits of the RSI_DATA_CONTROL register should
be set prior to enabling the command path state machine. After receiving
the response, the state machine then enters the CEATA_INT_WAIT
state.

CEATA_INT_WAIT State

In this state, the RSI waits for the CE-ATA device to issue the command
completion signal. This is indicated by the device sending a “0” on the
RSI_CMD signal. Upon detection of the command completion signal, the
CMD_ACT flag is cleared and the CEATA_INT_DET flag of the RSI_ESTAT regis-
ter is set. Alternatively, the command completion signal of the CE-ATA
device can be disabled by the RSI. This is performed by setting the
CEATA_TX_CCSD bit of the RSI_CEATA_CONTROL register, at which point the
state machine enters the CEATA_INT_DIS state. The CEATA_TX_CCSD bit
can be set prior to enabling the command path state machine. The CCSD
sequence is issued after the response is received rather than having to wait
for the response before setting CEATA_TX_CCSD.

CEATA_INT_DIS State

In this state, the RSI issues the command completion signal disable
sequence on the RSI_CMD signal before transitioning to the IDLE state and
clearing the CMD_ACT flag. The command completion signal disable
sequence issued is the binary sequence b#00001.
21-22 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
RSI Command Path CRC
The command CRC generator of the RSI calculates the 7-bit CRC check-
sum for all 40 bits preceding the CRC code for both 48-bit commands
and 48-bit responses. This includes the start bit, transmitter bit, com-
mand index, and command argument (or card status). The 7-bit CRC
checksum is calculated for the first 120 bits of the register contents field
for the long response format. Note that the start bit, transmitter bit, and
the six check bits are not used in the CRC calculation for the long
response. The command and response CRC checksum is a 7-bit value that
is calculated as follows:

with:

and for a short response:

or for a long response:

RSI Data
Data transfers both to and from the RSI take place over the RSI data bus
signals RSI_DATA7—0. The RSI data bus width is configured by the
BUS_MODE field of the RSI_CLK_CONTROL register (see “RSI Clock Control
Register (RSI_CLK_CONTROL)” on page 21-56). The default is 1-bit
bus mode, where the data is transferred over the RSI_DATA0 signal.

Or 4-bit mode or 8-bit mode can be enabled after configuring the card for
4-bit or 8-bit mode of operation, respectively.

CRC[6:0] Remainder=
x7 M(x)

G(x)

G(x) x7 x3 1+ +=

M(x) x39 (start bit) ... x0 (last bit before CRC)+ +=

M(x) x19 (start bit) ... x0 (last bit before CRC)+ +=
ADSP-BF51x Blackfin Processor Hardware Reference 21-23

Functional Description
The RSI data path state machine operates at RSI_CLK frequency. The state
machine leaves the IDLE state when the DATA_EN field of the
RSI_DATA_CONTROL register is set, enabling the data transfer. The state
entered upon leaving the IDLE state is determined by DATA_DIR. The data
path state machine is shown in Figure 21-5.

Figure 21-5. RSI Data Path State Machine

IDLE

DATA_EN && !DATA_DIR DATA_EN && DATA_DIR

WAIT_S WAIT_R
START_BIT_ERR ||
DAT_TIMEOUT ||
RX_DAT_ZERO ||
!DATA_EN

!START_BIT_ERROR
TX_DAT_RDY

DAT_END ||
!DAT_EN

SEND

RECEIVE

BUSY

DAT_BLK_END

DAT_CRC_FAIL ||
!DATA_EN

DAT_BLK_END ||
DAT_END ||
RX_OVERRUN

END OF PACKET &&
!DATA_MODE

DAT_CRC_FAIL ||
DAT_TIMEOUT ||
!DATA_EN

DAT_CRC_FAIL ||
DAT_END ||
TX_UNDERRUN ||
!DATA_EN
21-24 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
The data path status flags are shown in Table 21-8.

Table 21-8. RSI_STATUS Flags

RSI_STATUS Flag Description States Flag Set in

TX_ACT Data transmit in progress WAIT_S

RX_ACT Data receive in progress WAIT_R

DAT_BLK_END Data block sent successfully and
CRC pass token received

BUSY
(block transfer mode only)

Data block received correctly
and CRC passed

RECEIVE
(block transfer only)

DAT_CRC_FAIL Data block CRC failed on trans-
mit

SEND if transmitted data is not a
multiple of DATA_BLK_LGTH.
BUSY if CRC token indicates failure.

Data block CRC failed on
receive

RECEIVE

DAT_TIMEOUT Transmit timeout occurred
before card de-asserted busy
signal on RSI_DATA0

BUSY

Receive timeout error occurred
before start bit of data detected

WAIT_R

DAT_END All data sent SEND

All data received RECEIVE

START_BIT_ERR Start bit not detected on all
RSI_DATAx signals

WAIT_R

TX_FIFO_STAT Transmit FIFO is half empty SEND

TX_FIFO_FULL Transmit FIFO is full SEND

TX_FIFO_EMPTY Transmit FIFO is empty SEND

TX_UNDERRUN Transmit FIFO under run error SEND

TX_DAT_RDY Valid data available in the trans-
mit FIFO

SEND

RX_FIFO_STAT Receive FIFO is half empty RECEIVE

RX_FIFO_FULL Receive FIFO is full RECEIVE
ADSP-BF51x Blackfin Processor Hardware Reference 21-25

Functional Description
RSI Data Transmit Path
The transmit path consists of the WAIT_S, SEND, and BUSY states.
Both RSI_DATA_LGTH and RSI_DATA_TIMER must be configured before
enabling the data path state machine with RSI_DATA_CONTROL. Upon leav-
ing the IDLE state and entering the WAIT_S state, the RSI sets the
TX_ACTIVE flag and copies RSI_DATA_LGTH into RSI_DATA_CNT.

The behavior of the SEND state depends on which transfer mode is
configured.

• Stream Transfer Mode

If the SDH is configured for stream transfer mode, the SDH sends
data to the card until RSI_DATA_CNT expires, at which point the
DATA_END flag is set and the state machine returns to the IDLE
state.

Additionally the transition of RSI_DATA_CNT to zero activates the
command path state machine if it is currently in the PEND state.

If at any point during the stream transfer the transmit FIFO
becomes empty and data is not available in the FIFO by the time
the next transfer is due to take place, the TX_UNDERRUN flag is set
before returning to the IDLE state.

RX_FIFO_EMPTY Receive FIFO is empty RECEIVE

RX_ OVERRUN Receive FIFO over run error RECEIVE

RX_FIFO_RDY Valid data is available in the
receive FIFO

RECEIVE

Table 21-8. RSI_STATUS Flags (Continued)

RSI_STATUS Flag Description States Flag Set in
21-26 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
• Block Transfer Mode

In block transfer mode, DATA_BLK_LGTH bytes, as specified during
the write to RSI_DATA_CONTROL, are transmitted. Each byte trans-
ferred also decrements RSI_DATA_CNT.

Upon completion of the block transfer, the RSI appends an inter-
nally generated 16-bit CRC code and an end bit to the data
transferred over the RSI_DATAx signals. The SDH then waits for the
card token response on the RSI_DATA0 line to indicate whether the
data was received correctly by the card or not.

If the CRC response token sent by the card indicates the data was
received correctly, the DAT_BLK_END flag is set before moving to the
BUSY state. If the data was not received correctly, the
DAT_CRC_FAIL flag is set before returning to the IDLE state.

The decrementing of RSI_DATA_CNT to zero results in the DAT_END
flag being set. If the total number of bytes transmitted for the cur-
rent block results in the RSI_DATA_CNT decrementing to zero and
the number of bytes transferred is not equal to DATA_BLK_LGTH, the
transmission stops and the DAT_CRC_FAIL flag is set. The data path
returns to the IDLE state.

If at any point during the block transfer the transmit FIFO
becomes empty and data is not available in the FIFO by the time
the next transfer is due to take place, the TX_UNDERRUN flag is set
before returning to the IDLE state.

During the BUSY state, the RSI continuously samples RSI_DATA0 which at
this point is driven low by the card to indicate that the card is busy. When
a logic high state is detected, indicating that the card is no longer busy, the
state machine returns to the WAIT_S state. It then either returns to IDLE
if all data has been sent or moves back to the SEND state to start another
block transfer.
ADSP-BF51x Blackfin Processor Hardware Reference 21-27

Functional Description
Upon entry to the BUSY state, the RSI started decrementing the timeout
value specified by RSI_DATA_TIMER. If the RSI timeout counter expires
before the RSI_DATA0 signal is detected high, the RSI sets the DAT_TIMEOUT
flag and returns to the IDLE state.

RSI Data Receive Path
The receive path consists of the WAIT_R and the RECEIVE states. Both
RSI_DATA_LGTH and RSI_DATA_TIMER must be configured, before enabling
the data path state machine with RSI_DATA_CONTROL. Upon leaving the
IDLE state and entering the WAIT_R state, the RSI sets the RX_ACTIVE
flag and copies RSI_DATA_LGTH into RSI_DATA_CNT. The behavior of the
RECEIVE state is influenced by the transfer mode.

Once the receive path has entered the WAIT_R state after being enabled
for a receive transaction, the RSI starts decrementing the timeout value
supplied by the RSI_DATA_TIMER.

If the RSI is configured for a 1-bit data bus, the DAT_TIMEOUT flag is set if a
start bit is not detected on the RSI_DATA0 signal before the timeout coun-
ter reaches zero. The state machine then returns to the IDLE state.

If the RSI is configured for 4-bit bus mode and the start bit is not detected
on all four RSI_DATAx signals before the timeout counter expires—the
DAT_TIMEOUT flag is set. The state machine returns to the IDLE state. If a
start bit is detected on some, but not all, of the RSI_DATAx signals on the
same sampled clock cycle, then the START_BIT_ERR flag is set and the state
machine returns to the IDLE state. Upon correct detection of the start bit,
the state machine moves into the RECEIVE state.
21-28 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
The behavior of the RECEIVE state differs for stream and block transfers.

• For stream transfers, received data is packed into bytes and written
to the data FIFO. Data is continuously received and written to the
data FIFO until RSI_DATA_CNT decrements to zero.

When the counter reaches zero, the remaining data in the shift reg-
ister is written into the FIFO, the DAT_END flag is set and the state
machine transitions to the WAIT_R state.

When the receive FIFO is detected empty, the RX_DAT_ZERO flag is
set and the state goes to the IDLE state.

If the data FIFO becomes full and data has not been read from the
FIFO prior to the next byte being written to the FIFO, then the
RX_OVERRRUN flag is se. The state goes to the WAIT_R state then
into the IDLE state.

• In block transfer mode, the received data is packed into bytes and
written to the data FIFO. When DATA_BLK_LGTH bytes have been
received, the RSI reads the 16-bit CRC check bits. If the received
CRC matches the internally calculated CRC, the DAT_BLK_END flag
is set and the state transitions to the WAIT_R state.

If the RSI_DATA_CNT counter expires in alignment with the end of a
DATA_BLK_LGTH block, the DAT_END and DAT_BLK_END flags are set,
and the state goes to the WAIT_R state. When the receive FIFO is
detected empty, the RX_DAT_ZERO flag is set and the state goes to the
IDLE state.

If RSI_DATA_CNT expires before the end of a DATA_BLK_LGTH block,
the DAT_CRC_FAIL flag is set. The state goes to the IDLE state.
ADSP-BF51x Blackfin Processor Hardware Reference 21-29

Functional Description
RSI Data Path CRC
The data CRC generator of the RSI calculates the 16-bit CRC checksum
for all bits sent or received for a given block transaction. The data path
CRC generator is not enabled for stream based data transfers. For a 1-bit
bus configuration, the 16-bit CRC is calculated for all data sent on the
RSI_DATA0 signal. For a 4-bit-wide data bus, the 16-bit CRC is calculated
separately for each RSI_DATAx signal. The data path CRC checksum is a
16-bit value calculated as follows.

with:

where:

RSI Data FIFO
The data FIFO is a 32-bit wide, 16-word deep data buffer with transmit
and receive logic. The FIFO is configuration depends on the state of the
TX_ACT and RX_ACT flags. If TX_ACT is set, the FIFO operates as a transmit
FIFO supplying data to the RSI for transfer to the card. If RX_ACT flag is
set, the FIFO operates as a receive FIFO, where the RSI writes data
received from the card. If neither TX_ACT nor RX_ACT flags are set, then the
FIFO is disabled.

CRC[15:0] Remainder
x16 M(x)

G(x)
-----------------------=

G(x) x16 x12 x5 1+ + +=

M(x) x 8 DTX_BLK_LGTH 1– (first data bit) x0 (last data bit)+ +=
21-30 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
When the transmit FIFO is disabled, all the transmit status flags are
de-asserted and the transmit read and write pointers are reset. The RSI
asserts the TX_ACT flag upon starting a data transfer. During the data trans-
fer the transmit logic maintains the transmit FIFO status flags shown in
Table 21-9.

When the receive FIFO is disabled, all receive status flags are de-asserted
and the receive read and write pointers are reset. The RSI asserts the
RX_ACT flag upon starting a data read transaction. During the data transfer,
the receive logic maintains the receive FIFO status flags shown in
Table 21-10.

Table 21-9. RSI Transmit FIFO Status Flags

RSI_STATUS Flag Description

TX_FIFO_STAT Transmit FIFO is half empty

TX_FIFO_FULL Transmit FIFO is full

TX_FIFO_EMPTY Transmit FIFO is empty

TX_UNDERRUN Transmit FIFO under run error

TX_DAT_RDY Valid data available in the transmit FIFO

Table 21-10. RSI Receive FIFO Status Flags

RSI_STATUS Flag Description

RX_FIFO_STAT Receive FIFO is half empty

RX_FIFO_FULL Receive FIFO is full

RX_FIFO_EMPTY Receive FIFO is empty

RX_OVERRUN Receive FIFO under run error

RX_DAT_RDY Valid data available in the receive FIFO
ADSP-BF51x Blackfin Processor Hardware Reference 21-31

Functional Description
SDIO Interrupt and Read Wait Support
Two additional RSI features implement SDIO functionality.

• Hardware interrupt support over the RSI_DATA1 pin

• Read wait request over the RSI_DATA2 pin

SDIO devices may have multiple interrupt sources that are mapped to a
single interrupt line. The interrupt is level-sensitive, allowing multiple
functions to generate an interrupt simultaneously. Thus the interrupt
request will continually be asserted until all sources generating an inter-
rupt are determined and cleared by the RSI.

The sources of the interrupts are found by interrogating the SDIO device.
The interrupts are cleared through operations unique to each function.

The SDIO device sends an interrupt request to the RSI by asserting the
RSI_DATA1 signal low. The interrupt status is indicated by the
SDIO_INT_DET bit of the RSI_ESTAT register. The status can be configured
to interrupt the processor through the SDIO_INT_DET_MASK bit of the
RSI_EMASK register.

When the RSI is configured for 1-bit bus width, the interrupt is generated
by the SDIO with no timing constraints since the RSI_DATA1 signal acts as
a dedicated IRQ signal. The RSI should be configured using RSI_CONFIG
such that pull-up are enabled on all RSI_DATAx signals. When the RSI
sampling RSI_DATA1 low, the RSI asserts the SDIO_INT_DET flag. This flag
is asserted until the RSI_DATA1 signal is sampled high again.

When the RSI is configured for 4-bit bus widths, the RSI_DATA1 signal is
shared between the IRQ signal and the RSI_DATA1 signal. In this
configuration, the interrupt is only be recognized by the RSI within a spe-
cific interrupt period.
21-32 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
Programming Model
This section contains the following procedures:

• “Card Identification”

• “Single Block Write Operations” on page 21-35

• “Single Block Read Operation” on page 21-39

• “Multiple Block Write Operation” on page 21-44

• “Multiple Block Read Operation” on page 21-49

Card Identification
Before data transfers can take place between the RSI and the
SD/MMC/SDIO device, the device type must be identified. During this
phase, the RSI_CLK frequency must be no greater than 400 kHz.

SD Card Identification Procedure

The SD card identification procedure is shown below.

1. Issue the IDLE command to the card using the RSI_COMMAND
register

2. Issue the SEND_IF command through the RSI_COMMAND register, sup-
plying the host supply voltage and a check pattern via the
RSI_ARGUMENT register. The command expects an R7 response type.
If a valid response with a compatible voltage range and matching
check pattern is received, the card is compliant with
SD veSDHon 2.00 or later. If a response is received with an
incompatible voltage range the card cannot be used. If no response
is received at all, as indicated by the CMD_RESP_TIMEOUT flag on the
RSI_STATUS register, go to step 5.
ADSP-BF51x Blackfin Processor Hardware Reference 21-33

Programming Model
3. Issue the RSI_SEND_OP_COND command through the RSI_COMMAND
register, supplying the voltage window supported and whether the
host supports high capacity cards using the RSI_ARGUMENT register.
The RSI expects an R3 response to this command. The RSI can
reject the card at this point if the voltage range is not compatible.

If the card returns a response indicating that it is busy, resend the
RSI_SEND_OP_CMD until the card indicates it is ready. If the host
does not support the high capacity mode as indicated by setting the
HCS bit of the argument to 0—a high capacity card never clears
the busy status bit. The card should be identified within
one second. If in that time the card is still bus, or no valid
responses have been received, the card is rejected.

4. If the host supports high-capacity cards, verify whether the
response in the RSI_RESPONSE0 register indicates that the card
capacity status (CCS) bit is set. If CCS is set, an
SD VeSDHon 2.00 or later high capacity SD memory card is
present—proceed to step 6. If the CCS bit is cleared, then the card
is an SD VeSDHon 2.00 or later standard capacity memory card—
proceed to step 6.

5. Issue the RSI_SEND_OP_COND command via the RSI_COMMAND regis-
ter, supplying the voltage window supported and with the
high-capacity support (HCS) bit set to 0 via the RSI_ARGUMENT
register. The RSI expects an R3 response to this command, at
which time the card can be rejected if the voltage range is not com-
patible. If the card returns a response indicating that it is busy,
resend the RSI_SEND_OP_CMD until the card indicates that it is ready.
The card should be identified within 1 second. If in that timeframe
the card is still busy or no valid responses have been received, the
card should be rejected. Once the response indicates that the card
is ready, the card type has been identified as an SD Version 1.x
standard-capacity memory card.
21-34 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
6. Issue the ALL_SEND_CID command to which an R2 response type is
expected. This will result in the card sending the 128-bit card iden-
tification (CID) register and transitioning from ready to
identification mode.

7. Issue the SEND_RELATIVE_ADDR command to which an R6 response
type is expected. This will result in the card issuing a new relative
address which must be used in order to select the card in the future
for data transfers. The card will then move into standby mode
completing the identification procedure.

MMC Identification Procedure

The MMC identification procedure is as follows:

1. Issue the IDLE command to the card via the RSI_COMMAND register.

2. Issue the SEND_OP_COND command to the card via the RSI_COMMAND
register, supplying the operating voltage window that the host is
compatible with and the access mode that the host supports (byte
or sector) via the RSI_ARGUMENT register. The RSI expects an R3
type response. This allows the host to reject the card if it is not
compatible with the supply voltage or if the access mode is not sup-
ported by the host software. If the card returns an indication that it
is busy, repeat this step until the card is either rejected or not busy.

3. Issue the ALL_SEND_CID command via the RSI_COMMAND register.
The RSI expects an R2 response to this command. This will result
in the card sending the 128-bit card identification (CID) register
and transitioning from ready to identification mode.

4. Issue the SET_RELATIVE_ADDR command, providing a 16-bit relative
card address (RCA) via the RSI_ARGUMENT register that will get
assigned to the card. An R1 response type is expected for this com-
mand. This will result in the card being assigned with the provided
ADSP-BF51x Blackfin Processor Hardware Reference 21-35

Programming Model
RCA, which must be used in order to select the card in the future
for data transfers. The card will then move into standby mode,
completing the identification procedure.

Single Block Write Operations
Block write operations typically consist of 512 bytes of data per block.
If the card is found to support other block lengths or the default block
length as specified in the CID register is not 512, the block length of the
RSI must be configured accordingly. The block length of the card and the
block length of the RSI must be configured for the same block size at all
times. The block length of the RSI is configured via the DATA_BLK_LGTH
field of the RSI_DATA_CONTROL register.

 It is important to pay attention as to when the data path state
machine is enabled and when data is written to the FIFO for trans-
fer to the card. Write transactions require that data be written after
the response has completed for the WRITE_BLOCK command. If the
data path state machine is enabled prior to sending the
WRITE_BLOCK command, data must not be written to the transmit
FIFO via the DMA or core until after the response has been
received as indicated by the CMD_RESP_END flag. Failure to adhere to
this procedure can result in data being written to the card in viola-
tion to the block write timing parameters, resulting in a data CRC
failure.
21-36 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
Using Core

The procedure is as follows:

1. Write the RSI_ARGUMENT register with the cards RCA. The 16-bit
RCA should be written to the upper 16-bits of the RSI_ARGUMENT
register.

2. Write the RSI_COMMAND register with the SELECT/DESELECT_CARD
command, configuring the command path state machine to expect
a short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1b.

3. Wait for the CMD_RESP_END indication within the RSI_STATUS
register and clear the status bit once detected via the RSI_STATUSCL
register.

4. Ensure that the device is not busy and no errors occurred by
verifying the response contained in RSI_RESPONSE0.

5. Write the number of bytes to be transferred to the RSI_DATA_LGTH
register. This will be 512 bytes for a single block.

6. Write the appropriate timeout value for a write operation to the
RSI_DATA_TIMER register.

7. Write the destination start address to the RSI_ARGUMENT register.
The supplied address must be aligned to a 512 byte boundary if
misaligned accesses are not enabled and the card is not a
high-capacity SD card or sector-addressable MMC card.

8. Write the WRITE_BLOCK command to the RSI_COMMAND register, con-
figuring the command path state machine to expect a short
response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.
ADSP-BF51x Blackfin Processor Hardware Reference 21-37

Programming Model
9. Wait for the CMD_RESP_END indication within the RSI_STATUS
register and clear the status bit once detected via the RSI_STATUSCL
register.

10.Enable the data path state machine by writing to the
RSI_DATA_CONTROL register with DATA_BLK_LGTH set to 9 for a
512-byte block. DATA_EN should also be set to enable the data path
state machine. All other fields of the RSI_DATA_CONTROL register
should be zero.

11.Write data to the RSI_FIFO register until the FIFO becomes full as
indicated by the TX_FIFO_FULL flag of the RSI_STATUS register.
Continue to write data to the FIFO as long as the FIFO is not full
or write data in blocks of eight 32-bit words if polling on the
TX_FIFO_STAT bit indicating the transmit FIFO is half empty. Con-
tinue until all 128 32-bit words (512 bytes) have been transferred.

12.Wait for the card to respond with the CRC token by waiting for
the DAT_BLK_END flag to be set. DAT_END will also be set at this time
if the RSI_DATA_LGTH register was set to 512 bytes in step 5.

13.Clear the DAT_BLK_END and DAT_END flags via the RSI_STATUSCL
register.

Using DMA

The procedure is as follows:

1. Write the RSI_ARGUMENT register with the cards RCA. The 16-bit
RCA should be written to the upper 16-bits of the RSI_ARGUMENT
register.

2. Write the RSI_COMMAND register with the SELECT/DESELECT_CARD
command, configuring the command path state machine to expect
a short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1b.
21-38 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
3. Wait for the CMD_RESP_END indication within the RSI_STATUS
register, and clear the status bit once detected via the RSI_STATUSCL
register.

4. Ensure that the device is not busy and no errors occurred by
verifying the response contained in RSI_RESPONSE0.

5. Configure the DMA channel assigned to the RSI controller. Write
DMAx_START_ADDR with the address of the first byte of data to be
written to the card. The DMAx_X_COUNT register should be set to
128, and the DMAx_X_MODIFY register to 4. The DMAx_CONFIG register
should be set for DMA enable (a word size of 32-bits).

6. Once the DMA channel has been configured and enabled, write
the number of bytes to be transferred to the RSI_DATA_LGTH
register. This will be 512 bytes for a single block.

7. Write the appropriate timeout value for a write operation to the
RSI_DATA_TIMER register.

8. Write the destination start address to the RSI_ARGUMENT register.
The address supplied must be aligned to a 512-byte boundary if
misaligned accesses are not enabled and the card is not a
high-capacity SD card or sector-addressable MMC card.

9. Write the WRITE_BLOCK command to RSI_COMMAND, configuring the
command path state machine to expect a short response by setting
CMD_RESP and clearing CMD_L_RESP. The response type is R1.

10.Wait for the CMD_RESP_END indication within the RSI_STATUS
register, and clear the status bit once detected via the RSI_STATUSCL
register.

11.Enable the data path state machine by writing to the
RSI_DATA_CONTROL register with DATA_BLK_LGTH set to 9 for a
512-byte block. DATA_EN and DATA_DMA_EN should also be set to
ADSP-BF51x Blackfin Processor Hardware Reference 21-39

Programming Model
enable the data path state machine and to allow the DMA control-
ler to access the transmit FIFO. All other fields of the
RSI_DATA_CONTROL register should be zero.

12.Wait for the card to respond with the CRC token by waiting for
the DAT_BLK_END flag to be set. DAT_END will also be set at this point
if the RSI_DATA_LGTH register was set to 512 bytes in step 5.

13.Clear the DAT_BLK_END and DAT_END flags via the RSI_STATUSCL
register. Also clear the DMA_DONE bit of the DMAx_IRQ_STATUS
register, if applicable.

Single Block Read Operation
Block read operations typically consist of 512 bytes of data per block.
If the card is found to support other block lengths or the default block
length as specified in the CID register is not 512, the block length of the
RSI must be configured accordingly. The block length of the card and the
block length of the RSI must be configured for the same block size at all
times. The block length of the RSI is configured via the DATA_BLK_LGTH
field of the RSI_DATA_CONTROL register.

 It is important to pay attention as to when the data path state
machine is enabled and when data is read from the receive FIFO
for data transfers from the card to the RSI. Read transactions can
occur on the RSI_DATAx signals prior to the response of the com-
mand being received. It is therefore advisable to enable the data
path state machine, and DMA controller if being used, either:

• Prior to issuing a command that involves a data read packet

• Immediately after the command has been issued but prior to pend-
ing on the CMD_RESP_END flag
21-40 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
 If the core is being used to read the receive FIFO, it is advised not
to pend on the CMD_RESP_END flag. It is possible for data to be
driven on the RSI_DATAx signals two RSI_CLK cycles after the end
bit of the command. At minimum, an additional 48 RSI_CLK cycles
will pass before the response is received, during which time the
receive buffer may potentially have received 24 bytes of data on a
4-bit bus and will be approaching the half full state. Software
should ensure that the receive buffer does not become full prior to
data being read from the receive FIFO.

Using Core

The procedure is as follows:

1. Write the RSI_ARGUMENT register with the cards RCA. The 16-bit
RCA should be written to the upper 16-bits of the RSI_ARGUMENT
register.

2. Write the RSI_COMMAND register with the SELECT/DESELECT_CARD
command, configuring the command path state machine to expect
a short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1b.

3. Wait for the CMD_RESP_END indication within the RSI_STATUS
register and clear the status bit once detected via the RSI_STATUSCL
register.

4. Ensure that the device is not busy and no errors occurred by
verifying the response contained in RSI_RESPONSE0.

5. Write the number of bytes to be transferred to the RSI_DATA_LGTH
register. This will be 512 bytes for a single block.

6. Write the appropriate timeout value for a read operation to the
RSI_DATA_TIMER register.
ADSP-BF51x Blackfin Processor Hardware Reference 21-41

Programming Model
7. Write the destination start address to the RSI_ARGUMENT register.
The address supplied must be aligned to a 512-byte boundary if
misaligned accesses are not enabled and the card is not a
high-capacity SD card or sector-addressable MMC card.

8. Enable the data path state machine by writing to the
RSI_DATA_CONTROL register with DATA_BLK_LGTH set to 9 for a
512-byte block. DATA_EN and DATA_DIR should also be set to enable
the data path state machine and indicate the transfer direction is
from card to controller. All other fields of the RSI_DATA_CONTROL
register should be zero.

9. Write the READ_SINGLE_BLOCK command to the RSI_COMMAND regis-
ter, configuring the command path state machine to expect a short
response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

10.In order to meet some timing restrictions related to block read
operations, it is advisable to not wait for the CMD_RESP_END indica-
tion within the RSI_STATUS register but instead move immediately
on the next step. This is due to the card being able to send data
before a response can completed on the RSI_CMD signal, moving
immediately onto step 11 will ensure a receive FIFO overflow does
not occur.

11.Poll the RX_FIFO_RDY bit or the RX_DAT_ZERO bit of RSI_STATUS
indicating the receive FIFO has data available, or the receive FIFO
is empty. As long as the receive FIFO is not empty, read data from
the RSI_FIFO register until all 512 bytes have been read

12.Once all bytes have been read, wait for the DAT_BLK_END flag to
indicate that the data was received correctly and passed the CRC
check. The DAT_END flag may also be set, depending on the value
written to RSI_DATA_LGTH.

13.Clear the DAT_BLK_END and DAT_END flags via the RSI_STATUSCL
register.
21-42 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
Using DMA

The procedure is as follows:

1. Write the RSI_ARGUMENT register with the cards RCA. The 16-bit
RCA should be written to the upper 16-bits of the RSI_ARGUMENT
register.

2. Write the RSI_COMMAND register with the SELECT/DESELECT_CARD
command, configuring the command path state machine to expect
a short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1b.

3. Wait for the CMD_RESP_END indication within the RSI_STATUS
register, and clear the status bit once detected via the RSI_STATUSCL
register.

4. Ensure that the device is not busy and no errors occurred by
verifying the response contained in RSI_RESPONSE0.

5. Configure the DMA channel assigned to the RSI controller. Write
DMAx_START_ADDR with the address of the first byte of where the
received data is to be stored. The DMAx_X_COUNT register should be
set to 128 and the DMAx_X_MODIFY register to 4. The DMAx_CONFIG
register should be set for DMA enable (a word size of 32-bits and
direction set to memory write).

6. Write the number of bytes to be transferred to the RSI_DATA_LGTH
register. This will be 512 bytes for a single block.

7. Write the appropriate timeout value for a read operation to the
RSI_DATA_TIMER register.

8. Write the source start address to the RSI_ARGUMENT register. The
supplied address must be aligned to a 512-byte boundary if mis-
aligned accesses are not enabled and the card is not a high-capacity
SD card or sector-addressable MMC card.
ADSP-BF51x Blackfin Processor Hardware Reference 21-43

Programming Model
9. Enable the data path state machine by writing to the
RSI_DATA_CONTROL register with DATA_BLK_LGTH set to 9 for a
512-byte block. DATA_EN, DATA_DIR, and DATA_DMA_EN should also
be set to enable the data path state machine, set the transfer direc-
tion from card to controller and allow the DMA controller access
to the receive FIFO. All other fields of the RSI_DATA_CONTROL
register should be zero.

10.Write the READ_SINGLE_BLOCK command to the RSI_COMMAND regis-
ter, configuring the command path state machine to expect a short
response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

11.Unlike core accesses, it is safe to poll on CMD_RESP_END indication
within the RSI_STATUS register and clear the status bit once
detected via the RSI_STATUSCL register. The DMA controller
enabled in step 5 will ensure any data sent to the receive FIFO
prior to the CMD_RESP_END flag being set is received correctly.

12.Wait for the DAT_BLK_END flag to indicate that the data was received
correctly and passed the CRC check. The DAT_END flag may also be
set, depending on the value written to RSI_DATA_LGTH.

13.Clear the DAT_BLK_END and DAT_END flags via the RSI_STATUSCL
register. Also clear the DMA_DONE bit of the DMAx_IRQ_STATUS
register, if applicable.

Multiple Block Write Operation
Block write operations typically consist of 512 bytes of data per block.
If the card is found to support other block lengths or the default block
length as specified in the CID register is not 512, the block length of the
RSI must be configured accordingly. The block length of the card and the
block length of the RSI must be configured for the same block size at all
times. The block length of the RSI is configured via the DATA_BLK_LGTH
field of the RSI_DATA_CTL register.
21-44 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
Using Core

The procedure is as follows:

1. Write the RSI_ARGUMENT register with the cards RCA. The 16-bit
RCA should be written to the upper 16-bits of the RSI_ARGUMENT
register.

2. Write the RSI_COMMAND register with the SELECT/DESELECT_CARD
command, configuring the command path state machine to expect
a short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1b.

3. Wait for the CMD_RESP_END indication within the RSI_STATUS
register and clear the status bit once detected via the RSI_STATUSCL
register.

4. Ensure that the device is not busy and no errors occurred by
verifying the response contained in RSI_RESPONSE0.

5. Write the number of bytes to be transferred to the RSI_DATA_LGTH
register. For example, write 4096 to write eight blocks of 512
bytes.

6. Write the appropriate timeout value for a write operation to the
RSI_DATA_TIMER register.

7. Write the destination start address to the RSI_ARGUMENT register.
The supplied address must be aligned to a 512-byte boundary if
misaligned accesses are not enabled and the card is not a
high-capacity SD card or a sector-addressable MMC card.

8. Write the WRITE_MULTIPLE_BLOCK command to RSI_COMMAND, con-
figuring the command path state machine to expect a short
response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.
ADSP-BF51x Blackfin Processor Hardware Reference 21-45

Programming Model
9. Wait for the CMD_RESP_END indication within the RSI_STATUS
register, and clear the status bit once detected via the RSI_STATUSCL
register.

10.Enable the data path state machine by writing to the
RSI_DATA_CONTROL register with DATA_BLK_LGTH set to 9 for a
512-byte block. DATA_EN should also be set to enable the data path
state machine. All other fields of the RSI_DATA_CONTROL register
should be zero.

11.Write data to the RSI_FIFO register until the FIFO becomes full as
indicated by the TX_FIFO_FULL flag of the RSI_STATUS register.
Continue to write data to the FIFO as long as the FIFO is not full
or write data in blocks of eight 32-bit words if polling on the
TX_FIFO_STAT bit indicating the transmit FIFO is half empty. Con-
tinue until all 128 32-bit words (512 bytes) have been transferred.

12.Wait for the card to respond with the CRC token by waiting for
the DAT_BLK_END flag to be set.

13.Clear the DAT_BLK_END flag.

14.Repeat steps 11 to 13 for the number of blocks to be transferred or
until DAT_END flag is set.

15.Write the RSI_COMMAND register with the STOP_TRANSMISSION com-
mand, configuring the command path state machine to expect a
short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

16.Clear the DAT_END and CMD_RESP_END flags via the RSI_STATUSCL
register.
21-46 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
Using DMA

The procedure is as follows:

1. Write the RSI_ARGUMENT register with the cards RCA. The 16-bit
RCA should be written to the upper 16-bits of the RSI_ARGUMENT
register.

2. Write the RSI_COMMAND register with the SELECT/DESELECT_CARD
command, configuring the command path state machine to expect
a short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1b.

3. Wait for the CMD_RESP_END indication within the RSI_STATUS
register, and clear the status bit once detected via the RSI_STATUSCL
register.

4. Ensure that the device is not busy and no errors occurred by
verifying the response contained in RSI_RESPONSE0.

5. Configure the DMA channel assigned to the RSI controller. Write
DMAx_START_ADDR with the address of the first byte of data to be
written to the card. The DMAx_X_COUNT register should be set to the
overall number of 32-bit words to be written; for example, write
1024 to transfer 4096 bytes. The DMAx_X_MODIFY register should be
set to 4. The DMAx_CONFIG register should be set for DMA enable
and a word size of 32-bits.

6. Once the DMA channel has been configured and enabled, write
the number of bytes to be transferred to the RSI_DATA_LGTH regis-
ter. For example, write 4096 to write eight blocks of 512 bytes.

7. Write the appropriate timeout value for a write operation to the
RSI_DATA_TIMER register.
ADSP-BF51x Blackfin Processor Hardware Reference 21-47

Programming Model
8. Write the destination start address to the RSI_ARGUMENT register.
The supplied address must be aligned to a 512-byte boundary if
misaligned accesses are not enabled and the card is not a
high-capacity SD card or sector addressable MMC card.

9. Write the WRITE_MULTIPLE_BLOCK command to the RSI_COMMAND,
configuring the command path state machine to expect a short
response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

10.Wait for the CMD_RESP_END indication within the RSI_STATUS
register, and clear the status bit once detected via the RSI_STATUSCL
register.

11.Enable the data path state machine by writing to the
RSI_DATA_CONTROL register with DATA_BLK_LGTH set to 9 for a
512-byte block. DATA_EN and DATA_DMA_EN should also be set to
enable the data path state machine and to allow the DMA control-
ler to access the transmit FIFO. All other fields of the
RSI_DATA_CONTROL register should be zero.

12.Poll for the DAT_END flag or alternatively poll for each instance of
the DAT_BLK_END flag that will be set on successful completion of
each block transfer. For a 4096 byte transfer, DAT_BLK_END will be
set eight times and should be cleared after it is detected via the
RSI_STATUSCL register.

13.Write the RSI_COMMAND register with the STOP_TRANSMISSION com-
mand, configuring the command path state machine to expect a
short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

14.Clear the DAT_END and CMD_RESP_END flag via the RSI_STATUSCL
register. Also clear the DMA_DONE bit of the DMAx_IRQ_STATUS
register, if applicable.
21-48 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
Multiple Block Read Operation
Block read operations typically consist of 512 bytes of data per block.
If the card is found to support other block lengths or the default block
length as specified in the CID register is not 512, the block length of the
RSI must be configured accordingly. The block length of the card and the
block length of the RSI must be configured for the same block size at all
times. The block length of the RSI is configured via the DATA_BLK_LGTH
field of the RSI_DATA_CONTROL register.

Using Core

The procedure is as follows:

1. Write the RSI_ARGUMENT register with the cards RCA. The 16-bit
RCA should be written to the upper 16-bits of the RSI_ARGUMENT
register.

2. Write the RSI_COMMAND register with the SELECT/DESELECT_CARD
command, configuring the command path state machine to expect
a short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1b.

3. Wait for the CMD_RESP_END indication within the RSI_STATUS
register, and clear the status bit once detected via the RSI_STATUSCL
register.

4. Ensure that the device is not busy and there are no errors occurred
by verifying the response contained in RSI_RESPONSE0.

5. Write the number of bytes to be transferred to the RSI_DATA_LGTH
register. This will be 4096 for a transfer of eight 512 byte blocks.

6. Write the appropriate timeout value for a read operation to the
RSI_DATA_TIMER register.
ADSP-BF51x Blackfin Processor Hardware Reference 21-49

Programming Model
7. Write the destination start address to the RSI_ARGUMENT register.
The supplied address must be aligned to a 512-byte boundary if
misaligned accesses are not enabled and the card is not a
high-capacity SD card or a sector-addressable MMC card.

8. Enable the data path state machine by writing to the
RSI_DATA_CONTROL register with DATA_BLK_LGTH set to 9 for a
512-byte block. DATA_EN and DATA_DIR should also be set to enable
the data path state machine and indicate the transfer direction is
from card to controller. All other fields of the RSI_DATA_CONTROL
register should be zero.

9. Write the READ_MULTIPLE_BLOCK command to the RSI_COMMAND reg-
ister, configuring the command path state machine to expect a
short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

10.In order to meet some timing restrictions related to block read
operations, it is advisable to not wait for the CMD_RESP_END indica-
tion within the RSI_STATUS register but instead move immediately
on the next step. This is due to the card being able to send data
before a response can completed on the RSI_CMD signal, moving
immediately onto step 11 will ensure a receive FIFO overflow does
not occur.

11.Poll the RX_FIFO_RDY bit or the RX_DAT_ZERO bit of RSI_STATUS
indicating the receive FIFO has data available, or the receive FIFO
is empty. As long as the receive FIFO is not empty, read data from
the RSI_FIFO register until 512 bytes have been read.

12.Once the block has been read, wait for the DAT_BLK_END flag to
indicate that the data was received correctly and passed the CRC
check.

13.Clear the DAT_BLK_END flag via RSI_STATUSCL.
21-50 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
14.Repeat steps 11 to 13 until the required number of blocks have
been read or until the DAT_END flag has been set.

15.Write the RSI_COMMAND register with the STOP_TRANSMISSION com-
mand, configuring the command path state machine to expect a
short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

16.Clear the DAT_END and CMD_RESP_END flags via the RSI_STATUSCL
register.

Using DMA

The procedure is as follows:

1. Write the RSI_ARGUMENT register with the cards RCA. The 16-bit
RCA should be written to the upper 16-bits of the RSI_ARGUMENT
register.

2. Write the RSI_COMMAND register with the SELECT/DESELECT_CARD
command, configuring the command path state machine to expect
a short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1b.

3. Wait for the CMD_RESP_END indication within the RSI_STATUS
register, and clear the status bit once detected via the RSI_STATUSCL
register.

4. Ensure that the device is not busy and that no errors occurred by
verifying the response contained in RSI_RESPONSE0.

5. Configure the DMA channel assigned to the RSI controller. Write
DMAx_START_ADDR with the address of the first byte of where the
received data is to be stored. The DMAx_X_COUNT register should be
set to the number of 32-bit words to be read, which would be 1024
ADSP-BF51x Blackfin Processor Hardware Reference 21-51

Programming Model
for a 4096 byte read transfer. The DMAx_X_MODIFY register should be
set to 4. The DMAx_CONFIG register should be set for DMA enable
(a word size of 32-bits and direction set to memory write).

6. Write the number of bytes to be transferred to the RSI_DATA_LGTH
register. This will be 4096 for eight blocks of 512 bytes.

7. Write the appropriate timeout value for a read operation to the
RSI_DATA_TIMER register.

8. Write the source start address to the RSI_ARGUMENT register. The
supplied address must be aligned to a 512-byte boundary if mis-
aligned accesses are not enabled and the card is not a high-capacity
SD card or a sector-addressable MMC card.

9. Enable the data path state machine by writing to the
RSI_DATA_CONTROL register with DATA_BLK_LGTH set to 9 for a
512-byte block. DATA_EN, DATA_DIR, and DATA_DMA_EN should also
be set to enable the data path state machine. Set the transfer direc-
tion from card to controller and allow the DMA controller access
to the receive FIFO. All other fields of the RSI_DATA_CONTROL regis-
ter should be zero.

10.Write the READ_MULTIPLE_BLOCK command to the RSI_COMMAND reg-
ister, configuring the command path state machine to expect a
short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

11.Unlike core accesses, it is safe to poll on CMD_RESP_END indication
within the RSI_STATUS register and clear the status bit once
detected via the RSI_STATUSCL register. The DMA controller,
enabled in step 5 will ensure any data sent to the receive FIFO
prior to the CMD_RESP_END flag being set is received correctly.
21-52 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
12.Poll for the DAT_END flag or alternatively poll for each instance of
the DAT_BLK_END flag that will be set on successful completion of
each block transfer. For a 4096-byte transfer, DAT_BLK_END will be
set eight times and should be cleared after it is detected via the
RSI_STATUSCL register.

13.Write the RSI_COMMAND register with the STOP_TRANSMISSION com-
mand, configuring the command path state machine to expect a
short response by setting CMD_RESP and clearing CMD_L_RESP. The
response type is R1.

14.Clear the DAT_END and CMD_RESP_END flags via the RSI_STATUSCL
register. Also clear the DMA_DONE bit of the DMAx_IRQ_STATUS
register, if applicable.

RSI Registers
Table 21-11 summarizes the RSI registers together with their function,
memory-mapped address, type, and access.

Table 21-11. RSI Module Registers

Register Name Function Address Type Access

RSI_PWR_CONTROL RSI power control register
on page 21-55

0xFFC03800 R/W 16-bit

RSI_CLK_CONTROL RSI clock control register
on page 21-56

0xFFC03804 R/W 16-bit

RSI_ARGUMENT RSI argument register
on page 21-58

0xFFC03808 R/W 32-bit

RSI_COMMAND RSI command register
on page 21-58

0xFFC0380C R/W 16-bit

RSI_RESP_CMD RSI response command reg-
ister
on page 21-60

0xFFC03810 R 16-bit
ADSP-BF51x Blackfin Processor Hardware Reference 21-53

RSI Registers
RSI_RESPONSE0
RSI_RESPONSE1
RSI_RESPONSE2
RSI_RESPONSE3

RSI response registers
on page 21-61

0xFFC03814
0xFFC03818
0xFFC0381C
0xFFC03820

R 32-bit

RSI_DATA_TIMER RSI data timer register
on page 21-62

0xFFC03824 R/W 32-bit

RSI_DATA_LGTH RSI data length register
on page 21-63

0xFFC03828 R/W 16-bit

RSI_DATA_CONTROL RSI data control register
on page 21-63

0xFFC0382C R/W 16-bit

RSI_DATA_CNT RSI data counter register
on page 21-65

0xFFC03830 R 16-bit

RSI_STATUS RSI status register
on page 21-66

0xFFC03834 R 32-bit

RSI_STATUSCL RSI status clear register
on page 21-70

0xFFC03838 W1A 16-bit

RSI_MASK0
RSI_MASK1

RSI IRQ0 mask registers
on page 21-72

0xFFC0383C
0xFFC03840

R/W 32-bit

RSI_FIFO_CNT RSI FIFO counter register
on page 21-75

0xFFC03848 R 16-bit

RSI_CEATA_CONTROL RSI CE-ATA control register
on page 21-75

0xFFC0384C R/W1A/W 16-bit

RSI_FIFO RSI data FIFO register
on page 21-76

0xFFC03880 R/W 32-bit

RSI_ESTAT RSI exception status register
on page 21-77

0xFFC038C0 R/W1C 16-bit

RSI_EMASK RSI exception mask register
on page 21-78

0xFFC038C4 R/W 16-bit

RSI_CONFIG RSI configuration register
on page 21-79

0xFFC038C8 R/W 16-bit

Table 21-11. RSI Module Registers (Continued)

Register Name Function Address Type Access
21-54 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
RSI Power Control Register (RSI_PWR_CONTROL)
The RSI_PWR_CONTROL register contains bits that control the power to the
RSI module as well as the open-drain configuration for the RSI_CMD signal.
The PWR_ON field must be set to “11” in order for the RSI to be enabled.
The RSI_CMD_OD bit, when set, results in the RSI driving the RSI_CMD sig-
nal in open-drain mode. The default mode of operation is push-pull. After
a data write, data cannot be written to this register for a five SCLK cycles.

 The RSI_CLK_EN bit in the RSI_CONFIG register must be set before
writing to other registers; except for the RSI_EMASK, RSI_STAT,
RSI_CONFIG and RSI_RD_WAIT_EN registers.

RSI_RD_WAIT_EN RSI read wait enable register
on page 21-81

0xFFC038CC R/W1A/W 16-bit

RSI_PID0
RSI_PID1
RSI_PID2
RSI_PID3

RSI peripheral identifica-
tion registers
on page 21-82

0xFFC038D0
0xFFC038D4
0xFFC038D8
0xFFC038DC

R 16-bit

Figure 21-6. RSI Power Control Register

Table 21-11. RSI Module Registers (Continued)

Register Name Function Address Type Access

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RSI Power Control Register (RSI_PWR_CONTROL)

PWR_ON

Reserved

RSI_CMD_OD

Read/Write

Reset = 0x0000

Reserved

0xFFC0 3800
ADSP-BF51x Blackfin Processor Hardware Reference 21-55

RSI Registers
RSI Clock Control Register (RSI_CLK_CONTROL)
The RSI_CLK_CONTROL register provides control functionality for the RSI
clock. RSI_CLK can be derived directly from the SCLK signal by enabling
CLKDIV_BYPASS; otherwise, RSI_CLK frequency is determined from the cur-
rent SCLK frequency and the CLKDIV field as shown in Equation 21-1.

Equation 21-1.

In order to conserve power, the RSI clock can be disabled without dis-
abling the entire RSI interface via the CLK_EN bit; additionally the
PWR_SV_EN bit, when set, results in the RSI_CLK signal only been driven
when the RSI is performing a transfer either to or from the card. In addi-
tional to clock control functionality, the data bus width of the RSI
interface is also controlled from this register.

Table 21-12. RSI_PWR_CONTROL Register

Bit Name Function Type Default

1:0 PWR_ON Power on
00 = RSI disabled
01 = Reserved
10 = Reserved
11 = RSI enabled

RO 0

5:2 Reserved Reserved RO 0

6 RSI_CMD_OD RSI_CMD open drain
0 = Disabled (push-pull)
1 = Enabled

RO 0

15:7 Reserved Reserved RO 0

RSI_CLK
SCLK

2 CLKDIV 1+
--=
21-56 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
Figure 21-7. RSI Clock Control Register

Table 21-13. RSI_CLK_CONTROL Register

Bit Name Function Type Default

7:0 CLKDIV Clock divisor
0x0 to 0xFF
(see Equation 21-1)

R/W 0

8 CLK_EN RSI_CLOCK enable
0 = Disable RSI_CLK
1 = Enable RSI_CLK

R/W 0

9 PWR_SV_EN Power save enable
0 = Disabled (RSI_CLK always
driven)
1 = Enabled (RSI_CLK only
enabled when bus is active)

R/W 0

10 CLKDIV_BYPASS Bypass clock divisor
0 = Disabled (do not bypass clock
divisor)
1 = Enabled (RSI_CLK derived
directly from SCLK)

R/W 0

12:11 BUS_MODE Data bus width
00 = 1-bit data bus
01 = 4-bit data bus
10 = 8-bit data bus
11 = Reserved

R/W 0

15:13 Reserved Reserved RO 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RSI Clock Control Register (RSI_CLK_CONTROL)

CLKDIV

Read/Write

Reset = 0x00000xFFC0 3804

BUS_MODE

PWR_SV_EN

CLK_EN

CLKDIV_BYPASS
ADSP-BF51x Blackfin Processor Hardware Reference 21-57

RSI Registers
RSI Argument Register (RSI_ARGUMENT)
The RSI_ARGUMENT register contains the 32-bit argument that is sent on
the RSI_CMD signal as part of a command message. If a command requires
an argument, the argument must first be loaded into the RSI_ARGUMENT
register prior to writing and enabling the command in the RSI_COMMAND
register.

RSI Command Register (RSI_COMMAND)
The RSI_COMMAND register is responsible for controlling the command path
state machine. The CMD_IDX field contains the index of the command to be
issued via the RSI as part of the command message. If the command
requires a response, this is indicated via CMD_RSP_EN.

The length of the response (short or long) is controlled with CMD_LRSP_EN.
The command path state machine becomes active once the CMD_EN bit is
set and is disabled if this bit is cleared.

Figure 21-8. RSI Argument Register

RSI Argument [15:0]

RSI Argument [31:16]

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0

RSI Argument Register (RSI_ARGUMENT)
Read/Write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

0xFFC0 3808 Reset = 0x000 000000 0

0 0 0 0

0

0 0
21-58 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
 It is not required to manually clear the CMD_EN bit after the com-
mand sequence has completed. The command path state machine
will automatically terminate and become IDLE once the operation
has completed.

Figure 21-9. RSI Command Register

Table 21-14. RSI_COMMAND Register

Bit Name Function Type Default

5:0 CMD_IDX Command index
0x3F - 0x00
(Command number to be issued)

R/W 0

6 CMD_RSP_EN Wait for response
0 = Disabled
1 = Enabled

R/W 0

7 CMD_LRSP_EN Long response enable
0 = Disabled (short response
expected)
1 = Enabled (long response
expected)

R/W 0

8 CMD_INT_EN Command interrupt enable
0 = Disabled (timeout after 64
RSI_CLK cycles)
1 = Enabled (disable timeout
counter and wait for interrupt)

R/W 0

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RSI Command Register (RSI_COMMAND)

CMD_IDX

Read/Write

Reset = 0x00000xFFC0 380C

CMD_INT_EN
CMD_PEND_EN
CMD_EN CMD_RSP_EN

CMD_LRSP_EN
ADSP-BF51x Blackfin Processor Hardware Reference 21-59

RSI Registers
RSI Response Command Register (RSI_RESP_CMD)
The RSI_RESP_CMD register contains the command index field of the last
response received. If the command response does not contain doe not con-
tain a command index field (as is the case with a long response), the
RESP_CMD field would typically be ignored. In this situation, it will likely
contain “0x3F”, which is the value of the reserved field of the response.

9 CMD_PEND_EN Pend enable
0 = Disabled (send command
immediately)
1 = Enabled (wait for DAT_END
before sending command)

R/W 0

10 CMD_EN Command enable
0 = Disable command path state
machine
1 = Enable command path state
machine

R/W 0

15:11 Reserved Reserved RO 0

Figure 21-10. RSI Response Command Register

Table 21-14. RSI_COMMAND Register (Continued)

Bit Name Function Type Default

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

RSI Response Command Register (RSI_RESP_CMD)

RESP_CMD

Read

Reset = 0x0000
0xFFC0 3810
21-60 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
RSI Response Registers (RSI_RESPONSEx)
The four RSI_RESPONSEx registers (RSI_RESPONSE0, RSI_RESPONSE1,
RSI_RESPONSE2, and RSI_RESPONSE3,) contain the response information
received back from a card for a given command message. The received
response may be 32 or 127 bits in length, depending on whether the
response type is short or long. The most significant bit of the response is
received first and is located in bit 31 of the RSI_RESPONSE0 register. Bit 0
of RSI_RESPONSE3 is always zero. Table 21-16 shows the RSI response reg-
isters contents for the two types of responses.

Table 21-15. RSI_RESP_CMD Register

Bit Name Function Type Default

5:0 RESP_CMD Command index of last received
response
0x3F - 0x00
(command index)

RO 0

15:6 Reserved Reserved RO 0

Figure 21-11. RSI Response Registers

RSI Response [15:0]

RSI Response [31:16]

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0

RSI Response Registers (RSI_RESPONSEx)
Read

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

RSI_RESPONSE0 = 0xFFC0 3814
RSI_RESPONSE1 = 0xFFC0 3818
RSI_RESPONSE2 = 0xFFC0 381C
RSI_RESPONSE3 = 0xFFC0 3820

Reset = 0x0000 00000 0

0 0 0 0

0

0 0
ADSP-BF51x Blackfin Processor Hardware Reference 21-61

RSI Registers
RSI Data Timer Register (RSI_DATA_TIMER)
The RSI_DATA_TIMER register contains a 32-bit value for the data timeout
period (RSI_CLK cycles). An internal counter loads the value from this reg-
ister, and starts to decrement when the data path state machine enters the
WAIT_R or the BUSY states. If the timer decrements to zero while the
data path state machine is still in either of these two states, the
DAT_TIMEOUT flag of the RSI_STATUS register is set. The RSI_DATA_TIMER
and the RSI_DATA_LGTH registers must both be written to prior to starting a
data transfer via the RSI_DATA_CONTROL register.

Table 21-16. RSI Response Registers Content

Response Register Short Response Long Response

RSI_RESPONSE0 Response bits [31:0] Response bits [127:96]

RSI_RESPONSE1 Not used Response bits [95:64]

RSI_RESPONSE2 Not used Response bits [63:32]

RSI_RESPONSE3 Not used Response bits [31:1]1

1 Bits 31:1 of the long response are stored in bits 30:0 of the RSI_RESPONSE3 register.
Bit 31 of the RSI_RESPONSE3 register is not used and is always zero.

Figure 21-12. RSI Data Timer Register

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0

RSI Data Timer Register (RSI_DATA_TIMER)
Read

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

Reset = 0x0000 00000 0

0 0 0 0

0

0 0

Data Timeout Period [31:16]

Data Timeout Period [15:0]

0xFFC0 3824
21-62 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
RSI Data Length Register (RSI_DATA_LGTH)
The RSI_DATA_LGTH register contains a 16-bit value for the number of data
bytes to be transferred before setting the DAT_END flag of the RSI_STATUS
register. The value loaded to this register is copied into the RSI_DATA_CNT
register when the data path state machine is enabled and starts the
transfer.

RSI Data Control Register (RSI_DATA_CONTROL)
The RSI_DATA_CONTROL register largely controls the data path state
machine. The state machine becomes enabled once the DATA_EN bit is set.
The direction of the transfer is determined by DATA_DIR. If the DMA
channel is to be used for the data transfer, the DATA_DMA_EN bit must be
set; otherwise, the RSI FIFO is only accessible via the core. For block
transfers, the block length must be specified via DATA_BLK_LGTH, where the
block length is 2DATA_BLK_LGTH. Two bits (CEATA_CCS_EN and CEATA_EN)
in this register configure the behavior of the command path state machine
for communication with CE-ATA devices. After a data write, data cannot
be written to this register for five SCLK cycles.

Figure 21-13. RSI Data Length Register

Table 21-17. RSI_DATA_LGTH Register

Bit Name Function Type Default

15:0 DATA_LENGTH Number of bytes to be transferred R/W 0

DATA_LENGTH

RSI Data Length Register (RSI_DATA_LGTH)
Read

0xFFC0 3828
Reset = 0x000015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 00 0 0 0 0 0
ADSP-BF51x Blackfin Processor Hardware Reference 21-63

RSI Registers
Figure 21-14. RSI Data Control Register

Table 21-18. RSI_DATA_CONTROL Register

Bit Name Function Type Default

0 DATA_EN Data enable
0 = Disabled (disables data path
state machine)
1 = Enabled (enables data path
state machine)

R/W 0

1 DATA_DIR Data transfer direction
0 = From RSI to card
1 = From card to RSI

R/W 0

2 DATA_MODE Data transfer mode
0 = Block transfer
1 = Stream transfer

R/W 0

3 DATA_DMA_EN Data DMA enable
0 = Disabled (use core to
read/write RSI_FIFO)
1 = Enabled (use DMA controller
to read/write RSI_FIFO)

R/W 0

7:4 DATA_BLK_LGTH Data block length
0x0 - 0xC

data block length (20 to 212)

R/W 0

8 CEATA_EN CE-ATA mode enable
0 = Disabled
1 = Enabled

R/W 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

RSI Data Control Register (RSI_DATA_CONTROL)

DATA_EN

Read/Write

Reset = 0x00000xFFC0 382C

CEATA_EN
CEATA_CCS_EN DATA_DIR

DATA_MODE

DATA_DMA_EN
DATA_BLK_LGTH
21-64 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
RSI Data Counter Register (RSI_DATA_CNT)
The RSI_DATA_CNT register is loaded from the RSI_DATA_LGTH register
when the data path state machine becomes enabled and moves from the
IDLE state to the WAIT_S or WAIT_R states. As the data is transferred,
the counter decrements; upon decrementing to zero, the state machine
then moves back to the IDLE state and the DAT_END flag of the RSI_STATUS
register is set.

9 CEATA_CCS_EN Command completion signal
enable
0 = Disabled
1 = Enabled (wait for command
completion signal)

R/W 0

15:10 Reserved Reserved R/W 0

Figure 21-15. RSI Data Counter Register

Table 21-19. RSI_DATA_CNT Register

Bit Name Function Type Default

15:0 DATA_COUNT Number of bytes still to be trans-
ferred

RO 0

Table 21-18. RSI_DATA_CONTROL Register (Continued)

Bit Name Function Type Default

RSI Data Counter Register (RSI_DATA_CNT)
Read

Reset = 0x0000

DATA_COUNT

0xFFC0 3830 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0
ADSP-BF51x Blackfin Processor Hardware Reference 21-65

RSI Registers
RSI Status Register (RSI_STATUS)
The RSI_STATUS register contains both static and dynamic flags that
indicate the status of the RSI. The static flags (bits [10:0]) remain asserted
and are required to be cleared by writing to the RSI_STATUSCL register.
The dynamic flags (bits [21:11]) change state, depending on the state of
the underlying logic. The transmit and receive FIFO logic controls bits
[21:12], which will vary depending on the state of the FIFO and whether
the FIFO is currently enabled for a transmit or receive operation.
21-66 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
Figure 21-16. RSI Status Register

Table 21-20. RSI_STATUS Register

Bit Name Function Type Default

0 CMD_CRC_FAIL Command response CRC fail
0 = No CRC received
1 = CRC failed on command
response

RO 0

1 DAT_CRC_FAIL Data CRC failure
0 = No CRC received on data
block
1 = CRC failed on data block

RO 0

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 1 0 1 0 1 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RX_FIFO_STAT

RSI Status Register (RSI_STATUS)

CMD_CRC_FAIL

Read

Reset = 0x0000 00000xFFC0 3834

RX_ACT
TX_FIFO_STAT DAT_CRC_FAIL

CMD_TIMEOUT

DAT_TIMEOUT
TX_UNDERRUN

TX_ACT
CMD_ACT
DAT_BLK_END
START_BIT_ERR
DAT_END

RX_OVERRUN
CMD_RESP_END
CMD_SEND

Reserved

RSI Status Register (RSI_STATUS)
Read/Write

Reset = 0x0000 00000xFFC0 3834

TX_FIFO_FULL
RX_FIFO_FILL
TX_FIFO_ZERO

RX_DAT_ZERO
TX_DAT_RDY
RX_FIFO_RDY
ADSP-BF51x Blackfin Processor Hardware Reference 21-67

RSI Registers
2 CMD_TIMEOUT Command timeout
0 = Command response not timed
out
1 = Command response timed out

RO 0

3 DAT_TIMEOUT Data timeout
0 = Data not timed out
1 = Data timed out

RO 0

4 TX_UNDERRUN Transmit FIFO underrun error
0 = No error
1 = Underrun error

RO 0

5 RX_OVERRUN Receive FIFO overrun error
0 = No error
1 = Overrun error

RO 0

6 CMD_RESP_END Command response received
0 = No response received
1 = Response received and CRC
passed

RO 0

7 CMD_SENT Command sent
0 = No command sent
1 = Command sent (no response
required)

RO 0

8 DAT_END End of data
0 = Not end of data
1 = End of data

RO 0

9 START_BIT_ERR Start bit error
0 = No start bit error
1 = Start bit error (start bit not
detected on all enabled data sig-
nals)

RO 0

10 DAT_BLK_END Data block end
0 = No data block end
1 = End of data block and CRC
passed

RO 0

Table 21-20. RSI_STATUS Register (Continued)

Bit Name Function Type Default
21-68 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
11 CMD_ACT Command active
0 = No command active
1 = Command transfer in progress

RO 0

12 TX_ACT Data transmit active
0 = No data transmit in progress
1 = Data transmit in progress

RO 0

13 RX_ACT Data receive active
0 = No data receive in progress
1 = Data receive in progress

RO 0

14 TX_FIFO_STAT Transmit FIFO watermark
0 = No FIFO watermark detected
1 = Transmit FIFO half empty

RO 0

15 RX_FIFO_STAT Receive FIFO watermark
0 = No FIFO watermark detected
1 = Receive FIFO half full

RO 0

16 TX_FIFO_FULL Transmit FIFO full
0 = Not full
1 = Transmit FIFO full

RO 0

17 RX_FIFO_FULL Receive FIFO full
0 = Not full
1 = Receive FIFO full

RO 0

18 TX_FIFO_ZERO Transmit FIFO empty
0 = Not empty
1 = Transmit FIFO empty

RO 0

19 RX_FIFO_ZERO Receive FIFO empty
0 = Not empty
1 = Receive FIFO empty

RO 0

20 TX_DAT_RDY Transmit data available
0 = No data
1 = Data available in transmit
FIFO

RO 0

Table 21-20. RSI_STATUS Register (Continued)

Bit Name Function Type Default
ADSP-BF51x Blackfin Processor Hardware Reference 21-69

RSI Registers
RSI Status Clear Register (RSI_STATUSCL)
The RSI_STATUSCL register is used to clear the static flags of the
RSI_STATUS register. Write a “1” to any of the bits to clear the
corresponding flag in the RSI_STATUS register.

21 RX_DAT_RDY Receive data available
0 = No data
1 = Data available in receive FIFO

RO 0

31:22 Reserved Reserved RO 0

Figure 21-17. RSI Status Clear Register

Table 21-21. RSI_STATUSCL Register

Bit Name Function Type Default

0 CMD_CRC_FAIL_STAT Clear command response CRC fail
0 = No effect
1 = Clear CMD_CRC_FAIL

W1A 0

1 DAT_CRC_FAIL_STAT Clear data CRC failure
0 = No effect
1 = Clear DAT_CRC_FAIL

W1A 0

Table 21-20. RSI_STATUS Register (Continued)

Bit Name Function Type Default

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

RSI Status Clear Register (RSI_STATUSCL)

CMD_CRC_FAIL_STAT

Write 1 Action

Reset = 0x00000xFFC0 3838

DAT_CRC_FAIL_STAT
CMD_TIMEOUT_STAT

DAT_TIMEOUT_STAT
TX_UNDERRUN_STAT

DAT_BLK_END_STAT
START_BIT_ERR_STAT
DAT_END_STAT

RX_OVERRUN_STAT
CMD_RESP_END_STAT
CMD_SEND_STAT
21-70 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
2 CMD_TIMEOUT_STAT Clear command timeout
0 = No effect
1 = Clear CMD_TIMEOUT

W1A 0

3 DAT_TIMEOUT_STAT Clear data timeout
0 = No effect
1 = Clear DAT_TIMEOUT

W1A 0

4 TX_UNDERRUN_STAT Clear transmit FIFO underrun
error
0 = No effect
1 = Clear TX_UNDERRUN

W1A 0

5 RX_OVERRUN_STAT Clear receive FIFO overrun error
0 = No effect
1 = Clear RX_OVERRUN

W1A 0

6 CMD_RESP_END_STAT Clear command response received
0 = No effect
1 = Clear CMD_RSEP_END

W1A 0

7 CMD_SENT_STAT Clear command sent
0 = No effect
1 = Clear CMD_SENT

W1A 0

8 DAT_END_STAT Clear end of data
0 = No effect
1 = Clear DAT_END

W1A 0

9 START_BIT_ERR_STAT Clear start bit error
0 = No effect
1 = Clear START_BIT_ERR

W1A 0

10 DAT_BLK_END_STAT Clear data block end
0 = No effect
1 = Clear DAT_BLK_END

W1A 0

15:11 Reserved Reserved W1A 0

Table 21-21. RSI_STATUSCL Register (Continued)

Bit Name Function Type Default
ADSP-BF51x Blackfin Processor Hardware Reference 21-71

RSI Registers
RSI Interrupt Mask Registers (RSI_MASKx)
The RSI_MASKx registers (RSI_MASK0 and RSI_MASK1) determine which of
the static and dynamic flags of the RSI_STATUS register generate an inter-
rupt request to the SIC via one of the two available RSI interrupts.
An interrupt is enabled by setting the corresponding bit in the RSI_MASKx
register to 1. Interrupts enabled in the RSI_MASK0 register will result in an
IRQ being sent via the IRQ0 signal of the RSI, and interrupts enabled in
the RSI_MASK1 register generate an IRQ on the IRQ0 signal of the RSI.

Figure 21-18. RSI Interrupt Mask Registers

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 1 0 1 0 1 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RX_FIFO_STAT_MASK

RSI Interrupt Mask Registers (RSI_MASKx)

CMD_CRC_FAIL_MASK

Read/Write

Reset = 0x0000 0000

RX_ACT_MASK
TX_FIFO_STAT_MASK DAT_CRC_FAIL_MASK

CMD_TIMEOUT_MASK

DAT_TIMEOUT_MASK
TX_UNDERRUN_MASK

TX_ACT_MASK
CMD_ACT_MASK
DAT_BLK_END_MASK
START_BIT_ERR_MASK
DAT_END_MASK

RX_OVERRUN_MASK
CMD_RESP_END_MASK
CMD_SENT_MASK

Reserved

RSI Interrupt Mask Registers (RSI_MASKx)
Read/Write

Reset = 0x0000 0000

TX_FIFO_FULL_MASK
RX_FIFO_FULL_MASK
TX_FIFO_ZERO_MASK

RX_DAT_ZERO_MASK
TX_DAT_RDY_MASK
RX_FIFO_RDY_MASK

MASK0 = 0xFFC0 383C
MASK1 = 0xFFC0 3840
21-72 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
Table 21-22. RSI_MASKx Registers

Bit Name Function Type Default

0 CMD_CRC_FAIL_MASK Command response CRC fail
0 = Disable interrupt
1 = Enable interrupt

R/W 0

1 DAT_CRC_FAIL_MASK Data CRC failure
0 = Disable interrupt
1 = Enable interrupt

R/W 0

2 CMD_TIMEOUT_MASK Command timeout
0 = Disable interrupt
1 = Enable interrupt

R/W 0

3 DAT_TIMEOUT_MASK Data time out
0 = Disable interrupt
1 = Enable interrupt

R/W 0

4 TX_UNDERRUN_MASK Transmit FIFO underrun
error
0 = Disable interrupt
1 = Enable interrupt

R/W 0

5 RX_OVERRUN_MASK Receive FIFO overrun error
0 = Disable interrupt
1 = Enable interrupt

R/W 0

6 CMD_RESP_END_MASK Command response received
0 = Disable interrupt
1 = Enable interrupt

R/W 0

7 CMD_SENT_MASK Command sent
0 = Disable interrupt
1 = Enable interrupt

R/W 0

8 DAT_END_MASK End of data
0 = Disable interrupt
1 = Enable interrupt

R/W 0

9 START_BIT_ERR_MASK Start bit error
0 = Disable interrupt
1 = Enable interrupt

R/W 0

10 DAT_BLK_END_MASK Data block end
0 = Disable interrupt
1 = Enable interrupt

R/W 0
ADSP-BF51x Blackfin Processor Hardware Reference 21-73

RSI Registers
11 CMD_ACT_MASK Command active
0 = Disable interrupt
1 = Enable interrupt

R/W 0

12 TX_ACT_MASK Data transmit active
0 = Disable interrupt
1 = Enable interrupt

R/W 0

13 RX_ACT_MASK Data receive active
0 = Disable interrupt
1 = Enable interrupt

R/W 0

14 TX_FIFO_STAT_MASK Transmit FIFO watermark
0 = Disable interrupt
1 = Enable interrupt

R/W 0

15 RX_FIFO_STAT_MASK Receive FIFO watermark
0 = Disable interrupt
1 = Enable interrupt

R/W 0

16 TX_FIFO_FULL_MASK Transmit FIFO full
0 = Disable interrupt
1 = Enable interrupt

R/W 0

17 RX_FIFO_FULL_MASK Receive FIFO full
0 = Disable interrupt
1 = Enable interrupt

R/W 0

18 TX_FIFO_ZER/W_MASK Transmit FIFO empty
0 = Disable interrupt
1 = Enable interrupt

R/W 0

19 RX_FIFO_ZER/W_MASK Receive FIFO empty
0 = Disable interrupt
1 = Enable interrupt

R/W 0

20 TX_DAT_RDY_MASK Transmit data available
0 = Disable interrupt
1 = Enable interrupt

R/W 0

21 RX_DATA_RDY_MASK Receive data available
0 = Disable interrupt
1 = Enable interrupt

R/W 0

31:22 Reserved Reserved R/W 0

Table 21-22. RSI_MASKx Registers (Continued)

Bit Name Function Type Default
21-74 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
RSI FIFO Counter Register (RSI_FIFO_CNT)
The RSI_FIFO_CNT register contains a value indicating the number of
32-bit words still to be read from or written to the FIFO. RSI_FIFO_CNT is
loaded from the RSI_DATA_LGTH register when the DATA_EN bit of the
RSI_DATA_CONTROL register is set. If the data length is not word-aligned
(multiple of 4), the remaining 1 to 3 bytes are regarded as a word.

RSI CE-ATA Control Register (RSI_CEATA_CONTROL)
The RSI_CEATA_CONTROL register contains bits applicable to CE-ATA
mode of operation. CEATA_TX_CCSD, when set, results in the RSI sending
the command completion signal disable sequence to the CE-ATA device
to notify the device not to send back the command completion signal.
The CEATA_TX_CCSD bit is a write-1-action bit and remains set until
actively cleared. If the bit is set prior to enabling the command path state
machine, the CCSD signal will automatically be sent after the response is
received from the CE-ATA device and the command path state machine
will return to the IDLE state.

Figure 21-19. RSI FIFO Counter Register

Table 21-23. RSI_FIFO Register

Bit Name Function Type Default

14:0 FIFO_COUNT Number of 32-bit words remain-
ing

RO 0

15 Reserved Reserved RO 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

RSI FIFO Counter Register (RSI_FIFO_CNT)

FIFO_COUNT

Read

Reset = 0x00000xFFC0 3848
ADSP-BF51x Blackfin Processor Hardware Reference 21-75

RSI Registers
RSI Data FIFO Register (RSI_FIFO)
The RSI_FIFO register provides access to the 16-entry transmit and receive
FIFO. The register is accessed as a 32-bit word.

Figure 21-20. RSI CE_ATA Control Register

Table 21-24. RSI_CEATA_CONTROL Register

Bit Name Function Type Default

0 CEATA_TX_CCSD Transmit command comple-
tion signal disable
0 = No action
1 = Send command comple-
tion signal disable sequence

R/W1A/W 0

15 Reserved Reserved - 0

Figure 21-21. RSI Data FIFO Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

RSI CE_ATA Control Register (RSI_CEATA_CONTROL)

CEATA_TX_CCSD

Read/Write 1 Action/Write

Reset = 0x00000xFFC0 384C

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0

RSI Data FIFO Register (RSI_FIFO)
Read/Write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

0xFFC0 3880 Reset = 0x0000 00000 0

0 0 0 0

0

0 0

RSI Data FIFO [31:16]

RSI Data FIFO [15:0]
21-76 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
RSI Exception Status Register (RSI_ESTAT)
The RSI_ESTAT register contains exception status bits for SDIO cards,
CE-ATA devices, and the card detection logic. These status bits can be
uses to generate an interrupt request via the IRQ0 signal by enabling the
interrupt in the RSI_EMASK register. All bits in this register are
write-1-to-clear bits. The SDIO interrupt is an interrupt generated by
SDIO cards on the RSI_DATA1 signal. The SD_CARD_DET bit is set when a
rising edge is detected on the RSI_DATA3 signal and is intended for use
with MMC devices that support card detection using this signal.
CEATA_INT_DET indicates whether the command completion response has
been received from the attached CE-ATA device, indicating that the ATA
operation has completed successfully or that ATA command termination
has occurred as the result of an error condition.

Figure 21-22. RSI Exception Status Register

Table 21-25. RSI_ESTAT Register

Bit Name Function Type Default

0 Reserved Reserved RO 0

1 SDIO_INT_DET SDIO interrupt detect
0 = No interrupt detected
1 = Interrupt detected

R/W1C 0

3:2 Reserved Reserved RO 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RSI Exception Status Register (RSI_ESTAT)

SDIO_INT_DET

Reserved

SD_CARD_DET

Read/Write 1 Clear

Reset = 0x0000

Reserved

0xFFC0 38C0

Reserved

CEATA_INT_DET
ADSP-BF51x Blackfin Processor Hardware Reference 21-77

RSI Registers
RSI Exception Mask Register (RSI_EMASK)
The RSI_EMASK register contains mask bits for the RSI_ESTAT status bits.
Writing a “1” to the RSI_EMASK bit enables the interrupt for the corre-
sponding bit in the RSI_ESTAT register.

4 SD_CARD_DET Card detect interrupt
0 = No interrupt detected
1 = Interrupt detected

R/W1C 0

5 CEATA_INT_DET Command completion signal detect
0 = No CCS detected
1 = CCS detected

R/W1C 0

15:6 Reserved Reserved RO 0

Figure 21-23. RSI Exception Mask Register

Table 21-26. RSI_EMASK Register

Bit Name Function Type Default

0 Reserved Reserved R/W 0

1 SDIO_INT_DET_MASK SDIO interrupt enable
0 = Interrupt disabled
1 = Interrupt enabled

R/W 0

Table 21-25. RSI_ESTAT Register (Continued)

Bit Name Function Type Default

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 1 0 0 0

RSI Exception Mask Register (RSI_EMASK)

SDIO_INT_DET_MASK

Reserved

SD_CARD_DET_MASK

Read/Write

Reset = 0x0010

Reserved

0xFFC0 38C4

Reserved

CEATA_INT_DET_MASK
21-78 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
RSI Configuration Register (RSI_CONFIG)
The RSI_CONFIG register controls bits that enable and disable portions of
the RSI module. The RSI_CLK_EN bit must be set in order to enable the
RSI for operation. After reset, PD_DAT3 is set. This bit is mutually exclusive
with PU_DAT3, therefore if the pull-up resistor is to be enabled on
RSI_DATA3 then PD_DAT3 should be cleared. If an external pull-down resis-
tor is used for implementing card detection on the RSI_DATA3 signal then
PU_DAT3 should not be set. The pull-up and pull-down resistors on the
RSI_DATAx signals become active only when the corresponding GPIO pins
are configured for RSI functionality via the pin multiplexing. For exam-
ple, if only the 4-bit data bus is enabled in the pin multiplexing, setting
PU_DAT will only enable the pull-up resistors on the signals that are config-
ured for RSI use. The RSI_CONFIG register also provides additional
functionality for SDIO support. To enable SDIO 4-bit mode, in addition
to setting the bus width to 4-bit via the BUS_MODE field of the
RSI_CLK_CONTROL register, SDIO4_EN should be set. The MW_EN bit, when
set, allows for SDIO interrupts to be detected outside the specified
one-cycle window and is set when interrupt support is required during
multiple block read transactions from SDIO. The RSI can also be reset
with the RSI_RST bit. Writing this bit resets the RSI module and returns
all registers to their default values.

3:2 Reserved Reserved R/W 0

4 SD_CARD_DET_MASK Card detect interrupt enable
0 = Interrupt disabled
1 = Interrupt enabled

R/W 0

5 CEATA_INT_DET_MASK Command completion signal
detect enable
0 = Interrupt disabled
1 = Interrupt enabled

R/W 0

15:6 Reserved Reserved RO 0

Table 21-26. RSI_EMASK Register (Continued)

Bit Name Function Type Default
ADSP-BF51x Blackfin Processor Hardware Reference 21-79

RSI Registers
Figure 21-24. RSI Configuration Register

Table 21-27. RSI_CONFIG Register

Bit Name Function Type Default

0 RSI_CLK_EN RSI clocks enable
0 = Disable internal RSI clocks
1 = Enable internal RSI clocks

R/W 0

1 Reserved Reserved R/W 0

2 SDIO4_EN SDIO 4-bit enable
0 = Disable SDIO 4-bit mode
1 = Enable SDIO 4-bit mode

R/W 0

3 MW_EN SDIO interrupt moving window enable
0 = Disabled
1 = Enabled (required when using SDIO multi-
ple block read operations)

R/W 0

4 RSI_RST RSI reset
0 = No action
1 = Reset the RSI

R/W 0

5 PU_DAT Pull-up enable
0 = Disable pull-up resistor on RSI_DATA7-4
and RSI_DATA2-0
1 = Enable pull-up resistor on RSI_DATA7-4
and RSI_DATA2-0

R/W 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 0 1 0 0 0 0

Reserved

RSI Configuration Register (RSI_CONFIG)

RSI_CLK_EN

Read/Write

Reset = 0x0A000xFFC0 38C8

Reserved
SDIO4_EN

MW_EN
RSI_RST
PU_DAT
PU_DAT3
PD_DAT3
21-80 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
RSI Read Wait Enable Register (RSI_RD_WAIT_EN)
The RSI_RD_WAIT_EN register contains the SDIO_RWR bit that, when set,
issues a read wait request to an SDIO card. Once software is ready to
resume the data transfer, this bit must be cleared. The functionality
applies to both 1-bit and 4-bit SDIO modes.

6 PU_DAT3 RSI_DATA3 pull-up enable
0 = Disable pull-up resistor on RSI_DATA3
1 = Enable pull-up resistor on RSI_DATA3

R/W 0

7 PD_DAT3 RSI_DATA3 pull-down enable
0 = Disable pull-down resistor on RSI_DATA3
1 = Enable pull-down resistor on RSI_DATA3
For added system flexibility, no internal
pull-down resistor is present. An external
pull-down resistor is required for card detection
capability on the RSI_DATA3 signal.

R/W 0

15:8 Reserved Reserved RO 0

Figure 21-25. RSI Read Wait Enable Register

Table 21-27. RSI_CONFIG Register (Continued)

Bit Name Function Type Default

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

RSI Read Wait Enable Register (RSI_RD_WAIT_EN)

SDIO_RWR

Read/Write 1 Action/Write

Reset = 0x00000xFFC0 38CC
ADSP-BF51x Blackfin Processor Hardware Reference 21-81

RSI Registers
RSI Peripheral ID Registers (RSI_PIDx)
The RSI_PIDx registers (RSI_PID0, RSI_PID1, RSI_PID2, RSI_PID3,
RSI_PID4, RSI_PID5, RSI_PID6, and RSI_PID7) contain a fixed value at
reset and are used to identify the peripheral revision. There are a total of
four 16-bit identification registers of which the lower 8-bits are valid. The
contents of these four registers are listed in Table 21-30.

Table 21-28. RSI_RD_WAIT_EN Register

Bit Name Function Type Default

0 SDIO_RWR RSI read wait request enable
0 = Normal operation
1 = Issue read wait request to SDIO device

R/W1A/W 0

15:1 Reserved Reserved RO 0

Figure 21-26. RSI Peripheral ID Registers

Table 21-29. RSI_PIDx Registers

Bit Name Function Type Default

7:0 RSI_PID Peripheral ID RO 0

15:8 Reserved Reserved RO 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

RSI Peripheral ID Registers (RSI_PIDx)

RSI_PID

Read

Reset = 0x0000

PID0 = 0xFFC0 38D0
PID1 = 0xFFC0 38D4
PID2 = 0xFFC0 38D8
PID3 = 0xFFC0 38DC

21-82 ADSP-BF51x Blackfin Processor Hardware Reference

Removable Storage Interface
Table 21-30. Peripheral IDs

RSI Peripheral ID Register RSI_PID Value

RSI_PID0 0x80

RSI_PID1 0x11

RSI_PID2 0x04

RSI_PID3 0x00
ADSP-BF51x Blackfin Processor Hardware Reference 21-83

RSI Registers
21-84 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
22 ETHERNET MAC

This chapter describes the Ethernet Media Access Controller (EMAC)
peripheral. Following an overview and list of key features is a description
of operation and functional modes of operation. The chapter concludes
with a programming model, consolidated register definitions, and pro-
gramming examples.

Specific Information for the ADSP-BF51x
For details regarding the EMAC for the ADSP-BF51x product, refer to
ADSP-BF512/BF514/BF516/BF518(F) Embedded Processor Data Sheet.

For EMAC DMA channel assignments, refer to Table 6-7 on page 6-103
in Chapter 6, “Direct Memory Access”.

For EMAC interrupt vector assignments, refer to Table 5-3 on page 5-20
in Chapter 5, “System Interrupts”.

To determine how the EMAC is multiplexed with other functional pins,
refer to Table 9-2 on page 9-5 through Table 9-4 on page 9-7 in
Chapter 9, “General-Purpose Ports”.

For a list of MMR addresses for the EMAC, refer to Appendix A, “System
MMR Assignments”.
ADSP-BF51x Blackfin Processor Hardware Reference 22-1

Overview
EMAC behavior for the ADSP-BF51x that differs from the general infor-
mation in this chapter can be found at the end of this chapter in the
section “Unique Information for the ADSP-BF51x Processor” on
page 22-127.

Overview
The Ethernet MAC provides a 10/100M bit/s Ethernet interface, compli-
ant to IEEE Std. 802.3-2002, between an MII (Media Independent
Interface) and the Blackfin peripheral subsystem.

Features
The Ethernet MAC includes these features:

• Independent DMA-driven RX and TX channels

• MII/RMII interface

• 10M bit/s and 100M bit/s operation (full or half duplex)

• VLAN support (full or half duplex)

• Automatic network monitoring statistics

• Flexible address filtering

• Flexible event detection for interrupt handling

• Validation of IP and TCP (payload) checksum

• Remote-wakeup Ethernet frames

• Network-aware system power management

The MAC is fully compliant to IEEE Std. 802.3-2002.
22-2 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Interface Overview
Figure 22-1 illustrates the overall architecture of the Ethernet controller.
The central MAC block implements the Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) protocol for both half-duplex and
full-duplex modes.

The System Interface (SIF) block contains FIFOs for RX and TX data and
handles the synchronization of data between the MAC RX and TX data
streams and the Blackfin DMA controller.

Figure 22-1. Ethernet MAC Block Diagram

EXTERNAL PHY

DMA

PAB

RX FIFO

DAB

MII/RMII PADSMII MANAGEMENT
(MIM)

POWER MANAGEMENT
BLOCK (PMT)

ADDRESS CHECK
BLOCK (ACH)

MAC MANAGEMENT
COUNTERS (MMC)

REGISTERS BLOCK
(SIF_REG)

B

SYSTEM INTERFACE
BLOCK (SIF)

MAC BLOCK

TX FIFO

MDC
MDIO

FLOW CONTROL

PHYINT

CORE
ADSP-BF51x Blackfin Processor Hardware Reference 22-3

Interface Overview
The System Interface Registers (SIF_REG) block is an interface from the
Blackfin peripheral access bus to the internal registers in the MAC. This
block also generates the Ethernet event interrupt, and supports the PHYINT
pin by which the PHY can notify the Blackfin processor when the PHY
detects changes to the link status, such as auto-negotiation or duplex
mode change.

The MAC Management Counters (MMC) block is an extended set of reg-
isters that collect various statistics compliant with IEEE 802.3 definitions
regarding the operation of the interface. They are updated for each new
transmitted or received frame.

The Power Management (PMT) block adds support for wakeup frames
and magic packet technology that allows waking up the processor from
low power operating modes. Further details regarding these low-power
operating modes and voltage regulator wakeup functionality can be found
in Chapter 8, “Dynamic Power Management”.

The Address Check (ACH) block checks the destination address field of
all incoming packets. Based on the type of address filtering selected, this
indicates the result of the address checking to the MAC block.

The MII Management (MIM) block handles all transactions to the control
and status registers on the external PHY.

External Interface
The following sections describe the external interface.

Clocking

The Ethernet MAC is clocked internally from SCLK on the processor. A
buffered version of CLKIN may be used to drive the external PHY via the
CLKBUF pin. See Figure 22-2.
22-4 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
The CLKBUF signal is not generated by a PLL and supports jitter and stabil-
ity functions comparable to XTAL. The CLKBUF pin is enabled by the
CLKBUFOE bit in the VR_CTL register. See Chapter 8, “Dynamic Power Man-
agement” for more information.

A 25 MHz clock (whether driven with the CLKBUF pin or an external crys-
tal) should be used with an MII PHY. A 50 MHz clock source is required
to drive an RMII PHY.

Pins

MII and RMII peripherals are multiplexed into the general-purpose ports.
To use MII and RMII operations, set the appropriate I/O Port registers
accordingly. See Chapter 9, “General-Purpose Ports” for more
information.

 IEEE802.3-2002, section two, clause 22.2.1.6, characterizes the
MII TX_ER pin as an option useful only for certain applications (for
example, repeater applications). Therefore, the TX_ER pin is not
present in this design.

Figure 22-2. Clock Function Diagram

PLL

CORE

I/O
PORTS

MII / RMII

ETHERNET MAC

B

BUFFER

XTAL

CLKIN

CLKBUF

SCLK

PHY

RXCLK

TXCLK

10/100
ADSP-BF51x Blackfin Processor Hardware Reference 22-5

Interface Overview
Table 22-1 shows the pins for the MAC.

Table 22-1. Ethernet MAC Pins

MII
Signal
Name

MII
Input/
Output

RMII
Multiplexed
Name

RMII
Input/
Output

Description

MII CRS I RMII CRS_DV I Ethernet MII carrier sense/RMII carrier sense
and receive data valid

MII RXER I RMII RXER I Ethernet MII or RMII receive error

MDIO I/O MDIO I/O Ethernet management channel serial data

MII TXEN O RMII TXEN O Ethernet MII or RMII transmit enable

MII
TXCLK

I RMII
REFCLK

I Ethernet MII transmit
clock/RMII reference clock

MII TXD0 O RMII TXD0 O Ethernet MII or RMII transmit D0

MII RXD0 I RMII RXD0 I Ethernet MII or RMII receive D0

MII TXD1 O RMII TXD1 O Ethernet MII or RMII transmit D1

MII RXD1 I RMII RXD1 I Ethernet MII or RMII receive D1

MII TXD2 O Ethernet MII transmit D2

MII RXD2 I Ethernet MII receive D2

MII TXD3 O Ethernet MII transmit D3

MII RXD3 I Ethernet MII receive D3

MII RXCLK I Ethernet MII receive clock

MII RXDV I Ethernet MII receive data valid

MII COL I Ethernet collision

MDC O MDC O Ethernet management channel clock

MII PHYINT I/O RMII MDINT I Ethernet MII PHY interrupt/RMII manage-
ment data interrupt
22-6 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Internal Interface
Communication between the MAC and the Blackfin processor peripheral
subsystem takes place over the peripheral bus and the DMA Access Bus
(DAB). The peripheral bus is used by the Blackfin processor core to con-
figure and monitor the peripheral’s control and status registers. All data
transfers to and from the peripheral are handled by the Blackfin DMA
controller and take place via the DAB.

Power Management

The processor provides power management states which allow program-
ming the MAC to wake the processor upon reception of specific Ethernet
frames and/or upon selected events detected by the PHY. The MAC itself
requires no additional power management intervention; its internal clocks
power down automatically when not required. The MAC clocks run in
any of these conditions (provided the processor is in the sleep, active, or
full on state):

1. Either the receiver or transmitter is enabled (RE or TE = 1)

2. During an MII Management transfer (on MDC/MDIO)

3. During a core access to an MAC control/status register

4. While PHY interrupts are enabled in the MAC (PHYIE in the
EMAC_SYSCTL register is set)

Description of Operation
The following sections describe the operation of the MAC.
ADSP-BF51x Blackfin Processor Hardware Reference 22-7

Description of Operation
Protocol
The Ethernet MAC complies with IEEE Std. 802.3-2002. The MII man-
agement interface is described below.

MII Management Interface

The IEEE 802.3 MII management interface, also known as the MDIO
station management interface, allows the Blackfin processor to monitor
and control one or more external Ethernet physical-layer transceivers
(PHYs). The MII management interface physically consists of a 2-wire
serial connection composed of the MDC (management data clock) output
signal and the MDIO (management data input/output) bidirectional data
signal. See Figure 22-3 and Figure 22-4.

The MII management logical interface specifies:

• A set of 16-bit device control/status registers within PHYs, includ-
ing both required registers with standardized bit definitions as well
as optional vendor-specified registers

• A 5-bit device addressing scheme which allows the MAC to select
one of up to 32 externally-connected PHY devices

• A 5-bit register addressing scheme for selecting the target register
within the addressed device

• A transfer frame protocol for 16-bit read and write accesses to PHY
registers via the MDC and MDIO signals under control of the MAC
(PHY devices may not directly initiate MDIO transfers.)

Standard PHY control and status registers provide device capability status
bits (for example, auto-negotiation, duplex modes, 10/100 speeds and
protocols), device status bits (for example, auto-negotiation complete, link
status, remote fault), and device control bits (for example, reset, speed
selection, loopback, and auto-negotiation start).
22-8 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
The transfer frame protocol defines a MDC clock at a nominal period of
400ns, and an MDIO frame up to 64 bits in length. The MDIO frame
consists of an optional 32-bit preamble driven by the MAC, 14 control
bits driven by the MAC including the opcode and addresses, a 2-bit turn-
around sequence, and a 16-bit data transfer driven either by the MAC or
the PHY. Note that various PHYs support optional features such as
reduced preamble or increased clock rate.

The features supported by the PHY may be determined at powerup by a
MDIO read access (at default rates) of device capabilities in PHY status
registers.

Figure 22-3. Station Management Read

Figure 22-4. Station Management Write

IDLE

MDC

TAREGADIDLE ST PHYAD DATAPREAMBLE OP

MDIO

DRIVER MAC PHY

D D D D D D D D D D D D D D D D

15 0

Z

A A A A A R R R R R

4 3 2 1 0 4 3 2 1 0

IDLE

MDC

TAREGADIDLE ST PHYAD DATAPREAMBLE OP

MDIO

DRIVER MAC

D D D D D D D D D D D D D D D D

15 0

A A A A A R R R R R

4 3 2 1 0 4 3 2 1 0

1

ADSP-BF51x Blackfin Processor Hardware Reference 22-9

Description of Operation
Operation
The following sections describe the detailed operation of the Ethernet
MAC peripheral.

MII Management Interface Operation

The MAC peripheral performs MDIO-protocol transfers in response to
register read/write commands issued by the Blackfin processor. Three reg-
isters are provided to support MII management transfers:

• The EMAC_SYSCTL register contains the MDCDIV field which specifies
the frequency of the MDC clock output in a ratio to the SCLK fre-
quency, and must be initialized before any transfers.

• The EMAC_STADAT register holds the 16-bit data for read or write
transfers.

• The EMAC_STAADD register supports several functions.

• It commands the access—writes to it may initiate station
management transfers, provided the STABUSY bit is set and
provided that the interface is not already busy.

• It selects the addressed device, register, and direction of the
access.

• It provides mode controls for MDIO preamble generation
and station management transfer done interrupt.

• It provides the STABUSY status bit indicating whether the
interface is still busy performing a prior transfer.

As these serial accesses may require significant time (25.6 s, or several
thousand processor clock cycles at default rates), the Blackfin MAC pro-
vides an end-of-transfer interrupt to allow the processor to perform other
22-10 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
functions while station management transfers are in progress.
Alternatively, the processor may determine the status of the transfer in
progress by reading the STABUSY bit in the EMAC_STAADD register.

Receive DMA Operation

Data flow between the MAC and the Blackfin peripheral subsystem takes
place via bidirectional descriptor based DMA. The element size for any
DMA transfer to and from the Ethernet MAC is restricted to 32 bits. In
the receive case, a queue or ring of DMA descriptor pairs are normally
used, as illustrated in Figure 22-5. In the figure, data descriptors are
labeled with an “A” and status descriptors are labeled with a “B.”

Figure 22-5. Ethernet MAC Receive DMA Operation

XXXX

ACTIVE DMA DESCRIPTOR ACTIVE QUEUE END

DONE NOT DONE

1A

DATA

DESCRIPTORS:

ACTIVE QUEUE HEAD

1B 2A 2B 3A 3B
END

0000 0000

NOT DONE

DATA DATA

STATUS BUFFERS:

DATA BUFFERS:
ADSP-BF51x Blackfin Processor Hardware Reference 22-11

Description of Operation
Receive DMA works with a queue or ring of DMA descriptor pairs struc-
tured as data and status.

• Data – The first descriptor in each pair points to a data buffer that
is at least 1556 (0x614) bytes long and is 32-bit aligned. The
descriptor XCOUNT field should be set to 0, because the MAC con-
trols the actual buffer length.

• Status – The second descriptor points to a status buffer of either 4
or 8 bytes. The descriptor XCOUNT field should be set to 0, because
the MAC controls the actual buffer length. After receiving and
accepting any RX frame, the MAC writes a status word and option-
ally two IP checksum words to this status buffer. The RXCKS bit in
the EMAC_SYSCTL register controls the generation of the two check-
sum words.

Status words written by the MAC after frame reception have the
same format as the EMAC_RX_STAT register, and always have the
receive complete bit set to 1. If the driver software initializes the
length/status words to 0, it can reliably interrogate (poll) an RX
frame’s length/status word to determine if the DMA transfer of the
data buffer is complete. Alternatively, status descriptors may be
individually enabled to signal an interrupt when frame reception is
complete.

The MAC and DMA operate on the active queue in this manner:

• Start – The queue is activated by initializing the DMA next
descriptor pointer and then writing the DMA_CONFIG register. Mean-
while, the MAC listens to the MII, looking for a frame that passes
its address filter.

• Data – When a matching frame is seen, the MAC transfers the
frame data into the data buffer. The MAC does not initiate the
DMA transfer until either the destination address filtering is com-
plete, or the frame ends (if a runt frame).
22-12 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
• End of frame – At the end of the frame, the MAC issues a finish
command to the DMA controller, causing it to advance to the next
(status) descriptor.

• Status – The MAC then transfers the frame status into the status
buffer. The frame status structure contains the length of the frame
data. The MAC then issues another finish command to complete
the status DMA buffer.

• Interrupt – Upon completion, the DMA may issue an interrupt, if
the descriptor was programmed to do so. The DMA then advances
to the next (data) descriptor, if any.

Frame Reception and Filtering

Frame data written to memory normally includes the Ethernet header
(destination MAC address, source MAC address, and length/type field),
the Ethernet payload, and the Frame Check Sequence (FCS) checksum,
but not the preamble. If the RXDWA bit in EMAC_SYSCTL is 1, then the first
16-bit word is all-zero to pad the frame. The data written includes all
complete bytes for which the received data valid (ERxDV) pin on the MII
interface was asserted after but not including the start of frame delimiter
(SFD) nibble (1011).The preamble and any other nibbles prior to the
SFD are also not included.

The MAC applies two filtering mechanisms to received frames: the
address filter and the frame filter. The address filter considers only the
destination MAC address and provides control over the reception of uni-
cast, multicast, and broadcast addresses. The frame filter considers the
entire frame and provides control over reception of frames with errors and
of MAC control frames.
ADSP-BF51x Blackfin Processor Hardware Reference 22-13

Description of Operation
The address filter is evaluated in the following sequence. Note that this
sequence is in the same order as the related bits in the EMAC_OPMODE
register, from LSB to MSB: HU, HM, PAM, PR, IFE, and DBF. The first few fil-
ter decisions are additive, while the last two are subtractive.

1. Initially, the address filter is true if the frame’s MAC destination
address (DA) is either the broadcast address (all 1s) or exactly
matches the 48-bit station MAC address in the EMAC_ADDRHI and
EMAC_ADDRLO registers.

2. HU (hash unicast) – If the HU bit is 1 and the DA is a unicast
address which matches the hash table, the address filter is set to
true.

3. HM (hash multicast) – If the HM bit is 1 and if the DA is a multi-
cast address which matches the hash table, the address filter is set to
true.

4. PAM (pass all multicast) – If the PAM bit is 1 and the DA is any
multicast address, the address filter is set to true.

5. PR (promiscuous) – If the PR bit is 1, the address filter is set to true
regardless of the frame DA.

6. FLCE (flow control enable) – If the FLCE bit in the EMAC_FLC regis-
ter is 1, and if the DA is an exact match to either the global
multicast pause address or to the station MAC address, the address
filter is set to true.

7. IFE (inverse filter) – If the IFE bit is 1 and the DA exactly matches
the 48-bit station MAC address, the address filter is set to false.

8. DBF (disable broadcast frames) – If the DBF bit is 1 and the DA is
the broadcast address, the address filter is set to false.

The hash table address filtering is configured with the EMAC_HASHLO and
EMAC_HASHHI registers described on page 22-69.
22-14 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
The frame filter is evaluated in the following sequence. Note that the
frame filter is updated as each byte of data is received. The frame filter can
change from true to false during a frame, for example, upon DMA over-
run, but can never change from false back to true.

1. Initially, the frame filter is set to true if the address filter is true,
otherwise the frame filter is set to false.

2. PCF (pass control frames) – If the PCF bit is 0 and the frame is any
valid supported MAC control frame (destination address is either
the MAC address or the global multicast pause address; and the
length/type field = 88-08, opcode = 0001, length = 64 bytes, and
receiveOK = 1), then the frame filter is set to false.

3. PBF (pass bad frames) – If the PBF bit is 0 and the frame has any
type of error except a frame fragment error, the frame filter is set to
false. This rejects any frame for which any of these status bits are
set: frame too long, alignment error, frame-CRC error, length
error, or unsupported control frame. The frame filter does not
reject frames on the basis of the out of range length field status bit.
Note that this step may reject MAC control frames passed by PCF.

4. PSF (pass short frames) – If the PSF bit is 0 and the frame has a
frame fragment error (frame contains less than 64 bytes), the frame
filter is set to false. This step may reject frames which were passed
by PCF or PBF.

5. DMA RX overrun – If the RX DMA FIFO overflows, the frame
filter is set to false. If the FIFO overflows at a point where it con-
tains parts of two frames, that is, the last data and status of frame A
and the beginning data of frame B, then frame B is rejected by the
frame filter and the MAC continues to try to deliver frame A’s data
and status.
ADSP-BF51x Blackfin Processor Hardware Reference 22-15

Description of Operation
Discarded Frames

Frames that fail the address filter are discarded immediately after the desti-
nation address is received, and neither their data nor their status values are
written to memory via DMA. Frames that pass the address filter but fail
the frame filter before 32 bytes are received are also discarded immedi-
ately. Once at least 32 bytes of a frame have been received, and if the
address and frame filters both pass, the MAC begins to write the frame to
memory via DMA RX.

Aborted Frames

Frames that fail the frame filter after 32 bytes have been received are
aborted. The MAC issues a restart DMA control command, causing the
current RX data DMA descriptor to be reinitialized with its starting
address and counts. The aborted frame’s status is not written to memory.
Instead, the current DMA data and status buffers are recycled for the next
RX frame. For all frames that pass both the address and frame filters, both
data and status are written to memory via DMA.

Control Frames

If the FLCE (flow control enable) bit is set, MAC control frames (with the
control type 88-08) whose DAs match either the station MAC address
(with inverse filtering disabled) or the global pause multicast address will
pass the address filter, and thus may also have status of receiveOK. If the
frame also is a supported pause control frame (with length = 64 bytes, and
opcode = pause = 00-01, and in full-duplex mode), then the frame filter
condition is determined by the PCF (pass control frames) bit. If the frame
is not also a supported pause control frame, then it is in error, and its
frame filter condition depends on the PBF (pass bad frames) bit.
22-16 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Examples

• To perform standard IEEE-802.3 filtering, clear the EMAC_OPMODE
register bits HU, PR, IFE, DBF, PBF, and PSF. With these selections,
the Ethernet MAC accepts error-free broadcast frames and only
those error-free unicast frames that exactly match the station MAC
address. Set PAM to accept all multicast addresses, or set HM and pro-
gram the EMAC_HASHHI and EMAC_HASHLO registers to accept only a
subset of multicast addresses.

• To accept all addresses, set PR and clear IFE and DBF in the
EMAC_OPMODE register.

• To accept a set of several unicast addresses, set the HU bit and set
the multicast hash table register bits which correspond to the
desired addresses. Note that there is one set of hash table registers
that apply to both unicast and multicast addresses, as selected by
the HU or HM bits.

• To reject all addresses, set IFE and DBF, and clear HU, HM, PAM, and
PR in the EMAC_OPMODE register.

RX Automatic Pad Stripping

If the ASTP bit in the EMAC_OPMODE register is set, the pad bytes and FCS are
stripped from any IEEE-type frame which was lengthened (padded) to
reach the minimum Ethernet frame length of 64 bytes. This applies to
frames where the Ethernet length/type field is less than 46 bytes, since the
Ethernet header and FCS add 18 bytes. When pad stripping occurs, only
the first Length/Type + 14 bytes are written to memory via DMA, and the
frame length reported in the EMAC_RX_STAT register and in the RX status
DMA buffer will be Length/Type + 14 rather than the actual number of
received bytes.

Pad bytes are never stripped from typed Ethernet frames. Typed Ethernet
frames are frames with a length/type field that takes the type interpreta-
tion because it is greater than or equal to 0x600 (1536).
ADSP-BF51x Blackfin Processor Hardware Reference 22-17

Description of Operation
RX DMA Data Alignment

If the RXDWA bit in the EMAC_SYSCTL register is clear, the MAC delivers the
frame data via DMA to a 32-bit-aligned buffer in memory, including the
Ethernet header and FCS. Because the Ethernet header is an odd number
of 16-bit words long, this results in the frame payload being odd-aligned,
which may be inconvenient for later processing.

If the RXDWA bit is set, however, the MAC prefixes one 16-bit pad word to
the frame data with value 0x0000, resulting in a frame payload aligned on
an even 16-bit boundary. See Figure 22-6.

RX DMA Buffer Structure

The length of each RX DMA buffer must be at least 1556 (0x614) bytes.
This is the maximum number of bytes that the MAC can deliver by DMA
on any receive frame. Frames longer than the 1556-byte hardware limit
are truncated by the MAC. The 1556-byte hardware limit accommodates

Figure 22-6. RX DMA Data Alignment

1 0

DATA BYTE D

EVEN WORD ALIGNMENT, RXDWA = 0

DATA BYTE C DATA BYTE B DATA BYTE A

3 2

DATA BYTE H DATA BYTE G DATA BYTE F DATA BYTE E

5 4

DATA BYTE L DATA BYTE K DATA BYTE J DATA BYTE I

1 0

DATA BYTE B

ODD WORD ALIGNMENT, RXDWA = 1

DATA BYTE A PAD BYTE PAD BYTE

3 2

DATA BYTE F DATA BYTE E DATA BYTE D DATA BYTE C

5 4

DATA BYTE J DATA BYTE I DATA BYTE H DATA BYTE G
22-18 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
the longest legal Ethernet frames (1518 bytes for untagged frames, or
1522 bytes for tagged 802.1Q frames) plus a small margin to accommo-
date future standards extensions.

The MAC does not support RX DMA data buffers composed of more
than one descriptor.

RX Frame Status Buffer

The RX frame status buffer is always an integer multiple of 32-bit words
in length (either 1 or 2) and must always be aligned on a 32-bit boundary.
The RX frame status buffer always contains a frame status word, and may
also contain two 16-bit IP checksum words if the RXCKS bit in the
EMAC_SYSCTL register is set.

To synchronize RX DMA and software, the RX_COMP semaphore bit may
be used in the RX frame status word. This word is always the last word
written via DMA in both status buffer formats, so a transition from 0 to 1
as seen by the processor always means that both the RX data and the status
buffers are entirely valid.

Table 22-2 and Table 22-3 describe each of the status buffer formats.

Table 22-2. Receive Status DMA Buffer Format (Without IP Checksum)

Offset Size Description

0 32 RX frame status (Same format as the EMAC_RX_STAT register)

Table 22-3. Receive Status DMA Buffer Format (With IP
Checksum)

Offset Size Description

0 16 IP header checksum

2 16 IP payload checksum

4 32 RX frame status (Same format as the EMAC_RX_STAT register)
ADSP-BF51x Blackfin Processor Hardware Reference 22-19

Description of Operation
RX Frame Status Classification

The RX frame status buffer and the EMAC_RX_STAT register provide a con-
venient classification of each received frame, representing the IEEE-802.3
“receive status” code. The bit layout in the RX frame status buffer is iden-
tical to that in the EMAC_RX_STAT register, and is arranged so that exactly
one status bit is asserted for each of the possible receive status codes
defined in IEEE-802.3 section 4.3.2. Note in the case of a frame that does
not pass the frame filter, neither the frame data nor the status are delivered
by DMA into the RX frame status buffer.

The priority order for determination of the receive status code is shown in
Table 22-4.

Table 22-4. RX Receive Status Priority

Priority Bit Bit Name IEEE receive status Condition

1 20 DMA overrun Undefined The frame was not completely delivered
by DMA

2 18 Frame fragment Not received The frame was less than the minimum 64
bytes and was discarded without reporting
any other error

3 19 Address filter
failed

Not received The frame did not pass the address filter

4 14 Frame too long Frame too long The frame size was more than the maxi-
mum allowable frame size (1518, 1522,
or 1538 bytes for normal, VLAN1, or
VLAN2 frames)

5 15 Alignment error Alignment error The frame did not contain an integer
number of bytes, and also failed the CRC
check

6 16 Frame CRC error Frame check error The frame failed CRC validation, and/or
RX_ER was asserted during reception of
the frame
22-20 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
RX IP Frame Checksum Calculation

The MAC calculates TCP/IP-style “raw” checksums of two useful seg-
ments of the frame data. Checksum calculation is enabled when the RXCKS
bit is set to 1 in the EMAC_SYSCTL register.

The two checksum segments correspond to the typical position of the IP
header and of the IP payload (see Table 22-5). The checksums are com-
puted as a 16-bit one’s-complement sum of the selected big-endian data
words. In each summand, the most significant byte is stored in byte[1]
and the least significant byte is stored in byte[2], counting bytes starting at
1. If an odd number of data bytes is to be summed, the final value is stored
in the most significant byte and zero is stored in the least significant byte.
One’s complement addition can be done in ordinary unsigned integer
arithmetic by adding the two numbers, followed by adding the carry-out
bit value in at the least significant bit. This gives one’s-complement
addition the property of being endian invariant, which makes it possible
for software running on Blackfin’s little-endian architecture to adjust the
sums without explicit byte swapping. See also RFC 1624 and its
references.

The checksum calculation hardware provides an enormous boost to
TCP/IP throughput and bandwidth, but requires checksum corrections in
software to properly adapt to the details of each packet protocol. For
example, TCP packets require the payload checksum to include a TCP
pseudo-header made up of certain fields of the IP header. These fields

7 17 Length error Length error The frame’s length/type field was < 0x600
but did not match the actual length of the
data received

8 13 Receive OK receiveOK The frame had none of the above condi-
tions

Table 22-4. RX Receive Status Priority (Continued)

Priority Bit Bit Name IEEE receive status Condition
ADSP-BF51x Blackfin Processor Hardware Reference 22-21

Description of Operation
should be added to the “raw” hardware-generated checksum. Similarly,
the Ethernet FCS at the end of the frame should be deducted. These
adjustments must be made before the IP checksum can be validated.

RX DMA Direction Errors

The RX DMA channel halts immediately after any transfer that sets the
RXDMAERR bit in the EMAC_SYSTAT register. This bit is set if an RX data or
RX status DMA request is granted by the RX DMA channel, but the
DMA channel is programmed to transfer in the wrong (memory-read)
direction. This could indicate a software problem in managing the RX
DMA descriptor queue.

In order to facilitate software debugging, the RX DMA channel guarantees
that the last transfer to occur is the one with the direction error. On an
error, usually the current frame is corrupted. All later frames are ignored
until the error is cleared. Since the MAC may have lost synchronization
with the DMA descriptor queue, the RX channel must be disabled in
order to clear the error condition.

To clear the error and resume operation, perform these steps:

1. Disable the MAC RX channel
(clear the RE bit in the EMAC_OPCODE register).

2. Disable the DMA channel.

Table 22-5. IP Checksum Byte Ranges

Byte
Number

Description Included in
IP Header
Checksum?

Included in
IP Payload
Checksum?

1–14 Standard Ethernet header: dest address, src address,
length/type

No No

15–34 Typical IP header, without IP header options Yes No

35–N IP payload, including Ethernet FCS No Yes
22-22 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
3. Clear the RXDMAERR bit in the EMAC_SYSSTAT register by writing 1 to
it.

4. Reconfigure the MAC and the DMA engine as if starting from
scratch.

5. Re-enable the DMA channel.

6. Re-enable the MAC RX channel.

Transmit DMA Operation

Figure 22-7 shows the transmit DMA operation.

Transmit DMA normally works with a queue or ring of DMA descriptor
pairs.

• Data – The first descriptor in each pair points to a memory-read
data buffer aligned on a 32-bit boundary. The first 16-bit word
contains the length in bytes of the frame data, not including the
length word or FCS. The descriptor XCOUNT field should be set to 0.

Figure 22-7. Ethernet MAC Transmit DMA Operation

XXXX

ACTIVE DMA DESCRIPTOR ACTIVE QUEUE END

DONE NOT DONE

1A

DATA

DESCRIPTORS:

ACTIVE QUEUE HEAD

1B 2A 2B 3A 3B
END

0000 0000

NOT DONE

DATA DATA

STATUS BUFFERS:

DATA BUFFERS: LENGTHLENGTH LENGTH
ADSP-BF51x Blackfin Processor Hardware Reference 22-23

Description of Operation
• Status – The second descriptor points to a 4-byte status buffer
which is written via DMA at the end of the frame. The descriptor
XCOUNT field should be set to 0, because the MAC controls the ter-
mination of the status buffer DMA. The driver software should
initialize the status words to zero in advance.

Status words written by the MAC after frame reception have the
same format as the EMAC_TX_STAT register and always have the
transmit complete bit set to 1. Software can therefore interrogate
(poll) a TX frame’s status word to determine if the transmission of
its frame data is complete. Alternatively, status descriptors can be
individually enabled to signal an interrupt when frame transmis-
sion is complete.

The MAC and DMA operate on the active queue in this manner:

• Start – The queue is activated by initializing the DMA
NEXT_DESC_PTR register and then writing the DMA_CONFIG register.

• Data – The MAC transfers the frame length word and the first
bytes of frame data into its TX data FIFO via DMA. When 32
bytes of data are present in the FIFO, and if the medium is unoc-
cupied, the MAC begins transmission on the MII.

• Collisions – The MAC transfers data from memory via DMA into
its FIFO, and then from the FIFO over the MII to the PHY. Colli-
sions (in half-duplex mode) can occur at any time in the first 64
bytes of MII transmission, however, the MAC does not discard any
of the data in its 96-byte TX FIFO until the first 64 bytes have
been successfully transmitted. If a collision occurs during this colli-
sion window, and if retry is enabled (DRTY = 0), the MAC rewinds
its FIFO pointer back to the start of the frame data and begins
transmission again. No redundant DMA transfers are performed in
such collisions. The MAC makes up to 16 attempts to transmit the
frame in response to collisions (if not disabled by DRTY), each time
backing off and waiting. After the 16th attempt, the frame is
22-24 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
aborted—the MAC terminates data transmission by sending a fin-
ish command to the DMA controller, then sending frame status,
and then proceeding to the next frame data.

• Late collisions – After the collision window is passed, the MAC
allows DMA into the FIFO to resume and to overwrite older data.
If a collision occurs after the 96th byte has been transferred into
the FIFO by DMA (that is, after the FIFO has “wrapped around”),
then the MAC issues a restart command to the DMA controller to
repeat the DMA of the current descriptor’s data buffer (if enabled
by the LCTRE bit).

• End of frame – At the end of the frame, the MAC issues a finish
command to the DMA controller, causing it to advance to the next
(status) descriptor. If the TX frame exceeds the maximum length
limit (1560 bytes, or 0x618), the frame’s DMA transfer is trun-
cated. Only 1543 (0x607) are transmitted on the MII.

• Status – The MAC transfers the frame status into the status buffer.

• Interrupt – Upon completion, the DMA may issue an interrupt, if
the descriptor was programmed to do so. The DMA then advances
to the next (data) descriptor, if any.

Figure 22-8 shows an alternative descriptor structure. The frame length
value and Ethernet MAC header are separated from the data payload in
each frame.
ADSP-BF51x Blackfin Processor Hardware Reference 22-25

Description of Operation
Flexible Descriptor Structure

The Blackfin processor’s DMA structure allows flexibility in the arrange-
ment of TX frame data in memory. The frame data can be partitioned into
segments, each with a separate DMA descriptor, which allows any of the
first 88 bytes of DMA data (86 bytes of frame data) to reside in a separate
data segment from the remainder of the frame. This permits the frame
length word, the Ethernet MAC header, and even some higher level stack
headers to be in one area of memory, while the payload data might be in
another. The header and payload may even be in different memory spaces
(some internal, some external). Each data buffer segment must be 32-bit
aligned. In each frame, the XCOUNT field of all but the last data descriptor
should be set to the actual length of the data buffers that they reference.
As usual, the XCOUNT field of the last data descriptor should be set to 0 and
the XCOUNT field of the status descriptor should be set to 0. The data after
the first 88 bytes must all be contained in the data buffer of the last
descriptor in the packet.

Multi-descriptor data formatting is not supported if retry is enabled upon
late collisions (LCRTE = 1 in the EMAC_OPMODE register). The LCRTE bit must
be 0 in order to use multiple DMA descriptors for transmit.

Figure 22-8. Alternative Descriptor Structure

STATUS

FRAME 1 FRAME 2

ETHERNET
HEADER

DESCRIPTORS:

DATA

BUFFERS: LENGTH
STATUS

ETHERNET
HEADER

DATA

LENGTH

XCOUNT
 = 4

XCOUNT
 = 4

XCOUNT
 = 0

XCOUNT
 = 0

XCOUNT
 = 0

XCOUNT
 = 0

16 BYTES 16 BYTES
22-26 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
TX DMA Data Alignment

The MAC receives TX frame data via DMA from a 32-bit-aligned buffer
in memory. If the TXDWA bit in the EMAC_SYSCTL register is clear, the first
word of the MAC frame destination address should immediately follow
the TX DMA length word. The MAC frame header starts at an odd word
address and the MAC frame payload starts at an even word address.

If the TXDWA bit is set, the 16-bit TX DMA length word should be fol-
lowed by a 16-bit pad word that the MAC ignores. The pad word is
transferred over DMA but is not transmitted by the MAC to the PHY.
The first word of the MAC frame destination address should immediately
follow the pad word. The MAC frame header starts at an even word
address and the MAC frame payload starts at an odd word address.

In all cases, the TX DMA length word specifies the number of bytes to be
transferred via DMA, excluding the TX DMA length word itself. Specifi-
cally, when TXDWA is set, the TX DMA length word includes the length of
the two pad bytes. See Figure 22-9.

Late Collisions

If a frame’s transmission is interrupted (for example, by a late collision)
after the transmission of the first 64 bytes, the MAC can be programmed
to either automatically retry the frame or to discard the frame. If the LCRTE
bit in the EMAC_OPMODE register is set, the MAC issues a restart command
to the TX DMA channel and resets the DMA current address pointer to
the start of the current DMA descriptor. This requires the frame data to
be entirely contained in a single DMA descriptor.

If the LCRTE bit is clear and a late collision is detected, the MAC issues a
finish command to the TX DMA controller, advancing the DMA channel
to the status descriptor. The MAC then transfers the TX frame status to
memory and advances to the next frame descriptor for data.
ADSP-BF51x Blackfin Processor Hardware Reference 22-27

Description of Operation
TX Frame Status Classification

The TX frame status buffer and the EMAC_TX_STAT register provide a con-
venient classification of each received frame, representing the IEEE-802.3
“transmit status” code. The bit layout in the TX frame status buffer is
identical to that in the EMAC_TX_STAT register, and is arranged so that
exactly one status bit is asserted for each of the possible transmit status
codes defined in IEEE-802.3 section 4.3.2.

The priority order for determination of the transmit status code is shown
in Table 22-6.

Figure 22-9. TX DMA Data Alignment

1 0

PAD BYTE

EVEN WORD ALIGNMENT, TXDWA = 1

PAD BYTE DMA-LENGTH WORD

3 2

DATA BYTE D DATA BYTE C DATA BYTE B DATA BYTE A

5 4

DATA BYTE H DATA BYTE G DATA BYTE F DATA BYTE E

1 0

DATA BYTE B

ODD WORD ALIGNMENT, TXDWA = 0

DATA BYTE A DMA-LENGTH WORD

3 2

DATA BYTE F DATA BYTE E DATA BYTE D DATA BYTE C

5 4

DATA BYTE J DATA BYTE I DATA BYTE H DATA BYTE G
22-28 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
TX DMA Direction Errors

The TX DMA channel halts immediately after any transfer that sets the
TXDMAERR bit in the EMAC_SYSTAT register. This bit is set if a TX data or sta-
tus DMA request is granted by the DMA channel, but the DMA channel
is programmed to transfer in the wrong direction. Data DMA should be
memory-read; status DMA should be memory-write. TX DMA errors
could indicate a software problem in managing the TX DMA descriptor
queue.

In order to facilitate software debugging, the TX DMA channel guaran-
tees that the last transfer to occur is the one with the direction error. On
an error, usually the current frame is corrupted. Any later frames in the
descriptor queue are not sent until the error is cleared. Since the MAC
may have lost synchronization with the DMA descriptor queue, the TX
channel must be disabled in order to clear the error condition.

Table 22-6. TX Transmit Status Priority

Priority Bit Bit Name IEEE transmit status Condition

1 4 DMA
underrun

Undefined The frame was not completely delivered
by DMA

2 2 Excessive
collision

Excessive collision error The frame was aborted because of too
many (16) collisions, or because of exces-
sive deferral

3 3 Late
collision
error

Late collision error status The frame was aborted because of a late
collision

4 14,
13

Loss of
carrier, no
carrier

Carrier sense was deasserted during some
or all of the frame transmission
(half-duplex only, MII mode only).

5 1 Transmit
OK

Transmit OK The frame had none of the above condi-
tions
ADSP-BF51x Blackfin Processor Hardware Reference 22-29

Description of Operation
To clear the error and resume operation, perform these steps:

1. Disable the MAC TX channel (clear the TE bit in the EMAC_OPCODE
register).

2. Disable the DMA channel.

3. Clear the TXDMAERR bit in the EMAC_SYSSTAT register by writing 1 to
it.

4. Reconfigure the MAC and the DMA engine as if starting from
scratch.

5. Re-enable the DMA channel.

6. Re-enable the MAC TX channel.

Power Management

The Blackfin MAC can be programmed to trigger the following two types
of power state transitions:

1. Wake from hibernate

When the processor is in hibernate state (VDDINT powered off) or
any higher state, a low level on the PHYINT pin can wake the proces-
sor to the full on state (via RESET). This transition is enabled by
setting the PHYWE bit to 1 in the VR_CTL register prior to powerdown
(See “Dynamic Supply Voltage Control” on page 8-15.)

This pin may be connected to an INT output of the external PHY,
if applicable. Many PHY devices provide such a pin (sometimes
called MDINT or INTR). PHYs with interrupt capability may be pro-
grammed in advance via the MII management interface
(MDC/MDIO) to assert the INT pin asynchronously upon detect-
ing various conditions. Examples of INT conditions include link up,
remote fault, link status change, auto-negotiation complete, and
duplex and speed status change.
22-30 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Note that the PHYINT pin is general-purpose, and may be driven by
any external device or left unused (pulled up to VDDEXT). It is not
limited to use with external PHYs.

When the processor is in either the hibernate or deep sleep state,
the MAC is powered down. It is not possible to receive or transmit
Ethernet frames in these states.

2. Wake from sleep

When the processor is in the sleep state (or any higher state), the
Ethernet MAC can remain powered up and can wake the processor
to the active or full on states upon signalling an Ethernet event
interrupt. The Ethernet event interrupts most useful for power
management include:

• Remote wakeup frame received, matching one of four pro-
grammable frame filters (see “Remote Wake-up Filters” on
page 22-34).

• Magic Packet™ detected (see “Magic Packet Detection” on
page 22-33).

• Any of the RX or TX frame status interrupts. Examples of
these interrupts include: frame received (any frame), Broad-
cast frame received, VLAN1 frame received, and good frame
received (which includes passing the address filters).

For example, the MAC could be programmed to wake the system
upon receiving a frame with a particular group destination address,
by setting the multicast frame received interrupt enable bit in the
EMAC_RX_IRQE register and by selecting the appropriate address hash
bins in the EMAC_HASHLO/HI registers.
ADSP-BF51x Blackfin Processor Hardware Reference 22-31

Description of Operation
Ethernet Operation in the Sleep State

When the processor is in the sleep state, the Ethernet MAC supports sev-
eral levels of operation.

• The MAC may be powered down, by clearing RE and TE in the
EMAC_OPMODE register. In this lowest-power state, the MAC’s inter-
nal clocks do not run, and the MAC neither transmits nor responds
to received frames. Note that the MAC will not receive a PAUSE
control frame in this state.

• The MAC receiver may be partially powered up in a
“wake-detect-only” state, but without enabling either the MAC
transmitter or MAC DMA. This state is selected by:

1. Setting RE and clearing TE in the EMAC_OPMODE register.

2. Setting either the MPKE (magic packet wake enable) or RWKE (remote
wakeup frame enable) bits in the EMAC_WKUP_CTL register.

3. Clearing the capture wakeup frame (CAPWKFRM) bit in
EMAC_WKUP_CTL.

When in the wake-detect-only state, the MAC receiver disables its
DMA interface, and does not request any DMA transfers (whether
data or status). Instead, the MAC receiver processes good incoming
frames through its remote wake-up and/or Magic Packet filters.
When a match is detected, the MAC signals a WAKEDET interrupt
(setting the WAKEDET status bit in the EMAC_SYSSTAT register). DMA
transfers do not resume until the CAPWKFRM bit is cleared.

• The MAC receiver may be fully powered up to both receive
and/or transmit frames, provided that only external memory (for
example, SDRAM) is used. Both the DMA data buffers and
descriptor structures must be in external memory, since internal
SRAM is unavailable when core clocks are stopped.
22-32 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
This state is intended to be used with very restricted
receive-frame filters, so that only certain specific frames are
stored via DMA—perhaps only the frame(s) which caused the
wakeup event itself. The transmit functionality permits the proces-
sor to enqueue a list of final frame transmissions before going to
sleep.

The MAC can only transmit frames contained in DMA buffers set
up by the processor prior to entering the sleep state. Once the last
transmit frame has been sent, the transmitter and DMA channel
pauses. Note that if the last TX DMA descriptor was programmed
to signal an interrupt, the processor wakes from sleep at the conclu-
sion of that transmission.

Similarly, the MAC can only receive as many frames as can be
contained in the DMA buffers and descriptors allocated by the
processor prior to entering the sleep state. Once the last receive
frame has been filled, the DMA channel pauses, and if any further
frames are received (beyond the capacity of the MAC RX FIFO), a
DMA overrun occurs. Note that if the last RX DMA descriptor was
programmed to signal an interrupt, the processor wakes from sleep
after that frame was received.

Magic Packet Detection

The MAC can be programmed to detect a Magic Packet as a wakeup
event. This is enabled by setting the MPKE bit (Magic Packet enable) bit in
the EMAC_WKUP_CTL register. When the MAC receives the Magic Packet, it
sets the MPKS (Magic Packet status) bit in the EMAC_WKUP_CTL register,
which causes the Ethernet event interrupt to be asserted. The associated
ISR should clear the interrupt by writing a 1 to the MPKS bit; writing a 0
has no effect.

A Magic Packet is any valid Ethernet frame which contains a specific
102-byte pattern derived from the MAC’s 48-bit MAC address anywhere
within the frame after the 12th byte (after the destination and source
ADSP-BF51x Blackfin Processor Hardware Reference 22-33

Description of Operation
address fields). This byte pattern consists of 6 consecutive bytes of 0xFFs
followed by sixteen consecutive repeats of the MAC address of the MAC
which is targeted for wakeup. See Figure 22-10.

Good Magic Packet frames exclude frame-too-short error, frame-too-long
error, FCS error, Alignment error, and PHY error conditions.

Remote Wake-up Filters

The Blackfin Ethernet MAC provides four independent remote wakeup
frame filters for use while in powerdown. See Figure 22-11. These filters
are enabled by setting the RWKE (remote wakeup enable) bit in the
EMAC_WKUP_CTL register. Each filter works in parallel, simultaneously
examining each incoming frame for a specific byte pattern. Each pattern is
described by a byte offset to the start of the pattern within the frame, a
32-bit byte mask selecting bytes at that offset to include in the pattern,
and a CRC-16 hash value of the selected bytes which identifies the
pattern.

Each of the four filters sets a separate status bit (RWKS0–RWKS3) in the
EMAC_WKUP_CTL register upon detection of their programmed frame pat-
tern. The Ethernet event interrupt is asserted when any of these four status
bits is set to 1; the WAKEDET bit in the EMAC_SYSSTAT register indicates the
logical OR of all four of these bits and the MPKS (Magic Packet status) bit.

Figure 22-10. Magic Packet Structure

DESTINATION ADDRESS

TARGET MAC ADDRESS (1)

MAGIC PACKET STRUCTURE

TARGET MAC ADDRESS (16)

FF FF FF FF FF FF

SOURCE ADDRESS

...

(6 BYTES)

(6 BYTES)

TARGET MAC ADDRESS (2)

VALID FCS

(6 BYTES)

(6 BYTES)

(6 BYTES) - 2ND OCCURRENCE

(6 BYTES) - 16TH OCCURRENCE

(4 BYTES)
22-34 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
The remote wakeup interrupt is cleared by writing a 1 to the appropriate
RWKS0–RWKS3 status bit(s). The WAKEDET bit is read-only and does not need
to be explicitly cleared.

To program each remote wakeup filter:

1. The RWKE bit in the EMAC_WKUP_CTL register must be set to 1
(enables all four filters.).

2. The enable wakeup filter N bit in the EMAC_WKUP_FFCMD register
must be set to 1 to enable filter N.

3. The wakeup filter N address type bit in the EMAC_WKUP_FFCMD
register selects whether the target frame is unicast (if 0) or multi-
cast (if 1).

Figure 22-11. Remote Wakeup Filters

SELECTED BYTES

(SELECT IF 1)

CRC-16

 0

EMAC_WKUP_FFOFF
OFFSET REGISTER

INTERRUPT EQUAL?

TARGET

A B - C D E - - - - F G H - - I J K

FRAME A B x C D E x x x x F G H x x I J K

EMAC_WKUP_FFMSKx
MASK REGISTER

CRC HASHCODE
CALCULATION

EMAC_WKUP_FFCRCx
REGISTER

WAKEUP BYTE PATTERN

WAKE UP ETHERNET EVENT

[RWKSx BIT]
EMAC_WKUP_CTL
REGISTER

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
ADSP-BF51x Blackfin Processor Hardware Reference 22-35

Description of Operation
4. The 8-bit pattern offset N field in the EMAC_WKUP_FFOFF register
selects the starting byte offset for the target data pattern, counting
from 0 for the first byte of the MAC frame. The preamble and SFD
bytes are not included.

5. The 32-bit EMAC_WKUP_FFMSKn register selects which of the 32 bytes
starting at the selected offset into the frame will be considered in
the pattern match. If the EMAC_WKUP_FFOFF register field contains
the value K, then bit J of the EMAC_WKUP_FFMSKn register set controls
whether byte (J + K) of the frame will be compared, counting from
0. A value of 1 in the mask bit enables comparison.

6. The 16-bit wakeup filter N pattern CRC field in the
EMAC_WKUP_FFCRC0/1 register specifies the 16-bit CRC hash value
expected for the wake-up pattern.

Each filter has a separate 16-bit CRC state register which is independently
updated as the frame is received. The CRC state for filter N is only
updated when an enabled byte is received; the CRC state remains
unchanged if the current byte is not enabled by the filter's byte offset and
mask registers.

Good frames whose CRC-16 value matches the specified value at the
end of the selected pattern window will cause a wake-up event at the end
of the frame. Good wake-up frames exclude frame-too-short error,
frame-too-long error, alignment error, FCS error, PHY error, and length
error conditions.

The CRC-16 hash value for a sequence of bytes may be calculated serially,
with each byte processed LSB-first. The initial value of the CRC state is
0xFFFF (all 1s). For each input bit, the LFSR is shifted left one position,
and the bit shifted out is XOR’ed with the new input bit. The resulting
feedback bit is then XOR’ed into the LFSR at bit positions 15, 2, and 1.
Thus the generator polynomial for this CRC is:

G(x) = x16 + x15 + x2 + 1
22-36 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
For example, if the wakeup pattern specified the single byte 0x12, or
0100_1000 (LSB first), the calculation of the wakeup CRC_16 is per-
formed as shown in Table 22-7:

 G polynomial = 1000 0000 0000 0101

Table 22-7. CRC-16 Hash Value Calculation

Bit In XOR MSB Bit Feedback Bit CRC State

 1111 1111 1111 1111, Initial = 0xFFFF

0 1 1 0111 1111 1111 1011

1 0 1 0111 1111 1111 0011

0 0 0 1111 1111 1110 0110

0 1 1 0111 1111 1100 1001

1 0 1 0111 1111 1001 0111

0 0 0 1111 1111 0010 1110

0 1 1 0111 1110 0101 1001

0 0 0 1111 1100 1011 0010, Final = 0xFCB2
ADSP-BF51x Blackfin Processor Hardware Reference 22-37

Description of Operation
Ethernet Event Interrupts

The Ethernet event interrupt is signalled to indicate that any or all of the
conditions listed below are pending. Figure 22-12 shows the Ethernet
event interrupts.

The handler for the peripheral interrupt ID corresponding to the MAC
STATUS assignment should interrogate each of the peripherals assigned
to that peripheral interrupt ID to determine which peripheral or peripher-
als are asserting an interrupt. To interrogate the Ethernet MAC, the
handler should read the EMAC_SYSTAT register, as all of the MAC Ethernet
event interrupt condition types are represented in that register.

Figure 22-12. Ethernet MAC Event Interrupt

PHY INT
MAC MGMT COUNTER (MMC)

STATION MGMT TRANSFER DONE

RX FRAME STATUS
TX FRAME STATUS

WAKEUP FRAME
TX DMA DIRECTION ERROR

E
M

A
C

_S
Y

S
TA

T

0
1
2
3
4
5
6
7

MII

ETHERNET MAC

PHYINT

PIN

RX DMA DIRECTION ERROR

MAC STATUS

MAC RX

MAC TX

TO SYSTEM
INTERRUPT
CONTROLLER
22-38 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
These conditions result in an Ethernet event interrupt:

• PHYINT interrupt – Whenever the asynchronous PHYINT pin is
asserted low, the PHYINT sticky bit in the EMAC_SYSTAT register is set
to 1. The PHYINT interrupt condition is asserted whenever the logi-
cal AND of the PHYINT bit and the PHYIE enable bit in the
EMAC_SYSCTL register is 1. This condition is cleared by writing a 1
to the PHYINT bit.

• MAC management counter (MMC) interrupt – When any MMC
counter reaches half of its maximum value (that is, transitions from
0x7FFF FFFF to 0x8000 0000), the corresponding bit in the
MMC RX or TX interrupt status register is set. An MMC interrupt
is asserted whenever either:

• the logical AND of the EMAC_MMC_RIRQS register and the
EMAC_MMC_RIRQE register is nonzero, or

• the logical AND of the EMAC_MMC_TIRQS register and the
EMAC_MMC_TIRQE register is nonzero.

The MMC interrupt condition is cleared by writing 1s to all of the
MMC RX and/or TX interrupt status register bits which are
enabled in the MMC RX/TX interrupt enable register.

• RX frame status interrupt – The RX frame status interrupt condi-
tion is signalled whenever the logical AND of the EMAC_RX_STKY
register and the EMAC_RX_IRQE register is nonzero. This condition is
cleared by writing 1s to all of the EMAC_RX_STKY register bits that
are enabled in the EMAC_RX_IRQE register.

• TX frame status interrupt – The TX frame status interrupt condi-
tion is signalled whenever the logical AND of the EMAC_TX_STKY
register and the EMAC_TX_IRQE register is nonzero. This condition is
cleared by writing 1s to all of the EMAC_TX_STKY register bits that
are enabled in the EMAC_TX_IRQE register.
ADSP-BF51x Blackfin Processor Hardware Reference 22-39

Description of Operation
• Wakeup frame detected – This bit is set when a wakeup event is
detected by the MAC core (either a magic packet or a remote
wakeup packet is accepted by the wakeup filters). This condition is
cleared by writing a 1 to the MPKS and/or RWKS status bits in the
EMAC_WKUP_CTL register.

• RX DMA direction error detected – This bit is set if an RX data or
status DMA request is granted by the DMA channel, but the DMA
is programmed to transfer in the wrong (memory-read) direction.
This could indicate a software problem in managing the RX DMA
descriptor queue. This interrupt is non-maskable in the MAC and
must always be handled. This condition is cleared by writing a 1 to
the RXDMAERR bit in the EMAC_SYSTAT register.

• TX DMA direction error detected – This bit is set if a TX data or
status DMA request is granted by the DMA channel, but the DMA
is programmed to transfer in the wrong direction. Data DMA
should be memory-read, status DMA should be memory-write.
This could indicate a software problem in managing the TX DMA
descriptor queue. This interrupt is non-maskable in the MAC and
must always be handled. This condition is cleared by writing a 1 to
the TXDMAERR bit in the EMAC_SYSTAT register.

• Station management transfer done – This bit is set when a station
management transfer (on MDC/MDIO) has completed, provided
the STAIE interrupt enable control bit is set in the EMAC_STAADD
register.

 When the MAC DMA engine is disabled, all the MAC peripheral
requests are routed directly into the interrupt controller. This can
manifest itself at startup as spurious interrupts. The solution is to
configure the system in such a way that the DMA controller is
always enabled before the MAC peripheral.
22-40 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
RX/TX Frame Status Interrupt Operation

The contents of the EMAC_RX_STAT register indicate the result of the most
recent frame receive operation. The register contents are updated just after
the end of the frame is received on the MII and synchronized into the sys-
tem clock domain.

The contents of the EMAC_RX_STKY register are updated at the same time.
Each applicable bit in the EMAC_RX_STKY register is set if the corresponding
bit in the EMAC_RX_STAT register is set, otherwise the bit in the
EMAC_RX_STKY register keeps its prior value.

The EMAC_RX_IRQE register is continuously bitwise ANDed with the con-
tents of the EMAC_RX_STKY register, and then all of the resulting bits are
OR’ed together to produce the RX frame status interrupt condition. The
state of the RX frame status interrupt condition is readable in the RXFSINT
bit of the EMAC_SYSTAT register. This interrupt condition is cleared by
writing 1s to all the bits in the EMAC_RX_STKY register for which corre-
sponding bits are set in the EMAC_RX_IRQE register. Do not attempt to clear
this interrupt condition by writing a 1 to the read only RXFSINT bit; such a
write has no effect.

The three EMAC_TX_STAT registers (EMAC_TX_STAT, EMAC_TX_STKY, and
EMAC_TX_IRQE) operate in a similar manner.

RX Frame Status Register Operation at
Startup and Shutdown

After the RE bit in the EMAC_OPMODE register is cleared, the EMAC_RX_STAT
register, the EMAC_RX_STKY register, and the EMAC_RX_IRQE register hold
their last state. Of course, the two writable registers can still be written.

In order to not confuse status from old and new frames, the EMAC_RX_STAT
register and the EMAC_RX_STKY register are automatically cleared at a 0-to-1
transition of the RE bit. The EMAC_RX_IRQE register is not cleared when the
RE bit transitions from 0 to 1. It changes state only when written. All three
of these registers are cleared at system reset.
ADSP-BF51x Blackfin Processor Hardware Reference 22-41

Description of Operation
TX Frame Status Register Operation at
Startup and Shutdown

After the TE bit in the EMAC_OPMODE register is cleared, the EMAC_TX_STAT
register, the EMAC_TX_STKY register, and the EMAC_TX_IRQE register hold
their last state. Of course, the two writable registers can still be written.

In order to not confuse status from old and new frames, the EMAC_TX_STAT
register and the EMAC_TX_STKY register are automatically cleared at a 0-to-1
transition of the TE bit. The EMAC_TX_IRQE register is not cleared when the
TE bit transitions from 0 to 1. It changes state only when written.

All three of these registers are cleared at system reset.

MAC Management Counters

The Blackfin Ethernet MAC provides a comprehensive set of 32-bit
read-only MAC management counters, 24 for receive and 23 for transmit,
in accordance with the “Layer Management for DTEs” specification in
IEEE 802.3 Sec. 30.3. When enabled by setting the MMCE bit in the
EMAC_MMC_CTL register, the counters are updated automatically at the
conclusion of each frame. The counters may be read at any time, but may
not be written. The counters can be reset to zero all at once by writing the
RSTC bit to 1.

The counters can be configured to be cleared individually after each read
access if the CCOR bit is set to 1. This mode guarantees that no counts are
dropped between the value returned by the read and the value remaining
in the register.

 Although this read operation has a side effect, the speculative read
operation of the Blackfin core pipeline is properly handled by the
MAC. During the time between the speculative read stage and the
commit stage of the read instruction, the MMC block freezes the
addressed counter so that intervening updates are deferred until the
MMR read instruction is resolved.
22-42 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
For best results, to minimize the amount of time that any given
MMC counter is frozen, it is suggested not to intentionally place
MMC counter read instructions in positions that result in frequent
speculative reads which are not ultimately executed. For example,
MMC counter reads should not be placed in the shadow of fre-
quently mispredicted flow-of-control operations.

 Continuous polling of any MMC register is not recommended.
The MMC update process requires at least one SCLK cycle between
successive reads to the same register, which may not occur if the
register read is placed in a tight code loop. If the polling operation
excludes the MMC update process, loss of information results.

The overflow behavior of the counters is configurable using the CROLL bit.
The counters may be configured either to saturate at maximum value
(CROLL = 0) or to roll over to zero and continue counting (CROLL = 1).

The range of the counters can be extended into software-managed coun-
ters (for example, 64-bit counters) by use of selectable MMC interrupts.
The EMAC_MMC_RIRQE and EMAC_MMC_TIRQE registers allow the programmer
to select which counters should signal an MMC interrupt on the Ethernet
event interrupt line when they pass half of the maximum counter value.
Even if interrupt latency is large, this mechanism makes it unlikely that
any counter data is lost to overrun.

A recommended structure for the ISR for the MMC interrupt would be as
follows. In this example, the CCOR (clear counter on read) bit is set to 1,
and the CROLL (counter rollover) bit may also be set to 1.

1. In the ISR, read the SIC to determine which peripheral ID caused
the interrupt.

2. If an Ethernet MAC event interrupt is pending, then read the
EMAC_SYSTAT register. If any of the interrupt bits are set, then an
Ethernet event interrupt is pending.
ADSP-BF51x Blackfin Processor Hardware Reference 22-43

Description of Operation
3. If the MMCINT bit is set, then read the EMAC_MMC_RIRQS and
EMAC_MMC_TIRQS registers. Then, for each bit that is set, read the
corresponding MMC counter using CCOR (clear counter on read)
mode, and add the result to the software-maintained counter.

As an option, if the CROLL bit is set to 1, the ISR can check the
count value to see if it is less than 0x8000 0000. This would indi-
cate that the counter has somehow incremented beyond the
maximum value (0xFFFF FFFF) and wrapped around to zero while
the interrupt awaited servicing. In this case, the software could add
an additional 232 to its extended counter to repair the count
deficit.

4. Write the interrupt-status values previously read from
EMAC_MMC_RIRQS and EMAC_MMC_TIRQS back to those same registers,
so that the bits which were 1 cause the corresponding interrupt sta-
tus bits to be cleared in a write-1-to-clear operation. This
guarantees that all the counter interrupts that are cleared are those
that correspond to counters that have been read by the interrupt
handler. If other counter(s) cross the half-maximum interrupt
threshold after the “snapshot” of the EMAC_MMC_RIRQS and
EMAC_MMC_TIRQS was taken, then those interrupts are still correctly
pending at the RTI; the interrupt handler is then re-entered and
the remaining counter interrupts are handled in a second pass.
22-44 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Programming Model
The following sections describe the Ethernet MAC programming model
for a typical system. The initialization sequence can be summarized as
follows.

1. Configure MAC MII pins.

• Multiplexing scheme

• CLKBUF

2. Configure interrupts.

3. Configure MAC registers.

• MAC address

• MII station management

4. Configure PHY.

5. Receive and transmit data through the DMA engine.

Configure MAC Pins
The first step is to configure the hardware interface between the MAC and
the external PHY device.

Multiplexing Scheme

The MII interface pins are multiplexed with GPIO pins on the I/O ports.
To configure a pin on these ports for Ethernet MAC functionality, see
Chapter 9, “General-Purpose Ports”.
ADSP-BF51x Blackfin Processor Hardware Reference 22-45

Programming Model
CLKBUF

The external PHY chip can be clocked with the buffered clock (CLKBUF)
output from the Blackfin processor. In order to enable this clock output,
the CLKBUFOE bit in the VR_CTL register must be set. Note that writes to
VR_CTL take effect only after the execution of a PLL programming
sequence.

Configure Interrupts
Next, the MAC interrupts and MAC DMA interrupts need to be config-
ured properly. Interrupt service routines should be installed to handle all
applicable events. Refer to Figure 22-12 on page 22-38 for a graphical
representation of how event signals are propagated through the interrupt
controller. The status of the MAC interrupts can be sensed with the
EMAC_SYSTAT register. However, the process of enabling these interrupts is
achieved through a number of different registers.

• The PHYINT interrupt is enabled by setting the PHYIE bit in the
EMAC_SYSCTL register.

• The MAC management counter (MMC) interrupt can be enabled
through the EMAC_MMC_RIRQE and EMAC_MMC_TIRQE registers.

• The RX frame status and TX frame status interrupts can be enabled
through the EMAC_RX_IRQE and EMAC_TX_IRQE registers, respectively.

• The wakeup frame events are controlled through the
EMAC_WKUP_CTL register.

• The TX DMA direction error detected and RX DMA direction
error detected interrupts are non-maskable. Therefore, an interrupt
service routine to handle them should always be installed.

• The station management transfer done interrupt is enabled
through the STAIE bit of the EMAC_STAADD register.
22-46 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
The interrupts for the DMA channels corresponding to the Ethernet
MAC transfers should be unmasked and a corresponding ISR should be
installed if a polling technique is not used.

Configure MAC Registers
After the interrupts are set up correctly, the MAC address registers and the
MII protocol must be initialized.

MAC Address

Set the MAC address by writing to the EMAC_ADDRHI and EMAC_ADDRLO reg-
isters. Since the MAC address is a unique number, it is usually stored in a
non-volatile memory like a flash device. In this way, every system using
the Blackfin MAC peripheral can be easily programmed with a different
MAC address during mass production.

MII Station Management

The following procedure should be used to set up the MII communica-
tions protocol with the external PHY device.

To perform a station management write transfer:

1. Initialize MDCDIV in the EMAC_SYSCTL register. The frequency of the
MDC clock is SCLK/[2 * (MDCDIV + 1)]. Thus MDCDIV = (SCLK_Freq /
MDC_Freq)/2 - 1.

For example, for a typical 400ns (2.5 MHz) MDC rate at
SCLK = 125 MHz, set MDCDIV to (125 MHz/2.5 MHz)/2 -1 =
50/2-1 = 24.

2. Write the data into EMAC_STADAT.
ADSP-BF51x Blackfin Processor Hardware Reference 22-47

Programming Model
3. Write EMAC_STAADD with the PHY address, register address,
STAOP = 1, STABUSY = 1, and desired selections for preamble enable
and interrupt enable.

4. Do not initiate another read or write access until STABUSY reads 0
or until the station management done interrupt (if enabled) has
been received. Accesses attempted while STABUSY = 1 are discarded.

To perform a station management read transfer:

1. Initialize MDCDIV.

2. Write EMAC_STAADD with the PHY address, register address,
STAOP = 0, STABUSY = 1, and desired selections for preamble enable
and interrupt enable.

3. Wait either while polling STABUSY or until the station management
done interrupt (if enabled) has been received. Note that subsequent
accesses attempted while STABUSY = 1 are discarded. Proceed when
STABUSY reads 0.

4. Read the data from EMAC_STADAT.

Configure PHY
After the MII interface is configured, the PHY can be programmed with
the EMAC_STAADD and EMAC_STADAT registers. Before configuration, the
PHY is usually issued a soft reset. Depending on the capabilities of the
specific PHY device, the configurable options might include auto-negotia-
tion, link speed, and whether the transfers are full-duplex or half-duplex.
The PHY device may also be set up to assert an interrupt on certain condi-
tions, such as a change of the link status.
22-48 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Receive and Transmit Data
Data transferred over the MAC DMA must be handled with a descrip-
tor-based DMA queue. Refer to Figure 22-5 on page 22-11 and
Figure 22-7 on page 22-23 for a graphical representation of a receive
queue and transmit queue, respectively.

An Ethernet frame header is placed in front of the payload of each data
buffer. The data buffer structure is described in Table 22-8.

Receiving Data

In order to receive data, memory buffers must be allocated to construct a
queue of DMA data and status descriptors. If the RXDWA bit in EMAC_SYSCTL
is 0, then the first item in the receive frame header is the destination MAC
address. If the RXDWA bit in EMAC_SYSCTL is 1, then the first 16-bit word is
all-zero to pad the frame, and the second item is the destination MAC
address. The DMA engine is then configured through the DMA_CONFIG reg-
ister. After the DMA is set up, the MAC receive functionality is enabled
by setting the RE bit in EMAC_OPMODE. Completion can be signaled by inter-
rupts or by polling the DMA status registers.

Table 22-8. Frame Header

Field Size in Bytes

Frame size (Tx only) 2

Destination MAC address 6

Source MAC address 6

Length/type 2

Data Payload Determined by the length/type
field
ADSP-BF51x Blackfin Processor Hardware Reference 22-49

Ethernet MAC Register Definitions
Transmitting Data

To transmit data, memory buffers must be allocated to construct a queue
of DMA data and status descriptors. The first 16-bit word of the data buf-
fers is written to signify the number of bytes in the frame. The DMA
engine is then configured through the DMA_CONFIG register. After the DMA
is set up, the MAC transmit functionality is enabled by setting the TE bit
in EMAC_OPMODE. Completion can be signaled by interrupts or by polling
the DMA status registers.

Ethernet MAC Register Definitions
The MAC register set is broken up into three groups corresponding to the
peripheral’s major system blocks:

• Control-status register group (MAC block)

• System interface register group (SIF block)

• MAC management counter register group (MMC block)

Most registers require 32-bit accesses, but certain registers have only 16 or
fewer functional bits and can be accessed with either 16-bit or 32-bit
MMR accesses.

Table 22-9 shows the functions of the MAC registers. MMC counter reg-
isters are found in Table 22-10 on page 22-53.
22-50 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Table 22-9. MAC Register Mapping

Register Name Function Notes

Control-Status Register Group

EMAC_OPMODE MAC operating mode Enables the Ethernet MAC
transmitter.

EMAC_ADDRLO MAC address low Used with EMAC_ADDRHI
to set the MAC address.

EMAC_ADDRHI MAC address high Used with EMAC_ADDRLO
to set the MAC address.

EMAC_HASHLO MAC multicast hash table low Used with EMAC_HASHHI
to hold the multicast hash
table.

EMAC_HASHHI MAC multicast hash table high Used with EMAC_HASHLO
to hold the multicast hash
table.

EMAC_STAADD MAC station management address

EMAC_STADAT MAC station management data

EMAC_FLC MAC flow control

EMAC_VLAN1 MAC VLAN1 tag

EMAC_VLAN2 MAC VLAN2 tag

EMAC_WKUP_CTL MAC wakeup frame control and sta-
tus

EMAC_WKUP_FFMSK0 MAC wakeup frame 0 byte mask

EMAC_WKUP_FFMSK1 MAC wakeup frame 1 byte mask

EMAC_WKUP_FFMSK2 MAC wakeup frame 2 byte mask

EMAC_WKUP_FFMSK3 MAC wakeup frame 3 byte mask

EMAC_WKUP_FFCMD MAC wakeup frame filter com-
mands

EMAC_WKUP_FFOFF MAC wakeup frame filter offsets

EMAC_WKUP_FFCRC0 MAC wakeup frame filter CRC0/1
ADSP-BF51x Blackfin Processor Hardware Reference 22-51

Ethernet MAC Register Definitions
EMAC_WKUP_FFCRC1 MAC wakeup frame filter CRC2/3

System Interface Register Group

EMAC_SYSCTL MAC system control

EMAC_SYSTAT MAC system status

EMAC_RX_STAT Ethernet MAC RX current frame
status

EMAC_RX_STKY Ethernet MAC RX sticky frame sta-
tus

EMAC_RX_IRQE Ethernet MAC RX frame status
interrupt enable

EMAC_TX_STAT Ethernet MAC TX current frame
status

EMAC_TX_STKY Ethernet MAC TX sticky frame sta-
tus

EMAC_TX_IRQE Ethernet MAC TX frame status
interrupt enable

EMAC_MMC_RIRQS Ethernet MAC MMC RX interrupt
status

EMAC_MMC_RIRQE Ethernet MAC MMC RX interrupt
enable

EMAC_MMC_TIRQS Ethernet MAC MMC TX interrupt
status

EMAC_MMC_TIRQE Ethernet MAC MMC TX interrupt
enable

MAC Management Counter Register Group

EMAC_MMC_CTL MAC management counters control For a list of the MMC counter
registers, see Table 22-10.

Table 22-9. MAC Register Mapping (Continued)

Register Name Function Notes
22-52 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Table 22-10. MAC Management Counter Registers

Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

EMAC_RXC_OK
(FramesReceivedOK)
30.3.1.1.5

Holds a count of frames that are successfully received. This
does not include frames received with frame-too-long, FCS,
length or alignment errors, or frames lost due to internal
MAC sublayer (DMA/FIFO) errors. This also excludes
frames with frame-too-short errors, or frames that do not
pass the address filter as indicated by the receive frame
accepted status bit. Such frames are not considered to be
received by the station, and are not considered errors.

EMAC_RXC_FCS
(FrameCheckSequenceErrors)
30.3.1.1.6

Holds a count of receive frames that are an integral number
of octets in length and do not pass the FCS check. This does
not include frames received with frame-too-long or
frame-too-short (frame fragment) errors. This also excludes
frames with frame-too-short errors, or which do not pass the
address filter.

EMAC_RXC_ALIGN
(AlignmentErrors)
30.3.1.1.7

Holds a count of frames that are not an integral number of
octets in length and do not pass the FCS check. This coun-
ter is incremented when the receive status is reported as
alignment error. This also excludes frames with
frame-too-short errors, or which do not pass the address fil-
ter.

EMAC_RXC_OCTET
(OctetsReceivedOK)
30.3.1.1.14

Holds a count of data and padding octets in frames that are
successfully received. This does not include octets in frames
received with frame-too-long, FCS, length or alignment
errors, or frames lost due to internal MAC sublayer errors.
This also excludes frames with frame-too-short errors, or
which do not pass the address filter.

EMAC_RXC_DMAOVF
(FramesLostDueToIntMAC
RcvError)
30.3.1.1.15

Holds a count of frames that would otherwise be received by
the station, but could not be accepted due to an internal
MAC sublayer receive error. If this counter is incremented,
then none of the other receive counters are incremented.
This counts frames truncated during DMA transfer to mem-
ory, as indicated by the DMA overrun status bit.

EMAC_RXC_UNICST
(UnicastFramesReceivedOK)
No IEEE reference

Holds a count of frames counted by the EMAC_RXC_OK regis-
ter that are not counted by the EMAC_RXC_MULTI or the
EMAC_RXC_BROAD register.
ADSP-BF51x Blackfin Processor Hardware Reference 22-53

Ethernet MAC Register Definitions
EMAC_RXC_MULTI
(MulticastFramesReceivedOK)
30.3.1.1.21

Holds a count of frames that are successfully received and
are directed to an active non-broadcast group address. This
does not include frames received with frame-too-long, FCS,
length or alignment errors, or frames lost due to internal
MAC sublayer error. This also excludes frames with
frame-too-short errors, or that do not pass the address filter.

EMAC_RXC_BROAD
(BroadcastFramesReceivedOK)
30.3.1.1.22

Holds a count of frames that are successfully received and
are directed to the broadcast group address. This does not
include frames received with frame-too-long, FCS, length or
alignment errors, or frames lost due to internal MAC sub-
layer error. This also excludes frames with frame-too-short
errors, or that do not pass the address filter.

EMAC_RXC_LNERRI
(InRangeLengthErrors)
30.3.1.1.23

Holds a count of frames with a length/type field value
between the minimum unpadded MAC client data size and
the maximum allowed MAC client data size, inclusive, that
does not match the number of MAC client data octets
received. The counter also increments when a frame has a
length/type field value less than the minimum allowed
unpadded MAC client data size and the number of MAC
client data octets received is greater than the minimum
unpadded MAC client data size. This also excludes frames
with frame-too-short errors (less than the minimum unpad-
ded MAC client data size), or that do not pass the address
filter.

EMAC_RXC_LNERRO
(OutOfRangeLengthField)
30.3.1.1.24

Holds a count of frames with a Length field value greater
than the maximum allowed LLC data size. This also
excludes frames with frame-too-short errors, or that do not
pass the address filter.

EMAC_RXC_LONG
(FrameTooLongErrors)
30.3.1.1.25

Holds a count of frames received that exceed the maximum
permitted frame size. This counter is incremented when the
status of a frame reception is “frame too long.” This also
excludes frames with frame-too-short errors, or that do not
pass the address filter.

Table 22-10. MAC Management Counter Registers (Continued)

Register Name
(IEEE Name)
IEEE 802.3 Reference

Description
22-54 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
EMAC_RXC_MACCTL
(MACControlFramesReceived)
30.3.3.4

Holds a count of MAC control frames passed by the MAC
sublayer to the MAC control sublayer. This counter is incre-
mented upon receiving a valid frame with a Length/Type
field value equal to 88-08. While the control frame may be
received by the Ethernet MAC and yet not be delivered to
the MAC client by DMA, depending on the state of the PCF
bit, the control frame is still counted by this counter.

EMAC_RXC_OPCODE
(UnsupportedOpcodesReceived)
30.3.3.5

Holds a count of MAC control frames received that contain
an opcode that is not supported by the device. This counter
is incremented when a receive frame function call returns a
valid frame with a length/type field value equal to the
reserved type, and with an opcode for a function that is not
supported by the device. Only opcode 00-01(pause) is sup-
ported by the Ethernet MAC.

EMAC_RXC_PAUSE
(PAUSEMACCtrlFramesReceived)
30.3.4.3

Holds a count of MAC control frames passed by the MAC
sublayer to the MAC control sublayer. This counter is incre-
mented when a receive frame function call returns a valid
frame with both a length/type field value equal to 88-08 and
an opcode indicating the pause operation (00-01). This
counter does not include or exclude frames on the basis of
address, even though pause frames are required to contain
the MAC control pause multicast address.

EMAC_RXC_ALLFRM
(FramesReceivedAll)
No IEEE reference

Holds a count of all frames or frame fragments detected by
the Ethernet MAC, regardless of errors and regardless of
address, except for DMA overrun frames.

EMAC_RXC_ALLOCT
(OctetsReceivedAll)
No IEEE reference

Holds a count of all octets in frames or frame fragments
detected by the Ethernet MAC, regardless of errors and
regardless of address, except for DMA overrun frames.

EMAC_RXC_TYPED
(TypedFramesReceived)
No IEEE reference

Holds a count of all frames received with a length/type field
greater than or equal to 0x600. This does not include frames
received with frame-too-long, frame-too-short, FCS, length
or alignment errors, frames lost due to internal MAC sub-
layer error, or that do not pass the address filter.

Table 22-10. MAC Management Counter Registers (Continued)

Register Name
(IEEE Name)
IEEE 802.3 Reference

Description
ADSP-BF51x Blackfin Processor Hardware Reference 22-55

Ethernet MAC Register Definitions
EMAC_RXC_SHORT
(FramesLenLt64Received)
No IEEE reference

Holds a count of all frame fragments detected with
frame-too-short errors (length < 64 bytes), regardless of
address filtering or of any other errors in the frame.

EMAC_RXC_EQ64
(FramesLenEq64Received)
No IEEE reference

Holds a count of all good frames (with status receiveOK)
that have a length of exactly 64 bytes.

EMAC_RXC_LT128
(FramesLen65_127Received)
No IEEE reference

Holds a count of all good frames (with status receiveOK)
that have a length between 65 and 127 bytes, inclusive.

EMAC_RXC_LT256
(FramesLen128_255Received)
No IEEE reference

Holds a count of all good frames (with status receiveOK)
that have a length between 128 and 255 bytes, inclusive.

EMAC_RXC_LT512
(FramesLen256_511Received)
No IEEE reference

Holds a count of all good frames (with status receiveOK)
that have a length between 256 and 511 bytes, inclusive.

EMAC_RXC_LT1024
(FramesLen512_1023Received)
No IEEE reference

Holds a count of all good frames (with status receiveOK)
that have a length between 512 and 1023 bytes, inclusive.

EMAC_RXC_GE1024
(FramesLen1024_MaxReceived)
No IEEE reference

Holds a count of all good frames (with status receiveOK)
that have a length greater than or equal to 1024 bytes. This
does not include frames with a frame-too-long error.

EMAC_TXC_OK
(FramesTransmittedOK)
30.3.1.1.2

Holds a count of frames that are successfully transmitted.
This counter is incremented when the transmit status is
reported as transmit OK.

EMAC_TXC_1COL
(SingleCollisionFrames)
30.3.1.1.3

Holds a count of frames that are involved in a single colli-
sion and are subsequently transmitted successfully. This
counter is incremented when the result of a transmission is
reported as transmit OK and the attempt value is 2.

Table 22-10. MAC Management Counter Registers (Continued)

Register Name
(IEEE Name)
IEEE 802.3 Reference

Description
22-56 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
EMAC_TXC_GT1COL
(MultipleCollisionFrames)
30.3.1.1.4

Holds a count of frames that are involved in more than one
collision and are subsequently transmitted successfully. This
counter is incremented when the transmit status is reported
as transmit OK and the value of the attempts variable is
greater than 2 and less then or equal to 16.

EMAC_TXC_OCTET
(OctetsTransmittedOK)
30.3.1.1.8

Holds a count of data and padding octets in frames that are
successfully transmitted. This counter is incremented when
the transmit status is reported as transmit OK.

EMAC_TXC_DEFER
(FramesWithDeferredXmissions)
30.3.1.1.9

Holds a count of frames whose transmission was delayed on
its first attempt because the medium was busy (that is, at the
start of frame, CRS is asserted, or was previously asserted
within the minimum interframe gap). Frames involved in
any collisions are not counted.

EMAC_TXC_LATECL
(LateCollisions)
30.3.1.1.10

Holds a count of times that a collision has been detected
later than one slot time from the start of the frame transmis-
sion. A late collision is counted twice, both as a collision and
as a late collision. This counter is incremented when the
number of late collisions detected in transmission of any one
frame is nonzero.

EMAC_TXC_XS_COL
(FramesAbortedDueToXSColls)
30.3.1.1.11

Holds a count of frames that are not transmitted successfully
due to excessive collisions. This counter is incremented
when the number of attempts equals 16 during a transmis-
sion. Note this does not include frames that are successfully
transmitted on the last possible attempt.

EMAC_TXC_DMAUND
(FramesLostDueToIntMACXmit
Error)
30.3.1.1.12

Holds a count of frames that would otherwise be transmit-
ted by the station, but could not be sent due to an internal
MAC sublayer transmit error. If this counter is incremented,
then none of the other transmit counters are incremented.
This counts frames whose transmission is interrupted by
incomplete DMA transfer from memory, as indicated by the
DMA underrun status bit.

EMAC_TXC_CRSERR
(CarrierSenseErrors)
30.3.1.1.13

Holds a count of the number of times that carrier sense was
not asserted or was deasserted during the transmission of a
frame without collision.

Table 22-10. MAC Management Counter Registers (Continued)

Register Name
(IEEE Name)
IEEE 802.3 Reference

Description
ADSP-BF51x Blackfin Processor Hardware Reference 22-57

Ethernet MAC Register Definitions
EMAC_TXC_UNICST
(UnicastFramesXmittedOK)
No IEEE reference

Holds a count of frames counted by the EMAC_TXC_OK regis-
ter that are not counted by the EMAC_TXC_MULTI or the
EMAC_TXC_BROAD register.

EMAC_TXC_MULTI
(MulticastFramesXmittedOK)
30.3.1.1.18

Holds a count of frames that are successfully transmitted to
a group destination address other than broadcast.

EMAC_TXC_BROAD
(BroadcastFramesXmittedOK)
30.3.1.1.19

Holds a count of frames that are successfully transmitted to
the broadcast address as indicated by the transmit status of
OK.

EMAC_TXC_XS_DFR
(FramesWithExcessiveDeferral)
30.3.1.1.20

Holds a count of frames that deferred for an excessive period
of time. This counter can only be incremented once per
LLC transmission.

EMAC_TXC_MACCTL
(MACControlFramesTransmitted)
30.3.3.3

Holds a count of MAC control frames passed to the MAC
sublayer for transmission. Note this counter is incremented
only when a MAC pause frame is generated by writing to the
EMAC_FLC register. The counter is not incremented for
frames transmitted via the normal DMA mechanism which
happen to contain valid MAC pause data.

EMAC_TXC_ALLFRM
(FramesTransmittedAll)
No IEEE reference

Holds a count of all frames whose transmission has been
attempted, regardless of success. Each frame is counted only
once, regardless of the number of retry attempts.

EMAC_TXC_ALLOCT
(OctetsTransmittedAll)
No IEEE reference

Holds a count of all octets in all frames whose transmission
has been attempted, regardless of success. Each frame’s
length is counted only once, regardless of the number of
retry attempts.

EMAC_TXC_EQ64
(FramesLenEq64Transmitted)
No IEEE reference

Holds a count of all frames with status transmit OK that
have a length of exactly 64 bytes.

EMAC_TXC_LT128
(FramesLen65_127Transmitted)
No IEEE reference

Holds a count of all frames transmitted with status transmit
OK that have a length between 65 and 127 bytes, inclusive.

Table 22-10. MAC Management Counter Registers (Continued)

Register Name
(IEEE Name)
IEEE 802.3 Reference

Description
22-58 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Control-Status Register Group
This set of registers is used by the application software to configure and
monitor the functionality of the MAC block.

EMAC_TXC_LT256
(FramesLen128_255Transmitted)
No IEEE reference

Holds a count of all frames transmitted with status transmit
OK that have a length between 128 and 225 bytes, inclusive.

EMAC_TXC_LT512
(FramesLen256_511Transmitted)
No IEEE reference

Holds a count of all frames transmitted with status transmit
OK that have a length between 256 and 511 bytes, inclusive.

EMAC_TXC_LT1024
(FramesLen512_1023Transmitted)
No IEEE reference

Holds a count of all frames transmitted with status transmit
OK that have a length between 512 and 1023 bytes, inclu-
sive.

EMAC_TXC_GE1024
(FramesLen1024_MaxTransmitted)
No IEEE reference

Holds a count of all frames transmitted with status transmit
OK that have a length greater than or equal to 1024 bytes
but not greater than the maximum frame size.

EMAC_TXC_ABORT
(TxAbortedFrames)
No IEEE reference

Holds a count of all frames attempted that were not success-
fully transmitted with status of transmit OK.

Table 22-10. MAC Management Counter Registers (Continued)

Register Name
(IEEE Name)
IEEE 802.3 Reference

Description
ADSP-BF51x Blackfin Processor Hardware Reference 22-59

Ethernet MAC Register Definitions
MAC Operating Mode (EMAC_OPMODE) Register

The EMAC_OPMODE register, shown in Figure 22-13, controls the address fil-
tering and collision response characteristics of the Ethernet controller in
both the RX and TX modes.

Figure 22-13. EMAC_OPMODE Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Operating Mode Register (EMAC_OPMODE)

RE (Receiver Enable)

Reset = 0x0000 0000

ASTP (Enable Automatic Pad
Stripping)
HU (Hash Filter Unicast
Addresses)

PAM (Pass All Multicast
Mode)

PSF (Pass Short Frames)

PBF (Pass Bad Frames)
DBF (Disable Broadcast
Frame Reception)
IFE (Inverse Filtering)
PR (Promiscuous Mode)

DC (Deferred Check)

BOLMT[1:0] (TX Back-Off
Limit)

LCTRE (Enable TX Retry
on Late Collision)

RMII

RMII_10
FDMODE (Full Duplex Mode)

LB (Internal Loopback
Enable)

DRO (Disable Receive
Own Frames)

DRTY (Disable TX Retry
on Collision)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DTXPAD (Disable Auto-
matic TX Padding)
DTXCRC (Disable Auto-
matic TX CRC Generation)

TE (Transmitter Enable)

RAF (Receive All
Frames)

HM (Hash Filter Multicast
Addresses)
22-60 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Additional information for the EMAC_OPMODE register bits includes:

• Disable receive own frames (DRO)

When set in half-duplex mode, this bit blocks all frames transmit-
ted by the MAC from being read into the receive path. This bit
should be reset when the MAC is operating in full-duplex mode,
MII mode only.

0 – Receive own frames enabled

1 – Receive own frames disabled

• Internal loopback enable (LB)

When internal loopback is enabled, the frames transmitted by the
MAC are internally redirected to the receive MAC port. Loopback
operation is supported in MII mode; loopback is not supported in
RMII mode. During loopback, the external MII port is inactive,
the RX pins are ignored and the TX pins are set to TXEN = 0,
TXD = 1111.

0 – Internal loopback not enabled

1 – Internal loopback enabled

• Full duplex mode (FDMODE)

0 – Half duplex mode selected

1 – Full duplex mode selected
ADSP-BF51x Blackfin Processor Hardware Reference 22-61

Ethernet MAC Register Definitions
• RMII port speed selector (RMII_10)

When the interface is configured for RMII operation, software
must query the PHY after any automatic negotiation to determine
the link speed, and set the RMII port speed selector accordingly.
This is because in RMII mode, the REFCLK input is always a
constant speed regardless of link speed. In MII mode, by contrast,
the PHY decreases the speed of the RXCLK and TXCLK to 2.5 MHz
when the link speed is 10M bits.

0 – Speed for RMII port is 100M bits

1 – Speed for RMII port is 10M bits

• RMII mode (RMII)

This bit is used to select which interface, RMII or MII, is used by
the MAC to transfer data to and from the external PHY. Note that
MII and RMII modes use slightly different sets of package pins.
Program different values into the port configuration register(s)
accordingly.

0 – MII mode

1 – RMII mode

• Enable TX retry on late collision (LCTRE)

0 – TX retry on late collision not enabled

1 – TX retry on late collision enabled

• Disable TX retry on collision (DRTY)

0 – TX retry on collision not disabled

1 – TX retry on collision disabled
22-62 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
• TX back-off limit (BOLMT[1:0])

This field sets an upper bound on the random back-off interval
time before the MAC resends a packet in the event of a collision.
The bound can be set to 1, 15, 255, or 1023 slot times (1 slot
time = 128 MII clock cycles). Thus, varying levels of aggressiveness
with regard to packet re-transmission can be selected.

00 – The number of bits is 10 and the maximum back-off time is
1023 slots (relaxed, standard-compliant behavior).

01 – The number of bits is 8 and the maximum back-off time is
255 slots.

10 – The number of bits is 4 and the maximum back-off time is 15
slots.

11 – The number of bits is 1 and the maximum back-off time is 1
slot (aggressive)

• Deferral check (DC)

In half-duplex operation, a frame whose transmission defers to
incoming traffic for longer than two maximum-length frame times
is considered to have been excessively deferred. This time is
(2 x 1518 x 2) = 6072 MII clocks. See IEEE 802.3 section 5.2.4.1
for more information.

0 – The MAC cannot abort transmission of frames due to excessive
deferral.

1 – Enables the MAC to abort transmission of frames that encoun-
ter excessive deferral.
ADSP-BF51x Blackfin Processor Hardware Reference 22-63

Ethernet MAC Register Definitions
• Disable automatic TX CRC generation (DTXCRC)

0 – Automatic TX CRC generation is enabled. Four CRC bytes are
appended to the frame data.

1 – Automatic TX CRC generation is disabled.

• Disable automatic TX padding (DTXPAD)

0 – Automatic TX padding is enabled. Pad bytes with value 0 are
appended to the data, followed by the CRC, so that the minimum
frame size is 64 bytes.

1 – Automatic TX padding of frames shorter than 64 bytes is
disabled.

• Transmitter enable (TE)

The MAC transmitter is reset when TE is 0. A rising (0 to 1) transi-
tion on TE causes the EMAC_TX_STAT register and the EMAC_TX_STKY
register to be reset. TE and RE may be enabled either individually or
together in either MII or RMII mode.

• Receive all frames (RAF)

0 – Does not override filters.

1 – Overrides the address and frame filters and causes all frames or
frame fragments to be transferred to memory by DMA.

• Pass short frame (PSF)

0 – The frame filter rejects frames with frame-too-short errors
(runt frames, or frames with total length less than 64 bytes not
including preamble).

1 – Short frames are not rejected by the frame filter.
22-64 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
• Pass bad frames (PBF)

0 – The frame filter rejects frames with FCS errors, alignment
errors, length errors, frame-too-long errors, and DMA overrun
errors.

1 – Pass bad frames enabled.

• Disable broadcast frame reception (DBF)

0 – Broadcast frame reception not disabled.

1 – Removes the broadcast address (all 1s) from the set of addresses
passed by the address filter, overriding promiscuous mode.

• Inverse filtering (IFE)

0 – Inverse filtering not enabled

1 – Removes the MAC address programmed in the EMAC_ADDRHI
and EMAC_ADDRLO registers from the set of addresses passed by the
address filter, overriding PR (promiscuous) and HU (hash unicast)
modes. The effect is to block reception of a specific destination
address.

• Promiscuous mode (PR)

0 – Promiscuous mode not enabled

1 – Promiscuous mode enabled, the address filter accepts all
addresses.

• Pass all multicast mode (PAM)

0 – Do not pass all multicast frames.

1 – All multicast frames are added to the set of addresses passed by
the address filter.
ADSP-BF51x Blackfin Processor Hardware Reference 22-65

Ethernet MAC Register Definitions
• Hash filter multicast addresses (HM)

0 – Does not add multicast addresses that match the hash table to
the set of addresses passed by the address filter.

1 – Adds multicast addresses that match the hash table to the set of
addresses passed by the address filter.

• Hash filter unicast addresses (HU)

0 – Does not add unicast addresses that match the hash table to the
set of addresses passed by the address filter.

1 – Adds unicast addresses that match the hash table to the set of
addresses passed by the address filter.

• Automatic pad stripping enable (ASTP)

A received frame contains pad bytes if it is in IEEE format (the
length/type field contains a length value < 0x600) and if the length
value is less than 46 (corresponding to a frame whose total length
including header and FCS is less than 64 bytes). If ASTP = 1, both
the pad and the FCS bytes are removed from the received data.

0 – Automatic pad stripping is not enabled.

1 – Automatic pad stripping is enabled.

• Receiver enable (RE)

The MAC transmitter is reset when RE is 0. A rising (0 to 1) transi-
tion on RE causes the EMAC_RX_STAT register and the EMAC_RX_STKY
register to be reset. RE and TE may be enabled either individually or
together in either MII or RMII mode.
22-66 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
MAC Address Low (EMAC_ADDRLO) Register

The EMAC_ADDRLO register, shown in Figure 22-14, holds the low part of
the unique 48-bit station address of the MAC hardware. Writes to this
register must be performed while the MAC receive and transmit paths are
both disabled. The byte order of address transfer is lowest significant byte
first and lowest significant bit first on the MII. Thus EMAC_ADDRLO[3:0] is
the first nibble transferred and EMAC_ADDRHI[15:12] is the last nibble.

For example, the address 00:12:34:56:78:9A (where 00 is transferred first
and 9A is transferred last) would be programmed as:

EMAC_ADDRLO = 0x56341200

EMAC_ADDRHI = 0x00009A78

Figure 22-14. EMAC_ADDRLO Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MAC Address Low Register (EMAC_ADDRLO)
R/W, except cannot be written if RX or TX is enabled in the EMAC_OPMODE register.

Reset = 0xFFFF FFFF

MAC Address Low[31:16]

MAC Address Low[15:0]
ADSP-BF51x Blackfin Processor Hardware Reference 22-67

Ethernet MAC Register Definitions
MAC Address High Register (EMAC_ADDRHI) Register

The EMAC_ADDRHI register, shown in Figure 22-15, holds the high part of
the unique 48-bit station address of the MAC hardware. Writes to this
register must be performed while the MAC receive and transmit paths are
both disabled.

MAC Multicast Hash Table High (EMAC_HASHHI)
and Low (EMAC_HASHLO) Registers

The EMAC_HASHLO register holds the values for bins 31–0 of the multicast
hash table. The EMAC_HASHHI register holds the values for bins 63–32 of
the multicast hash table. See Figure 22-16 and Figure 22-17.

The 64-bit multicast table is used for multicast frame address filtering. A
cyclic redundancy check (CRC) based hash table scheme is used. After the
destination address (6th byte) of the frame is received, the state of the
CRC-32 checksum unit is sampled. This CRC-32 unit implements the
IEEE 802.3 CRC algorithm used in validating the FCS field of the frame.
The 6 most significant bits from this state identify one of 64 hash bins
representing the frame’s destination address. These 6 bits are then used to
index into the two hash table registers and extract the corresponding hash
bin enable bit. The most significant bit of this value determines the regis-
ter to be used (high/low) while the other five bits determine the bit

Figure 22-15. EMAC_ADDRHI Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Address High Register (EMAC_ADDRHI)
R/W, except cannot be written if RX or TX is enabled in the EMAC_OPMODE register.

Reset = 0x0000 FFFF

MAC Address High[15:0]
22-68 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
position within the register. A CRC value of 000000 selects bit 0 of the
EMAC_HASHLO register and a CRC value of 111111 selects bit 31 of the
EMAC_HASHHI register.

Figure 22-16. EMAC_HASHLO Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Multicast Hash Table Low Register (EMAC_HASHLO)

Reset = 0x0000 0000

Bin 16

Bin 28

Bin 29

Bin 30

Bin 31

Bin 17

Bin 18

Bin 19

Bin 20

Bin 21

Bin 22

Bin 23

Bin 27

Bin 26

Bin 25

Bin 24

Bin 0

Bin 12

Bin 13

Bin 14

Bin 15

Bin 1

Bin 2

Bin 3

Bin 4

Bin 5

Bin 6

Bin 7

Bin 11

Bin 10

Bin 9

Bin 8
ADSP-BF51x Blackfin Processor Hardware Reference 22-69

Ethernet MAC Register Definitions
If the corresponding bit in the hash table register is set, the multicast
frame is accepted. Otherwise, it is rejected. If the PM bit in the
EMAC_OPMODE register is set, all multicast frames are accepted regardless of
the hash values.

For example, consider the calculation of the hash bin for the MAC address
01.23.45.67.89.AB. The CRC algorithm uses an LFSR with the prime
generator polynomial specified in IEEE 802.3 Sec 3.2.8:

Figure 22-17. EMAC_HASHHI Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Multicast Hash Table High Register (EMAC_HASHHI)

Reset = 0x0000 0000

Bin 48

Bin 60

Bin 61

Bin 62

Bin 63

Bin 49

Bin 50

Bin 51

Bin 52

Bin 53

Bin 54

Bin 55

Bin 59

Bin 58

Bin 57

Bin 56

Bin 32

Bin 44

Bin 45

Bin 46

Bin 47

Bin 33

Bin 34

Bin 35

Bin 36

Bin 37

Bin 38

Bin 39

Bin 43

Bin 42

Bin 41

Bin 40

Bin 53
22-70 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2
+ x + 1

The bits of the MAC address are fed in left-most byte first, least signifi-
cant bit first, in this sequence (left to right):

1000 0000 1100 0100 1010 0010 1110 0110 1001 0001 1101 0101

The 32-bit CRC register is initialized to all 1s. Then each input bit is pro-
cessed as follows: first, the register is shifted left one place, shifting in a
zero and shifting out the former MSB. The bit just shifted out is XOR’ed
with the current input bit, yielding the feedback bit. If this feedback bit is
a 1, then the shift register contents are XOR’ed with the generator polyno-
mial value:

0x04C1 1DB7 = 0000 0100 1100 0001 0001 1101 1011 0111

Following this procedure, the CRC-32 for the MAC address is calculated.
See Table 22-11.

Table 22-11. CRC-32 Calculation

Bit Number Input Bit MSB Bit Feedback Bit Next CRC Shift Register

Start 1111 1111 1111 1111 1111 1111 1111 1111

0 1 1 0 1111 1111 1111 1111 1111 1111 1111 1110

1 0 1 1 1111 1011 0011 1110 1110 0010 0100 1011

2 0 1 1 1111 0010 1011 1100 1101 1001 0010 0001

3 0 1 1 1110 0001 1011 1000 1010 1111 1111 0101

4 0 1 1 1100 0111 1011 0000 0100 0010 0101 1101

5 0 1 1 1000 1011 1010 0001 1001 1001 0000 1101

6 0 1 1 0001 0011 1000 0010 0010 1111 1010 1101

7 0 0 0 0010 0111 0000 0100 0101 1111 0101 1010

...
ADSP-BF51x Blackfin Processor Hardware Reference 22-71

Ethernet MAC Register Definitions
The resulting six MSBs are 101001 = 0x29 = 41 decimal. The hash bin
enable bit for this address is then bit 41 – 32 = 9 of the EMAC_HASHHI
register.

MAC Station Management Address
(EMAC_STAADD) Register

The EMAC_STAADD register, shown in Figure 22-18, controls the transac-
tions between the MII management (MIM) block and the registers on the
external PHY. These transactions are used to appropriately configure the
PHY and monitor its performance.

46 0 1 1 1101 0011 1001 0111 1111 0100 0100 1001

47 1 1 0 1010 0111 0010 1111 1110 1000 1001 0010

Figure 22-18. EMAC_STAADD Register

Table 22-11. CRC-32 Calculation (Continued)

Bit Number Input Bit MSB Bit Feedback Bit Next CRC Shift Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Station Management Address Register (EMAC_STAADD)

STABUSY (STA Busy
Status) - RO

Reset = 0x0000 0000

STAOP (Station Management
Operation Code)
STADISPRE (Disable
Preamble Generation)

PHYAD[4:0] (PHY
Device Address)
REGAD[4:0] (STA Register Address)
STAIE (Station Management
Transfer Done Interrupt Enable)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22-72 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Additional information for the EMAC_STAADD register bits includes:

• Station management transfer done interrupt enable (STAIE)

0 – Interrupt not enabled.

1 – Enables an Ethernet event interrupt at the completion of a sta-
tion management register access
(when STABUSY changes from 1 to 0).

• Disable preamble generation (STADISPRE)

0 – Preamble generation for station management transfers not
disabled.

1 – Preamble generation (32 ones) for station management trans-
fers disabled.

• Station management operation code (STAOP)

0 – Read

1 – Write

• STA busy status (STABUSY)

This bit should be set by the application software in order to initi-
ate a station management register access. This bit is automatically
cleared when the access is complete. The MAC ignores new trans-
fer requests made while the serial interface is busy. Writes to the
STA address or data registers are discarded if STABUSY is 1.

0 – No operation.

1 – Initiate a station management register access across
MDC/MDIO.
ADSP-BF51x Blackfin Processor Hardware Reference 22-73

Ethernet MAC Register Definitions
MAC Station Management Data
(EMAC_STADAT) Register

The EMAC_STADAT register, shown in Figure 22-19, contains either the data
to be written to the PHY register specified in the EMAC_STAADD register, or
the data read from the PHY register whose address is specified in the
EMAC_STAADD register.

MAC Flow Control (EMAC_FLC) Register

The EMAC_FLC register, shown in Figure 22-20, controls the generation
and reception of control frames by the MAC. The control frame fields are
selected as specified in the IEEE 802.3 specification. When flow control is
enabled, the MAC acts upon MAC control pause frames received without
errors. When an error-free MAC control pause frame is received (with
length/type = MacControl = 88-08 and with opcode = pause = 00-01),
the transmitter defers starting new frames for the number of slot times
specified by the pause time field in the control frame.

The MAC can also generate and transmit a MAC control pause frame
when the EMAC_FLC register is written with FLCBUSY = 1 and FLCPAUSE
equal to the number of slot times of deferral being requested.

Figure 22-19. EMAC_STADAT Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Station Management Data Register (EMAC_STADAT)

Reset = 0x0000 0000

STADATA[15:0] (Station
Management Data)
22-74 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Additional information for the EMAC_FLC register bits includes:

• Pause time (FLCPAUSE)

The number of slot times for which the transmission of new frames
is deferred.

• Enable back pressure (BKPRSEN)

Available only in half-duplex mode, this bit can be used as a form
of flow control.

0 – Transmit and receive function is normal.

1 – Prevents frame reception by colliding with (continuously trans-
mitting a jam pattern during) every incoming frame.

Figure 22-20. EMAC_FLC Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Flow Control Register (EMAC_FLC)

FLCBUSY (Flow Control
Busy Status)

Reset = 0x0000 0000

FLCE (Flow Control Enable)
PCF (Pass Control Frames)

FLCPAUSE[15:0] (Pause Time)

BKPRSEN (Enable
Backpressure)
ADSP-BF51x Blackfin Processor Hardware Reference 22-75

Ethernet MAC Register Definitions
• Pass control frames (PCF)

When cleared, the PCF bit causes the frame filter to reject all con-
trol frames (frames with length/type field equal to 88-08). When
cleared, error-free pause control frames are still interpreted (if
enabled by FLCE) but are not delivered via DMA.

0 – Do not pass control frames.

1 – Pass control frames.

• Flow control enable (FLCE)

When set, this bit enables interpretation of MAC control pause
frames that are received without errors.

0 – Flow control not enabled.

1 – Flow control enabled.

• FLC busy status (FLCBUSY)

Setting this bit triggers the MAC to send a control frame. The
MAC automatically clears the FLCBUSY bit once the control frame
has been transferred onto the physical medium. Writes to the
EMAC_FLC register are discarded if FLCBUSY is 1.

0 – No operation.

1 – Initiate sending flow control frame.

MAC VLAN1 Tag (EMAC_VLAN1)
and MAC VLAN2 Tag (EMAC_VLAN2)Registers

The EMAC_VLAN1 register, shown in Figure 22-21, and the EMAC_VLAN2 reg-
ister, shown in Figure 22-22, contain the tag fields used to identify VLAN
frames. The MAC compares the 13th and 14th bytes of the incoming
frame field to the values contained in these registers, so that the 13th
frame byte is compared to the most significant byte of the registers and the
22-76 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
14th frame byte is compared to the least significant byte of the registers. If
a match is found, the appropriate bit is set in the EMAC_RX_STAT register.
The legal length of the frame is then increased from 1518 bytes to either
1522 bytes in the case of a VLAN1 match or 1538 bytes for a VLAN2
match.

Figure 22-21. EMAC_VLAN1 Register

Figure 22-22. EMAC_VLAN2 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC VLAN1 Tag Register (EMAC_VLAN1)

Reset = 0x0000 FFFF

VLAN1TAG[15:0]
(Length/Type Tag)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC VLAN2 Tag Register (EMAC_VLAN2)

Reset = 0x0000 FFFF

VLAN2TAG[15:0]
(Length/Type Tag)
ADSP-BF51x Blackfin Processor Hardware Reference 22-77

Ethernet MAC Register Definitions
MAC Wakeup Frame Control and Status
(EMAC_WKUP_CTL) Register

The EMAC_WKUP_CTL register, shown in Figure 22-23, contains data per-
taining to the MAC’s remote wakeup status and capabilities. A write to
the EMAC_WKUP_CTL register causes an update into the receive clock domain
of all the wakeup filter registers. Changes to these other registers do not
affect the operation of the MAC until the EMAC_WKUP_CTL register is writ-
ten. For this reason, it is recommended that the wakeup filters be
programmed by writing all of the other registers first, and writing the
EMAC_WKUP_CTL register last.

Additional information for the EMAC_WKUP_CTL register bits includes:

• Wakeup frame received status (RWKS)

These four frame status bits flag the receipt of wakeup frames cor-
responding to the respective wakeup frame filters.

Figure 22-23. EMAC_WKUP_CTL Register

MAC Wakeup Frame Control and Status Register (EMAC_WKUP_CTL)

CAPWKFRM (Capture
Wakeup Frames)

Reset = 0x0000 0000

MPKE (Magic Packet Wakeup
Enable)
RWKE (Remote Wakeup
Frame Enable)
GUWKE (Global Uni-
cast Wakeup Enable)

RWKS[3:0] (Wakeup Frame
Received Status) - W1C
MPKS (Magic Packet Received
Status) - W1C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22-78 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
• Magic packet received status (MPKS)

This bit is set by the MAC when it receives the magic packet
received wakeup call. The MAC then resumes operation in the nor-
mal powered-up mode.

0 – Magic packet not received.

1 – Magic packet received.

• Global unicast wake enable (GUWKE)

When set, configures the MAC to wake up from the power-down
mode on receipt of a global unicast frame. Such a frame has the
MAC address [1:0] bits cleared.

0 – Global unicast wake not enabled.

1 – Global unicast wake enabled.

• Remote wakeup frame enable (RWKE)

When set, this bit enables the remote wakeup frame power-down
mode.

 0 – Remote wakeup frame not enabled.

1 – Remote wakeup frame enabled.

• Magic packet wakeup enable (MPKE)

When set, this bit enables the magic packet wakeup power-down
mode.

0 – Magic packet wakeup not enabled.

1 – Magic packet wakeup enabled.
ADSP-BF51x Blackfin Processor Hardware Reference 22-79

Ethernet MAC Register Definitions
• Capture wakeup frames (CAPWKFRM)

 0 – The RX DMA pathway is disabled when MPKE or RWKE is set.

1 – RX frames are delivered via DMA while in power-down mode
(when either MPKE or RWKE is set).

MAC Wakeup Frame0 Byte Mask (EMAC_WKUP_FFMSK0)
MAC Wakeup Frame1 Byte Mask (EMAC_WKUP_FFMSK1)
MAC Wakeup Frame2 Byte Mask (EMAC_WKUP_FFMSK2)
MAC Wakeup Frame3 Byte Mask (EMAC_WKUP_FFMSK3)
Registers

The EMAC_WKUP_FFMSK0, EMAC_WKUP_FFMSK1, EMAC_WKUP_FFMSK2, and
EMAC_WKUP_FFMSK3 registers (see Figure 22-24 through Figure 22-27) are a
part of the mechanism used to select which bytes in a received frame are
used for CRC computation. Each bit in these registers functions as a byte
enable. If a bit i is set, then the byte (offset + i) is used for CRC computa-
tion, where offset is contained in the EMAC_WKUP_FFOFF register.

For example, to identify a wakeup packet containing the byte sequence
(0x80, 0x81, 0x82) in bytes 14, 15, and 17, the EMAC_WKUP_FFOFF register
should be set to 14 and the byte mask should be set to 0x000B. This byte
mask has bits 0, 1, and 3 set, so that bytes 14+0, 14+1, and 14+3 are
selected.
22-80 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Figure 22-24. EMAC_WKUP_FFMSK0 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Wakeup Frame0 Byte Mask Register (EMAC_WKUP_FFMSK0)

Reset = 0x0000 0000

Byte Enable 16

Byte Enable 28

Byte Enable 29

Byte Enable 30

Byte Enable 31

Byte Enable 17

Byte Enable 18

Byte Enable 19

Byte Enable 20

Byte Enable 21

Byte Enable 22

Byte Enable 23

Byte Enable 27

Byte Enable 26

Byte Enable 25

Byte Enable 24

Byte Enable 0

Byte Enable 12

Byte Enable 13

Byte Enable 14

Byte Enable 15

Byte Enable 1

Byte Enable 2

Byte Enable 3

Byte Enable 4

Byte Enable 5

Byte Enable 6

Byte Enable 7

Byte Enable 11

Byte Enable 10

Byte Enable 9

Byte Enable 8
ADSP-BF51x Blackfin Processor Hardware Reference 22-81

Ethernet MAC Register Definitions
Figure 22-25. EMAC_WKUP_FFMSK1 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Wakeup Frame1 Byte Mask Register (EMAC_WKUP_FFMSK1)

Reset = 0x0000 0000

Byte Enable 16

Byte Enable 28

Byte Enable 29

Byte Enable 30

Byte Enable 31

Byte Enable 17

Byte Enable 18

Byte Enable 19

Byte Enable 20

Byte Enable 21

Byte Enable 22

Byte Enable 23

Byte Enable 27

Byte Enable 26

Byte Enable 25

Byte Enable 24

Byte Enable 0

Byte Enable 12

Byte Enable 13

Byte Enable 14

Byte Enable 15

Byte Enable 1

Byte Enable 2

Byte Enable 3

Byte Enable 4

Byte Enable 5

Byte Enable 6

Byte Enable 7

Byte Enable 11

Byte Enable 10

Byte Enable 9

Byte Enable 8
22-82 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Figure 22-26. EMAC_WKUP_FFMSK2 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Wakeup Frame2 Byte Mask Register (EMAC_WKUP_FFMSK2)

Reset = 0x0000 0000

Byte Enable 16

Byte Enable 28

Byte Enable 29

Byte Enable 30

Byte Enable 31

Byte Enable 17

Byte Enable 18

Byte Enable 19

Byte Enable 20

Byte Enable 21

Byte Enable 22

Byte Enable 23

Byte Enable 27

Byte Enable 26

Byte Enable 25

Byte Enable 24

Byte Enable 0

Byte Enable 12

Byte Enable 13

Byte Enable 14

Byte Enable 15

Byte Enable 1

Byte Enable 2

Byte Enable 3

Byte Enable 4

Byte Enable 5

Byte Enable 6

Byte Enable 7

Byte Enable 11

Byte Enable 10

Byte Enable 9

Byte Enable 8
ADSP-BF51x Blackfin Processor Hardware Reference 22-83

Ethernet MAC Register Definitions
Figure 22-27. EMAC_WKUP_FFMSK3 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Wakeup Frame3 Byte Mask Register (EMAC_WKUP_FFMSK3)

Reset = 0x0000 0000

Byte Enable 16

Byte Enable 28

Byte Enable 29

Byte Enable 30

Byte Enable 31

Byte Enable 17

Byte Enable 18

Byte Enable 19

Byte Enable 20

Byte Enable 21

Byte Enable 22

Byte Enable 23

Byte Enable 27

Byte Enable 26

Byte Enable 25

Byte Enable 24

Byte Enable 0

Byte Enable 12

Byte Enable 13

Byte Enable 14

Byte Enable 15

Byte Enable 1

Byte Enable 2

Byte Enable 3

Byte Enable 4

Byte Enable 5

Byte Enable 6

Byte Enable 11

Byte Enable 10

Byte Enable 9

Byte Enable 8 Byte Enable 7
22-84 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
MAC Wakeup Frame Filter Commands
(EMAC_WKUP_FFCMD) Register

The EMAC_WKUP_FFCMD register, shown in Figure 22-28, regulates which of
the four frame filter registers are enabled and if so, whether they are con-
figured for unicast or multicast address filtering.

Additional information for the EMAC_WKUP_FFCMD register bits includes:

• Wakeup filter 3 address type

0 – Unicast

1 – Multicast

• Enable wakeup filter 3

0 – Wakeup filter 3 not enabled.

1 – Wakeup filter 3 enabled.

Figure 22-28. EMAC_WKUP_FFCMD Register

MAC Wakeup Frame Filter Commands Register (EMAC_WKUP_FFCMD)

Enable Wakeup Filter 0

Reset = 0x0000 0000

Wakeup Filter 0 Address
Type

Wakeup Filter 1 Address
Type
Enable Wakeup Filter 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Enable Wakeup Filter 2
Wakeup Filter 2 Address
Type

Wakeup Filter 3 Address
Type
Enable Wakeup Filter 3
ADSP-BF51x Blackfin Processor Hardware Reference 22-85

Ethernet MAC Register Definitions
• Wakeup filter 2 address type

0 – Unicast

1 – Multicast

• Enable wakeup filter 2

0 – Wakeup filter 2 not enabled.

1 – Wakeup filter 2 enabled.

• Wakeup filter 1 address type

0 – Unicast

1 – Multicast

• Enable wakeup filter 1

0 – Wakeup filter 1 not enabled.

1 – Wakeup filter 1 enabled.

• Wakeup filter 0 address type

0 – Unicast

1 – Multicast

• Enable wakeup filter 0

0 – Wakeup filter 0 not enabled.

1 – Wakeup filter 0 enabled.
22-86 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Ethernet MAC Wakeup Frame Filter Offsets
(EMAC_WKUP_FFOFF) Register

The EMAC_WKUP_FFOFF register, shown in Figure 22-29, contains the byte
offsets for CRC computation to be performed on potential wakeup
frames.

MAC Wakeup Frame Filter CRC0/1 (EMAC_WKUP_FFCRC0)
and CRC2/3 (EMAC_WKUP_FFCRC1) Registers

The EMAC_WKUP_FFCRC0 register, shown in Figure 22-30, and the
EMAC_WKUP_FFCRC1 register, shown in Figure 22-31, should be loaded with
the results of the CRC computations for the relevant wakeup frame bytes.
See “Remote Wake-up Filters” on page 22-34.

Figure 22-29. EMAC_WKUP_FFOFF Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC Wakeup Frame Filter Offsets Register (EMAC_WKUP_FFOFF)

Wakeup Filter 0
Pattern Offset[7:0]

Reset = 0x0000 0000

Wakeup Filter 1
Pattern Offset[7:0]

Wakeup Filter 2
Pattern Offset[7:0]

Wakeup Filter 3
Pattern Offset[7:0]
ADSP-BF51x Blackfin Processor Hardware Reference 22-87

Ethernet MAC Register Definitions
System Interface Register Group
The SIF block registers control and monitor the MAC’s interactions with
the Blackfin processor peripheral subsystem and the external PHY. The
SIF block has several frame status registers whose bit descriptions can be
found in “Ethernet MAC Frame Status Registers” on page 22-92.

Figure 22-30. EMAC_WKUP_FFCRC0 Register

Figure 22-31. EMAC_WKUP_FFCRC1 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Wakeup Frame Filter CRC0/1 Register (EMAC_WKUP_FFCRC0)

Wakeup Filter 0
Pattern CRC[15:0]

Reset = 0x0000 0000

Wakeup Filter 1
Pattern CRC[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Wakeup Frame Filter CRC2/3 Register (EMAC_WKUP_FFCRC1)

Wakeup Filter 2
Pattern CRC[15:0]

Reset = 0x0000 0000

Wakeup Filter 3
Pattern CRC[15:0]
22-88 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
MAC System Control (EMAC_SYSCTL) Register

The EMAC_SYSCTL register, shown in Figure 22-32, is used to set up MAC
controls.

Additional information for the EMAC_SYSCTL register bits includes:

• SCLK:MDC clock divisor (MDCDIV[5:0])

This field contains the clock divisor that determines the ratio
between the Blackfin system clock (SCLK) and the MAC data clock
(MDC). The 6-bit ratio N determines the MDC rate as:

MDC = SCLK/(2 x (N + 1)).

• Transmit frame DMA word alignment (TXDWA)

This bit determines whether outgoing frame data is aligned on odd
or even 16-bit boundaries in memory.

0 – Odd word alignment.

1 – Even word alignment.

Figure 22-32. EMAC_SYSCTL Register

MAC System Control Register (EMAC_SYSCTL)

PHYIE (PHYINT Interrupt
Enable)

Reset = 0x0000 3F00

RXDWA (Receive Frame
DMA Word Alignment)

MDCDIV[5:0] (SCLK:MDC
Clock Divisor)
TXDWA (Transmit Frame DMA Word
Alignment)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RXCKS (Enable Receive Frame TCP/UDP
Checksum Computation)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 1 1 1 1 1 1 0 0 0 0 0 0 0
ADSP-BF51x Blackfin Processor Hardware Reference 22-89

Ethernet MAC Register Definitions
• Enable receive frame TCP/UDP checksum computation (RXCKS)

0 – Receive frame TCP/UDP checksum computation not enabled.

1 – TCP/UDP checksum computation on received frames enabled.

• Receive frame DMA word alignment (RXDWA)

This bit determines whether incoming frames are aligned on odd or
even 16-bit boundaries in memory.

0 – Even word alignment.

1 – Odd word alignment.

• PHYINT interrupt enable (PHYIE)

0 – PHYINT interrupt not enabled.

1 – PHYINT interrupt enabled.

MAC System Status (EMAC_SYSTAT) Register

The EMAC_SYSTAT register, shown in Figure 22-33, contains a range of
interrupt status bits that signal the occurrence of significant Ethernet
events to the application. Detailed descriptions of the functionality can be
found in the section entitled “Ethernet Event Interrupts” on page 22-38.

Additional information for the EMAC_SYSTAT register bits includes:

• Station management transfer done interrupt status ()

This bit is set when a station management transfer on
MDC/MDIO has completed, provided the STAIE interrupt enable
control bit is set in the EMAC_STAADD register.
22-90 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
• TX DMA direction error status (TXDMAERR)

This bit is set if a TX data or status DMA request is granted by the
DMA channel with transfer in the wrong direction. Data should be
memory-read, status should be memory-write. This interrupt is
non-maskable in the Ethernet MAC.

• RX DMA direction error status (RXDMAERR)

This bit it set if an RX data or status DMA request is granted by
the DMA channel with transfer in the wrong (memory-read) direc-
tion. This interrupt is non-maskable in the Ethernet MAC.

• Wakeup detected status (WAKEDET)

To clear this bit, write 1 to the EMAC_WKUP_CTL register.

0 – Wakeup not detected.

1 – Wakeup detected.

Figure 22-33. EMAC_SYSTAT Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC System Status Register (EMAC_SYSTAT)

PHYINT (PHYINT Interrupt
Status) - W1C

Reset = 0x0000 0000

MMCINT (MMC Counter
Interrupt Status) - RO

STMDONE (Station Management
Transfer Done Interrupt Status) -
W1C
TXDMAERR (TX DMA Direction
Error Status) - W1C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RXFSINT (RX Frame-Status
Interrupt Status) - RO
TXFSINT (TX Frame-Status
Interrupt Status) - RO

RXDMAERR (RX DMA Direc-
tion Error Status) - W1C
WAKEDET (Wake-up
Detected Status) - RO
ADSP-BF51x Blackfin Processor Hardware Reference 22-91

Ethernet MAC Register Definitions
• TX frame-status interrupt status (TXFSINT)

To clear this bit, write 1s to the EMAC_RX_STKY register bits.

0 – TX frame-status interrupt has not occurred.

1 – TX frame-status interrupt has occurred.

• RX frame-status interrupt status (RXFSINT)

To clear this bit, write 1s to the EMAC_RX_STKY register bits.

0 – RX frame-status interrupt has not occurred.

1 – RX frame-status interrupt has occurred.

• MMC counter interrupt status (MMCINT)

To clear this bit, write 1 to the EMAC_MMC_RIRQS or EMAC_MMC_TIRQS
register.

0 – MMC counter interrupt has not occurred.

1 – MMC counter interrupt has occurred.

• PHYINT interrupt status (PHYINT)

0 – PHYINT interrupt has not occurred.

1 – PHYINT interrupt has occurred.

Ethernet MAC Frame Status Registers
The Ethernet MAC frame status registers keep track of the status of each
frame received or transmitted, as well as the status of MMC interrupts.
22-92 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Ethernet MAC RX Current Frame Status
(EMAC_RX_STAT) Register

The EMAC_RX_STAT register, shown in Figure 22-34, tells the status of the
most recently completed receive frame, including type of error for cases
where an error occurs. When the receive complete bit is set, exactly one of
bits 13 through 20 is 1. Bits 13 through 20 indicate the receive status as
defined in IEEE 802.3, section 4.3.2. In case of multiple errors, errors are
prioritized in the order listed in Table 22-4 on page 22-20. Bits 18 and 19
identify frames which are not considered received by the station and also
are not considered errors. (See section 4.1.2.1.2 and section 4.2.4.2.2 of
IEEE 802.3.) Bit 20 identifies frames damaged within the MAC sublayer.

Note if the PB (pass bad frames) bit is 0, then delivery via DMA of frames
with status bits 14 through 18 or 20 is cancelled. The DMA buffer is
reused for the next frame. If the PR (promiscuous) bit is 0, then frames
with bit 19 set are not delivered (the DMA is never initiated).

Additional information for the EMAC_RX_STAT register bits includes:

• Receive frame accepted (RX_ACCEPT)

0 – Receive frame not accepted.

1 – The receive frame was accepted, based on the address filter
result and the frame filtering modes in the EMAC_OPMODE register.
Note that this does not imply a status of receiveOK. If the RA
(receive all) control bit is 0, then the only frames delivered by
DMA are the frames whose receive frame accepted status bit is 1.

• VLAN2 frame (RX_VLAN2)

0 – The frame does not meet those conditions.

1 – The frame is a valid tagged frame with a length/type field
matching the EMAC_VLAN2 register, and with status of receiveOK.
ADSP-BF51x Blackfin Processor Hardware Reference 22-93

Ethernet MAC Register Definitions
• VLAN1 frame (RX_VLAN1)

0 – The frame does not meet those conditions.

1 – The frame is a valid tagged frame with a length/type field
matching the EMAC_VLAN1 register, and with status of receiveOK.

• Frame type (RX_TYPE)

0 – The frame is not of that type.

1 – The frame is a valid typed frame, with status of receiveOK and
with a length/type field greater than or equal to 0x600.

Figure 22-34. EMAC_RX_STAT Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC RX Current Frame Status Register (EMAC_RX_STAT)
All bits in this register are RO.

RX_FRLEN[10:0]
(Frame Length)

Reset = 0x0000 0000

RX_COMP (Receive
Complete)

RX_ALIGN
(Alignment Error)

RX_LONG (Frame
Too Long)
RX_OK (Receive OK)

RX_CRC (Frame CRC
Error)

RX_TYPE (Frame Type)

RX_VLAN1 (VLAN1
Frame)

RX_VLAN2 (VLAN2
Frame)

RX_ACCEPT
(Receive Frame
Accepted) RX_LEN (Length Error)

RX_FRAG (Frame
Fragment)
RX_ADDR (Address
Filter Failed)
RX_DMAO (DMA
Overrun)
RX_PHY (PHY Error)

RX_LATE (Late
Collision Seen)
RX_RANGE (Out of
Range Length Field)

RX_UCTL (Unsupported
Control Frame)
RX_CTL (Control Frame)
RX_BROAD, RX_MULTI (RX
Broadcast, RX Multicast)
22-94 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
• Unsupported control frame (RX_UCTL)

0 – The frame does not meet those conditions.

1 – The frame is a valid MAC control frame (with status of
receiveOK and with a length/type field equal to
802.3_MAC_Control, 88-08), but does not contain the pause
opcode, or is not 64 bits in length, or is received in half-duplex
mode.

• Control frame (RX_CTL)

1 – The frame is a valid MAC control frame in full duplex mode
with status of receiveOK, with a length/type field equal to
MAC_Control, 88-08, with length of 64 bytes, and with a MAC
control opcode field equal to the pause opcode (00-01).

0 – The frame does not meet those conditions.

• RX broadcast, RX multicast (RX_BROAD, RX_MULTI)

00 – Unicast address

01 – Group address

10 – Broadcast address

11 – Illegal

• Out of range length field (RX_RANGE)

0 – The frame’s length was not out of range.

1 – The frame’s length/type field was consistent with the length
interpretation (<1536 = 0x600) but was greater than the maximum
allowable frame size in bytes, as indicated by the frame too long
bit).
ADSP-BF51x Blackfin Processor Hardware Reference 22-95

Ethernet MAC Register Definitions
• Late collision seen (RX_LATE)

0 – Late collision not detected.

1 – A collision was detected after the first 64 bytes of the packet.

• PHY error (RX_PHY)

0 – No PHY error.

1 – RX_ER was asserted at some time during the frame. This condi-
tion always causes the FCS check to fail.

• DMA overrun (RX_DMAO)

0 – No DMA overrun.

1 – The received frame was truncated due to failure of the
FIFO/DMA channel to continuously store data during DMA
transfer to memory.

• Address filter failed (RX_ADDR)

0 – Address did not fail.

1 – The destination address did not pass the address filters speci-
fied by the station MAC address, the EMAC_HASHLO/EMAC_HASHHI
registers, and the filter modes in the EMAC_OPMODE register.

• Frame fragment (RX_FRAG)

0 – Frame length was at least 64 bytes.

1 – Frame length was less than the minimum frame size (64 bytes).
22-96 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
• Length error (RX_LEN)

0 – No frame length error.

1 – The frame’s length/type field does not match the length of
received data and is consistent with the length interpretation
(< 0x600), although the frame had no “frame too long” errors and
had a valid FCS.

• Frame CRC error (RX_CRC)

0 – No frame CRC error.

1 – The frame failed FCS validation, but had neither a “frame too
long” error nor a partial number of octets. Note if RX_ER is asserted
by the PHY during frame reception, the FCS validation will fail.

• Alignment error (RX_ALIGN)

0 – No alignment error.

1 – The frame ended with a partial octet and failed RCS validation,
but had no frame too long error.

• Frame too long (RX_LONG)

0 – Frame is not too long.

1 – The number of octets received is greater than the maximum
Ethernet frame size. Maximum frame size is 1522 bytes for a frame
whose length/type field matches the EMAC_VLAN1 register, 1538
bytes for a frame whose length/type field matches the EMAC_VLAN2
register, or 1518 for all other frames. The frame data delivered by
DMA is truncated to 1556 (0x614) bytes in all cases.
ADSP-BF51x Blackfin Processor Hardware Reference 22-97

Ethernet MAC Register Definitions
• Receive OK (RX_OK)

0 – A receive error occurred.

1 – There was no receive error.

• Receive complete (RX_COMP)

This bit is cleared on reset and when the MAC RX is enabled
(RE changes from 0 to 1). Frames that fail the address filter or the
frame filter are not delivered by DMA, unless overridden by the
RA (receive all) control bit. Note that in the RX frame status buffer
written to memory by DMA, the receive complete bit is always 1.
This bit acts as a semaphore, indicating that DMA of the frame has
completed.

0 – The first RX frame is not yet complete.

1 – The first RX frame is complete.

• Frame length (RX_FRLEN)

The number of bytes in the frame. If the ASTP bit is set, the pad
and FCS are not included in the length.
22-98 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Ethernet MAC RX Sticky Frame Status
(EMAC_RX_STKY) Register

The EMAC_RX_STKY register, shown in Figure 22-35, accumulates state
across multiple frames, unless software clears it after every frame.

Figure 22-35. EMAC_RX_STKY Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC RX Sticky Frame Status Register (EMAC_RX_STKY)
All bits in this register are W1C.

Reset = 0x0000 0000

RX_COMP (Frames
Received)RX_ALIGN

(Alignment Errors
Detected)
RX_LONG (Frame Too
Long Errors Detected)

RX_OK (Frames
Received OK)

RX_CRC (Frame CRC
Errors Detected)

RX_TYPE (Typed Frames
Detected)

RX_VLAN1 (VLAN1
Frames Detected)

RX_VLAN2 (VLAN2
Frames Detected)

RX_ACCEPT
(Receive Frames
Passed Frame
Filter) RX_LEN (Length

Errors Detected)
RX_FRAG (Frame
Fragments Detected)
RX_ADDR (Address Fil-
ter Failures Detected)
RX_DMAO (DMA Over-
runs Detected)
RX_PHY (PHY Errors
Detected)
RX_LATE (Late Colli-
sions Detected)

RX_UCTL (Unsupported
Control Frames Detected)
RX_CTL (Control Frames
Detected)
RX_BROAD (Broadcast Frames
Detected)
RX_MULTI (Multicast Frames
Detected)

RX_RANGE (Out of
Range Length Fields
Detected)
ADSP-BF51x Blackfin Processor Hardware Reference 22-99

Ethernet MAC Register Definitions
Additional information for the EMAC_RX_STKY register bits includes:

• Receive frames passed frame filter (RX_ACCEPT)

0 – No receive frames passed the frame filter.

1 – At least one receive frame passed the frame filter.

• VLAN2 frames detected (RX_VLAN2)

0 – No VLAN2 frames were detected.

1 – At least one VLAN2 frame was detected.

• VLAN1 frames detected (RX_VLAN1)

0 – No VLAN1 frames were detected.

1 – At least one VLAN1 frame was detected.

• Typed frames detected (RX_TYPE)

0 – No typed frames were detected.

1 – At least one typed frame was detected.

• Unsupported control frames detected (RX_UCTL)

0 – No unsupported control frames were detected.

1 – At least one unsupported control frame was detected.

• Control frames detected (RX_CTL)

0 – No control frames were detected.

1 – At least one control frame was detected.
22-100 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
• Broadcast frames detected (RX_BROAD)

0 – No broadcast frames were detected.

1 – At least one broadcast frame was detected.

• Multicast frames detected (RX_MULTI)

0 – No multicast frames were detected.

1 – At least one multicast frame was detected.

• Out of range length fields detected (RX_RANGE)

0 – No out of range length fields were detected.

1 – At least one out of range length field was detected.

• Late collisions detected (RX_LATE)

0 – No late collisions were detected.

1 – At least one collision was detected after the first 64 bytes of the
packet.

• PHY errors detected (RX_PHY)

0 – No PHY errors were detected.

1 – At least one PHY error was detected.

• DMA overruns detected (RX_DMAO)

0 – No DMA overruns were detected.

1 – At least one DMA overrun was detected.

• Address filter failures detected (RX_ADDR)

0 – No address filter failures were detected.

1 – At least one address filter failure was detected.
ADSP-BF51x Blackfin Processor Hardware Reference 22-101

Ethernet MAC Register Definitions
• Frame fragments detected (RX_FRAG)

0 – No frame fragments were detected.

1 – At least one frame fragment was detected.

• Length errors detected (RX_LEN)

0 – No length errors were detected.

1 – At least one length error was detected.

• Frame CRC errors detected (RX_CRC)

0 – No frame CRC errors were detected.

1 – At least one CRC error was detected.

• Alignment errors detected (RX_ALIGN)

0 – No alignment errors were detected.

1 – At least one alignment error was detected.

• Frame too long errors detected (RX_LONG)

0 – No frame too long errors were detected.

1 – At least one frame too long error was detected.
22-102 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
• Frames received OK (RX_OK)

This bit can be used to generate an interrupt on the next RX frame.

0 – No good frames have been received.

1 – At least one frame has been received OK.

• Frames received (RX_COMP)

0 – No frames were received.

1 – At least one frame (good or bad) was received.
ADSP-BF51x Blackfin Processor Hardware Reference 22-103

Ethernet MAC Register Definitions
Ethernet MAC RX Frame Status Interrupt Enable
(EMAC_RX_IRQE) Register

The EMAC_RX_IRQE register, shown in Figure 22-36, enables the frame sta-
tus interrupts.

Figure 22-36. EMAC_RX_IRQE Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC RX Frame Status Interrupt Enable Register (EMAC_RX_IRQE)
For all bits, 1 = Interrupt enabled, 0 = Interrupt not enabled.

Reset = 0x0000 0000

RX_COMP (Received
Frame Interrupt Enable)

RX_ALIGN (Align-
ment Error Interrupt
Enable)
RX_LONG (Frame Too
Long Error Interrupt
Enable)

RX_OK (Good Received
Frame Interrupt Enable)

RX_CRC (Frame CRC Error
Interrupt Enable)

RX_TYPE (Typed Frame
Interrupt Enable)

RX_VLAN1 (VLAN1 Frame
Interrupt Enable)

RX_VLAN2 (VLAN2
Frame Interrupt
Enable)

RX_ACCEPT
(Received Filtered
Frame Interrupt
Enable)

RX_LEN (Length Error
Interrupt Enable)

RX_FRAG (Frame Fragment
Interrupt Enable)
RX_ADDR (Address Filter
Failure Interrupt Enable)

RX_DMAO (DMA Overrun
Interrupt Enable)

RX_PHY (PHY Error Interrupt
Enable)

RX_LATE (Late Collision
Interrupt Enable)

RX_UCTL (Unsupported
Control Frame Interrupt Enable)
RX_CTL (Control Frame
Interrupt Enable)

RX_BROAD (Broadcast Frame
Interrupt Enable)
RX_MULTI (Multicast Frame
Interrupt Enable)

RX_RANGE (Out of Range
Length Field Interrupt
Enable)
22-104 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Ethernet MAC TX Current Frame Status (EMAC_TX_STAT)
Register

The EMAC_TX_STAT register, shown in Figure 22-37, tells the status of the
most recently completed transmit frame, including type of error for cases
where an error occurred. When the transmit complete bit is set, exactly
one of bits 2, 3, 4, 13, or 14 is 1. Bits 1 through 3 indicate the transmit
status as defined in IEEE 802.3, section 4.3.2.

Additional information for the EMAC_TX_STAT register bits includes:

• TX frame length (TX_FRLEN)

This field contains the length of the transmit frame in bytes.

Figure 22-37. EMAC_TX_STAT Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC TX Current Frame Status Register (EMAC_TX_STAT)
All bits in this register are RO.

Reset = 0x0000 0000

TX_DEFER
(Deferred)

TX_RETRY (Late
Collision
Observed)
TX_LOSS (Loss of
Carrier)

TX_CRS (No
Carrier)

TX_FRLEN[10:0] (Fram
Length)

TX_COMP (Transmit
Complete)
TX_OK (Transmit OK)

TX_ECOLL (Excessive
Collision Error)
TX_LATE (Late Collision
Error)

TX_DMAU (DMA
Underrun)
TX_EDEFER (Exces-
sive Deferral)
TX_MULTI, TX_BROAD
(TX Multicast, TX
Broadcast)

TX_CCNT[3:0] (Collision
Count)
ADSP-BF51x Blackfin Processor Hardware Reference 22-105

Ethernet MAC Register Definitions
• Late collision observed (TX_RETRY)

0 – No late collision occurred.

1 – A late collision occurred, but the frame transmission was suc-
cessful after retry.

• Loss of carrier (TX_LOSS)

0 – No loss of carrier occurred.

1 – The carrier sense transitioned from asserted to deasserted at
some time during the frame transmission. Half-duplex only, MII
mode only.

• No carrier (TX_CRS)

0 – CRS was asserted.

1 – Carrier sense (CRS) was not asserted at any time during frame
transmission. Half-duplex only.

• Deferred (TX_DEFER)

0 – Transmission not deferred.

1 – The transmission was deferred in half-duplex mode because the
medium was initially occupied (CRS was asserted) at the time the
frame was ready to transmit (after the initial frame data was trans-
ferred by DMA to the MAC). Note the deferred status bit should
be expected to be 1 on frames that have been retried after early col-
lisions, since the MAC can restart the frame immediately after a
collision using data available in its local FIFO. Since the MAC does
not need to wait for DMA, the frame data is typically ready for
retransmission before TXEN and CRS have deasserted from the prior
attempt. Half-duplex only.
22-106 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
• Collision count (TX_CCNT)

This field contains the number of collisions that occurred during
frame transmission.

• TX broadcast, TX multicast (TX_BROAD, TX_MULTI)

00 – Unicast address

01 – Broadcast address

10 – Group address

11 – Illegal

• Excessive deferral (TX_EDEFER)

0 – Excessive deferral did not occur.

1 – The frame transmission was deferred for more than 24,288 bit
times or 6072 TX clocks:

MaxDeferTime = 2 x (MaxUntaggedFrameSize x 8) bits

If the deferral check (DC) bit in the EMAC_OPMODE register is 1, frame
transmission is aborted upon excessive deferral, and both the exces-
sive deferral and excessive collision error status bits are set.

• DMA underrun (TX_DMAU)

0 – No DMA underrun.

1 – The frame transmission was interrupted by a failure of the
FIFO/DMA channel to continuously supply frame data after the
start of transmission on the MII/RMII.
ADSP-BF51x Blackfin Processor Hardware Reference 22-107

Ethernet MAC Register Definitions
• Late collision error (TX_LATE)

0 – No late collision error.

1 – Frame transmission failed because a collision occurred after the
end of the collision window (512 bit times) and the LCRTE bit was
clear, disabling frame transmission retry.

• Excessive collision error (TX_ECOLL)

0 – No excessive collision error.

1 – Frame transmission failed because too many (16) attempts were
interrupted by collisions, or because the frame was deferred for
more than the maximum deferral time while the deferral check (DC)
control bit was set.

• Transmit OK (TX_OK)

0 – A transmit error occurred.

1 – There was no transmit error.

• Transmit complete (TX_COMP)

This bit is cleared on reset and when the MAC TX is enabled (TE
changes from 0 to 1). In the TX DMA status buffer, this bit is
always set to 1 on every status word written via DMA. This bit thus
acts as a semaphore, indicating to software that processing of this
descriptor pair has been completed.

0 – The first TX frame is not yet complete.

1 – The first TX frame is complete.
22-108 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Ethernet MAC TX Sticky Frame Status
(EMAC_TX_STKY) Register

The EMAC_TX_STKY register, shown in Figure 22-38, accumulates state
across multiple frames, unless software clears it after every frame.

Additional information for the EMAC_TX_STKY register bits includes:

• Late collisions detected (TX_RETRY)

0 – No late collisions were detected.

1 – At least one late collision was detected on frames successfully
transmitted after retry.

Figure 22-38. EMAC_TX_STKY Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC TX Sticky Frame Status Register (EMAC_TX_STKY)
All bits in this register are W1C.

Reset = 0x0000 0000

TX_DEFER (Frame Deferrals
Detected)

TX_RETRY (Late
Collisions
Detected)
TX_LOSS (Losses of
Carrier Detected)
TX_CRS (No Carrier
Detected)

TX_COMP (Frame Trans-
missions Complete)
TX_OK (Frames
Transmitted OK)

TX_ECOLL (Exces-
sive Collision Errors
Detected)
TX_LATE (Late Collision
Errors Detected)
TX_MACE (Internal MAC
Errors Detected)
TX_EDEFER (Excessive
Deferrals Detected)

TX_BROAD (TX Broadcast Frames Detected)
TX_MULTI (Multicast Frames Detected)
ADSP-BF51x Blackfin Processor Hardware Reference 22-109

Ethernet MAC Register Definitions
• Losses of carrier detected (TX_LOSS)

0 – No losses of carrier were detected.

1 – At least one loss of carrier was detected

• No carrier detected (TX_CRS)

0 – No instances of no carrier were detected.

1 – At least one occasion of no carrier was detected.

• Frame deferrals detected (TX_DEFER)

0 – No frame deferrals were detected.

1 – At least one frame deferral was detected.

• TX multicast frames detected (TX_MULTI)

0 – No multicast frames were detected.

1 – At least one multicast frame was detected.

• TX broadcast frames detected (TX_BROAD)

0 – No broadcast frames were detected.

1 – At least one broadcast frame was detected.

• Excessive deferrals detected (TX_EDEFER)

0 – No excessive deferrals were detected.

1 – At least one excessive deferral was detected.

• Internal MAC errors detected (TX_MACE)

0 – No internal MAC errors were detected.

1 – At least one internal MAC error was detected.
22-110 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
• Late collision errors detected (TX_LATE)

0 – No late collision errors were detected.

1 – At least one late collision error was detected.

• Excessive collision errors detected (TX_ECOLL)

0 – No excessive collision errors were detected.

1 – At least one excessive collision error detected.

• Frame transmissions complete (TX_COMP)

0 – No frames have been transmitted.

1 – At least one frame was transmitted.

• Frames transmitted OK (TX_OK)

This bit can be used to generate an interrupt at the completion of
each TX frame.

0 – No good frames have been transmitted.

1 – At least one frame has been transmitted OK.
ADSP-BF51x Blackfin Processor Hardware Reference 22-111

Ethernet MAC Register Definitions
Ethernet MAC TX Frame Status Interrupt Enable
(EMAC_TX_IRQE) Register

The EMAC_TX_IRQE register, shown in Figure 22-39, is used to enable TX
frame status interrupts.

Ethernet MAC MMC RX Interrupt Status
(EMAC_MMC_RIRQS) Register

The EMAC_MMC_RIRQS register, shown in Figure 22-40, indicates which of
the receive MAC management counters have incremented past one-half of
maximum range. Each bit is set from 0 to 1 when the corresponding coun-
ter increments from a value less than 0x8000 0000 to a value greater than
or equal to 0x8000 0000 (regardless of the state of the EMAC_MMC_RIRQE
register). Bits in this register are cleared by writing a 1; writing zero has no
effect. For more information, see “MAC Management Counters” on
page 22-42.

Figure 22-39. EMAC_TX_IRQE Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC TX Frame Status Interrupt Enable Register (EMAC_TX_IRQE)
For all bits, 1 = Interrupt enabled, 0 = Interrupt not enabled.

Reset = 0x0000 0000

TX_DEFER (Frame Deferral
Interrupt Enable)

TX_RETRY (Late
Collision Interrupt
Enable)
TX_LOSS (Loss of
Carrier Interrupt
Enable)
TX_CRS (No Carrier
Interrupt Enable)

TX_COMP (Frame Transmit
Complete Interrupt Enable)
TX_OK (Frame Transmit OK
Interrupt Enable)
TX_ECOLL (Excessive
Collision Error Interrupt
Enable)
TX_LATE (Late Collision
Error Interrupt Enable)
TX_MACE (Internal MAC
Error Interrupt Enable)
TX_EDEFER (Excessive
Deferral Interrupt Enable)

TX_BROAD (TX Broadcast Frame
Interrupt Enable)

TX_MULTI (TX Multicast Frame
Interrupt Enable)
22-112 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Figure 22-40. EMAC_MMC_RIRQS Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC MMC RX Interrupt Status Register (EMAC_MMC_RIRQS)
All bits are W1C. For all bits, 1 = Interrupt occurred, 0 = Interrupt did not occur.

Reset = 0x0000 0000

RX_TYPED_CNT (Typed
Frames Received Counter
Interrupt)

RX_LT256_CNT (Frames Length 128-255
Received Counter Interrupt)

RX_LT512_CNT (Frames Length 256-511
Received Counter Interrupt)

RX_LT1024_CNT (Frames Length
512-1023 Received Counter Interrupt)

RX_GE1024_CNT (Frames Length
1024-Max Received Counter Interrupt)

RX_SHORT_CNT (Frames
Length Less Than 64
Received Counter
Interrupt)

RX_EQ64_CNT (Frames
Length Equal to 64
Received Counter
Interrupt)
RX_LT128_CNT (Frames
Length 65-127 Received
Counter Interrupt)

RX_OK_CNT (Frames
Received OK Counter
Interrupt)
RX_FCS_CNT (Frame Check
Sequence Errors Counter
Interrupt)
RX_ALIGN_CNT (Align-
ment Errors Counter
Interrupt)
RX_OCTET_CNT
(Octets Received OK
Counter Interrupt)
RX_LOST_CNT
(Frames Lost Due to Int
MAC Receive Error
Counter Interrupt)
RX_UNI_CNT (Unicast
Frames Received OK
Counter Interrupt)
RX_MULTI_CNT (Multicast
Frames Received OK
Counter Interrupt)
RX_BROAD_CNT (Broad-
cast Frames Received OK
Counter Interrupt)

RX_ALLO_CNT
(Octets Received
All Counter
Interrupt)
RX_ALLF_CNT
(Frames Received All
Counter Interrupt)
RX_PAUSE_CNT (PAUSE
MAC Control Frames
Received Counter
Interrupt)
RX_OPCODE_CNT (Unsup-
ported Opcodes Received
Counter Interrupt)
RX_ALIGN_CNT (MAC Control
Frames Received Counter
Interrupt)
RX_LONG_CNT (Frame Too Long
Errors Counter Interrupt)

RX_ORL_CNT (Out-of-Range Length
Field Counter Interrupt)

RX_IRL_CNT (In-Range Length Errors
Counter Interrupt)
ADSP-BF51x Blackfin Processor Hardware Reference 22-113

Ethernet MAC Register Definitions
Ethernet MAC MMC RX Interrupt Enable
(EMAC_MMC_RIRQE) Register

The EMAC_MMC_RIRQE register, shown in Figure 22-41, indicates which of
the receive MAC management counters are enabled to signal an MMCINT
interrupt when they increment past one-half of maximum range.

If a given counter’s interrupt is not enabled, and that counter passes
0x8000 0000, then the counter’s interrupt status bit is set to 1 but this
does not cause the MMCINT interrupt to be signalled. If the corresponding
interrupt enable bit is later written to 1, the MMCINT Ethernet event inter-
rupt is signalled immediately.

Ethernet MAC MMC TX Interrupt Status
(EMAC_MMC_TIRQS) Register

The EMAC_MMC_TIRQS register, shown in Figure 22-42, indicates which of
the transmit MAC management counters have incremented past one-half
of maximum range. Each bit is set from 0 to 1 when the corresponding
counter increments from a value less than 0x8000 0000 to a value greater
than or equal to 0x8000 0000 (regardless of the state of the
EMAC_MMC_TIRQE register). Bits in this register are cleared by writing a 1;
writing zero has no effect. For more information, see “MAC Management
Counters” on page 22-42.
22-114 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Figure 22-41. EMAC_MMC_RIRQE Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC MMC RX Interrupt Enable Register (EMAC_MMC_RIRQE)
For all bits, 1 = Interrupt enabled, 0 = Interrupt not enabled.

Reset = 0x0000 0000

RX_TYPED_CNT (Typed
Frames Received Counter
Interrupt Enable)

RX_LT256_CNT (Frames Length 128-255
Received Counter Interrupt Enable)

RX_LT512_CNT (Frames Length 256-511
Received Counter Interrupt Enable)

RX_LT1024_CNT (Frames Length 512-1023
Received Counter Interrupt Enable)

RX_GE1024_CNT (Frames Length 1024-Max
Received Counter Interrupt Enable)

RX_SHORT_CNT (Frames
Length Less Than 64
Received Counter
Interrupt Enable)
RX_EQ64_CNT (Frames
Length Equal to 64
Received Counter
Interrupt Enable)
RX_LT128_CNT (Frames
Length 65-127 Received
Counter Interrupt Enable)

RX_OK_CNT (Frames
Received OK Counter
Interrupt Enable)
RX_FCS_CNT (Frame
Check Sequence Errors
Counter Interrupt Enable)
RX_ALIGN_CNT (Alignment
Errors Counter Interrupt
Enable)
RX_OCTET_CNT (Octets
Received OK Counter
Interrupt Enable)
RX_LOST_CNT (Frames
Lost Due to Int MAC Receive
Error Counter Interrupt
Enable)
RX_UNI_CNT (Unicast
Frames Received OK Coun-
ter Interrupt Enable)
RX_MULTI_CNT (Multicast
Frames Received OK Coun-
ter Interrupt Enable)
RX_BROAD_CNT (Broad-
cast Frames Received OK
Counter Interrupt Enable)

RX_ALLO_CNT
(Octets Received All
Counter Interrupt
Enable)
RX_ALLF_CNT (Frames
Received All Counter
Interrupt Enable)
RX_PAUSE_CNT (PAUSE
MAC Control Frames
Received Counter Inter-
rupt Enable)

RX_OPCODE_CNT
(Unsupported Opcodes
Received Counter Inter-
rupt Enable)
RX_MACCTL_CNT (MAC Control
Frames Received Counter Inter-
rupt Enable)
RX_LONG_CNT (Frame Too Long
Errors Counter Interrupt Enable)
RX_ORL_CNT (Out-of-Range Length
Field Counter Interrupt Enable)
RX_IRL_CNT (In-Range Length Errors
Counter Interrupt Enable)
ADSP-BF51x Blackfin Processor Hardware Reference 22-115

Ethernet MAC Register Definitions
Figure 22-42. EMAC_MMC_TIRQS Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC MMC TX Interrupt Status Register (EMAC_MMC_TIRQS)
All bits are W1C. For all bits, 1 = Interrupt occurred, 0 = Interrupt did not occur.

Reset = 0x0000 0000

TX_LT256_CNT (Frames
Length 128-255 Transmit-
ted Counter Interrupt)TX_LT512_CNT (Frames Length 256-511

Transmitted Counter Interrupt)

TX_LT1024_CNT (Frames Length 512-1023
Transmitted Counter Interrupt)

TX_GE1024_CNT (Frames Length 1024-Max
Transmitted Counter Interrupt)

TX_EQ64_CNT (Frames
Length Equal to 64 Trans-
mitted Counter Interrupt)
TX_LT128_CNT (Frames
Length 65-127 Transmitted
Counter Interrupt)

TX_OK_CNT (Frames
Transmitted OK Counter
Interrupt)
TX_SCOLL_CNT (Single
Collision Frames Counter
Interrupt)
TX_MCOLL_CNT (Multi-
ple Collision Frames
Counter Interrupt)
TX_OCTET_CNT
(Octets Transmitted OK
Counter Interrupt)
TX_DEFER_CNT (Frames
With Deferred Transmis-
sion Counter Interrupt
TX_LATE_CNT (Late Colli-
sions Counter Interrupt)

TX_ABORTC_CNT (Frames
Aborted Due to Excess
Collisions Counter
Interrupt)
TX_LOST_CNT (Frames
Lost Due to Internal MAC
Transmit Error Counter
Interrupt)

TX_ALLO_CNT
(Octets Transmitted
All Counter
Interrupt)
TX_ALLF_CNT (Frames
Transmitted All Coun-
ter Interrupt)
TX_MACCTL_CNT
(MAC Control Frames
Transmitted Counter
Interrupt)
TX_EXDEF_CNT (Frames With
Excessive Deferral Counter
Interrupt)

TX_BROAD_CNT (Broadcast
Frames Transmitted OK Counter
Interrupt)
TX_MULTI_CNT (Multicast Frames
Transmitted OK Counter Interrupt)

TX_UNI_CNT (Unicast Frames Transmit-
ted OK Counter Interrupt)

TX_CRS_CNT (Carrier Sense Errors Coun-
ter Interrupt)

TX_ABORT_CNT (Transmission Aborted
Frames Counter Interrupt)
22-116 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Ethernet MAC MMC TX Interrupt Enable
(EMAC_MMC_TIRQE) Register

The EMAC_MMC_TIRQE register, shown in Figure 22-43, indicates which of
the transmit MAC management counters are enabled to signal an MMCINT
interrupt when they increment past one-half of maximum range.

If a given counter’s interrupt is not enabled, and that counter passes
0x8000 0000, then the counter’s interrupt status bit is set to 1 but this
does not cause the MMCINT interrupt to be signalled. If the corresponding
interrupt enable bit is later written to 1, the MMCINT Ethernet event inter-
rupt is signalled immediately.

MAC Management Counter Registers
The MAC Management Counter (MMC) block register group consists of
a number of 32-bit unsigned counter registers that gather statistical data
regarding the operation of the MAC. The MAC management counter reg-
isters update automatically at the completion of frame transmit and
receive, whenever the MMCE bit in the EMAC_MMC_CTL register is set. Coun-
ters contain a 32-bit unsigned value, and may be configured to saturate at
0xFFFF FFFF (CROLL = 0) or to wrap around to zero (CROLL = 1). Coun-
ters cannot be written directly, but can be collectively reset to zero by
writing 1 to the RSTC bit, or they can be programmed for clear-on-read
behavior by setting CCOR to 1. The reset value for all MMC registers is
0x0000 0000. See Table 22-10 on page 22-53 for more information.

Each of these counters can be set up to generate interrupts when they
reach half of the maximum unsigned 32-bit value. This functionality is
described in detail in the section entitled “Ethernet Event Interrupts” on
page 22-38.
ADSP-BF51x Blackfin Processor Hardware Reference 22-117

Ethernet MAC Register Definitions
Figure 22-43. EMAC_MMC_TIRQE Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC MMC TX Interrupt Enable Register (EMAC_MMC_TIRQE)
For all bits, 1 = Interrupt enabled, 0 = Interrupt not enabled.

Reset = 0x0000 0000

TX_LT256_CNT (Frames
Length 128-255 Transmit-
ted Counter Interrupt
Enable)

TX_LT512_CNT (Frames Length 256-511
Transmitted Counter Interrupt Enable)

TX_LT1024_CNT (Frames Length 512-1023
Transmitted Counter Interrupt Enable)

TX_GE1024_CNT (Frames Length 1024-Max
Transmitted Counter Interrupt Enable)

TX_EQ64_CNT (Frames
Length Equal to 64 Trans-
mitted Counter Interrupt
Enable)
TX_LT128_CNT (Frames
Length 65-127 Transmitted
Counter Interrupt Enable)

TX_ABORT_CNT (Transmission Aborted Frames
Counter Interrupt Enable)

TX_OK_CNT (Frames
Transmitted OK Counter
Interrupt Enable)
TX_SCOLL_CNT (Single
Collision Frames Counter
Interrupt Enable)
TX_MCOLL_CNT (Multi-
ple Collision Frames
Counter Interrupt Enable)
TX_OCTET_CNT (Octets
Transmitted OK Counter
Interrupt Enable)
TX_DEFER_CNT (Frames
With Deferred Transmis-
sion Counter Interrupt
Enable)
TX_LATE_CNT (Late Colli-
sions Counter Interrupt
Enable)
TX_ABORTC_CNT (Frames
Aborted Due to Excess
Collisions Counter Inter-
rupt Enable)
TX_LOST_CNT (Frames
Lost Due to Internal MAC
Transmit Error Counter
Interrupt Enable)

TX_ALLO_CNT
(Octets Transmitted
All Counter Inter-
rupt Enable)
TX_ALLF_CNT (Frames
Transmitted All Coun-
ter Interrupt Enable)

TX_MACCTL_CNT (MAC
Control Frames Transmit-
ted Counter Interrupt
Enable)
TX_EXDEF_CNT (Frames With
Excessive Deferral Counter
Interrupt Enable)
TX_BROAD_CNT (Broadcast
Frames Transmitted OK Counter
Interrupt Enable)
TX_MULTI_CNT (Multicast Frames
Transmitted OK Counter Interrupt
Enable)

TX_UNI_CNT (Unicast Frames Transmit-
ted OK Counter Interrupt Enable)

TX_CRS_CNT (Carrier Sense Errors
Counter Interrupt Enable)
22-118 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
MAC Management Counters Control
(EMAC_MMC_CTL) Register

The EMAC_MMC_CTL register, shown in Figure 22-44, is used to globally
configure all MMC counter registers.

Additional information for the EMAC_MMC_CTL register bits includes:

• MMC counter enable (MMCE)

Setting this bit turns on all the MMC counters, which update on
every frame transmission or reception.

0 – MMC counters are not enabled. Counters retain their values
but are not updated.

1 – MMC counters are enabled.

• Counter clear-on-read mode (CCOR)

0 – Counters are not in clear-on-read mode. Reads do not affect
counter contents.

1 – Counters are in clear-on-read mode. The contents of each
counter is reset each time it is read by the application.

Figure 22-44. EMAC_MMC_CTL Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 1 0 1

MAC Management Counters Control Register (EMAC_MMC_CTL)

Reset = 0x0000 000A

MMCE (MMC
Counter Enable)
CCOR (Counter
Clear-On-Read Mode)

RSTC
(Reset All Counters) - WO
CROLL (Counter Roll-
over Enable)
ADSP-BF51x Blackfin Processor Hardware Reference 22-119

Programming Examples
• Counter rollover enable (CROLL)

0 – Counter rollover is not enabled. All MMC registers saturate
upon reaching 0xFFFF FFFF.

1 – Counter rollover is enabled. This causes all MMC counters to
wrap around to zero when the count exceeds the maximum 32-bit
value of 0xFFFF FFFF.

• Reset all counters (RSTC)

Writing a 1 to this bit at any time globally resets all MMC
counters.

0 – Do not reset all counters.

1 – Globally clear all MMC counters.

Programming Examples
This section gives a general overview of the functionality of an Ethernet
MAC driver. All necessary steps for reproducing and understanding this
interface are explained with code listings and accompanying text. These
code listings are similar to the driver model supported by CrossCore
Embedded Studio or VisualDSP++ and are mainly written in C. Data
transfers over the MAC with DMA are explained in Figure 22-5 on
page 22-11 and Figure 22-7 on page 22-23, which show receive and trans-
mit DMA operations. Examine these figures carefully—the code listings
reproduce this kind of “linked list” in the form of C structures. Also pro-
vided are code listings that describe accessing an external PHY via the
station management (MIM) block. All macros that are not explained in
this section can be found in the cdefBF5xx.h and defBF5xx.h header files
in the CCES or VisualDSP++ installation.
22-120 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
The code examples in this section (Listing 22-1 through Listing 22-9)
show basic functions and structures. The management counter registers
and the interrupt settings are advanced functions and are not covered
here. There are many counter registers which are accessible by polling of
the appropriate register or using interrupt service routines. The
EMAC_SYSCTL and EMAC_SYSTAT register should be used to configure the
Ethernet MAC interrupt capabilities. See Figure 22-12 on page 22-38 for
a detailed description of the MAC interrupts.

Ethernet Structures

Listing 22-1. Type Definition

// type definitions

typedef unsigned long int u32;

typedef unsigned short int u16;

typedef unsigned char u8;

typedef volatile u32 reg32;

typedef volatile u16 reg16;

The type definitions are placed here to help with reading of the following
code.

Listing 22-2. DMA Configuration

typedef struct ADI_DMA_CONFIG_REG {

u16 b_DMAEN:1; /* 0 Enabled */

u16 b_WNR:1; /* 1 Direction */

u16 b_WDSIZE:2; /* 2:3 Transfer word size */

u16 b_DMA2D:1; /* 4 DMA mode */

u16 b_SYNC:1; /* 5 Retain FIFO */

u16 b_DI_SEL:1; /* 6 Data interrupt timing select */

u16 b_DI_EN:1; /* 7 Data interrupt enabled */

u16 b_NDSIZE:4; /* 8:11 Flex descriptor size */
ADSP-BF51x Blackfin Processor Hardware Reference 22-121

Programming Examples
u16 b_FLOW:3; /* 12:14 Flow */

} ADI_DMA_CONFIG_REG;

A convenient way to handle the DMA properties in a “linked list” is to use
structures, because each set should be assigned to the appropriate DMA
descriptor. Listing 22-3 shows a structure used to manage DMA descrip-
tors. Before jumping to the next descriptor, like 1A-1B-2A-2B-1C in
Figure 22-5 on page 22-11 and Figure 22-7 on page 22-23, the structure
ADI_DMA_CONFIG_REG immediately loads to the DMA register before start-
ing its DMA transfer.

Listing 22-3. DMA Descriptor

typedef struct dma_descriptor {

struct dma_descriptor* NEXT_DESC_PTR;

u32 START_ADDR;

ADI_DMA_CONFIG_REG CONFIG;

} DMA_DESCRIPTOR;

The structure shown in Listing 22-3 shows how it is possible to create a
“linked list” of DMAs. The START_ADDR points to the data and the
ADI_DMA_CONFIG_REG structure (shown in Listing 22-2) holds all the neces-
sary settings.

Structures like these are convenient for handling Ethernet streams,
because they allow the programmer to simply call members of the struc-
ture instead of extracting meaningful items through array offsets. This
structure, shown in Listing 22-4, is mirrored in the Ethernet MAC header
with additional NoBytes.

Listing 22-4. Ethernet Frame Buffer

typedef struct adi_ether_frame_buffer {

u16 NoBytes; /* the no. of following bytes */

u8 Dest[6]; /* destination MAC address */
22-122 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
u8 Srce[6]; /* source MAC address */

u16 LTfield; /* length/type field */

u8 Data[0]; /* payload bytes */

} ADI_ETHER_FRAME_BUFFER;

The ADI_ETHER_BUFFER structure in Listing 22-5, Top Level Structure,
covers all the above structures and shows the general framework as
described in Figure 22-5 on page 22-11 and Figure 22-7 on page 22-23.
The two Dma[2] structures are needed for descriptors 1A, 1B and 2A, 2B.
The pointer *frmData represents the payload of the frame, which has a
specific number of bytes (as dictated by the NoBytes structure member).
This is relevant only in transmit mode—in receive mode the driver will
not touch this NoBytes variable. To ease programming by keeping the
transmit and receive structures the same, the MAC can pad the first 16-bit
word (that is, the data corresponding to the NoBytes structure member)
with zeros if the RXDWA bit in EMAC_SYSCTL is 1. The *pNext and *pPrev
pointers are necessary for creating a “linked list.” The IPHdrChksum and
IPPayloadChksum are available in case the Ethernet MAC is set to calculate
this. See the RXCKS bit in the EMAC_SYSCTL register (shown in Figure 22-32
on page 22-89). These two variables are relevant only in receive mode of
the Ethernet MAC. The StatusWord variable holds the EMAC_RX_STAT reg-
ister value in receive mode and holds the EMAC_TX_STAT register value in
transmit mode.

Listing 22-5. Top Level Structure

typedef struct adi_ether_buffer {

DMA_DESCRIPTOR Dma[2]; /* first for the frame, second for the

status */

ADI_ETHER_FRAME_BUFFER *FrmData; /* pointer to data */

struct adi_ether_buffer *pNext; /* next buffer */

struct adi_ether_buffer *pPrev; /* prev buffer */

u16 IPHdrChksum; /* the IP header checksum */

u16 IPPayloadChksum; /* the IP header and payload checksum */
ADSP-BF51x Blackfin Processor Hardware Reference 22-123

Programming Examples
u32 StatusWord; /* the frame status word */

} ADI_ETHER_BUFFER;

MAC Address Setup
Write EMAC_ADDRLO and EMAC_ADDRHI in the initialization routine of the
Ethernet MAC, as shown in Listing 22-6. The Ethernet MAC address is a
unique number and may not be used twice. See the IEEE Std. 802.3-2002
specification for further information.

Listing 22-6. MAC Address Setup

// MAC address

u8 SrcAddr[6] = {0x5A,0xD4,0x9A,0x48,0xDE,0xAC};

// function

void SetupMacAddr(u8 *MACaddr)

{

*pEMAC_ADDRLO = *(u32 *)&MACaddr[0];

*pEMAC_ADDRHI = *(u16 *)&MACaddr[4];

}

// function call

SetupMacAddr(SrcAddr);

PHY Control Routines
The EMAC_STAAD register provides the option of either polling the STABUSY
bit or getting an interrupt during each MIM block access. The function in
Listing 22-7 polls the STABUSY bit and should be placed after each read or
write command to the PHY register.
22-124 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Listing 22-7. Poll MIM Block

//

/* Wait until the previous MDC/MDIO transaction has completed */

//

void PollMdcDone(void)

{

/* poll the STABUSY bit */

while(*pEMAC_STAADD & STABUSY)

}

Shown in Listing 22-8, the SET_PHYAD and SET_REGAD macros shift the
PHYAddr and RegAddr values to the appropriate field within the
EMAC_STAADD register. The other macros STAOP, STAIE, and STABUSY, also
set bits in the EMAC_STAADD register. Use of the STAOP macro controls the
read and write transfer of the MIM block.

Listing 22-8. Write Access to the PHY

//

/* Write an off-chip register in a PHY through the MDC/MDIO port

*/

//

void WrPHYReg(u16 PHYAddr, u16 RegAddr, u16 Data)

{

PollMdcDone();

*pEMAC_STADAT = Data;

*pEMAC_STAADD = SET_PHYAD(PHYAddr) |\

SET_REGAD(RegAddr) |\

STAOP | STABUSY;

}

The data in the EMAC_STADAT register is immediately shifted out after a
write to the EMAC_STAADD register. See Figure 22-4 on page 22-9.
ADSP-BF51x Blackfin Processor Hardware Reference 22-125

Programming Examples
The function in Listing 22-9 shows how PHY data is read over the MIM
function block of the MAC. First, the STABUSY bit of the EMAC_STAADD reg-
ister will be polled until no other function is using the MIM block. The
PHY address and register address is sent over the MIM block. Then, the
STABUSY bit is polled again, before the data is finally read through the
EMAC_STADAT register.

Listing 22-9. Read Access to the PHY

//

/* Read an off-chip register in a PHY through the MDC/MDIO port

*/

//

u16 RdPHYReg(u16 PHYAddr, u16 RegAddr)

{

u16 Data;

PollMdcDone();

*pEMAC_STAADD = SET_PHYAD(PHYAddr) |\

SET_REGAD(RegAddr) |\

STABUSY;

PollMdcDone();

Data = (u16)*pEMAC_STADAT;

return Data;

}

A complete PHY initialization also requires the initialization of the station
management clock, which is described in detail in the section “MII Sta-
tion Management” on page 22-47. The three PHY functions included in
this section (write, read, and poll) and the initialization routine of the sta-
tion management clock are the minimum requirements for setup and
control of any PHYs.
22-126 ADSP-BF51x Blackfin Processor Hardware Reference

Ethernet MAC
Unique Information for the ADSP-BF51x
Processor

None
ADSP-BF51x Blackfin Processor Hardware Reference 22-127

Unique Information for the ADSP-BF51x Processor
22-128 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
23 IEEE 1588 PTP ENGINE

This chapter describes the IEEE 1588 engine module, PTP_TSYNC
(Precision Time Protocol Time Synchronization), for ADSP-BF518
processors. Following an overview and list of key features is an introduc-
tion to the IEEE 1588 protocol and a description of the module’s
operation. The chapter concludes with consolidated register definitions
and programming models. This chapter includes the following sections:

• “PTP_TSYNC Overview”

• “General Operation” on page 23-2

• “PTP_TSYNC Module Registers” on page 23-11

• “PTP_TSYNC Module Programming Model” on page 23-39

PTP_TSYNC Overview
The IEEE 1588 engine module (PTP_TSYNC) provides hardware assis-
tance for the implementation of the IEEE 1588 standard on Blackfin
processors. It supports IEEE Std. 1588-2002 and IEEE Std. 1588-2008.
ADSP-BF51x Blackfin Processor Hardware Reference 23-1

General Operation
Features
The PTP_TSYNC module includes these features:

• Support for IEEE 1588-2002 and IEEE 1588-2008

• Addend clock adjustment

• Programmable PTP message detection

• Pulse-per-second (PPS) signal output

• Alarm features

• Three different clock input sources, and a clock output with a
programmable clock divider

• Auxiliary GPIO/event triggered timestamp

• Timestamp overrun indication

General Operation
Multiple clocks of a distributed system may drift apart due to a variety of
reasons like clock intrinsic characteristics, ambient temperature, power
supply voltage etc. To serve the applications requiring synchronized
clocks, a periodic correction mechanism can be applied. The IEEE 1588
standard defines a protocol to perform this correction. The protocol aids
by synchronizing individual clocks (Slave Clock) in the system to a Master
Clock which is elected to be the least sensitive to the drifts mentioned
above, and hence has the best precision. In accordance with this protocol,
individual clocks in the system exchange a set of timing messages to select
the Master Clock and to keep Slave Clock synchronized to the Master.

The IEEE 1588-2002 standard defines four types of messages: Sync,
Follow_Up, Delay_Req, and Delay_Resp. Of these, the Sync, Follow_Up,
and Delay_Resp messages are sent from the Master Clock to Slave Clocks
23-2 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
in the system while the Delay_Req is sent from the Slave to the Master.
The IEEE 1588-2008 standard defines three additional messages to make
the system more tolerant to faults; these messages (Pdelay_Req,
Pdelay_Resp, and Pdealy_Resp_Follow_Up) are exchanged between adja-
cent nodes in the system.

With the timing information embedded in the protocol messages, the
Slave uses software to calculate the difference between the Master’s Clock
and its own clock and dynamically adjusts its local clock to synchronize
itself to the Master Clock.

Two aspects of the clock must be adjusted. One is the absolute clock time
with respect to the protocol epoch, and the other is the frequency of the
clock. An IEEE 1588 compliant clock must have the capability to perform
both two types of adjustment.

The IEEE 1588 protocol can be implemented on a variety of communica-
tion technologies, such as IEEE 802.3(Ethernet) and IEEE
802.11(WLAN). The underlying communication path is responsible for
conveying the IEEE 1588 messages among all the clocks. The protocol
requires a symmetric communication path delay, meaning the forward and
backward path delay between two nodes should be same.

In the protocol messages, some types (including Sync, Delay_Req, and
Delay_Resp) are event messages and are required to be timestamped when
they arrive or depart a node. This timestamp information will be inserted
into messages or used locally by a node for adjustment calculation. To
achieve a better Slave-to-Master synchronization performance, the
timestamping point should be as close to the communication path as pos-
sible. This is where the hardware assistance is required. Due to the
indeterministic delay of a node’s software system, the software is unable to
capture an accurate timestamp when the message is sent or received. How-
ever, the hardware is capable of monitoring the signal on the
communication media and therefore getting accurate message
arrival/departure time.
ADSP-BF51x Blackfin Processor Hardware Reference 23-3

General Operation
PTP_TSYNC Module Description of Operation
The PTP_TSYNC (Precision Time Protocol Time Synchronization
Engine) module, closely integrated with the Ethernet EMAC module
(see Chapter 22, “Ethernet MAC” for details about the EMAC module),
provides hardware assistance to implement both the IEEE 1588-2002 and
IEEE 1588-2008 standard on Ethernet (IEEE 802.3). It takes one input
clock signal as its PTP clock and automatically does hardware clock
adjustment and hardware event message timestamping under software
control. With proper settings, it can also output a pulse-per-second (PPS)
signal, trigger an alarm interrupt, and timestamp a general-purpose exter-
nal signal.
23-4 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
Figure 23-1 shows the block diagram of the PTP_TSYNC module.

Figure 23-1. PTP_TSYNC Module Block Diagram

PPS START 64-BIT

PPS PERIOD 32-BIT

BLOCK STATUS 32-BIT

BLOCK CONTROL 32-BIT

ADDEND 32-BIT

ACCUMULATOR 32-BIT

OFFSET 32-BIT

LOCAL TIME
COUNTER 64-BIT

TARGET ALARM
TIME 64-BIT

TRANSMIT
SNAPSHOT 64-BIT

RECEIVE
SNAPSHOT 64-BIT

SOURCE ID 32-BIT

PTP FIELD COMPARISON
OFFSET 32-BIT

PTP FIELD COMPARISON
VALUE 3x32-BIT

ETHERNET MAC
MII/RMII
INTERFACE

COUNT ENABLE

=GPIO

TRANSMIT PTP PACKET DETECT
/GPIO TOGGLE DETECT

PTP RECEIVE
PACKET DETECT

=

+

+

PPS_OUT

CLK_OUT

ECLK
(GPIO CLK UP)

MII/RMII
CLK

SCLK

PAB BUS

DATA
INTERRUPT

OVERRUN
INTERRUPT

CARRY
ADSP-BF51x Blackfin Processor Hardware Reference 23-5

General Operation
Clock Source Selection
The PTP_TSYNC module can take any of three input clock sources as its
input clock—processor system clock (SCLK), ethernet network clock
(MII/RMII TXCLK), or external clock (ECLK).

However, if the clock source is TXCLK or ECLK, the maximum supported
frequency is SCLK/2.

The selected clock source can be driven out after a clock divider at the
processor’s GPIO pin PG[13] given the proper pin-muxing settings.
The clock can be driven out without any divider ratio, with a divide-by-2
setting, or with a divide-by-4 setting. However, the maximum supported
output clock rate is 33 MHz.

Clock Adjustment
The PTP_TSYNC module applies the Accumulator Addend Method to
its input clock to generate the adjustable PTP clock to track the Master
Clock. As shown in Figure 23-1, it uses two 32-bit registers (addend and
accumulator) and one 64-bit counter (local time counter), which stores
the adjusted PTP clock time. The content of the addend register is added
to the accumulator register at each PTP_TSYNC input clock. In turn, the
carry bit of the addition increments the local time counter. The rate by
which the local time counter increments is adjusted by changing the
addend register value, resulting in the modification of the PTP clock rate.
The PTP clock frequency can be calculated by

fPTP

fin

232

A

-------------=
23-6 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
where:
 fPTP is the frequency of the adjusted PTP clock
 fin is the input clock frequency
 A is the value of the addend register

Table 23-1 shows examples of addend settings.

In addition to the adjustment of PTP clock’s rate, its absolute time, which
is the absolute value of local timer counter, can also be adjusted to be the
same as the Master Clock’s absolute time. The offset between local time
and the master time can be programmed into the 32-bit offset register
(EMAC_PTP_OFFSET) to compensate for the absolute time difference.

Event Message (Timestamping)
The PTP_TSYNC module automatically monitors all received and trans-
mitted IEEE 1588 event messages on the Ethernet. If an event message is
detected, the module takes a snapshot of the local time counter register
and stores its value, which is actually the current local time, to the 64-bit
transmit snapshot register (EMAC_PTP_TXSNAPHI and EMAC_PTP_TXSNAPLO)
or receive snapshot register (EMAC_PTP_RXSNAPHI and EMAC_PTP_RXSNAPLO).
The timestamping is done at the EMAC module’s MII/RMII interface
when the module sees the Start of Frame of an event message packet. This
interface is the closest possible place to the physical Ethernet transmission
medium, providing the best timing accuracy.

Table 23-1. Examples of Addend Settings

fin (MHz) A fPTP (MHz)

80 0xA000 0000 50

40 0x4000 0000 10

33 0x9B26 C9B2 20
ADSP-BF51x Blackfin Processor Hardware Reference 23-7

General Operation
The PTP_TSYNC modules can be programmed to detect the following
types of messages:

• Sync messages sent by the Master and received by a Slave

• Delay_Req messages sent by a Slave and received by the Master

• Pdelay_Req messages sent and received (IEEE 1588-2008 only)

• Pdelay_Resp messages sent and received (IEEE 1588-2008 only)

Transmit Packet Detection
When transmitting an Ethernet packet, the PTP_TSYNC module requires
a DMA_Length_Word field associated with the packet. The lower 12 bits
of this field are the length of the packet payload in bytes and the higher
4 bits are the timestamping enable field. A value of 0x1 enables the
PTP_TSYNC module to timestamp the packet, and a value of 0x0 dis-
ables timestamping. When transmitting a PTP sync message, Delay_Req
message, or a Pdelay_Req and Pdelay_Resp (for IEEE 1588-2008), this
field must be set to 0x1 to enable timestamping. When the packet is sent
out, the corresponding timestamp value is saved in the transmit snapshot
register for software to retrieve when it is needed.

Receive Packet Detection
The PTP_TSYNC module monitors the received packets on the Ethernet
for PTP event messages. It uses up to five fields in the Ethernet packets to
determine whether a packet is an event message and requires to be time-
stamped. These five fields are described in Table 23-2, and the positions
and values of each of these fields within a packet are programmable. The
IEEE 1588-2002 implementation over Ethernet IP layer provides default
settings for these fields. The PTP_TSYNC module can also be pro-
grammed to select which of the five fields are to be used for packet type
identification. A packet is identified as a valid event message and time-
23-8 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
stamped only when all the selected fields of an incoming packet match the
preset match values. The timestamp is saved in the receive snapshot regis-
ter for software to retrieve when it is needed.

For VLAN frames, all field offsets in Table 23-2 are automatically incre-
mented by the PTP_TSYNC module. Specifically, offsets are incremented
by 4 for VLAN1 frames and are incremented by 8 for VLAN2 frames.

When the PTP_TSYNC module detects a PTP event message, in addition
to the timestamp, it also saves a 32-bit ID of the message into the source
ID snapshot register (EMAC_PTP_ID_SNAP). The ID allows the software to
associate a timestamp with the specific message. The 32-bit ID is extracted
from the incoming message, based on the offset programmed in the source
ID offset register (EMAC_PTP_ID_OFF).

A timestamp overrun may occur when multiple event messages are
received and the software has not read the previous event message time-
stamp from the receive snapshot register before it is overwritten by the
timestamp of a second event message. The PTP_TSYNC module provides
two options to deal with this situation. One option is timestamp lock,
whereby the snapshot register is locked when one timestamp is captured

Table 23-2. Default Settings of Matching Fields

Field Default octet positions
after Start of Frame
(octet number starts
from zero)

Default Match
Value of the field

Significance of the default
value (IEEE 1588 V1 frame
over Ethernet/IPV4/UDP)

MAC frame type 12, 13 0x0800 MAC frame type = IP

IP version 14 0x45 IP version = v4

Layer 4 protocol 23 0x11 Layer 4 protocol = PTP

UDP destination
port

36, 37 0x013F UDP destination port = PTP
Event Port

PTP control 74 0x00 or 0x01 Message type:
Sync and Delay_Req
ADSP-BF51x Blackfin Processor Hardware Reference 23-9

General Operation
and the PTP_SYNC module does not overwrite it with following message
timestamps until the software clears the status bit. If subsequent time-
stamps are locked out, the module also sets the overrun bit in the interrupt
status register (EMAC_PTP_ISTAT) and raises an interrupt. The other option
is for the receive snapshot register to be written whenever an event mes-
sage is detected; this overrun condition is also flagged by the module,
setting the overrun bit in EMAC_PTP_ISTAT.

Alarm
The PTP_TSYNC module provides alarm functionality by triggering an
alarm at a preset time. It can generate an interrupt and set a bit in the
control status register (EMAC_PTP_ISTAT) when the local time (that is, the
local time counter register value) matches the value of the target alarm
time register. Once an alarm has occurred, if another alarm is needed, the
software must clear the status bit and reprogram the target alarm register
to a future value. The alarm time is represented in absolute units, not rela-
tive units. For example, if the software needs to generate an alarm after
1 second, it must read the current time value, add the number corre-
sponding to 1 second, and write the result back to the target alarm time
register.

Pulse-Per-Second (PPS)
Pulse-per-second (PPS) is another physical representation of local time.
It is composed of a train of pulses, where each pulse is synchronized to a
second transition of local time. In other words, every pulse corresponds to
a second boundary. PPS can be used as another synchronization method
or to monitor the synchronization performance between clocks. With
proper configuration, the PTP_TSYNC module can be programmed to
generate this signal at GPIO pin PG[12]. The configuration involves three
registers: EMAC_PTP_PPS_STARTHI, EMAC_PTP_PPS_STARTLO, and
EMAC_PTP_PPS_PERIOD. The EMAC_PTP_PPS_STARTHI and
EMAC_PTP_PPS_STARTLO registers together constitute a 64-bit PPS start
23-10 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
time value. If the PPS function is enabled, when the local clock time
reaches the PPS start time, a PPS pulse is generated. The
EMAC_PTP_PPS_PERIOD value is then automatically added to the PPS start
time to create a new PPS start time value for the next pulse. To generate
the PPS signal, the PPS start time must be programmed to be equal to the
next second value with PPS period set to one second.

Auxiliary Snapshot
In addition to performing timestamping for event messages, the
PTP_TSYNC module can also be programmed to timestamp a GPIO
toggle. With proper configuration, a low-to-high level change at GPIO
PG[14] triggers the module to capture a timestamp and save it in the
transmit snapshot register. A corresponding interrupt is raised, and the
status bit is set in the control status register. Note that the auxiliary
snapshot and the transmit snapshot are mutually exclusive; only one may
be enabled at a time.

PTP_TSYNC Module Registers
Table 23-3 summarizes the registers of the PTP_TSYNC module together
with their functions, memory-mapped addresses, and access.

Table 23-3. PTP_TSYNC Module Registers

Register Name Function Register Address Register Access

EMAC_PTP_CTL Control register
on page 23-13

0xFFC0 30A0 RW

EMAC_PTP_IE Interrupt enable register
on page 23-16

0xFFC0 30A4 RW

EMAC_PTP_ISTAT Interrupt status register
on page 23-18

0xFFC0 30A8 RW1C

EMAC_PTP_FOFF Message filter offset register
on page 23-19

0xFFC0 30AC RW
ADSP-BF51x Blackfin Processor Hardware Reference 23-11

PTP_TSYNC Module Registers
EMAC_PTP_FV1 Message filter value register 1
on page 23-21

0xFFC0 30B0 RW

EMAC_PTP_FV2 Message filter value register 2
on page 23-22

0xFFC0 30B4 RW

EMAC_PTP_FV3 Message filter value register 3
on page 23-22

0xFFC0 30B8 RW

EMAC_PTP_ADDEND Addend register
on page 23-24

0xFFC0 30BC RW

EMAC_PTP_ACCR Accumulator register
on page 23-25

0xFFC0 30C0 RW

EMAC_PTP_OFFSET Time offset register
on page 23-25

0xFFC0 30C4 RW

EMAC_PTP_TIMELO Local clock time low
on page 23-26

0xFFC0 30C8 RW

EMAC_PTP_TIMEHI Local clock time high
on page 23-27

0xFFC0 30CC RW

EMAC_PTP_RXSNAPLO Receive snapshot low register
on page 23-28

0xFFC0 30D0 RO

EMAC_PTP_RXSNAPHI Receive snapshot high register
on page 23-29

0xFFC0 30D4 RO

EMAC_PTP_TXSNAPLO Transmit snapshot low
register
on page 23-30

0xFFC0 30D8 RO

EMAC_PTP_TXSNAPHI Transmit snapshot high
register
on page 23-31

0xFFC0 30DC RO

EMAC_PTP_ALARMLO Target alarm time low register
on page 23-32

0xFFC0 30E0 RW

EMAC_PTP_ALARMHI Target alarm time high
register
on page 23-33

0xFFC0 30E4 RW

Table 23-3. PTP_TSYNC Module Registers (Continued)

Register Name Function Register Address Register Access
23-12 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
Control Register (EMAC_PTP_CTL)
The EMAC_PTP_CTL register, shown in Figure 23-2, controls the overall
operation of the PTP_TSYNC module. The function of each bit is
described in Table 23-4.

EMAC_PTP_ID_OFF Source ID offset register
on page 23-34

0xFFC0 30E8 RW

EMAC_PTP_ID_SNAP Source ID snapshot register
on page 23-35

0xFFC0 30EC RW

EMAC_PTP_PPS_STARTLO PPS start low register
on page 23-36

0xFFC0 30F0 RW

EMAC_PTP_PPS_STARTHI PPS start high register
on page 23-37

0xFFC0 30F4 RW

EMAC_PTP_PPS_PERIOD PPS period register
on page 23-38

0xFFC0 30F8 RW

Figure 23-2. Control Register

Table 23-3. PTP_TSYNC Module Registers (Continued)

Register Name Function Register Address Register Access

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 0 0 0 0 1

Control Register (EMAC_PTP_CTL)

EN

TL

CKS

ASEN

CKDIV

PPSEN

CKOEN
PTPCM

EFTM

IPVM

IPTM

UDPEM

Reserved

Reset = 0x0042
ADSP-BF51x Blackfin Processor Hardware Reference 23-13

PTP_TSYNC Module Registers
Table 23-4. EMAC_PTP_CTL Register

Bits Name Description Reset
Value

Access

0 EN 0 = Disable the PTP_TSYNC module.
1 = Enable the PTP_TSYNC module.

0 RW

1 TL Timestamp lock control
0 = The snapshot register is not locked when an event
message is detected. The timestamp of any detected event
message will overwrite the snapshot register.
1 = The snapshot register is locked when an event message
is detected until the software has cleared the corresponding
bit in the interrupt status register.

1 RW

3:2 CKS PTP clock source
00 = Clock source is peripheral clock (SCLK).
01 = Clock source is TX MII clock (TXCLK).
10 = Clock source is an external clock from GPOI (ECLK).
11 = Reserved clock source selection.

00 RW

4 ASEN Auxiliary snapshot control
0 = Disable auxiliary snapshot.
1 = Enable auxiliary snapshot.

0 RW

6:5 CKDIV Divider for the selected PTP_CLK output:
00 = The selected PTP_CLK is driven out without
any division.
01 = The selected PTP_CLK is divided by 2 before driving
out.
10 = The selected PTP_CLK is divided by 4 before driving
out.
11 = Reserved.

10 RW

7 PPSEN Pulse-per-second (PPS) control
0 = PPS feature is disabled.
1 = PPS feature is enabled.

0 RW

8 EFTM Compare mask of the Ethernet frame type (EFT) field of
EMAC_PTP_FV1 register
0 = Enables compare of the frame type field.
1 = Masks compare of the frame type field.

0 RW
23-14 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
9 IPVM Compare mask of the IP version (IPV) field of the
EMAC_PTP_FV1 register
0 = Enables compare of the IP version field.
1 = Masks compare of the IP version field.

0 RW

10 IPTM Compare mask of the IP type frame (IPT) field of the
EMAC_PTP_FV1 register.
0 = Enables compare of the IP frame type field.
1 = Masks compare of the IP frame type field.

0 RW

11 UDPEM Compare mask of the UDP event port (UDP_EV) field of
the EMAC_PTP_FV2 register.
0 = Enables compare of the UDP event port field.
1 = Masks compare of the UDP event port field.

0 RW

12 PTPCM Compare mask of the PTP control field the
EMAC_PTP_FV3 register.
0 = Enables compare of the PTP control field.
1 = Masks compare of the PTP control field.

0 RW

13 CKOEN Clock output control
1 = The output of the clock selected by CKS is enabled on
pin PG[13]. The pin mux must be programmed accord-
ingly.
0 = Clock output is disabled.

0 RW

15:14 Reserved 0x0 RV

Table 23-4. EMAC_PTP_CTL Register (Continued)

Bits Name Description Reset
Value

Access
ADSP-BF51x Blackfin Processor Hardware Reference 23-15

PTP_TSYNC Module Registers
Interrupt Enable Register (EMAC_PTP_IE)
The EMAC_PTP_IE register, shown in Figure 23-3, controls the interrupt
sources that are enabled to generate a core interrupt. The function of each
bit is described in Table 23-5.

Figure 23-3. Interrupt Enable Register

Table 23-5. EMAC_PTP_IE Register

Bits Name Description Reset
Value

Access

0 ALIE Alarm interrupt enable
0: Disable the alarm interrupt.
1: Enable the alarm interrupt.

0 RW

1 RXEIE Receive event interrupt enable:
1: Interrupt is enabled. A core interrupt is raised when
an event message is detected and time stamped.
0: Interrupt is disabled.

0 RW

2 RXGIE Receive general interrupt enable:
1: Interrupt is enabled. A core interrupt is raised when a
general IEEE 1588 message is detected and
timestamped.
0: Interrupt is disabled

0 RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Interrupt Enable Register (EMAC_PTP_IE)

ALIE

RXEIE

RXGIE

RXOVE

ASIE

TXIE

Reserved

TXOVE

Reset = 0x0000
23-16 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
3 TXIE Transmit interrupt enable
1: Interrupt is enabled. A core interrupt is raised when a
transmit event message is detected and timestamped.
 0: Interrupt is disabled

0 RW

4 RXOVE Receive overrun error interrupt enable
1: Interrupt is enabled. A core interrupt is raised when a
receive timestamp overrun condition occurs
0: Interrupt is disabled

0 RW

5 TXOVE Transmit overrun error interrupt enable
1: Interrupt is enabled. A core interrupt is raised when a
transmit timestamp overrun condition occurs
0: Interrupt is disabled.

0 RW

6 ASIE Auxiliary snapshot interrupt enable
1: Interrupt is enabled. A core interrupt is raised when
the auxiliary snapshot is captured. This bit is valid only
when the auxiliary snapshot is enabled in the control
register.
0: Interrupt is disabled

0 RW

15:7 Reserved Reserved 0x0 RV

Table 23-5. EMAC_PTP_IE Register (Continued)

Bits Name Description Reset
Value

Access
ADSP-BF51x Blackfin Processor Hardware Reference 23-17

PTP_TSYNC Module Registers
Interrupt Status Register (EMAC_PTP_ISTAT)
The EMAC_PTP_ISTAT register, shown in Figure 23-4, indicates the inter-
rupts that have occurred among the enabled interrupt sources. The
function of each bit is described in Table 23-6.

Figure 23-4. Interrupt Status Register

Table 23-6. EMAC_PTP_ISTAT Register

Bits Name Description Reset
Value

Access

0 ALS Alarm status
1: Alarm is triggered.
0: Alarm is not triggered.

0 RW1C

1 RXEL Receive event interrupt status
1: A receive timestamp is captured in the receive
snapshot register. It is cleared when the software
reads the receive snapshot register.
0: No receive timestamp is captured.

0 RO

2 RXGL Receive general interrupt status
1: A general IEEE 1588 message is received. Soft-
ware must write a “1” to clear this bit.
0: No general IEEE 1588 message is received.

0 RW1C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Interrupt Status Register (EMAC_PTP_ISTAT)

ALS

RXEL

RXGL

RXOV

ASL

TXTL

Reserved

TXOV

Reset = 0x0000
23-18 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
Message Filter Offset Register (EMAC_PTP_FOFF)
The EMAC_PTP_FOFF register, shown in Figure 23-5, specifies the location
offsets of all the matching fields within an Ethernet frame for detecting
PTP event messages. The function of each bit is described in Table 23-7.
All offset values are with respect to the start-of-frame (SOF) of Ethernet
frames and are the number of octets.

3 TXTL Transmit snapshot status:
1: A transmit timestamp has been captured in the
transmit snapshot register. It is cleared when the
software reads the transmit snapshot register.
0: No transmit timestamp is captured.

0 RO

4 RXOV Receive snapshot overrun status
1: Receive snapshot overrun occurs.
0: No receive snapshot overrun occurs.

0 RW1C

5 TXOV Transmit snapshot overrun status:
1: Transmit snapshot overrun occurs.
0: No transmit snapshot overrun occurs.

0 RW1C

6 ASL Auxiliary snapshot interrupt status:
1: Auxiliary snapshot has been captured in the
transmit snapshot register. It is cleared when the
software reads the transmit snapshot register.
0: No auxiliary timestamp is captured.

0 RO

15:7 Reserved Reserved 0x0 RV

Table 23-6. EMAC_PTP_ISTAT Register (Continued)

Bits Name Description Reset
Value

Access
ADSP-BF51x Blackfin Processor Hardware Reference 23-19

PTP_TSYNC Module Registers
Figure 23-5. Message Filter Offset Register

Table 23-7. EMAC_PTP_FOFF Register

Bits Name Description Reset
Value

Access

7:0 EFTOF Offset of the Ethernet frame type (EFT) field. 0x0C RW

15:7 IPTOF Offset of the IP frame type (IPT) field. 0x17 RW

23:16 UEVOF Offset of the UDP event port (UDP_EVP) field. 0x24 RW

31:24 PTPCOF Offset of the PTP control (PTPC) field. 0x4A RW

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 1 0 1 0 1 0 0 0 1 0 0 1 0

Message Filter Offset Register (EMAC_PTP_FOFF)

PTPCOF UEVOF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 1 0 1 1 1 0 0 0 0 1 1 0

EFTOFIPTOF

Reset = 0x4A24170C
23-20 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
Message Filter Value Register 1 (EMAC_PTP_FV1)
The EMAC_PTP_FV1 register, shown in Figure 23-6, specifies message filter
matching values for three matching fields (Ethernet frame type, IP ver-
sion, and IP type). The function of each bit is described in Table 23-8.

Figure 23-6. Message Filter Value Register 1

Table 23-8. EMAC_PTP_FV1 Register

Bits Name Description Reset
Value

Access

15:0 EFT Ethernet frame type (EFT) matching value 0x0800 RW

19:16 IPV IP version (IPV) matching value 0x4 RW

23:20 Reserved Reserved 0x0 RV

31:24 IPT IP type (IPT) matching value 0x11 RW

IPT

EFT

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 1 0 0 0 1 0 0 0 0 0 1 0

Message Filter Value Register 1 (EMAC_PTP_FV1)

IPV

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Reserved

Reset = 0x11040800
ADSP-BF51x Blackfin Processor Hardware Reference 23-21

PTP_TSYNC Module Registers
Message Filter Value Register 2 (EMAC_PTP_FV2)
The EMAC_PTP_FV2 register, shown in Figure 23-7, specifies message filter
matching values for two matching fields (UDP event port and UDP
general port). The function of each bit is described in Table 23-9.

Message Filter Value Register 3 (EMAC_PTP_FV3)
The EMAC_PTP_FV3 register, shown in Figure 23-8, controls how the PTP
control field is masked when the PTP_TSYNC module detects event
messages and general messages. Each bit in this register corresponds to one
PTP control field value.

For event messages, clearing bit N (N = 0 through 15) enables the detec-
tion and timestamping of event messages with the PTP control field equal
to N.

Figure 23-7. Message Filter Value Register 2

Table 23-9. EMAC_PTP_FV2 Register

Bits Name Description Reset
Value

Access

15:0 UDP_EVP UDP event port (UDP_EVP) matching value 0x013F RW

31:16 UDP_GNP UDP general port (UDP_GNP) matching value 0x0140 RW

0 0

UDP_EVP

UDP_GNP

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 1 0 1 0 0 0 0

Message Filter Value Register 2 (EMAC_PTP_FV2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 1 0 0 1 1 1 1 1

Reset = 0x0140013F
23-22 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
For general messages, clearing bit N (N = 16 through 31) enables the
detection of general messages with the PTP control field equal to (N-16).

The function of each bit is described in Table 23-10.

Figure 23-8. Message Filter Value Register 3

Table 23-10. EMAC_PTP_FV3 Register

Bits Name Description Reset
Value

Access

15:0 RX_EM Mask for PTP Control field of event messages 0xFFFC RW

31:16 RX_GN Mask for PTP Control field of general messages 0xFFFF RW

RX_EM

RX_GN

1 11

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 1 1 1 1 1 1 1 1 1 1 1

Message Filter Value Register 3 (EMAC_PTP_FV3)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Reset = 0xFFFFFFFC
ADSP-BF51x Blackfin Processor Hardware Reference 23-23

PTP_TSYNC Module Registers
Addend Register (EMAC_PTP_ADDEND)
The EMAC_PTP_ADDEND register, shown in Figure 23-9, specifies the added
value for the local clock adjustment. The function of each bit is described
in Table 23-11.

Figure 23-9. Addend Register

Table 23-11. EMAC_PTP_ADDEND Register

Bits Name Description Reset
Value

Access

31:0 ADDEND Addend value for local clock adjustment 0x0 RW

RX_EM

RX_GN

1 11

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 1 1 1 1 1 1 1 1 1 1 1

Message Filter Value Register 3 (EMAC_PTP_FV3)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Reset = 0xFFFFFFFC
23-24 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
Accumulator Register (EMAC_PTP_ACCR)
The EMAC_PTP_ACCR register, shown in Figure 23-10, holds the accumula-
tor value for the local clock adjustment. The function of each bit is
described in Table 23-12.

Time Offset Register (EMAC_PTP_OFFSET)
The EMAC_PTP_OFFSET register, shown in Figure 23-11, is the offset
(in two’s complement format) used by the PTP_TSYNC module to
correct the local time. A write to this register triggers the PTP_TSYNC
module to update the local clock time with the new value of (current local
clock time + offset). The function of each bit is described in Table 23-13.

Figure 23-10. Accumulator Register

Table 23-12. EMAC_PTP_ACCR Register

Bits Name Description Reset
Value

Access

31:0 ACCUMULATOR Accumulator value for local clock adjustment 0x0 RW

ACCUMULATOR

ACCUMULATOR

0 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0

Accumulator Register (EMAC_PTP_ACCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x00000000
ADSP-BF51x Blackfin Processor Hardware Reference 23-25

PTP_TSYNC Module Registers
Local Clock Time Low Register (EMAC_PTP_TIMELO)
Two registers (EMAC_PTP_TIMELO and EMAC_PTP_TIMEHI), shown in
Figure 23-12 and in Figure 23-13, hold the local adjusted clock time,
represented as a 64-bit value spread across two 32-bit registers.

When reading the local time, the lower register (EMAC_PTP_TIMELO) must
be read before reading the higher register (EMAC_PTP_TIMEHI). Similarly,
when writing the local time, the lower register (EMAC_PTP_TIMELO) must be
written before writing the higher register (EMAC_PTP_TIMEHI). This pro-
gramming sequence is required to maintain synchronization between the
two registers.

Figure 23-11. Time Offset Register

Table 23-13. EMAC_PTP_OFFSET Register

Bits Name Description Reset
Value

Access

31:0 OFFSET Offset to the local time 0x0 RW

OFFSET

OFFSET

0 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0

Time Offset Register (EMAC_PTP_OFFSET)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 00

Reset = 0x00000000
23-26 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
Local Clock Time High Register (EMAC_PTP_TIMEHI)
Two registers (EMAC_PTP_TIMELO and EMAC_PTP_TIMEHI), shown in
Figure 23-12 and in Figure 23-13, hold the local adjusted clock time,
represented as a 64-bit value spread across two 32-bit registers.

When reading the local time, the lower register (EMAC_PTP_TIMELO) must
be read before reading the higher register (EMAC_PTP_TIMEHI). Similarly,
when writing the local time, the lower register (EMAC_PTP_TIMELO) must be
written before writing the higher register (EMAC_PTP_TIMEHI). This pro-
gramming sequence is required to maintain synchronization between the
two registers.

Figure 23-12. Local Clock Time Low Register

Table 23-14. EMAC_PTP_TIMELO Register

Bits Name Description Reset
Value

Access

31:0 LOCAL_TIME_LO Lower 32 bits of the local clock time 0x0 RW

LOCAL_TIME_LO

LOCAL_TIME_LO

0 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0

Local Clock Time Low Register (EMAC_PTP_TIMELO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x00000000
ADSP-BF51x Blackfin Processor Hardware Reference 23-27

PTP_TSYNC Module Registers
Receive Snapshot Low Register
(EMAC_PTP_RXSNAPLO)

Two registers (EMAC_PTP_RXSNAPLO and EMAC_PTP_RXSNAPHI), shown in
Figure 23-14 and in Figure 23-15, hold the timestamp of a detected
incoming event message. It is a snapshot of the local time clock when the
start of frame of the event message is recognized by the PTP_TSYNC
module. It is a 64-bit value, spreading across two 32-bit registers. A read
of this pair of registers clears the RXTL bit of the interrupt status register
(EMAC_PTP_ISTAT).

Figure 23-13. Local Clock Time High Register

Table 23-15. EMAC_PTP_TIMEHI Register

Bits Name Description Reset
Value

Access

31:0 LOCAL_TIME_HI Higher 32 bits of the local clock time 0x0 RW

LOCAL_TIME_HI

LOCAL_TIME_HI

0 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0

Local Clock Time High Register (EMAC_PTP_TIMEHI)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x00000000
23-28 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
Receive Snapshot High Register
(EMAC_PTP_RXSNAPHI)

Two registers (EMAC_PTP_RXSNAPLO and EMAC_PTP_RXSNAPHI), shown in
Figure 23-14 and in Figure 23-15, hold the timestamp of a detected
incoming event message. It is a snapshot of the local time clock when the
start of frame of the event message is recognized by the PTP_TSYNC
module. It is a 64-bit value, which spreads across two 32-bit registers. A
read of this pair of registers clears the RXTL bit of the interrupt status regis-
ter (EMAC_PTP_ISTAT).

Figure 23-14. Receive Snapshot Low Register

Table 23-16. EMAC_PTP_RXSNAPLO Register

Bits Name Description Reset
Value

Access

31:0 RX_SNAP_LO Lower 32 bits of the receive snapshot
of local clock time

0x0 RW

RX_SNAP_LO

RX_SNAP_LO

0 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0

Receive Snapshot Low Register (EMAC_PTP_RXSNAPLO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x00000000
ADSP-BF51x Blackfin Processor Hardware Reference 23-29

PTP_TSYNC Module Registers
Transmit Snapshot Low Register
(EMAC_PTP_TXSNAPLO)

Two registers (EMAC_PTP_TXSNAPLO and EMAC_PTP_TXSNAPHI), shown in
Figure 23-16 and in Figure 23-17, hold the timestamp of a detected
outgoing event message. It is a snapshot of the local time clock when the
start of frame of the event message is recognized by the PTP_TSYNC
module. It is a 64-bit value, which spreads across two 32-bit registers. A
read of this pair of registers clears the TXTL bit of the interrupt status regis-
ter (EMAC_PTP_ISTAT).

Figure 23-15. Receive Snapshot High Register

Table 23-17. EMAC_PTP_RXSNAPHI Register

Bits Name Description Reset
Value

Access

31:0 RX_SNAP_HI Higher 32 bits of the receive snapshot
of local clock time

0x0 RW

RX_SNAP_HI

0

0 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0

Receive Snapshot High Register (EMAC_PTP_RXSNAPHI)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x00000000

RX_SNAP_HI
23-30 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
Transmit Snapshot High Register
(EMAC_PTP_TXSNAPHI)

Two registers (EMAC_PTP_TXSNAPLO and EMAC_PTP_TXSNAPHI), shown in
Figure 23-16 and in Figure 23-17, hold the timestamp of a detected
outgoing event message. It is a snapshot of the local time clock when the
start of frame of the event message is recognized by the PTP_TSYNC
module. It is a 64-bit value, which spreads across two 32-bit registers. A
read of this pair of registers clears the TXTL bit of the interrupt status regis-
ter (EMAC_PTP_ISTAT).

Figure 23-16. Transmit Snapshot Low Register

Table 23-18. EMAC_PTP_TXSNAPLO Register

Bits Name Description Reset
Value

Access

31:0 TX_SNAP_LO Lower 32 bits of the transmit snapshot
of local clock time

0x0 RW

TX_SNAP_LO

TX_SNAP_LO

0

0 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0

Transmit Snapshot Low Register (EMAC_PTP_TXSNAPLO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x00000000
ADSP-BF51x Blackfin Processor Hardware Reference 23-31

PTP_TSYNC Module Registers
Target Alarm Time Low Register
(EMAC_PTP_ALARMLO)

Two registers (EMAC_PTP_ALARMLO and EMAC_PTP_ALARMHI), shown in
Figure 23-18 and in Figure 23-19, hold the target alarm time. When the
local clock time reaches the target alarm time, the alarm is triggered and
an interrupt is raised and the corresponding alarm bit in EMC_PTP_ISTAT is
set if the alarm function is enabled. The target alarm time is a 64-bit
value, which spreads across two 32-bit registers.

Figure 23-17. Transmit Snapshot High Register

Table 23-19. EMAC_PTP_TXSNAPHI Register

Bits Name Description Reset
Value

Access

31:0 TX_SNAP_HI Higher 32 bits of the transmit snap-
shot of local clock time

0x0 RW

TX_SNAP_HI

TX_SNAP_HI

0

0 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0

Transmit Snapshot High Register (EMAC_PTP_TXSNAPHI)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x00000000
23-32 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
Target Alarm Time High Register
(EMAC_PTP_ALARMHI)

Two registers (EMAC_PTP_ALARMLO and EMAC_PTP_ALARMHI), shown in
Figure 23-18 and in Figure 23-19, hold the target alarm time. When the
local clock time reaches the target alarm time, the alarm is triggered and
an interrupt is raised and the corresponding alarm bit in EMC_PTP_ISTAT is
set if the alarm function is enabled. The target alarm time is a 64-bit
value, and spreads across two 32-bit registers.

Figure 23-18. Target Alarm Time Low Register

Table 23-20. EMAC_PTP_ALARMLO Register

Bits Name Description Reset
Value

Access

31:0 ALARM_TIME_LO Lower 32 bits of the target alarm time 0x0 RW

ALARM_TIME_LO

ALARM_TIME_LO

0

0 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0

Target Alarm Time Low Register (EMAC_PTP_ALARMLO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x00000000
ADSP-BF51x Blackfin Processor Hardware Reference 23-33

PTP_TSYNC Module Registers
Source ID Offset Register (EMAC_PTP_ID_OFF)
The EMAC_PTP_ID_OFF register, shown in Figure 23-20, specifies the
location offset of the source ID of an IEEE 1588 message within an
Ethernet packet. The PTP_TSYNC module uses this value to extract the
source ID of a detected incoming message. The function of each bit is
described in Table 23-22.

Figure 23-19. Target Alarm Time High Register

Table 23-21. EMAC_PTP_ALARMHI Register

Bits Name Description Reset
Value

Access

31:0 ALARM_TIME_HI Higher 32 bits of the target alarm time 0x0 RW

Figure 23-20. Source ID Offset Register

ALARM_TIME_HI

ALARM_TIME_HI

0

0 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0

Target Alarm Time High Register (EMAC_PTP_ALARMHI)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x00000000

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 0 0 0 0 0

Source ID Offset Register (EMAC_PTP_ID_OFF)

Reserved SRC_ID_OFF

Reset = 0x0040
23-34 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
Source ID Snapshot Register (EMAC_PTP_ID_SNAP)
The EMAC_PTP_ID_SNAP register, shown in Figure 23-21, holds the source
ID extracted from a timestamped event message. It is used by software to
correlate a timestamp to the received message to which it belongs in case
multiple incoming messages are received in the software’s buffer.
The function of each bit is described in Table 23-23.

Table 23-22. EMAC_PTP_ID_OFF Register

Bits Name Description Reset
Value

Access

7:0 SRC_ID_OFF Source ID offset 0x40 RW

15:8 Reserved Reserved 0x0 RV

Figure 23-21. Source ID Snapshot Register

Table 23-23. EMAC_PTP_ID_SNAP Register

Bits Name Description Reset
Value

Access

31:0 SRC_ID Source ID 0x0 RW

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0

Source ID Snapshot Register (EMAC_PTP_ID_SNAP)

SRC_ID

0 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0

SRC_ID

Reset = 0x00000000
ADSP-BF51x Blackfin Processor Hardware Reference 23-35

PTP_TSYNC Module Registers
PPS Start Low Register (EMAC_PTP_PPS_STARTLO)
Two registers (EMAC_PTP_PPS_STARTLO and EMAC_PTP_PPS_STARTHI), shown
in Figure 23-22 and Figure 23-23, define the PPS start time value, which
controls how the pulse-per-second (PPS) signal is generated.

Figure 23-22. PPS Start Low Register

Table 23-24. EMAC_PTP_PPS_STARTLO Register

Bits Name Description Reset
Value

Access

31:0 PPS_STARTLO Lower 32 bits of the PPS start time 0x0 RW

PSS_STARTLO

PSS_STARTLO

0

0 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0

PPS Start Low Register (EMAC_PTP_PPS_STARTLO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x00000000
23-36 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
PPS Start High Register (EMAC_PTP_PPS_STARTHI)
Two registers (EMAC_PTP_PPS_STARTLO and EMAC_PTP_PPS_STARTHI), shown
in Figure 23-22 and Figure 23-23, define the PPS start time value, which
controls how the pulse-per-second (PPS) signal is generated.

Figure 23-23. PSS Start High Register

Table 23-25. EMAC_PTP_PPS_STARTHI Register

Bits Name Description Reset
Value

Access

31:0 PPS_STARTHI Higher 32 bits of the PPS start time 0x0 RW

PSS_STARTHI

PSS_STARTHI

0

0 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0

PSS Start High Register (EMAC_PTP_PSS_STARTHI)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x00000000
ADSP-BF51x Blackfin Processor Hardware Reference 23-37

PTP_TSYNC Module Registers
PPS Period Register (EMAC_PTP_PPS_PERIOD)
The EMAC_PTP_PPS_PERIOD register, shown in Figure 23-24, specifies the
period of PPS signal, which is in number of adjusted local clock cycles.
It is added to the PPS start time after each PPS pulse.

Figure 23-24. PSS Period Register

Table 23-26. EMAC_PTP_PPS_PERIOD Register

Bits Name Description Reset
Value

Access

31:0 PPS_PERIOD PPS signal period 0x0 RW

PSS_PERIOD

PSS_PERIOD

0

0 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0

PSS Period Register (EMAC_PTP_PSS_PERIOD)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x00000000
23-38 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
PTP_TSYNC Module Programming Model
The following sections describe how to configure the PTP_TSYNC
module for typical uses:

• “IEEE 1588-2002 Implementation Over IP/UDP” on page 23-39

• “IEEE 1588-2008 Implementation Over IP/UDP” on page 23-40

• “IEEE 1588-2008 Implementation Over MAC Layer” on
page 23-40

• “Pulse-Per-Second (PPS) Signal Generation” on page 23-41

IEEE 1588-2002 Implementation Over IP/UDP
For IEEE 1588-2002 V1 implementation over IP/UDP, most of the
default values of the registers can be left unchanged. The detailed pro-
gramming steps are:

1. Clear the five comparison mask bits (bits[12:8]) in EMAC_PTP_CTL)
to enable all the field matches.

2. Keep the default values of the EMAC_PTP_FOFF register.

3. Keep the default values of the EMAC_PTP_FV1 and EMAC_PTP_FV2
registers.

4. Depending on the event messages to be timestamped, clear the
appropriate bits among bits[15:0] of the EMAC_PTP_FV3 register.
The default value (0xFFFC) allows the timestamping of both
received Sync messages and Delay_Req messages.

5. Depending on the general messages to be detected, clear the
appropriate bits among bits[31:16] of the EMAC_PTP_FV3 register.
The default value (0xFFFF) allows no detection of received general
messages.
ADSP-BF51x Blackfin Processor Hardware Reference 23-39

PTP_TSYNC Module Programming Model
IEEE 1588-2008 Implementation Over IP/UDP
The detailed programming steps are:

1. Clear all five comparison mask bits (bits[12:8]) in the
EMAC_PTP_CTL register to enable all the field matches.

2. Keep the default values of the EMAC_PTP_FOFF register, except set
the PTPCOF field to 0x2A.

3. Keep the default values of the EMAC_PTP_FV1 and the EMAC_PTP_FV2
registers.

4. Depending on the event messages to be timestamped, clear the
appropriate bits among bits[15:0] of the EMAC_PTP_FV3 register.
The default value (0xFFFC) allows the timestamping of both
received Sync messages and Delay_Req messages. To allow the
timestamping of Pdelay_Req and Pdelay_Resp, set the value to
0xFFF0.

5. Depending on the general messages to be detected, clear the
appropriate bits among the bits[31:16] of the EMAC_PTP_FV3
register. The default value (0xFFFF) allows no detection of
received general messages.

IEEE 1588-2008 Implementation Over MAC Layer
The detailed programming steps are:

1. Clear bits 8 and 12 of the EMAC_PTP_CTL register to enable only the
EFTM and PTPCM field comparison.

2. Keep the default values of all the fields of the EMAC_PTP_FOFF
register, except set the PTPCOF field to 0x0E.

3. Program bits [15:0] of the EMAC_PTP_FV1 register to 0x88F7, which
corresponds to PTP messages on the MAC layer.
23-40 ADSP-BF51x Blackfin Processor Hardware Reference

IEEE 1588 PTP Engine
4. Keep the default values for all other fields of the EMAC_PTP_FV1 and
EMAC_PTP_FV2 registers.

5. Depending on the event messages to be timestamped, clear the
appropriate bits among bits[15:0] of the EMAC_PTP_FV3 register.
The default value (0xFFFC) allows the timestamping of both
received Sync messages and Delay_Req messages.

To allow the timestamping of Pdelay_Req and Pdelay_Resp
messages, set the value to 0xFFF0.

6. Depending on the general messages to be detected, clear the
appropriate bits among bits[31:16] of the EMAC_PTP_FV3 register.
The default value (0xFFFF) allows no detection of received general
messages.

Pulse-Per-Second (PPS) Signal Generation
The detailed programming steps are:

1. Enable the PPSEN bit of the EMAC_PTP_CTL register to enable the PPS
function.

2. Program the number of adjusted local clock cycles corresponding
to 1 second in the EMAC_PTP_PPS_PERIOD register.

3. Program the time of the first pulse in the EMAC_PTP_PPS_STARTLO
and EMAC_PTP_PPS_STARTHI registers.

4. After the first pulse, if the position of the next pulse must be
advanced or delayed, re-program EMAC_PTP_PPS_STARTLO and
EMAC_PTP_PPS_STARTHI registers accordingly.

5. If the period of the pulses needs to be changed, modify the
EMAC_PTP_PPS_PERIOD register value accordingly.
ADSP-BF51x Blackfin Processor Hardware Reference 23-41

PTP_TSYNC Module Programming Model

23-42 ADSP-BF51x Blackfin Processor Hardware Reference

Real-Time Clock
24 REAL-TIME CLOCK

This chapter describes the real-time clock (RTC). Following an overview
and list of key features is a description of operation. The chapter con-
cludes with a programming model, consolidated register definitions, and
programming examples.

Specific Information for the ADSP-BF51x
For RTC interrupt vector assignments, refer to Table 5-3 on page 5-20 in
Chapter 5, “System Interrupts”.

For a list of MMR addresses for the RTC, refer to Appendix A, “System
MMR Assignments”.

RTC behavior for the ADSP-BF51x that differs from the general informa-
tion in this chapter can be found at the end of this chapter in the section
“Unique Information for the ADSP-BF51x Processor” on page 24-28.

Overview
The RTC provides a set of digital watch features to the processor, includ-
ing time of day, alarm, and stopwatch countdown. It is typically used to
implement either a real-time watch or a life counter, which counts the
elapsed time since the last system reset.
ADSP-BF51x Blackfin Processor Hardware Reference 24-1

Overview
The RTC watch features are clocked by a 32.768 kHz crystal external to
the processor. The RTC uses dedicated power supply pins and is
independent of any reset, which enables it to maintain functionality even
when the rest of the processor is powered down.

The RTC input clock is divided down to a 1 Hz signal by a prescaler,
which can be bypassed. When bypassed, the RTC is clocked at the
32.768 kHz crystal rate. In normal operation, the prescaler is enabled.

The primary function of the RTC is to maintain an accurate day count
and time of day. The RTC accomplishes this by means of four counters:

• 60 second counter

• 60 minute counter

• 24 hour counter

• 32768 day counter

The RTC increments the 60 second counter once per second and incre-
ments the other three counters when appropriate. The 32768 day counter
is incremented each day at midnight (0 hours, 0 minutes, 0 seconds).
Interrupts can be issued periodically, either every second, every minute,
every hour, or every day. Each of these interrupts can be independently
controlled.

The RTC provides two alarm features, programmed with the RTC_ALARM
register. The first is a time of day alarm (hour, minute, and second).
When the alarm interrupt is enabled, the RTC generates an interrupt each
day at the time specified. The second alarm feature allows the application
to specify a day as well as a time. When the day alarm interrupt is enabled,
the RTC generates an interrupt on the day and time specified. The alarm
interrupt and day alarm interrupt can be enabled or disabled
independently.
24-2 ADSP-BF51x Blackfin Processor Hardware Reference

Real-Time Clock
The RTC provides a stopwatch function that acts as a countdown timer.
The application can program a second count into the RTC stopwatch
count register (RTC_SWCNT). When the stopwatch interrupt is enabled and
the specified number of seconds have elapsed, the RTC generates an
interrupt.

Interface Overview
The RTC external interface consists of two clock pins, which together
with the external components form the reference clock circuit for the
RTC. The RTC interfaces internally to the processor system through the
peripheral access bus (PAB), and through the interrupt interface to the
system interrupt controller (SIC).

The RTC has dedicated power supply pins that power the clock functions
at all times, including when the core power supply is turned off.
Figure 24-1 provides a block diagram of the RTC.

Description of Operation
The following sections describe the operation of the RTC.

RTC Clock Requirements
The RTC timer is clocked by a 32.768 kHz crystal external to the proces-
sor. The RTC system memory mapped registers (MMRs) are clocked by
this crystal. When the prescaler is disabled, the RTC MMRs are clocked at
the 32.768 kHz crystal frequency. When the prescaler is enabled, the
RTC MMRs are clocked at the 1 Hz rate.
ADSP-BF51x Blackfin Processor Hardware Reference 24-3

Description of Operation
There is no way to disable the RTC counters using software. If a given sys-
tem does not require the RTC functionality, then it may be disabled with
hardware tie-offs. Tie the RTXI and RTCGND pins to EGND, tie the RTCVDD pin
to EVDD, and leave the RTXO pin unconnected. Additionally, writing
RTC_PREN to “0” saves a small amount of power.

Figure 24-1. RTC Block Diagram

DAYS
COUNTER

DAY
ALARM
EVENT

24 HOURS
EVENT

1

0

9

RTC_ALARM REGISTER

RTC_PREN

EQUAL?

HOURS
COUNTER

MINUTES
COUNTER

SECONDS
COUNTER

HOURS
EVENT

MINUTES
EVENT

SECONDS
EVENT

PRESCALE
COUNTER

5 6 6

9 5 6 6

ALARM
EVENT

Y Y Y Y

RTXI
32.768 kHz1 Hz

TICK

SET

RST

STOPWATCH
EVENT

STOPWATCH
ENABLE

Y

16

STOPWATCH
COUNTER

WRITE
RTC_SWCNT

EQUAL?

EQUAL 0?

EQUAL? EQUAL?
24-4 ADSP-BF51x Blackfin Processor Hardware Reference

Real-Time Clock
Prescaler Enable
The single active bit of the RTC prescaler enable register (RTC_PREN) is
written using a synchronization path. Clearing of the bit is synchronized
to the 32.768 kHz clock. This faster synchronization allows the module to
be put into high speed mode (bypassing the prescaler) without waiting the
full one second for the write to complete that would be necessary if the
module were already running with the prescaler enabled. When this bit is
cleared, the prescaler is disabled, and the RTC runs at the 32.768 kHz
crystal frequency.

When setting the RTC_PREN bit, the first positive edge of the 1 Hz clock
occurs 1 to 2 cycles of the 32.768 kHz clock after the prescaler is enabled.
The write complete status/interrupt works as usual when enabling or dis-
abling the prescale counter. The new RTC clock rate is in effect before the
write complete status is set. In order for the RTC to operate at the proper
rate, software must set the prescaler enable bit after initial powerup. When
this bit is set, the prescaler is enabled, and the RTC runs at a frequency of
1 Hz.

Write RTC_PREN and then wait for the write complete event before pro-
gramming the other registers. It is safe to write RTC_PREN to “1” every time
the processor boots. The first time sets the bit, and subsequent writes have
no effect, as no state is changed.

 Do not disable the prescaler by clearing the bit in the RTC_PREN reg-
ister without making sure that there are no writes to RTC MMRs
in progress. Do not switch between fast and slow mode during nor-
mal operation by setting and clearing this bit, as this disrupts the
accurate tracking of real time by the counters. To avoid these
potential errors, initialize the RTC during startup using RTC_PREN
and do not dynamically alter the state of the prescaler during nor-
mal operation.
ADSP-BF51x Blackfin Processor Hardware Reference 24-5

RTC Programming Model
Running without the prescaler enabled is provided primarily as a test
mode. All functionality works, just 32,768 times as fast. Typical software
should never program RTC_PREN to “0”. The only reason to do so is to syn-
chronize the 1 Hz tick to a more precise external event, as the 1 Hz tick
predictably occurs a few RTXI cycles after a 0-to-1 transition of RTC_PREN.

Use the following sequence to achieve synchronization to within 100 ms.

1. Write RTC_PREN to “0”.

2. Wait for the write to complete.

3. Wait for the external event.

4. Write RTC_PREN to “1”.

5. Wait for the write to complete.

6. Reprogram the time into RTC_STAT.

RTC Programming Model
The RTC programming model consists of a set of system MMRs. Soft-
ware can configure the RTC and can determine the status of the RTC
through reads and writes to these registers. The RTC interrupt control
register (RTC_ICTL) and the RTC interrupt status register (RTC_ISTAT) pro-
vide RTC interrupt management capability.

Note that software cannot disable the RTC counting function. However,
all RTC interrupts can be disabled, or masked. At reset, all interrupts are
disabled. The RTC state can be read via the system MMR status registers
at any time.

The primary RTC functionality, shown in Figure 24-1 on page 24-4, con-
sists of registers and counters that are powered by an independent RTC
supply (VDDRTC). This logic is never reset; it comes up in an indetermi-
nate state when VDDRTC is first powered on.
24-6 ADSP-BF51x Blackfin Processor Hardware Reference

Real-Time Clock
The RTC also contains logic powered by the same internal Vdd as the pro-
cessor core and other peripherals. This logic contains some control
functionality, holding registers for PAB write data, and prefetched PAB
read data shadow registers for each of the five VDDRTC-powered registers.
This logic is reset by the same system reset and clocked by the same SCLK
as the other peripherals.

Figure 24-2 shows the connections between the VDDRTC-powered RTC
MMRs and their corresponding VDDINT-powered write holding registers
and read shadow registers. In the figure, “REG” means each of the
RTC_STAT, RTC_ALARM, RTC_SWCNT, RTC_ICTL, and RTC_PREN registers. The
RTC_ISTAT register connects only to the PAB.

The rising edge of the 1 Hz RTC clock is the “1 Hz tick”. Software can
synchronize to the 1 Hz tick by waiting for the seconds event flag to set or
by waiting for the seconds interrupt (if enabled).
ADSP-BF51x Blackfin Processor Hardware Reference 24-7

RTC Programming Model
Register Writes
Writes to all RTC MMRs except RTC_ISTAT are saved in write holding reg-
isters and then are synchronized to the RTC 1 Hz clock. The write
pending status bit in RTC_ISTAT indicates the progress of the write. The
write pending status bit is set when a write is initiated and is cleared when
all writes are complete. The falling edge of the write pending status bit
causes the write complete flag in RTC_ISTAT to be set. This flag can be con-
figured in RTC_ICTL to cause an interrupt. Software does not have to wait

Figure 24-2. RTC Register Architecture

FALLING
EDGE DETECT

WRITE
COMPLETE
EVENT

N

1 Hz
TICK

RST

SET
PAB

16/32

REG WRITE
PENDING

REG WRITE
HOLDING

REG READ
SHADOW RTC_ISTAT

REG

161616/32

N

MMR WRITE
TO REG

5

WRITE
PENDING
STATUS

POWERED BY VDDRTC
CLOCKED BY 1 Hz TICK

POWERED BY VDDINT
CLOCKED BY SCLK
24-8 ADSP-BF51x Blackfin Processor Hardware Reference

Real-Time Clock
for writes to one RTC MMR to complete before writing to another RTC
MMR. The write pending status bit is set if any writes are in progress, and
the write complete flag is set only when all writes are complete.

 Any writes in progress when peripherals are reset are aborted. Do
not stop SCLK (for example, by entering deep sleep mode) or
remove internal Vdd power until all RTC writes have completed.

 Do not attempt another write to the same register without waiting
for the previous write to complete. Subsequent writes to the same
register are ignored if the previous write is not complete.

 Reading a register that has been written before the write complete
flag in RTC_ISTAT is set will return the old value. Always check the
write pending status bit in RTC_ISTAT before attempting a read or
write.

Write Latency
Writes to the RTC MMRs are synchronized to the 1 Hz RTC clock.
When setting the time of day, do not factor in the delay when writing to
the RTC MMRs. The most accurate method of setting the RTC is to
monitor the seconds (1 Hz) event flag or to program an interrupt for this
event and then write the current time to RTC_STAT in the interrupt service
routine (ISR). The new value is inserted ahead of the incrementer. Hard-
ware adds one second to the written value (with appropriate carries into
minutes, hours and days) and loads the incremented value at the next
1 Hz tick, when it represents the then-current time.

Writes posted at any time are properly synchronized to the 1 Hz clock.
Writes complete at the rising edge of the 1 Hz clock. A write posted just
before the 1 Hz tick may not be completed until the 1 Hz tick one second
later. Any write posted in the first 990 ms after a 1 Hz tick completes on
the next 1 Hz tick, but the simplest, most predictable and recommended
ADSP-BF51x Blackfin Processor Hardware Reference 24-9

RTC Programming Model
technique is to only post writes to RTC_STAT, RTC_ALARM, RTC_SWCNT,
RTC_ICTL, or RTC_PREN immediately after a seconds interrupt or event. All
five registers may be written in the same second.

W1C bits in the RTC_ISTAT register take effect immediately.

Register Reads
There is no latency when reading RTC MMRs, as the values come from
the read shadow registers. These shadow registers are updated and ready
for reading by the time any RTC interrupts or event flags for that second
are asserted. Once the internal Vdd logic completes its initialization
sequence after SCLK starts, there is no point in time when it is unsafe to
read the RTC MMRs for synchronization reasons. They always return
coherent values, although the values may be indeterminate.

Deep Sleep
When the dynamic power management mode is set to deep sleep, all
clocks in the system (except RTXI and the RTC 1 Hz tick) are stopped. In
this state, the VDDRTC-powered counters continue to increment. The
internal Vdd shadow registers are not updated, but neither can they be
read.

During deep sleep mode, all bits in RTC_ISTAT are cleared. Events that
occur during deep sleep are not recorded in RTC_ISTAT. The internal Vdd
RTC control logic generates a virtual 1 Hz tick within one RTXI period
(30.52 s) after SCLK restarts. This loads all shadow registers with
up-to-date values and sets the seconds event flag. Other event flags may
also be set. When the system wakes up from deep sleep, whether by an
RTC event or a hardware reset, all of the RTC events that occurred during
that second (and only that second) are reported in RTC_ISTAT.
24-10 ADSP-BF51x Blackfin Processor Hardware Reference

Real-Time Clock
When the system wakes up from deep sleep mode, software does not need
to W1C the bits in RTC_ISTAT. All W1C bits are already cleared by hard-
ware. The seconds event flag is set when the RTC internal Vdd logic has
completed its restart sequence. Software should wait until the seconds
event flag is set and then may begin reading or writing any RTC register.

Event Flags

 The indeterminate values in the registers at power-up can cause
event flags to set before the correct value is written into each of the
registers. By catching the 1 Hz clock edge, the write to RTC_STAT
can occur a full second before the write to RTC_ALARM. This would
cause an extra second of delay between the validity of RTC_STAT and
RTC_ALARM, if the value of the RTC_ALARM out of reset is the same as
the value written to RTC_STAT. Therefore, wait for the writes to
complete on these registers before using the flags and interrupts
associated with their values.

The following is a list of flags along with the conditions under which they
are valid:

• Seconds (1 Hz) event flag
Always set on the positive edge of the 1 Hz clock and after shadow
registers have updated after waking from deep sleep. This is valid as
long as the RTC 1 Hz clock is running. Use this flag or interrupt to
validate the other flags.

• Write complete and write pending status
Always valid.

• Minutes event flag
Valid only after the second field in RTC_STAT is valid. Use the write
complete and write pending status flags or interrupts to validate the
RTC_STAT value before using this flag value or enabling the
interrupt.
ADSP-BF51x Blackfin Processor Hardware Reference 24-11

RTC Programming Model
• Hours event flag
Valid only after the minute field in RTC_STAT is valid. Use the write
complete and write pending status flags or interrupts to validate the
RTC_STAT value before using this flag value or enabling the
interrupt.

• 24 Hours event flag
Valid only after the hour field in RTC_STAT is valid. Use the write
complete and write pending status flags or interrupts to validate the
RTC_STAT value before using this flag value or enabling the
interrupt.

• Stopwatch event flag
Valid only after the RTC_SWCNT register is valid. Use the write com-
plete and write pending status flags or interrupts to validate the
RTC_SWCNT value before using this flag value or enabling the
interrupt.

• Alarm event and day alarm event flags
Valid only after the RTC_STAT and RTC_ALARM registers are valid. Use
the write complete and write pending status flags or interrupts to
validate the RTC_STAT and RTC_ALARM values before using this flag
value or enabling its interrupt.

Writes posted together at the beginning of the same second take effect
together at the next 1 Hz tick. The following sequence is safe and does not
result in any spurious interrupts from a previous state.

1. Wait for 1 Hz tick.

2. Write 1s to clear the RTC_ISTAT flags for alarm, day alarm, stop-
watch, and/or per interval.

3. Write new values for RTC_STAT, RTC_ALARM, and/or RTC_SWCNT.

4. Write new value for RTC_ICTL with alarm, day alarm, stopwatch,
and/or per interval interrupts enabled.
24-12 ADSP-BF51x Blackfin Processor Hardware Reference

Real-Time Clock
5. Wait for 1 Hz tick.

6. New values have now taken effect simultaneously.

Setting Time of Day
The RTC_STAT register is used to read or write the current time. Reads
return a 32-bit value that always reflects the current state of the days,
hours, minutes, and seconds counters. Reads and writes must be 32-bit
transactions; attempted 16-bit transactions result in an MMR error. Reads
always return a coherent 32-bit value. The hours, minutes, and seconds
fields are usually set to match the real time of day. The day counter value
is incremented every day at midnight to record how many days have
elapsed since it was last modified. Its value does not correspond to a par-
ticular calendar day. The 15-bit day counter provides a range of 89 years,
260 or 261 days (depending on leap years) before it overflows.

After the 1 Hz tick, program RTC_STAT with the current time. At the next
1 Hz tick, RTC_STAT takes on the new, incremented value. For example:

1. Wait for 1 Hz tick.

2. Read RTC_STAT, get 10:45:30.

3. Write RTC_STAT to current time, 13:10:59.

4. Read RTC_STAT, still get old time 10:45:30.

5. Wait for 1 Hz tick.

6. Read RTC_STAT, get new current time, 13:11:00.

Using the Stopwatch
The RTC_SWCNT register contains the countdown value for the stopwatch.
The stopwatch counts down seconds from the programmed value and gen-
erates an interrupt (if enabled) when the count reaches “0”. The counter
ADSP-BF51x Blackfin Processor Hardware Reference 24-13

RTC Programming Model
stops counting at this point and does not resume counting until a new
value is written to RTC_SWCNT. Once running, the counter may be over-
written with a new value. This allows the stopwatch to be used as a
watchdog timer with a precision of one second.

The stopwatch can be programmed to any value between 0 and (216 – 1)
seconds, which is a range of 18 hours, 12 minutes, and 15 seconds.

Typically, software should wait for a 1 Hz tick, then write RTC_SWCNT. One
second later, RTC_SWCNT changes to the new value and begins decrement-
ing. Because the register write occupies nearly one second, the time from
writing a value of N until the stopwatch interrupt is nearly N + 1 seconds.
To produce an exact delay, software can compensate by writing N – 1 to
get a delay of nearly N seconds. This implies that you cannot achieve a
delay of 1 second with the stopwatch. Writing a value of “1” immediately
after a 1 Hz tick results in a stopwatch interrupt nearly two seconds later.
To wait one second, software should just wait for the next 1 Hz tick.

The RTC_SWCNT register is not reset. After initial powerup, it may be run-
ning. When the stopwatch is not used, writing it to “0” to force it to stop
saves a small amount of power.

Interrupts
The RTC can provide interrupts at several programmable intervals:

• Per second, minute, hour, and day—based on increments to the
respective counters in RTC_STAT

• On countdown from a programmable value—value in RTC_SWCNT
transitions to “0” or is written with “0” by software (whether it was
previously running or already stopped with a count of “0”)
24-14 ADSP-BF51x Blackfin Processor Hardware Reference

Real-Time Clock
• Daily at a specific time—all fields of RTC_ALARM must match
RTC_STAT except the day field

• On a specific day and time—all fields of RTC_ALARM register must
match RTC_STAT

The RTC can be programmed to provide an interrupt at the completion
of all pending writes to any of the 1 Hz registers (RTC_STAT, RTC_ALARM,
RTC_SWCNT, RTC_ICTL, and RTC_PREN). The eight RTC interrupt events can
be individually masked or enabled by the RTC_ICTL register. The seconds
interrupt is generated on each 1 Hz clock tick, if enabled. The minutes
interrupt is generated at the 1 Hz clock tick that advances the seconds
counter from 59 to 0. The hour interrupt is generated at the 1 Hz clock
tick that advances the minute counter from 59 to 0. The 24 hour inter-
rupt occurs once per 24 hour period at the 1 Hz clock tick that advances
the time to midnight (00:00:00). Any of these interrupts can generate a
wakeup request to the processor, if enabled. All implemented bits are
read/write.

This register is only partially cleared at reset, so some events may appear to
be enabled initially. However, the RTC interrupt and the RTC wakeup to
the PLL are handled specially and are masked (forced low) until after the
first write to the RTC_ICTL register is complete. Therefore, all interrupts
act as if they were disabled at system reset (as if all bits of RTC_ICTL were
zero), even though some bits of RTC_ICTL may read as nonzero. If no RTC
interrupts are needed immediately after reset, it is recommended to write
RTC_ICTL to 0x0000 so that later read-modify-write accesses function as
intended.

Interrupt status can be determined by reading the RTC_ISTAT register. All
bits in RTC_ISTAT are sticky. Once set by the corresponding event, each bit
remains set until cleared by a software write to this register. Event flags are
always set; they are not masked by the interrupt enable bits in RTC_ICTL.
Values are cleared by writing a “1” to the respective bit location, except for
ADSP-BF51x Blackfin Processor Hardware Reference 24-15

RTC Programming Model
the write pending status bit, which is read-only. Writes of “0” to any bit of
the register have no effect. This register is cleared at reset and during deep
sleep.

The RTC interrupt is set whenever an event latched into the RTC_ISTAT
register is enabled in the RTC_ICTL register. The pending RTC interrupt is
cleared whenever all enabled and set bits in RTC_ISTAT are cleared, or when
all bits in RTC_ICTL corresponding to pending events are cleared.

As shown in Figure 24-3, the RTC generates an interrupt request (IRQ)
to the processor core for event handling and wakeup from a sleep state.
The RTC generates a separate signal for wakeup from a deep sleep or from
an internal Vdd power-off state. The deep sleep wakeup signal is asserted
at the 1 Hz tick when any RTC interval event enabled in RTC_ICTL occurs.
The assertion of the deep sleep wakeup signal causes the processor core
clock (CCLK) and the system clock (SCLK) to restart. Any enabled event that
asserts the RTC deep sleep wakeup signal also causes the RTC IRQ to
assert once SCLK restarts.
24-16 ADSP-BF51x Blackfin Processor Hardware Reference

Real-Time Clock
State Transitions Summary
Table 24-1 shows how each RTC MMR is affected by the system states.
The phase locked loop (PLL) states are defined in the Dynamic Power
Management chapter. “No power” means none of the processor power
supply pins are connected to a source of energy. “Off” means the processor
core, peripherals, and memory are not powered (internal Vdd is off), while
the RTC is still powered and running. External Vdd may still be powered.
Registers described as “as written” are holding the last value software
wrote to the register. If the register has not been written since VDDRTC
power was applied, then the state is indeterminate (for all bits of
RTC_STAT, RTC_ALARM, and RTC_SWCNT, and for some bits of RTC_ISTAT,
RTC_PREN, and RTC_ICTL).

Figure 24-3. RTC Interrupt Structure

VOLTAGE
REGULATOR

WRITE
COMPLETE
EVENT

1 Hz
TICK

PLL

RTC_ISTAT ICTL READ
SHADOW

RTC_ICTL

7

RTC
IRQ

7

POWERED BY
RTC VDD

7

7

7

DAY,
HOURS,
SECONDS,
STOPWATCH

24 HOURS,
MINUTES,
ALARM,
EVENTS

POWERED BY
INTERNAL VDD

POWERED BY
EXTERNAL VDD

7 SYSTEM
INTERRUPT

CONTROLLER

PROCESSOR
CORE

WRITE
COMPLETE
ENABLE

77

WAKE FROM
DEEP SLEEP

WAKE
FROM
POWER
OFF
ADSP-BF51x Blackfin Processor Hardware Reference 24-17

RTC Programming Model
Table 24-2 summarizes software’s responsibilities with respect to the RTC
at various system state transition events.

Table 24-1. Effect of States on RTC MMRs

RTC Vdd IVdd System State RTC_ICTL RTC_ISTAT RTC_STAT
RTC_SWCNT

RTC_ALARM
RTC_PREN

Off Off No power X X X X

On On Reset As written 0 Counting As written

On On Full on As written Events Counting As written

On On Sleep As written Events Counting As written

On On Active As written Events Counting As written

On On Deep
sleep

As written 0 Counting As written

On Off Off As written X Counting As written

Table 24-2. RTC System State Transition Events

At This Event: Execute This Sequence:

Power on from no power Write RTC_PREN = 1.
Wait for write complete.
Write RTC_STAT to current time.
Write RTC_ALARM, if needed.
Write RTC_SWCNT.
Write RTC_ISTAT to clear any pending RTC events.
Write RTC_ICTL to enable any desired RTC interrupts or to
disable all RTC interrupts.

Full on after reset
or
Full on after power on from off

Wait for seconds event, or write RTC_PREN = 1 and wait for
write complete.
Write RTC_ISTAT to clear any pending RTC events.
Write RTC_ICTL to enable any desired RTC interrupts or to
disable all RTC interrupts.
Read RTC MMRs as required.

Wake from deep sleep Wait for seconds event flag to set.
Write RTC_ISTAT to acknowledge RTC deep sleep wakeup.
Read RTC MMRs as required.
The PLL state is now active. Transition to full on as needed.
24-18 ADSP-BF51x Blackfin Processor Hardware Reference

Real-Time Clock
Register Definitions
The following sections contain the register definitions. Figure 24-4
through Figure 24-9 on page 24-23 illustrate the registers.

Wake from sleep If wakeup came from RTC, seconds event flag will be set. In this
case, write RTC_ISTAT to acknowledge RTC wakeup IRQ.
Always, read RTC MMRs as required.

Before going to sleep If wakeup by RTC is desired:
Write RTC_ALARM and/or RTC_SWCNT as needed to sched-
ule a wakeup event.
Write RTC_ICTL to enable the desired RTC interrupt sources
for wakeup.
Wait for write complete.
Enable RTC for wakeup in the system interrupt wakeup enable
register (SIC_IWR).

Before going to deep sleep Write RTC_ALARM and/or RTC_SWCNT as needed to sched-
ule a wakeup event.
Write RTC_ICTL to enable the desired RTC event sources for
deep sleep wakeup.
Wait for write complete.

Before going to off Write RTC_ALARM and/or RTC_SWCNT as needed to sched-
ule a wakeup event.
Write RTC_ICTL to enable any desired RTC event sources for
powerup wakeup.
Wait for write complete.
Set the wake bit in the voltage regulator control register
(VR_CTL).

Table 24-2. RTC System State Transition Events (Continued)

At This Event: Execute This Sequence:
ADSP-BF51x Blackfin Processor Hardware Reference 24-19

Register Definitions
Table 24-3 shows the functions of the RTC registers.

Table 24-3. RTC Register Mapping

Register Name Function Notes

RTC_STAT RTC status register Holds time of day

RTC_ICTL RTC interrupt con-
trol register

Bits 14:7 are reserved

RTC_ISTAT RTC interrupt sta-
tus register

Bits 13:7 are reserved

RTC_SWCNT RTC stopwatch
count register

Undefined at reset

RTC_ALARM RTC alarm register Undefined at reset

RTC_PREN Prescaler enable reg-
ister

Always set PREN = 1 for 1 Hz ticks
24-20 ADSP-BF51x Blackfin Processor Hardware Reference

Real-Time Clock
RTC Status (RTC_STAT) Register

RTC Interrupt Control (RTC_ICTL) Register

Figure 24-4. RTC Status Register

Figure 24-5. RTC Interrupt Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Hours[4]
(0–23)

Day Counter[14:0]
(0–32767)

Seconds[5:0]
(0–59)

Minutes[5:0]
(0–59)

Hours[3:0]
(0–23)

Reset = Undefined

RTC Status Register (RTC_STAT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 X X X X X X

Stopwatch Interrupt
Enable

Alarm Interrupt Enable
(Hour, Minute, Second)

Seconds (1Hz) Interrupt
Enable

Minutes Interrupt
Enable

Write Complete
Interrupt Enable

Day Alarm Interrupt Enable
(Day, Hour, Minute, Second)

24 Hours Interrupt Enable

Hours Interrupt Enable

0 – Interrupt disabled, 1 – Interrupt enabled

Reset = 0x00XX

RTC Interrupt Control Register (RTC_ICTL)
ADSP-BF51x Blackfin Processor Hardware Reference 24-21

Register Definitions
RTC Interrupt Status (RTC_ISTAT) Register

RTC Stopwatch Count (RTC_SWCNT) Register

Figure 24-6. RTC Interrupt Status Register

Figure 24-7. RTC Stopwatch Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Stopwatch Event Flag
0 – No event
1 – Event occurred

Alarm Event Flag
0 – No event
1 – Event occurred

Seconds (1 Hz) Event Flag
0 – No event
1 – Event occurred

Minutes Event Flag
0 – No event
1 – Event occurred

Hours Event Flag
0 – No event
1 – Event occurred

Write Complete
0 – Writes (if any) not yet

complete
1 – All pending writes

complete

Write Pending
Status (RO)
0 – No writes pending
1 – At least one write

pending

Day Alarm Event Flag
0 – No event
1 – Event occurred

24 Hours Event Flag
0 – No event
1 – Event occurred

Reset = 0x0000

RTC Interrupt Status Register (RTC_ISTAT)
All bits are write-1-to-clear, except bit 14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Stopwatch Count[15:0]
(0 to 65,535)

Reset = Undefined

RTC Stopwatch Count Register (RTC_SWCNT)
24-22 ADSP-BF51x Blackfin Processor Hardware Reference

Real-Time Clock
RTC Alarm (RTC_ALARM) Register

RTC Prescaler Enable (RTC_PREN) Register

Figure 24-8. RTC Alarm Register

Figure 24-9. RTC Prescaler Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Hours[4]
(0 to 23)

Day[14:0]
(0 to 32767)

Seconds[5:0]
(0 to 59)

Minutes[5:0]
(0 to 59)

Hours[3:0]
(0 to 23)

Reset = Undefined

RTC Alarm Register (RTC_ALARM)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PREN (Prescaler Enable)

RTC Prescaler Enable Register (RTC_PREN)

Reset = Undefined
ADSP-BF51x Blackfin Processor Hardware Reference 24-23

Programming Examples
Programming Examples
The following RTC code examples show how to enable the RTC pres-
caler, how to set up a stopwatch event to take the RTC out of deep sleep
mode, and how to use the RTC alarm to exit hibernate state. Each of these
code examples assumes that the appropriate header file is included in the
source code (for instance, #include <defBF525.h> for ADSP-BF525
projects).

Enable RTC Prescaler
Listing 24-1 properly enables the prescaler and clears any pending
interrupts.

Listing 24-1. Enabling the RTC Prescaler

RTC_Initialization:

P0.H = HI(RTC_PREN);

P0.L = LO(RTC_PREN);

R0=PREN(Z); /* enable prescaler for 1 Hz ticks */

W[P0] = R0.L;

P0.L = LO(RTC_ISTAT);

R0 = 0x807F(Z);

W[P0] = R0.L; /* clear any pending interrupts */

R0 = WRITE_COMPLETE(Z); /* mask for WRITE-COMPLETE bit */

Poll_WC: R1 = W[P0](Z);

R1 = R1 & R0; /* wait for Write Complete */

CC = AZ;

IF CC JUMP Poll_WC;

RTS;
24-24 ADSP-BF51x Blackfin Processor Hardware Reference

Real-Time Clock
RTC Stopwatch For Exiting Deep Sleep Mode
Listing 24-2 sets up the RTC to utilize the stopwatch feature to come out
of deep sleep mode. This code assumes that the _RTC_Interrupt label is
properly registered as the ISR destination for the real-time clock event, the
RTC interrupt is enabled in both IMASK and SIC_IMASK, and that the RTC
prescaler has already been enabled properly.

Listing 24-2. RTC Stopwatch Interrupt to Exit Deep Sleep

/* RTC Wake-Up Interrupt To Be Used With Deep Sleep Code */

_RTC_Interrupt:

P0.H = HI(PLL_CTL);

P0.L = LO(PLL_CTL);

R0 = W[P0](Z);

BITCLR (R0, BITPOS(BYPASS));

W[P0] = R0; /* If BYPASS Set, Must Clear It */

IDLE; /* Must go to IDLE for PLL changes to be effected */

R0 = 0x807F(Z);

P0.H = HI(RTC_ISTAT);

P0.L = LO(RTC_ISTAT);

W[P0] = R7; /* clear pending RTC IRQs */

R0 = WRITE_COMPLETE(Z); /* mask for WRITE-COMPLETE bit */

Poll_WC_IRQ: R1 = W[P0](Z);

R1 = R1 & R0; /* wait for Write Complete */

CC = AZ;

IF CC JUMP Poll_WC_IRQ;

RTI;
ADSP-BF51x Blackfin Processor Hardware Reference 24-25

Programming Examples
Deep_Sleep_Code:

P0.H = HI(RTC_SWCNT);

P0.L = LO(RTC_SWCNT);

R1 = 0x0010(Z); /* set stop-watch to 16 seconds */

W[P0] = R1.L; /* will produce ~15 second delay */

P0.L = LO(RTC_ICTL);

R1 = STOPWATCH(Z);

W[P0] = R1.L; /* enable Stop-Watch interrupt */

P0.L = LO(RTC_ISTAT);

R1 = 0x807F(Z);

W[P0] = R1.L; /* clear any pending RTC interrupts */

R0 = WRITE_COMPLETE(Z); /* mask for WRITE-COMPLETE bit */

Poll_WC1: R1 = W[P0](Z);

R1 = R1 & R0; /* wait for Write Complete */

CC = AZ;

IF CC JUMP Poll_WC1;

/* RTC now running with correct stop-watch count and interrupts

*/

P0.H = HI(PLL_CTL);

P0.L = LO(PLL_CTL);

R0 = W[P0](Z);

BITSET (R0, BITPOS(PDWN)); /* set PDWN To Go To Deep Sleep */

W[P0] = R0.L; /* Issue Command for Deep Sleep */

CLI R0; /* Perform PLL Programming Sequence */

IDLE;

STI R0; /* In Deep Sleep When Idle Exits */

RTS;
24-26 ADSP-BF51x Blackfin Processor Hardware Reference

Real-Time Clock
RTC Alarm to Come Out of Hibernate State
Listing 24-3 sets up the RTC to utilize the alarm feature to come out of
hibernate state. This code assumes that the prescaler has already been
properly enabled.

Listing 24-3. Setting RTC Alarm to Exit Hibernate State

Hibernate_Code:

P0.H = HI(RTC_ALARM);

P0.L = LO(RTC_ALARM);

R0 = 0x0010(Z); /* set alarm to 16 seconds from now */

W[P0] = R0.L;

P0.L = LO(RTC_STAT);

R0 = 0; /* Clear RTC Status to Start Counting at 0 */

W[P0] = R0.L;

P0.L = LO(RTC_ICTL);

R0 = ALARM(Z);

W[P0] = R0.L; /* enable Alarm interrupt */

P0.L = LO(RTC_ISTAT);

R0 = 0x807F(Z);

W[P0] = R0.L; /* clear any pending RTC interrupts */

R0 = WRITE_COMPLETE(Z);

Poll_WC1: R1 = W[P0](Z);

R1 = R1 & R0; /* wait for Write Complete */

CC = AZ;

IF CC JUMP Poll_WC1;
ADSP-BF51x Blackfin Processor Hardware Reference 24-27

Unique Information for the ADSP-BF51x Processor
/* RTC now running with correct RTC status */

GoToHibernate:

P0.H = HI(VR_CTL);

 P0.L = LO(VR_CTL);

 R0 = W[P0](Z);

 BITCLR(R0, 0); /* Clear FREQ (bits 0 and 1) to */

 BITCLR(R0, 1); /* go to Hibernate State */

 BITSET(R0, BITPOS(WAKE)); /* Enable RTC Wakeup */

W[P0] = R0.L;

CLI R0; /* Use PLL programming sequence to */

IDLE; /* make VR_CTL changes take effect */

RTS; /* Should Never Execute This */

Unique Information for the ADSP-BF51x
Processor

None.
24-28 ADSP-BF51x Blackfin Processor Hardware Reference

Security
25 SECURITY

This chapter describes the security features and functionality of the
ADSP-BF51x Blackfin processor. Following an overview and a list of key
features are a description of operation and functional modes of operation.

This chapter includes the following sections:

• “Overview”

• “Features” on page 25-4

• “Description of Operation” on page 25-6

• “Programming Model” on page 25-33

• “Security Registers” on page 25-46

The intention of the chapter is to describe security features of the
ADSP-BF51x Blackfin processor and how they can be used to facilitate a
secure system. It is beyond the scope of this chapter to fully describe vari-
ous ways to implement secure systems or to describe security protocols
and primitives in any great detail.
ADSP-BF51x Blackfin Processor Hardware Reference 25-1

Overview
Overview
LockboxTM Secure Technology for Analog Devices Blackfin processors is
comprised of a mix of hardware and software mechanisms designed to pre-
vent unauthorized accesses and allow trusted code to execute on the
processor. Throughout the rest of this chapter, the terms Blackfin Lock-
box secure technology and Lockbox will be used interchangeably.

 The developer’s decision to use security features is completely
optional. No security features are enabled by default. The devel-
oper can choose to never implement security features in their
application if it is so desired. The Blackfin will always power
up/boot in Open Mode with no security features or restrictions
enabled.

Blackfin Lockbox secure technology allows users to:

• Safeguard as little as a single function, as much as a complete sys-
tem, or anything in-between.

• Uniquely identify each processor by a Unique Chip ID.

• Utilize secure key storage provided by non-volatile, write-protect-
able One Time Programmable (OTP) memory.

• Perform digital signature authentication using elliptic curve cryp-
tography (ECC) and secure one-way hash (SHA-1) algorithms
implemented in firmware.

• Keep secret information in secure OTP Memory.

• Use any encryption algorithm to protect code or other assets.

• Ensure data integrity through digital signature authentication.

• Safeguard confidentiality by encrypting any or all of the system
from core IP (code security) to data integrity.
25-2 ADSP-BF51x Blackfin Processor Hardware Reference

Security
These features in combination provide the following benefits.

• Authenticity/Origin verification—Lockbox secure technology
allows verification of a code image against its associated digital sig-
nature, and provides for a process to identify entities and data
origins.

• Integrity—Developers can use a digital signature authentication
process to ensure that the message or the content of the storage
media has not been altered in any way. If either the message or dig-
ital signature was altered, Lockbox fails during the authentication
process.

• Confidentiality—Cryptographic encryption/decryption supports
situations that require the ability to prevent unauthorized users
from seeing and using designated files and streams. Methods for
ensuring confidentiality are supported by the secure processing
environment (Secure Mode) and secure memory.

• Renewability—System components can be updated to enhance
security.

The Unique Chip ID enables end users to identify each Blackfin
processor and hence each OEM device in which the processor
resides.

This Lockbox feature can be used in support of revocation and
renewability of licenses in case of security violations in digital
rights management systems, for example:
ADSP-BF51x Blackfin Processor Hardware Reference 25-3

Features
• Unique Chip ID—In combination with a trusted DRM agent
(sourced by the OEM), this feature enables developers to imple-
ment renewability in DRM systems.

• Unique Chip ID—Provides capability to identify each OEM
device and “blacklist” devices to remove them from a system.

• Prevention of Mass Copying—Lockbox supports cryptographic
encryption/decryption algorithms for situations when confidential-
ity is required. The Unique Chip ID can also be utilized to “bind”
the processor to one specific boot source/device and can be used to
facilitate antitheft schemes and prevent OEM device cloning.

The ADSP-BF51x Blackfin processors featuring Lockbox secure tech-
nology provide security features that enable developer’s applications to use
secure protocols consisting of code authentication and execution of code
within a secure environment. Together these features protect secure mem-
ory spaces and restrict control of security features to authenticated
developer code.

Features
Lockbox is comprised of a combination of hardware and software ele-
ments. These elements are:

• OTP Memory. An array of non-volatile write-protectable memory
that can be programmed by the developer only one time. Half of
the array is public (accessible in any mode) and the other half is
private (only accessible in Secure Mode). For more information on
OTP memory, refer to Chapter 3, “One-Time Programmable
Memory”.
25-4 ADSP-BF51x Blackfin Processor Hardware Reference

Security
• Secured System Switches. Programmable bitfields in the Secured
System Switches MMR to disable and enable different methods of
memory access in support of a secured environment. Some of these
protection mechanisms include disabling DMA access to L1 mem-
ory and disabling ADI JTAG instructions from the ICE port.

• Secure Mode Control. This involves the Secure State Machine
hardware required to support a transition from an unsecured state
of operation (Open Mode), through an authentication state
(Secure Entry Mode), and finally to a secured state (Secure Mode)
where secrets are accessible.

• Firmware. Code that resides in the on-chip ROM and performs
digital signature authentication. Having the code that performs the
digital signature authentication in ROM ensures integrity of the
code.

• User callable cryptographic ciphers. In addition to the control
code that resides in the on-chip ROM used for authentication, the
SHA-1 cryptographic function is user-callable. The API is docu-
mented in “Programming Model” on page 25-33.

• Unique Chip ID. Each ADSP-BF51x Blackfin processor has a
128-bit unique chip identification value stored in public OTP
memory. The Unique Chip ID is programmed and write protected
before a processor leaves the Analog Devices factory. It is always
located at the same OTP page address.

 The 128-bit Unique Chip ID value can be read but cannot be
modified by the developer or end user. A total of 64K bits of OTP
memory is available to the developer if additional user-defined ID
values are desired. These IDs can be stored in either public or
private areas of OTP memory depending on application require-
ments. Refer to Chapter 3, “One-Time Programmable Memory”
for details.
ADSP-BF51x Blackfin Processor Hardware Reference 25-5

Description of Operation
Description of Operation
Blackfin Lockbox technology is based upon the concept of authentication
of digital signatures using standards-based algorithms and provides a
secure processing environment in which to execute code and access pro-
tected assets.

Digital signatures are created using a public-key signature algorithm, the
Elliptic Curve Cryptography (ECC) public-key cipher, and a secure
one-way hash algorithm, SHA-1. A public-key algorithm actually uses two
different keys; the public key and the private key (called a key pair). The
private key is known only to its owner and is not stored on-chip, while the
public key can be available to anyone and is stored in the public OTP
memory region on-chip. Public-key algorithms, such as ECC, are designed
so that if one key is used for encryption, the other is necessary for decryp-
tion. Furthermore, the encryption key cannot be reasonably calculated
from the decryption key. In a digital signature authentication scheme like
Lockbox, the private key is used to generate the signature and the corre-
sponding public key is used to validate the signature. Each ADSP-BF51x
Blackfin processor has an on-chip ROM that contains firmware with the
Elliptic Curve Cryptography (ECC) and SHA-1 algorithms. These are
called to verify the digital signatures (ECDSA1).

JTAG emulation and test features are disabled in hardware, and certain
memory access restrictions are enabled during verification of the digital
signature. Once the signature is authenticated, the access restrictions are
still in effect and can only be controlled by the authenticated user code.

1 ECDSA implementation on the ADSP-BF51x Blackfin products only supports the Koblitz curve.
25-6 ADSP-BF51x Blackfin Processor Hardware Reference

Security
Secure State Machine
The ADSP-BF51x processor includes a Secure State Machine to handle
the different protection configurations of the processor depending on the
security situation. The machine states are “Open Mode”, “Secure Entry
Mode”, and “Secure Mode” (See Figure 25-1). The following sections
describe these machine states.

The state of the Secure State Machine can be identified by reading
SECURE_STATUS[1:0] bits. The bit values in the upper right of the states
shown in Figure 25-1 correspond to the bit values in SECURE_STATUS[1:0].

For more information on the SECURE_STATUS MMR, see “Security Regis-
ters” on page 25-46.

Figure 25-1. Secure State Machine Modes

POWER UP
OR RESET

OPEN
MODE

(00)

ENTRY
HARDWARE

TRIGGER

SECURE ENTRY
MODE

(01)

SOFTWARE
TRIGGER

(SECURE MODE BIT = 1)

SECURE
MODE

(10)

SOFTWARE
TRIGGER

(SECURE MODE BIT = 0)

AUTHENTICATION
FAILURE
ADSP-BF51x Blackfin Processor Hardware Reference 25-7

Description of Operation
Open Mode

This is the default operating state of the processor, in which no restric-
tions are present except restricted access to the Private OTP memory area.
The processor powers up and boots in Open Mode. This is the default
state upon power up and after processor reset. No Lockbox security fea-
tures or protection mechanisms are enabled in this state.

The state flow illustrated in Figure 25-1 shows that the Secure State
Machine can only transition from Open Mode into Secure Entry Mode,
and there is no direct path from Open Mode into Secure Mode.
25-8 ADSP-BF51x Blackfin Processor Hardware Reference

Security
Secure Entry Mode

The on-chip ROM firmware performs the authentication process in this
operating state. This mode is entered when NMI is active, and the pro-
gram counter (PC) is vectored to the first address of the authentication
firmware in the on-chip ROM. The program counter is monitored to
ensure that it remains within the address range allocated to the Authenti-
cation firmware code. If the program counter vectors outside of the
address range of the authorization code, authentication fails and the state
returns to Open Mode. Any errors caught by firmware or hardware moni-
tor will result in authentication failure and an abortion of the
authentication process with the firmware exiting Secure Entry Mode and
transitioning back to Open Mode. If authentication is successful, the
firmware initiates the transition from Secure Entry Mode to Secure Mode.

In Secure Entry Mode, no DMA access is allowed to certain regions of
internal SRAM, and JTAG emulation is disabled. The user should disable
cache prior to initiating authentication. Interrupts are disabled by firm-
ware prior to entry into Secure Mode. Interrupts are either re-enabled by
dropping the interrupt level from NMI via the SESR arguments, or they
are reenabled after authentication in the authenticated code after entry
into Secure Mode. In addition, only the public area of OTP memory is
accessible in this mode. For more information on memory access
restrictions within Secure Entry Mode, see “Secure Entry Service Routine
(SESR) API” on page 25-33.

State flow, illustrated in Figure 25-1, shows that the Secure State Machine
can only transition from Secure Entry Mode to Secure Mode upon suc-
cessful digital signature authentication. A transition from Secure Entry
Mode back into Open Mode can occur if digital signature authentication
fails or if the authentication process is aborted due to an error observed by
the firmware. Such errors include illegal memory boundary conditions or
jumps outside of the firmware range (for example, servicing an interrupt).
ADSP-BF51x Blackfin Processor Hardware Reference 25-9

Description of Operation
Secure Mode

Secure operating state in which trusted, authenticated code is allowed
unrestricted access to the processor resources, execution of authenticated
code occurs, decryption of sensitive information, etc. This is the only
mode that allows access (reads and writes) to the private OTP memory
space where secure data, such as secret keys, can be stored. Hence, the pri-
vate area of OTP memory can be used to store confidential, secret
information that only authorized authenticated code can access. There-
fore, this is the only operating state in which users can securely run their
own Blackfin implementation of any cryptographic cipher in which secret
keys are used.

Only the code (or message) digitally signed by a trusted source and suc-
cessfully passed through Lockbox’s authentication process can gain access
to Secure Mode.

State flow illustrated in Figure 25-1 shows that the Secure State Machine
can only transition from Secure Mode back into Open Mode, and there is
no direct path from Secure Mode into Secure Entry Mode. Exit from
Secure Mode is implemented through software control by writing a “0”
value to the SECURE0 bit within the SECURE_CONTROL register.

 Assertion of reset or power cycling will also return the processor to
the default Open Mode regardless of the state of operation when
the reset or power cycle event occurred. See special handling of
hardware reset in “Reset Handling in Secure Mode” on page 25-21.

Access to private OTP memory is restricted in Open Mode and
Secure Entry Mode regardless of whether or not other security fea-
tures are enabled or disabled.
25-10 ADSP-BF51x Blackfin Processor Hardware Reference

Security
Secure Mode Control

Figure 25-2 describes the inputs that control the secure state machine
flow.

Hardware supports transition from an Open Mode of operation, through
a Secure Entry Mode, to a Secure Mode where secrets are accessible.

Open Mode is characterized by being the default mode of processor upon
power up/reset/boot, holding all secured system switches deactivated and
protecting the private OTP memory area from access. The processor is
open with all features being available with no restrictions (except for the
private area of OTP memory).

Secure Entry Mode is characterized by executing firmware out of internal
ROM memory to authenticate information loaded into on-chip memory.
All secured system switches are activated. However, private OTP Memory
is not accessible yet.

Secure Mode is entered only after a successful digital signature authentica-
tion process from Secure Entry Mode. It provides access to the private
OTP memory area and makes secured system switches accessible to user
(authenticated) code. This is the mode of operation in which to perform
sensitive decryption or execution of trusted, authenticated code.

Authentication can only be requested and initiated while the processor is
operating in Open Mode. If authentication is requested while the proces-
sor is operating in Secure Mode, the Secure State Machine will not
transition into Secure Entry Mode. Instead, the Secure State Machine will
remain in Secure Mode.
ADSP-BF51x Blackfin Processor Hardware Reference 25-11

Description of Operation
Figure 25-2. Secure Mode Control

All secure system switches
(SYSSWT) are deactivated.
The SYSSWT register is not
accessible. OTP secrets are
read/write protected.

POWER UP
OR RESET

OPEN
MODE

(00)

ENTRY
HARDWARE

TRIGGER

SECURE ENTRY
MODE

(01)

SOFTWARE
TRIGGER

(SECURE MODE BIT = 1)

SECURE
MODE

(10)

SOFTWARE
TRIGGER

(SECURE MODE BIT = 0)

AUTHENTICATION
FAILURE

Hardware monitor has
detected the proper entry
of Authentication firmware.
NMI must be active.

Exit of firmware will reset
the securitySM. Used if
authentication
fails.

All SYSSWT are activated.
Most SYSSWT are not
accessible including the
OTP secrets enable bit
(OTPSEN).

Firmware has written
the SECURE0 bit.

The SYSSWT register
is fully accessible.
Initially the SYSSWT
values (secured system
switches) are activated.

Writing 0 to the
SECURE0 bit will
reset the securitySM.
Used to exit Secure
mode.
25-12 ADSP-BF51x Blackfin Processor Hardware Reference

Security
 Open Mode, Secure Entry Mode and Secure Mode are states which
pertain to the Secure State Machine. User Mode and Supervisor
Mode are modes of operation which pertain to the core. The use of
the term “mode” should not be confused and are not necessarily
mutually exclusive. In Open Mode, the processor can operate in
either User or Supervisor Mode. Since the firmware is entered
when the NMI is being handled, Secure Entry Mode must start in
Supervisor Mode. Finally, authenticated code executing in Secure
Mode must be either operating at NMI interrupt level or the inter-
rupt level that triggered the NMI.

Security Features
The following sections provide a functional description of the Security
features.

Protection relies on the on-chip ROM code that includes Elliptic Curve
Cryptography (ECC) and SHA-1 algorithms, applied towards verification
of code authenticity using a digital signature. A processor has emulation
and test features disabled in hardware as well as certain memory access
restrictions upon entry into Secure Entry Mode (where authentication is
performed) and maintained into Secure Mode. These functions can be
controlled only by authenticated user application software executing in
Secure Mode.

User code must request authentication by complying with two criteria:
(1) asserting a Non-Maskable Interrupt (NMI) and (2) vector the Pro-
gram Counter (PC) to the first executable address in the Secure Entry
Service Routine (SESR) in firmware which resides in on-chip boot ROM.

During the authentication process, JTAG emulation is disabled, memory
protection restrictions are enabled and interrupts are masked. The user has
the option to pass arguments to the security firmware to control certain
functionality during the authentication process. Refer to “Secure Entry
Service Routine (SESR) API” on page 25-33.
ADSP-BF51x Blackfin Processor Hardware Reference 25-13

Description of Operation
Digital Signature Authentication

Digital signatures are created off-chip (typically on a host computer) using
the ECC algorithm and SHA-1, both of which are available in the public
domain. In digital signature authentication, the private key generates the
signature (off-chip), and the corresponding public key validates the signa-
ture (on-chip). The private key is known only to its owner and is not
stored on-chip, while the public key can be available to anyone and is
stored on-chip in OTP memory.

Lockbox uses standards-based cryptographic algorithms for digital signa-
ture authentication. ECDSA1 is implemented in the Blackfin
ADSP-BF51x processors. Digital signature validation on ADSP-BF51x
utilizes Elliptic Curve Cryptography2 (ECC) based on a binary field size
of 163 bits and SHA-13 secure one-way hash (which produces a 160-bit
message digest).

In order to generate public/private key pairs or prepare digital signatures
and apply them to application code, developers can use any method that
complies with the Elliptic Curve Digital Signature Algorithm (ECDSA)
specified in FIPS 186-2 with Change Notice 1 dated October 5, 2001,
Digital Signature Standard (DSS). ECDSA is described in ANSI
X9.62-1998. The Lockbox implementation in the ADSP-BF51x proces-
sors supports the following Koblitz curve, which is recommended in FIPS
186-2 for US Federal Government use:

1. m: 163 (degree of binary field)

2. a: 1

1 ECDSA implementation on these Blackfin products only supports the Koblitz curve.
2 These implementations are based on the Elliptic Curve Digital Signature Algorithm (ECDSA) speci-

fied in FIPS 186-2 with Change Notice 1 dated October 5, 2001, Digital Signature Standard (DSS)
(http://csrc.nist.gov/cryptval/dss.htm), and specified in ANSI X9.62-1998.

3 SHA-1 is based on the publicly available standard for FIPS 180-2 (Secure Hash Signature Standard
[SHS]) (FIPS PUB 180-2), http://csrc.nist.gov/CryptoToolkit/tkhash.html).
25-14 ADSP-BF51x Blackfin Processor Hardware Reference

http://csrc.nist.gov/cryptval/dss.htm" \t "_parent
http://csrc.nist.gov/cryptval/dss.htm" \t "_parent
http://csrc.nist.gov/CryptoToolkit/tkhash.html" \t "_parent
http://csrc.nist.gov/CryptoToolkit/tkhash.html" \t "_parent

Security
3. b: 1 (a and b are the constants in the elliptic curve equation: y2 + xy
= x3 + ax + b)

4. Xg: 2FE13C0537BBC11ACAA07D793DE4E6D5E5C94EEE8

5. Yg: 289070FB05D38FF58321F2E800536D538CCDAA3D9 (Xg
and Yg define the base point G)

6. r: 4000000000000000000020108A2E0CC0D99F8A5EF (r is the
order of the base point G)

7. T: 4 (T is the normal basis type)

8. p(t): t163 + t7 + t6 + t3 + 1 (pt(t) is the field polynomial)

The following steps summarize the Digital Signature Authentication pro-
cess. Steps 1 to 3 correspond to the off-chip creation of a digital signature
of a file or message. Steps 4 to 6 correspond to the on-chip digital signa-
ture authentication. These steps are preceded by generation of a key pair
(Private Key and Public Key) and the programming of the Public Key in
the Public OTP Memory.

1. A one-way hash of the file (message to be authenticated) is pro-
duced using SHA-1 off-chip (for example, using a host PC).

2. The hash is encrypted through ECC off-chip with the private key,
thereby signing the file and completing the generation of the digi-
tal signature.

3. The file and the signed hash are stored on an external device such
as Flash memory or a host device.

4. Upon transfer to the Blackfin processor’s internal memory, a
one-way hash of the file is calculated on-chip through SHA-1
(residing in the Blackfin on-chip boot ROM).
ADSP-BF51x Blackfin Processor Hardware Reference 25-15

Description of Operation
5. Using the ECC algorithm (residing in the Blackfin on-chip boot
ROM), the Blackfin decrypts the signed hash with the user's public
key stored in the Blackfin processor OTP memory.

6. The two hash results are then compared. If the signed hash matches
the calculated hash, the signature is valid and the file is intact.

If the digital signature authentication process is successful, the Blackfin
processor transitions from Secure Entry Mode to Secure Mode. At this
time, all of the access restrictions mentioned will be in place. JTAG will be
disabled and certain portions of on-chip SRAM memory are restricted
from DMA access. The restrictions can be controlled once in Secure Mode
by having the authenticated code modify the Secure System Switches
(SECURE_SYSSWT) appropriate for use by the developer’s application.

 Encryption/decryption is only necessary when an application
requires confidentiality. It is not always necessary to work with
encrypted code to ensure code security. Authentication alone can
be used when confidentiality is not required when ensuring tam-
per-proof code image and/or non-repudiation in a system. Thus,
authentication safeguards code integrity.

Since the digital signature uniquely describes its corresponding
code/message, the code/message itself does not have to be
encrypted if confidentiality is not required. If the code/message is
modified, either intentionally or inadvertently, authentication fails
since the integrity of the code message has been compromised.
25-16 ADSP-BF51x Blackfin Processor Hardware Reference

Security
Digital Signature Authentication Performance Measurement

Authentication can be performed at any point during processor operation
in Open Mode. It can be performed immediately upon boot or it can be
performed any time after boot.

The algorithms used in the Lockbox firmware are highly optimized Black-
fin code running from the on-chip boot ROM in the system clock
domain. Firmware execution time for the digital signature authentication
process is on the order of 40 million core clock cycles, depending upon the
size of the digitally signed application code. This must be considered
when architecting an application in order to allow a sufficient window of
time in which authentication can proceed without requiring servicing of
interrupts in the system.

The time it takes for authentication is dependent on several factors. These
include the size of the message to be authenticated. This affects the
amount of calculations done in the secure hash function (SHA-1). It also
affects the DMA time required to move the message out of L1 data mem-
ory and place it into L1 code memory.

Protection Features
In order to establish a secure processing environment and protect the secu-
rity of applications that establish trust and reach the privileged mode of
operation, Lockbox implements access restrictions. These restrictions
include disabling JTAG emulation and disabling DMA access to portions
of on-chip SRAM memory. The memory access restrictions implemented
in hardware on the Blackfin processor are not applied to off-chip memory.
Therefore, external memory is always considered insecure and caching
external memory while operating in Secure Mode represents a security
risk.
ADSP-BF51x Blackfin Processor Hardware Reference 25-17

Description of Operation
Protection features include the following:

• Secure State Machine for implementing privileged states of opera-
tion in which access restrictions may be imposed to protect code
and data.

• Disable DMA access to L1 memory

• These restrictions to memory areas are configurable (see
“Secure System Switch (SECURE_SYSSWT) Register” on
page 25-47).

• Protection of L1 regions of memory with DMA access controlled
when in Secure Mode

• Disable ADI JTAG emulation from ICE port

• Divert hardware reset to NMI during Secure Mode operation to
prevent “reset attack”

• Provide software control over hardware protection features accessi-
ble to trusted code operating in Secure Mode

• OTP memory for storage of customer programmable cipher keys,
unique chip ID or a customer ID

• OTP write protection to protect programmed OTP memory loca-
tions from future tampering

• Private/Secret OTP memory region accessible only in Secure Mode

• Store private key(s) for decryption of data or other
validation

• A privileged mode (including firmware execution out of on-chip
ROM) to perform code authentication
25-18 ADSP-BF51x Blackfin Processor Hardware Reference

Security
Protection mechanisms are summarized Table 25-1 for each state of the
Secure State Machine along with the Secure System Switch register
(SECURE_SYSSWT) that provides control over the protection feature.

Table 25-1. Secure State Machine

Secure State
Machine

SECURE_SYSSWT Description Protected
Memory Range

Open Mode
(0x00000000)

The switches are
involuntarily set with all
controls OFF
(unrestricted access)

No protection
mechanisms or
restrictions enabled

No restrictions1

Secure Entry
(0x000704D9)

EMUDABL Emulation Disable Emulation
disabled

L1IDABLE L1 Instruction Memory
Disable 0xFFA00000—
0xFFA07FFF SRAM

32 KB

L1DADABL L1 Data Bank A Memory
Disable 0xFF800000—
0xFF807FFF SRAM and
SRAM/Cache

32 KB

L1DBDABL L1 Data Bank B Memory
Disable 0xFF900000—
0xFF901FFF SRAM

8 KB
ADSP-BF51x Blackfin Processor Hardware Reference 25-19

Description of Operation
On-chip SRAM memory protection takes the form of DMA access restric-
tions only. There is no need to protect the on-chip SRAM from processor
core access because, while operating in Secure Mode, the developer’s
authenticated code has full control over the processor core and execution
of all core software instructions. It is the responsibility of the developer to
take steps to avoid surrendering control of the Program Sequencer and the
core to untrusted code execution.

Operating in Secure Mode
This section details Secure Mode operation, namely entering and exiting
the mode.

Secure Mode
(0x000704D9)

EMUDABL Emulation Disable User Configu-
rable

RSTDABL RESET Disable User Configu-
rable

L1IDABLE L1 Instruction Memory
Disable 0xFFA00000—
0xFFA07FFF SRAM

0-32 KB

L1DADABL L1 Data Bank A Memory
Disable 0xFF800000—
0xFF807FFF SRAM and
SRAM/Cache

0-32 KB

L1DBDABL L1 Data Bank B Memory
Disable 0xFF900000—
0xFF901FFF SRAM

0-32 KB

1 Private OTP is only accessible when operating in Secure Mode with OTPSEN bit set in
SECURE_SYSSWT register

Table 25-1. Secure State Machine (Continued)

Secure State
Machine

SECURE_SYSSWT Description Protected
Memory Range
25-20 ADSP-BF51x Blackfin Processor Hardware Reference

Security
Entering Secure Mode

Upon successful digital signature authentication, the Secure State
Machine transitions into Secure Mode. The same default protection fea-
tures enabled in Secure Entry Mode are carried forward into Secure Mode.
This includes JTAG emulation being disabled, and DMA access restric-
tions to memory and interrupts being masked. It is the responsibility of
the authenticated code to manipulate or remove these restrictions as
desired.

Exiting Secure Mode

Secure Mode provides a secure operating environment to execute sensitive
code, run cryptographic ciphers, and process sensitive data. Upon exiting
Secure Mode, the authenticated code should remove any sensitive code
and data from memory because this sensitive information will still be
accessible in Open Mode if it is not removed prior to exiting Secure
Mode. Exit from Secure Mode is implemented through software control
by writing a “0” value to the SECURE0 bit within the SECURE_CONTROL regis-
ter. Refer to “Security Registers” on page 25-46 and “Clearing Private
Data” on page 25-22 for more information.

Reset Handling in Secure Mode
This section describes handling resets in Secure Mode.

Hardware Reset

Hardware reset is diverted to NMI when operating in Secure Mode only.
When operating outside of Secure Mode, hardware reset behaves nor-
mally. This protection feature is configurable via the RSTDABL bit within
the SECURE_SYSSWT register when operating within Secure Mode.
ADSP-BF51x Blackfin Processor Hardware Reference 25-21

Description of Operation
This is a protection feature to prevent malicious entities from attempting
to assert hardware reset while sensitive code or data is present in the pro-
cessor’s on-chip SRAM or in the processor’s registers. A “reset attack”
could take the following form: If hardware reset were left unprotected and
reset was asserted while sensitive information were present on-chip, the
processor would return to the default state of Open Mode with no protec-
tion features enabled and a malicious entity could gain access to the
on-chip memory and registers, for example via JTAG emulation. In such a
scenario assets intended to be protected could be compromised.

By diverting hardware reset to NMI while the processor operates in Secure
Mode, servicing of hardware reset can be controlled and delayed in order
to first implement a memory clean-up routine in software to purge sensi-
tive information from internal memory and registers prior to servicing
reset. At the completion of the memory clean-up, the processor can then
be reset via software command and safely returned to Open Mode with no
sensitive information available to be compromised.

By default, the SESR loads the address of a memory clean-up routine
stored in the on-chip boot ROM into the NMI EVT2 prior to transitioning
from Secure Entry Mode into Secure Mode. See “Clearing Private Data”
on page 25-22 for more information.

Clearing Private Data

As part of the SESR firmware, there is a small routine stored in the
on-chip boot ROM that clears the internal L1 data memory, generates a
RESET event, and puts the processor into idle. Note that this firmware
memory clear routine does not clear the contents of L1 Instruction mem-
ory or Data, Pointer, and DAG registers within the computational units.
It is recommended that the user sets this routine as the new EVT2 NMI
vector once the user’s authenticated application code is executing. This
will prevent a malicious user from trying to reset the processor while it is
operating in Secure Mode and then view the contents of internal memory
when the processor returns to Open Mode after servicing RESET.
25-22 ADSP-BF51x Blackfin Processor Hardware Reference

Security
 It is recommended that user software running in Secure Mode
should also perform RAM clean-up prior to clearing the SECURE0
Secure Mode bit and exiting Secure Mode via normal code execu-
tion within user’s secure function. If sensitive code/data remains in
on-chip RAM after exiting Secure Mode without wiping memory
and register contents or cycling power to the processor, it is visible
and accessible in Open Mode.

The memory clear routine in the on-chip boot ROM executes a watchdog
RESET to reset the processor at the completion of the memory clear. The
code also performs a clear of the OTP_DATA0-3 registers which are used to
hold data from OTP access reads (that is, which could contain secret key
or other sensitive data left by user code execution).

If a custom memory cleanup routine is part of an authenticated message,
the user can use that routine instead of the one provided with the Lockbox
firmware. The user can simply update EVT2 in the event vector table to
point to the start of the custom memory cleanup routine while operating
in Secure Mode.

 It is strongly recommended that developers substitute their own
custom memory clear routines if they require clearing of L1
instruction as the ROM memory clear routine will only clear the
contents of L1 Data (Bank A and B) memory. The ROM memory
clear routine will not protect instruction code from being exposed
after reset is serviced or when the Secure State Machine transitions
to Open Mode via other means.

Due to the fact that hardware reset is configured by default to be redi-
rected to NMI when the processor is operating in Secure Mode, it is
recommended that the user implements a watchdog reset within the EVT2
NMI ISR in order to reset the processor. A Watchdog reset is imple-
mented by writing a value 2'b00 in WDOG_CTL[2:1] and causes a complete
core reset. The watchdog reset will not be redirected to the NMI pin as in
ADSP-BF51x Blackfin Processor Hardware Reference 25-23

Description of Operation
the case of the external hardware reset and it will properly reset the proces-
sor. For more details of watchdog reset, refer to “Software Resets” on
page 26-6“ in Chapter 26, “System Reset and Booting”.

This “reset attack” protection scheme needs to protect only against hard-
ware reset. Since it can be applied externally, the system developer
typically has no control over reset in an embedded system. While operat-
ing in Secure Mode, the developer’s authenticated code has full control
over the processor core and execution of all software instructions, so there
is no need to protect against soft reset instructions. It is not recommended
that the user’s secure application code implement a soft reset without first
deleting sensitive information from memory and registers.

Public Key Requirements
A valid ECC public key must be a non-zero value and meet the following
criteria:

Given the public key value shown here:

369368AF243193D001E39CE76BB1D5DA08A9BC0A6

15F7A90C841D4F1E1B005E70F167F6EF7CD2E251B

format in 32-bit little endian as follows:

8A9B C0A6

BB1D 5DA0

1E39 CE76

4319 3D00

6936 8AF2

0000 0003

CD2E 251B
25-24 ADSP-BF51x Blackfin Processor Hardware Reference

Security
167F 6EF7

B005 E70F

41D4 F1E1

5F7A 90C8

0000 0001

The values should be stored in OTP pages 0x10, 0x11, 0x12 as follows,
where 'L' denotes lower half of page (OTP page bits 63:0), 'H' denotes
upper or high half of page (OTP page bits 127:64):

page: 0x010L: 0xBB1D 5DA0 8A9B C0A6,

page: 0x010H: 0x4319 3D00 1E39 CE76

page: 0x011L: 0x0000 0003 6936 8AF2

page: 0x011H: 0x167F 6EF7 CD2E 251B

page: 0x012L: 0x41D4 F1E1 B005 E70F

page: 0x012H: 0x0000 0001 5f7A 90C8

The general format takes the form of twelve (12) 32-bit words:

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7
ADSP-BF51x Blackfin Processor Hardware Reference 25-25

Description of Operation
Word 8

Word 9

Word 10

Word 11

Word 12

Stored into OTP pages in the following order (where 'L' denotes lower
half of page, 'H' denotes upper or high half of page):

page: 0x010L:Word 2 Word 1

page: 0x010H:Word 4 Word 3

page: 0x011L:Word 6 Word 5

page: 0x011H:Word 8 Word 7

page: 0x012L:Word 10 Word 9

page: 0x012H:Word 12 Word 11

Storing Public Cipher Key in Public OTP

In order to make use of security features, the user must first store an ECC
public key in the Blackfin processor public region of OTP memory pages
0x10, 0x11, and 0x12 as specified in the Firmware’s Secure Entry Service
Routine (SESR) API and the OTP memory map (see “Secure Entry Ser-
vice Routine (SESR) API” on page 25-33). If no ECC public key is stored
in this area of OTP, digital signature authentication cannot be successfully
completed and no Lockbox security features can be enabled. For more
information see Chapter 3, “One-Time Programmable Memory”.
25-26 ADSP-BF51x Blackfin Processor Hardware Reference

Security
Cryptographic Ciphers
Lockbox uses SHA-1 and ECC to implement ECDSA as part of the
authentication process to enter into Secure Mode. These ciphers reside in
the firmware in the on-chip boot ROM. The SHA-1 cipher is user-callable
in Open Mode or in Secure Mode. The API is documented in “Program-
ming Model” on page 25-33. Note that ECC is not user-callable and is
only executed as part of firmware during the authentication process.

Keys
Although Lockbox uses an ECC public key for digital signature authenti-
cation and has private OTP memory to store private keys for other
cryptographic algorithms, Lockbox does not implement key management.
Lockbox does not implement key generation, nor does it implement key
exchanges natively in the Blackfin hardware.

In order to use Lockbox, an ECDSA key pair must be generated. The pri-
vate key is used off-chip (typically on a host PC) to sign the message. The
public key is placed in the public OTP memory where it is used to authen-
ticate the signed message. Lockbox is only part of a full cryptosystem. It is
the responsibility of the user to develop the other parts of the cryptosys-
tem necessary for the intended application.

Debug Functionality
The processor is fully compatible with the IEEE 1149.1 standard, also
known as the Joint Test Action Group (JTAG) standard. Full details of
the JTAG standard can be found in the document IEEE Standard Test
Access Port and Boundary-Scan Architecture, ISBN 1-55937-350-4.

ADSP-BF51x debug functionality has some modified behavior dependent
upon the access privileges associated with the state of the Secure State
Machine operating mode. This is to ensure that sensitive information and
processing performed within Secure Entry Mode and Secure Mode will
ADSP-BF51x Blackfin Processor Hardware Reference 25-27

Description of Operation
not be compromised via JTAG. Furthermore, public JTAG instructions
necessary for system test and debug (such as boundary scan and bypass
mode) remain in effect regardless of the state of the Secure State Machine
and are not hindered by the ADSP-BF51x Secure Mode operation. This
makes it possible for developers to debug their systems without interfer-
ence from the Blackfin processor or its security features.

In compliance with the JTAG standard, ADSP-BF51x processors provide
an Instruction Register (IR) that interprets 5-bit instruction codes to select
the test mode that performs the desired test operation. The instruction
register is five bits wide and accommodates up to 32 boundary-scan
instructions. The instruction register holds both public and private
instructions. The JTAG standard requires some of the public instructions;
other public instructions are optional. Private instructions are reserved for
the manufacturer’s use.

All supported public and private JTAG instructions remain operational
when operating in Open Mode. All supported public JTAG features
remain operational and all private JTAG features are disabled when oper-
ating in Secure Entry Mode and Secure Mode. Refer to Appendix B, “Test
Features” for full details of supported JTAG instructions.

By default, JTAG emulation is disabled when the processor enters Secure
Entry Mode or Secure Mode. There is only one way to enter Secure
Mode—through successful authentication of user code based on digital
signature validation. Once the digital signature authentication process
results in success, the user’s trusted, authenticated code is given full con-
trol over the processor, including access to Secured System Switches
register (SECURE_SYSSWT) that enables/disables various protection mecha-
nisms, including JTAG emulation. The Secured System Switch register
provides a setting that allows authenticated code to enable JTAG emula-
tion either in a one-time secure session setting or in a “sticky” persistent
manner that allows emulation to be enabled by default the next time the
processor enters Secure Mode. These settings are cleared when reset is
25-28 ADSP-BF51x Blackfin Processor Hardware Reference

Security
asserted or if processor core power is cycled. (See the EMUOVR and EMUDABL
bits within the SECURE_SYSSWT Secure System Switches Register in “Secure
System Switch (SECURE_SYSSWT) Register” on page 25-47.)

Two bits within the SECURE_SYSSWT Secure System Switches register con-
trol JTAG emulation; they are Emulation Disable (EMUDABL) and
Emulation Override (EMUOVR). To enable JTAG emulation for the current
session while operating within Secure Mode, SECURE_SYSSWT bit 0 (EMUD-
ABL) must be set to 0. To enable JTAG emulation to remain “sticky” and
persistently enabled for the current session and for all subsequent entries
into Secure Mode until cleared by the user or until cleared via RESET or
cycling power to the processor, SECURE_SYSSWT bit 0 (EMUDABL) must be set
to 0 AND SECURE_SYSSWT bit 14 (EMUOVR) must be set to 1 simultaneously.
See “Secure System Switch (SECURE_SYSSWT) Register” on page 25-47
for details.

 The EMUDABL bit is writable only directly when in Secure Mode.
EMUOVR can be written to a 0 at any time. RESET will clear EMUOVR.
EMUOVR can be cleared by the user at any time and in any mode,
including Open Mode, Secure Entry Mode, and Secure Mode. You
do not have to operate in Secure Mode in order to clear EMUOVR.

The EMUDABL bit is writable only directly when in Secure Mode. EMUOVR
can be written to a 0 at any time. This means if you are in Secure Mode
and wish to remove the privilege of emulation override, you are allowed to
clear EMUOVR. Or if you are operating in Open Mode and wish to remove
emulation override, you can clear EMUOVR. In case of Secure Entry Mode,
writing the EMUOVR bit to a 0 immediately blocks emulation (and the EMUD-
ABL bit would read 0 immediately). While operating in Secure Entry
Mode, the value of EMUDABL is the not of EMUOVR, that is, EMUDABL = EMUOVR.
While operating in Secure Mode, you can read or write the EMUOVR bit,
which has no immediate affect since EMUDABL is in control at that point.
ADSP-BF51x Blackfin Processor Hardware Reference 25-29

Description of Operation
Upon setting EMUDABL = 0 AND EMUOVR = 1, JTAG emulation remains
active and enabled for the current session during Secure Mode operation
AND for ALL subsequent entries into Secure Mode until EMUOVR is cleared
(set to 0) or until RESET or power cycle clears this setting. This is also
known as “sticky” emulation setting.

If “sticky” emulation is enabled (EMUDABL = 0 AND EMUOVR = 1), JTAG
emulation is active and enabled in all modes, that is, Secure Entry, Secure
Mode, as well as in Open Mode. The Secure State Machine can cycle
through all modes of operation, and JTAG emulation will remain active
and enabled in every mode with these settings in place until cleared by the
user application code, or until RESET or power cycle clears the setting.

For example, a user creates code to be authenticated with a valid digital
signature. The code and digital signature are loaded onto the Blackfin pro-
cessor in Open Mode, Authentication is requested (JTAG emulation is
disabled by default during Authentication in Secure Entry Mode), and the
Authentication process is successful. The processor enters Secure Mode
(JTAG emulation still is disabled by default) and control is given to the
authenticated code. Authenticated code sets bits within the Secure System
Switches to enable JTAG Emulation and sets the “sticky” bit to allow
JTAG emulation to be enabled by default the next time the processor
transitions into Secure Mode as well. Debug within Secure Mode can
occur using emulation now. If a different set of trusted code must be
loaded into the processor, the user can do so now without leaving Secure
Mode, or the user can choose to exit Secure Mode and return back to
Open Mode in order to authenticate another set of code or load test/prob-
lematic code. A new set of code and digital signature now can be loaded
and authenticated. Upon entry into Secure Mode, JTAG emulation will
be enabled by default due to the sticky bit setting in the Secure System
Switches. Debug can be performed within Secure Mode without changes
to problematic code.
25-30 ADSP-BF51x Blackfin Processor Hardware Reference

Security
One possible usage scenario for persistent (sticky) emulation might be as
follows: a “final” production code that must run in Secure Mode is pre-
pared. There seems to be an issue with the code, but emulation prevents
working with it. You would take advantage of the EMUOVR bit within the
SECURE_SYSSWT register by, first, performing a simple authentication of
code that sets the EMUOVR bit in order to enable JTAG emulation within
Secure Mode. From there you exit Secure Mode (write a value of “1” to
the SECURE0 bit in the SECURE_CONTROL register, but do not invoke any
processor reset), and call the routine to debug. You would then set a
breakpoint just after authentication. That way you can now step through
your code using JTAG emulation and operate in Secure Mode.

 Digitally signed user code, which enables either single session or
sticky JTAG emulation, must be treated as confidential by users in
the same manner as private keys. If this code is allowed to fall out-
side of developer control or become public, it can be used to
compromise a developer’s security.

In summation, in order to enable JTAG emulation during Secure Mode,
the user must successfully perform the Authentication process at least one
time, and then program the Secured System Switches while operating in
Secure Mode to enable emulation.

Programming Examples

Listing 25-1. Assembly Code – Enable (“Sticky”) Persistent JTAG
Emulation for Secure Mode Debug

#include <defBF518.h> /* ADSP-BF518 used as an example */

.section L1_code;

.align 4;

.global _secure_function;

_secure_function:
ADSP-BF51x Blackfin Processor Hardware Reference 25-31

Description of Operation
// required nops to account for

// SESR PC vector target+4 for overlay ID accommodation

nop;

nop;

P0.H = ((SECURE_SYSSWT) >> 16);

P0.L = ((SECURE_SYSSWT) & 0xFFFF);

R0 = [P0];

BITCLR(R0,0);

[P0] = R0;

SSYNC;

_secure_function.END:

Listing 25-2. C Code – Enable JTAG Emulation for Secure Mode Debug
(single session)

#include <cdefBF518.h>/* ADSP-BF518 used as an example*/

 #define ENABLE_JTAG_MASK 0xFFFFFFFE

void secure_function(void)

{

/* Enable JTAG */

*pSECURE_SYSSWT = (*pSECURE_SYSSWT & ENABLE_JTAG_MASK);
ssync();

return;

}

25-32 ADSP-BF51x Blackfin Processor Hardware Reference

Security
Programming Model
This section contains the following procedures:

• “Secure Entry Service Routine (SESR) API”

• “Starting Authentication” on page 25-34

• “Memory Configuration” on page 25-35

• “Secure Function and Secure Entry Service Routine Arguments”
on page 25-38

• “Secure System Switch (SECURE_SYSSWT) Register” on
page 25-47

• “Secure Control (SECURE_CONTROL) Register” on page 25-54

• “Secure Status (SECURE_STATUS) Register” on page 25-56

Secure Entry Service Routine (SESR) API
This section describes the procedure to use Lockbox to authenticate a
message. Memory configuration, input arguments and return codes are
also described here.

In this chapter, the term “message” was widely used to describe the entity
being digitally signed off-chip, and later authenticated on-chip by the
SESR security firmware. “Message”, “secure function” (SF), and “secure
application” are used interchangeably in this section and mean the same
thing.
ADSP-BF51x Blackfin Processor Hardware Reference 25-33

Programming Model
Starting Authentication
For an application to establish trust and reach the privileged mode of
operation (for example, enter Secure Mode), the Secure State Machine has
to transition from Open Mode, through Secure Entry Mode, to Secure
Mode. In order to transition from Open Mode to Secure Entry Mode,
NMI must be asserted and the program counter (PC) must vector to the
beginning address of the firmware (SESR).

This can be achieved by loading BFROM_SECURE_ENTRY (defined in bfrom.h)
as the NMI handler in the event vector table (EVT2). Then in supervisor
mode, issue a raise 2; instruction. Similarly, NMI hardware pin may be
asserted instead of issuing a software raise; instruction. Once the PC vec-
tors to the SESR, while NMI assertion is sensed by the hardware, the
Secure State Machine transitions into Secure Entry Mode.

Before actually going into Secure Entry Mode, the user will have to set up
the memory environment. This includes specifying the arguments
(described in this section) and moving the message to be authenticated
into L1 data memory.
25-34 ADSP-BF51x Blackfin Processor Hardware Reference

Security
Memory Configuration
Figure 25-3 illustrates the Secure Entry Mode default memory configura-
tion upon initiating authentication and entering the SESR.

Figure 25-3. Memory Configuration for Authentication

0xFF90 8000

0xFF90 1F00

0xFF90 00000xFF80 00000xEF00 0000

0xEF00 1000

0xFF80 4000

0xFF80 8000

BOOT
CODE

SHA-1

AUTHENTICATION
CODE

ELLIPTICAL
CURVE
CIPHER

OTP
ACCESS
LIBRARY

BOOT
ROM

DATA
CONTENT
FOR SF

(OPTIONAL)

DIGITAL
SIGNATURE

MESSAGE
(CODE AND

OPTIONAL DATA
CONTENT TO BE
AUTHENTICATED)

(SF)

UNUSED /
PROTECTED

L1 DATA BANK A

UNPROTECTED
USER DATA

ARGUMENT
BUFFERS FOR
SF AND SESR

ECC DATA
BUFFERS AND

VARIABLES
(RESERVED)

DATA VARIABLES
AND BUFFERS

USED BY
AUTHENTICATION

CODE

L1 DATA BANK B

DATA CONTENT
FOR SF

(OPTIONAL)
ADSP-BF51x Blackfin Processor Hardware Reference 25-35

Programming Model
Message Placement

The message must be placed in L1A for authentication. If the message (for
example, code) is put into L1A for authentication, it must be DMA’ed to
L1 code space, where it can execute. It is the user’s responsibility to pro-
vide the message in L1A memory for the SESR. If authentication is
successful, the SESR then moves the message via DMA to the final desti-
nation according to the SESR arguments. No further action is required by
the developer to perform this DMA as it is executed by the firmware.

Digital Signature

The digital signature is a pair of 163-bit integers. Each integer is padded
to the nearest 32-bit word, resulting in 192 bits for each integer, resulting
in a total size of 384 bits. The authentication firmware always expects the
digital signature to be followed by the message. For example, if the mes-
sage is placed in L1A data memory, and the digital signature starts at
address 0xFF80 0000, the message must immediately follow the digital
signature and be located at address 0xFF80 0030. The message and digital
signature must be stored together contiguously in memory with the mes-
sage always immediately following the digital signature.

Message Size Constraints

The maximum size of any message to be authenticated is limited by the
size of on-chip memory in the Blackfin processor. When the Secure State
Machine enters into Secure Entry Mode (authentication), certain portions
of on-chip SRAM memory are protected from DMA accesses. These pro-
tected memory regions include L1A (32 KB) and L1B data memory (8 KB
each and 32 KB of L1 code memory). This means that the maximum
allowable message/code size that can be authenticated is 32 KB less 48
bytes for the digital signature when placed in L1A data memory.
25-36 ADSP-BF51x Blackfin Processor Hardware Reference

Security
Memory Usage

In data bank B of the L1 memory, the arguments for both the SESR and
the secure function are stored beginning at address 0xFF90 0000. In addi-
tion, a portion of the L1B data memory is reserved for the firmware for
scratch space. All memory above address 0xFF90 1F00 is reserved for
authentication. The user can either allocate this area of memory solely for
Lockbox or save any data elsewhere in memory prior to starting
authentication.

 Any user information residing in the scratch space reserved area of
L1 Data Bank B will be overwritten during the authentication
process.

Memory Protection

This Secure Entry Mode default memory configuration with both pro-
tected and unprotected regions of on-chip SRAM is implemented in order
to allow developers to initiate digital signature authentication at any time
during Open Mode processor operation. If an application is already run-
ning on the processor, the unprotected memory regions can be used for
placement of data buffers. When authentication occurs, access to these
data buffers is not restricted, thus the application can be given higher pre-
cedence over the authentication process if necessary.

The Secure Entry Mode default memory protection configuration put into
place upon initiating authentication cannot be modified by the developer.
This is to ensure integrity of the secure processing environment during the
authentication process and help prevent malicious tampering.
ADSP-BF51x Blackfin Processor Hardware Reference 25-37

Programming Model
Secure Function and Secure Entry Service Routine
Arguments

Prior to initiating the authentication, the arguments for both the SESR
and the message (also known as Secure Function or SF) must be set up.
The arguments are stored in argument buffers stored in L1B data memory.
Specifically, the arguments for the Secure Function are stored at the top of
L1B data memory, at address 0xFF90 0000. There are 24 bytes allocated
for the arguments for the secure function. Following the argument buffer
for the Secure Function is the argument buffer for the SESR, at address
0xFF90 0018. For security reasons this authentication protocol accesses
fixed locations for arguments. When the user starts executing the SF, it
receives two arguments. The first argument (R0) contains the address of
the SF argument buffer. The second argument (R1) holds the IMASK value
before shut off interrupts.

Secure Function Arguments

When the message is successfully authenticated, the Program Counter will
vector to the Secure Function with the first argument (R0) containing a
pointer to top of L1B data memory. The second argument (R1) of the
secure function is the IMASK value. This value is obtained when the SESR
successfully authenticates the message. Before the message is transferred
via DMA to its final target run location, interrupts are shut off so tamper-
ing cannot occur between the time of successful authentication and
execution of the secure function. The prototype for the secure function is:
void secure_function(tSecureFunctionArgs *, unsigned short imask);

The 24-byte Secure Function argument buffer is for the convenience of
the user to be able to pass arguments to the Secure Function prior to start-
ing authentication.

It will be the responsibility of the user’s Secure Function responsibility to
re-enable interrupts by using the saved IMASK value or by using a new
IMASK value.
25-38 ADSP-BF51x Blackfin Processor Hardware Reference

Security
The 24-byte Secure Function argument buffer can be used in any aligned
fashion. For example, it can be used to store six 32-bit words or twelve
16-bit words, or any combination of data types such as integers, shorts
and characters, as long as the accesses are aligned.

Secure Entry Service Routine Arguments

The argument buffer for the SESR is shown in Listing 25-3.

Listing 25-3. Argument Buffer for SESR

/* SESR argument structure. Expected to reside at address

0xFF900018 */

typedef struct SESR_args {

 unsigned short usFlags; /* security firmware flags*/

 unsigned short usIRQMask; /* interrupt mask*/

 unsigned long ulMessageSize; /* message length in bytes*/

 unsigned long ulSFEntryPoint;/* entry point of secure function*/

 unsigned long ulMessagePtr; /* pointer to the buffer containing

the digital signature and message */

 unsigned long ulReserved1; /* reserved*/

 unsigned long ulReserved2; /* reserved*/

} tSESR_args;
ADSP-BF51x Blackfin Processor Hardware Reference 25-39

Programming Model
usFlags

The first argument, usFlags, is a 16-bit flag that signals authentication
what to do. Figure Figure 25-4 shows the meaning of the bits.

Bit 0 tells the authentication firmware whether or not to drop the inter-
rupt level. To execute raise 2;, the Blackfin processor must operate in
supervisor mode, in other words, operate at one of the interrupt levels.
NMI must be asserted when authentication is initiated. The caller/user
has the option to deassert NMI and drop back down to a lower interrupt
level (the interrupt level in effect when NMI was asserted to initiate
authentication) or continue authentication at NMI level.

By lowering the interrupt level at which the authentication firmware exe-
cutes, other interrupts can be serviced. Be aware that if another interrupt
is serviced and the PC vectors out of the authentication firmware during
authentication, the authentication process fails and returns an error code.

Bit 8 tells the firmware which public key is used for authentication. The
OTP memory holds two public keys. One is programmed by Analog
Devices for failure analysis purposes only, and the other is programmed by
the developer.

Figure 25-4. Bit Fields for Flags Argument

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x

Reduce Execution Level
(REL)
0 - Continue execution at
NMI level
1 - Drop execution level

Reserved

x x x x x x x x x x x x x x

Reserved

Reserved

Public Key

Index
 0 - ADI key
 1 - Customer Key

x

25-40 ADSP-BF51x Blackfin Processor Hardware Reference

Security
uslRQMask

The usIRQMask argument is a 16-bit user-defined bitmask to be loaded
into the lower 16 bits of the IMASK MMR if the execution level is to be
lowered from NMI level. This argument allows the user to specify which,
if any, interrupts will be allowed to be serviced should they occur during
the time authentication occurs. Note that if any interrupt is serviced, the
authentication process fails and returns an error code as mentioned above.
For more information regarding IMASK, refer to Blackfin Programming
Reference.

ulMessageSize

The ulMessageSize argument is a 32-bit non-negative integer that tells
the SESR how big the message is, in bytes. The ulMessageSize must be a
multiple of two, otherwise the SESR returns an error code.

ulSFEntryPoint

The ulSFEntryPoint argument is the final address that the message will be
moved to and executed from L1 Instruction memory. Again, since the
authentication firmware expects code as the first portion of the message,
the address must be a multiple of four since instructions can be either
16-bit or 32-bit lengths. If the message consists of both code and data, it is
the user’s responsibility to move the data to the proper area of data mem-
ory for subsequent use within the application.

ulMessagePtr

The ulMessagePtr argument holds the address of where the digital signa-
ture and message is found in L1 Data memory.
ADSP-BF51x Blackfin Processor Hardware Reference 25-41

Programming Model
Secure Message Execution

If the authentication of the digital signature is successful, the authentica-
tion firmware directly vectors the Program Counter to the Secure
Function at its final target location, plus an offset of four bytes. The offset
provides a location for the overlay ID if overlays are used with Lockbox.
To return to the calling function, the authenticated message must execute
rtn; if execution level was not signaled to be lowered in the authentication
firmware. Otherwise, if the execution level was lowered, the Secure Func-
tion can return via rts;.

To prevent tampering, interrupts and the watchdog timer are shut off near
the end of successful authentication. It is the user’s responsibility to
re-enable the interrupts and the watchdog timer in the Secure Function if
they are required in the user’s application while operating in Secure Mode.

Return Codes

If for any reason an error occurs, the SESR returns an error code, and bit 7
in the SECURE_STAT MMR sets to indicate that register R0 contains a valid
error code. Table 25-2 lists a portion of the valid return codes.

Table 25-2. List of Return Codes From SESR

Return Codes Value Description

SECFW_SUCCESS 0 Success

SECFW_ERROR_INV_FLAGS –1 “Flags” argument to firmware is invalid

SECFW_ERROR_INV_INTMASK –2 IRQ mask specified is invalid

SECFW_ERROR_INV_CODESZ –3 Code size specified is either non-posi-
tive or odd

SECFW_ERROR_OOB_CODE –6 The message (Secure function) is too
big and surpasses the protected region
in L1A
25-42 ADSP-BF51x Blackfin Processor Hardware Reference

Security
In addition to the return codes listed in Table 25-2, a return value
between –62 and –252 is also a valid error return code. These errors are
from OTP accesses.

SECFW_ERROR_BAD_EVT –10 One of the ISR specified in the Event
Vector table points inside the authenti-
cation firmware.

SECFW_ERROR_PUBKEY_ZERO –11 Invalid public key of (0,0)

SECFW_ERROR_AUTH_FAILED –12 Invalid message/signature pair

SECFW_ERROR_DMA –15 MDMA error occurred during DMA
transfer or the message to the final tar-
get vector.

SECFW_ERROR_DROPPING_INT_FAILED –17 Could not drop interrupt level from
NMI.

SECFW_ERROR_FUSE_READ_FAILED –18 Error occurred while reading OTP
memory.

SECFW_ERROR_TGTVECT_NONALIGNED –19 Target vector is not 4 Byte aligned.

SECFW_ERROR_SECURE0_WRITE_FAILED –20 Write to Secure0 bit failed. Secure
State Machine might be blocking the
write because ISR was taken.

SECFW_ERROR_SM_NOT_ENTERED –21 Secure0 bit was written three times but
secure mode was still not entered.

SECFW_ERROR_BAD_TGT_ADDR –22 Target vector must be in L1 code
space.

SECFW_ERROR_SF_TOO_BIG –23 Message (Secure function) too big to
fit at target location.

Table 25-2. List of Return Codes From SESR (Continued)

Return Codes Value Description
ADSP-BF51x Blackfin Processor Hardware Reference 25-43

Programming Model
To decipher the error from an OTP access, there is an offset that must be
added to the error code. The macro OTP_READ_ERROR_OFFSET (defined in
header files with a value of –285) is added to the return value. The result
is a bit mask. Figure 25-5 shows the definition of the bit fields.

SECURE HASH ALGORITHM (SHA-1) API

The ADSP-BF51x processor includes a software implementation of the
Secure Hash Algorithm (SHA-1) in the on-chip boot ROM. This imple-
mentation of the SHA-1 hash algorithm is C-callable.

The following describes the application programming interface (API) for
using SHA-1, including both data types and ROM routines.

ADI_SHA1 Data Type

typedef struct ADI_SHA1 {

u8 *pInputMessage;

u32 udMessageSize;

u8 *pOutputDigest;

u8 *pScratchBuffer;

} ADI_SHA1;

Figure 25-5. Bit Field Definition Return Value if OTP Error Occurred

0 0

OTP Read Error

Attempt to access
invalid OTP space

Double bit error
detected

Hamming Code
Syndrome error

ECC firmware error

7 6 5 3 2 1

Where OTP error occurred
1 - Page 1 - low half
2 - Page 1 - high half
3 - Page 2 - low half
4 - Page 2 - high half
5 - Page 3 - low half
6 - Page 3 - high half

4

25-44 ADSP-BF51x Blackfin Processor Hardware Reference

Security
The SHA1 hash routine, bfrom_Sha1Hash, when provided with a reference
to an object of type ADI_SHA1, hashes the udMessageSize-long message
referenced by pInputMessage, and stores the hash value (also referred to as
message digest) in the buffer referenced by pOutputDigest. The elements
in an object of type ADI_SHA1, are shown in Table 25-3.

bfrom_Sha1Init ROM Routine

Entry address: Defined as BFROM_SHA1_INIT in the bfrom.h header file in
the CCES or VisualDSP++ installation directory.

Arguments:

R0: Pointer to a buffer of size SHA1_SCRATCH_BUFFER_SIZE

C prototype:
 void bfrom_Sha1Init (u8 *pScratchBuffer);

This function initializes some data elements in pScratchBuffer. It is
called first before making any calls to bfrom_Sha1Hash.

bfrom_Sha1Hash ROM Routine

Entry address: Defined as BFROM_SHA1_HASH in the bfrom.h header file in
the CCES or VisualDSP++ installation directory.

Arguments:

Table 25-3. Elements in an Object of Type ADI_SHA1

pInputMessage Pointer to the input buffer

udMessageSize The size, in bytes, of the valid input data in pInputMessage.

pOutputDigest Pointer to the output data buffer. After hashing, this buffer will contain the
digest of the input message. The digest is 160-bits (SHA1_HASH_SIZE-bytes)
long

pScratchBuffer Pointer to a data buffer of size, SHA1_SCRATCH_BUFFER_SIZE-bytes, used
by the SHA-1 module.
ADSP-BF51x Blackfin Processor Hardware Reference 25-45

Security Registers
R0: Pointer to an object of type ADI_SHA1

C prototype:
 void bfrom_Sha1Hash (ADI_SHA1 *pSha1);

This function performs the hash operation.

Security Registers
There are three registers for security mode control and status of the Secure
State Machine states. These registers require privileged access depending
upon the operating state of the processor.

Table 25-4. Security Registers

Register Description Size (Bits) Memory-Mapped Address

SECURE_SYSSWT Secure System Switches 32 0xFFC03620

SECURE_CONTROL Secure Control 16 0xFFC03624

SECURE_STATUS Secure Status 16 0xFFC03628
25-46 ADSP-BF51x Blackfin Processor Hardware Reference

Security
Secure System Switch (SECURE_SYSSWT) Register
The SECURE_SYSSWT register controls hardware that would otherwise allow
a threat of attack to a secured system. Hardware is controlled voluntarily
and involuntarily as follows.

• During Open Mode the switches are involuntarily set with all con-
trols off (unrestricted access, with exception of access to OTP
protected “secrets” area). OTP secrets are always protected and can
only be accessed upon entry into Secure Mode.

• During Secure Entry Mode all switches are initially set with all
controls on (restricted access); except that the OTP secrets control
(OTPSEN bit) is not accessible so access to the secrets OTP area
remains restricted, and the RSTDABL bit remains deactivated (Exter-
nal Reset is allowed).

• During Secure Mode operation all switches are voluntary (initially
set) and under the control of authenticated code. Therefore,
restricted access controls can be reconfigured by authenticated user
code. This includes the activation of Reset Disable (RSTDABL) bit.

The register, shown in Figure 25-6 and Figure 25-7, is 32-bits wide and
requires 32-bit access. Limited write access to a few bits is allowed in
Secure Entry mode, and full write access to all bits is allowed in Secure
mode. No write access is allowed in Open Mode.
ADSP-BF51x Blackfin Processor Hardware Reference 25-47

Security Registers
Figure 25-6. Secure System Switch Register, Bits 15:0

00000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L1IDABL [4:2]
000 - All DMA accesses allowed
001 - 1 Kbyte of memory restricted non-core
access
010 - 2 Kbyte of memory restricted non-core
access
011 - 4 Kbyte of memory restricted non-core
access
100 - 8 Kbyte of memory restricted non-core
access
101 - 16 Kbyte of memory restricted non-core
access
110 - 32 Kbyte of memory restricted DMA
access
111 - Invalid (32k restricted access)

L1DADABL [7:5]
000 - All DMA accesses allowed
001 - 1 Kbyte of memory has restricted
non-core access
010 - 2 Kbyte of memory has restricted
non-core access
011 - 4 Kbyte of memory has restricted
non-core access
100 - 8 Kbyte of memory has restricted
non-core access
101 - 16 Kbyte of memory has restricted
non-core access
110 - 32 Kbyte of memory has restricted DMA
access
111 - Reserved

0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Secure System Switch Register (SECURE_SYSSWT) Bits 15:0

0xFFC03620

OTPSEN [15]
0 - Disable
1 - Enable

EMUOVR [14]
0 - EMUDABL bit is set
1 - EMUDABL bit is cleared

RESERVED [13:12]

DMA0OVR [11]
0 - DMA0 accesses restricted by
Memory Disable settings
1 - Unrestricted DMA0 accesses in all
memory areas

L1DBDABL [10:8]
000 - All DMA accesses allowed
001 - 1 Kbyte of memory has restricted
non-core access
010 - 2 Kbyte of memory has restricted
non-core access
011 - 4 Kbyte of memory has restricted
non-core access
100 - 8 Kbyte of memory has restricted
non-core access
101 - 16 Kbyte of memory has restricted
non-core access
110 - 32 Kbyte of memory has restricted
DMA access
111 - Reserved

EMUDABL [0]
0 - JTAG instructions executed
1 - JTAG instructions ignored

RSTDABL [1]
0 - External Resets generated
1 - External Resets redirected to
NMI pin
25-48 ADSP-BF51x Blackfin Processor Hardware Reference

Security
Figure 25-7. Secure System Switch Register, Bits 31:16

Table 25-5. Secure System Switch Register

Bit Position Bit Name Bit Description

Reset = 0x0000
Secured Entry = 0x000704d9
Secure Mode = 0x000704db

0 EMUDABL Emulation Disable.
Upon Secured Entry EMUDABL’s setting is based on the previous state of
EMUOVR. Upon re-entering Open Mode, EMUDABL is cleared. This bit is
always read accessible. This bit is write accessible only in Secure Mode.
0 - Analog Devices JTAG emulation instructions is recognized and exe-
cuted. Once this bit is cleared while in Secure Mode it will not be set
upon Secured Entry. This condition will remain until reset at which time
it is cleared. This feature is used in security debug.
1 - Analog Devices JTAG emulation instructions are ignored. Standard
emulation commands such as bypass is allowed.

1 RSTDABL Reset Disable.
This bit is not effected upon Secured Entry. This bit is set upon entering
Secure Mode. Upon re-entering Open Mode, RSTDABL is cleared. This
bit is always read accessible. This bit is write accessible only in Secure
Mode.
0 - External Resets are generated and serviced normally.
1 - External Resets are redirected to the NMI pin. This avoids circum-
venting memory clean operations.

0000 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved [18:16]

0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC03620

Secure System Switch Register (SECURE_SYSSWT) Bits 31:16

0

ADSP-BF51x Blackfin Processor Hardware Reference 25-49

Security Registers
4:2 L1IDABL L1 Instruction Memory Disable.
Upon Secured Entry L1IDABL is set to 0x6. Upon re-entering Unsecure
Mode, L1IDABL is cleared. These bits are always read accessible. These
bits are write accessible only in Secure Mode. In the event a DMA access
is performed to a restricted memory area a DMA memory access error
will occur resulting in a DMA_ERR interrupt and a clearing of DMA_RUN.
000 - All DMA accesses are allowed to L1 Instruction areas.
001 - 1 Kbyte of memory (0xFFA00000 - 0xFFA003FF) has restricted
non core access
010 - 2 Kbyte of memory (0xFFA00000 - 0xFFA007FF) has restricted
non core access
011 - 4 Kbyte of memory (0xFFA00000 - 0xFFA00FFF) has restricted
non core access
100 - 8 Kbyte of memory (0xFFA00000 - 0xFFA01FFF) has restricted
non core access
101 - 16 Kbyte of memory (0xFFA00000 - 0xFFA03FFF) has restricted
non core access
110 - 32 Kbyte of memory (0xFFA00000 - 0xFFA07FFF) has restricted
DMA access. This is the initial setting upon entering Secured Entry.
111 - Reserved

Table 25-5. Secure System Switch Register (Continued)

Bit Position Bit Name Bit Description
25-50 ADSP-BF51x Blackfin Processor Hardware Reference

Security
7:5 L1DADABL L1 Data Bank A Memory Disable.
Upon Secured Entry L1DADABL is set to 0x6. Upon re-entering Open
Mode, L1DADABL is cleared. These bits are always read accessible. These
bits are write accessible only in Secure Mode. In the event a DMA access
is performed to a restricted memory area a DMA memory access error
will occur resulting in a DMA_ERR interrupt and a clearing of DMA_RUN.
000 - All DMA accesses are allowed to L1 data bank A areas.
001 - 1 Kbyte of memory (0xFF800000 - 0xFF8003FF) has restricted
non core access
010 - 2 Kbyte of memory (0xFF800000 - 0xFF8007FF) has restricted
non core access
011 - 4 Kbyte of memory (0xFF800000 - 0xFF800FFF) has restricted
non core access
100 - 8 Kbyte of memory (0xFF800000 - 0xFF801FFF) has restricted
non core access
101 - 16 Kbyte of memory (0xFF800000 - 0xFF803FFF) has restricted
non core access
110 - 32 Kbyte of memory (0xFF800000 - 0xFF807FFF) has restricted
DMA access. This is the initial setting upon entering Secured Entry.
111 - Reserved

Table 25-5. Secure System Switch Register (Continued)

Bit Position Bit Name Bit Description
ADSP-BF51x Blackfin Processor Hardware Reference 25-51

Security Registers
10:8 L1DBDABL L1 Data Bank B Memory Disable.
Upon Secured Entry L1DBDABL is set to 0x4 giving L1 Data Bank B 8
Kbyte of non core restricted access. Upon re-entering Open Mode,
L1DBDABL is cleared. These bits are always read accessible. These bits are
write accessible only in Secure Mode. In the event a DMA access is per-
formed to a restricted memory area a DMA memory access error will
occur resulting in a DMA_ERR interrupt and a clearing of DMA_RUN.
000 - All DMA accesses are allowed to L1 data bank B areas. This is the
initial setting upon entering Secured Entry.
001 - 1 Kbyte of memory (0xFF900000 - 0xFF9003FF) has restricted
non core access
010 - 2 Kbyte of memory (0xFF900000 - 0xFF9007FF) has restricted
non core access
011 - 4 Kbyte of memory (0xFF900000 - 0xFF900FFF) has restricted
non core access
100 - 8 Kbyte of memory (0xFF900000 - 0xFF901FFF) has restricted
non core access. This is the initial setting upon entering Secured Entry.
101 - 16 Kbyte of memory (0xFF900000 - 0xFF903FFF) has restricted
non core access
110 - 32 Kbyte of memory (0xFF900000 - 0xFF907FFF) has restricted
DMA access.
111 - Reserved

11 DMA0OVR DMA0 Memory Access Override
Entering Secured Entry or Secure Mode does not effect this bit. Upon
re-entering Open Mode, DMA0OVR is cleared. This bit is always read
accessible. This bit is write accessible in both Secured Entry and Secure
Mode.
Controls DMA0 access to L1 Instruction, L1 Data and memory other than
L1 regions. When clear access restrictions are based on Memory Disable
settings within this register.
0 - DMA0 accesses are restricted based on Memory Disable settings.
1 - Unrestricted DMA0 accesses are allowed to all memory areas.

12 Reserved Reserved bit. This reserved bit always returns a “0” value on a read
access. Writing this bit with any value has no effect.

13 Reserved Reserved bit. This reserved bit always returns a “0” value on a read
access. Writing this bit with any value has no effect.

Table 25-5. Secure System Switch Register (Continued)

Bit Position Bit Name Bit Description
25-52 ADSP-BF51x Blackfin Processor Hardware Reference

Security
14 EMUOVR Emulation Override
This bit is always read accessible. This bit may be written with a 1 in
Secure Mode only.
This bit can be cleared in any mode (Open Mode, Secured Entry and
Secure mode). Controls the value of EMUDABL upon Secured Entry.
0 - Upon Secured Entry the EMUDABL bit is set.
1 - Upon Secured Entry the EMUDABL bit is cleared. This bit can only be
set when EMUDABL (bit-0) is written with a “0” while this bit (bit-14) is
simultaneously written with a 1.

15 OTPSEN OTP Secrets Enable.
This bit can be read in all modes but is write accessible in Secure Mode
only.
0 - Read and Programming access of the “secured” OTP Fuse area is
restricted. Accesses will result in an access error (FERROR)
1 - Read and Programming access of the “secured” OTP Fuse area is
allowed. If the corresponding program protection bit for an access is set,
a program access is protected regardless of this bit's setting.

18:16 Reserved Reserved. To ensure upward compatibility with future implementations,
write back the value that is read from these bits.

Table 25-5. Secure System Switch Register (Continued)

Bit Position Bit Name Bit Description
ADSP-BF51x Blackfin Processor Hardware Reference 25-53

Security Registers
Secure Control (SECURE_CONTROL) Register
The SECURE_CONTROL register is used during Secure Entry Mode authenti-
cation. This register is used to establish Secure Mode transition and can be
used at any time to exit from Secure Mode. The register, shown in
Figure 25-8, is 16-bits wide and requires 16-bit access.

Figure 25-8. Secure Control Register

0000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SECURE0 [0]
This is a write only bit.
0 - All SECURE bits are cleared.
1 - Initial 1 sets SECURE1 bit. Next 1
sets SECURE2 bit. Next 1 sets
SECUE2 bit.

SECURE1 [1]
This is a read-only bit.
0 - SECURE0 has not been written
with a 1
1 - SECURE0 is written with a 1

SECURE2 [2]
This is a read-only bit.
0 - SECURE0 has not been written
with a 1 while SECURE1 is set.
1 - SECURE0 is written with a 1 for a
second time

SECURE3 [3]
This is a read-only bit.
0 - SECURE0 has not been written
with a 1 while SECURE2 is set.
1 - SECURE0 is written with a 1 for a
third time

0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC03624

Secure Control Register (SECURE_CONTROL)

0

25-54 ADSP-BF51x Blackfin Processor Hardware Reference

Security
Table 25-6. Secure Control Register

Bit Position Bit Name Bit Description

Reset = 0x0000

0 SECURE0 SECURE 0
This is a write only bit. A read always returns “0”. A 1
value can only be written to SECURE0 when in Secured
Entry. The purpose of this control bit is to require 3 suc-
cessive writes with a value of 1 to SECURE0 in order to
enter Secure Mode.
0 - When written with a “0” value, all SECURE bits within
this register are cleared and Open Mode is entered. All
SYSSWT bits are cleared with the exception of EMUOVR. If
EMUOVR had been set by the user, it will remain set (until
RESET is asserted or until it is written with a “0”).
1 - Initially when written with a 1 value SECURE1 is set.
With a subsequent 1 written SECURE2 is set. A subsequent
1 written will set SECURE3. Upon a set of SECURE3 Secure
Mode is entered.

1 SECURE1 SECURE 1
This is a read-only bit and indicates a successful write of
SECURE0 with a data value of 1
0 - SECURE0 has not been written with a 1 value
1 - SECURE0 is written with a 1 value

2 SECURE2 SECURE 2
This is a read-only bit and indicates two successful writes
of SECURE0 with a data value of 1 has occurred
0 - SECURE0 has not been written with a 1 value while
SECURE1 was set.
1 - SECURE0 is written with a 1 value for a second time.

3 SECURE3 SECURE 3
This is a read-only bit and indicates three successful
writes of SECURE0 with a data value of 1 has occurred.
0 - SECURE0 has not been written with a 1 value while
SECURE2 was set
1 - SECURE0 is written with a 1 value for a third time. The
part is currently in Secure Mode and the SYSSWT register
is writable by Authenticated code.
ADSP-BF51x Blackfin Processor Hardware Reference 25-55

Security Registers
SECURE0 bit is user accessible and is used to exit from Secure Mode. Bits
SECURE1, SECURE2, and SECURE3 are not user accessible and are accessed
only by the firmware during the digital signature validation process.

Secure Status (SECURE_STATUS) Register
The SECURE_STATUS register provides information about the current secure
state. This information can be used during security mode control as well
as understanding why an authentication attempt has failed. The register,
shown in Figure 25-9, is 16-bits wide and requires 16-bit access.

Figure 25-9. Secure Status Register

0000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SECMODE [1:0]
00 - Open Mode
01 - Secured Entry
10 - Secure Mode
11 - Illegal

NMI [2]
0 - Currently NMI is not detected
1 - Currently NMI is detected

AFVALID [3]
0 - Authentication has not begun prop-
erly or is interrupted
1 - Authentication is valid

AFEXIT [4]
0 - No improper exit is made
1 - An improper exit is made

SECSTAT [7:5]
000 - Reset value
001 - Reserved
010 - Reserved
011 - Reserved
100 - Reserved
101 - Reserved
110 - Reserved
111 - Reserved

0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC03628

Secure Status Register (SECURE_STATUS)

0

25-56 ADSP-BF51x Blackfin Processor Hardware Reference

Security
Table 25-7. Secure Status Register

Bit Position Bit Name Bit Description

Reset = 0x0000

1:0 SECMODE Secure Mode Control State
These are read-only bits that reflects the current Secure Mode Control's
state.
00 - Open Mode
01 - Secured Entry
10 - Secure Mode
11 - Illegal

2 NMI This is a read-only bit that reflects the detection of NMI.
0 - Currently NMI is not detected.
1 - Currently NMI is detected.

3 AFVALID Authentication Firmware Valid
This is a read-only bit that reflects the state of the hardware monitor
logic. If execution of authentication has begun properly and has had
uninterrupted operation the authentication is considered valid. A valid
authentication is required for Secured Entry and Secure Mode operation.
0 - Authentication has not begun properly or is interrupted.
1 - Authentication is valid and is progressing properly and uninterrupted.

4 AFEXIT Authentication Firmware Exit
This is a write one to clear status bit. In the event authentication has
begun properly but has had an improper exit before completion, this bit
is set. This can only occur on an exit from Secured Entry back to Open
Mode.
0 - No improper exit is made while executing authentication firmware.
1 - An improper exit from authentication firmware is made.

7:5 SECSTAT Secure Status
These are some read write bits which is defined later. These are intended
to pass a status back to the handler in the event an authentication has
failed.
000 - Reset value
001 - Reserved
010 - Reserved
011 - Reserved
100 - Reserved
101 - Reserved
110 - Reserved
111 - Reserved
ADSP-BF51x Blackfin Processor Hardware Reference 25-57

Security Registers
 Authentication Firmware Valid (AFVALID) is an input to the Secure
State Machine and not an output control/status. AFVALID goes
active based on hitting the correct Program Counter address.
25-58 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
26 SYSTEM RESET AND
BOOTING

This document contains material that is subject to change without notice.
The content of the boot ROM as well as hardware behavior may change
across silicon revisions. See the anomaly list for differences between silicon
revisions.

Overview
When the RESET input signal releases, the processor starts fetching and
executing instructions from the on-chip boot ROM at address
0xEF00 0000.

The internal boot ROM includes a small boot kernel that loads applica-
tion data from an external memory or host device. The application data is
expected to be available in a well-defined format called the boot stream. A
boot stream consists of multiple blocks of data and special commands that
instruct the boot kernel how to initialize on-chip L1 memories as well as
off-chip volatile memories.

The boot kernel processes the boot stream block-by-block until it is
instructed by a special command to terminate the procedure and jump to
the application’s programmable start address, which traditionally is at
0xFFA0 0000 in on-chip L1 memory. This process is called “booting.”
ADSP-BF51x Blackfin Processor Hardware Reference 26-1

Overview
The processor features three dedicated input pins BMODE[2:0] that select
the booting mode. The boot kernel evaluates the BMODE pins and performs
booting from respective sources. Table 26-1 describes the modes of the
BMODE pins.

Table 26-1. Booting Modes

BMODE[2:0] Boot Source Description

000 No boot – idle The processor does not boot. Rather, the boot
kernel executes an IDLE instruction.

001 Boot from 8-bit or 16-bit
external flash memory

The kernel boots from address 0x2000 0000
in asynchronous memory bank 0. The first
byte of the boot stream contains further
instructions whether the memory is eight or
16 bits wide.

010 Boot from internal serial SPI memory The kernel boots from the on-chip, 24-bit
addressable SPI flash memory via the SPI0
interface.

011 Boot from external serial SPI
memory

After an initial device detection routine, the
kernel boots from either 8-bit, 16-bit, 24-bit
or 32-bit addressable SPI flash or EEPROM
memory that connects to SPI0_SEL2.

100 Boot from SPI0 host In this slave mode, the kernel expects the
boot stream to be applied to SPI0 by an exter-
nal host device.

111 Boot from UART0 host In this slave mode, the kernel expects the
boot stream to be applied to UART0 by an
external host device. Prior to providing the
boot stream, the host device is expected to
send a 0x40 (ASCII '@') character that is
examined by the kernel to adjust the bit rate.
26-2 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Reset and Power-up
There is a subroutine in the boot kernel known as "preboot", which is exe-
cuted prior to the boot mode being processed. This preboot routine can
customize default values of MMR registers, such as the PLL and SDRAM
controller registers. Furthermore, the SPI master mode can be customized.
The preboot behavior is controlled through OTP programming.

To enable booting from volatile memories such as SDRAM, the SDRAM
controller must be programmed before data can be loaded into the mem-
ory. Either the preboot or the initialization code mechanism can be used
for this purpose.

110 Boot from SDRAM memory1 This mode provides a quick warm boot
option. It requires the SDRAM controller to
be programmed by the preboot routine based
on OTP settings. The kernel starts booting
from address 0x0000 0010.

101 Boot from on-chip OTP memory This is the only stand-alone booting mode. It
boots from the on-chip serial OTP memory.
By default, the boot stream is expected to
reside from OTP page 0x40 on. The start
page can be altered by programming the
OTP_START_PAGE field in OTP page
PBS01H.

1 This chapter uses the term SDRAM as a synonym for off-chip synchronous dynamic memory. For
the ADSP-BF51x products, this includes the Mobile SDRAM standard.

Table 26-1. Booting Modes (Continued)

BMODE[2:0] Boot Source Description
ADSP-BF51x Blackfin Processor Hardware Reference 26-3

Reset and Power-up
Table 26-2 describes the six types of resets.

 Each type resets the core except for the System Software reset.

Table 26-2. Resets

Reset Source Result

Hardware
reset

The RESET pin causes a hardware
reset.

Resets both the core and the peripherals, includ-
ing the dynamic power management controller
(DPMC).
Resets bits [15:4] of the SYSCR register. For more
information, see “System Reset Configuration
(SYSCR) Register” on page 26-76.

Wake up
from hibernate
state

Wake-up event as enabled in the
VR_CTL register and reported by the
PLL_STAT register.

Behaves as hardware reset except the WURESET bit
in the SYSCR register is set. Booting can be per-
formed conditionally on this event.

System
software
reset

Calling the bfrom_SysControl()
routine with the
SYSCTRL_SYSRESET option trig-
gers a system reset.

Resets only the peripherals, excluding the RTC
(real time clock) block and most of the DPMC.
The system software reset clears bits [15:13] and
bits [11:4] of the SYSCR register, but not the
WURESET bit. The core is not reset and a boot
sequence is not triggered. Sequencing continues
at the instruction after bfrom_SysControl()
returns.

Watchdog
timer
reset

Programming the watchdog timer
causes a watchdog timer reset.

Resets both the core and the peripherals, exclud-
ing the RTC block and most of the DPMC.
(Because of the partial reset to the DPMC, the
watchdog timer reset is not functional when the
processor is in Sleep or Deep Sleep modes.)
The SWRST or the SYSCR register can be read to
determine whether the reset source was the
watchdog timer.
26-4 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Hardware Reset
The processor chip reset is an asynchronous reset event. The RESET input
pin must be deasserted after a specified asserted hold time to perform a
hardware reset. For more information, see the product data sheet.

A hardware-initiated reset results in a system-wide reset that includes both
core and peripherals. After the RESET pin is deasserted, the processor
ensures that all asynchronous peripherals have recognized and completed a
reset. After the reset, the processor transitions into the boot mode
sequence configured by the state of the BMODE pins.

The BMODE pins are dedicated mode control pins. No other functions are
shared with these pins, and they may be permanently strapped by tying
them directly to either VDDEXT or GND. The pins and the corresponding
bits in the SYSCR register configure the boot mode that is employed after
hardware reset or system software reset. See Blackfin Processor Program-
ming Reference for further information.

Core
double-fault
reset

A core double fault occurs when an
exception happens while the excep-
tion handler is executing. If the core
enters a double-fault state, and the
Core Double Fault Reset Enable bit
(DOUBLE_FAULT) is set in the SWRST
register, then a software reset will
occur.

Resets both the core and the peripherals, exclud-
ing the RTC block and most of the DPMC. The
SWRST or SYSCR registers can be read to deter-
mine whether the reset source was a core dou-
ble-fault.

Software reset This reset is caused by executing a
RAISE 1 instruction or by setting
the software reset (SYSRST) bit in
the core debug control register
(DBGCTL) through emulation soft-
ware through the JTAG port. The
DBGCTL register is not visible to the
memory map.

Program executions vector to the 0xEF00 0000
address. The boot code executes an immediate
system reset to ensure system consistency.

Table 26-2. Resets (Continued)

Reset Source Result
ADSP-BF51x Blackfin Processor Hardware Reference 26-5

Reset and Power-up
Software Resets
A software reset may be initiated in three ways.

• By the watchdog timer, if appropriately configured

• Calling the bfrom_SysControl() API function residing in the
on-chip ROM. For further information, see Chapter 8, “Dynamic
Power Management”.

• By the RAISE 1 instruction

The watchdog timer resets both the core and the peripherals, as long as the
processor is in Active or Full-On mode. A system software reset results in a
reset of the peripherals without resetting the core and without initiating a
booting sequence.

 In order to perform a system reset, the bfrom_SysControl() rou-
tine must be called while executing from L1 memory (either as
cache or as SRAM). When L1 instruction memory is configured as
cache, make sure the system reset sequence is read into the cache.

After either the watchdog or system software reset is initiated, the proces-
sor ensures that all asynchronous peripherals have recognized and
completed a reset.

For a reset generated by formatting the watchdog timer, the processor
transitions into the boot mode sequence. The boot mode is configured by
the state of the BMODE bit field in the SYSCR register.

A software reset is initiated by executing the RAISE 1 instruction or setting
the software reset (SYSRST) bit in the core debug control register (DBGCTL)
(DBGCTL is not visible to the memory map) through emulation software
through the JTAG port.

A software reset only affects the state of the core. The boot kernel immedi-
ately issues a system reset to keep consistency with the system domain.
26-6 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Reset Vector
When reset releases, the processor starts fetching and executing instruc-
tions from address 0xEF00 0000. This is the address where the on-chip
boot ROM resides.

On a hardware reset, the boot kernel initializes the EVT1 register to
0xFFA0 0000. When the booting process completes, the boot kernel
jumps to the location provided by the EVT1 vector register. The content of
the EVT1 register is overwritten by the TARGET ADDRESS field of the first
block of the applied boot stream. If the BCODE field of the SYSCR register is
set to 1 (no boot option), the EVT1 register is not modified by the boot
kernel on software resets. Therefore, programs can control the reset vector
for software resets through the EVT1 register. This process is illustrated by
the flow chart in Figure 26-1.

The content of the EVT1 register may be undefined in emulator sessions.

Servicing Reset Interrupts
The processor services a reset event like other interrupts. The reset inter-
rupt has top priority. Only emulation events have higher priority. When
coming out of reset, the processor is in supervisor mode and has full access
to all system resources. The boot kernel can be seen as part of the reset ser-
vice routine. It runs at the top interrupt priority level.

Even when the boot process has finished and the boot kernel passes con-
trol to the user application, the processor is still in the reset interrupt. To
enter user mode, the reset service routine must initialize the RETI register
and terminate with an RTI instruction.

For a programming example, see “System Reset” on page 26-104.

Listing 26-1 and Listing 26-2 on page 26-105 show code examples that
handle the reset event. See Blackfin Processor Programming Reference for
details on user and supervisor modes.
ADSP-BF51x Blackfin Processor Hardware Reference 26-7

Reset and Power-up
Figure 26-1. Global Boot Flow

START at
0xEF00 0000

Issue System Reset
(SWRST = 0x0007)

RESET

ELSE

HARDWARE

PREBOOT

BCODE

JUMP TO EVT1 VECTOR

BCODE_NOBOOT

PREPARE
ALLBOOT

(BFLAG_WAKEUP = 0)

PREPARE
QUICKBOOT

(BFLAG_WAKEUP = 1)

WAKEUP

BCODE
BCODE_QUICKBOOTELSE

ELSE
BOOT KERNEL
26-8 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Systems that do not work in an operating system environment may not
enter user mode. Typically, the interrupt level needs to be degraded down
to IVG15. Listing 26-3 and Listing 26-4 on page 26-106 show how this is
accomplished.

 Since the boot kernel is running at reset interrupt priority, NMI
events, hardware errors and exceptions are not serviced at boot
time. As soon as the reset service routine returns, the processor can
service the events that occurred during the boot sequence. It is rec-
ommended that programs install NMI, hardware error, and
exception handlers before leaving the reset service routine. This
includes proper initialization of the respective event vector registers
EVTx.

Preboot
After reset, the boot kernel residing in the on-chip boot ROM does not
immediately start processing the boot stream. First it calls a subroutine
called preboot, as shown in Figure 26-2 on page 26-11 and Figure 26-3
on page 26-12. The preboot routine customizes the default values of sev-
eral system MMR registers based on user-configurable OTP (one-time
programmable) memory. The following modules can be customized in
this way.

• PLL and voltage regulator settings

• SDRAM controller settings

• Asynchronous EBIU settings
ADSP-BF51x Blackfin Processor Hardware Reference 26-9

Preboot
Some OTP bits customize the boot process:

• Bit rate of SPI boot modes

• Activation of SPI fast read mode

• Boot host wait (HWAIT) signal

Further OTP bits let the user disable certain features of the processor:

• Individual boot modes (for security reasons)

Finally, certain bits are already preset in the factory:

• Individual boot modes

Factory Page Settings (FPS)
The content of the boot ROM is identical across all ADSP-BF51x Black-
fin processors. The factory settings prevent the boot ROM from
accidentally accessing resources that are not present on a given processor,
which would result in unpredictable behavior and/or hardware errors. The
boot kernel goes to a safe idle state when the user configures the BMODE
pins to a boot mode that is not available on a specific part.

For this purpose, the preboot routine always reads the FPS01L and FPS01H
half pages from OTP memory.
26-10 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Figure 26-2. Preboot Flow 1 of 2

RESET

OTP_SET_VR

 SYSCTRL_WRITE = 1

 CALL SysControl ()

BCODE

Load Page N

PBS00L

NO
VALID

N = 0x18

N = N + 4

N
>= 0xDC< 0xDC

YES

BMODE

HARDWARE

WAKEUP

SYSCTRL_PLLCTL = 0

SYSCTRL_PLLDIV = 0

0

> 0

0

1

ELSE

IDLE

TO PREBOOT PAGE 2

PREBOOT

SYSCTRL_PLLCTL = OTP_SET_PLL

SYSCTRL_PLLDIV = OTP_SET_PLL

 pPS->uwPllCtl = OTP_PLL_CTL

 pPS->uwPllDiv = OTP_PLL_DIV

 SYSCTRL_VR_CTL = OTP_SET_VR

 pPS->uwVrCtl = OTP_VRCTL

BCODE_NORMAL or

BCODE_FULLBOOT

SYSCTRL_OTPVOLTAGE = 1

SYSCTRL_VRCTL = 1

pPS->uwVrCtl = VRCTL
ADSP-BF51x Blackfin Processor Hardware Reference 26-11

Preboot
Figure 26-3. Preboot Flow 2 of 2

FROM PREBOOT PAGE 1

HWAIT Initialization

FPS01 Processing

Save SPI

Boot Instructions

LOAD_PBS01H BMODE

Manage

OTP boot start page

0 OR DISABLED
IDLE

VALID

LOAD_PBS02L
Initialize SDRAM

Controller

Initialize Async

Controller

RETURN TO MAIN

0

0

0

1

1

1
LOAD_PBS00H
26-12 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Preboot Page Settings (PBS)
Four OTP pages optionally enable the user to customize the behavior of
the processor immediately after reset. These four pages (eight half pages)
can be seen as one contiguous pre-boot settings (PBS) block. By default,
the block spans OTP pages 0x18 to 0x1B. The OTP pages serve the fol-
lowing purposes:

• PBS00L (by default, on half page 0x18L, see “Lower PBS00 Half
Page” on page 26-81 for details)

PLL and voltage regulator settings

Boot customization

Instruction whether to load further half pages

• PBS00H (by default, on half page 0x18H, see “Upper PBS00 Half
Page” on page 26-84 for details)

Asynchronous EBIU register settings

• PBS01L (by default on half page 0x19L)

Reserved

• PBS01H (by default, on half page 0x19H, see “Upper PBS01 Half
Page” on page 26-85 for details)

Disabling of boot modes

OTP boot start page

• PBS02L (by default, on half page 0x1AL, see “Lower PBS02 Half
Page” on page 26-88 for details)

Synchronous EBIU register settings
ADSP-BF51x Blackfin Processor Hardware Reference 26-13

Preboot
• PBS02H (by default, on half page 0x1AH, see “Upper PBS02 Half
Page” on page 26-89 for details)

Reserved in current silicon revision. Do not use.

• PBS03L (by default, on half page 0x1BL, see “Reserved Half
Pages” on page 26-89 for details)

Reserved in current silicon revision. Do not use.

• PBS03H (by default, on half page 0x1BH, see “Reserved Half
Pages” on page 26-89 for details)

Reserved in current silicon revision. Do not use.

The preboot routine reads the main page PBS00L first. Since this page may
instruct the preboot routine to alter the PLL settings, further pages may
read more quickly. This page also instructs the preboot whether further
OTP half pages have to be loaded and processed. By default, the PBS00L
page reads all zeroes, and the preboot does not load further PBS pages.

Alternative PBS Pages

Especially during the development cycle, the user may fail to write the
proper value to OTP memory and may make multiple attempts to get
things right. Therefore, the PBS00L page provides a mechanism to invali-
date the entire PBS block (consisting of pages (0x18, 0x19, 0x1A and
0x1B) and to use pages 0x1C to 0x1F instead. To do so, set the two
OTP_INVALID bits (bits 62 and 63 on the PBS00L page). If both bits are set,
the preboot routine disregards potential error codes returned by the
bfrom_OtpRead() routine and continues processing from page 0x1C on.
The active PBS block now spans the pages 0x1C to 0x1F. If the user wants
to invalidate the second set of OTP pages as well, setting bits 62 and 63
on page 0x1C (which is the new PBS00L half page) instructs the preboot
routine to continue at page 0x20, and so on.
26-14 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Theoretically, this can be repeated up to page 0xD8L, if the pages are not
required for other purposes. There are 49 chances to get things right,
before a device may become useless. Note that every page that needs to be
read by the preboot routine causes additional delay to the boot process.

Programming PBS Pages

Due to the need for error checking and correction (ECC), a 64-bit OTP
half page must be written all at once. It is recommended that PBS pages be
programmed only through the API function bfrom_OtpWrite().

 If it is anticipated that the user is customizing the boot-related
OTP pages for safety or security reasons, it is recommended that all
PBS blocks be locked at production time to protect these pages
from being tampered with in the field.

Reading OTP memory is subject to a potential failure rate. Since
the preboot only accesses OTP memory through the
bfrom_OtpRead() function, the ECC error correction is applied and
the statistical failure rate is very low. However, the way the PBS00L
page is tested for being invalid may at some point reduce the ECC
reliability. To keep failure rates at a minimum, it is a good idea to
duplicate the content of pages 0x18–0x1B on pages 0x1C–0x1F.
For production parts, the final block should be followed by its
exact copy to maintain the lowest failure rates. Then, even the
unlikely case where one of the OTP_INVALID bits is read incorrectly
would not cause the boot to fail.

Recovering From Misprogrammed PBS Pages

The preboot mechanism provides a powerful method to customize the
chip to the needs of the user. However, as a downside, there are chances
that invalid values programmed to the PBS pages prevent the processor
ADSP-BF51x Blackfin Processor Hardware Reference 26-15

Preboot
from operating within required operating conditions. There is specific risk
when the PLL and the voltage regulator are programmed with meaningless
values during the development cycle.

In such cases, the boot mode BMODE = b#000 helps. In this mode, the pre-
boot routine does not attempt to read any of the user-programmable PBS
pages, and the boot kernel does not try to boot any data. Rather, the pro-
cessor is idled immediately after the FPS pages have been processed. Using
the in-circuit emulator, the user then has the option to invalidate the
actual PBS settings by overwriting both OTP_INVALID bits in the actual
PBS00L with 1s.

For safety reasons, none of the boot modes, except the emulator, can get
control over the processor when in this state.

Customizing Power Management

When the processor awakes with default PLL and voltage regulator set-
tings, the preboot mechanism can be used to alter these settings to custom
values before the boot process takes place. This is done by programming
the OTP half page PBS00L.

If the OTP_SET_PLL bit is programmed to a 1, the value in the OTP_PLL_DIV
bit field is copied into the PLL_DIV register, and the OTP_PLL_CTL bit field
is copied into the PLL_CTL register, followed by the required IDLE instruc-
tion (if the contents of PLL_CTL are being altered).

If the OTP_SET_VR bit is programmed to a 1, the value in the OTP_VR_CTL
bit field is copied into the VR_CTL register, followed by the required IDLE
instruction (if the contents of VR_CTL are being altered).

The preboot mechanism invokes the bfrom_SysControl() routine to alter
the PLL and the voltage regulator. The bfrom_SysControl() routine not
only performs custom instructions, it also applies correction values from
factory OTP pages FPS01 and FPS04. See Chapter 8, “Dynamic Power
Management” for details on the bfrom_SysControl() routine.
26-16 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Customizing Booting Options

The OTP pages accessible by the preboot mechanism can also be used to
customize some of the booting options. For example:

• SPI master boot mode operating frequency

• SPI master boot mode read operation mode

• Start page for OTP boot mode

• HWAIT signal behavior

• Disabling of unwanted boot modes

In SPI master boot mode, the OTP_SPI_BAUD register in the preboot half
page PBS00L controls the value written to the SPI0_BAUD registers. By
default, the clock divider value of 133 can be reduced in power-of-two
steps. The table of values can be found in “SPI Master Boot Modes” on
page 26-63. The OTP_SPI_BAUD bit instructs the boot kernel to use the
0x0B SPI read command instead of the normal 0x03 read command when
accessing the SPI memory device.

In OTP boot mode, the boot kernel normally assumes that the boot
stream starts at OTP page 0x40L. The user can change this start page by
programming the OTP_START_PAGE bit field in the preboot half page
PBS01H.

The boot host wait (HWAIT) signal is available in all boot modes. If the
OTP_RESETOUT_HWAIT bit in the preboot half page PBS00L is set, the boot
kernel does not toggle HWAIT. Rather, it simply drives it to simulate a reset
output signal.

If safety or security of an application is impacted by the existence of cer-
tain boot modes, the boot mode disable bits in preboot half page PBS01H
can be used to disable unwanted boot modes. If a disabled boot mode is
ADSP-BF51x Blackfin Processor Hardware Reference 26-17

Preboot
chosen by the BMODE pins, the boot kernel goes into a safe idle state and
stops processing. The half page PBS01H is only loaded when the
OTP_LOAD_PBS01H bit in the PBS00L page is set.

Customizing the Asynchronous Port

The preboot half page PBS00H contains instructions to customize the asyn-
chronous portion of the EBIU controller. This half page is only loaded
and processed when the OTP_LOAD_PBS00H bit in the PBS00L half page is
programmed to a 1.

The OTP_EBIU_AMG field is copied into the EBIU_AMGCTL register. While the
lower bit controls the CLKOUT signal, the upper three AMBEN bits control
which of the four asynchronous banks are enabled.

The preboot routine analyzes the three AMBEN bits and initializes the 16-bit
portions (this routine is similar to the enabled banks in the EBIU_AMBCTL0
and EBIU_AMBCTL1 registers) with the value provided in the 16-bit
OTP_EBIU_AMBCTL field. In this way, the bus timing of the asynchronous
port can be customized prior to the boot process.

Customizing the Synchronous Port

Since many Blackfin applications require data and/or instruction code to
be loaded into the SDRAM memory at boot time, the SDRAM controller
must be initialized beforehand. This can be done by using either the “Ini-
tialization Code” on page 26-35 or the preboot mechanism described
here. For the SDRAM boot mode, only the preboot mechanism is valid.

The preboot half page PBS02L contains instructions to customize the
MMR register of the SDRAM controller. This half page is only loaded
and processed when the OTP_LOAD_PBS02L bit in the PBS00L half page is
programmed to a “1”.
26-18 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Basic Booting Process
Once the preboot routine returns, the boot kernel residing in the on-chip
boot ROM starts processing the boot stream. The boot stream is either
read from memory or received from a host processor. A boot stream repre-
sents the application data and is formatted in a special manner. The
application data is segmented into multiple blocks of data. Each block
begins with a block header. The header contains control words such as the
destination address and data length information.

As Figure 26-4 illustrates, the CCES or VisualDSP++ tools suite features a
loader utility (elfloader.exe). The loader utility parses the input execut-
able file (.dxe), segments the application data into multiple blocks, and
creates the header information for each block. The output is stored in a
loader file (.ldr). The loader file contains the boot stream and is made
available to hardware by programming or burning it into non-volatile
external memory. Refer to Loader and Utilities Manual for information
about the loader.

Figure 26-5 shows the parallel or serial boot stream contained in a flash
memory device. In host boot scenarios, the non-volatile memory more
likely connects to the host processor rather than directly to the Blackfin
processor. After reset, the headers are read and parsed by the on-chip boot
ROM, and processed block-by-block. Payload data is copied to destina-
tion addresses, either in on-chip L1 memory or off-chip SRAM/SDRAM.

When the BFLAG_INDIRECT flag for any block is set, the boot kernel uses
another memory block in L1 data bank B (by default, 0xFF90 7E00–
0xFF90 7FFF) for intermediate data storage. To avoid conflicts, the
elfloader utility ensures this region is booted last.
ADSP-BF51x Blackfin Processor Hardware Reference 26-19

Basic Booting Process
Figure 26-4. Project Flow for a Standalone System

Figure 26-5. Booting Process

BOOTING
UPON RESET

EXTERNAL
MEMORY

SOURCE
FILES

ASSEMBLER
AND/OR

COMPILER
LINKER LOADER

.ASM/.C/.CPP .DOJ(s) .DXE(s)

TARGET SYSTEM

.LDR

B

16-BYTE HEADER FOR BLOCK 1

BLOCK 1

16-BYTE HEADER FOR BLOCK 2

BLOCK 2

16-BYTE HEADER FOR BLOCK 3

BLOCK n

. . .

16-BYTE HEADER FOR BLOCK n

BLOCK 3

FLASH/PROM

APPLICATION
CODE/DATA

BLOCK 2

SDRAM

ON-CHIP
BOOT ROM

BLOCK 1
BLOCK 3

LI MEMORY

0xEF00 0000

.LDR FILE

B

26-20 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
 Booting into scratchpad memory (0xFFB0 0000–0xFFB0 0FFF) is
not supported. If booting to scratchpad memory is attempted, the
processor hangs within the on-chip boot ROM. Similarly, booting
into the upper 16 bytes of L1 data bank A (0xFF80 7FF0–
0xFF80 7FFF by default) is not supported. These memory loca-
tions are used by the boot kernel for intermediate storage of block
header information. These memory regions cannot be initialized at
boot time. After booting, they can be used by the application dur-
ing runtime.

The entire source code of the boot ROM is shipped with the CCES or
VisualDSP++ tools installation. Refer to the source code for any addi-
tional questions not covered in this manual. Note that minor maintenance
work may be done to the content of the boot ROM when silicon is
updated.

Block Headers
A boot stream consists of multiple boot blocks, as shown in Figure 26-5.
Every block is headed by a 16-byte block header. However, every block
does not necessarily have a payload, as shown in Figure 26-6.

The 16 bytes of the block header are functionally grouped into four 32-bit
words, the BLOCK CODE, the TARGET ADDRESS, the BYTE COUNT, and the
ARGUMENT fields.
ADSP-BF51x Blackfin Processor Hardware Reference 26-21

Basic Booting Process
Block Code

The first 32-bit word is the BLOCK CODE. See Figure 26-7.

DMA Code Field

The DMA code (DMACODE) field instructs the boot kernel whether to use
8-bit, 16-bit or 32-bit DMA and how to program the source modifier of a
memory DMA. Particularly in case of memory boot modes, this field is
interrogated by the boot kernel to differentiate the 8-bit, 16-bit, and
32-bit cases.

Figure 26-6. Boot Stream Headers

BLOCK 0 HEADER

BLOCK 0 PAYLOAD

BLOCK 1 HEADER

BLOCK 2 HEADER

BLOCK 2 PAYLOAD

BLOCK CODE

TARGET ADDRESS

BYTE COUNT

ARGUMENT

OFFSET 0X0000

OFFSET 0X0004

OFFSET 0X0008

OFFSET 0X000C

0123

4567

891011

12131415
26-22 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
The boot kernel tests this field only on the first block and ignores the field
in further blocks (See Table 26-3).

Figure 26-7. Block Code, 31–0

Table 26-3. Bus and DMA Width Coding

DMA Code DMA Width Source DMA
Modify

Application

0 reserved1

1 8-bit 1 Default 8-bit boot from 8-bit source2

2 8-bit 2 Zero-padded 8-bit boot from 16-bit EBIU

3 8-bit 4 Zero-padded 8-bit boot from 32-bit EBIU3

4 8-bit 8 Zero-padded 8-bit boot from 64-bit EBIU4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 0 1 1 0 1 0 0 0 0 0 0 01 0

HDRCHK
Header XOR Checksum

Block Code, 31–16

HDRSGN
Header Sign

Block Code, 15–0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

BFLAG_FINAL

BFLAG_FIRST

BFLAG_INDIRECT

BFLAG_IGNORE

BFLAG_INIT

BFLAG_CALLBACK

BFLAG_QUICKBOOT

BFLAG_FILL

DMACODE
DMA Coding

BFLAG_SAVE

BFLAG_AUX
ADSP-BF51x Blackfin Processor Hardware Reference 26-23

Basic Booting Process
5 8-bit 16 Zero-padded 8-bit boot from 128-bit EBIU4

6 16-bit 2 Default 16-bit boot from 16-bit source

7 16-bit 4 Zero-padded 16-bit boot from 32-bit EBIU3

8 16-bit 8 Zero-padded 16-bit boot from 64-bit EBIU4

9 16-bit 16 Zero-padded 16-bit boot from 128-bit EBIU4

10 32-bit 4 Default 32-bit boot from 32-bit source3

11 32-bit 8 Zero-padded 32-bit boot from 64-bit EBIU4

12 32-bit 16 Zero-padded 32-bit boot from 128-bit EBIU4

13 64-bit 8 Default 64-bit boot from 64-bit source4

14 64-bit 16 Zero-padded 64-bit boot from 128-bit EBIU4

15 128-bit 16 Default 128-bit boot from 128-bit source4

1 Reserved to differentiate from ADSP-BF53x boot streams.
2 Used by all byte-wise serial boot modes.
3 Applicable only to memory boot modes and OTP mode. This code is expected by OTP boot mode.
4 Not supported by ADSP-BF51x Blackfin products.

Table 26-3. Bus and DMA Width Coding (Continued)

DMA Code DMA Width Source DMA
Modify

Application
26-24 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Block Flags Field

Table 26-4 describes the Block Flags field.

Table 26-4. Block Flags

Bit Name Description

4 BFLAG_SAVE Saves the memory of this block to off-chip memory in case of
power failure or a hibernate request. This flag is not used by the
on-chip boot kernel.

5 BFLAG_AUX Nests special block types as required by special purpose sec-
ond-stage loaders. This flag is not used by the on-chip boot kernel.

6 Reserved

7 Reserved

8 BFLAG_FILL Tells the boot kernel to not process any payload data. Instead the
target memory (specified by the TARGET ADDRESS and
BYTE COUNT fields) is filled with the 32-bit value provided by the
ARGUMENT word. The fill operation is always performed by 32-bit
DMA; therefore target address and byte count must be divisible by
four.

9 BFLAG_QUICKBOOT Processes the block for full boot only. Does not process this block
for a quick boot (warm boot).

10 BFLAG_CALLBACK Calls a subfunction that may reside in on-chip or off-chip ROM or
is loaded by an initcode in advance. Often used with the
BFLAG_INDIRECT switch. If BFLAG_CALLBACK is set for any block,
an initcode must register the callback function first. The function
is called when either the entire block is loaded or the intermediate
storage memory is full. The callback function can do advanced pro-
cessing such as CRC checksum.

11 BFLAG_INIT This flag causes the boot kernel to issue a CALL instruction to the
target address of the boot block after the entire block is loaded.
The initcode should return by an RTS instruction. It may or may
not be overwritten by application data later in the boot process. If
the code is loaded earlier or resides in ROM, the init block can be
zero sized (no payload).
ADSP-BF51x Blackfin Processor Hardware Reference 26-25

Basic Booting Process
The BFLAG_FIRST flag must not be combined with the BFLAG_FILL flag.
The BFLAG_FIRST flag may be combined with the BFLAG_IGNORE flag to
deposit special user data at the top of the boot stream. Note the special
importance of the elfloader –readall switch.

12 BFLAG_IGNORE Indicates a block that is not booted into memory. It instructs the
boot kernel to skip the number of bytes of the boot stream as spec-
ified by BYTE COUNT. In master boot modes, the boot kernel sim-
ply modifies its source address pointer. In this case the
BYTE COUNT value can be seen as a 32-bit two’s-complement offset
value to be added to the source address pointer. In slave boot
modes, the boot kernel actively loads and changes the payload of
the block. In slave modes the byte count must be a positive value.

13 BFLAG_INDIRECT Boots to an intermediate storage place, allowing for calling an
optional callback function, before booting to the destination. This
flag is used when the boot source does not have DMA support
(TWI for example) and either the destination cannot be accessed
by the core (L1 instruction SRAM) or cannot be efficiently
accessed by the core (SDRAM or RAM). This flag is also used
when CALLBACK requires access to data to calculate a checksum, or
when performing tasks such as decryption or decompression.

14 BFLAG_FIRST This flag, which is only set on the first block of a DXE, tells the
boot kernel about the special nature of the TARGET ADDRESS and
the ARGUMENT fields. The TARGET ADDRESS field holds the start
address of the application. The ARGUMENT field holds the offset to
the next DXE.

15 BFLAG_FINAL This flag causes the boot kernel to pass control over to the applica-
tion after the final block is processed. This flag is usually set on the
last block of a DXE unless multiple DXEs are merged.

Table 26-4. Block Flags (Continued)

Bit Name Description
26-26 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Header Checksum Field

The header checksum (HDRCHK) field holds a simple XOR checksum of the
other 31 bytes in the boot block header. The boot kernel jumps to the
error routine if the result of an XOR operation across all 32 header bytes
(including the HDRCHK value) differs from zero. The default error routine is
a simple IDLE; instruction. The user can overwrite the default error han-
dler using the initcode mechanism.

Header Sign Field

The header signature (HDRSGN) byte always reads as 0xAD and is used to
verify whether the block pointer actually points to a valid block. The
HDRSGN byte can also be used as a boot stream version control. For the
ADSP-BF54x, ADSP-BF52x and ADSP-BF51x Blackfin processors, the
byte always reads 0xAD. The ADSP-BF53x boot streams always read
0xFF. The ADSP-BF561 boot streams always read 0xA0.

Target Address

This 32-bit field holds the target address where the boot kernel loads the
block payload data. When the BFLAG_FILL flag is set, the boot kernel fills
the memory with the value stored in the ARGUMENT field starting at this
address. If the BFLAG_INIT flag is set the kernel issues a
CALL(TARGET ADDRESS) instruction after the optional payload is loaded.

If the BFLAG_FIRST flag is set, the TARGET ADDRESS field contains the start
address of the application to which the boot kernel jumps at the end of the
boot process. This address will also be stored in the EVT1 register. The elf-
loader utility sets this value to 0xFFA0 0000 for compatibility with other
Blackfin products.

The target address should be divisible by four, because the boot kernel
uses 32-bit DMA for certain operations. The target address must point to
valid on-chip or off-chip memory locations. When booting to external
memories, the memory controller must first be set up by either the pre-
ADSP-BF51x Blackfin Processor Hardware Reference 26-27

Basic Booting Process
boot or the initcode mechanism. When booting through peripherals that
do not support DMA transfers, such as the OTP boot mode, the
BFLAG_INDIRECT flag must be set if the target address points to L1 instruc-
tion memory. For performance reasons this is also recommended when
booting to off-chip memories.

For the OTP boot mode, the elfloader utility manages the BFLAG_INDIRECT
flag automatically. Refer to Loader and Utilities Manual for manual con-
trol of the flag.

 Booting to scratchpad memory is not supported. The scratchpad
memory functions as a stack for the boot kernel. The L1 data mem-
ory locations 0xFF80 7FF0 to 0xFF80 7FFF are used by the boot
kernel and should not be overwritten by the application. The mem-
ory range used for intermediate storage as controlled by the
BFLAG_INDIRECT switch should only be booted after the last
BFLAG_INDIRECT bit is processed. By default the address range
0xFF90 7E00–0xFF90 7FFF is used for intermediate storage.

For normal boot operation, the target address points to RAM memory.
There are however a few exceptions where the target address can point to
on-chip or off-chip ROM. For example a zero-sized BFLAG_INIT block
would instruct the boot kernel to call a subroutine residing in ROM or
flash memory. This method is used to activate the CRC32 feature.

Byte Count

This 32-bit field tells the boot kernel how many bytes to process. Nor-
mally, this is the size of the payload data of a boot block. If the
BFLAG_FILL flag is set there is no payload. In this case the BYTE COUNT field
uses the value in its ARGUMENT field to tell the boot kernel how many bytes
to process.

The byte count is a 32-bit value that should be divisible by four. Zero val-
ues are allowed in all block types. Most boot modes are based upon DMA
operation which are only 16-bit words for Blackfin processors. The boot
26-28 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
kernel may therefore start multiple DMA work units for large boot blocks.
This enables a single block to fill to zero the entire SDRAM memory, for
example, resulting in compact boot streams. The HWAIT signal may toggle
for each work unit.

If the BFLAG_IGNORE flag is set, the byte count is used to redirect the boot
source pointer to another memory location. In master boot modes, the
byte count is a two’s-complement (signed long integer) value. In slave
boot modes, the value must be positive.

Argument

This 32-bit field is a user variable for most block types. The value is acces-
sible by the initcode or the callback routine and can therefore be used for
optional instructions to these routines. When the CRC32 feature is acti-
vated, the ARGUMENT field holds the checksum over the payload of the
block.

When the BFLAG_FILL flag is set there is no payload. The argument con-
tains the 32-bit fill value, which is most likely a zero.

If the BFLAG_FIRST flag is set, the argument contains the relative
next-DXE pointer for multi-DXE applications. For single-DXE applica-
tions the field points to the next free boot source address after the current
DXE’s boot stream.
ADSP-BF51x Blackfin Processor Hardware Reference 26-29

Basic Booting Process
Boot Host Wait (HWAIT) Feedback Strobe
The HWAIT feedback strobe is a handshake signal that is used to hold off
the host device from sending further data while the boot kernel is busy.

On ADSP-BF51x processors this feature is implemented by a GPIO that
is toggled by the boot kernel as required. The PG0 GPIO is used for this
purpose.

The signal polarity of the HWAIT strobe is programmable by an external
resistor in the 10 k range.

A pull-up resistor instructs the HWAIT signal to be active high. In this case
the host is permitted to send header and footer data when HWAIT is low,
but should pause while HWAIT is high. This is the mode used in SPI slave
boot on other Blackfin products.

Similarly, a pull-down resistor programs active-low behavior.

 Note that the HWAIT signal is implemented slightly differently than
on ADSP-BF53x Blackfin processors. In the ADSP-BF51x proces-
sors, the meaning of the pulling resistor is inverted and HWAIT is
asserted by default during reset and preboot.

After preboot, the boot kernel first senses the polarity on the respective
HWAIT pin. Then it enables the output driver but keeps the signal in its
asserted state. The signal is not released until the boot kernel is ready for
data, or when a receive DMA is started. As soon as the DMA completes,
HWAIT becomes active again.

The boot host wait signal holds the host from booting in any slave boot
mode and prevents it from being overrun with data. The HWAIT signal is,
however, available in all boot modes.
26-30 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
In general the host device must interrogate the HWAIT signal before every
word that is sent. This requirement can be relaxed for boot modes using
on-chip peripherals that feature larger receive FIFOs. However, the host
must not rely on the DMA FIFO since its content is cleared at the end of
a DMA work unit.

While the HWAIT signal is only used for boot purposes, it may also play a
significant role after booting. In slave boot modes, for example, the host
device does not necessarily know whether the Blackfin processor is in an
active mode or a power-down mode. For example, the HWAIT signal can be
used to signal when the processor is in hibernate mode.

Using HWAIT as Reset Indicator

While the HWAIT signal is mandatory in some boot modes, it is optional in
others. When not required for booting, the behavior of the HWAIT signal
can be changed by programming the OTP_RESETOUT_HWAIT bit in OTP
page PBS00L.

If this bit is set, HWAIT does not toggle during the boot process. Rather,
after page PBS00L is processed (and therefore the PLL has settled) the pre-
boot routine first enables the HWAIT GPIO as an input and senses its state.
Then HWAIT becomes an output and is driven to the invert of the state that
is sensed. An external pulling resistor is required. If using a pull-up resis-
tor, the HWAIT signal is driven low for the rest of the boot process (and
beyond). If using a pull-down resistor, HWAIT is driven high.

With a pull-down resistor, this feature can be used to simulate an
active-low reset output. When the processor is reset, or in hibernate, the
GPIO is in a high impedance state and HWAIT is pulled low by the resistor.
As soon as the processor recovers and has settled the PLL again, the HWAIT
is driven high and can alert external circuits.
ADSP-BF51x Blackfin Processor Hardware Reference 26-31

Basic Booting Process
Boot Termination
After the successful download of the application into the bootable mem-
ory, the boot kernel passes control to the user application. By default this
is performed by jumping to the vector stored in the EVT1 register. The
boot kernel provides options to execute an RTS instruction or a RAISE 1
instruction instead. The default behavior can be changed by an initcode
routine. The EVT1 register is updated by the boot kernel when processing
the BFLAG_FIRST block. See “Servicing Reset Interrupts” on page 26-7 to
learn how the application can take control.

Before the boot kernel passes program control to the application it does
some housekeeping. Most of the registers that were used are changed back
to their default state but some register values may differ for individual
boot modes. DMA configuration registers and primary register control
registers (UART0_LCR, SPI0_CTL, etc.) are restored, while others are pur-
posely not restored. For example SPI0_BAUD, UART0_DLH and UART_DLL
remain unchanged so that settings obtained during the booting process are
not lost.

Single Block Boot Streams
The simplest boot stream consists of a single block header and one contig-
uous block of instructions. With appropriate flag instructions the boot
kernel loads the block to the target address and immediately terminates by
executing the loaded block.

Table 26-5 shows an example of a single block boot stream header that
could be loaded from any serial boot mode. It places a 256-byte block of
instructions at L1 instruction SRAM address 0xFFA0 0000. The flags
BFLAG_FIRST and BFLAG_FINAL are both set at the same time. Advanced
flags, such as BFLAG_IGNORE, BFLAG_INIT, BFLAG_CALLBACK and
BFLAG_FILL, do not make sense in this context and should not be used.
26-32 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
With the BFLAG_FIRST flag set, the ARGUMENT field functions as the
next-DXE pointer. This is a relative pointer to the next free source address
or to the next DXE start address in a multi-DXE stream.

Direct Code Execution

Applications may want to avoid long booting times and start code execu-
tion directly from 16-bit flash or SDRAM memory. This feature is called
direct code execution. This is a special case of boot termination that
replaces the no-boot/bypass mode in the ADSP-BF53x Blackfin
processors.

An initial boot block header is needed for the processor to fetch and exe-
cute program code from the boot device as early as possible. The safety
mechanisms of the block, such as the header signature and the XOR
checksum, avoid unpredictable processor behavior due to the boot mem-
ory not being programmed with valid data yet. Rather than blindly
executing code, the boot kernel first executes the preboot routine for sys-
tem customization, then loads the first block header and checks it for
consistency. If the block header is corrupted, the boot kernel goes into a
safe idle state and does not start code execution.

If the initial block header checks good, the boot kernel interrogates the
block flags. If the block has the BFLAG_FINAL flag set, the boot kernel
immediately terminates and jumps directly to the address stored in the
EVT1 register. To cause the boot kernel to customize the EVT1 register in

Table 26-5. Header for a Single Block Boot7 Stream

Field Value Comments

BLOCK CODE 0xAD33 C001 0xAD00 0000 | XORSUM |
BFLAG_FINAL | BFLAG_FIRST | (DMACODE & 0x1)

TARGET ADDRESS 0xFFA0 0000 Start address of block and application code

BYTE COUNT 0x0000 0100 256 bytes of code

ARGUMENT 0x0000 0100 Functions as next-DXE pointer in multi-DXE boot streams
ADSP-BF51x Blackfin Processor Hardware Reference 26-33

Basic Booting Process
advance, the initial blocks must also have the BFLAG_FIRST flag set. The
TARGET ADDRESS field is then copied to the EVT1 register. In this way, the
TARGET ADDRESS field of the initial block defines the start address of the
application.

For example in BMODE = 001, when the block header described in
Table 26-6 is placed at address 0x2000 0000, the boot kernel is instructed
to issue a JUMP command to address 0x2000 0020.

The development tools must be instructed to link the above block to
address 0x2000 0000 and the application code to address 0x2000 0020.
An example shown in “Direct Code Execution” on page 26-115 illustrates
how this is accomplished using the CCES or VisualDSP++ tools suite.

Table 26-6. Initial Header for Direct Code Execution in BMODE = 001

Field Value Comments

BLOCK CODE 0xAD7B D006 0xAD00 0000 | XORSUM |
BFLAG_FINAL | BFLAG_FIRST | BFLAG_IGNORE |
(DMACODE & 0x6)

TARGET ADDRESS 0x2000 0020 Start address of application code

BYTE COUNT 0x0000 0010 Ignores 16 bytes to provide space for control data such as
version code and build data. This is optional and can be
zero.

ARGUMENT 0x0000 0010 Functions as next-DXE pointer in multi-DXE boot
streams
26-34 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Similarly for direct code execution in the SDRAM boot mode
(BMODE = 110), an initial block as shown in Table 26-7 has to be linked to
address 0x0000 0010.

For multi-DXE boot streams, Figure 26-11 on page 26-56 shows a linked
list of initial blocks that represent different applications.

Advanced Boot Techniques
This section details techniques for advanced booting.

Initialization Code
Initcode routines are subroutines that the boot kernel calls during the
booting process. The user can customize and speed up the booting mecha-
nisms using this feature. Traditionally, an initcode is used to set up system
PLL, bit rates, wait states and the SDRAM controller. If executed early in
the boot process, the boot time can be significantly reduced.

After the payload data is loaded for a specific boot block, if the
BFLAG_INIT flag is set, the boot kernel issues a CALL instruction to the tar-
get address of the block.

Table 26-7. Initial Header for Direct Code Execution in BMODE = 110

Field Value Comments

BLOCK CODE 0xAD5B D006 0xAD000000 | XORSUM |
BFLAG_FINAL | BFLAG_FIRST | BFLAG_IGNORE |
(DMACODE & 0x6)

TARGET ADDRESS 0x0000 0020 Start address of application code

BYTE COUNT 0x0000 0000 No bubble for control data

ARGUMENT 0x0000 0000 Functions as next-DXE pointer in multi-DXE boot
streams
ADSP-BF51x Blackfin Processor Hardware Reference 26-35

Advanced Boot Techniques
On ADSP-BF51x Blackfin processors, initcode routines follow the
C language calling convention so they can be coded in C language or
assembly.

The expected prototype is
void initcode(ADI_BOOT_DATA* pBootStruct);

The header files define the ADI_BOOT_INITCODE_FUNC type: typedef void
ADI_BOOT_INITCODE_FUNC (ADI_BOOT_DATA*) ;

Optionally, the initcode routine can interrogate the formatting structure
and customize its own behavior or even manipulate the regular boot pro-
cess. A pointer to the structure is passed in the R0 register. Assembly
coders must ensure that the routine returns to the boot kernel by a termi-
nating RTS instruction.

Initcodes can rely on the validity of the stack, which resides in scratchpad
memory. The ADI_BOOT_DATA structure resides on the stack. Rules for reg-
ister usage conform to the compiler conventions. See C/C++ Compiler and
Library Manual for Blackfin Processors for more information.

In the simple case, initcodes consist of a single instruction section and are
represented by a single block within the boot stream. This block has the
BFLAG_INIT bit set.

An init block can consist of multiple sections where multiple boot blocks
represent the initcode within the boot stream. Only the last block has the
BFLAG_INIT bit set.

The elfloader utility ensures that the last of these blocks vectors to the
initcode entry address. The utility instructs the on-chip boot ROM to exe-
cute a CALL instruction to the given target address.
26-36 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
When the on-chip boot ROM detects a block with the BFLAG_INIT bit set,
it boots the block into Blackfin memory and then executes it by issuing a
CALL to its target address. For this reason, every initcode must be termi-
nated by an RTS instruction to ensure that the processor vectors back to
the on-chip boot ROM for the rest of the boot process.

Sometimes initcode boot blocks have no payload and the BYTE COUNT field
is set to zero. Then the only purpose of the block may be to instruct the
boot kernel to issue the CALL instruction.

Initcode routines can be very different in nature. They might reside in
ROM or SRAM. They might be called once during the booting process or
multiple times. They might be volatile and be overwritten by other boot
blocks after executing, or they might be permanently available after boot
time. The boot kernel has no knowledge of the nature of initcodes and has
no restrictions in this regard. Refer to Loader and Utilities Manual for how
this feature is supported by the tools chain.

It is the user’s responsibility to ensure that all code and data sections that
are required by the initcode are present in memory by the time the
initcode executes. Special attention is required if initcodes are written in
C or C++ language. Ensure that the initcode does not contain calls to the
runtime libraries. Do not assume that parts of the runtime environment,
such as the heap are fully functional. Ensure that all runtime components
are loaded and initialized before the initcode executes.

The elfloader utility provides two different mechanisms to support the
initcode feature.

• The -init initcode.dxe command-line switch

• The -initcall address/symbol command line switch
ADSP-BF51x Blackfin Processor Hardware Reference 26-37

Advanced Boot Techniques
If enabled by the elfloader -init initcode.dxe command-line switch, the
initcode is added to the beginning of the boot stream. Here, initcode.dxe
refers to the user-provided custom initialization executable— a separate
project. Figure 26-8 shows a boot stream example that performs the fol-
lowing steps.

1. Boot initcode into L1 memory.

2. Execute initcode.

3. Initcode initializes the SDRAM controller and returns.

4. Overwrite initcode with final application code.

5. Boot data/code into SDRAM.

6. Continue program execution with block n.

Although initcode.dxe files are built as CCES or VisualDSP++ projects,
they differ from standard projects. Initcodes provide only a callable
sub-function, so they look more like a library than an application. Never-
theless, unlike library files (.dlb file extension), the symbol addresses have
already been resolved by the linker.

An initcode is always a heading for the regular application code. Conse-
quently whether the initcode consists of one or multiple blocks, it is not
terminated by a BFLAG_FINAL bit indicator—this would cause the boot
ROM to terminate the boot process.
26-38 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
It is advantageous to have a clear separation between the initcode and the
application by using the -init switch. If this separation is not needed, the
elfloader -initcall command-line switch might be preferred. It enables
fractions of the application code to be traded as initcode during the boot
process. See Loader and Utilities Manual for further details.

Figure 26-8. Initialization Code Execution/Boot

Blackfin Processor

Header for Init Block

Init Block

Flash/PROM or SPI Device

L1 Memory
Init Block

SDRAM

0xEF00 0000

On-Chip Boot
ROM

........

Header for L1 Data Block

L1 Data Block

SDRAM Block

Header for SDRAM Block

Header for L1 Code Block

L1 Code Block

Header for L1 Data Block

L1 Data Block
Header for L1 Code Block

L1 Code Block

Flash/PROM or SPI Device

Init Block

........

Blackfin Processor

Header for Init Block

Init Block

Header for SDRAM Block

SDRAM Block

SDRAM

On-Chip Boot
ROM

0xEF00 0000

After Init Code
Execution

Before Init Code
Execution

L1 Memory

App Code/Data

App Code/Data

L1 Block
ADSP-BF51x Blackfin Processor Hardware Reference 26-39

Advanced Boot Techniques
Initcode examples are shown in “Programming Examples” on
page 26-104.

Quick Boot
In some booting scenarios, not all memories need to be re-initialized. For
example in a wake-up from hibernate state, off-chip SRAM might not be
impacted if it was powered while the processor was in hibernate state.
Dynamic RAM might also not be impacted if it was put into self-refresh
mode before the processor powered down.

The ADSP-BF51x processor’s boot kernel can conditionally process boot
blocks. The normal scenario is all boot, the shortened version is quick
boot. It relies on the following primitives.

• The SYSCR register is read to determine what kind of boot is
expected from the boot kernel. Refer to Figure 26-24 on
page 26-77.

The WURESET bit is used to distinguish between cold boot and warm
boot situations and to identify wake-up from hibernate situations.

The BCODE bit field in the SYSCR register can overrule the native
decision of the boot kernel for a software boot. See the flowchart in
Figure 26-1 on page 26-8.

• The BFLAG_WAKEUP bit in the dFlag word of the ADI_BOOT_DATA
structure indicates that the final decision was to perform a quick
boot. If the boot kernel is called from the application, then the
application can control the boot kernel behavior by setting the
BFLAG_WAKEUP flag accordingly. See the dFlags variable on
Figure 26-37 on page 26-94.

• The BFLAG_QUICKBOOT flag in the BLOCK CODE word of the block
header controls whether the current block is ignored for quick
boot.
26-40 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
If both the global BFLAG_WAKEUP and the block-specific BFLAG_QUICKBOOT
flags are set, the boot kernel ignores those blocks. But since the
BFLAG_INIT, BFLAG_CALLBACK, BFLAG_FINAL, and BFLAG_AUX flags are inter-
nally cleared and the BFLAG_IGNORE flag is toggled, through double
negation, the “ignore the ignore block” command instructs the boot ker-
nel to process the block.

Although the BFLAG_INIT flag is suppressed in quick boot, the user may
not want to combine the BFLAG_INIT flag with the BFLAG_QUICKBOOT flag.
The initialization code can interrogate the BFLAG_WAKEUP flag and execute
conditional instructions. For more information see “Quickboot With
Restore From SDRAM” on page 26-112.

Indirect Booting
The processor’s boot kernel provides a control mechanism to let blocks
either boot directly to their final destination or load to an intermediate
storage place, then copy the data to the final destination in a second step.
This feature is motivated by the following requirements.

• Some boot modes do not use DMA. They load data by core
instruction. The core cannot access some memories directly (for
example L1 instruction SRAM), or is less efficient than the DMA
in accessing some memories (for example, external SDRAM).

• In some advanced booting scenarios, the core needs to access the
boot data during the booting process, for example in processing
decompression, decryption and checksum algorithms at boot time.
The indirect booting option helps speed-up and simplify such sce-
narios. Software accesses off-chip memory less efficiently and
cannot access data directly if it resides in L1 instruction SRAM.

Indirect booting is not a global setting. Every boot block can control its
own processing by the BFLAG_INDIRECT flag in the block header.
ADSP-BF51x Blackfin Processor Hardware Reference 26-41

Advanced Boot Techniques
In general a boot block may not fit into the temporary storage memory so
the boot kernel processes the block in multiple steps. The larger the tem-
porary buffer, the faster the boot process. By default the L1 data memory
region between 0xFF90 7E00 and 0xFF90 7FFF is used for intermediate
storage. Initialization code can alter this region by modifying the
pTempBuffer and dTempByteCount variables in the ADI_BOOT_DATA struc-
ture. The default region is at the upper end of a physical memory block.
When increasing the dTempByteCount value, pTempBuffer also has to
change.

Callback Routines
Callback routines, like initialization codes, are user-defined subroutines
called by the boot kernel at boot time. The BFLAG_CALLBACK flag in the
block header controls whether the callback routine is called for a specific
block.

There are several differences between initcodes and callback routines.
While the BFLAG_INIT flag causes the boot kernel to issue a CALL instruc-
tion to the target address of the specific boot block, the BFLAG_CALLBACK
flag causes the boot kernel to issue a CALL instruction to the address held
by the pCallBackFunction pointer in the ADI_BOOT_DATA structure. While
a boot stream can have multiple individual initcodes, it can have just one
callback routine. In the standard boot scenario, the callback routine has to
be registered by an initcode prior to the first block that has the
BFLAG_CALLBACK flag set.

The purpose of the callback routine is to apply standard processing to the
block data. Typically, callback routines contain checksum, decryption,
decompression, or hash algorithms. Checksum or hash words can be
passed through the block header ARGUMENT field.

Since callback routines require access to the payload data of the boot
blocks, the block data must be loaded before it can be processed. Unlike
initcodes, a callback usually resides permanently in memory. If the block
26-42 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
is loaded to L1 instruction memory or off-chip memory, the
BFLAG_CALLBACK flag is likely combined with the BFLAG_INDIRECT bit. The
boot kernel performs these steps in the following order.

1. Data is loaded into the temporary buffer defined by the
pTempBuffer variable.

2. The CALL to the pCallBackFunction is issued.

3. After the callback routine returns, the memory DMA copies data to
the destination.

If a block does not fit into the temporary buffer, for example when the
BLOCK COUNT is greater than the dTempByteCount variable, the three steps
are executed multiple times until all payload data is loaded and processed.
The boot kernel passes the parameter dCbFlags to the callback routine to
tell it that it is being invoked the first or the last time for a specific block.
To store intermediate results across multiple calls the callback routine can
use the uwUserShort and dUserLong variables in the ADI_BOOT_DATA
structure.

Callback routines meet C language calling conventions for subroutines.
The prototype is as follows.

s32 CallBackFunction (ADI_BOOT_DATA* pBootStruct,

ADI_BOOT_BUFFER* pCallbackStruct, s32 dCbFlags);

The header file defines the ADI_BOOT_CALLBACK_FUNC type the following
way:

typedef s32 ADI_BOOT_CALLBACK_FUNC (ADI_BOOT_DATA*,

ADI_BOOT_BUFFER*, s32) ;

The pBootStruct argument is passed in R0 and points to the
ADI_BOOT_DATA structure used by the boot kernel. These are handled by
the pTempBuffer and dTempByteCount variables as well as the pHeader
pointer to the ARGUMENT field. The callback routine may process the block
further by modifying the pTempBuffer and dTempByteCount variables.
ADSP-BF51x Blackfin Processor Hardware Reference 26-43

Advanced Boot Techniques
The pCallbackStruct structure passed in R1 provides the address and
length of the data buffer. When the BFLAG_INDIRECT flag is not set, the
pCallbackStruct contains the target address and byte count of the boot
block. If the BFLAG_INDIRECT flag is set, the pCallbackStruct contains a
copy of the pTempBuffer. Depending on the size of the boot block and
processing progress, the byte count provided by pCallbackStruct equals
either dTempByteCount or the remainder of the byte count.

When the BFLAG_INDIRECT flag is set along with the BFLAG_CALLBACK flag,
memory DMA is invoked by the boot kernel after the callback routine
returns. This memory DMA relies on the pCallbackStruct structure not
the global pTempBuffer and dTempByteCount variables.

The callback routine can control the source of the memory DMA by alter-
ing the content of the pCallbackStruct structure, as may be required if
the callback routine performs data manipulation such as decompression.

The dCbFlags parameter passed in R2 tells the callback routine whether it
is invoked the first time (CBFLAG_FIRST) or whether it is called the last
time (CBFLAG_FINAL) for a specific block. The CBFLAG_DIRECT flag indi-
cates that the BFLAG_INDIRECT bit is not active so that the callback routine
will only be called once per block. When the CBFLAG_DIRECT flag is set, the
CBFLAG_FIRST and CBFLAG_FINAL flags are also set.

#define CBFLAG_FINAL 0x0008

#define CBFLAG_FIRST 0x0004

#define CBFLAG_DIRECT 0x0001

A callback routine also has a boolean return parameter in register R0. If the
return value is non-zero, the subsequent memory DMA does not execute.
When the CBFLAG_DIRECT flag is set, the return value has no effect.
26-44 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Error Handler
While the default handler simply puts the processor into idle mode, an
initcode routine can overwrite this pointer to create a customized error
handler. The expected prototype is

void ErrorFunction (ADI_BOOT_DATA* pBootStruct, void

*pFailingAddress);

Use an initcode to write the entry address of the error routine to the
pErrorFunction pointer in the ADI_BOOT_DATA structure. The error han-
dler has access to the boot structure and receives the instruction address
that triggered the error.

CRC Checksum Calculation
The ADSP-BF51x Blackfin processors provide an initcode and a callback
routine in ROM that can be used for CRC32 checksum generation during
boot time. The checksum routine only verifies the payload data of the
blocks. The block headers are already protected by the native XOR check-
sum mechanism.

Before boot blocks can be tagged with the BFLAG_CALLBACK flag to enable
checksum calculation on the blocks, the boot stream must contain an
initcode block with no payload data and with the CRC32 polynomial in
the block header ARGUMENT word.

The initcode registers a proper CRC32 wrapper to the pCallBackFunction
pointer. The registration principle is similar to the XOR checksum exam-
ple shown in “Programming Examples” on page 26-104.
ADSP-BF51x Blackfin Processor Hardware Reference 26-45

Advanced Boot Techniques
Load Functions
All boot modes are processed by a common boot kernel algorithm. The
major customization is done by a subroutine that must be registered to the
pLoadFunction pointer in the ADI_BOOT_DATA structure. Its simple proto-
type is as follows.

void LoadFunction (ADI_BOOT_DATA* pBootStruct);

The header files define the following type:

typedef void ADI_BOOT_LOAD_FUNC (ADI_BOOT_DATA*) ;

For a few scenarios some of the flags in the dFlags word of the
ADI_BOOT_DATA structure, such as BFLAG_PERIPHERAL and BFLAG_SLAVE,
slightly modify the boot kernel algorithm.

The boot ROM contains several load functions. One performs a memory
DMA for flash boot, others perform peripheral DMAs or load data from
booting source by polling operation. The first is reused for fill operation
and indirect booting as well.

In second-stage boot schemes, the user can create customized load func-
tions or reuse the original BFROM_PDMA routine and modify the
pDmaControlRegister, pControlRegister and dControlValue values in
the ADI_BOOT_DATA structure. The pDmaControlRegister points to the
DMAx_CONFIG or MDMA_Dx_CONFIG register. When the BFLAG_SLAVE flag is
not set, the pControlRegister and dControlValue variables instruct the
peripheral DMA routine to write the control value to the control register
every time the DMA is started.
26-46 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Load functions written by users must meet the following requirements.

• Protect against dByteCount values of zero.

• Multiple DMA work units are required if the dByteCount value is
greater than 65536.

• The pSource and pDestination pointers must be properly updated.

In slave boot modes, the boot kernel uses the address of the dArgument
field in the pHeader block as the destination for the required dummy
DMAs when payload data is consumed from BFLAG_IGNORE blocks. If the
load function requires access to the block's ARGUMENT word, it should be
read early in the function.

The most useful load functions BFROM_MDMA and BFROM_PDMA are accessible
through the jump table. Others, do not have entries in the jump table.
Their start address can be determined with the help of the hook routine
when calling the respective BFROM_SPIBOOT, BFROM_OTPBOOT etc. functions.
In this way they can be repurposed for runtime utilization.

Calling the Boot Kernel at Runtime
The boot kernel’s primary purpose is to boot data to memory after
power-up and reset cycles. However some of the routines used by the boot
kernel might be of general value to the application. The boot ROM sup-
ports reuse of these routines as C-callable subroutines. Programs such as
second-stage boot kernels, boot managers, and firmware update tools may
call the function in the ROM at runtime. This could load entirely differ-
ent applications or a fraction of an application, such as a code overlay or a
coefficient array.

To call these boot kernel subroutines, the boot ROM provides an API at
address 0xEF00 0000 in the form of a jump table.
ADSP-BF51x Blackfin Processor Hardware Reference 26-47

Advanced Boot Techniques
When calling functions in the boot ROM, the user must ensure the pres-
ence of a valid stack following C language conventions. See C++ Compiler
and Library Manual for Blackfin Processors for details.

Debugging the Boot Process
If the boot process fails, very little information can be gained by watching
the chip from outside. In master boot modes, the interface signals can be
observed. In slave boot modes only the HWAIT signal tells about the prog-
ress of the boot process.

However, by using the emulator, there are many possibilities for debug-
ging the boot process. The entire source code of the boot kernel is
provided with the CCES or VisualDSP++ installation. This includes the
project executable (DXE) file. The LOAD SYMBOLS feature helps to navigate
the program. Note that the content of the ROM might differ between sil-
icon revisions. Hardware breakpoints and single-stepping capabilities are
also available.

Table 26-8 shows program symbols that are of interest.

Table 26-8. Boot Kernel Symbols for Debug

Symbol Comment

_bootrom.assert.default If the program counter halts at the IDLE instruction at the
_bootrom.assert.default address, either the boot kernel or
the preboot has detected an error condition and will not continue
the boot process. A misformatted boot stream, or invalid PBS set-
tings are the most likely causes of such an error. The RETS register
points to the failing routine. When stepping a couple of instruc-
tions further, there is a way to ignore the error and to continue the
boot process by clearing the >ASTAT register while the emulator
steps over the subsequent IF CC JUMP 0 instruction.

_bootrom.bootmenu If the emulator hits a hardware breakpoint at the
_bootrom.bootmenu address, this indicates that the preboot
returned properly. Otherwise the program may hang during pre-
boot due to improper PBS settings or invalid boot modes.
26-48 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
The boot kernel also generates a circular log file in scratch pad memory.
While the pLogBuffer and the dLogByteCount variables describe the loca-
tion and dimension of the log buffer, the pLogCurrent points to the next
free location in the buffer. The log file is updated whenever the kernel
passes the _bootrom.bootkernel.breakpoint label.

_bootrom.bootkernel.entry If the emulator hits a hardware breakpoint at the
_bootrom.bootkernel.entry label, this indicates that device
detection or autobaud returned properly.

_bootrom.bootkernel.breakpoint This is a good address to place a hardware breakpoint. The boot
kernel loads a new block header at this breakpoint. The block
header can be watched at address 0xFF80 7FF0 or wherever the
pHeader points to.

_bootrom.bootkernel.initcode All payload data of the current block is loaded by the time the pro-
gram passes the _bootrom.bootkernel.initcode label. The
boot kernel is about to interrogate the BFLAG_INIT flag. If set, the
initcode can be debugged.

_bootrom.bootkernel.exit Once the boot kernel arrives at the _bootrom.bootkernel exit
label, it detects a BFLAG_FINAL flag. After some housekeeping, it
jumps to the EVT1 vector.

Table 26-8. Boot Kernel Symbols for Debug (Continued)

Symbol Comment
ADSP-BF51x Blackfin Processor Hardware Reference 26-49

Advanced Boot Techniques
At each pass, nine 32-bit words are written to the log file, as follows.

• block code word (dBlockCode) of the block header

• target address (pTargetAddress) of the block header

• byte count (dByteCount) of the block header

• argument word (dArgument) of the block header

• source pointer (pSource) of the boot stream

• block count (dBlockCount)

• internal copy of the dBlockCode word OR’ed with dFlags

• content of the SEQSTAT register

• 0xFFFF FFFA (-6) constant

The ninth word is overwritten by the next entry set, so that 0xFFFF FFFA
always marks the last entry in the log file.

Most of the data structures used by the boot kernel reside on the stack in
scratchpad memory. While executing the boot kernel routine (excluding
subroutines), the P5 points to the ADI_BOOT_DATA structure. Type
“(ADI_BOOT_DATA*) $P5” in the IDE’s expression view or window to see
the structure content.
26-50 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Boot Management
Blackfin processor hardware platforms may be required to run different
software at different times. An example might be a system with at least one
application and one in-the-field firmware upgrade utility. Other systems
may have multiple applications, one starting then terminating, to be
replaced by another application. Conditional booting is called boot man-
agement. Some applications may self-manage their booting rules, while
others may have a separate application that controls the process, namely a
boot manager.

In a master boot mode where the on-chip boot kernel loads the boot
stream from memory, the boot manager is a piece of Blackfin software
which decides at runtime what application is booted next. This may sim-
ply be based on the state of a GPIO input pin interrogated by the boot
manager, or it may be the conclusion of complex system behavior.

Slave boot scenarios are different from master boot scenarios. In slave boot
modes, the host masters boot management by setting the Blackfin proces-
sor to reset and then applying alternate boot data. Optionally, the host
could alter the BMODE configuration pins, resulting in little impact to the
Blackfin processor since the intelligence is provided by the host device.

Booting a Different Application
The boot ROM provides a set of user-callable functions that help to boot
a new application (or a fraction of an application). Usually there is no
need for the boot manager to deal with the format details of the boot
stream.
ADSP-BF51x Blackfin Processor Hardware Reference 26-51

Boot Management
These functions are:

• BFROM_MEMBOOT discussed in “Flash Boot Modes” on page 26-59
and “SDRAM Boot Mode” on page 26-62

• BFROM_SPIBOOT discussed in “SPI Master Boot Modes” on
page 26-63

• BFROM_OTPBOOT discussed in “OTP Boot Mode” on page 26-73

The user application, the boot manager application, or an initcode can call
these functions to load the requested boot data. Using the BFLAG_RETURN
flag the user can control whether the routine simply returns to the calling
function or executes the loaded application immediately.

These ROM functions expect the start address of the requested boot
stream as an argument. For BFROM_MEMBOOT, this is a Blackfin memory
address, for BFROM_SPIBOOT it is a serial address. The SPI function can also
accept the code for the GPIO pin that controls the device select strobe of
the SPI memory.

Multi-DXE Boot Streams

If the start addresses of all the boot streams are predefined, the boot man-
ager needs only to call the ROM functions directly. However since the
addresses tend to vary from build to build they may have to be calculated
at runtime.

In the world of the elfloader, a boot stream is always generated from a
DXE file. It is therefore common to talk about multi-DXE or multi-appli-
cation booting. When the elfloader utility accepts multiple DXE files on
its command line, it generates a contiguous boot image by default. The
second boot stream is appended immediately to the first one. Since the
utility updates the ARGUMENT field of all BFLAG_FIRST blocks, the ARGUMENT
field of a BFLAG_FIRST block is called next-DXE pointer (NDP).
26-52 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
The next-DXE pointer of the first DXE boot stream points relatively to
the start address of the second DXE boot stream. A multi-DXE boot
image can be seen as a linked list of boot streams. The next-DXE pointer
of the last DXE boot stream points relatively to the next free address. This
is illustrated by an example shown in the next two figures. Figure 26-9
shows a commented sketch as an example. Figure 26-10 shows a screen-
shot of the Blackfin loader file viewer utility for the same example. The
LdrViewer utility is not part of the CrossCore Embedded Studio or Visu-
alDSP++ tools suite. It is a third-party freeware product available on
www.dolomitics.com.
ADSP-BF51x Blackfin Processor Hardware Reference 26-53

Boot Management
Figure 26-9. Multi-DXE Boot Stream Example for Flash Boot

TARGET ADDRESS = 0xFFA0 0000

BYTE COUNT = 0x0000 0010

ARGUMENT = 0x0000 0120

BLOCK CODE = 0xAD95 5006

Optional 16-byte bubble

TARGET ADDRESS = 0xFFA1 0000

BYTE COUNT = 0x0000 0100

ARGUMENT = 0x0000 0000

BLOCK CODE = 0xADFC 0806

Payload of initcode
0x100 bytes

TARGET ADDRESS = 0xFFA0 0000

BYTE COUNT = 0x0000 0000

ARGUMENT = 0x0000 0220

BLOCK CODE = 0xAD86 5006

TARGET ADDRESS = 0xFFA0 0000

BYTE COUNT = 0x0000 0200

ARGUMENT = 0x0000 0000

BLOCK CODE = 0xADF6 0006

Payload of data/code block
0x200 bytes

TARGET ADDRESS = 0xFF80 0000

BYTE COUNT = 0x0000 8000

ARGUMENT = 0xA5A5 A5A5

BLOCK CODE = 0xADD5 8106

TARGET ADDRESS = 0xFFA0 0000

BYTE COUNT = 0x0000 0000

ARGUMENT = 0x0000 1000

BLOCK CODE = 0xADB4 5006

First block of initcode DXE BFLAG_FIRST | BFLAG_IGNORE

Start address of application

Size of optional bubble

Next DXE pointer

Bubble to be ignored by kernel

BFLAG_INIT (BFLAG_FINAL not set to continue boot processing)

Target address of initcode

Size of initcode

Not used

Initcode

First block of first application DXE BFLAG_FIRST | BFLAG_IGNORE

Start address of application

No bubble

Next DXE pointer

Normal data block

Target address of block data

Size of payload

Not used

Loads L1 instruction SRAM

Last block of first application DXE BFLAG_FINAL | BFLAG_FILL

Fills L1 data bank 0

32-bit fill value

First block of second application DXE BFLAG_FIRST|BFLAG_IGNORE

Start address of application

No bubble

Next DXE pointer

0x2000 0000

0x2000 0010

0x2000 0020

0x2000 0030

0x2000 0130

0x2000 0140

0x2000 0150

0x2000 0350

0x2000 0360

0x2000 1370

Further boot stream of second
application DXE
(0x1000 bytes total)
26-54 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Boot management principles are not only applicable to multi-DXE boot
streams. The same scheme, as shown in Figure 26-11, can be applied to
direct code executions of multiple applications. See “Direct Code Execu-
tion” on page 26-33 for more information. The example shows a linked
list of initial block headers that instruct the boot kernel to terminate

Figure 26-10. LdrViewer Screen Shot
ADSP-BF51x Blackfin Processor Hardware Reference 26-55

Boot Management
immediately and to start code execution at the address provided by the
TARGET ADDRESS field of the individual blocks. There is nothing in the
boot ROM that prevents multi-DXE applications from mixing regular
boot streams and direct code execution blocks.

Figure 26-11. Multi-DXE Direct Code Execution Arrangement Example

TARGET ADDRESS = 0x2000 0100

BYTE COUNT = 0x0000 0010

ARGUMENT = 0x0000 0010

BLOCK CODE = 0xAD5A D006

Optional 16-byte bubble

TARGET ADDRESS = 0x2001 0000

BYTE COUNT = 0x0000 0000

ARGUMENT = 0x0000 0000

BLOCK CODE = 0xAD5A D006

TARGET ADDRESS = 0x2002 0000

BYTE COUNT = 0x0000 0000

ARGUMENT = 0x0000 0000

BLOCK CODE = 0xAD59 D006

Application 0 at 0x2000 0100

Application 1 at 0x2001 0000

Application 2 at 0x2002 0000
26-56 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Determining Boot Stream Start Addresses

The ROM functions BFROM_MEMBOOT, BFROM_SPIBOOT, etc. not only allow
the application to boot a subroutine residing at a given start address, they
also assist in walking through linked multi-DXE streams.

When the BFLAG_NEXTDXE bit in dFlags is set and these functions are
called, the system does not boot but instead walks though the boot stream
following the next-DXE pointers. The dBlockCount parameter can be used
to specify the DXE of interest. The routines then return the start address
of the requested DXE’s boot stream.

Initialization Hook Routine

When the ROM functions BFROM_MEMBOOT, BFROM_SPIBOOT, etc. are called,
they create an instance of the ADI_BOOT_DATA structure on the stack and fill
the items with default values. If the BFLAG_HOOK is set, the boot kernel
invokes a callback routine which was passed as the fourth argument of the
ROM routines, after the default values have been filled. The hook routine
can be used to overwrite the default values. Every hook routine should fit
the prototype:

void hook (ADI_BOOT_DATA* pBS);

The header files define the ADI_BOOT_HOOK_FUNC type the following way:

typedef void ADI_BOOT_HOOK_FUNC (ADI_BOOT_DATA*);

The hook function also gives access to the DMA load function used by the
respective boot mode, which can be used for general purposes at runtime.
For example, in the BFROM_SPIBOOT case, an instance of the load function:

ADI_BOOT_LOAD_FUNC *pSpiLoadFunction;

can be initialized by equipping the hook function with the instruction:

pSpiLoadFunction = pBS->pLoadFunction;
ADSP-BF51x Blackfin Processor Hardware Reference 26-57

Specific Boot Modes
Specific Boot Modes
This section discusses individual boot modes and the required hardware
connections.

The boot modes differ in terms of the booting source— for example
whether data is loaded through the SPI or the parallel interface. Boot
modes can also be grouped into slave boot modes and master boot modes.

In slave boot modes, the Blackfin processor functions as a slave to any host
device, which is typically another embedded processor, an FPGA device or
even a desktop computer. Likely, the Blackfin processor RESET input is
controlled by the host device. So, usually the host sets RESET first, then
waits until the preboot routine terminates by sensing the HWAIT output,
and finally provides the boot data.

If a Blackfin processor, configured to operate in any of the slave boot
modes, awakens from hibernate, it cannot boot by its own control. A feed-
back mechanism has to be implemented at the system level to inform the
host device whether the processor is in hibernate state or not. The HWAIT
strobe is an important primitive in such systems.

In the master boot modes, the Blackfin processor usually does not need to
be synchronized and can load the boot data by itself. Master modes typi-
cally read from memory. This can be parallel memory such as flash
devices, or serial memory that is read through SPI interfaces.

Memory boot modes should also be differentiated from peripheral boot
modes. Boot modes that load boot streams through memory DMA are
referred to as memory boot mode, reading data from regular memory.
Peripheral modes load boot data through peripherals such as UART. All
memory boot modes are master modes. The boot source is typically
non-volatile memory, such as a flash or EPROM device or even on-chip
ROM. When supported by the system in warm boot scenarios, the boot
source can also be SRAM or SDRAM.
26-58 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Whether from the host (slave booting mode) or from memory (master
booting mode), the boot source does not need to know about the structure
of the boot stream.

No Boot Mode
When the BMODE pins are all tied low (BMODE = 000), the Blackfin processor
does not boot. Instead it processes factory-programmed OTP pages, then
executes an IDLE instruction, preventing it from executing any instruc-
tions provided by the regular boot source. The purpose of this mode is to
bring the processor up to a clean state after reset.

This mode helps to recover from malicious OTP configuration since it
prevents execution of the user-controllable portion of the preboot routine.

When connecting an emulator and starting a debug session, the processor
awakens from an idle due to the emulation interrupt and can be debugged
in the normal manner.

 The no boot mode is not the same as the bypass mode featured by
the ADSP-BF53x Blackfin processor. To simulate that bypass
mode feature using BMODE = 001, see “Direct Code Execution” on
page 26-33 and “Direct Code Execution” on page 26-115.

Flash Boot Modes
These booting modes are intended to boot from flash or EEPROM mem-
ories or even from battery-buffered SRAMs. The flash boot modes are
activated by BMODE = 001. Although this is a single BMODE setting, the
ADSP-BF51x Blackfin products support various configurations.

• Boot from 8-bit asynchronous flash memory

• Boot from 16-bit asynchronous flash memory
ADSP-BF51x Blackfin Processor Hardware Reference 26-59

Specific Boot Modes
By default, the boot kernel does not alter any EBIU registers. Therefore,
traditional asynchronous flash is assumed and maximum wait states are
applied. By programming OTP half pages PBS00L and PBS00H, the user has
the option to instruct the preboot routine to alter the EBIU registers as
desired. In this way, the EBIU can be preset to access the flash device in
either page mode or burst mode. There are also options to customize bus
settings, such as wait states and ARDY behavior.

After the preboot routine returns and HWAIT is deasserted the first time, the
boot kernel loads an initial burst of four 16-bit words. Then it interrogates
the DMACODE field in the byte loaded from the 0x2000 0000 address. For
flash mode, the DMA options shown in Table 26-9 are supported.

The DMACODE field is filled by the elfloader utility based on boot mode,
-width and -dmawidth settings. See Loader and Utilities Manual for
details.

After the boot kernel has loaded and interpreted the first four 16-bit
words, it continues loading the rest of the first block header and processes
the boot stream.

Table 26-9. DMA Options

DMACODE DMA
Width

Source
Modify

Comment

1 8 1 Not recommended
Provides ADSP-BF533 style 8-bit boot from 16-bit flash memory

2 8 2 8-bit MDMA boots from 8-bit flash mapped to lower byte of
address bus.

6 16 2 16-bit MDMA boots from 16-bit flash

10 32 4 32-bit MDMA boots from 16-bit flash
26-60 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Hardware configurations for the individual modes are shown in
Figure 26-12 and Figure 26-13. The chip select is always controlled by the
AMS0 strobe. This maps the boot stream to the Blackfin processor’s address
0x2000 0000.

Some flash devices provide write protection mechanisms, which can be
activated during the power-up and reset cycles of the Blackfin processor.
In the absence of such mechanisms, a pull-up resistor on the AMS0 strobe
prevents the chip select from floating when the state of the processor is
unknown.

Figure 26-12. 8-Bit Flash Interconnection

Figure 26-13. 16-Bit Flash Interconnection

()

SPICLK SPI0SCK (PG12)

S_SEL SPI0SS (PG11)

MOSI SPI0MOSI (PG14)

()

MISO SPI0MISO (PG13)

HWAIT (PG0)FLAG/INTERRUPT

AMS0

BLACKFIN

ARE

AWE

A[N+1:1]

D[15:0]

16-BIT FLASH/PROM

AMS

OE

R/W or WR

ADDR[N:0]

DATA[15:0]
ADSP-BF51x Blackfin Processor Hardware Reference 26-61

Specific Boot Modes
The boot mode BMODE = 001 can also be used to instruct the boot kernel to
terminate immediately and directly execute code from the 16-bit flash
memory instead. Code execution from 8-bit flash memory is not sup-
ported. See “Direct Code Execution” on page 26-33 for details.

SDRAM Boot Mode
From the boot kernel perspective, the SDRAM boot mode is just another
memory boot mode like flash boot. The only differences are that the boot
stream is expected at address 0x0000 0010 and the initial eight bytes are
loaded by two 32-bit loads.

From the application point of view, SDRAM boot is a completely differ-
ent scheme. Since SDRAM is volatile memory, BMODE = 110 is not a valid
setting when the processor and the memories have just been powered up.
This mode can only be used as a dynamically applied BMODE setting to
install warm boot scenarios.

OTP programming is required to boot from SDRAM. Other boot modes
can configure the SDRAM controller by execution of an initcode. But in
the case of SDRAM boot, the initcode cannot be loaded without having
the SDRAM controller already configured.

SDRAM boot is meaningful when the Blackfin processor is in hibernate
state or is completely shut off for power savings while the SDRAM is kept
alive in self-refresh mode.

Users who prefer to execute code out of SDRAM, rather than performing
a boot from it, may refer to “Direct Code Execution” on page 26-33 for
details.
26-62 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
SPI Master Boot Modes
The ADSP-BF51x processors feature booting from on-chip as well as from
off-chip SPI memories. The internal SPI boot mode (BMODE = 010) boots
from the on-chip SPI memory using the 24-bit addressing scheme on
SPI0. An internal strobe signal controls the on-chip SPI memory via a vir-
tual GPIO signal represented as PH8. This signal is not available off chip.

The external SPI boot mode (BMODE = 011) boots from SPI memories con-
nected to the SPI0SEL2 interface. 8-, 16-, 24-, and 32-bit address words
are supported. Standard SPI memories are read using either the standard
0x03 SPI read command or the 0x0B SPI fast read command.

 Unlike other Blackfin processors, the ADSP-BF51x Blackfin pro-
cessors have no special support for DataFlash devices from Atmel.
Nevertheless, DataFlash devices can be used for booting and are
sold as standard 24-bit addressable SPI memories. They also sup-
port the fast read mode. If used for booting, DataFlash memory
must be programmed in the power-of-2 page mode.

For booting, the SPI memory is connected as shown in Figure 26-14.

Figure 26-14. Blackfin to SPI Memory Connections

(MASTER SPI DEVICE)
SPI MEMORY

SPI0SCK (PG12) SCK

SPI0SEL2 (PG15) CS

SPI0MOSI (PG14) MOSI

BLACKFIN
(SLAVE SPI DEVICE)

SPI0MISO (PG13) MISO

VDDEXT

10K10K
ADSP-BF51x Blackfin Processor Hardware Reference 26-63

Specific Boot Modes
The pull-up resistor on the MISO line is required for automatic device
detection. The pull-up resistor on the SPI0SEL2 line ensures that the mem-
ory is in a known state when the Blackfin GPIO is in a high-impedance
state (for example, during reset). A pull-down resistor on the SPI0SCK line
displays cleaner oscilloscope plots during debugging.

For SPI master boot, the SPE, MSTR and SZ bits are set in the SPI0_CTL reg-
ister. For details see Chapter 17, “SPI-Compatible Port Controller”. With
TIMOD = 2, the receive DMA mode is selected. Clearing both the CPOL and
CPHA bits results in SPI mode 0. The boot kernel does not allow SPI0
hardware to control the SPI0SEL2 pin. Instead, this pin is toggled in GPIO
mode by software. Initialization code is allowed to manipulate the uwSsel
variable in the ADI_BOOT_DATA structure to extend the boot mechanism to
a second SPI memory connected to another GPIO pin.

By default, the boot kernel sets the SPI0_BAUD register to a value of 133,
resulting in a bit rate of SCLK/266. This default value can be altered by
programming the 4-bit OTP_SPI_BAUD field in OTP page PBS00L to one of
the values in Table 26-10.

Table 26-10. Bit Rate

OTP_SPI_BAUD SPI_BAUD Bit Rate

b#0000 133 SCLK/(2x133)

b#0001 Reserved

b#0010 2 SCLK/(2x2)

b#0011 4 SCLK/(2x4)

b#0100 8 SCLK/(2x8)

b#0101 16 SCLK/(2x16)

b#0110 32 SCLK/(2x32)

b#0111 64 SCLK/(2x64)
26-64 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Similarly, the boot kernel uses the standard 0x03 SPI read command, by
default. Programming the OTP_SPI_FASTREAD bit in OTP page PBS00L
enables the fast read mode where the boot kernel uses the 0x0B read com-
mand instead and transmits a dummy zero byte after the address bytes.

The OTP_SPI_FASTREAD and OTP_SPI_BAUD values apply both to internal
and external SPI master boot modes.

SPI Device Detection Routine

Since BMODE = 011 supports booting from various SPI memories, the boot
kernel automatically detects what type of memory is connected. To deter-
mine whether the SPI memory device requires an 8-, 16-, 24- or 32-bit
addressing scheme, the boot kernel performs a device detection sequence
prior to booting. The MISO signal requires a pull-up resistor, since the rou-
tine relies on the fact that memories do not drive their data outputs unless
the right number of address bytes are received.

Boot from internal SPI memory does not perform any device detection.
Internal SPI flash is known to require 24-bit addressing. Since the MISO
signal is not pulled up internal, device detection is not recommended at all
in BMODE = 010.

Initially, the boot kernel transmits a read command (either 0x03 or 0x0B)
on the MOSI line, which is immediately followed by two zero bytes. Once
the transmission is finished, the boot kernel interrogates the data received
on the MISO line. If it does not equal 0xFF (usually a DMACODE value of
0x01 is expected), then an 8-bit addressable device is assumed.

If the received value equals 0xFF, it is assumed that the memory device has
not driven its data output yet and that the 0xFF value is due to the pull-up
resistor. Thus, another zero byte is transmitted and the received data is
tested again. If it differs from 0xFF, either a 16-bit addressable device
(standard mode) or an 8-bit addressable device (fast read mode) is
assumed.
ADSP-BF51x Blackfin Processor Hardware Reference 26-65

Specific Boot Modes
If the value still equals 0xFF, device detection continues. Device detection
aborts immediately if a byte different than 0xFF is received. The boot ker-
nel continues with normal boot operation and it re-issues a read command
to read from address 0 again. The first block header is loaded by two read
sequences, further block headers and block payload fields are loaded by
separate read sequences.

Figure 26-15 illustrates how individual devices would behave.

Figure 26-16 shows the initial signaling when a 24-bit addressable SPI
memory is connected in SPI master boot mode. After RESET releases and
preboot has processed relevant OTP pages, a 0x03 command is transmit-
ted to the MOSI output, followed by a number of 0x00 bytes. The 24-bit
addressable memory device returns a first data byte at the fourth zero byte.
Then, the device detection has completed and the boot kernel re-issues a
0x00 address to load the boot stream.

Figure 26-15. SPI Device Detection Principle

0x000x000x03 |0x0B 0x00 0x00 0x00 0x00

0x010xFF0xFF

0xFF0xFF0xFF 0x01

0xFF0xFF0xFF 0xFF 0x01

0xFF0xFF0xFF 0xFF 0xFF 0x01

0xFF0xFF0xFF 0xFF 0xFF 0xFF 0x01

. . .

. . .

. . .

. . .

MOSI

MISO

MISO

MISO

MISO

MISO

STANDARD 8-BIT

STANDARD 16-BIT,
FAST READ 8-BIT

STANDARD 24-BIT,
FAST READ 16-BIT

STANDARD 32-BIT,
FAST READ 24-BIT

FAST READ
32-BIT
26-66 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
SPI Slave Boot Mode
For SPI slave mode boot (BMODE = 100), the Blackfin processor is consum-
ing boot data from an external SPI host device. SPI0 is configured as an
SPI slave device. The hardware configuration is shown in Figure 26-17. As
in all slave boot modes, the host device controls the Blackfin processor
RESET input.

Figure 26-16. Typical SPI Master Boot Waveforms

Figure 26-17. Connections Between Host (SPI Master)
and Blackfin Processor (SPI Slave)

SPICLK

SEL
MOSI

MISO
HWAIT

RESET

(MASTER SPI DEVICE)
BLACKFIN

SPICLK SPI0SCK (PG12)

S_SEL SPI0SS (PG11)

MOSI SPI0MOSI (PG14)

HOST
(SLAVE SPI DEVICE)

MISO SPI0MISO (PG13)

HWAIT (PG0)FLAG/INTERRUPT

VDDEXT
ADSP-BF51x Blackfin Processor Hardware Reference 26-67

Specific Boot Modes
The host drives the SPI clock and is responsible for the timing. The host
must provide an active-low chip select signal that connects to the SPI0SS
input of the Blackfin processor. It can toggle with each byte transferred or
remain low during the entire procedure. 8-bit data is expected. The 16-bit
mode is not supported.

In SPI slave boot mode, the boot kernel sets the CPHA bit and clears the
CPOL bit in the SPI0_CTL register. Therefore the MOSI pin is latched on the
falling edge of the SPI_SCK pin. For details see Chapter 17, “SPI-Compat-
ible Port Controller”.

In SPI slave boot mode, HWAIT functionality is critical. When high, the
resistor shown in Figure 26-17 programs HWAIT to hold off the host. HWAIT
holds the host off while the Blackfin processor is in reset or executing the
preboot. Once HWAIT turns inactive, the host can send boot data. The SPI
module does not provide very large receive FIFOs, so the host must test
the HWAIT signal for every byte. Figure 26-19 illustrates the required pro-
gram flow on the host side.

Figure 26-18 shows the initial waveform for an SPI slave boot case. As
soon as the Blackfin processor releases HWAIT after reset, the host device
pulls the SPI0SS pin low and starts transmitting data. After the eighth data
word has been received, the boot kernel asserts HWAIT again as it has to
process the DMACODE field of the first block header. When the host detects
the asserted HWAIT it gracefully finishes the transmission of the on-going
word. Then, it pauses transmission until HWAIT releases again.
26-68 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Figure 26-18. Typical SPI Slave Boot Waveforms

HWAIT

SPICLK

SPISS

MOSI

MISO

RESET

0

1

0 0 0 0 0 0 0

0

0 0 0 0 0 0

0 0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1 1

1

0 0

1

0 0

1 1

1

ADSP-BF51x Blackfin Processor Hardware Reference 26-69

Specific Boot Modes
Figure 26-19. SPI Program Flow on Host Device

HWAIT

Start

Pulse /RESET low

Asserted

Assert SPI /SS

Deasserted

HWAIT Asserted

Send Next Byte

Deasserted

More BytesYes

No

EXIT

Release SPI /SS
26-70 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
UART Slave Mode Boot
Figure 26-20 shows the interconnection required for booting. The figure
does not show physical line drivers and level shifters that are typically
required to meet the individual UART-compatible standards.

For BMODE = 111, the ADSP-BF51x processor consumes boot data from a
UART host device connected to the UART0 interface on port G.

The host downloads programs formatted as boot streams using an auto-
baud detection sequence. The host selects a bit rate within the UART
clocking capabilities. To determine the bit rate when performing the auto-
baud, the boot kernel expects an “@” character (0x40, eight data bits, one
start bit, one stop bit, no parity bit) on the UART RXD input. The boot
kernel acknowledges, and the host then downloads the boot stream. The
acknowledgement consists of four bytes: 0xBF, UARTx_DLL, UARTx_DLH,
0x00. The host is requested to not send further bytes until it has received
the complete acknowledge string. Once the 0x00 byte is received, the host
can send the entire boot stream. The host should know the total byte
count of the boot stream, but it is not required to have any knowledge
about the content of the boot stream. Further information regarding auto-
baud detection is given in “Autobaud Mode” on page 10-32.

Figure 26-20. UART Slave Boot Mode Connections

(MASTER UART DEVICE)
BLACKFIN

TX UARTx RXD

HOST
(SLAVE UART DEVICE)

RX UARTx TXD

INTERRUPT HWAIT

VDDEXT
ADSP-BF51x Blackfin Processor Hardware Reference 26-71

Specific Boot Modes
When the boot kernel is processing fill or initcode blocks it might require
extra processing time and needs to hold the host off from sending more
data. This is signalled with the HWAIT output. When equipped with a
pull-up resistor the HWAIT signal imitates the behavior of an RTS output
and could be connected to the CTS input of the booting host. The host is
not allowed to send data until HWAIT turns inactive after a reset cycle.
Therefore a pulling resistor on the HWAIT signal is required.

If the resistor pulls to ground, the host must pause transmission when
HWAIT is low and is permitted to send when HWAIT is high. A pull-up resis-
tor inverts the signal polarity of HWAIT. The host should test HWAIT at every
transmitted byte.

Figure 26-22 shows the initial case of the UART boot mode. As soon as
HWAIT releases after reset, the boot kernel expects to receive a 0x40 byte for
bit rate detection. After the bit rate is known, the UART is enabled and
the kernel transmits for bytes.

Figure 26-21. UART Autobaud Waveform

UART0_TX

UART0_RX

RESET

HWAIT

1

1 1

1

1

1

1 1

0

0

0

0

11111
26-72 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
 For UART boot, it is not obvious on how to change the PLL by an
initcode routine. This is because the UARTx_DLL and UARTx_DLH reg-
isters have to be updated to keep the required bit rate constant after
the SCLK frequency has changed. It must be ensured that the host
does not send data while the PLL is changing. The initcode exam-
ples provided along with the CCES or VisualDSP++ tools
installation demonstrate how this can be accomplished.

OTP Boot Mode
In the OTP boot mode (BMODE = 101), the boot kernel loads the boot
stream from the on-chip OTP memory. OTP booting is a self-sufficient
booting mechanism that does not require external boot memory or a host
device.

By default the boot kernel starts loading the boot stream starting from
OTP page 0x40. This is in the public OTP region. The boot stream can
occupy all pages up to OTP page 0xDF, resulting in a boot stream length
of up to 2560 bytes. The start address of the boot stream can be altered by

Figure 26-22. UART Boot

UART0_TX

UART0_RX

RESET

HWAIT

0

0

0

0

1

1

1

1

ADSP-BF51x Blackfin Processor Hardware Reference 26-73

Reset and Booting Registers
programming the OTP_START_PAGE field in the PBS01H page. If there is no
conflict with the alternate preboot pages feature, the OTP_START_PAGE field
can be set to 0x20, resulting in a boot stream length of up to 3072 bytes.

In the current implementation, the OTP engine has no DMA support.
Data is loaded and copied by core instructions. Nevertheless the DMACODE
field should be set to 0xA, indicating 32-bit operation. The boot kernel
ensures proper operation at 32-bit granularity, but 64-bit alignment may
help to reduce the number of OTP pages that have to be read during boot
processing. Byte 0 of the boot stream is expected to be byte 0 of the lower
32-bit word of the lower 0x40 half page.

 In the OTP boot mode, the upper 512 bytes starting at address
0xFF90 3E00 either must not be used or must be booted last. The
boot ROM code uses this space to temporarily hold the serial data
which is then transferred to L1 instruction memory using DMA.
All boot blocks that target the L1 instruction memory or external
memories must have the BFLAG_INDIRECT bit set. Initcodes can alter
the placement of the temporary buffer by modifying the
pTempBuffer and dTempByteCount variables in the ADI_BOOT_DATA
structure.

Reset and Booting Registers
Two registers are used for reset and booting—the software reset register
(SWRST) and the system reset configuration register (SYSCR).

Software Reset (SWRST) Register
A software reset can be initiated by setting bits [2:0] in the system soft-
ware reset field in the software reset register (SWRST) shown in
Figure 26-23. Bit 3 can be used to generate reset upon core-double-fault.
A core-double-fault resets both the core and the peripherals, but not the
RTC block and most of the DPMC. Bit 15 indicates whether a software
26-74 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
reset has occurred since the last time SWRST was read. Bit 14 indicates the
software watchdog timer has generated the software reset. Bit 13 indicates
the core-double-fault has generated the software reset. Bits [15:13] are
read-only and cleared when the register is read. Reading the SWRST also
clears bits [15:13] in the SYSCR register. Bits [3:0] are read/write.

Only writing to bits[2:0], resets only the modules in the SCLK domain. It
does not clear the core. The program executes normally at the instruction
after the MMR write to SWRST. The system is kept in the reset state as long
as the bits[2:0] are set to b#111. To release reset, write a zero again. An
example is shown in Listing 26-3 on page 26-105. It is not recommended
that this functionality be used directly. Rather, call the ROM function
bfrom_SysControl() to perform a system reset.

Figure 26-23. Software Reset Register

0

Software Reset Register (SWRST)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

SYSTEM_RESET
(System Software Reset)
0x0—0x6 – No SW reset
0x7 – Reset system

DOUBLE_FAULT
(Core-Double-Fault Reset
Enable)
0 – Do not generate reset on
core-double-fault
1 – Generate reset upon
core-double-fault

RESET_SOFTWARE
(Software Reset Status) – RO
 0 – No SW reset since last SWRST
read
 1 – SW reset occurred since last
SWRST read

RESET_WDOG
(Software Watchdog Timer Source)
– Read only
 0 – Software reset not generated
by watchdog
 1 – Software reset generated by
watchdog

RESET_DOUBLE
(Core-Double-Fault Reset) – RO
 0 – SW reset not generated by
core-double-fault
 1 – SW reset generated by
core-double-fault

0 0 0 0 0 0 0 0 0 0 0 0 0 00xFFC0 0100 Reset = 0x0000
ADSP-BF51x Blackfin Processor Hardware Reference 26-75

Reset and Booting Registers
System Reset Configuration (SYSCR) Register
The values sensed from the BMODE[2:0] pins are mirrored into the system
reset configuration register (SYSCR). The values are available for software
access and modification after the hardware reset sequence. Software can
modify only bits[7:4] in this register to customize boot processing upon a
software reset.

The bits [15:13] are exact copies of the same bits in the SWRST register.
Unlike the SWRST register, SYSCR can be read without clearing these bits.
Reading SWRST also causes SYSCR[15:13] to clear.

The WURESET indicates whether there was a wake up from hibernate since
the last hardware reset. The bit cannot be cleared by software.

The software reset configuration register (SYSCR) is shown in
Figure 26-24.
26-76 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Figure 26-24. System Reset Configuration Register

SWRESET
Software Reset – RO
A software reset
0 – last reset was not
1 – last reset was

WDRESET
Watchdog Reset – RO
A watchdog reset
0 – last reset was not
1 – last rest was

DFRESET
Double-fault Reset – RO
A double-fault reset
0 – last reset was not
1 – last reset was

WURESET
Wake-up Reset – RO
Since last hardware reset
0 – no wake-up event
1 – there was a wake-up

Reserved

BCODE[3:0]
Boot Code – RW
0000 – BCODE_NORMAL
 Perform quick boot as WURESET. Update power management.
0001 – BCODE_NOBOOT
 Do not boot, directly jump to EVT1 vector.
0010 – BCODE_QUICKBOOT
 Ignore WURESET, always perform quick boot.
0100 – BCODE_ALLBOOT
 Ignore WURESET, do not perform quick boot.
0110 – BCODE_FULLBOOT
 Ignore WURESET, do not perform quick boot. Update power management
1xxx – reserved

X0000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 X X Reset = dependent on pin
values

System Reset Configuration Register (SYSCR)
X – state is initialized from BMODE pins during hardware reset

0xFFC0 0104 0 0

BMODE [2:0] (Boot Mode) – RO
000 – No boot, Idle
001 – Boot from 8-bit or 16-bit flash
010 – Boot from internal SPI0 memory
011 – Boot from external SPI0 memory
100 – Boot from SPI0 host
101 – Boot from OTP memory
110 – Boot from SDRAM memory

(warm boot)
111 – Boot from UART0 host

Reserved
ADSP-BF51x Blackfin Processor Hardware Reference 26-77

Reset and Booting Registers

r
r

Boot Code Revision Control (BK_REVISION)
The boot ROM reserves the 32-bits at address 0xEF00 0040 for a four
byte version code as shown in Figure 26-25.

Figure 26-25. Boot Code Revision Code (BK_REVISION)

Bit 23:16— BK_PROJECT
(Boot Kernel Project)
Reads as 0x03 on ADSP-BF51x processors

0xEF00 0040

Boot Code Revision BK_REVISION Word, 31–16

Bit 31:24— BK_ID
(Boot Kernel Identifier)
Reads as 0xAD

Boot Code Revision BK_REVISION Word, 15–0

Default, See Anomaly Sheet0xEF00 0040

BK_VERSION
(Boot Kernel Version)
Global boot kernel version number

BK_UPDATE
(Boot Kernel Update
Enhancements/Bug fix version specifically made fo
the specific project. Refer to the specific processo
anomaly sheet for the version control of a specific
silicon revision.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
26-78 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Boot Code Date Code (BK_DATECODE)
The boot ROM reserves the 32-bits at address 0xEF00 0050 for the build
date as shown in Figure 26-26.

Figure 26-26. Boot Code Date Code (BK_DATECODE)

0xEF00 0050

Boot Code Date Code BK_DATECODE Word, 31–16

Bit 31:16 – BK_YEAR

Boot Code Date Code BK_DATECODE Word, 15–0

0xEF00 0050

BK_MONTH BK_DAY

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ADSP-BF51x Blackfin Processor Hardware Reference 26-79

Reset and Booting Registers
Zero Word (BK_ZEROS)
The boot ROM reserves the 32-bits at address 0xEF00 0048 which always
reads as 0x0000 000 as shown in Figure 26-27.

Figure 26-27. Zero Word (BK_ZEROS)

0xEF00 0048

Zero Word BK_ZEROS, 31–16

Read only

Zero Word BK_ZEROS, 15–0

0xEF00 0048

Read only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
26-80 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Ones Word (BK_ONES)
The boot ROM reserves the 32-bits at address 0xEF00 004C which always
reads 0xFFFF FFFF as shown in Figure 26-28.

OTP Memory Pages for Booting
This section details the one-time programmable memory pages for
booting.

Lower PBS00 Half Page
The 64-bit lower half of page 0x18 is always read by the preboot routine.
These control bits customize the boot process and instruct the preboot
routine whether to process further pages and whether the PLL settings
have to be changed. Other bits customize the SPI.

Figure 26-28. Ones Word (BK_ONES)

0xEF00 004C

Ones Word BK_ONES, 31–16

Read only

Ones Word BK_ONES, 15–0

0xEF00 004C

Read only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 11 1

11 1 1 1 1 1 1 1 1 1 1 1 11 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ADSP-BF51x Blackfin Processor Hardware Reference 26-81

OTP Memory Pages for Booting

ut
Figure 26-29. Lower PBS00 Half Page (PBS00L, Bits 63–48)

Lower PBS00 Half Page (PBS00L, Bits 63–48)
One-Time Programmable

OTP 0x018L + (4 x i) 00 0 0 0 0 0 0 0 0 0 0 0 00 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

Reserved

OTP_SET_PLL
0 – Do not set PLL_CTL and
PLL_DIV registers
1 – Set PLL_CTL and PLL_DIV
registers with OTP_PLL_CTL
and OTP_PLL_DIV values

OTP_SET_VR
0 – Do not set VR_CTL register
1 – Set VR_CTL register with
OTP_VR_CTL value

OTP_RESETOUT_HWAIT
0 – Normal HWAIT operation
1 – HWAIT simulates reset outp

Reserved

OTP_LOAD_PBS00H
0 – Do not load and process
PBS00H page
1 – Load PBS00H page

OTP_INVALID
00 – Pages 0x18 to 0x1B, Valid
11 – Pages 0x18 to 0x1B, Invalid, use
pages 0x1C to 0x1F instead.

OTP_LOAD_PBS03H
Not implemented in current rev.
0 – do not load and process PBS03H
page
1 – load and process PBS03H page

OTP_LOAD_PBS03L
Not implemented in current rev.
0 – do not load and process PBS03L
page
1 – load and process PBS03L page

Reserved

OTP_LOAD_PBS02L
0 – do not load and process PBS02L
page
1 – load and process PBS02L page

OTP_LOAD_PBS01H
0 – do not load and process PBS01H
page
1 – load and process PBS01H page

OTP_LOAD_PBS01L
Not implemented in current rev.
0 – do not load and process PBS01L
page
1 – load and process PBS01L page

Default 0x0000
26-82 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Figure 26-30. Lower PBS00 Half Page (PBS00L, Bits 47–32)

Figure 26-31. Lower PBS00 Half Page (PBS00L, Bits 31–0)

Lower PBS00 Half Page (PBS00L, Bits 47–32)
One-Time Programmable

OTP 0x018L + (4 x i)
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

00 0 0 0 0 0 0 0 0 0 0 0 00 0

OTP_PLL_DIV
Value to be written to PLL_DIV
register if OTP_SET_PLL = 1

Reserved

OTP_SPI_FASTREAD
0 – Standard 0x03 read command
1 – 0x0B fast read command

OTP_SPI_BAUD
for SPI master boot
00 – SPI0_BAUD = 133
01 – reserved
else – SPI0_BAUD = 2^(OTP_SPI0_BAUD–1)

Default 0x0000

Lower PBS00 Half Page (PBS00L, Bits 31–16)
One-Time Programmable

OTP 0x18L + (4 x i) 00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OTP_PLL_CTL
Value to be written to PLL_CTL register if
OTP_SET_PLL = 1

Lower PBS00 Half Page (PBS00L, Bits 15–0)
One-Time Programmable

OTP 0x18L + (4 x i)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

OTP_VR_CTL
Value to be written to VR_CTL register if
OTP_SET_VR = 1

Default 0x0000

Default 0x0000
ADSP-BF51x Blackfin Processor Hardware Reference 26-83

OTP Memory Pages for Booting
Upper PBS00 Half Page
The preboot routine loads the upper 64-bit half of page PBS00 only if the
OTP_LOAD_PBS00H bit in the PBS00L page is set. Page PBS00H customizes the
default setting of the asynchronous portion of the EBIU controller.

Figure 26-32. Upper PBS00 Half Page (PBS00H, Bits 63–32)

00

0

Upper PBS00 Half Page (PBS00H, Bits 63–48)
One-time Programmable

OTP 0x18H +(4 x i) 00 0 0 0 0 0 0 0 0 0 0 0 00

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

Reserved

Upper PBS00 Half Page (PBS00H, Bits 47–32)
One-time Programmable

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

00 0 0 0 0 0 0 0 0 0 0 00

Reserved

OTP_EBIU_AMG
Value to be written to EBIU_AMGCTL
register

Default 0x0000

Default 0x0000OTP 0x18H +(4 x i)
26-84 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Lower PBS01 Half Page
The half page PBS01L is reserved and not used in the current silicon.

 Do not use this page as it may be populated in future silicon
revisions.

Upper PBS01 Half Page
The preboot routine loads the upper 64-bit half of page 0x19 only if the
OTP_LOAD_PBS01H bit in the PBS00L page is set. This page allows the user to
disable boot modes. If a disabled boot mode configuration is chosen by
the BMODE[2:0] pins, the boot kernel goes into idle state. In OTP boot
mode, this pages determines where in OTP memory the boot stream
resides.

Figure 26-33. Upper PBS00 Half Page (PBS00H, Bits 31–0)

Upper PBS00 Half Page (PBS00H, Bits 31–16)
One-Time Programmable

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Upper PBS00 Half Page (PBS00H, Bits 15–0)
One-Time Programmable

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Default 0x0000

Default 0x0000OTP 0x18H +(4 x i)

OTP 0x18H +(4 x i)

Reserved

Reserved
ADSP-BF51x Blackfin Processor Hardware Reference 26-85

OTP Memory Pages for Booting
Figure 26-34. OTP Half Page (PBS01H, Bits 63–16)

Upper PBS01 Half Page (PBS01H, Bits 63–48)
One-Time Programmable

00 0 0 0 0 0 0 0 0 0 0 0 00 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

Reserved

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

00 0 0 0 0 0 0 0 0 0 0 0 00 0OTP 0x19H + (4xi)

Upper PBS01 Half Page (PBS01H, Bits 47–32)
One-Time Programmable

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0OTP 0x19H + (4xi)

Upper PBS01 Half Page (PBS01H, Bits 31–16)
One-Time Programmable

OTP_START_PAGE
OTP start page for OTP boot mode. If 0x00, OTP
boot starts at OTP page 0x40.

OTP 0x19H + (4xi)

Reserved

Default 0x0000

Default 0x0000

Default 0x0000

Reserved
26-86 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Figure 26-35. OTP Half Page PBS01H (PBS01H, Bits 15–0)

Upper PBS01 Half Page (PBS01H, Bits 15–0)
One-Time Programmable

OTP 0x19H + (4xi)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

OTP_BMODE00_DIS
0 – Do not disable Boot Mode 0
1 – Disable Boot Mode 0

OTP_BMODE01_DIS
0 – Do not disable Boot Mode
1 – Disable Boot Mode 1

OTP_BMODE02_DIS
0 – Do not disable Boot Mode 2
1 – Disable Boot Mode 2

OTP_BMODE03_DIS
0 – Do not disable Boot Mode 3
1 – Disable Boot Mode 3

OTP_BMODE04_DIS
0 – Do not disable Boot Mode 4
1 – Disable Boot Mode 4

OTP_BMODE05_DIS
0 – Do not disable Boot Mode 5
1 – Disable Boot Mode 5

OTP_BMODE06_DIS
0 – Do not disable Boot Mode 6
1 – Disable Boot Mode 6

OTP_BMODE07_DIS
0 – Do not disable Boot Mode 7
1 – Disable Boot Mode 7

Default 0x0000

Reserved
ADSP-BF51x Blackfin Processor Hardware Reference 26-87

OTP Memory Pages for Booting
Lower PBS02 Half Page
The preboot routine loads the lower 64-bit half of page 0x1A only if the
OTP_LOAD_PBS02L bit in half page PBS00L is set. Half pages PBS02L and
PBS02H customize the SDRAM controller settings.

Figure 26-36. Lower PBS02 Half Page (PBS02L Bits 63–0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Lower PBS02 Half Page (PBS02L, Bits 63–48)
One-time Programmable

00 0 0 0 0 0 0 0 0 0 0 0 00 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

OTP_EBIU_SDRRC
Values to be written to the EBIU_SDRRC register

OTP_EBIU_POWERON_DUMMY_WRITE
Issue dummy write to address 0x0000 0000 after
initialization instead of dummy read

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

00 0 0 0 0 0 0 0 0 0 0 0 00 0
OTP 0x1AL + (4xi)

Lower PBS02 Half Page (PBS02L, Bits 47–32)
One-time Programmable

OTP 0x1AL + (4xi)

Lower PBS02 Half Page (PBS02L, Bits 31–16)
One-time Programmable

OTP 0x1AL + (4xi)

Lower PBS02 Half Page (PBS02L, Bits 15–0)
One-time Programmable

OTP 0x1AL + (4xi)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Default 0x0000

Default 0x0000

Default 0x0000

Default 0x0000

OTP_EBIU_SDGCTL[31:16]
Values to be written to the upper 16 bits of the
EBIU_SDGCTL register

OTP_EBIU_SDBCTL[47:32]
Value to be written to the EBIU_SDBCTL register

OTP_EBIU_SDGCTL[15:0]
Values to be written to the lower 16 bits of the
EBIU_SDGCTL register
26-88 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Upper PBS02 Half Page
Page PBS02H is reserved. Do not use for any purpose.

Reserved Half Pages
The half pages PBS01L, PBS02H, PBS03L and PBS03H are reserved and not
used in the current silicon.

 Do not use these pages as they may be populated in future silicon
revisions.

Data Structures
The boot kernel uses specific data structures for internal processing.
Advanced users can customize the booting process by changing the con-
tent of the structure within the initcode routines. This section uses C
language definitions for documentation purposes. Developers can use
these structures directly in assembly programs by using the .IMPORT direc-
tive. The structures are supplied by the bfrom.h header file in your CCES
or VisualDSP++ installation directory.

ADI_BOOT_HEADER
typedef struct {

s32 dBlockCode;

void* pTargetAddress;

s32 dByteCount;

s32 dArgument;

} ADI_BOOT_HEADER;

The structure ADI_BOOT_HEADER is used by the boot kernel to load and pro-
cess a block header.
ADSP-BF51x Blackfin Processor Hardware Reference 26-89

Data Structures
Every block header is loaded to L1 data memory location 0xFF80 7FF0–
0xFF80 7FFF first or where pHeader points to. There it is analyzed by the
boot kernel.

ADI_BOOT_BUFFER
typedef struct {

void* pSource;

s32 dByteCount;

} ADI_BOOT_BUFFER;

The structure ADI_BOOT_BUFFER is used for any kind of buffer. For the
user, this structure is important when implementing advanced callback
mechanisms.

ADI_BOOT_DATA
typedef struct {

void* pSource;

void* pDestination;

s16* pControlRegister;

s16* pDmaControlRegister;

s32 dControlValue;

s32 dByteCount;

s32 dFlags;

s16 uwDataWidth;

s16 uwSrcModifyMult;

s16 uwDstModifyMult;

s16 uwHwait;

s16 uwSsel;

s16 uwUserShort;

s32 dUserLong;

s32 dReserved;

ADI_BOOT_ERROR_FUNC* pErrorFunction;

ADI_BOOT_LOAD_FUNC* pLoadFunction;

ADI_BOOT_CALLBACK_FUNC* pCallBackFunction;
26-90 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
ADI_BOOT_HEADER* pHeader;

void* pTempBuffer;

void* pTempCurrent;

s32 dTempByteCount;

s32 dBlockCount;

s32 dClock;

void* pLogBuffer;

void* pLogCurrent;

s32 dLogByteCount;

} ADI_BOOT_DATA;

The structure ADI_BOOT_DATA is the main data structure. A pointer to a
ADI_BOOT_DATA structure is passed to most complex subroutines, including
load functions, initcode, and callback routines. The structure has two
parts. While the first is closely related to internal memory load routines,
the second provides access to global boot settings.

Table 26-11 describes the data structures.

Table 26-11. Structure Variables, ADI_BOOT_DATA

Variable Description

pSource In the context of the boot kernel, the pSource pointer points either to
the start address of the entire boot stream or to the header of the next
boot block. In the context of memory load routines pSource points to
the source address of the DMA work unit.

pDestination The pDestination pointer is only used in memory load routines. It
points to the destination address of the DMA work unit. It points to
either 0xFF80 7FF0 when a header is loaded, or the target address when
the payload data is loaded.

pControlRegister This pointer holds the MMR address of the peripheral’s main control
register (for example UARTx_LCR or SPIx_CTL)

pDmaControlRegister This pointer holds the MMR address of the DMAx_CONFIG register for the
DMA channel in use.

dControlValue The lower 16 bits of this value are written to the pControlRegister
location each time a DMA work unit is started.
ADSP-BF51x Blackfin Processor Hardware Reference 26-91

Data Structures
dByteCount Number of bytes to be transferred.

dFlags The lower 16 bits of this variable hold the lower 16 bits of the current
block code. The upper 16 bits hold global flags. See “dFlags Word” on
page 26-94.

uwDataWidth This instructs the memory load routine to use:
0 – 8-bit DMA
1 – 16-bit DMA
2 – 32-bit DMA

uwSrcModifyMult This is the multiplication factor used by the DMA source. A value of 1
sets the source modifier to 1 for 8-bit DMA, 2 for 16-bit DMA, or 4 for
32-bit DMA.

uwDstModifyMult This is the multiplication factor used by the DMA destination. A value of
1 sets the destination modifier to 1 for 8-bit DMA, 2 for 16-bit DMA, or
4 for 32-bit DMA.

uwHwait This 16-bit value holds the GPIO used for HWAIT signaling. The value
can change on the fly. The upper eight bits designate the port number
(for example 01 for Port A, 02 for Port B). The lower four bits designate
the GPIO in the port.

uwSsel This 16-bit value holds the GPIO used for SPI slave select. The value can
change on the fly. The upper eight bits designate the port number (for
example 01 for Port A, 02 for Port B). The lower four bits designate the
GPIO in the port.

uwUserShort The programmer can use this 16-bit value for passing parameters
between modules of a customized booting scheme.

dUserLong The programmer can use this 32-bit value for passing parameters
between modules of a customized booting scheme.

dReserved This 32-bit value is reserved for future development.

pErrorFunction This is the pointer to the error handler. See “Error Handler” on
page 26-45.

pLoadFunction This is the pointer to the function responsible for loading data. See
“Load Functions” on page 26-46.

Table 26-11. Structure Variables, ADI_BOOT_DATA (Continued)

Variable Description
26-92 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
pCallBackFunction; This is the pointer to the callback function. See “Callback Routines” on
page 26-42.

pHeader The pHeader pointer holds the address for intermediate storage of the
block header. By default this value is set to 0xFF80 7FF0.

pTempBuffer This pointer tells the boot kernel what memory to use for intermediate
storage when the BFLAG_INDIRECT flag is set for a given block. The
pointer defaults to 0xFF90 7E00. The value can be modified by the
initcode routine, but there would be some impact to the CCES or Visu-
alDSP++ tools.

pTempCurrent Defaults to the pTempBuffer value. A load function can modify this
value to manipulate subsequent callback and memory DMA routines.

dTempByteCount This is the size of the intermediate storage buffer used when the
BFLAG_INDIRECT flag is set for a given block. This value defaults to 256
and can be modified by an initcode routine. When increasing this value,
the pTempBuffer must also be changed since by default the block is at
the end of a physical data memory block.

dBlockCount This 32-bit variable counts the boot blocks that are processed by the boot
kernel. If the user sets this value to a negative value, the boot kernel exits
when the variable increments to zero.

dClock The dClock variable holds information about the clock divider used by
individual (serial) boot modes.

pLogBuffer Pointer to the circular log buffer. By default the log buffer resides in L1
scratch pad memory at address 0xFFB0 0400.

pLogCurrent Pointer to the next free entry of the circular log buffer.

dLogByteCount Size of the circular log buffer, default is 0x400 bytes.

Table 26-11. Structure Variables, ADI_BOOT_DATA (Continued)

Variable Description
ADSP-BF51x Blackfin Processor Hardware Reference 26-93

Data Structures
dFlags Word

Figure 26-37 and Figure 26-38 describe the dFlags word. dFlags [15–0]
is a copy of Block Code[15–0] of the block currently being processed.

Figure 26-37. dFlags Word (Bits 31–16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

BFLAG_HOOK
0 – Do not callback initialization
hook routine
1 – Do callback initialization hook
routine

BFLAG_HDRINDIRECT
0 – Headers are loaded directly
1 – Headers are loaded indirectly

BFLAG_TYPE
00 – (BFLAG_TYPE1) one SPI
address byte
01 – (BFLAG_TYPE2) two SPI
address bytes
10 – (BFLAG_TYPE3) three SPI
address bytes
11 – (BFLAG_TYPE4) four SPI
address bytes

BFLAG_FASTREAD
0 – normal SPI mode
1 – SPI fast read operation

BFLAG_ALTERNATE
(ADSP-BF51x only)
0 - regular boot
1 - alternate boot

dFlags Word, Bits 31–16

BFLAG_NONRESTORE
0 – restore control registers on
exit
1 – do not restore control regis-
ters on exit

BFLAG_RESET
0 – do not issue system reset on
exit
1 – issue system reset on exit

BFLAG_RETURN
0 – jump to EVT1 address on exit
1 – issue RTS instruction on exit

BFLAG_NEXTDXE
0 – perform exit
1 – look for DXE start address

BFLAG_WAKEUP
0 – no wakeup case, perform boot
1 – wakeup case, perform quick
boot

BFLAG_SLAVE
0 – master boot mode
1 – slave boot mode

BFLAG_PERIPHERAL
0 – memory boot mode
1 – peripheral boot mode

BFLAG_NOAUTO
0 – perform automatic device
detection
1 – suppress automatic device
detection
26-94 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Callable ROM Functions for Booting
The following functions support boot management.

BFROM_FINALINIT
Entry address: 0xEF00 0002

Arguments: no arguments

C prototype: void bfrom_FinalInit (void);

The bfrom_FinalInit function never returns. It only executes a JUMP to
the address stored in EVT1.

Figure 26-38. dFlags Word (Bits 15–0)

dFlags Word, Bits 15–0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

BFLAG_FINAL

BFLAG_FIRST

BFLAG_INDIRECT

BFLAG_IGNORE

BFLAG_INIT

BFLAG_CALLBACK

BFLAG_QUICKBOOT

BFLAG_FILL

DMACODE – DMA Coding

BFLAG_SAVE

BFLAG_AUX
ADSP-BF51x Blackfin Processor Hardware Reference 26-95

Callable ROM Functions for Booting
BFROM_PDMA
Entry address: 0xEF00 0004

Arguments: pointer to ADI_BOOT_DATA in R0

C prototype: void bfrom_PDma (ADI_BOOT_DATA *p);

This is the load function for peripherals such as SPI and UART that sup-
port DMA in their boot modes.

BFROM_MDMA
Entry address: 0xEF00 0006

Arguments: pointer to ADI_BOOT_DATA in R0

C prototype: void bfrom_MDma (ADI_BOOT_DATA *p);

This is the load function used for memory boot modes including the
FIFO mode. This routine is also reused when the BFLAG_FILL or the
BFLAG_INDIRECT flags are specified.

BFROM_MEMBOOT
Entry address: 0xEF00 0008

Arguments:

pointer to boot stream in R0

dFlags in R1

dBlockCount in R2

pCallHook passed over the stack in [FP+0x14]

updated block count returned in R0
26-96 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
C prototype:

s32 bfrom_MemBoot (void* pBootStream, s32 dFlags,

 s32 dBlockCount, ADI_BOOT_HOOK_FUNC* pCallHook);

This routine processes any boot stream that maps to the Blackfin memory
starting from address pBootStream.

To boot a new application that may overwrite the calling application, the
dFlags word is usually zero. When done, the routine does not return, but
jumps to the EVT1 vector address. If the BFLAG_RETURN flag is set, an RTS is
executed instead and the routine returns to the parent function. In this
way, fractions of an application can be loaded.

If the dBlockCount parameter is zero or a positive value, all boot blocks are
processed until the BFLAG_FINAL flag is detected. If dBlockCount is a nega-
tive value, the negative number represents the number of blocks to be
booted. For example, –1 causes the kernel to return immediately, –2 pro-
cesses only one block.

The routine returns the updated source address pSource of the boot
stream (for example, the first unused address after the processed boot
stream).

The BFLAG_NEXTDXE flag suppresses boot loading. The boot kernel steps
through the boot stream by analyzing the next-DXE pointers (in the
ARGUMENT field of a BFLAG_FIRST block) and jumping to the next DXE.
Assuming that the boot image is a chained list of boot streams, the boot
kernel returns the absolute start address of the requested boot stream. In
this example, the start address of the third boot stream (DXE) in a flash
device is returned.

bfrom_MemBoot((void*)0x20000000,

BFLAG_RETURN|BFLAG_NEXTDXE,-3, NULL);
ADSP-BF51x Blackfin Processor Hardware Reference 26-97

Callable ROM Functions for Booting
In the above example, the routine would return 0x2000 0000 when
dBlockCount was set to –1. If the parameter dBlockCount is zero or
positive when used along with the BFLAG_NEXTDXE command, the kernel
returns when the BFLAG_FIRST flag on a header in the next-DXE chain is
not set.

If the BFLAG_HOOK switch is set, the memboot routine call (pCallHook rou-
tine) after the ADI_BOOT_DATA structure is filled with default values. It then
can overrule the default settings of the structure.

The bfrom_MemBoot() uses both MDMA channel pairs. Respective
wake-up bits must be set in the SIC_IWRx registers.

BFROM_SPIBOOT
Entry address: 0xEF00 000A

Arguments:

SPI address in R0

dFlags in R1

dBlockCount in R2

pCallHook passed over the stack in [FP+0x14]

updated block count returned in R0

C prototype:

s32 bfrom_SpiBoot (s32 dSpiAddress, s32 dFlags,

 s32 dBlockCount, ADI_BOOT_HOOK_FUNC* pCallHook);

This SPI master boot routine processes boot streams residing in SPI mem-
ories, using the SPI0 controller. The fourth argument pCallHook is passed
over the stack. It provides a hook to call a callback routine after the
ADI_BOOT_DATA structure is filled with default values. For example, the
26-98 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
pCallHook routine may overwrite the default value of the uwSsel value in
the ADI_BOOT_DATA structure. The coding follows the rules of
uwHWAIT (see “Boot Host Wait (HWAIT) Feedback Strobe” on
page 26-30). A value of 0x070F represents GPIO PG15 (SPI0SEL2),
0x0804 represents PH4(SPI0SEL3) and so on. In this way, SPI memories
which connect to a different pin than the SPI0SEL2 output can be
supported.

Additional bits in the dFlags word are relevant. The user should always set
the BFLAG_PERIPHERAL flag but never the BFLAG_SLAVE bit. The
BFLAG_NOAUTO flag instructs the system to skip the SPI device detection
routine. The BFLAG_TYPE then tells the boot kernel what addressing mode
is required for the SPI memory. (see “SPI Device Detection Routine” on
page 26-65). The BFLAG_FASTREAD flag controls whether standard SPI read
(0x3 command) or fast read (0xB) is performed. The three lower bits of
the dFlags word are translated by the boot kernel into specific values to
the SPI0_BAUD registers. This follows the truth table shown in Table 26-10
on page 26-64.

By default, the bfrom_SpiBoot() function attempts to boot from the
on-chip SPI memory device connected to internal PH8 output. In this case,
automatic device detection has to be avoided using the BFLAG_NOAUTO flag;
and the BFLAG_TYPE field has to be set to b#01 to indicate 3-byte address-
ing mode. The use of the BFLAG_FASTREAD option is valid and optional.

When called with the BFLAG_ALTERNATE flag, the bfrom_SpiBoot() func-
tion attempts to boot from external SPI memory device instead. Unless
the uwSsel variable in the ADI_BOOT_DATA structure is altered by a hook
routine, the memory is expected to be connected to SPI0SEL2. A pull-up
resistor on this signal is required when automatic device detection is
desired.

The bfrom_SpiBoot() routine does not deal with port muxing at all.
When a part has been booted via SPI master mode after reset, the port
muxing configuration is typically already ready for a runtime call to the
bfrom_SpiBoot() routine. Otherwise ensure that the SPI0MISO, SPI0MOSI
ADSP-BF51x Blackfin Processor Hardware Reference 26-99

Callable ROM Functions for Booting
and SPI0SCK signals are properly activated in the PORTx_FER and PORTx_MUX
registers. The SPI0SEL2 signal requires, however, that the respective
PORTx_FER bit be cleared, as the boot kernel toggles the signal in GPIO
mode.

Similarly, the user shall clear the PH8 bit in the PORTH_FER register when
booting from on-chip SPI memory and set PH8 when booting from an
external device.

The bfrom_SpiBoot() routine uses the MDMA0 memory DMA channel
pair and the DMA7 peripheral DMA. Respective wake-up bits must be set
in the SIC_IWRx registers. If a different peripheral DMA channel has been
assigned to the SPI0 controller, use the hook routine to store the MMR
address of the respective DMAx_CONFIG register into the pDmaControlRegis-
ter variable in the ADI_BOOT_DATA structure. Similarly, when using a
different SPI controller than SPI0, write the MMR address of the relevant
SPIx_CTL register into the pControlRegister variable.

BFROM_OTPBOOT
Entry address: 0xEF00 000E

Arguments:

OTP byte address in R0

dFlags in R1

dBlockCount in R2

pCallHook passed over the stack in [FP+0x14]

Updated block count returned in R0

C prototype:

s32 bfrom_OtpBoot (s32 dOtpAddress, s32 dFlags,

 s32 dBlockCount, ADI_BOOT_HOOK_FUNC* pCallHook);
26-100 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
This OTP boot routine processes boot streams residing in the on-chip,
serial OTP memory. Unlike the bfrom_OtpRead() function which uses the
half-page addressing method, this one requires byte addressing. For exam-
ple, set the dOtpAddress argument to 0x400 to process a boot stream
starting from OTP page 0x40. Remember that one OTP page spans 16
bytes.

The bfrom_OtpBoot() routine uses the MDMA0 memory DMA channel
pair. The respective wake-up bit must be set in the SIC_IWRx registers.

BFROM_BOOTKERNEL
Entry address: 0xEF00 0020

Arguments:

pointer to ADI_BOOT_DATA in R0

returns updated source address pSource in R0

C prototype:

s32 bfrom_BootKernel (ADI_BOOT_DATA *p);

This ROM entry provides access to the raw boot kernel routine. It is the
user's responsibility to initialize the items passed in the ADI_BOOT_DATA
structure. Pay particular attention that the function pointers
(pLoadFunction, and pErrorFunction) point to functional routines.
ADSP-BF51x Blackfin Processor Hardware Reference 26-101

Callable ROM Functions for Booting
BFROM_CRC32
Entry address: 0xEF00 0030

Arguments:

pointer to look-up table in R0

pointer to data in R1

dByteCount in R2

initial CRC value in R0

CRC value returned in R0

C prototype:

s32 bfrom_Crc32 (s32 *pLut, void *pData,

 s32 dByteCount, s32 dInitial);

This routine calculates the CRC32 checksum for a given array of bytes.
The look-up table is typically generated by the BFROM_CRC32POLY routine.
During the boot process this routine is called by the BFROM_CRC32CALLBACK
routine. The dInitial value is normally set to zero unless the CRC32 rou-
tine is called in multiple slices. Then, the dInitial parameter expects the
result of the former run.

BFROM_CRC32POLY
Entry address: 0xEF00 0032

Arguments:

pointer to look-up table in R0

polynomial in R1

updated block count returned in R0
26-102 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
C prototype:

s32 bfrom_Crc32Poly (unsigned s32 *pLut, s32 dPolynomial);

This function generates a 1024-byte look-up table from a given CRC
polynomial. During the boot process this routine is hidden by the
BFROM_CRC32INITCODE routine.

BFROM_CRC32CALLBACK
Entry address: 0xEF00 0034

Arguments:

pointer to ADI_BOOT_DATA in R0

pointer to ADI_BOOT_BUFFER in R1* Callback Flags in R2

C prototype:

s32 bfrom_Crc32Callback (ADI_BOOT_DATA *pBS, ADI_BOOT_BUFFER

*pCS, s32 dCbFlags);

This is a wrapper function that ensures the BFROM_CRC32 subroutine fits
into the boot process.

BFROM_CRC32INITCODE
Entry address: 0xEF00 0036

Arguments:
pointer to ADI_BOOT_DATA in R0

C prototype:

void bfrom_Crc32Initcode (ADI_BOOT_DATA *p);

This is an initcode residing in ROM with two jobs:
ADSP-BF51x Blackfin Processor Hardware Reference 26-103

Programming Examples
Register BFROM_CRC32CALLBACK as a callback routine to the pCallback
pointer in ADI_BOOT_DATA.

Call BFROM_CRC32POLY to generate the look-up table.

This function is unlikely to be called by user code directly. This function
is called as an initcode during the boot process when the CRC calculation
is desired. See “CRC Checksum Calculation” on page 26-45 for details.

Programming Examples
This section contains the following programming examples:

• “System Reset”

• “Exiting Reset to User Mode” on page 26-105

• “Exiting Reset to Supervisor Mode” on page 26-106

• “Initcode (SDRAM Controller Setup)” on page 26-107

• “Initcode (Power Management Control)” on page 26-109

• “Quickboot With Restore From SDRAM” on page 26-112

• “XOR Checksum” on page 26-113

• “Direct Code Execution” on page 26-115

• “Managing PBS Pages in OTP Memory” on page 26-116

System Reset
To perform a system reset, use the code shown in Listing 26-1 or
Listing 26-2.
26-104 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Listing 26-1. System Reset in Assembly

#include <blackfin.h>

P0.L = LO(BFROM_SYSCONTROL);

P0.H = HI(BFROM_SYSCONTROL);

R0.L = LO(SYSCTRL_SYSRESET);

R0.H = HI(SYSCTRL_SYSRESET);

R1 = 0;

R2 = 0;

CALL (P0);

Listing 26-2. System Reset in C Language

bfrom_SysControl(SYSCTRL_SYSRESET, 0, NULL);

Exiting Reset to User Mode
To exit reset while remaining in user mode, use the code shown in
Listing 26-3.

Listing 26-3. Exiting Reset to User Mode

_reset: P1.L = LO(_usercode); /* Point to start of user code */

P1.H = HI(_usercode);

RETI = P1; /* Load address of _start into RETI */

RTI; /* Exit reset priority */

_reset.end:

_usercode: /* Place user code here */

...

The reset handler most likely performs additional tasks not shown in the
examples above. Stack pointers and EVTx registers are initialized here.
ADSP-BF51x Blackfin Processor Hardware Reference 26-105

Programming Examples
Exiting Reset to Supervisor Mode
To exit reset while remaining in supervisor mode, use the code shown in
Listing 26-4.

Listing 26-4. Exiting Reset by Staying in Supervisor Mode

_reset:

P0.L = LO(EVT15); /* Point to IVG15 in Event Vector Table */

P0.H = HI(EVT15);

P1.L = LO(_isr_IVG15); /* Point to start of IVG15 code */

P1.H = HI(_isr_IVG15);

[P0] = P1; /* Initialize interrupt vector EVT15 */

P0.L = LO(IMASK); /* read-modify-write IMASK register */

R0 = [P0]; /* to enable IVG15 interrupts */

R1 = EVT_IVG15 (Z);

R0 = R0 | R1; /* set IVG15 bit */

[P0] = R0; /* write back to IMASK */

RAISE 15; /* generate IVG15 interrupt request */

/* IVG 15 is not served until reset handler returns */

P0.L = LO(_usercode);

P0.H = HI(_usercode);

RETI = P0; /* RETI loaded with return address */

RTI; /* Return from Reset Event */

_reset.end:

_usercode: /* Wait in user mode till IVG15 */

JUMP _usercode; /* interrupt is serviced */

_isr_IVG15: /* IVG15 vectors here due to EVT15 */

...
26-106 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Initcode (SDRAM Controller Setup)
Listing 26-5 shows an example of initcode to setup the SDRAM control-
ler. The SDRAM controller must be initialized before data can be booted
into it. Therefore, the SDRAM controller is typically initialized by an
initcode or by the preboot functionality. The following initcode example
assumes that the preboot did not do the job.

Listing 26-5. Example Initcode (SDRAM Controller Setup) in C
Language

#include <ccblkfn.h>

void init_SDRAM(void)

{

 while((*pEBIU_SDSTAT & SDCI) == 0){}

 /* clear SDRAM EAB sticky error status (W1C) */

 *pEBIU_SDSTAT |= SDEASE;

 /* SDRAM Refresh Rate Control Register */

 *pEBIU_SDRRC = 0x026B;

 /* SDRAM Memory Bank Control Register */

 *pEBIU_SDBCTL = (EBE|EBSZ_64|EBCAW_10);

 /* SDRAM Memory Global Control Register */

 *pEBIU_SDGCTL =

(EMREN|SCTLE|PSS|TWR_2|TRCD_2|TRP_2|TRAS_4|PASR_ALL|CL_3);

 /* Finalize SDC initialization */

 pTmp = (u16*) 0x0;

 *pTmp = 0xBEEF;

 while((*pEBIU_SDSTAT & SDRS) == 1){}

}

ADSP-BF51x Blackfin Processor Hardware Reference 26-107

Programming Examples
Listing 26-6. Example Initcode (SDRAM Controller Setup) in Assembly

#include <blackfin.h>

/* Load Immediate 32-bit value into data or address register */

#define IMM32(reg,val) reg##.H=hi(val); reg##.L=lo(val)

.SECTION L1_code;

init_SDRAM:

link 0;

[--SP] = ASTAT;

[--SP] = (R7:7, P5:4);

IMM32(P5, EBIU_SDRRC);

PollSdcIdle:

R7 = w[P5 + EBIU_SDSTAT - EBIU_SDRRC] (z);

CC = bittst(R7,bitpos(SDCI));

if!CC jump PollSdcIdle;

/* clear SDRAM EAB sticky error status (W1C) */

R7 = SDEASE(z);

w[P5 + EBIU_SDSTAT - EBIU_SDRRC] = R7;

/* SDRAM Refresh Rate Control Register */

R7.L = 0x026B;

w[P5 + EBIU_SDRRC - EBIU_SDRRC] = R7;

/* SDRAM Memory Bank Control Register */

R7.L = (EBE|EBSZ_64|EBCAW_10);

w[P5 + EBIU_SDBCTL - EBIU_SDRRC] = R7;

/* SDRAM Memory Global Control Register */

IMM32(R7,(SCTLE|PSS|TWR_2|TRCD_2|TRP_2|TRAS_4|PASR_ALL|CL_3));

[P5 + EBIU_SDGCTL - EBIU_SDRRC] = R7;

/* Finalize SDC initialization */

/* a transfer is required to finalize SDC initialization! */

IMM32(P4,0x4);

nop;

R7 = [P4];

PollSdcPowerUpFinished:

R7 = w[P5 + EBIU_SDSTAT - EBIU_SDRRC] (z);
26-108 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
CC = bittst(R7,bitpos(SDRS));

if CC jump PollSdcPowerUpFinished;

(R7:7,P5:4) = [SP++];

ASTAT = [SP++];

unlink;

rts;

init_SDRAM.end:

Since this initcode needs to be executed only once, it can be volatile and
can be overwritten by other boot blocks.

Initcode (Power Management Control)
The following examples show how to change PLL and the voltage regula-
tor within an initcode. The examples assume that the preboot did not do
the job already.

Because the ADSP-BF51x Blackfin is a low power processor, the maxi-
mum clock (~80MHz) of the SDRAM controller is lower than the
maximum possible system clock (133MHz). See the current data sheets
for the actual values if SDRAM is in use.

The ADSP-BF51x processors do not have an on-chip voltage regulator.
Set the bfrom_SysControl option to SYSCTRL_EXTVOLTAGE.
ADSP-BF51x Blackfin Processor Hardware Reference 26-109

Programming Examples
Listing 26-7. Changing PLL and Voltage Regulator in C Language

#include <ccblkfn.h>

#include <bfrom.h>

void init_DPM(ADI_BOOT_DATA* pBS)

{

 ADI_SYSCTRL_VALUES init_DPM;

 init_DPM.uwPllCtl = SET_MSEL(12);

 init_DPM.uwPllDiv = (SET_SSEL(4) | CSEL_DIV1);

 init_DPM.uwPllLockCnt = 0x0200;

 bfrom_SysControl(SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL |

 SYSCTRL_PLLDIV | SYSCTRL_LOCKCNT | SYSCTRL_WRITE, &init_DPM,

NULL);

}

Listing 26-8. Changing PLL and Voltage Regulator in Assembly

#include <blackfin.h>

#include <bfrom.h>

.import "bfrom.h";

/* Load Immediate 32-bit value into data or address register */

#define IMM32(reg,val) reg##.H=hi(val); reg##.L=lo(val)

.SECTION L1_code;

init_DPM:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:5);

SP += -12;
26-110 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
R0.L = SET_MSEL(12);

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllCtl)] = R0;

R0.L = (SET_SSEL(4) | CSEL_DIV1);

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllDiv)] = R0;

R0.L = 0x0200;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+offse-

tof(ADI_SYSCTRL_VALUES,uwPllLockCnt)] = R0;

R0 = (SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL | SYSCTRL_PLLDIV |

SYSCTRL_LOCKCNT | SYSCTRL_WRITE);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P5,BFROM_SYSCONTROL);

call(P5);

SP += 12;

(R7:0,P5:5) = [SP++];

unlink;

rts;

init_DPM.end:

Care must be taken that the reprogramming of the PLL does not break the
communication with the booting host. For example, in the case of UART
boot, the UARTx_DLL and UARTx_DLH registers must be updated to keep the
old bit rate.
ADSP-BF51x Blackfin Processor Hardware Reference 26-111

Programming Examples
Quickboot With Restore From SDRAM
This example could be part of an advanced power saving concept. Assume
the Blackfin is waking up from hibernate and processing any master boot
mode. If the SDRAM has not been shut down, but was put in self-refresh
mode, the content of the SDRAM will still be valid after wake up. The
boot process would only have to initialize on-chip memories. Several boot
blocks might be tagged by the BFLAG_QUICKBOOT flag.

Some applications might use a power-down handler that saves the con-
tents of L1 memory to SDRAM before entering the hibernate state.
Listing 26-9 assumes a suitable power-down handler was present that gen-
erated a partial boot stream in SDRAM at address 0x0001 0000
containing all the instructions required to restore the L1 memory
contents.

Listing 26-9. Quickboot with Restore from SDRAM

void L1_recovery_initcode (ADI_BOOT_DATA *pBS)

{

if (pBS->dFlags & BFLAG_WAKEUP) {

bfrom_MemBoot((void*)0x00010000, BFLAG_RETURN, NULL);

}

}

The boot stream generated at 0x0001 0000 will only be processed upon a
wake-up condition. The BFLAG_RETURN ensures that the new instance of
the boot kernel returns to the initcode rather than jumps to the EVT1
vector.
26-112 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
XOR Checksum
Listing 26-10 illustrates how an initcode can be used to register a callback
routine. The routine is called after each boot block that has the
BFLAG_CALLBACK flag set. The calculated XOR checksum is compared
against the block header ARGUMENT field. When the checksum fails, this
example goes into idle mode. Otherwise control is returned to the boot
kernel.

Since this callback example accesses the data after it is loaded, it would fail
if the target address were in L1 instruction space. Therefore the
BFLAG_INDIRECT flag should also be set. The xor_callback routine could
then perform the checksum calculation at an intermediate storage place.
The boot kernel transfers the data from the temporary buffer to the final
destination after the callback routine returns.

In general, the block size is bigger than the size of the temporary buffer.
Therefore, the boot kernel may need to divide the processing of a single
block into multiple steps. The callback routine may also need to be
invoked multiple times—every time the temporary buffer is filled up and
once for the remaining bytes. The boot kernel passes the dFlags parame-
ter, so that the callback routines knows whether it is called the first time,
the last time or neither. The dUserLong variable in the ADI_BOOT_DATA
structure is used to store the intermediate results between function calls.

Listing 26-10. XOR Checksum

s32 xor_callback(ADI_BOOT_DATA* pBS, ADI_BOOT_BUFFER* pCS, s32

dFlags)

{

s32 i;

if ((pCS!= NULL) && (pBS->pHeader!= NULL)) {

if (dFlags & CBFLAG_FIRST) {

pBS->dUserLong = 0;

}

ADSP-BF51x Blackfin Processor Hardware Reference 26-113

Programming Examples
for (i=0; i<pCS->dByteCount/sizeof(s32); i++)

{

pBS->dUserLong^= ((s32 *)pCS->pSource)[i];

}

if (dFlags & CBFLAG_FINAL) {

if (pBS->dUserLong!= pBS->pHeader->dArgument) {

idle ();

}

}

}

return 0;

}

void xor_initcode (ADI_BOOT_DATA *pBS)

{

pBS->pCallBackFunction = xor_callback;

}

Note that the callback routine is not volatile. It should not be overwritten
by subsequent boot blocks. It can, however, be overwritten after process-
ing the last block with BFLAG_CALLBACK flag set.

The checksum algorithm must be booted first and cannot protect itself.
Problems can be avoided by letting initcode and callback execute directly
from off-chip flash memory. The ADSP-BF51x processors provide a
CRC32 checksum algorithm in the on-chip L1 instruction ROM, that can
be used for booting under this scenario. For more information see “CRC
Checksum Calculation” on page 26-45.
26-114 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Direct Code Execution
This code example illustrates how to instruct the CCES or VisualDSP++
tools to generate a flash image that causes the boot kernel to start code
execution at flash address 0x2000 0020 rather than performing a regular
boot. See “Direct Code Execution” on page 26-33.

First, a 32-byte data block is defined in an assembly file that contains the
initial block.

.section bootblock;

.global _firstblock;

.var _firstblock[4] = 0xAD7BD006,

0x20000020, 0x00000010, 0x00000010;

Then, the linker is instructed to map the initial block to address
0x2000 0000 in the LDF file.

MEMORY

{

MEM_ASYNC0

{

START(0x20000000)

END(0x23FFFFFF)

TYPE(ROM)

WIDTH(8)

}

}

PROCESSOR p0

{

RESOLVE(_firstblock,0x20000000)

RESOLVE(start,0x20000020)

KEEP(start,_firstblock)
ADSP-BF51x Blackfin Processor Hardware Reference 26-115

Programming Examples
SECTIONS

{

flash

{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(program)

$LIBRARIES(program))

INPUT_SECTIONS($OBJECTS(bootblock))

} >MEM_ASYNC0

}

}

To invoke the elfloader utility, activate the meminit feature and use the
command-line switches –romsplitter and –maskaddr. Refer to the appli-
cation note Running Programs from Flash on ADSP-BF533 Blackfin
Processors (EE-239) for further details.

Managing PBS Pages in OTP Memory
The following code snips illustrate how to read and write OTP memory,
as it is required for the Preboot Settings (PBS). For detailed description of
OTP API functions bfrom_OtpCommand(), bfrom_OtpRead() and
bfrom_OtpWrite() used here, see Chapter 3, “One-Time Programmable
Memory”.

The first example reads PBS settings from OTP and stores them into an
instance of the ADI_PBS_BLOCK structure. This is a union composite of the
ADI_PBS_HALFPAGES or the ADI_PBS_BITFIELDS types. These structure
types are defined in the bfrom.h header file. The dPbsSet variable
describes the set of PBS pages of interest. A 0x00 value reads from OTP
pages 0x18 to 0x1B. A 0x01 value reads from OTP pages 0x1C to 0x1F
and so on.
26-116 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Listing 26-11. Reading a Set of PBS Pages from OTP Memory

#include <blackfin.h>

#include <bfrom.h>

ADI_PBS_BLOCK PBS;

u32 dPbsSet = 0;

bfrom_OtpCommand(OTP_INIT, OTP_INIT_VALUE);

bfrom_OtpRead(PBS00+dPbsSet*4,OTP_LOWER_HALF,

&(PBS.HalfPages.uqPbs00L));

bfrom_OtpRead(PBS00+dPbsSet*4,

OTP_UPPER_HALF,&(PBS.HalfPages.uqPbs00H));

bfrom_OtpRead(PBS01+dPbsSet*4,OTP_LOWER_HALF,

&(PBS.HalfPages.uqPbs01L));

bfrom_OtpRead(PBS01+dPbsSet*4,OTP_UPPER_HALF,

&(PBS.HalfPages.uqPbs01H));

bfrom_OtpRead(PBS02+dPbsSet*4,OTP_LOWER_HALF,

&(PBS.HalfPages.uqPbs02L));

bfrom_OtpCommand(OTP_CLOSE, 0);

The next example shows how PBS pages can be written.

Listing 26-12. Programming a Set of PBS Pages from OTP Memory

#include <blackfin.h>

#include <bfrom.h>

ADI_PBS_BLOCK PBS;

u32 dPbsSet = 0;

/* fill PBS with meaningful data */

bfrom_OtpCommand(OTP_INIT, OTP_INIT_VALUE);

bfrom_OtpWrite(PBS00+dPbsSet*4, OTP_LOWER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs00L));

bfrom_OtpWrite(PBS00+dPbsSet*4, OTP_UPPER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs00H));

bfrom_OtpWrite(PBS01+dPbsSet*4, OTP_LOWER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs01L));
ADSP-BF51x Blackfin Processor Hardware Reference 26-117

Programming Examples
bfrom_OtpWrite(PBS01+dPbsSet*4, OTP_UPPER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs01H));

bfrom_OtpWrite(PBS02+dPbsSet*4, OTP_LOWER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs02L));

bfrom_OtpWrite(PBS02+dPbsSet*4, OTP_UPPER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs02H));

bfrom_OtpWrite(PBS03+dPbsSet*4, OTP_LOWER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs03L));

bfrom_OtpWrite(PBS03+dPbsSet*4, OTP_UPPER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs03H));

bfrom_OtpCommand(OTP_CLOSE, 0);

If a set of PBS pages has been written earlier, but need to be replaced by a
new set, the old PBS pages have to be invalidated. Do not use the
OTP_CHECK_FOR_PREV_WRITE option in this case.

Listing 26-13. Invalidating a Set of PBS Pages

#include <blackfin.h>

#include <bfrom_h>

u32 dPbsSet = 0;

u64 dlInvalidate = (u64)0xC000000000000000;

bfrom_OtpWrite(PBS00+dPbsSet*4,

bfrom_OtpCommand(OTP_INIT, OTP_INIT_VALUE);

OTP_LOWER_HALF | OTP_NO_ECC, &dlInvalidate);

bfrom_OtpCommand(OTP_CLOSE, 0);

dPbsSet++;

/* write next set as in Listing x-2 */

For production you may want to lock the PBS pages to protect them from
being overwritten in the field. This can be performed by the following
instructions.
26-118 ADSP-BF51x Blackfin Processor Hardware Reference

System Reset and Booting
Listing 26-14. Write-protecting a Set of PBS Pages

#include <blackfin.h>

#include <bfrom.h>

u32 dPbsSet = 0;

bfrom_OtpCommand(OTP_INIT, OTP_INIT_VALUE);

bfrom_OtpWrite(PBS00+dPbsSet*4, OTP_LOCK, NULL);

bfrom_OtpWrite(PBS01+dPbsSet*4, OTP_LOCK, NULL);

bfrom_OtpWrite(PBS02+dPbsSet*4, OTP_LOCK, NULL);

bfrom_OtpWrite(PBS03+dPbsSet*4, OTP_LOCK, NULL);

bfrom_OtpCommand(OTP_CLOSE, 0);

When locking PBS pages remember to duplicate the active set of PBS
pages best reliability. In the above examples, if the dPbsSet*4 contains the
final configuration, then program set 5 with the same data. For complete-
ness, note that the above code example does not lock the ECC fields
corresponding to the PBS pages. See Chapter 3, “One-Time Programma-
ble Memory” for details.
ADSP-BF51x Blackfin Processor Hardware Reference 26-119

Programming Examples

26-120 ADSP-BF51x Blackfin Processor Hardware Reference

System Design
27 SYSTEM DESIGN

This chapter provides hardware, software and system design information
to aid users in developing systems based on the Blackfin processor. The
design options implemented in a system are influenced by cost, perfor-
mance, and system requirements. In many cases, design issues cited here
are discussed in detail in other sections of this manual. In such cases, a ref-
erence appears to the corresponding section of the text, instead of
repeating the discussion in this chapter.

Pin Descriptions
Refer to the processor data sheet for pin information, including pin
numbers.

Managing Clocks
Systems can drive the clock inputs with a crystal oscillator or a buffered,
shaped clock derived from an external clock oscillator. The external clock
connects to the processor’s CLKIN pin. It is not possible to halt, change, or
operate CLKIN below the specified frequency during normal operation. The
processor uses the clock input (CLKIN) to generate on-chip clocks. These
include the core clock (CCLK) and the peripheral clock (SCLK).
ADSP-BF51x Blackfin Processor Hardware Reference 27-1

Configuring and Servicing Interrupts
Managing Core and System Clocks
The processor produces a multiplication of the clock input provided on
the CLKIN pin to generate the PLL VCO clock. This VCO clock is divided to
produce the core clock (CCLK) and the system clock (SCLK). The core clock
is based on a divider ratio that is programmed via the CSEL bit settings in
the PLL_DIV register. The system clock is based on a divider ratio that is
programmed via the SSEL bit settings in the PLL_DIV register. For detailed
information about how to set and change CCLK and SCLK frequencies, see
Chapter 8, “Dynamic Power Management”.

Configuring and Servicing Interrupts
A variety of interrupts are available. They include both core and periph-
eral interrupts. The processor assigns default core priorities to system-level
interrupts. However, these system interrupts can be remapped via the sys-
tem interrupt assignment registers (SIC_IARx). For more information, see
Chapter 5, “System Interrupts”.

The processor core supports nested and non-nested interrupts, as well as
self-nested interrupts. For explanations of the various modes of servicing
events, see Blackfin Processor Programming Reference.

Semaphores
Semaphores provide a mechanism for communication between multiple
processors or processes/threads running in the same system. They are used
to coordinate resource sharing. For instance, if a process is using a particu-
lar resource and another process requires that same resource, it must wait
until the first process signals that it is no longer using the resource. This
signalling is accomplished via semaphores.
27-2 ADSP-BF51x Blackfin Processor Hardware Reference

System Design
Semaphore coherency is guaranteed by using the test and set byte (atomic)
instruction (TESTSET). The TESTSET instruction performs these functions.

• Loads the half word at memory location pointed to by a P-register.
The P-register must be aligned on a half-word boundary.

• Sets CC if the value is equal to zero.

• Stores the value back in its original location (but with the most sig-
nificant bit (MSB) of the low byte set to 1).

The events triggered by TESTSET are atomic operations. The bus for the
memory where the address is located is acquired and not relinquished
until the store operation completes. In multithreaded systems, the TESTSET
instruction is required to maintain semaphore consistency.

To ensure that the store operation is flushed through any store or write
buffers, issue an SSYNC instruction immediately after semaphore release.

The TESTSET instruction can be used to implement binary semaphores or
any other type of mutual exclusion method. The TESTSET instruction sup-
ports a system-level requirement for a multicycle bus lock mechanism.

The processor restricts use of the TESTSET instruction to the external mem-
ory region only. Use of the TESTSET instruction to address any other area
of the memory map may result in unreliable behavior.

Example Code for Query Semaphore
Listing 27-1 provides an example of a query semaphore that checks the
availability of a shared resource.

Listing 27-1. Query Semaphore

/* Query semaphore. Denotes “Busy” if its value is nonzero. Wait

until free (or reschedule thread-- see note below). P0 holds

address of semaphore. */
ADSP-BF51x Blackfin Processor Hardware Reference 27-3

Data Delays, Latencies and Throughput
QUERY:

TESTSET (P0) ;

IF !CC JUMP QUERY ;

/* At this point, semaphore has been granted to current thread,

and all other contending threads are postponed because semaphore

value at [P0] is nonzero. Current thread could write thread_id to

semaphore location to indicate current owner of resource. */

R0.L = THREAD_ID ;

B[P0] = R0 ;

/* When done using shared resource, write a zero byte to [P0] */

R0 = 0 ;

B[P0] = R0 ;

SSYNC ;

/* NOTE: Instead of busy idling in the QUERY loop, one can use an

operating system call to reschedule the current thread. */

Data Delays, Latencies and Throughput
For detailed information on latencies and performance estimates on the
DMA and external memory buses, refer to Chapter 4, “Chip Bus
Hierarchy”.

Bus Priorities
For an explanation of prioritization between the various internal buses,
refer to Chapter 4, “Chip Bus Hierarchy”.
27-4 ADSP-BF51x Blackfin Processor Hardware Reference

System Design
External Memory Design Issues
This section describes design issues related to external memory.

Example Asynchronous Memory Interfaces
This section shows glueless connections to 16-bit wide SRAM. Note this
interface does not require external assertion of ARDY, since the internal wait
state counter is sufficient for deterministic access times of memories.

Figure 27-1 shows the interface to 8-bit SRAM or flash.

Figure 27-1. Interface to 8-Bit SRAM or Flash

BLACKFIN 8-BIT SRAM
OR FLASH

[X]

DATA[7:0]

ARDY

BE[1:0]

D[7:0]

ADDR[N+1:1] A[N:0]

ARE

[1:0]ABE

AWE

AOE

AMS [X]AMS

R/W OR

OE

WR
ADSP-BF51x Blackfin Processor Hardware Reference 27-5

External Memory Design Issues
Figure 27-2 shows the interface to 16-bit SRAM or flash.

Figure 27-3 shows the system interconnect required to support 16-bit
memories. Note this application requires the 16-bit packing mode be
enabled for this bank of memory. Otherwise, the programming model
must ensure that every other 16-bit memory location is accessed starting
on an even (byte address[1:0] = 00) 16-bit address.

Figure 27-2. Interface to 16-Bit SRAM or Flash

BLACKFIN

DATA[15:0]

ARDY

R/W OR

16-BIT SRAM
OR FLASH

BE[1:0]

D[15:0]

ADDR[N+1:1] A[N:0]

ARE

AWE

AOE OE

[X]AMS [X]AMS

[1:0]ABE

WR
27-6 ADSP-BF51x Blackfin Processor Hardware Reference

System Design
Avoiding Bus Contention
Because the three-stated data bus is shared by multiple devices in a system,
be careful to avoid contention. Contention causes excessive power dissipa-
tion and can lead to device failure. Contention occurs during the time one
device is getting off the bus and another is getting on. If the first device is
slow to three-state and the second device is quick to drive, the devices
contend.

There are two cases where contention can occur. The first case is a read
followed by a write to the same memory space. In this case, the data bus
drivers can potentially contend with those of the memory device addressed
by the read. The second case is back-to-back reads from two different
memory spaces. In this case, the two memory devices addressed by the two
reads can potentially contend at the transition between the two read
operations.

Figure 27-3. Interface to 16-Bit SRAM

ADDR[N + 1:2]

DATA[15:0]

ARDY

CE

OE

R/W

SRAM

BE[1:0]

A[N:1]

D[15:0]

ADDR[1]

BLACKFIN

A[0]

AWE

AOE

[X]AMS

[1:0]ABE

ARE
ADSP-BF51x Blackfin Processor Hardware Reference 27-7

High-Frequency Design Considerations
To avoid contention, program the turnaround time (bank transition time)
appropriately in the asynchronous memory bank control registers. This
feature allows software to set the number of clock cycles between these
types of accesses on a bank-by-bank basis. Minimally, the external bus
interface unit (EBIU) provides one cycle for the transition to occur.

High-Frequency Design Considerations
Because the processor can operate at very fast clock frequencies, signal
integrity and noise problems must be considered for circuit board design
and layout. The following sections discuss these topics and suggest various
techniques to use when designing and debugging signal processing
systems.

Signal Integrity
In addition to reducing signal length and capacitive loading, critical sig-
nals should be treated like transmission lines.

Capacitive loading and signal length of buses can be reduced by using a
buffer for devices that operate with wait states (for example, SDRAMs).
This reduces the capacitance on signals tied to the zero-wait-state devices,
allowing these signals to switch faster and reducing noise-producing cur-
rent spikes. Extra care should be taken with certain signals such as external
memory, read, write, and acknowledge strobes.

Use simple signal integrity methods to prevent transmission line reflec-
tions that may cause extraneous extra clock and sync signals. Additionally,
avoid overshoot and undershoot that can cause long term damage to input
pins.

Some signals are especially critical for short trace length and usually
require series termination. The CLKIN pin should have impedance match-
ing series resistance at its driver. SPORT interface signals TCLK, RCLK, RFS,
27-8 ADSP-BF51x Blackfin Processor Hardware Reference

System Design
and TFS should use some termination. Although the serial ports may be
operated at a slow rate, the output drivers still have fast edge rates and for
longer distances the drivers often require resistive termination located at
the source. (Note also that TFS and RFS should not be shorted in
multi-channel mode.) On the PPI interface, the PPI_CLK and SYNC signals
also benefit from these standard signal integrity techniques. If these pins
have multiple sources, it will be difficult to keep the traces short. Consider
termination of SDRAM clocks, control, address, and data to improve sig-
nal quality and reduce unwanted EMI.

Adding termination to fix a problem on an existing board requires delays
for new artwork and new boards. A transmission line simulator is recom-
mended for critical signals. IBIS models are available from Analog Devices
Inc. that will assist signal simulation software. Some signals can be cor-
rected with a small zero or 22 ohm resistor located near the driver. The
resistor value can be adjusted after measuring the signal at all endpoints.

For details, see the reference sources in “Recommended Reading” on
page 27-12 for suggestions on transmission line termination.

Other recommendations and suggestions to promote signal integrity:

• Use more than one ground plane on the Printed Circuit Board
(PCB) to reduce crosstalk. Be sure to use lots of vias between the
ground planes.

• Keep critical signals such as clocks, strobes, and bus requests on a
signal layer next to a ground plane and away from or laid out per-
pendicular to other non-critical signals to reduce crosstalk.

• Experiment with the board and isolate crosstalk and noise issues
from reflection issues. This can be done by driving a signal wire
from a pulse generator and studying the reflections while other
components and signals are passive.
ADSP-BF51x Blackfin Processor Hardware Reference 27-9

High-Frequency Design Considerations
Decoupling Capacitors and Ground Planes
Ground planes must be used for the ground and power supplies. The
capacitors should be placed very close to the VDDEXT and VDDINT pins of the
package as shown in Figure 27-4. Use short and fat traces for this. The
ground end of the capacitors should be tied directly to the ground plane
inside the package footprint of the processor (underneath it, on the bot-
tom of the board), not outside the footprint. A surface-mount capacitor is
recommended because of its lower series inductance.

Connect the power plane to the power supply pins directly with minimum
trace length. A ground plane should be located near the component side of
the board to reduce the distance that ground current must travel through
vias. The ground planes must not be densely perforated with vias or traces
as their effectiveness is reduced.

VDDINT is the highest frequency and requires special attention. Two things
help power filtering above 100 MHz. First, capacitors should be physically
small to reduce the inductance. Surface mount capacitors of size 0402 give
better results than larger sizes. Secondly, lower values of capacitance will
raise the resonant frequency of the LC circuit. While a cluster of 0.1F is
acceptable below 50 MHz, a mix of 0.1F, 0.01F, 0.001F and even 100
pF is preferred in the 500 MHz range.

Note that the instantaneous voltage on both internal and external power
pins must at all times be within the recommended operating conditions as
specified in the product data sheet. Local “bulk capacitance” (many micro-
farads) is also necessary. Although all capacitors should be kept close to
the power consuming device, small capacitance values should be the clos-
est and larger values may be placed further from the chip.
27-10 ADSP-BF51x Blackfin Processor Hardware Reference

System Design
5 Volt Tolerance
Outputs that connect to inputs on 5 V devices can float or be pulled up to
5 V. Most Blackfin pins are not 5 V tolerant. There are a few exceptions
such as the TWI pins. Level shifters are required on all other Blackfin pins
to keep the pin voltage at or below absolute maximum ratings.

Figure 27-4. Bypass Capacitor Placement

CASE 1:
BYPASS CAPACITORS ON NON-
COMPONENT (BOTTOM) SIDE OF
BOARD, BENEATH PACKAGE

a

B
ADSP -BF51x

CASE 2:
BYPASS CAPACITORS ON
COMPONENT (TOP) SIDE OF
BOARD, AROUND PACKAGE
ADSP-BF51x Blackfin Processor Hardware Reference 27-11

High-Frequency Design Considerations
Test Point Access
The debug process is aided by test points on signals such as CLKOUT or
SCLK, bank selects, PPICLK, and RESET. If selection pins such as boot mode
are connected directly to power or ground, they are inaccessible under a
BGA chip. Use pull-up and pull-down resistors instead.

Oscilloscope Probes
When making high-speed measurements, be sure to use a “bayonet” type
or similarly short (< 0.5 inch) ground clip, attached to the tip of the oscil-
loscope probe. The probe should be a low-capacitance active probe
with 3 pF or less of loading. The use of a standard ground clip with
4 inches of ground lead causes ringing to be seen on the displayed trace
and makes the signal appear to have excessive overshoot and undershoot.
To see the signals accurately, a 1 GHz or better sampling oscilloscope is
needed.

Recommended Reading
 For more information, refer to High-Speed Digital Design: A Handbook of
Black Magic, Johnson & Graham, Prentice Hall, Inc., ISBN
0-13-395724-1.

This book is a technical reference that covers the problems encountered in
state of the art, high-frequency digital circuit design. It is an excellent
source of information and practical ideas. Topics covered in the book
include:

• High-speed properties of logic gates

• Measurement techniques

• Transmission lines

• Ground planes and layer stacking
27-12 ADSP-BF51x Blackfin Processor Hardware Reference

System Design
• Terminations

• Vias

• Power systems

• Connectors

• Ribbon cables

• Clock distribution

• Clock oscillators

Consult your CAD software tools vendor. Some companies offer demon-
stration versions of signal integrity software. Simply by using their free
software, you can learn:

• Transmission lines are real

• Unterminated printed circuit board traces will ring and have over-
shoot and undershoot

• Simple termination will control signal integrity problems

Resetting the Processor
The reset pin requires a monotonic rise and fall. Therefore the pin should
not be connected directly to an R/C time delay because such a circuit
could be noise sensitive. In addition to the hardware reset mode provided
via the RESET pin, the processor supports several software reset modes. For
detailed information on the various modes, see Blackfin Processor Program-
ming Reference. The processor state after reset is also described in the
programming reference.
ADSP-BF51x Blackfin Processor Hardware Reference 27-13

Recommendations for Unused Pins
Recommendations for Unused Pins
Most often, there is no need to terminate unused pins, but the handful
that do require termination are listed at the end of the pin list description
section of the product data sheet.

If the real-time clock is not used, RTXI should be pulled low.

Also note that unused peripherals may have separate power connections.
These should be driven to the specified value.

Programmable Outputs
During power up, each GPIO pin is set to an input and any pins used in
the system as an output should be connected to a pullup or pulldown
resistor to maintain the desired state.

This would be particularly important in motor drive applications. It is also
important for UART TX and RTS, SPI and serial TWI, or other commu-
nications interfaces. Some memory enable pull-ups may also be desired.

After the boot cycle, each GPIO pin may be set to input or output
depending on ADSP-BF51x model number and the boot cycle chosen.
The I/O / GPIO muxing of all pins may need to be reprogrammed to sup-
port the user’s application. Care should be taken for compatibility of
function and state, before boot, during boot, and application pin usage.

Voltage Regulation Interface
ADSP-BF51x processors must use an external voltage regulator to power
the VDDINT domain. The EXT_WAKE and PG signals can facilitate commu-
nication with the external voltage regulator. EXT_WAKE is high-true for
power-up and low only when the processor is in the hibernate state.
27-14 ADSP-BF51x Blackfin Processor Hardware Reference

System Design
EXT_WAKE may be connected directly to the low-true shut down input of
many common regulators.

The PG (power-good, low-true) signal that allows the processor to start
only after the internal voltage has reached a chosen level. In this way, the
startup time of the external regulator will be detected after hibernation.

If the processor never will enter the hibernate state, the PG signal can be
grounded in this mode. This will always indicate “power good”, meaning
that VDDINT is at a safe operating level. Any delay required at initial
power-on, to guarantee a safe operating level for VDDINT, will be pro-
vided by the RESET signal.

If the external regulator for VDDINT has a power-good signal output, it
can be used to help the processor recover properly from it’s hibernate
state. This signal may need to be inverted, as the processor’s input should
be low-true in order to indicate a “power good” condition.

If the external regulator does not have a power-good output, the PG signal
should be driven to a fixed level (just below the desired operating voltage)
so that the PG pin voltage can be compared to VDDINT by the internal
startup logic. This can be accomplished with an external resistor divider
from VDDEXT or any other fixed stable voltage. A divider with impedance
of 1M Ohm is sufficient to supply current to this PG input. To save even
more current during hibernation, the EXT_WAKE signal may be used as the
voltage source to the divider. EXT_WAKE is low during hibernation, but will
go high before the VDDINT voltage is applied by the external regulator. In
all cases, care should be taken to account for the min and max values of
VDDEXT or VOH for EXT_WAKE. The voltage applied to the PG pin is used as
the threshold that is compared internally to the rising value of VDDINT to
signal the processor to start. The voltage at PG should be calculated such
that the VDDINT value has risen to the desired voltage range for the
application.
ADSP-BF51x Blackfin Processor Hardware Reference 27-15

Voltage Regulation Interface
27-16 ADSP-BF51x Blackfin Processor Hardware Reference

System MMR Assignments
A SYSTEM MMR ASSIGNMENTS

This appendix lists MMR addresses and register names for all system regis-
ters. Table A-1 groups the registers by function/peripheral and indicates
the section later in this chapter where individual registers for that group
are listed. The tables in the later sections cross reference to individual reg-
ister diagrams located in the chapter where that register is described. The
diagrams show individual bit descriptions for each register.

Table A-1. Register Tables in this Chapter

Function/Peripheral

“System Reset and Interrupt Control Registers” on page A-4

“DMA/Memory DMA Control Registers” on page A-5

“External Bus Interface Unit Registers” on page A-9

“Ports Registers” on page A-9

“Timer Registers” on page A-13

“Core Timer Registers” on page A-3

“Watchdog Timer Registers” on page A-15

“GP Counter Registers” on page A-15

“Real-Time Clock Registers” on page A-16

“OTP and Security Registers” on page A-17

“Dynamic Power Management Registers” on page A-17

“Handshake MDMA Control Registers” on page A-7
ADSP-BF51x Blackfin Processor Hardware Reference A-1

These notes provide general information about the system mem-
ory-mapped registers (MMRs):

• The system MMR address range is 0xFFC0 0000 – 0xFFDF FFFF.

• All system MMRs are either 16 bits or 32 bits wide. MMRs that are
16 bits wide must be accessed with 16-bit read or write operations.
MMRs that are 32 bits wide must be accessed with 32-bit read or
write operations. Check the description of the MMR to determine
whether a 16-bit or a 32-bit access is required.

• All system MMR space that is not defined in this appendix is
reserved for internal use only.

“Processor-Specific Memory Registers” on page A-3

“Ethernet MAC Registers” on page A-18

“PPI Registers” on page A-25

“SPI Controller Registers” on page A-25

“SPORT Controller Registers” on page A-26

“UART Controller Registers” on page A-30

“Motor Control PWM Registers” on page A-31

“Removable Storage Interface (RSI) Registers” on page A-32

“IEEE 1588 PTP Registers” on page A-23

“TWI Registers” on page A-34

Table A-1. Register Tables in this Chapter (Continued)

Function/Peripheral
A-2 ADSP-BF51x Blackfin Processor Hardware Reference

System MMR Assignments
Processor-Specific Memory Registers
Processor-specific memory registers (0xFFE0 0004 – 0xFFE0 0300) are
listed in Table A-2.

Core Timer Registers
Core timer registers (0xFFE0 3000 – 0xFFE0 300C) are listed in
Table A-3.

Table A-2. Processor-Specific Memory Registers

Memory-Mapped
Address

Register Name Description

0xFFE0 0004 DMEM_CONTROL “L1 Data Memory Control Register” on page 2-6

0xFFE0 0300 DTEST_COMMAND “Data Test Command Register” on page 2-7

Table A-3. Core Timer Registers

Memory-Mapped
Address

Register Name Description

0xFFE0 3000 TCNTL “Core Timer Control Register” on page 11-5

0xFFE0 3004 TPERIOD “Core Timer Period Register” on page 11-6

0xFFE0 3008 TSCALE “Core Timer Scale Register” on page 11-7

0xFFE0 300C TCOUNT “Core Timer Count Register” on page 11-6
ADSP-BF51x Blackfin Processor Hardware Reference A-3

System Reset and Interrupt Control Registers
System Reset and Interrupt Control
Registers

System reset and interrupt control registers (0xFFC0 0100 –
0xFFC0 01FF) are listed in Table A-4.

Table A-4. System Reset and Interrupt Control Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 0104 SYSCR “System Reset Configuration (SYSCR) Register” on
page 26-76

0xFFC0 010C SIC_IMASK0 “System Interrupt Mask (SIC_IMASK) Register” on
page 5-12

0xFFC0 014C SIC_IMASK1 “System Interrupt Mask (SIC_IMASK) Register” on
page 5-12

0xFFC0 0110 SIC_IAR0 “System Interrupt Assignment (SIC_IAR) Register” on
page 5-11

0xFFC0 0114 SIC_IAR1 “System Interrupt Assignment (SIC_IAR) Register” on
page 5-11

0xFFC0 0118 SIC_IAR2 “System Interrupt Assignment (SIC_IAR) Register” on
page 5-11

0xFFC0 011C SIC_IAR3 “System Interrupt Assignment (SIC_IAR) Register” on
page 5-11

0xFFC0 0150 SIC_IAR4 “System Interrupt Assignment (SIC_IAR) Register” on
page 5-11

0xFFC0 0154 SIC_IAR5 “System Interrupt Assignment (SIC_IAR) Register” on
page 5-11

0xFFC0 0158 SIC_IAR6 “System Interrupt Assignment (SIC_IAR) Register” on
page 5-11

0xFFC0 015C SIC_IAR7 “System Interrupt Assignment (SIC_IAR) Register” on
page 5-11

0xFFC0 0120 SIC_ISR0 “System Interrupt Status (SIC_ISR) Register” on
page 5-12
A-4 ADSP-BF51x Blackfin Processor Hardware Reference

System MMR Assignments
DMA/Memory DMA Control Registers
DMA control registers (0xFFC0 0B00 – 0xFFC0 0FFF) are listed in
Table A-5.

Since each DMA channel has an identical MMR set, with fixed offsets
from the base address associated with that DMA channel, it is convenient
to view the MMR information as provided in Table A-6 and Table A-7.
Table A-6 identifies the base address of each DMA channel, as well as the
register prefix that identifies the channel. Table A-7 then lists the register
suffix and provides its offset from the Base Address.

As an example, the DMA channel 0 Y_MODIFY register is called
DMA0_Y_MODIFY, and its address is 0xFFC0 0C1C. Likewise, the memory

0xFFC0 0160 SIC_ISR1 “System Interrupt Status (SIC_ISR) Register” on
page 5-12

0xFFC0 0124 SIC_IWR0 “System Interrupt Wakeup-Enable (SIC_IWR) Register”
on page 5-12

0xFFC0 0164 SIC_IWR1 “System Interrupt Wakeup-Enable (SIC_IWR) Register”
on page 5-12

Table A-5. DMA Traffic Control Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 0B0C DMA_TC_PER “DMA Traffic Control Counter Period Register” on
page 6-89

0xFFC0 0B10 DMA_TC_CNT “DMA Traffic Control Counter Register” on page 6-89

Table A-4. System Reset and Interrupt Control Registers (Continued)

Memory-Mapped
Address

Register Name Description
ADSP-BF51x Blackfin Processor Hardware Reference A-5

DMA/Memory DMA Control Registers
DMA stream 0 source current address register is called
MDMA_S0_CURR_ADDR, and its address is 0xFFC0 0E64.

Table A-6. DMA Channel Base Addresses

DMA Channel Identifier MMR Base Address Register Prefix

0 0xFFC0 0C00 DMA0_

1 0xFFC0 0C40 DMA1_

2 0xFFC0 0C80 DMA2_

3 0xFFC0 0CC0 DMA3_

4 0xFFC0 0D00 DMA4_

5 0xFFC0 0D40 DMA5_

6 0xFFC0 0D80 DMA6_

7 0xFFC0 0DC0 DMA7_

8 0xFFC0 0E00 DMA8_

9 0xFFC0 0E40 DMA9_

10 0xFFC0 0E80 DMA10_

11 0xFFC0 0EC0 DMA11_

MemDMA stream 0 destination 0xFFC0 0F00 MDMA_D0_

MemDMA stream 0 source 0xFFC0 0F40 MDMA_S0_

MemDMA stream 1 destination 0xFFC0 0F80 MDMA_D1_

MemDMA stream 1 source 0xFFC0 0FC0 MDMA_S1_

Table A-7. DMA Register Suffix and Offset

Register Suffix Offset
From Base

For individual bits, see this diagram:

NEXT_DESC_PTR 0x00 “DMA Next Descriptor Pointer Registers” on page 6-81

START_ADDR 0x04 “DMA Start Address Registers” on page 6-74

CONFIG 0x08 “DMA Configuration Registers” on page 6-67

X_COUNT 0x10 “DMA Inner Loop Count Registers” on page 6-75
A-6 ADSP-BF51x Blackfin Processor Hardware Reference

System MMR Assignments
Handshake MDMA Control Registers
HMDMA registers (0xFFC0 3300 – 0xFFC0 33FF) are listed in
Table A-8.

X_MODIFY 0x14 “DMA Inner Loop Address Increment Registers” on page 6-77

Y_COUNT 0x18 “DMA Outer Loop Count Registers” on page 6-78

Y_MODIFY 0x1C “DMA Outer Loop Address Increment Registers” on page 6-80

CURR_DESC_PTR 0x20 “DMA Current Descriptor Pointer Registers” on page 6-82

CURR_ADDR 0x24 “DMA Current Address Registers” on page 6-75

IRQ_STATUS 0x28 “DMA Interrupt Status Registers” on page 6-72

PERIPHERAL_MAP 0x2C “DMA Peripheral Map Registers” on page 6-66

CURR_X_COUNT 0x30 “DMA Current Inner Loop Count Registers” on page 6-76

CURR_Y_COUNT 0x38 “DMA Current Outer Loop Count Registers” on page 6-79

Table A-8. HMDMA Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 3300 HMDMA0_CONTROL “Handshake MDMA Control Registers” on
page 6-83

0xFFC0 3304 HMDMA0_ECINIT “Handshake MDMA Initial Edge Count
Registers” on page 6-87

0xFFC0 3308 HMDMA0_BCINIT “Handshake MDMA Initial Block Count
Registers” on page 6-84

0xFFC0 330C HMDMA0_ECURGENT “Handshake MDMA Edge Count Urgent
Registers” on page 6-87

0xFFC0 3310 HMDMA0_ECOVERFLOW “Handshake MDMA Edge Count Overflow
Interrupt Registers” on page 6-88

Table A-7. DMA Register Suffix and Offset (Continued)

Register Suffix Offset
From Base

For individual bits, see this diagram:
ADSP-BF51x Blackfin Processor Hardware Reference A-7

Handshake MDMA Control Registers
0xFFC0 3314 HMDMA0_ECOUNT “Handshake MDMA Initial Edge Count
Registers” on page 6-87

0xFFC0 3318 HMDMA0_BCOUNT “Handshake MDMA Current Block Count
Registers” on page 6-85

0xFFC0 3340 HMDMA1_CONTROL “Handshake MDMA Control Registers” on
page 6-83

0xFFC0 3344 HMDMA1_ECINIT “Handshake MDMA Initial Edge Count
Registers” on page 6-87

0xFFC0 3348 HMDMA1_BCINIT “Handshake MDMA Initial Block Count
Registers” on page 6-84

0xFFC0 334C HMDMA1_ECURGENT “Handshake MDMA Edge Count Urgent
Registers” on page 6-87

0xFFC0 3350 HMDMA1_ECOVERFLOW “Handshake MDMA Edge Count Overflow
Interrupt Registers” on page 6-88

0xFFC0 3354 HMDMA1_ECOUNT “Handshake MDMA Initial Edge Count
Registers” on page 6-87

0xFFC0 3358 HMDMA1_BCOUNT “Handshake MDMA Current Block Count
Registers” on page 6-85

Table A-8. HMDMA Registers (Continued)

Memory-Mapped
Address

Register Name Description
A-8 ADSP-BF51x Blackfin Processor Hardware Reference

System MMR Assignments
External Bus Interface Unit Registers
External bus interface unit registers (0xFFC0 0A00 – 0xFFC0 0AFF) are
listed in Table A-9.

Ports Registers
Ports registers (port F: 0xFFC0 0700 – 0xFFC0 07FF, port G:
0xFFC0 1500 – 0xFFC0 15FF, port H: 0xFFC0 1700 – 0xFFC0 17FF,
pin control: 0xFFC0 3200 – 0xFFC0 32FF) are listed in Table A-10.

Table A-9. External Bus Interface Unit Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 0A00 EBIU_AMGCTL “Asynchronous Memory Global Control Register” on
page 7-20

0xFFC0 0A04 EBIU_AMBCTL0 “Asynchronous Memory Bank Control 0 Register” on
page 7-21

0xFFC0 0A08 EBIU_AMBCTL1 “Asynchronous Memory Bank Control 1 Register” on
page 7-22

0xFFC0 0A10 EBIU_SDGCTL “SDRAM Memory Global Control Register” on
page 7-67

0xFFC0 0A14 EBIU_SDBCTL “SDRAM Memory Bank Control Register” on page 7-63

0xFFC0 0A18 EBIU_SDRRC “SDRAM Refresh Rate Control Register” on page 7-60

0xFFC0 0A1C EBIU_SDSTAT “SDRAM Control Status Register” on page 7-76

Table A-10. Ports Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 0700 PORTFIO “GPIO Data Registers” on page 9-34

0xFFC0 0704 PORTFIO_CLEAR “GPIO Clear Registers” on page 9-35
ADSP-BF51x Blackfin Processor Hardware Reference A-9

Ports Registers
0xFFC0 0708 PORTFIO_SET “GPIO Set Registers” on page 9-34

0xFFC0 070C PORTFIO_TOGGLE “GPIO Toggle Registers” on page 9-35

0xFFC0 0710 PORTFIO_MASKA “GPIO Mask Interrupt A Registers” on
page 9-37

0xFFC0 0714 PORTFIO_MASKA_CLEAR “GPIO Mask Interrupt A Clear Registers”
on page 9-41

0xFFC0 0718 PORTFIO_MASKA_SET “GPIO Mask Interrupt A Set Registers” on
page 9-39

0xFFC0 071C PORTFIO_MASKA_TOGGLE “GPIO Mask Interrupt A Toggle Regis-
ters” on page 9-43

0xFFC0 0720 PORTFIO_MASKB “GPIO Mask Interrupt B Registers” on
page 9-38

0xFFC0 0724 PORTFIO_MASKB_CLEAR “GPIO Mask Interrupt B Clear Registers”
on page 9-42

0xFFC0 0728 PORTFIO_MASKB_SET “GPIO Mask Interrupt B Set Registers” on
page 9-40

0xFFC0 072C PORTFIO_MASKB_TOGGLE “GPIO Mask Interrupt B Toggle Regis-
ters” on page 9-44

0xFFC0 0730 PORTFIO_DIR “GPIO Direction Registers” on page 9-33

0xFFC0 0734 PORTFIO_POLAR “GPIO Polarity Registers” on page 9-36

0xFFC0 0738 PORTFIO_EDGE “Interrupt Sensitivity Registers” on
page 9-36

0xFFC0 073C PORTFIO_BOTH “GPIO Set on Both Edges Registers” on
page 9-37

0xFFC0 0740 PORTFIO_INEN “GPIO Input Enable Registers” on
page 9-33

0xFFC0 1500 PORTGIO “GPIO Data Registers” on page 9-34

0xFFC0 1504 PORTGIO_CLEAR “GPIO Clear Registers” on page 9-35

0xFFC0 1508 PORTGIO_SET “GPIO Set Registers” on page 9-34

Table A-10. Ports Registers (Continued)

Memory-Mapped
Address

Register Name Description
A-10 ADSP-BF51x Blackfin Processor Hardware Reference

System MMR Assignments
0xFFC0 150C PORTGIO_TOGGLE “GPIO Toggle Registers” on page 9-35

0xFFC0 1510 PORTGIO_MASKA “GPIO Mask Interrupt A Registers” on
page 9-37

0xFFC0 1514 PORTGIO_MASKA_CLEAR “GPIO Mask Interrupt A Clear Registers”
on page 9-41

0xFFC0 1518 PORTGIO_MASKA_SET “GPIO Mask Interrupt A Set Registers” on
page 9-39

0xFFC0 151C PORTGIO_MASKA_TOGGLE “GPIO Mask Interrupt A Toggle Regis-
ters” on page 9-43

0xFFC0 1520 PORTGIO_MASKB “GPIO Mask Interrupt B Registers” on
page 9-38

0xFFC0 1524 PORTGIO_MASKB_CLEAR “GPIO Mask Interrupt B Clear Registers”
on page 9-42

0xFFC0 1528 PORTGIO_MASKB_SET “GPIO Mask Interrupt B Set Registers” on
page 9-40

0xFFC0 152C PORTGIO_MASKB_TOGGLE “GPIO Mask Interrupt B Toggle Regis-
ters” on page 9-44

0xFFC0 1530 PORTGIO_DIR “GPIO Direction Registers” on page 9-33

0xFFC0 1534 PORTGIO_POLAR “GPIO Polarity Registers” on page 9-36

0xFFC0 1538 PORTGIO_EDGE “Interrupt Sensitivity Registers” on
page 9-36

0xFFC0 153C PORTGIO_BOTH “GPIO Set on Both Edges Registers” on
page 9-37

0xFFC0 1540 PORTGIO_INEN “GPIO Input Enable Registers” on
page 9-33

0xFFC0 1700 PORTHIO “GPIO Data Registers” on page 9-34

0xFFC0 1704 PORTHIO_CLEAR “GPIO Clear Registers” on page 9-35

0xFFC0 1708 PORTHIO_SET “GPIO Set Registers” on page 9-34

0xFFC0 170C PORTHIO_TOGGLE “GPIO Toggle Registers” on page 9-35

Table A-10. Ports Registers (Continued)

Memory-Mapped
Address

Register Name Description
ADSP-BF51x Blackfin Processor Hardware Reference A-11

Ports Registers
0xFFC0 1710 PORTHIO_MASKA “GPIO Mask Interrupt A Registers” on
page 9-37

0xFFC0 1714 PORTHIO_MASKA_CLEAR “GPIO Mask Interrupt A Clear Registers”
on page 9-41

0xFFC0 1718 PORTHIO_MASKA_SET “GPIO Mask Interrupt A Set Registers” on
page 9-39

0xFFC0 171C PORTHIO_MASKA_TOGGLE “GPIO Mask Interrupt A Toggle Regis-
ters” on page 9-43

0xFFC0 1720 PORTHIO_MASKB “GPIO Mask Interrupt B Registers” on
page 9-38

0xFFC0 1724 PORTHIO_MASKB_CLEAR “GPIO Mask Interrupt B Clear Registers”
on page 9-42

0xFFC0 1728 PORTHIO_MASKB_SET “GPIO Mask Interrupt B Set Registers” on
page 9-40

0xFFC0 172C PORTHIO_MASKB_TOGGLE “GPIO Mask Interrupt B Toggle Regis-
ters” on page 9-44

0xFFC0 1730 PORTHIO_DIR “GPIO Direction Registers” on page 9-33

0xFFC0 1734 PORTHIO_POLAR “GPIO Polarity Registers” on page 9-36

0xFFC0 1738 PORTHIO_EDGE “Interrupt Sensitivity Registers” on
page 9-36

0xFFC0 173C PORTHIO_BOTH “GPIO Set on Both Edges Registers” on
page 9-37

0xFFC0 1740 PORTHIO_INEN “GPIO Input Enable Registers” on
page 9-33

0xFFC0 3200 PORTF_FER “Function Enable Registers” on page 9-32

0xFFC0 3204 PORTG_FER “Function Enable Registers” on page 9-32

0xFFC0 3208 PORTH_FER “Function Enable Registers” on page 9-32

0xFFC0 3210 PORTF_MUX “Port F Multiplexer Control Register” on
page 9-30

Table A-10. Ports Registers (Continued)

Memory-Mapped
Address

Register Name Description
A-12 ADSP-BF51x Blackfin Processor Hardware Reference

System MMR Assignments
Timer Registers
Timer registers (0xFFC0 0600 – 0xFFC0 06FF) are listed in Table A-11.

0xFFC0 3214 PORTG_MUX “Port F Multiplexer Control Register” on
page 9-30

0xFFC0 3218 PORTH_MUX “Port F Multiplexer Control Register” on
page 9-30

0xFFC0 3240 PORTF_HYSTERESIS “Port F Hysteresis Register” on page 9-26

0xFFC0 3244 PORTG_HYSTERESIS “Port G Hysteresis Register” on page 9-27

0xFFC0 3248 PORTH_HYSTERESIS “Port H Hysteresis Register” on page 9-27

0xFFC0 3280 NONGPIO_DRIVE “Non-GPIO Drive Strength Control Reg-
ister” on page 9-28

0xFFC0 3288 NONGPIO_HYSTERESIS “Non-GPIO Hysteresis
(NONGPIO_HYSTERESIS) Register” on
page 9-29

Table A-11. Timer Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 0600 TIMER0_CONFIG “Timer Configuration Register” on page 10-41

0xFFC0 0604 TIMER0_COUNTER “Timer Counter Register” on page 10-42

0xFFC0 0608 TIMER0_PERIOD “Timer Period Register” on page 10-44

0xFFC0 060C TIMER0_WIDTH “Timer Width Register” on page 10-45

0xFFC0 0610 TIMER1_CONFIG “Timer Configuration Register” on page 10-41

0xFFC0 0614 TIMER1_COUNTER “Timer Counter Register” on page 10-42

0xFFC0 0618 TIMER1_PERIOD “Timer Period Register” on page 10-44

Table A-10. Ports Registers (Continued)

Memory-Mapped
Address

Register Name Description
ADSP-BF51x Blackfin Processor Hardware Reference A-13

Timer Registers
0xFFC0 061C TIMER1_WIDTH “Timer Width Register” on page 10-45

0xFFC0 0620 TIMER2_CONFIG “Timer Configuration Register” on page 10-41

0xFFC0 0624 TIMER2_COUNTER “Timer Counter Register” on page 10-42

0xFFC0 0628 TIMER2_PERIOD “Timer Period Register” on page 10-44

0xFFC0 062C TIMER2_WIDTH “Timer Width Register” on page 10-45

0xFFC0 0630 TIMER3_CONFIG “Timer Configuration Register” on page 10-41

0xFFC0 0634 TIMER3_COUNTER “Timer Counter Register” on page 10-42

0xFFC0 0638 TIMER3_PERIOD “Timer Period Register” on page 10-44

0xFFC0 063C TIMER3_WIDTH “Timer Width Register” on page 10-45

0xFFC0 0640 TIMER4_CONFIG “Timer Configuration Register” on page 10-41

0xFFC0 0644 TIMER4_COUNTER “Timer Counter Register” on page 10-42

0xFFC0 0648 TIMER4_PERIOD “Timer Period Register” on page 10-44

0xFFC0 064C TIMER4_WIDTH “Timer Width Register” on page 10-45

0xFFC0 0650 TIMER5_CONFIG “Timer Configuration Register” on page 10-41

0xFFC0 0654 TIMER5_COUNTER “Timer Counter Register” on page 10-42

0xFFC0 0658 TIMER5_PERIOD “Timer Period Register” on page 10-44

0xFFC0 065C TIMER5_WIDTH “Timer Width Register” on page 10-45

0xFFC0 0660 TIMER6_CONFIG “Timer Configuration Register” on page 10-41

0xFFC0 0664 TIMER6_COUNTER “Timer Counter Register” on page 10-42

0xFFC0 0668 TIMER6_PERIOD “Timer Period Register” on page 10-44

0xFFC0 066C TIMER6_WIDTH “Timer Width Register” on page 10-45

0xFFC0 0670 TIMER7_CONFIG “Timer Configuration Register” on page 10-41

0xFFC0 0674 TIMER7_COUNTER “Timer Counter Register” on page 10-42

0xFFC0 0678 TIMER7_PERIOD “Timer Period Register” on page 10-44

0xFFC0 067C TIMER7_WIDTH “Timer Width Register” on page 10-45

Table A-11. Timer Registers (Continued)

Memory-Mapped
Address

Register Name Description
A-14 ADSP-BF51x Blackfin Processor Hardware Reference

System MMR Assignments
Watchdog Timer Registers
Watchdog timer registers (0xFFC0 0200 – 0xFFC0 02FF) are listed in
Table A-12.

GP Counter Registers
GP Counter registers (0xFFC0 3500 – 0xFFC0 351C) are listed in
Table A-13.

0xFFC0 0680 TIMER_ENABLE “Timer Enable Register” on page 10-37

0xFFC0 0684 TIMER_DISABLE “Timer Disable Register” on page 10-38

0xFFC0 0688 TIMER_STATUS “Timer Status Register” on page 10-40

Table A-12. Watchdog Timer Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 0200 WDOG_CTL “Watchdog Control Register” on page 12-8

0xFFC0 0204 WDOG_CNT “Watchdog Count Register” on page 12-6

0xFFC0 0208 WDOG_STAT “Watchdog Status Register” on page 12-7

Table A-13. GP Counter Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 3500 CNT_CONFIG “Counter Configuration Register” on page 13-20

0xFFC0 3504 CNT_IMASK “Counter Interrupt Mask Register” on page 13-21

Table A-11. Timer Registers (Continued)

Memory-Mapped
Address

Register Name Description
ADSP-BF51x Blackfin Processor Hardware Reference A-15

Real-Time Clock Registers
Real-Time Clock Registers
Real-time clock registers (0xFFC0 0300 – 0xFFC0 03FF) are listed in
Table A-14.

0xFFC0 3508 CNT_STATUS “Counter Status Register” on page 13-22

0xFFC0 350C CNT_COMMAND “Counter Command Register” on page 13-24

0xFFC0 3510 CNT_DEBOUNCE “Counter Debounce Register” on page 13-25

0xFFC0 3514 CNT_COUNTER “Counter Count Value Register” on page 13-26

0xFFC0 3518 CNT_MAX “Counter Maximal Count Register” on page 13-27

0xFFC0 351C CNT_MIN “Counter Minimal Count Register” on page 13-27

Table A-14. Real-Time Clock Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 0300 RTC_STAT “RTC Status Register” on page 24-21

0xFFC0 0304 RTC_ICTL “RTC Interrupt Control Register” on page 24-21

0xFFC0 0308 RTC_ISTAT “RTC Status Register” on page 24-21

0xFFC0 030C RTC_SWCNT “RTC Stopwatch Count Register” on page 24-22

0xFFC0 0310 RTC_ALARM “RTC Alarm Register” on page 24-23

0xFFC0 0314 RTC_PREN “RTC Prescaler Enable Register” on page 24-23

Table A-13. GP Counter Registers (Continued)

Memory-Mapped
Address

Register Name Description
A-16 ADSP-BF51x Blackfin Processor Hardware Reference

System MMR Assignments
OTP and Security Registers
OTP Controller and Security Controller registers (0xFFC0 3600 –
0xFFC0 368C) are listed in Table A-15.

Dynamic Power Management Registers
Dynamic power management registers (0xFFC0 0000 – 0xFFC0 00FF)
are listed in Table A-16.

Table A-15. OTP Controller and Security Controller Registers

Memory-Mapped
Address

Register Name Description

0xFFC0360C OTP_TIMING “OTP_TIMING Register” on page 3-14

0xFFC0 3620 SECURE_SYSSWT “Secure System Switch Register, Bits 15:0” on
page 25-48

0xFFC0 3624 SECURE_CONTROL “Secure Control Register” on page 25-54

0xFFC0 3628 SECURE_STATUS “Secure Status Register” on page 25-56

0xFFC0 3680 OTP_DATA0 “OTP_DATAx Registers” on page 3-3

0xFFC0 3684 OTP_DATA1 “OTP_DATAx Registers” on page 3-3

0xFFC0 3688 OTP_DATA2 “OTP_DATAx Registers” on page 3-3

0xFFC0 368C OTP_DATA3 “OTP_DATAx Registers” on page 3-3

Table A-16. Dynamic Power Management Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 0000 PLL_CTL “PLL Control Register” on page 8-21

0xFFC0 0004 PLL_DIV “PLL Divide Register” on page 8-21

0xFFC0 0008 VR_CTL “Voltage Regulator Control Register” on page 8-23
ADSP-BF51x Blackfin Processor Hardware Reference A-17

Ethernet MAC Registers
Ethernet MAC Registers
Ethernet MAC registers (0xFFC0 3000 – 0xFFC0 31FF) are listed in
Table A-17.

0xFFC0 000C PLL_STAT “PLL Status Register” on page 8-22

0xFFC0 0010 PLL_LOCKCNT “PLL Lock Count Register” on page 8-22

Table A-17. Ethernet MAC Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 3000 EMAC_OPMODE “EMAC_OPMODE Register” on page 22-60

0xFFC0 3004 EMAC_ADDRLO “EMAC_ADDRLO Register” on page 22-67

0xFFC0 3008 EMAC_ADDRHI “EMAC_ADDRHI Register” on page 22-68

0xFFC0 300C EMAC_HASHLO “EMAC_HASHLO Register” on page 22-69

0xFFC0 3010 EMAC_HASHHI “EMAC_HASHHI Register” on page 22-70

0xFFC0 3014 EMAC_STAADD “EMAC_STAADD Register” on page 22-72

0xFFC0 3018 EMAC_STADAT “EMAC_STADAT Register” on page 22-74

0xFFC0 301C EMAC_FLC “EMAC_FLC Register” on page 22-75

0xFFC0 3020 EMAC_VLAN1 “EMAC_VLAN1 Register” on page 22-77

0xFFC0 3024 EMAC_VLAN2 “EMAC_VLAN2 Register” on page 22-77

0xFFC0 302C EMAC_WKUP_CTL “EMAC_WKUP_CTL Register” on
page 22-78

0xFFC0 3030 EMAC_WKUP_FFMSK0 “EMAC_WKUP_FFMSK0 Register” on
page 22-81

0xFFC0 3034 EMAC_WKUP_FFMSK1 “EMAC_WKUP_FFMSK1 Register” on
page 22-82

Table A-16. Dynamic Power Management Registers (Continued)

Memory-Mapped
Address

Register Name Description
A-18 ADSP-BF51x Blackfin Processor Hardware Reference

System MMR Assignments
0xFFC0 3038 EMAC_WKUP_FFMSK2 “EMAC_WKUP_FFMSK2 Register” on
page 22-83

0xFFC0 303C EMAC_WKUP_FFMSK3 “EMAC_WKUP_FFMSK3 Register” on
page 22-84

0xFFC0 3040 EMAC_WKUP_FFCMD “EMAC_WKUP_FFCMD Register” on
page 22-85

0xFFC0 3044 EMAC_WKUP_FFOFF “EMAC_WKUP_FFOFF Register” on
page 22-87

0xFFC0 3048 EMAC_WKUP_FFCRC0/1 “EMAC_WKUP_FFCRC0 Register” on
page 22-88

0xFFC0 304C EMAC_WKUP_FFCRC2/3 “EMAC_WKUP_FFCRC1 Register” on
page 22-88

0xFFC0 3060 EMAC_SYSCTL “EMAC_SYSCTL Register” on page 22-89

0xFFC0 3064 EMAC_SYSTAT “EMAC_SYSTAT Register” on page 22-91

0xFFC0 3068 EMAC_RX_STAT “EMAC_RX_STAT Register” on page 22-94

0xFFC0 306C EMAC_RX_STKY “EMAC_RX_STKY Register” on page 22-99

0xFFC0 3070 EMAC_RX_IRQE “EMAC_RX_IRQE Register” on page 22-104

0xFFC0 3074 EMAC_TX_STAT “EMAC_TX_STAT Register” on page 22-105

0xFFC0 3078 EMAC_TX_STKY “EMAC_TX_STKY Register” on page 22-109

0xFFC0 307C EMAC_TX_IRQE “EMAC_TX_IRQE Register” on page 22-112

0xFFC0 3080 EMAC_MMC_CTL “EMAC_MMC_CTL Register” on
page 22-119

0xFFC0 3084 EMAC_MMC_RIRQS “EMAC_MMC_RIRQS Register” on
page 22-113

0xFFC0 3088 EMAC_MMC_RIRQE “EMAC_MMC_RIRQE Register” on
page 22-115

0xFFC0 308C EMAC_MMC_TIRQS “EMAC_MMC_TIRQS Register” on
page 22-116

Table A-17. Ethernet MAC Registers (Continued)

Memory-Mapped
Address

Register Name Description
ADSP-BF51x Blackfin Processor Hardware Reference A-19

Ethernet MAC Registers
0xFFC0 3090 EMAC_MMC_TIRQE “EMAC_MMC_TIRQE Register” on
page 22-118

0xFFC0 3100 EMAC_RXC_OK “MAC Management Counter Registers” on
page 22-53

0xFFC0 3104 EMAC_RXC_FCS “MAC Management Counter Registers” on
page 22-53

0xFFC0 3108 EMAC_RXC_ALIGN “MAC Management Counter Registers” on
page 22-53

0xFFC0 310C EMAC_RXC_OCTET “MAC Management Counter Registers” on
page 22-53

0xFFC0 3110 EMAC_RXC_DMAOVF “MAC Management Counter Registers” on
page 22-53

0xFFC0 3114 EMAC_RXC_UNICST “MAC Management Counter Registers” on
page 22-53

0xFFC0 3118 EMAC_RXC_MULTI “MAC Management Counter Registers” on
page 22-53

0xFFC0 311C EMAC_RXC_BROAD “MAC Management Counter Registers” on
page 22-53

0xFFC0 3120 EMAC_RXC_LNERRI “MAC Management Counter Registers” on
page 22-53

0xFFC0 3124 EMAC_RXC_LNERRO “MAC Management Counter Registers” on
page 22-53

0xFFC0 3128 EMAC_RXC_LONG “MAC Management Counter Registers” on
page 22-53

0xFFC0 312C EMAC_RXC_MACCTL “MAC Management Counter Registers” on
page 22-53

0xFFC0 3130 EMAC_RXC_OPCODE “MAC Management Counter Registers” on
page 22-53

0xFFC0 3134 EMAC_RXC_PAUSE “MAC Management Counter Registers” on
page 22-53

Table A-17. Ethernet MAC Registers (Continued)

Memory-Mapped
Address

Register Name Description
A-20 ADSP-BF51x Blackfin Processor Hardware Reference

System MMR Assignments
0xFFC0 3138 EMAC_RXC_ALLFRM “MAC Management Counter Registers” on
page 22-53

0xFFC0 313C EMAC_RXC_ALLOCT “MAC Management Counter Registers” on
page 22-53

0xFFC0 3140 EMAC_RXC_TYPED “MAC Management Counter Registers” on
page 22-53

0xFFC0 3144 EMAC_RXC_SHORT “MAC Management Counter Registers” on
page 22-53

0xFFC0 3148 EMAC_RXC_EQ64 “MAC Management Counter Registers” on
page 22-53

0xFFC0 314C EMAC_RXC_LT128 “MAC Management Counter Registers” on
page 22-53

0xFFC0 3150 EMAC_RXC_LT256 “MAC Management Counter Registers” on
page 22-53

0xFFC0 3154 EMAC_RXC_LT512 “MAC Management Counter Registers” on
page 22-53

0xFFC0 3158 EMAC_RXC_LT1024 “MAC Management Counter Registers” on
page 22-53

0xFFC0 315C EMAC_RXC_GE1024 “MAC Management Counter Registers” on
page 22-53

0xFFC0 3180 EMAC_TXC_OK “MAC Management Counter Registers” on
page 22-53

0xFFC0 3184 EMAC_TXC_1COL “MAC Management Counter Registers” on
page 22-53

0xFFC0 3188 EMAC_TXC_GT1COL “MAC Management Counter Registers” on
page 22-53

0xFFC0 318C EMAC_TXC_OCTET “MAC Management Counter Registers” on
page 22-53

0xFFC0 3190 EMAC_TXC_DEFER “MAC Management Counter Registers” on
page 22-53

Table A-17. Ethernet MAC Registers (Continued)

Memory-Mapped
Address

Register Name Description
ADSP-BF51x Blackfin Processor Hardware Reference A-21

Ethernet MAC Registers
0xFFC0 3194 EMAC_TXC_LATECL “MAC Management Counter Registers” on
page 22-53

0xFFC0 3198 EMAC_TXC_XS_COL “MAC Management Counter Registers” on
page 22-53

0xFFC0 319C EMAC_TXC_DMAUND “MAC Management Counter Registers” on
page 22-53

0xFFC0 31A0 EMAC_TXC_CRSERR “MAC Management Counter Registers” on
page 22-53

0xFFC0 31A4 EMAC_TXC_UNICST “MAC Management Counter Registers” on
page 22-53

0xFFC0 31A8 EMAC_TXC_MULTI “MAC Management Counter Registers” on
page 22-53

0xFFC0 31AC EMAC_TXC_BROAD “MAC Management Counter Registers” on
page 22-53

0xFFC0 31B0 EMAC_TXC_ES_DFR “MAC Management Counter Registers” on
page 22-53

0xFFC0 31B4 EMAC_TXC_MACCTL “MAC Management Counter Registers” on
page 22-53

0xFFC0 31B8 EMAC_TXC_ALLFRM “MAC Management Counter Registers” on
page 22-53

0xFFC0 31BC EMAC_TXC_ALLOCT “MAC Management Counter Registers” on
page 22-53

0xFFC0 31C0 EMAC_TXC_EQ64 “MAC Management Counter Registers” on
page 22-53

0xFFC0 31C4 EMAC_TXC_LT128 “MAC Management Counter Registers” on
page 22-53

0xFFC0 31C8 EMAC_TXC_LT254 “MAC Management Counter Registers” on
page 22-53

0xFFC0 31CC EMAC_TXC_LT512 “MAC Management Counter Registers” on
page 22-53

Table A-17. Ethernet MAC Registers (Continued)

Memory-Mapped
Address

Register Name Description
A-22 ADSP-BF51x Blackfin Processor Hardware Reference

System MMR Assignments
IEEE 1588 PTP Registers
IEEE 1588 PTP registers (0xFFC0 30A0 – 0xFFC0 30F8) are listed in
Table A-18.

0xFFC0 31D0 EMAC_TXC_LT1024 “MAC Management Counter Registers” on
page 22-53

0xFFC0 31D4 EMAC_TXC_GE1024 “MAC Management Counter Registers” on
page 22-53

0xFFC0 31D8 EMAC_TXC_ABORT “MAC Management Counter Registers” on
page 22-53

Table A-18. IEEE 1588 PTP Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 30A0 EMAC_PTP_CTL “Control Register” on page 23-13

0xFFC0 30A4 EMAC_PTP_IE “Interrupt Enable Register” on page 23-16

0xFFC0 30A8 EMAC_PTP_ISTAT “Interrupt Status Register” on page 23-18

0xFFC0 30AC EMAC_PTP_FOFF “Message Filter Offset Register” on
page 23-20

0xFFC0 30B0 EMAC_PTP_FV1 “Message Filter Value Register 1” on
page 23-21

0xFFC0 30B4 EMAC_PTP_FV2 “Message Filter Value Register 2” on
page 23-22

0xFFC0 30B8 EMAC_PTP_FV3 “Message Filter Value Register 3” on
page 23-23

0xFFC0 30BC EMAC_PTP_ADDEND “Addend Register” on page 23-24

0xFFC0 30C0 EMAC_PTP_ACCR “Accumulator Register” on page 23-25

Table A-17. Ethernet MAC Registers (Continued)

Memory-Mapped
Address

Register Name Description
ADSP-BF51x Blackfin Processor Hardware Reference A-23

IEEE 1588 PTP Registers
0xFFC0 30C4 EMAC_PTP_OFFSET “Time Offset Register” on page 23-26

0xFFC0 30C8 EMAC_PTP_TIMELO “Local Clock Time Low Register” on
page 23-27

0xFFC0 30CC EMAC_PTP_TIMEHI “Local Clock Time High Register” on
page 23-28

0xFFC0 30D0 EMAC_PTP_RXSNAPLO “Receive Snapshot Low Register” on
page 23-29

0xFFC0 30D4 EMAC_PTP_RXSNAPHI “Receive Snapshot High Register” on
page 23-30

0xFFC0 30D8 EMAC_PTP_TXSNAPLO “Transmit Snapshot Low Register” on
page 23-31

0xFFC0 30DC EMAC_PTP_TXSNAPHI “Transmit Snapshot High Register” on
page 23-32

0xFFC0 30E0 EMAC_PTP_ALARMLO “Target Alarm Time Low Register” on
page 23-33

0xFFC0 30E4 EMAC_PTP_ALARMHI “Target Alarm Time High Register” on
page 23-34

0xFFC0 30E8 EMAC_PTP_ID_OFF “Source ID Offset Register” on page 23-34

0xFFC0 30EC EMAC_PTP_ID_SNAP “Source ID Snapshot Register” on
page 23-35

0xFFC0 30F0 EMAC_PTP_PPS_STARTLO “PPS Start Low Register” on page 23-36

0xFFC0 30F4 EMAC_PTP_PPS_STARTHI “PSS Start High Register” on page 23-37

0xFFC0 30F8 EMAC_PTP_PPS_PERIOD “PSS Period Register” on page 23-38

Table A-18. IEEE 1588 PTP Registers (Continued)

Memory-Mapped
Address

Register Name Description
A-24 ADSP-BF51x Blackfin Processor Hardware Reference

System MMR Assignments
PPI Registers
PPI registers (0xFFC0 1000 – 0xFFC0 10FF) are listed in Table A-19.

SPI Controller Registers
SPI0 controller registers (0xFFC0 0500 – 0xFFC0 05FF) are listed in
Table A-20.

SPI1 controller registers (0xFFC0 3400 – 0xFFC0 34FF) are listed in
Table A-21.

Table A-19. PPI Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 1000 PPI_CONTROL “PPI Control Register” on page 20-26

0xFFC0 1004 PPI_STATUS “PPI Status Register” on page 20-30

0xFFC0 1008 PPI_COUNT “PPI Transfer Count Register” on page 20-33

0xFFC0 100C PPI_DELAY “PPI Delay Count Register” on page 20-32

0xFFC0 1010 PPI_FRAME “PPI Lines Per Frame Register” on page 20-34

Table A-20. SPI0 Controller Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 0500 SPI0_CTL “SPI Control Register” on page 17-37

0xFFC0 0504 SPI0_FLG “SPI Flag Register (example with 7 slave selects)” on
page 17-38

0xFFC0 0508 SPI0_STAT “SPI Status Register” on page 17-40

0xFFC0 050C SPI0_TDBR “SPI Transmit Data Buffer Register” on page 17-43

0xFFC0 0510 SPI0_RDBR “SPI Receive Data Buffer Register” on page 17-44
ADSP-BF51x Blackfin Processor Hardware Reference A-25

SPI Controller Registers
0xFFC0 0514 SPI0_BAUD “SPI Baud Rate Register” on page 17-35

0xFFC0 0518 SPI0_SHADOW “SPI RDBR Shadow Register” on page 17-44

Table A-21. SPI1 Controller Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 3400 SPI1_CTL “SPI Control Register” on page 17-37

0xFFC0 3404 SPI1_FLG “SPI Flag Register (example with 7 slave selects)” on
page 17-38

0xFFC0 3408 SPI1_STAT “SPI Status Register” on page 17-40

0xFFC0 340C SPI1_TDBR “SPI Transmit Data Buffer Register” on page 17-43

0xFFC0 3410 SPI1_RDBR “SPI Receive Data Buffer Register” on page 17-44

0xFFC0 3414 SPI1_BAUD “SPI Baud Rate Register” on page 17-35

0xFFC0 3418 SPI1_SHADOW “SPI RDBR Shadow Register” on page 17-44

Table A-20. SPI0 Controller Registers (Continued)

Memory-Mapped
Address

Register Name Description
A-26 ADSP-BF51x Blackfin Processor Hardware Reference

System MMR Assignments
SPORT Controller Registers
SPORT0 controller registers (0xFFC0 0800 – 0xFFC0 08FF) are listed in
Table A-22. SPORT1 controller registers (0xFFC0 0900 – 0xFFC0 09FF)
are listed in Table A-23.

Table A-22. SPORT0 Controller Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 0800 SPORT0_TCR1 “SPORT Transmit Configuration 1 Register” on
page 19-48

0xFFC0 0804 SPORT0_TCR2 “SPORT Transmit Configuration 2 Register” on
page 19-49

0xFFC0 0808 SPORT0_TCLKDIV “SPORT Transmit Serial Clock Divider Register” on
page 19-63

0xFFC0 080C SPORT0_TFSDIV “SPORT Transmit Frame Sync Divider Register” on
page 19-64

0xFFC0 0810 SPORT0_TX “SPORT Transmit Data Register” on page 19-58

0xFFC0 0818 SPORT0_RX “SPORT Receive Data Register” on page 19-60

0xFFC0 0820 SPORT0_RCR1 “SPORT Receive Configuration 1 Register” on
page 19-53

0xFFC0 0824 SPORT0_RCR2 “SPORT Receive Configuration 2 Register” on
page 19-54

0xFFC0 0828 SPORT0_RCLKDIV “SPORT Receive Serial Clock Divider Register” on
page 19-63

0xFFC0 082C SPORT0_RFSDIV “SPORT Receive Frame Sync Divider Register” on
page 19-64

0xFFC0 0830 SPORT0_STAT “SPORT Status Register” on page 19-61

0xFFC0 0834 SPORT0_CHNL “SPORT Current Channel Register” on page 19-66

0xFFC0 0838 SPORT0_MCMC1 “SPORT Multichannel Configuration Register 1” on
page 19-65
ADSP-BF51x Blackfin Processor Hardware Reference A-27

SPORT Controller Registers
0xFFC0 083C SPORT0_MCMC2 “SPORT Multichannel Configuration Register 2” on
page 19-65

0xFFC0 0840 SPORT0_MTCS0 “SPORT Multichannel Transmit Select Registers” on
page 19-68

0xFFC0 0844 SPORT0_MTCS1 “SPORT Multichannel Transmit Select Registers” on
page 19-68

0xFFC0 0848 SPORT0_MTCS2 “SPORT Multichannel Transmit Select Registers” on
page 19-68

0xFFC0 084C SPORT0_MTCS3 “SPORT Multichannel Transmit Select Registers” on
page 19-68

0xFFC0 0850 SPORT0_MRCS0 “SPORT Multichannel Receive Select Registers” on
page 19-67

0xFFC0 0854 SPORT0_MRCS1 “SPORT Multichannel Receive Select Registers” on
page 19-67

0xFFC0 0858 SPORT0_MRCS2 “SPORT Multichannel Receive Select Registers” on
page 19-67

0xFFC0 085C SPORT0_MRCS3 “SPORT Multichannel Receive Select Registers” on
page 19-67

Table A-23. SPORT1 Controller Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 0900 SPORT1_TCR1 “SPORT Transmit Configuration 1 Register” on
page 19-48

0xFFC0 0904 SPORT1_TCR2 “SPORT Transmit Configuration 2 Register” on
page 19-49

0xFFC0 0908 SPORT1_TCLKDIV “SPORT Transmit Serial Clock Divider Register” on
page 19-63

0xFFC0 090C SPORT1_TFSDIV “SPORT Transmit Frame Sync Divider Register” on
page 19-64

Table A-22. SPORT0 Controller Registers (Continued)

Memory-Mapped
Address

Register Name Description
A-28 ADSP-BF51x Blackfin Processor Hardware Reference

System MMR Assignments
0xFFC0 0910 SPORT1_TX “SPORT Transmit Data Register” on page 19-58

0xFFC0 0918 SPORT1_RX “SPORT Receive Data Register” on page 19-60

0xFFC0 0920 SPORT1_RCR1 “SPORT Receive Configuration 1 Register” on
page 19-53

0xFFC0 0924 SPORT1_RCR2 “SPORT Receive Configuration 2 Register” on
page 19-54

0xFFC0 0928 SPORT1_RCLKDIV “SPORT Receive Serial Clock Divider Register” on
page 19-63

0xFFC0 092C SPORT1_RFSDIV “SPORT Receive Frame Sync Divider Register” on
page 19-64

0xFFC0 0930 SPORT1_STAT “SPORT Status Register” on page 19-61

0xFFC0 0934 SPORT1_CHNL “SPORT Current Channel Register” on page 19-66

0xFFC0 0938 SPORT1_MCMC1 “SPORT Multichannel Configuration Register 1” on
page 19-65

0xFFC0 093C SPORT1_MCMC2 “SPORT Multichannel Configuration Register 2” on
page 19-65

0xFFC0 0940 SPORT1_MTCS0 “SPORT Multichannel Transmit Select Registers”
on page 19-68

0xFFC0 0944 SPORT1_MTCS1 “SPORT Multichannel Transmit Select Registers”
on page 19-68

0xFFC0 0948 SPORT1_MTCS2 “SPORT Multichannel Transmit Select Registers”
on page 19-68

0xFFC0 094C SPORT1_MTCS3 “SPORT Multichannel Transmit Select Registers”
on page 19-68

0xFFC0 0950 SPORT1_MRCS0 “SPORT Multichannel Receive Select Registers” on
page 19-67

0xFFC0 0954 SPORT1_MRCS1 “SPORT Multichannel Receive Select Registers” on
page 19-67

Table A-23. SPORT1 Controller Registers (Continued)

Memory-Mapped
Address

Register Name Description
ADSP-BF51x Blackfin Processor Hardware Reference A-29

UART Controller Registers
UART Controller Registers
UART0 controller registers (0xFFC0 0400 – 0xFFC0 04FF) are listed in
Table A-24. UART1 controller registers (0xFFC0 2000 – 0xFFC0 20FF)
are listed in Table A-25.

0xFFC0 0958 SPORT1_MRCS2 “SPORT Multichannel Receive Select Registers” on
page 19-67

0xFFC0 095C SPORT1_MRCS3 “SPORT Multichannel Receive Select Registers” on
page 19-67

Table A-24. UART0 Controller Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 0400 UART0_THR “UART Transmit Holding Register” on page 15-26

0xFFC0 0400 UART0_RBR “UART Receive Buffer Register” on page 15-26

0xFFC0 0400 UART0_DLL “UART Divisor Latch Registers” on page 15-30

0xFFC0 0404 UART0_DLH “UART Divisor Latch Registers” on page 15-30

0xFFC0 0404 UART0_IER “UART Interrupt Enable Register” on page 15-27

0xFFC0 0408 UART0_IIR “UART Interrupt Identification Register” on page 15-29

0xFFC0 040C UART0_LCR “UART Line Control Register” on page 15-21

0xFFC0 0410 UART0_MCR “UART Modem Control Registers” on page 15-23

0xFFC0 0414 UART0_LSR “UART Line Status Register” on page 15-24

0xFFC0 041C UART0_SCR “UART Scratch Register” on page 15-31

0xFFC0 0424 UART0_GCTL “UART Global Control Register” on page 15-31

Table A-23. SPORT1 Controller Registers (Continued)

Memory-Mapped
Address

Register Name Description
A-30 ADSP-BF51x Blackfin Processor Hardware Reference

System MMR Assignments
Motor Control PWM Registers
Motor Control PWM registers (0xFFC0 3700 – 0xFFC0 37FF) are listed
in Table A-26.

Table A-25. UART1 Controller Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 2000 UART1_THR “UART Transmit Holding Register” on page 15-26

0xFFC0 2000 UART1_RBR “UART Receive Buffer Register” on page 15-26

0xFFC0 2000 UART1_DLL “UART Divisor Latch Registers” on page 15-30

0xFFC0 2004 UART1_DLH “UART Divisor Latch Registers” on page 15-30

0xFFC0 2004 UART1_IER “UART Interrupt Enable Register” on page 15-27

0xFFC0 2008 UART1_IIR “UART Interrupt Identification Register” on page 15-29

0xFFC0 200C UART1_LCR “UART Line Control Register” on page 15-21

0xFFC0 2010 UART1_MCR “UART Modem Control Registers” on page 15-23

0xFFC0 2014 UART1_LSR “UART Line Status Register” on page 15-24

0xFFC0 201C UART1_SCR “UART Scratch Register” on page 15-31

0xFFC0 2024 UART1_GCTL “UART Global Control Register” on page 15-31

Table A-26. Motor Control PWM Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 3700 PWM_CTRL “PWM Control Register” on page 14-39

0xFFC0 3704 PWM_STAT “PWM_STAT Register” on page 14-41

0xFFC0 3708 PWM_TM “PWM_TM Register” on page 14-42

0xFFC0 370C PWM_DT “PWM Dead Time Register” on page 14-43

0xFFC0 3710 PWM_GATE “PWM Chopping Control Register” on page 14-44
ADSP-BF51x Blackfin Processor Hardware Reference A-31

Removable Storage Interface (RSI) Registers
Removable Storage Interface (RSI)
Registers

RSI registers (0xFFC0 3800 – 0xFFC0 3CFF) are listed in Table A-27.

0xFFC0 3714 PWM_CHA “PWM_CHA Register” on page 14-45

0xFFC0 3718 PWM_CHB “PWM_CHB Register” on page 14-45

0xFFC0 371C PWM_CHC “PWM_CHC Register” on page 14-45

0xFFC0 3720 PWM_SEG “PWM_SEG Register” on page 14-46

0xFFC0 3724 PWM_SYNCWT “PWM Sync Pulse Width Control Register” on
page 14-48

0xFFC0 3728 PWM_CHAL “PWM Channel AL Duty Control Register” on
page 14-49

0xFCC0372C PWM_CHBL “PWM Channel BL Duty Control Register” on
page 14-49

0xFFC0 3730 PWM_CHCL “PWM_CHCL Register” on page 14-50

0xFFC0 3734 PWM_LSI “PWM Low Side Invert Register” on page 14-50

0xFFC0 3738 PWM_STAT2 “PWM_STAT2 Register” on page 14-51

Table A-27. RSI Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 3800 RSI_PWR_CONTROL “RSI Power Control Register” on page 21-55

0xFFC0 3804 RSI_CLK_CONTROL “RSI Clock Control Register” on page 21-57

0xFFC0 3808 RSI_ARGUMENT “RSI Argument Register” on page 21-58

0xFFC0 380C RSI_COMMAND “RSI Command Register” on page 21-59

Table A-26. Motor Control PWM Registers (Continued)

Memory-Mapped
Address

Register Name Description
A-32 ADSP-BF51x Blackfin Processor Hardware Reference

System MMR Assignments
0xFFC0 3810 RSI_RESP_CMD “RSI Response Command Register” on
page 21-60

0xFFC0 3814 RSI_RESPONSE0 “RSI Response Registers” on page 21-61

0xFFC0 3818 RSI_RESPONSE1 “RSI Response Registers” on page 21-61

0xFFC0 381C RSI_RESPONSE2 “RSI Response Registers” on page 21-61

0xFFC0 3820 RSI_RESPONSE3 “RSI Response Registers” on page 21-61

0xFFC0 3824 RSI_DATA_TIMER “RSI Data Timer Register” on page 21-62

0xFFC0 3828 RSI_DATA_LGTH “RSI Data Length Register” on page 21-63

0xFFC0 382C RSI_DATA_CONTROL “RSI Data Control Register” on page 21-64

0xFFC0 3830 RSI_DATA_CNT “RSI Data Counter Register” on page 21-65

0xFFC0 3834 RSI_STATUS “RSI Status Register” on page 21-67

0xFFC0 3838 RSI_STATUSCL “RSI Status Clear Register” on page 21-70

0xFFC0 383C RSI_MASK0 “RSI Interrupt Mask Registers” on page 21-72

0xFFC0 3840 RSI_MASK1 “RSI Interrupt Mask Registers” on page 21-72

0xFFC0 3848 RSI_FIFO_CNT “RSI FIFO Counter Register” on page 21-75

0xFFC0 384C RSI_CEATA_CONTROL “RSI CE_ATA Control Register” on
page 21-76

0xFFC0 3880 RSI_FIFO “RSI Data FIFO Register” on page 21-76

0xFFC0 38C0 RSI_ESTAT “RSI Exception Status Register” on page 21-77

0xFFC0 38C4 RSI_EMASK “RSI Exception Mask Register” on page 21-78

0xFFC0 38C8 RSI_CONFIG “RSI Configuration Register” on page 21-80

0xFFC0 38CC RSI_RD_WAIT_EN “RSI Read Wait Enable Register” on
page 21-81

0xFFC0 3FE0 RSI_PID0 “RSI Peripheral ID Registers” on page 21-82

0xFFC0 3FE4 RSI_PID1 “RSI Peripheral ID Registers” on page 21-82

0xFFC0 3FE8 RSI_PID2 “RSI Peripheral ID Registers” on page 21-82

Table A-27. RSI Registers (Continued)

Memory-Mapped
Address

Register Name Description
ADSP-BF51x Blackfin Processor Hardware Reference A-33

TWI Registers
TWI Registers
Two-Wire Interface (TWI) registers (0xFFC0 1400 – 0xFFC0 14FF) are
listed in Table A-28.

0xFFC0 3FEC RSI_PID3 “RSI Peripheral ID Registers” on page 21-82

0xFFC0 3FF0 RSI_PID4 “RSI Peripheral ID Registers” on page 21-82

0xFFC0 3FF4 RSI_PID5 “RSI Peripheral ID Registers” on page 21-82

0xFFC0 3FF8 RSI_PID6 “RSI Peripheral ID Registers” on page 21-82

0xFFC0 3FFC RSI_PID7 “RSI Peripheral ID Registers” on page 21-82

Table A-28. TWI Registers

Memory-Mapped
Address

Register Name Description

0xFFC0 1400 TWI_CLKDIV “SCL Clock Divider Register” on page 16-28

0xFFC0 1404 TWI_CONTROL “TWI Control Register” on page 16-27

0xFFC0 1408 TWI_SLAVE_CTL “TWI Slave Mode Control Register” on
page 16-28

0xFFC0 140C TWI_SLAVE_STAT “TWI Slave Mode Status Register” on page 16-30

0xFFC0 1410 TWI_SLAVE_ADDR “TWI Slave Mode Address Register” on
page 16-30

0xFFC0 1414 TWI_MASTER_CTL “TWI Master Mode Control Register” on
page 16-32

0xFFC0 1418 TWI_MASTER_STAT “TWI Master Mode Status Register” on
page 16-35

0xFFC0 141C TWI_MASTER_ADDR “TWI Master Mode Address Register” on
page 16-34

0xFFC0 1420 TWI_INT_STAT “TWI Interrupt Status Register” on page 16-42

Table A-27. RSI Registers (Continued)

Memory-Mapped
Address

Register Name Description
A-34 ADSP-BF51x Blackfin Processor Hardware Reference

System MMR Assignments
0xFFC0 1424 TWI_INT_MASK “TWI Interrupt Mask Register” on page 16-42

0xFFC0 1428 TWI_FIFO_CTL “TWI FIFO Control Register” on page 16-38

0xFFC0 142C TWI_FIFO_STAT “TWI FIFO Status Register” on page 16-40

0xFFC0 1480 TWI_XMT_DATA8 “TWI FIFO Transmit Data Single Byte Register”
on page 16-45

0xFFC0 1484 TWI_XMT_DATA16 “TWI FIFO Transmit Data Double Byte Regis-
ter” on page 16-46

0xFFC0 1488 TWI_RCV_DATA8 “TWI FIFO Receive Data Single Byte Register”
on page 16-47

0xFFC0 148C TWI_RCV_DATA16 “TWI FIFO Receive Data Double Byte Register”
on page 16-48

Table A-28. TWI Registers (Continued)

Memory-Mapped
Address

Register Name Description
ADSP-BF51x Blackfin Processor Hardware Reference A-35

TWI Registers
A-36 ADSP-BF51x Blackfin Processor Hardware Reference

Test Features
B TEST FEATURES

This appendix discusses the test features of the processor.

JTAG Standard
The processor is fully compatible with the IEEE 1149.1 standard, also
known as the Joint Test Action Group (JTAG) standard.

The JTAG standard defines circuitry that may be built to assist in the test,
maintenance, and support of assembled printed circuit boards. The cir-
cuitry includes a standard interface through which instructions and test
data are communicated. A set of test features is defined, including a
boundary-scan register, such that the component can respond to a mini-
mum set of instructions designed to help test printed circuit boards.

The standard defines test logic that can be included in an integrated cir-
cuit to provide standardized approaches to:

• Testing the interconnections between integrated circuits once they
have been assembled onto a printed circuit board

• Testing the integrated circuit itself

• Observing or modifying circuit activity during normal component
operation
ADSP-BF51x Blackfin Processor Hardware Reference B-1

Boundary-Scan Architecture
The test logic consists of a boundary-scan register and other building
blocks. The test logic is accessed through a Test Access Port (TAP).

Full details of the JTAG standard can be found in the document IEEE
Standard Test Access Port and Boundary-Scan Architecture, ISBN
1-55937-350-4.

Boundary-Scan Architecture
The boundary-scan test logic consists of:

• A TAP comprised of five pins (see Table B-1)

• A TAP controller that controls all sequencing of events through the
test registers

• An instruction register (IR) that interprets 5-bit instruction codes
to select the test mode that performs the desired test operation

• Several data registers defined by the JTAG standard

The TAP controller is a synchronous, 16-state, finite-state machine con-
trolled by the TCK and TMS pins. Transitions to the various states in the

Table B-1. Test Access Port Pins

Pin Name Input/Output Description

TDI Input Test Data Input

TMS Input Test Mode Select

TCK Input Test Clock

TRST Input Test Reset

TDO Output Test Data Out
B-2 ADSP-BF51x Blackfin Processor Hardware Reference

Test Features
diagram occur on the rising edge of TCK and are defined by the state of the
TMS pin, here denoted by either a logic 1 or logic 0 state. For full details of
the operation, see the JTAG standard.

Figure B-1 shows the state diagram for the TAP controller.

Figure B-1. TAP Controller State Diagram

Test-Logic_Reset

Run-Test/Idle Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

1

1 1 1

1

1

1

1

1

1 1

1

1

1

1

1

0

0
0 0

0 0
0 0

0 0

0

0 0

0
0

0

ADSP-BF51x Blackfin Processor Hardware Reference B-3

Boundary-Scan Architecture
Note:

• The TAP controller enters the test-logic-reset state when TMS is
held high after five TCK cycles.

• The TAP controller enters the test-logic-reset state when TRST is
asynchronously asserted.

• An external system reset does not affect the state of the TAP con-
troller, nor does the state of the TAP controller affect an external
system reset.

Instruction Register
The instruction register is five bits wide and accommodates up to 32
boundary-scan instructions.

The instruction register holds both public and private instructions. The
JTAG standard requires some of the public instructions; other public
instructions are optional. Private instructions are reserved for the manu-
facturer’s use.

The binary decode column of Table B-2 lists the decode for the public
instructions. The register column lists the serial scan paths.

Table B-2. Decode for Public JTAG-Scan Instructions

Instruction Name Binary Decode
01234

Register

EXTEST 00000 Boundary-Scan

SAMPLE/PRELOAD 10000 Boundary-Scan

BYPASS 11111 Bypass
B-4 ADSP-BF51x Blackfin Processor Hardware Reference

Test Features
Figure B-2 shows the instruction bit scan ordering for the paths shown in
Table B-2.

Figure B-2. Serial Scan Paths

TDOTDI

N

N-1

N-2 2

1

0

0
130

31

4

3

2

1

0

1

Bypass Register

Boundary-Scan Register

JTAG Instruction Register
ADSP-BF51x Blackfin Processor Hardware Reference B-5

Boundary-Scan Architecture
Public Instructions
The following sections describe the public JTAG scan instructions.

EXTEST – Binary Code 00000

The EXTEST instruction selects the boundary-scan register to be connected
between the TDI and TDO pins. This instruction allows testing of on-board
circuitry external to the device.

The EXTEST instruction allows internal data to be driven to the boundary
outputs and external data to be captured on the boundary inputs.

 To protect the internal logic when the boundary outputs are over-
driven or signals are received on the boundary inputs, make sure
that nothing else drives data on the processor’s output pins.

SAMPLE/PRELOAD – Binary Code 10000

The SAMPLE/PRELOAD instruction performs two functions and selects the
Boundary-Scan register to be connected between TDI and TDO. The
instruction has no effect on internal logic.

The SAMPLE part of the instruction allows a snapshot of the inputs and
outputs captured on the boundary-scan cells. Data is sampled on the ris-
ing edge of TCK.

The PRELOAD part of the instruction allows data to be loaded on the device
pins and driven out on the board with the EXTEST instruction. Data is pre-
loaded on the pins on the falling edge of TCK.

BYPASS – Binary Code 11111

The BYPASS instruction selects the BYPASS register to be connected to TDI
and TDO. The instruction has no effect on the internal logic. No data
inversion should occur between TDI and TDO.
B-6 ADSP-BF51x Blackfin Processor Hardware Reference

Test Features
Boundary-Scan Register
The boundary-scan register is selected by the EXTEST and SAMPLE/PRELOAD
instructions. These instructions allow the pins of the processor to be con-
trolled and sampled for board-level testing.
ADSP-BF51x Blackfin Processor Hardware Reference B-7

Boundary-Scan Architecture
B-8 ADSP-BF51x Blackfin Processor Hardware Reference

I INDEX

Symbols active descriptor queue, and DMA
µ-law companding, 19-23, 19-28

Numerics
16-bit flash interface, 27-6
16-bit SRAM interface, 27-5, 27-6
24 hours event flag bit, 24-22
24 hours int en bit, 24-21
2D DMA, 6-11
2X input clock, 19-25
5 volt tolerance, 27-11
8-bit flash interface, 27-5
8-bit SRAM interface, 27-5

A
A[10] pin, 7-55
ABE[1: 0] pins, 7-15
aborted frames, MAC, 22-16
aborts, DMA, 6-29
accesses

off-core, 4-4
to internal memory, 2-1

access way/instruction address bit, 2-7
ACCUMULATOR (accumulator value for

local clock adjustment) bit, 23-25
accumulator (EMAC_PTP_ACCR)

register, 23-25
accumulator value for local clock

adjustment (ACCUMULATOR) bit,
23-25

synchronization, 6-59
active field select (FLD_SEL) bit, 20-26
active low/high frame syncs, serial port,

19-33
active mode, 1-25, 8-8
ACTIVE_PLLDISABLED bit, 8-22
ACTIVE_PLLENABLED bit, 8-22
active video only mode, PPI, 20-10
ADCs, connecting to, 19-2
ADDDEND (addend value for local clock

adjustment) bit, 23-24
addend (EMAC_PTP_ADDEND)

register, 23-24
addend value for local clock adjustment

(ADDEND) bit, 23-24
address filter evaluation, MAC, 22-14
address filter failed (RX_ADDR) bit,

22-96, 22-101
address filter field (RX_ADDR) bit, 22-104
address high[15: 0] field, 22-68
address high (EMAC_ADDRHI) register,

22-68
address low[15: 0] field, 22-67
address low[31: 16] field, 22-67
address low (EMAC_ADDRLO) register,

22-67
address mapping, SDRAM, 7-26
address not acknowledged (ANAK) bit,

16-35
AFEXIT (authentication firmware exit) bit,

25-56
ADSP-BF51x Blackfin Processor Hardware Reference I-1

Index
AFVALID (authentication firmware valid)
bit, 25-56

AHAL_XOVR (channel A output
crossover) bit, 14-46

AH_EN (AH output enable) bit, 14-46
AH output enable (AH_EN) bit, 14-46
alarm clock, RTC, 24-2
alarm event flag bit, 24-22
alarm int en (ALIE) bit, 23-16
alarm int en (RTC_AIE) bit, 24-21
alarm status (ALS) bit, 23-18
ALARM_TIME_HI (higher 32 bits of

target alarm time) bit, 23-34
ALARM_TIME_LO (lower 32 bits of

target alarm time) bit, 23-33
A-law companding, 19-23, 19-28
AL_EN (AL output enable) bit, 14-46
ALIE (alarm int en) bit, 23-16
alignment error (RX_ALIGN) bit, 22-97,

22-102, 22-104
alignment errors counter int en

(RX_ALIGN_CNT) bit, 22-115
alignment errors counter int

(RX_ALIGN_CNT) bit, 22-113
alignment errors (EMAC_RXC_ALIGN)

register, 22-53
AL output enable (AL_EN) bit, 14-46
ALS (alarm status) bit, 23-18
alternate frame sync mode, 19-36
alternate timing, serial port, 19-35
AMBEN[2: 0] field, 7-17, 7-20
AMBEN (enable asynchronous memory

banks) bit, 7-20
AMC, 1-5, 1-9

bus contention, 7-10
EBIU block diagram, 7-4
features, 7-8
signals, 7-9
timing parameters, 7-18

AMCKEN bit, 7-17, 7-20

AMS, 7-8
ANAK (address not acknowledged) bit,

16-35, 16-37
application data, loading, 26-1
arbitration

DAB, 4-8, 4-9
DCB, 4-8, 4-9
DEB, 4-8, 4-9
EAB, 4-11
latency, 4-10
TWI, 16-9

architecture, memory, 2-1
ARDY pin, 7-11, 7-15
array access bit, 2-7
ASEN (auxiliary snapshot control) bit,

23-13
ASIC/FPGA designs, 7-1
ASIE (auxiliary snapshot int en) bit, 23-16
ASL (auxiliary snapshot interrupt status)

bit, 23-18
ASTP (enable automatic pad stripping) bit,

22-17, 22-60, 22-66
asynchronous

interfaces, supported, 7-1
memory, 2-1, 7-2, 7-8
memory bank address range (table), 7-8,

14-25
memory controller, 1-9
read, 7-12
serial communications, 15-5
write, 7-13

asynchronous memory bank control
(EBIU_AMBCTLx) registers, 7-20,
7-21, 7-22

asynchronous memory banks enable
(AMBEN) bit, 7-20

asynchronous memory controller. See AMC
asynchronous memory global control

(EBIU_AMGCTL) register, 7-17,
7-20
I-2 ADSP-BF51x Blackfin Processor Hardware Reference

Index
ASYNC memory banks, 7-3
atomic operations, 27-3
authentication firmware exit (AFEXIT) bit,

25-56
authentication firmware valid (AFVALID)

bit, 25-56
autobaud, and general-purpose timers,

10-32
autobaud detection, 15-13
autobuffer mode, 6-11, 6-28, 6-68
automatic pad stripping enable (ASTP) bit,

22-66
auto-refresh

command, 7-34, 7-52
timing, 7-60

auxiliary snapshot control (ASEN) bit,
23-13

auxiliary snapshot int en (ASIE) bit, 23-16
auxiliary snapshot interrupt status (ASL)

bit, 23-18
avoiding bus contention, 7-10

B
BA[1: 0] pins, 7-32
backpressure enable (BKPRSEN) bit,

22-75
bandwidth, and memory DMA operations,

6-46
bank

address, 7-64
size, 7-25, 7-64
size encodings (table), 7-27
width, 7-25

bank activate command, 7-33
bank activate command delay (TRAS) bit,

7-67
bank precharge delay (TRP) bit, 7-67
baud rate

SPI, 17-35
UART, 15-7, 15-13

baud rate[15: 0] field, 17-35
BCINIT[15: 0] field, 6-84
BCODE[1

0], 25-48, 25-49
BCODE[3

0], 26-77
BCOUNT[15: 0] field, 6-85
BDI (block done interrupt generated) bit,

6-83
BDIE (block done int en) bit, 6-40, 6-83
BFLAG_ALTERNATE bit, 26-94
BFLAG_AUX bit, 26-95
BFLAG_CALLBACK bit, 26-95
BFLAG_FASTREAD bit, 26-94
BFLAG_FILL bit, 26-95
BFLAG_FINAL bit, 26-95
BFLAG_FIRST bit, 26-95
BFLAG_HDRINDIRECT bit, 26-94
BFLAG_HOOK bit, 26-94
BFLAG_IGNORE bit, 26-95
BFLAG_INDIRECT bit, 26-95
BFLAG_INIT bit, 26-95
BFLAG_NEXTDXE bit, 26-94
BFLAG_NOAUTO bit, 26-94
BFLAG_NONRESTORE bit, 26-94
BFLAG_PERIPHERAL bit, 26-94
BFLAG_QUICKBOOT bit, 26-95
BFLAG_RESET bit, 26-94
BFLAG_RETURN bit, 26-94
BFLAG_SAVE bit, 26-95
BFLAG_SLAVE bit, 26-94
BFLAG_TYPE bit, 26-94
BFLAG_WAKEUP bit, 26-94
BHBL_XOVR (channel B output

crossover) bit, 14-46
BH_EN (BH output enable) bit, 14-46
BH output enable (BH_EN) bit, 14-46
BI (break int) bit, 15-24, 15-25
binary decode, B-4
bin x bit, 22-69, 22-70
ADSP-BF51x Blackfin Processor Hardware Reference I-3

Index
bit order, selecting, 19-27
bit order select (TLSBIT) bit, 19-48
bit rate generation, 15-12
BK_DATECODE (boot code date code)

register, 26-79
BK_DAY bit, 26-79
BK_ID (boot kernel identifier) bit, 26-78
BK_MONTH bit, 26-79
BK_ONES (ones word) register, 26-81
BK_PROJECT (boot kernel project) bit,

26-78
BKPRSEN (enable backpressure) bit,

22-75
BK_REVISION (boot code revision

control) register, 26-78
BK_UPDATE (boot kernel update) bit,

26-78
BK_VERSION (boot kernel version) bit,

26-78
BK_YEAR bit, 26-79
BK_ZEROS (zero word) register, 26-80
Blackfin processor family

I/O memory space, 1-5
memory architecture, 1-3

BL_EN (BL output enable) bit, 14-46
block, DMA, 6-9
block code field, 26-22
block count, DMA, 6-37
block diagrams

bus hierarchy, 4-3
core, 4-4
core timer, 11-2
DMA controller, 6-104
EBIU, 7-4
general-purpose timers, 10-58
MAC, 22-3
PLL, 8-3
PPI, 20-3

block diagrams (continued)
processor, 1-3
RTC, 24-4
SDRAM, 7-57, 7-58
SPI, 17-4
SPORT, 19-6
TWI, 16-3
UART, 15-3
watchdog timer, 12-3

block done int en (BDIE) bit, 6-83
block done interrupt, DMA, 6-40
block done interrupt generated (BDI) bit,

6-83
block flags, 26-25
block transfers, DMA, 6-37
BL output enable (BL_EN) bit, 14-46
BMODE[2

0], 26-77
BMODE[2: 0] pins, 26-2, 26-5
BMODE[3

0], 25-49
BMODEx_DIS (boot mode disable) bits,

26-87
BNDMODE (boundary register mode)

bits, 13-20
BOLMT[1: 0] field, 22-60, 22-63
boot

call boot kernel at run time, 26-47
load function, 26-46
manager, 26-51
quick, 26-40
ROM functions, 26-52
streams

multi-DXE, 26-52
boot code date code (BK_DATECODE)

register, 26-79
boot code revision control

(BK_REVISION) register, 26-78
boot host wait (HWAIT) pin, 26-30
I-4 ADSP-BF51x Blackfin Processor Hardware Reference

Index
booting
BFROM_MEMBOOT, 26-52
BFROM_OTPBOOT, 26-52
BFROM_SPIBOOT, 26-52
boot stream, 26-19
host boot scenarios, 26-19
indirect, 26-41
memory locations, 26-21
SPI slave mode, 26-67

booting modes, 26-2
booting registers, 26-74
boot kernel, 26-1
boot kernel identifier (BK_ID) bit, 26-78
boot kernel project (BK_PROJECT) bit,

26-78
boot kernel update (BK_UPDATE) bit,

26-78
boot kernel version (BK_VERSION) bit,

26-78
boot management, 26-51
boot mode

flash boot, 26-59
no-boot, 26-59
SDRAM boot, 26-62
SPI device detection, 26-65

boot ROM
internal, 26-1
memory space, 2-4

boot stream, 26-1, 26-19
boot termination, 26-32
boundary register mode (BNDMODE)

bits, 13-20
boundary-scan architecture, B-2
boundary-scan register, B-7
break int (BI) bit, 15-24
broadcast frames detected (RX_BROAD)

bit, 22-95, 22-101, 22-104

broadcast frames received OK counter int
en (RX_BROAD_CNT) bit, 22-115

broadcast frames received OK counter int
(RX_BROAD_CNT) bit, 22-113

broadcast frames received ok
(EMAC_RXC_BROAD) register,
22-54

broadcast frames transmitted OK counter
int en (TX_BROAD_CNT) bit,
22-118

broadcast frames transmitted OK counter
int (TX_BROAD_CNT) bit, 22-116

broadcast frames xmitted ok
(EMAC_TXC_BROAD) register,
22-58

broadcast mode, 17-8, 17-14, 17-15
buffer read error (BUFRDERR) bit, 16-35
buffer registers, timers, 10-43
buffer write error (BUFWRERR) bit,

16-35
BUFRDERR (buffer read error) bit, 16-35,

16-37
BUFWRERR (buffer write error) bit,

16-35, 16-37
burst

length, 7-32
type, 7-32

bus agents
DAB, 4-9
PAB, 4-6

BUSBUSY (bus busy) bit, 16-35
bus busy (BUSBUSY) bit, 16-35
bus contention, avoiding, 7-10, 27-7
bus cycles

asynchronous read, 7-12
asynchronous write, 7-13

bus error, EBIU, 7-7
ADSP-BF51x Blackfin Processor Hardware Reference I-5

Index
buses
See also DAB, DCB, DEB, EAB, EPB,

PAB
bandwidth, 1-2
core, 4-4
hierarchy, 4-3
on-chip, 4-1
PAB, 4-6
peripheral, 4-6
and peripherals, 1-2
prioritization and DMA, 6-48

BUS_MODE (data bus width) bit, 21-57
bus standard, I2C, 1-10
BxHT fields, 7-21, 7-22
BxRAT fields, 7-21, 7-22
BxRDYEN bits, 7-21, 7-22
BxRDYPOL bits, 7-21, 7-22
BxST fields, 7-21, 7-22
BxTT fields, 7-21, 7-22
BxWAT fields, 7-21, 7-22
bypass, capacitor placement, 27-11
BYPASS bit, 8-21
bypass clock divisor (CLKDIV_BYPASS)

bit, 21-57
BYPASS instruction, B-6
BYPASS register, B-6
byte

address, 7-64
enables, 7-15

byte enable x bit, 22-81, 22-82, 22-83,
22-84

C
callback routines, 26-42
capacitors, 27-10
capture mode. See WDTH_CAP mode
capture wakeup frames (CAPWKFRM) bit,

22-80
CAPWKFRM (capture wakeup frames) bit,

22-80

card detect int (CEATA_INT_DET) bit,
21-77

card detect int en
(SD_CARD_DET_MASK) bit,
21-78

card detect int (SD_CARD_DET) bit,
21-77

carrier sense errors counter int en
(TX_CRS_CNT) bit, 22-118

carrier sense errors counter int
(TX_CRS_CNT) bit, 22-116

carrier sense errors
(EMAC_TXC_CRSERR) register,
22-57

CAS latency, 7-33, 7-36
CAW (column address width), 7-64
CCIR-656. See ITU-R 656
CCITT G.711 specification, 19-28
CCLK (core clock), 4-4, 8-5, 8-7
CCOR (counter clear-on-read mode) bit,

22-42, 22-119
CDGINV (CDG pin polarity invert) bit,

13-20
CDG pin polarity invert (CDGINV) bit,

13-20
CDPRIO (core priority) bit, 4-8, 7-18,

7-20, 7-44
CEATA_CCS_EN (command completion

signal enable) bit, 21-64
CEATA_EN (CE-ATA mode enable) bit,

21-64
CEATA_INT_DET (card detect int) bit,

21-77
CEATA_INT_DET_MASK (command

completion signal detect enable) bit,
21-78

CE-ATA mode enable (CEATA_EN) bit,
21-64

CEATA_TX_CCSD (transmit command
completion signal disable) bit, 21-76
I-6 ADSP-BF51x Blackfin Processor Hardware Reference

Index
channel A duty two’s complement
(PWMCHA) bit, 14-44

channel A duty two’s complement
(PWM_CHAL) bit, 14-49

channel A output crossover
(AHAL_XOVR) bit, 14-46

channel B duty two’s complement
(PWMCHB) bit, 14-45

channel B duty two’s complement
(PWM_CHBL) bit, 14-49

channel B output crossover
(BHBL_XOVR) bit, 14-46

channel C duty two’s complement
(PWMCHC) bit, 14-45

channel C duty two’s complement
(PWM_CHCL) bit, 14-49

channel C output crossover
(CHCL_XOVR) bit, 14-46

channel running (DMA_RUN) bit, 6-72
channels

defined, serial, 19-22
serial port TDM, 19-22
serial select offset, 19-22

CHCL_XOVR (channel C output
crossover) bit, 14-46

CH_EN (CH output enable) bit, 14-46
CHNL[9: 0] field, 19-66
CH output enable (CH_EN) bit, 14-46
circuit board testing, B-1, B-6
circular addressing, 6-56
CKDIV (divider for selected PTP_CLK

output) bit, 23-13
CKOEN (clock output control) bit, 23-13
CKS (PTP) bit, 23-13
CKS (PTP clock source) bit, 23-13
CL[1: 0] field, 7-67, 7-68
CL (CAS latency), 7-36
clear command response CRC fail

(CMD_CRC_FAIL_STAT) bit,
21-70

clear command response received
(CMD_RESP_END_STAT) bit,
21-70

clear command sent
(CMD_SENT_STAT) bit, 21-70

clear command timeout
(CMD_TIMEOUT_STAT) bit,
21-70

clear data block end
(DAT_BLK_END_STAT) bit, 21-70

clear data CRC failure
(DAT_CRC_FAIL_STAT) bit,
21-70

clear data timeout
(DAT_TIMEOUT_STAT) bit,
21-70

clear end of data (DAT_END_STAT) bit,
21-70

clearing interrupt requests, 5-13
clear Pxn bit, 9-35
clear Pxn interrupt A enable bit, 9-41
clear Pxn interrupt B enable bit, 9-42
clear receive FIFO overrun error

(RX_OVERRUN_STAT) bit, 21-70
clear start bit error

(START_BIT_ERR_STAT) bit,
21-70

clear transmit FIFO underrun error
(TX_UNDERRUN_STAT) bit,
21-70

CL_EN (CL output enable) bit, 14-46
CLKBUFOE (CLKIN buffer output

enable) bit, 8-23
CLKBUF pin, 22-4, 22-46
CLKDIV_BYPASS (bypass clock divisor)

bit, 21-57
CLKDIV (clock divisor) bit, 21-57
CLK_EN (RSI_CLOCK enable) bit,

21-57
CLKHI[7: 0] field, 16-28
ADSP-BF51x Blackfin Processor Hardware Reference I-7

Index
CLKHI bit, 16-28
CLKIN buffer output enable

(CLKBUFOE) bit, 8-23
CLKIN (input clock), 1-24, 4-4, 8-1, 8-3
CLKLOW[7: 0] field, 16-28
CLKLOW bit, 16-28
CLKOUT pin, 7-7, 7-68, 7-73
CLK_SEL (timer clock select) bit, 10-13,

10-20, 10-41, 10-46
clock

clock signals, 1-24
control, 8-1
EBIU, 7-2
external, 1-24
frequency for SPORT, 19-62
internal, 4-4
MAC, 22-4
managing, 27-1
peripheral, 8-7
RTC, 24-3
source for general-purpose timers, 10-4
SPI clock signal, 17-5
system, 1-24
system (SCLK), 27-2
types, 27-1

clock divide modulus registers, 19-62
clock divisor (CLKDIV) bit, 21-57
clock domain synchronization, PPI, 20-15
clock drive/sample edge select (TCKFE)

bit, 19-48
clock falling edge select (RCKFE) bit,

19-53
clock input (CLKIN) pin, 27-1
clock output control (CKOEN) bit, 23-13
clock phase, SPI, 17-12, 17-14
clock phase (CPHA) bit, 17-37
clock polarity, SPI, 17-12
clock polarity (CPOL) bit, 17-37

clock rate
core timer, 11-2
SPORT, 19-3

clock ratio, changing, 8-6
clocks, overview, 1-24
clock signals, 1-24
CL output enable (CL_EN) bit, 14-46
CMD_ACT (command active) bit, 21-67
CMD_ACT_MASK command active) bit,

21-72
CMD_CRC_FAIL (command response

CRC fail) bit, 21-67
CMD_CRC_FAIL_MASK (command

response CRC fail) bit, 21-72
CMD_CRC_FAIL_STAT (clear

command response CRC fail) bit,
21-70

CMD_EN (command enable) bit, 21-59
CMD_IDX (command index) bit, 21-59
CMD_INT_EN (command int en) bit,

21-59
CMD_LRSP_EN (long response enable)

bit, 21-59
CMD_PEND_EN (pend enable) bit,

21-59
CMD_RESP_END (command response

received) bit, 21-67
CMD_RESP_END_MASK (command

response received) bit, 21-72
CMD_RESP_END_STAT (clear

command response received) bit,
21-70

CMD_RSP_EN (wait for response) bit,
21-59

CMD_SENT (command sent) bit, 21-67
CMD_SENT_MASK (command sent) bit,

21-72
CMD_SENT_STAT (clear command

sent) bit, 21-70
I-8 ADSP-BF51x Blackfin Processor Hardware Reference

Index
CMD_TIMEOUT (command timeout)
bit, 21-67

CMD_TIMEOUT_MASK (command
timeout) bit, 21-72

CMD_TIMEOUT_STAT (clear
command timeout) bit, 21-70

CNT_COMMAND (counter command)
register, 13-19, 13-22, 13-24

CNT_CONFIG (counter configuration)
register, 13-19, 13-20

CNT_COUNTER (counter) register,
13-19

CNT_DEBOUNCE (counter debounce)
register, 13-19, 13-25

CNTE (counter enable) bit, 13-20
CNT_IMASK (counter interrupt mask)

register, 13-21
CNT_IMASK (interrupt mask) register,

13-19
CNT_MAX (maximal count) register,

13-19, 13-26
CNT_MIN (minimal count) register,

13-19, 13-26
CNTMODE (counter operating mode)

bits, 13-20
CNT_STATUS (counter status) register,

13-19, 13-22
codecs, connecting to, 19-2
collision error detected, excessive

(TX_ECOLL) bit, 22-105
collision error int en, excessive

(TX_ECOLL) bit, 22-112
collision errors detected, excessive

(TX_ECOLL) bit, 22-109
column address, 7-64

strobe latency, 7-33
column read/write, SDRAM, 7-31
command active (CMD_ACT) bit, 21-67
command active (CMD_ACT_MASK)

bit, 21-72

command (CNT_COMMAND) register,
13-19, 13-22

command completion signal detect enable
(CEATA_INT_DET_MASK) bit,
21-78

command completion signal enable
(CEATA_CCS_EN) bit, 21-64

command enable (CMD_EN) bit, 21-59
command index (CMD_IDX) bit, 21-59
command index of last received response

(RESP_CMD) bit, 21-60
command inhibit command, 7-54
command int en (CMD_INT_EN) bit,

21-59
command response CRC fail

(CMD_CRC_FAIL) bit, 21-67
command response CRC fail

(CMD_CRC_FAIL_MASK) bit,
21-72

command response received
(CMD_RESP_END) bit, 21-67

command response received
(CMD_RESP_END_MASK) bit,
21-72

commands
auto-refresh, 7-34, 7-52, 7-60
bank activate, 7-33
command inhibit, 7-54
DMA control, 6-31, 6-32
EMRS, 7-49
ERMS, 7-33
MRS, 7-33, 7-48
no operation (NOP), 7-54
precharge, 7-34
precharge all, 7-34, 7-52
read, 7-34
read/write, 7-50
SDC, 7-47
self-refresh, 7-53
transfer initiate, 17-18
ADSP-BF51x Blackfin Processor Hardware Reference I-9

Index
commands (continued)
write, 7-34
write with data mask, 7-51

command sent, 21-72
command sent (CMD_SENT) bit, 21-67
command sent (CMD_SENT_MASK) bit,

21-72
command timeout (CMD_TIMEOUT)

bit, 21-67
command timeout

(CMD_TIMEOUT_MASK) bit,
21-72

companding, 19-15, 19-23
A-law, 19-23, 19-28
defined, 19-28
lengths supported, 19-29
multichannel operations, 19-23
µ-law, 19-23, 19-28

compare mask of frame type field (EFTM)
bit, 23-13

compare mask of IP frame type field
(IPTM) bit, 23-13

compare mask of IP version field (IPVM)
bit, 23-13

compare mask of PTP control field
(PTPCM) bit, 23-13

compare mask of UDP event port field
(UDPEM) bit, 23-13

completion interrupt status
(DMA_DONE) bit, 6-72

configuration
SDC, 7-55
SDRAM, 7-24
SPORT, 19-10

configuration (CNT_CONFIG) register,
13-19

congestion, on DMA channels, 6-45
contention, bus, avoiding, 7-10
continuous polling, and MMC register,

22-43

continuous transition, DMA, 6-27
control bit summary, general-purpose

timers, 10-45
control byte sequences, PPI, 20-8
control (EMAC_PTP_CTL) register,

23-13
control frame int en (RX_CTL) bit,

22-100, 22-104
control frames, MAC, 22-16
control frames transmitted counter int en

(TX_MACCTL_CNT) bit, 22-118
control frames transmitted counter int

(TX_MACCTL_CNT) bit, 22-116
control register

data memory, 2-6
EBIU, 7-5

core
block diagram, 4-4
core bus, 4-4
core clock (CCLK), 8-5, 27-2
core clock/system clock ratio control, 8-5
timer, 5-5
waking from idle state, 5-6

core and system reset, code example,
26-105

core clock (CCLK), 11-2
core clock. See CCLK
core double-fault reset, 26-5
core-double-fault reset enable

(DOUBLE_FAULT) bit, 26-75
core-double-fault reset

(RESET_DOUBLE) bit, 26-75
core event controller (CEC), 5-2
core-only software reset, 26-5
core priority (CDPRIO) bit, 7-20
core select (CSEL) bit, 8-21
core select (CSEL) bits, 8-21
core time control (TCNTL) register, 11-5
I-10 ADSP-BF51x Blackfin Processor Hardware Reference

Index
core timer, 11-2 to 11-8
block diagram, 11-2
clock rate, 11-2
features, 11-2
initialization, 11-3
internal interfaces, 11-3
low power mode, 11-3
operation, 11-3
registers, 11-4
scaling, 11-7

core timer control (TCNTL) register, 11-3,
11-5

core timer count (TCOUNT) register,
11-3, 11-5, 11-6

core timer period (TPERIOD) register,
11-6

core timer scale (TSCALE) register, 11-3,
11-7

counter, RTC, 24-2
counter clear-on-read mode (CCOR) bit,

22-119
counter (CNT_COUNTER) register,

13-19
counter command (CNT_COMMAND)

register, 13-24
counter configuration (CNT_CONFIG)

register, 13-20
counter count value (CNT_COUNTER)

register, 13-26
counter debounce (CNT_DEBOUNCE)

register, 13-25
counter enable (CNTE) bit, 13-20
counter interrupt mask (CNT_IMASK)

register, 13-21
counter max (CNT_MAX) bit, 13-27
counter maximal count (CNT_MAX)

register, 13-27
counter min (CNT_MIN) bit, 13-27
counter minimal count (CNT_MIN)

register, 13-27

counter module registers, 13-19
counter operating mode (CNTMODE)

bits, 13-20
counter overflow int en (COVxIE) bits,

13-21
counter overflow interrupt identifier

(COVxII) bits, 13-22
counter rollover enable (CROLL) bit,

22-119
counter status (CNT_STATUS) register,

13-22
counter zeroed by zero marker (CZMZIE)

bit, 13-22
counter zeroed int en (CZMZIE) bit,

13-21
count to zero int en (CZEROIE) bit, 13-21
count to zero interrupt identifier

(CZEROII) bit, 13-22
count value[15: 0] field, 11-6
count value[31: 16] field, 11-6
COVxIE (counter overflow int en) bits,

13-21
COVxII (counter overflow interrupt

identifier) bits, 13-22
CPHA (clock phase) bit, 17-37
CPOL (clock polarity) bit, 17-37
CRC-16 hash value calculation, 22-37
CRC-32 calculation, MAC, 22-71
CRC32 checksum generation, 26-45
CRC state, MAC, 22-36
CROLL (counter rollover enable) bit,

22-43, 22-119
CROSSCORE software, 1-27
crosstalk, 27-9
crystal, external, 1-24
CSEL[1: 0] field, 8-5, 8-21, 27-2
CSEL (core select) bit, 8-21
CTYPE (DMA channel type) bit, 6-66
CUD and CDZ input disable (INPDIS)

bit, 13-20
ADSP-BF51x Blackfin Processor Hardware Reference I-11

Index
CUDINV (CUD pin polarity invert) bit,
13-20

CUD pin polarity invert (CUDINV) bit,
13-20

current address (DMAx_CURR_ADDR)
registers, 6-74

current address field, 6-75
current address

(MDMA_yy_CURR_ADDR)
registers, 6-74

current descriptor pointer
(DMAx_CURR_DESC_PTR)
registers, 6-81

current descriptor pointer
(MDMA_yy_CURR_DESC_PTR)
registers, 6-81

current frame status (EMAC_RX_STAT)
register, 22-93

current frame status (EMAC_TX_STAT)
register, 22-105

current inner loop count
(DMAx_CURR_X_COUNT)
registers, 6-76

current inner loop count
(MDMA_yy_CURR_X_COUNT)
registers, 6-76

current outer loop count
(DMAx_CURR_Y_COUNT)
registers, 6-78

current outer loop count
(MDMA_yy_CURR_Y_COUNT)
registers, 6-78

current time, 24-13
CURR_X_COUNT[15: 0] field, 6-76
CURR_Y_COUNT[15: 0] field, 6-79
CZEROIE (count to zero int en) bit, 13-21
CZEROII (count to zero interrupt

identifier) bit, 13-22
CZMEIE (zero marker error int en) bit,

13-21

CZMEII (CZM error interrupt identifier)
bit, 13-22

CZM error interrupt identifier (CZMEII)
bit, 13-22

CZMIE (CZM pin int en) bit, 13-21
CZMII (CZM pin interrupt identifier) bit,

13-22
CZMINV (CZM pin polarity invert) bit,

13-20
CZM pin int en (CZMIE) bit, 13-21
CZM pin interrupt identifier (CZMII) bit,

13-22
CZM pin polarity invert (CZMINV) bit,

13-20
CZM zeroes counter enable (ZMZC) bit,

13-20
CZMZIE (counter zeroed by zero marker)

bit, 13-22
CZMZIE (counter zeroed int en) bit,

13-21

D
DAB, 4-8, 6-5, 6-41, 6-90

arbitration, 4-8, 4-9
bus agents (masters), 4-9
clocking, 8-2
latencies, 4-10
performance, 4-10
throughput, 4-10

DAB_TRAFFIC_COUNT[2: 0] field,
6-90

DAB_TRAFFIC_PERIOD bit, 6-89
DAG0 port preference (PORT_PREF0)

bit, 2-6
DAG1 port preference (PORT_PREF1)

bit, 2-6
data

I/O mask function, 7-33
masks, 7-41
sampling, serial, 19-33
I-12 ADSP-BF51x Blackfin Processor Hardware Reference

Index
data bank access bit, 2-7
DATA_BLK_LGTH (data block length)

bit, 21-64
data block end (DAT_BLK_END) bit,

21-67
data block end (DAT_BLK_END_MASK)

bit, 21-72
data block length (DATA_BLK_LGTH)

bit, 21-64
data bus width (BUS_MODE) bit, 21-57
data cacheability protection lookaside

buffer enable (ENDCPLB) bit, 2-6
data cache select/address bit, 2-7
data corruption, avoiding with SPI, 17-14
DATA_COUNT (number of bytes still to

be transferred) bit, 21-65
data CRC failure (DAT_CRC_FAIL) bit,

21-67
data CRC failure

(DAT_CRC_FAIL_MASK) bit,
21-72

DATA_DIR (data transfer direction) bit,
21-64

data DMA enable (DATA_DMA_EN) bit,
21-64

DATA_DMA_EN (data DMA enable) bit,
21-64

data-driven interrupts, 6-72
data enable (DATA_EN) bit, 21-64
DATA_EN (data enable) bit, 21-64
data formats, SPORT, 19-28
data-independent transmit frame sync

select (DITFS) bit, 19-48
data input modes for PPI, 20-14 to 20-16
data/instruction access bit, 2-7
data int en (DI_EN) bit, 6-67
data interrupt timing select (DI_SEL) bit,

6-67
data length (DLEN) bit, 20-26

DATA_LENGTH (number of bytes to be
transferred) bit, 21-63

data memory control
(DMEM_CONTROL) register, 2-6

data memory control register
(DMEM_CONTROL), 2-6

DATA_MODE (data transfer mode) bit,
21-64

data move, serial port operations, 19-38
data not acknowledged (DNAK) bit, 16-35
data output modes for PPI, 20-17 to 20-18
data ready (DR) bit, 15-24
data receive active (RX_ACT) bit, 21-67
data receive active (RX_ACT_MASK) bit,

21-72
data structures, 26-89

boot_struct, 26-91
buffer_struct, 26-90
header_struct, 26-89

data test command
(DTEST_COMMAND) register, 2-7

data test command register
(DTEST_COMMAND), 2-6

data timeout (DAT_TIMEOUT) bit,
21-67

data timeout (DAT_TIMEOUT_MASK)
bit, 21-72

data transfer count (DCNT) bit, 16-32
data transfer (DATA_MODE) bit, 21-64
data transfer direction (DATA_DIR) bit,

21-64
data transfers

DMA, 4-10, 6-2
SPI, 17-15

data transmit active (TX_ACT) bit, 21-67
data transmit active (TX_ACT_MASK)

bit, 21-72
data word, serial data formats, 19-56
DAT_BLK_END (data block end) bit,

21-67
ADSP-BF51x Blackfin Processor Hardware Reference I-13

Index
DAT_BLK_END_MASK (data block end)
bit, 21-72

DAT_BLK_END_STAT (clear data block
end) bit, 21-70

DAT_CRC_FAIL (data CRC failure) bit,
21-67

DAT_CRC_FAIL_MASK (data CRC
failure) bit, 21-72

DAT_CRC_FAIL_STAT (clear data CRC
failure) bit, 21-70

DAT_END (end of data) bit, 21-67
DAT_END_MASK (end of data) bit,

21-72
DAT_END_STAT (clear end of data) bit,

21-70
DAT_TIMEOUT (data timeout) bit,

21-67
DAT_TIMEOUT_MASK (data timeout)

bit, 21-72
DAT_TIMEOUT_STAT (clear data

timeout) bit, 21-70
day[14: 0] field, 24-23
day alarm event flag bit, 24-22
day alarm int en bit, 24-21
day counter[14: 0] field, 24-21
DBF (disable broadcast frame reception)

bit, 22-60, 22-65
DCB, 4-8, 6-5, 6-41, 6-90

arbitration, 4-8, 4-9
DCBS (L1 data cache bank select) bit, 2-6
DCB_TRAFFIC_COUNT field, 6-90
DCB_TRAFFIC_PERIOD field, 6-90
DC (deferral check) bit, 22-60, 22-63
DCIE (down count int en) bit, 13-21
DCII (down count interrupt identifier) bit,

13-22
DCNT[7: 0] field, 16-32, 16-33
DCNT (data transfer count) bit, 16-32

DEB, 4-8, 6-5, 6-41, 6-90
arbitration, 4-8, 4-9
and EBIU, 7-4
frequency, 4-11
performance, 4-11

DEBE (debounce enable) bit, 13-20
debounce (CNT_DEBOUNCE) register,

13-19
debounce delay (DPRESCALE) bit, 13-25
debounce enable (DEBE) bit, 13-20
DEB_TRAFFIC_COUNT field, 6-89,

6-90
DEB_TRAFFIC_PERIOD field, 6-90
debugging

test point access, 27-12
deep sleep, and RTC, 24-10
deep sleep mode, 1-25, 7-46, 8-9
deferral check (DC) bit, 22-63
deferral int en, excessive (TX_EDEFER)

bit, 22-112
deferrals detected, excessive

(TX_EDEFER) bit, 22-105, 22-109
delay count (PPI_DELAY) register, 20-32
descriptor

array mode, DMA, 6-15, 6-68
chains, DMA, 6-26
list mode, DMA, 6-14, 6-68, 6-69
pairs, DMA, 22-12

descriptor-based DMA, 6-13
descriptor fetch (DFETCH) bit, 6-72
descriptor queue, 6-57

management, 6-56
synchronization, 6-57

descriptor structures
alternative, 22-25
DMA, 6-55
MDMA, 6-62

destination channels, memory DMA, 6-7
development tools, 1-27
DF (divide frequency) bit, 8-4, 8-21
I-14 ADSP-BF51x Blackfin Processor Hardware Reference

Index
DFETCH (descriptor fetch) bit, 6-14,
6-21, 6-72

dFlags variable, 26-94
dFlags Word register, 26-94
DFRESET (double-fault reset) bit, 25-48,

25-49, 26-77
DI_EN (data int en) bit, 6-14, 6-67, 6-69
direct code execution, 26-33

initial header, 26-33, 26-34
direction errors, MAC, 22-29
direction (PORT_DIR) bit, 20-26
direct memory access. See DMA
disable automatic Tx CRC generation

(DTXCRC) bit, 22-64
disable automatic Tx padding (DTXPAD)

bit, 22-64
disable broadcast frame reception (DBF)

bit, 22-65
disable/enable PTP_TSYNC module (EN)

bit, 23-13
disable for trip input (PWMTRIP_DSBL)

bit, 14-39
disable preamble generation (STADISPRE)

bit, 22-72
disable receive own frames (DRO) bit,

22-61
disable Tx retry on collision (DRTYP bit,

22-62
disabling PLL, 8-11
discarded frames, MAC, 22-16
DI_SEL (data interrupt timing select) bit,

6-67, 6-69
DITFS (data-independent transmit frame

sync select) bit, 19-37, 19-48, 19-51,
19-62

divide frequency (DF) bit, 8-21
divider for selected PTP_CLK output

(CKDIV) bit, 23-13
divisor latch access (DLAB) bit, 15-21
divisor latch high byte[15: 8] field, 15-30

divisor latch low byte[7: 0] field, 15-30
divisor reset, UART, 15-30
DLAB (divisor latch access) bit, 15-21,

15-26, 15-27
DLEN (data length) field, 20-25, 20-26
DMA, 6-1 to 6-102

autobuffer mode, 6-11, 6-28, 6-68
bandwidth, 6-45
block count, 6-37
block diagram, 6-104
block done interrupt, 6-40
block transfers, 6-9, 6-37
buses, 4-8
channels, 6-41, 6-50, 6-63, 6-64, 6-65
congestion, 6-45
connecting asynchronous FIFO, 6-38
control commands, 6-31, 6-32, 6-34
controller, 1-7, 6-2
descriptor structure, 6-97
direction, 6-70
DMA error interrupt, 6-73
double buffer scheme, 6-54
EBIU port DMA, 6-4
errors, 6-29, 6-30
ethernet MAC port DMA, 22-23,

22-121, 22-122
external interfaces, 6-4
features, 6-2
finish control command, 6-33, 6-34
first data memory access, 6-21
flow chart, 6-18, 6-19
FLOW mode, 6-16
FLOW value, 6-20
handshake DMA, 1-8
handshake operation, 6-36
initializing, 6-17
internal interfaces, 6-4
and L1 memory, 6-5
large model mode, 6-69
latency, 6-24
ADSP-BF51x Blackfin Processor Hardware Reference I-15

Index
DMA (continued)
linked list, 22-122
memory conflict, 6-48
memory DMA, 1-8, 6-5, 6-6, 6-7
memory read, 6-25
operation flow, 6-17
orphan access, 6-28
overflow interrupt, 6-40
overview, 1-7
performance, 6-40, 6-42
pipelining requests, 6-37
polling registers, 6-51
PPI port DMA, 20-13, 20-22, 20-35
prioritization and traffic control, 6-44 to

6-50
registers, 6-9, 6-65
remapping peripheral assignment, 6-6
request data control command, 6-34
request data urgent control command,

6-34
restart control command, 6-32, 6-33
small model mode, 6-68
software management, 6-50
SPI port DMA, 17-10, 17-24, 17-26,

17-43
SPORT (serial port) DMA, 19-4, 19-24,

19-38
stop mode, 6-11, 6-68
synchronization, 6-27, 6-50 to 6-60,

20-13
throughput, 6-40, 6-42, 6-45
traffic control, 6-45, 6-48
types supported, 1-7
UART port DMA, 15-17, 15-27
word size, changing, 6-27, 6-28
work units, 6-14, 6-22, 6-24

DMA0 memory access override
(DMA0OVR) bit, 25-48

DMA0OVR (DMA0 memory access
override) bit, 25-48

DMA2D (DMA mode) bit, 6-67, 6-70
DMA bus. See DAB
DMACFG field, 6-20, 6-62
DMA channel enable (DMAEN) bit, 6-67
DMA channel type (CTYPE) bit, 6-66
DMACODE bit, 26-95
DMA code (DMACODE) field, 26-22
DMA configuration (DMAx_CONFIG)

registers, 6-67
DMA configuration

(MDMA_yy_CONFIG) registers,
6-67

DMA core bus. See DCB
DMA descriptor, 6-13, 6-97

array mode, 6-15, 6-22, 6-68
chains, 6-26
descriptor pairs, 22-23
element offsets, 6-16
list mode, 6-14, 6-22, 6-68, 6-69
queue, 6-56, 6-57
recommended size, 6-16
structures, 6-55
transfers, comparison, 6-3
transfers, initializing, 6-94
variable size descriptors, 6-15

DMA direction (WNR) bit, 6-67, 6-70
DMA_DONE (completion interrupt

status) bit, 6-10, 6-72
DMA_DONE interrupt, 6-71
DMAEN (DMA channel enable) bit, 6-17,

6-61, 6-67, 6-70
DMA_ERR (error interrupt status) bit,

6-10, 6-72
DMA_ERROR interrupt, 6-29
DMA error interrupts, 6-72
DMA examples

1-D interrupt-driven, 6-53
1-D unsynchronized FIFO, 6-55
2-D, polled, 6-54
2-D array, 6-91
I-16 ADSP-BF51x Blackfin Processor Hardware Reference

Index
DMA examples (continued)
2-D interrupt-driven, 6-54
connection, receive, 6-39
connection, transmit, 6-38
header file to define descriptor structure,

6-96
HMDMA1 block enable, 6-101
HMDMA with delayed processing,

6-102
polling DMA status, 6-94
programming, 6-91 to 6-102
register-based 2D memory DMA, 6-92
software-triggered descriptor fetch, 6-98
two descriptors in small list flow mode,

6-95
two-dimensional memory DMA setup,

6-93
DMA external bus. See DEB
DMA mode (DMA2D) bit, 6-67
DMA operations, 1-7, 4-11, 6-2

continuous transfers, 6-27, 6-53
receive transfers, 6-26
refresh transfers, 6-22
round robin operations, 6-47
serial port block transfers, 19-38
single-buffer transfers, 6-53
transfer startup, 6-17
transfer stopping, 6-28
transfer termination without abort, 6-28
transfer triggering, 6-60
transmit, 6-25, 6-34, 6-35, 22-23
transmit finish, 6-34, 6-35
transmit restart, 6-34, 6-35
two-dimensional transfers, 6-11
urgent transfers, 6-45

DMA overrun detected (RX_DMAO0 bit,
22-104

DMA overrun detected (RX_DMAO) bit,
22-96, 22-101

DMA peripherals, 5-6, 6-4, 6-5, 6-6,
6-103, 6-105, 15-17, 15-27, 17-10,
17-24, 17-26, 17-43, 19-4, 20-13,
20-22, 20-35, 22-121

peripherals supported, 1-2
switching peripherals, 6-73

DMA queue completion interrupt, 6-59
DMA registers, 6-62, 6-63
DMA_RUN (channel running) bit, 6-10,

6-21, 6-58, 6-61, 6-71, 6-72
DMARx pin, 6-37
DMA start address field, 6-74
DMA_TC_CNT (DMA traffic control

counter) register, 6-89
DMA_TC_PER (DMA traffic control

counter period) register, 6-47, 6-89
DMA traffic control counter

(DMA_TC_CNT) register, 6-89
DMA traffic control counter period

(DMA_TC_PER) register, 6-89
DMA traffic control registers, 6-88
DMA_TRAFFIC_PERIOD field, 6-90
DMA underrun (TX_DMAU) bit, 22-105
DMAx_CONFIG (DMA configuration)

registers, 6-8, 6-17, 6-25, 6-67
DMAx_CURR_ADDR (current address)

registers, 6-74
DMAx_CURR_DESC_PTR (current

descriptor pointer) registers, 6-81
DMAx_CURR_X_COUNT (current

inner loop count) registers, 6-76
DMAx_CURR_Y_COUNT (current

outer loop count) registers, 6-78
DMAx_IRQ_STATUS (interrupt status)

registers, 6-71, 6-72
DMAx_NEXT_DESC_PTR (next

descriptor pointer) registers, 6-17,
6-80

DMAx_PERIPHERAL_MAP (peripheral
map) registers, 5-6, 6-66
ADSP-BF51x Blackfin Processor Hardware Reference I-17

Index
DMAx_START_ADDR (start address)
registers, 6-17, 6-74

DMAx_X_COUNT (inner loop count)
registers, 6-75

DMAx_X_MODIFY (inner loop address
increment) registers, 6-17, 6-77

DMAx_Y_COUNT (outer loop count)
registers, 6-78

DMAx_Y_MODIFY (outer loop address
increment) registers, 6-17, 6-79

DMC (L1 data memory configure) field,
2-6

DMEM_CONTROL (data memory
control) register, 2-4, 2-6

DNAK (data not acknowledged) bit,
16-35, 16-37

DOUBLE_FAULT (core-double-fault
reset enable) bit, 25-40, 26-75

double-fault reset (DFRESET) bit, 26-77
DOUBLE_RESET, 25-40
double-update mode (PWM_DBL) bit,

14-39
double word index field, 2-7
down count int en (DCIE) bit, 13-21
down count interrupt identifier (DCII) bit,

13-22
DPMC, 8-2, 8-7 to 8-19
DPRESCALE (debounce delay) bit, 13-25
DR (data ready) bit, 15-12, 15-16, 15-24
drive/tolerate (TWI_DT) pin, 9-28
DRO (disable receive own frames) bit,

22-60, 22-61
DRQ[1: 0] field, 6-46, 6-82, 6-83
DRTY (disable Tx retry on collision) bit,

22-60, 22-62
DRxPRI signal, 19-5
DRxSEC signal, 19-5
DTEST_COMMAND (data test

command) register, 2-6, 2-7

DTXCRC (disable automatic Tx CRC
generation) bit, 22-60, 22-64

DTXPAD (disable automatic Tx padding)
bit, 22-60, 22-64

DTxPRI signal, 19-5
DTxSEC signal, 19-5
dynamic power management, 1-24, 8-1,

8-2

E
EAB

arbitration, 4-11
clocking, 8-2
and EBIU, 7-4
frequency, 4-11
performance, 4-11

early frame sync, 19-35
EAV signal, 20-6
EBCAW (external bank column address

width) field, 7-63
EBC (external bus controller), 7-5
EBE (external bank enable) bit, 7-56, 7-62,

7-63
EBIU, 1-8, 7-1 to 7-81

asynchronous interfaces supported, 7-1
block diagram, 7-4
bus errors, 7-7
byte enables, 7-15
clock, 7-2, 8-2
control registers, 7-5
core transfers to SRAM, 7-23
and DMA, 6-4
error detection, 7-7
external access extension, 7-15
overview, 7-1
read access period, 7-15
request priority, 7-1
shared pins, 7-6
as slave, 7-4
status register, 7-5
I-18 ADSP-BF51x Blackfin Processor Hardware Reference

Index
EBIU (continued)
system clock, 7-7
timing characteristics, programmable,

7-11
wait states, 7-15

EBIU_AMBCTLx (asynchronous memory
bank control) registers, 7-20, 7-21,
7-22

EBIU_AMGCTL (asynchronous memory
global control) register, 7-20

EBIU_SDBCTL (SDRAM memory global
control) register, 7-62, 7-63

EBIU_SDGCTL (SDRAM memory global
control) register, 7-57, 7-66, 7-67

EBIU_SDRRC (SDRAM refresh rate
control) register, 7-60

EBIU_SDSTAT (SDRAM control status)
register, 7-76

EBSZ (external bank size) field, 7-26, 7-62,
7-63

EBUFE (external buffering enabled) bit,
7-59, 7-67, 7-74

ECINIT[15: 0] field, 6-87
ECOUNT[15: 0] field, 6-86
edge detection, GPIO, 9-18
EFT (ethernet frame type matching value)

bit, 23-21
EFTM (compare mask of frame type field)

bit, 23-13
EFTOF (offset of frame type EFT field) bit,

23-20
elfloader.exe utility, 26-19
ELSI (enable RX status int) bit, 15-27
ELSI (enable Rx status int) bit, 15-7, 15-28
EMAC_ADDRHI (address high) register,

22-51, 22-68
EMAC_ADDRLO (address low) register,

22-51, 22-67
EMAC_FLC (flow control) register, 22-51,

22-74

EMAC_HASHHI (multicast hash table
high) register, 22-51, 22-68

EMAC_HASHLO (multicast hash table
low) register, 22-51, 22-68

EMAC_MMC_CTL (management
counters control) register, 22-52,
22-119

EMAC_MMC_RIRQE (MMC RX int en)
register, 22-52, 22-114

EMAC_MMC_RIRQS (MMC RX
interrupt status) register, 22-52,
22-112

EMAC_MMC_TIRQE (MMC TX int en)
register, 22-52, 22-117

EMAC_MMC_TIRQS (MMC TX
interrupt status) register, 22-52,
22-114

EMAC_OPMODE (operating mode)
register, 22-51, 22-60

EMAC_PTP_ACCR (accumulator)
register, 23-25

EMAC_PTP_ADDEND (addend)
register, 23-24

EMAC_PTP_ALARMHI (target alarm
time high) register, 23-34

EMAC_PTP_ALARMLO (target alarm
time low) register, 23-33

EMAC_PTP_CTL (control) register,
23-13

EMAC_PTP_FOFF (message filter offset)
register, 23-20

EMAC_PTP_FV1 (message filter value 1)
register, 23-21

EMAC_PTP_FV2 (message filter value 2)
register, 23-22

EMAC_PTP_FV3 (message filter value 3)
register, 23-23

EMAC_PTP_ID_OFF (source ID offset)
register, 23-34
ADSP-BF51x Blackfin Processor Hardware Reference I-19

Index
EMAC_PTP_ID_SNAP (source ID
snapshot) register, 23-35

EMAC_PTP_IE (PTP int en) register,
23-16

EMAC_PTP_ISTAT (interrupt status)
register, 23-18

EMAC_PTP_OFFSET (time offset)
register, 23-26

EMAC_PTP_PPS_PERIOD (PPS period)
register, 23-38

EMAC_PTP_PPS_STARTHI (PPS start
high) register, 23-37

EMAC_PTP_PPS_STARTLO (PPS start
low) register, 23-36

EMAC_PTP_RXSNAPHI (receive
snapshot high) register, 23-30

EMAC_PTP_RXSNAPLO (receive
snapshot low) register, 23-29

EMAC_PTP_TIMEHI (local clock time
high) register, 23-28

EMAC_PTP_TIMELO (local clock time
low) register, 23-27

EMAC_PTP_TXSNAPHI (transmit
snapshot high) register, 23-32

EMAC_PTP_TXSNAPLO (transmit
snapshot low) register, 23-31

EMAC_RXC_ALIGN (alignment errors)
register, 22-53

EMAC_RXC_ALLFRM (frames received
all) register, 22-55

EMAC_RXC_ALLOCT (octets received
all) register, 22-55

EMAC_RXC_BROAD (broadcast frames
received ok) register, 22-54

EMAC_RXC_DMAOVF (frames lost due
to int MAC rcv error) register, 22-53

EMAC_RXC_EQ64 (frames len eq 64
received) register, 22-56

EMAC_RXC_FCS (frame check sequence
errors) register, 22-53

EMAC_RXC_GE1024 (frames len
1024-max received) register, 22-56

EMAC_RXC_LNERRI (in range length
errors) register, 22-54

EMAC_RXC_LNERRO (out of range
length field) register, 22-54

EMAC_RXC_LONG (frame too long
errors) register, 22-54

EMAC_RXC_LT1024 (frames len
512-1023 received) register, 22-56

EMAC_RXC_LT128 (frames len 65-127
received) register, 22-56

EMAC_RXC_LT256 (frames len 128-255
received) register, 22-56

EMAC_RXC_LT512 (frames len 256-511
received) register, 22-56

EMAC_RXC_MACCTL (MAC control
frames received) register, 22-55

EMAC_RXC_MULTI (multi cast frames
received ok) register, 22-54

EMAC_RXC_OCTET (octets received
ok) register, 22-53

EMAC_RXC_OK (frames received ok)
register, 22-53

EMAC_RXC_OPCODE (unsupported
opcodes received) register, 22-55

EMAC_RXC_PAUSE (pause MAC ctrl
frames received) register, 22-55

EMAC_RXC_SHORT (frames len lt 64
received) register, 22-56

EMAC_RXC_TYPED (typed frames
received) register, 22-55

EMAC_RXC_UNICST (unicast frames
received ok) register, 22-53

EMAC_RX_IRQE (frame status int en)
register, 22-52, 22-104

EMAC_RX_STAT (current frame status)
register, 22-52, 22-93

EMAC_RX_STKY (sticky frame status)
register, 22-52, 22-99
I-20 ADSP-BF51x Blackfin Processor Hardware Reference

Index
EMAC. See MAC or EMAC_ registers
EMAC_STAADD (station management

address) register, 22-10, 22-51, 22-72
EMAC_STADAT (station management

data) register, 22-10, 22-51, 22-74
EMAC_SYSCTL (system control) register,

22-10, 22-52, 22-89
EMAC_SYSTAT (system status) register,

22-52, 22-90
EMAC_TXC_1COL (single collision

frames) register, 22-56
EMAC_TXC_ALLFRM (frames

transmitted all) register, 22-58
EMAC_TXC_ALLOCT (octets

transmitted all) register, 22-58
EMAC_TXC_BROAD (broadcast frames

xmitted ok) register, 22-58
EMAC_TXC_CRSERR (carrier sense

errors) register, 22-57
EMAC_TXC_DEFER (frames with

deferred xmissions) register, 22-57
EMAC_TXC_DMAUND (frames lost due

to int MAC xmit error) register, 22-57
EMAC_TXC_EQ64 (frames len eq 64

transmitted) register, 22-58
EMAC_TXC_GT1COL (multiple

collision frames) register, 22-57
EMAC_TXC_LATECL (late collisions)

register, 22-57
EMAC_TXC_LT128 (frames len 65-127

transmitted) register, 22-58
EMAC_TXC_MACCTL (MAC control

frames transmitted) register, 22-58
EMAC_TXC_MULTI (multicast frames

xmitted ok) register, 22-58
EMAC_TXC_OCTET (octets transmitted

ok) register, 22-57
EMAC_TXC_OK (frames transmitted ok)

register, 22-56

EMAC_TXC_UNICST (unicast frames
xmitted ok) register, 22-58

EMAC_TXC_XS_COL (frames aborted
due to xs colls) register, 22-57

EMAC_TXC_XS_DFR (frames with
excessive deferral) register, 22-58

EMAC_TX_IRQE (frame status int en)
register, 22-52, 22-112

EMAC_TX_STAT (current frame status)
register, 22-52, 22-105

EMAC_TX_STKY (sticky frame status)
register, 22-52, 22-109

EMAC_VLANx (VLANx tag) registers,
22-51, 22-76

EMAC_WKUP_CTL (wakeup frame
control and status) register, 22-51,
22-78

EMAC_WKUP_FFCMD (wakeup frame
filter commands) register, 22-51,
22-85

EMAC_WKUP_FFCRCx (wakeup frame
filter CRCx) registers, 22-51, 22-52,
22-87

EMAC_WKUP_FFMSKx (wakeup
frameX byte mask) registers, 22-51,
22-80, 22-81, 22-82, 22-83, 22-84

EMAC_WKUP_FFOFF (wakeup frame
filter offsets) register, 22-51, 22-87

EMISO (enable MISO) bit, 17-36, 17-37
EMREN (extended mode register enabled)

bit, 7-49, 7-67, 7-75
EMRS command, 7-49
EMUDABL (emulator disable) bit, 25-48
emulation, and timer counter, 10-42
emulation behavior select (EMU_RUN)

bit, 10-41
emulation override (EMUOVR) bit, 25-48
emulator disable (EMUDABL) bit, 25-48
EMUOVR (emulation override) bit, 25-48
ADSP-BF51x Blackfin Processor Hardware Reference I-21

Index
EMU_RUN (emulation behavior select)
bit, 10-41, 10-42, 10-46

enabling interrupts, 5-5
ENDCPLB (enable cacheability lookaside

buffer) bit, 2-6
end of data (DAT_END) bit, 21-67
end of data (DAT_END_MASK) bit,

21-72
EN (enable/disable PTP_TSYNC module)

bit, 23-13
entire field mode, PPI, 20-9
EPROM, 1-5
EPS (even parity select) bit, 15-21
ERBFI (enable receive buffer full int) bit,

15-7, 15-12, 15-26, 15-27
ERMS command, 7-33
ERR_DET (error detected) bit, 20-29,

20-30
ERR_NCOR (error not corrected) bit,

20-29, 20-30
error code. See OTP error code
error detected (ERR_DET) bit, 20-30
error interrupt status (DMA_ERR) bit,

6-72
error not corrected (ERR_NCOR) bit,

20-30
errors, DMA, 6-29

not detected by hardware, 6-30
errors, timer, 10-9
error signals, SPI, 17-40 to 17-42
error type (ERR_TYP) bit, 10-41
ERR_TYP (error type) bits, 10-8, 10-29,

10-39, 10-41, 10-46
ETBEI (enable transmit buffer empty int)

bit, 15-6, 15-11, 15-17, 15-26, 15-27
ethernet controller architecture, 22-3
ethernet frame header, 22-49

ethernet frame type matching value (EFT)
bit, 23-21

ethernet MAC. See MAC or EMAC_
registers

even parity select (EPS) bit, 15-21
events

controller, 5-3
definition, 5-3
handling, 5-3
system, 5-3
types of, 5-3
vector table (EVT), 5-2

EVT1 register, 26-7
EXT_CLK mode, 10-33, 10-43, 10-45
extended mode register enabled (EMREN)

bit, 7-67
extended mode register set command, 7-50
external access bus. See EAB
external bank column address width

(EBCAW) bit, 7-63
external bank enable (EBE) bit, 7-63
external bank size (EBSZ) bit, 7-63
external buffering enabled (EBUFE) bit,

7-67
external bus interface unit. See EBIU
external crystal, 1-24
external emulator/debugger, 10-42
external memory, 1-5, 2-5

design issues, 27-5
interfaces, 7-6
map, 2-1, 7-3

external PHY, 22-4
external SDRAM memory, 7-26, 7-32
external sync (PWM_EXTSYNC) bit,

14-39
external sync select (PWM_SYNCSEL) bit,

14-39
EXTEST instruction, B-6
I-22 ADSP-BF51x Blackfin Processor Hardware Reference

Index
F
fast back-to-back read to write (FBBRW)

bit, 7-67
FAST (fast mode) bit, 16-32, 16-33
fast mode, TWI, 16-11
fast mode (FAST) bit, 16-32
FBBRW (fast back-to-back read to write)

bit, 7-67, 7-75
FDMODE (full duplex mode) bit, 22-60,

22-61
FE (framing error) bit, 15-24, 15-25
FFE (force framing error on transmit) bit,

15-31, 15-32
field indicator (FLD) bit, 20-30
FIFO, asynchronous connection, 6-38
FIFO_COUNT (number of 32-bit words

remaining) bit, 21-75
FIFO underrun (UNDR) bit, 20-30
filtering, MAC, 22-13
finish control command, DMA, 6-33, 6-34
flash memory, 1-5, 7-1, 27-5
FLCBUSY (flow control busy status) bit,

22-75
FLCE (flow control enable) bit, 22-16,

22-75
FLCPAUSE[15: 0] field, 22-75
FLD (field indicator) bit, 20-30, 20-31
FLD_SEL (active field select) bit, 20-4,

20-26, 20-28
flex descriptors, 6-3
FLGx (slave select value) bit, 17-38, 17-39
FLOW[2: 0] field, 6-22, 6-23, 6-55, 6-67,

6-68
flow charts

DMA operations, 6-18, 6-19
GP I/O operations, 9-21, 9-24
GP timer operations, 10-34
GP timers operations, 10-7
PPI operations, 20-24

flow charts (continued)
SPI operations, 17-30, 17-31
timer PWM_OUT operations, 10-12
timer WDTH_CAP operations, 10-24
TWI operations, 16-24, 16-25

flow control busy status (FLCBUSY) bit,
22-75

flow control (EMAC_FLC) register, 22-74
flow control enable (FLCE) bit, 22-75
FLOW mode, DMA, 6-16, 6-20
FLOW (next operation) bit, 6-14, 6-15
FLSx (slave select enable) bit, 17-8, 17-38
force framing error on transmit (FFE) bit,

15-31
force parity error on transmit (FPE) bit,

15-31
force reload (RBC) bit, 6-83
FPE (force parity error on transmit) bit,

15-31, 15-32
frame buffer, ethernet, 22-122
frame check sequence errors counter int en

(RX_FCS_CNT) bit, 22-115
frame check sequence errors counter int

(RX_FCS_CNT) bit, 22-113
frame check sequence errors

(EMAC_RXC_FCS) register, 22-53
frame CRC error (RX_CRC) bit, 22-97,

22-102, 22-104
frame deferral int en (TX_DEFER) bit,

22-105, 22-110, 22-112
framed serial transfers, characteristics,

19-31
framed/unframed data, 19-30
frame filter evaluation, MAC, 22-15
frame fragment detected (RX_FRAG) bit,

22-96, 22-102, 22-104
frame length (TX_FRLEN) bit, 22-105
frames aborted due to excess collisions

counter interrupt
(TX_ABORTC_CNT) bit, 22-118
ADSP-BF51x Blackfin Processor Hardware Reference I-23

Index
frames aborted due to excess collisions
counter int (TX_ABORTC_CNT)
bit, 22-116

frames aborted due to xs colls
(EMAC_TXC_XS_COL) register,
22-57

frames len 1024-max received counter int
en (RX_GE1024_CNT) bit, 22-115

frames len 1024-max received counter int
(RX_GE1024_CNT) bit, 22-113

frames len 1024-max received
(EMAC_RXC_GE1024) register,
22-56

frames len 1024-max transmitted counter
int en (TX_GE1024_CNT) bit,
22-118

frames len 1024-max transmitted counter
int (TX_GE1024_CNT) bit, 22-116

frames len 128-255 received counter int en
(RX_LT256_CNT) bit, 22-115

frames len 128-255 received counter int
(RX_LT256_CNT) bit, 22-113

frames len 128-255 received
(EMAC_RXC_LT256) register,
22-56

frames len 128-255 transmitted counter int
en (TX_LT256_CNT) bit, 22-118

frames len 128-255 transmitted counter int
(TX_LT256_CNT) bit, 22-116

frames len 256-511 received counter int en
(RX_LT512_CNT) bit, 22-115

frames len 256-511 received counter int
(RX_LT512_CNT) bit, 22-113

frames len 256-511 received
(EMAC_RXC_LT512) register,
22-56

frames len 256-511 transmitted counter int
en (TX_LT512_CNT) bit, 22-118

frames len 256-511 transmitted counter int
(TX_LT512_CNT) bit, 22-116

frames len 512-1023 received counter int
en (RX_LT1024_CNT) bit, 22-115

frames len 512-1023 received counter int
(RX_LT1024_CNT) bit, 22-113

frames len 512-1023 received
(EMAC_RXC_LT128) register,
22-56

frames len 512-1023 transmitted counter
int en (TX_LT1024_CNT) bit,
22-118

frames len 512-1023 transmitted counter
int (TX_LT1024_CNT) bit, 22-116

frames len 65-127 received counter int en
(RX_LT128_CNT) bit, 22-115

frames len 65-127 received counter int
(RX_LT128_CNT) bit, 22-113

frames len 65-127 received
(EMAC_RXC_LT128) register,
22-56

frames len 65-127 transmitted counter int
en (TX_LT128_CNT) bit, 22-118

frames len 65-127 transmitted counter int
(TX_LT128_CNT) bit, 22-116

frames len 65-127 transmitted
(EMAC_TXC_LT128) register,
22-58

frames len eq 64 received
(EMAC_RXC_EQ64) register, 22-56

frames len eq 64 transmitted
(EMAC_TXC_EQ64) register, 22-58

frames len eq to 64 received counter int en
(RX_EQ64_CNT) bit, 22-115

frames len eq to 64 received counter int
(RX_EQ64_CNT) bit, 22-113

frames len eq to 64 transmitted counter int
en (TX_EQ64_CNT) bit, 22-118

frames len eq to 64 transmitted counter int
(TX_EQ64_CNT) bit, 22-116

frames len lt 64 received counter int en
(RX_SHORT_CNT) bit, 22-115
I-24 ADSP-BF51x Blackfin Processor Hardware Reference

Index
frames len lt 64 received counter int
(RX_SHORT_CNT) bit, 22-113

frames len lt 64 received
(EMAC_RXC_SHORT) register,
22-56

frames lost counter int en
(RX_LOST_CNT) bit, 22-115

frames lost counter int (RX_LOST_CNT)
bit, 22-113

frames lost due to internal MAC transmit
error counter int en
(TX_LOST_CNT) bit, 22-118

frames lost due to internal MAC transmit
error counter int (TX_LOST_CNT)
bit, 22-116

frames lost due to int mac rcv error
(EMAC_RXC_DMAOVF) register,
22-53

frames lost due to int mac xmit error
(EMAC_TXC_DMAUND) register,
22-57

frames received all counter int en
(RX_ALLF_CNT) bit, 22-115

frames received all counter int
(RX_ALLF_CNT) bit, 22-113

frames received all
(EMAC_RXC_ALLFRM) register,
22-55

frames received OK counter int en
(RX_OK_CNT) bit, 22-115

frames received OK counter int
(RX_OK_CNT) bit, 22-113

frames received ok (EMAC_RXC_OK)
register, 22-53

frame start detect, PPI, 20-34
frame status int en (EMAC_RX_IRQE)

register, 22-104
frame status int en (EMAC_TX_IRQE)

register, 22-112

frames transmitted all counter int en
(TX_ALLF_CNT) bit, 22-118

frames transmitted all counter int
(TX_ALLF_CNT) bit, 22-116

frames transmitted all
(EMAC_TXC_ALLFRM) register,
22-58

frames transmitted OK counter int en
(TX_OK_CNT) bit, 22-118

frames transmitted OK counter int
(TX_OK_CNT) bit, 22-116

frames transmitted ok (EMAC_TXC_OK)
register, 22-56

frames transmitted OK (TX_OK) bit,
22-109

frames with deferred transmission counter
int en (TX_DEFER_CNT) bit,
22-118

frames with deferred transmission counter
int (TX_DEFER_CNT) bit, 22-116

frames with deferred xmissions
(EMAC_TXC_DEFER) register,
22-57

frames with excessive deferral counter int en
(TX_EXDEF_CNT) bit, 22-118

frames with excessive deferral counter int
(TX_EXDEF_CNT) bit, 22-116

frames with excessive deferral
(EMAC_TXC_XS_DFR) register,
22-58

frame sync
active high/low, 19-33
early, 19-35
external, 19-32
internal, 19-26, 19-32, 19-63
late, 19-35
multichannel mode, 19-18
sampling edge, 19-33
SPORT options, 19-30

frame sync divider[15: 0] field, 19-64
ADSP-BF51x Blackfin Processor Hardware Reference I-25

Index
frame synchronization, 19-3, 20-19
frame sync polarity, PPI and timer, 20-20
frame sync signal, 19-50, 19-51, 19-55
frame sync to data relationship (FSDR) bit,

19-65
frame too long errors counter int en

(RX_LONG_CNT) bit, 22-115
frame too long errors counter int

(RX_LONG_CNT) bit, 22-113
frame too long errors

(EMAC_RXC_LONG) register,
22-54

frame too long (RX_LONG) bit, 22-97,
22-102, 22-104

frame track error (FT_ERR) bit, 20-30,
20-33

frame transmission complete (TX_COMP)
bit, 22-105, 22-109, 22-112

frame transmit OK int en (TX_OK) bit,
22-105, 22-112

framing error (FE) bit, 15-24
FREQ bit, 8-23
frequencies, clock and frame sync, 19-25
frequency, DEB, 4-11
frequency, EAB, 4-11
FSDR (frame sync to data relationship) bit,

19-21, 19-65
F signal, 20-31
FT_ERR (frame track error) bit, 20-30,

20-33
full duplex, 17-2, 19-4, 19-5
full duplex mode (FDMODE) bit, 22-61
FULL_ON bit, 8-22
full-on mode, 1-24, 8-8
function enable (PORTx_FER) registers,

9-10, 9-32

G
GCALL (general call) bit, 16-30, 16-31
general call address, TWI, 16-11
general call enable (GEN) bit, 16-28
general call (GCALL) bit, 16-30
general-purpose interrupts, 5-2, 5-3
general-purpose I/O

overview, 1-9
general-purpose I/O. See GPIO
general-purpose ports, 9-1 to 9-45

interrupt channels, 9-19
interrupt generation flow, 9-19
I/O pins, 9-3, 9-18
latency, 9-13
throughput, 9-13

general-purpose ports. See GPIO
general-purpose timers, 10-1 to 10-58

aborting immediately, 10-23
autobaud mode, 10-32
block diagram, 10-58
buffer registers, 10-43
capture mode, 10-6
clock source, 10-4
code examples, 10-48
control bit summary, 10-45
counter, 10-5
disable timing, 10-23
enabling, 10-5, 10-34
error detection, 10-8
EXT_CLK mode, 10-43
external interface, 10-4
features, 10-2
generating maximum frequency, 10-16
illegal states, 10-8, 10-10
internal interface, 10-3, 10-4
interrupts, 10-5, 10-6, 10-7, 10-15,

10-29, 10-50, 10-51
measurement report, 10-25, 10-27,

10-28
non-overlapping clock pulses, 10-53
I-26 ADSP-BF51x Blackfin Processor Hardware Reference

Index
general-purpose timers (continued)
output pad disable, 10-13
overflow, 10-5
PPI related operations, 10-57
programming model, 10-34
PULSE_HI toggle mode, 10-16
PWM mode, 10-6
PWM_OUT mode, 10-11 to 10-23,

10-43, 10-44
register accesses, 10-36
registers, 10-35
setup, 10-48
signal generation, 10-49
single pulse generation, 10-13
startup errors, 10-9
three timers with same period, 10-18
two timers with non-overlapping clocks,

10-18
waveform generation, 10-14
WDTH_CAP mode, 10-24, 10-43,

10-55
GEN (general call enable) bit, 16-28, 16-29
get more data (GM) bit, 17-37
glitch filtering, UART, 15-9
global unicast wakeup enable (GUWKE)

bit, 22-79
glueless connection, 27-5
GM (get more data) bit, 17-20, 17-37
good received frame int en (RX_OK) bit,

22-98, 22-103, 22-104
GPIO, 1-9, 9-1 to 9-45

assigned to same interrupt channel, 9-22
both edges control, 9-37
clearing interrupt conditions, 9-20
clear registers, 9-17
code examples, 9-44
configuration, 9-14
data registers, 9-15, 9-16

GPIO (continued)
direction control, 9-33
direction registers, 9-14, 9-15, 9-19
edge detection, 9-18
edge-sensitive, 9-16
flow chart, 9-24
function enable registers, 9-14, 9-18
input buffers, 9-15
input driver, 9-15
input drivers, 9-19
input enable control, 9-33
input enable registers, 9-15, 9-18
interrupt enable control, 9-37, 9-38
interrupt flow chart, 9-21
interrupts, 5-14, 9-19, 9-22, 9-23
interrupt sensitivity registers, 9-18
mask data registers, 9-20
mask interrupt clear registers, 9-21
mask interrupt set registers, 9-20
mask interrupt toggle registers, 9-22
mask registers, 9-19
pins, 9-14
polarity control, 9-36
polarity registers, 9-18
registers, 9-26
sensitivity control, 9-36
set registers, 9-16
toggle registers, 9-17
using as input, 9-15
write operations, 9-15
writes to registers, 9-17

GPIO clear (PORTxIO_CLEAR) registers,
9-35

GPIO data (PORTxIO) registers, 9-34
GPIO direction (PORTxIO_DIR)

registers, 9-33, 14-42, 14-43, 14-44,
14-45, 14-48, 14-49, 14-50, 14-51

GPIO input enable (PORTxIO_INEN)
registers, 9-33
ADSP-BF51x Blackfin Processor Hardware Reference I-27

Index
GPIO mask interrupt set/clear/toggle
(PORTxIO_MASKA/B_X) registers,
9-37, 9-39, 9-40, 9-41, 9-42, 9-43,
9-44

GPIO mask int (PORTxIO_MASKA/B)
registers, 9-37, 9-38

GPIO pins, 9-14
GPIO polarity (PORTxIO_POLAR)

registers, 9-36
GPIO set on both edges

(PORTxIO_BOTH) registers, 9-37
GPIO set (PORTxIO_SET) registers, 9-34
GPIO toggle (PORTxIO_TOGGLE)

registers, 9-35
GP modes, PPI, 20-14
ground plane, 27-9, 27-10
GUWKE (global unicast wakeup enable)

bit, 22-79

H
H.100 standard protocol, 19-21, 19-24
handshake MDMA, 1-8, 6-8, 6-40
handshake MDMA configuration

(HMDMAx_BCINIT) registers,
6-37, 6-84

handshake MDMA control
(HMDMAx_CONTROL) registers,
6-82

handshake MDMA control registers, 6-83
handshake MDMA current block count

(HMDMAx_BCOUNT) registers,
6-37, 6-85

handshake MDMA current edge count
(HMDMAx_ECOUNT) registers,
6-37, 6-38, 6-86

handshake MDMA edge count overflow int
(HMDMAx_ECOVERFLOW)
registers, 6-88

handshake MDMA edge count urgent
(HMDMAx_ECURGENT) registers,
6-87

handshake MDMA enable (HMDMAEN)
bit, 6-83

handshake MDMA initial block count
(HMDMAx_BCINIT) registers, 6-84

handshake MDMA initial edge count
(HMDMAx_ECINIT) registers,
6-38, 6-87

handshaking memory DMA (HMDMA),
6-2, 6-4

hardware reset, 26-4, 26-5, 26-7
hash filter multicast addresses (HM) bit,

22-66
hash filter unicast addresses (HU) bit,

22-66
header checksum (HDRCHK) field, 26-27
header signature (HDRSGN), 26-27
hibernate state, 1-26, 7-46, 8-10
higher 32 bits of local time clock

(LOCAL_TIME_HI) bit, 23-28
higher 32 bits of PPS start time

(PPS_STARTHI) bit, 23-37
higher 32 bits of receive snapshot of local

clock time (RX_SNAP_HI) bit, 23-30
higher 32 bits of target alarm time

(ALARM_TIME_HI) bit, 23-34
higher 32 bits of transmit snapshot of local

clock time (TX_SNAP_HI) bit, 23-32
high-frequency design considerations, 27-8
HMDMA, 6-2, 6-8
HMDMAEN (handshake MDMA enable)

bit, 6-36, 6-38, 6-83
HMDMAx_BCINIT (handshake MDMA

configuration) registers, 6-37, 6-84
HMDMAx_BCOUNT (handshake

MDMA current block count)
registers, 6-37, 6-85
I-28 ADSP-BF51x Blackfin Processor Hardware Reference

Index
HMDMAx_CONTROL (handshake
MDMA control) registers, 6-82

HMDMAx_ECINIT (handshake MDMA
initial edge count) registers, 6-38,
6-87

HMDMAx_ECOUNT (handshake
MDMA current edge count) registers,
6-37, 6-38, 6-86

HMDMAx_ECOVERFLOW (handshake
MDMA edge count overflow int)
registers, 6-88

HMDMAx_ECURGENT (handshake
MDMA edge count urgent) registers,
6-87

HM (hash filter multicast addresses) bit,
22-60, 22-66

HMVIP compatibility mode, 19-25
hold, for EBIU asynchronous memory

controller, 7-19
horizontal blanking, 20-6
horizontal tracking, PPI, 20-31
horizontal tracking overflow error

(LT_ERR_OVR) bit, 20-30
horizontal tracking underflow error

(LT_ERR_UNDR) bit, 20-30
hours[3: 0] field, 24-21, 24-23
hours[4] bit, 24-21, 24-23
hours event flag bit, 24-22
hours int en bit, 24-21
HU (hash filter unicast addresses) bit,

22-60, 22-66

I
I2C bus standard, 1-10, 16-2
I2C. See TWI
I2S, 1-17

format, 19-10
serial devices, 19-3

ICIE (illegal gray/binary code int en) bit,
13-21

ICII (illegal gray/binary code interrupt
identifier) bit, 13-22

idle state
waking from, 5-6

IEEE 1149.1 standard. See JTAG standard
IEEE 802.3, 1-11, 22-4, 22-8, 22-42
IFE (inverse filtering) bit, 22-60, 22-65
illegal gray/binary code interrupt identifier

(ICII) bit, 13-22
IMASK (interrupt mask) register

initialization, 5-8
IN_DELAY bit, 8-21
INIT bit, 26-37
initcall address/symbol command, 26-37
initcode routines, 26-35
initialization

IMASK register, 5-8
interrupt, 5-8
SDRAM, 7-72

initializing
DMA, 6-17

init initcode.dxe command, 26-37
inner loop address increment registers

(DMAx_X_MODIFY), 6-77
(MDMA_yy_X_MODIFY), 6-77

inner loop count registers
(DMAx_X_COUNT), 6-75
(MDMA_yy_X_COUNT), 6-75

INPDIS (CUD and CDZ input disable)
bit, 13-20

input buffers, GPIO, 9-15
input clock. See CLKIN
input driver, GPIO, 9-15
in-range length errors counter int

(RX_IRL_CNT) bit, 22-113, 22-115
in range length errors

(EMAC_RXC_LNERRI) register,
22-54

instruction bit scan ordering, B-5
instruction register (IR), B-2, B-4
ADSP-BF51x Blackfin Processor Hardware Reference I-29

Index
instructions, 1-26
private, B-4
public, B-4
See also instructions by name

interfaces
external memory, 7-6
internal memory, 7-5
on-chip, 4-2
overview, 4-3
RTC, 24-3
system, 4-2

inter IC bus, 16-2
interlaced video, 20-6
interleaving SPORT data, 19-6, 19-57
internal address mapping (table), 7-63
internal bank, 7-32
internal boot ROM, 26-1
internal clocks, 4-4
internal/external frame syncs. See frame

sync
internal loopback enable (LB) bit, 22-61
internal MAC error int en (TX_MACE)

bit, 22-112
internal MAC errors detected (TX_MACE)

bit, 22-109
internal memory, 1-5

accesses, 2-1
interfaces, 7-5

internal receive clock select (IRCLK) bit,
19-53

internal receive frame sync select (IRFS) bit,
19-53

internal SDRAM banks, 7-28
internal transmit clock select (ITCLK) bit,

19-48
internal transmit frame sync select (ITFS)

bit, 19-48
internal TSR register, UART, 15-6
internal voltage regulator, 1-23

interrupt mask (CNT_IMASK) register,
13-19, 13-21

interrupt request enable (IRQ_ENA) bit,
10-41

interrupts, 5-1 to 5-15
channel assignment, 5-4, 9-19
configuration, 27-2
core wake up, 5-6
definition, 5-3
DMA usage, 5-6, 6-29, 6-40, 6-57, 6-59,

6-73
enabling, 5-5
ethernet event, 22-38
evaluation of GPIO interrupts, 9-22
general-purpose usage, 5-2, 5-3
GPIO event, 9-22
GPIO usage, 9-18, 9-19, 9-22, 9-23
handshake MDMA, 6-40
initialization, 5-8
inputs and outputs, 5-4
interrupt handler and DMA

synchronization, 6-58
MAC configuration, 22-46
masking function, 5-7
peripheral usage, 5-2, 5-3, 5-4 to 5-7,

5-8, 5-16
prioritization, 5-5
processing, 5-2, 5-8
programming examples, 5-13 to 5-15
remote wakeup, 22-35
request clearing, 5-13
reset, 26-7
routing, 5-17, 5-18
RTC usage, 24-3, 24-6, 24-14
service, 27-2
shared, 5-5
software, 5-3
source identification, 5-6, 5-9
SPI usage, 17-16, 17-17, 17-47
SPORT usage, 19-38, 19-58, 19-60
I-30 ADSP-BF51x Blackfin Processor Hardware Reference

Index
interrupts (continued)
system, 5-2
system control, 5-2
timer usage, 10-5, 10-6, 10-15, 10-29
UART interrupt priority, 15-12
UART usage, 15-11, 15-28
wake up core, 5-6

interrupt sensitivity (PORTxIO_EDGE)
registers, 9-36

interrupt service routine, determining
source of interrupt, 5-5

interrupt status, DMA
(DMAx_IRQ_STATUS) registers,
6-71, 6-72

interrupt status, EMAC
(EMAC_PTP_ISTAT) register,
23-18

interrupt status, MDMA
(MDMA_yy_IRQ_STATUS)
registers, 6-71, 6-72

inverse filtering (IFE) bit, 22-65
I/O interface to peripheral serial device,

19-4
I/O memory space, 1-5
I/O pins, general-purpose, 9-14
IP checksum, MAC, 22-19
IPT (IP type matching value) bit, 23-21
IPTM (compare mask of IP frame type

field) bit, 23-13
IPTOF (offset of frame type IP field) bit,

23-20
IP type matching value (IPT) bit, 23-21
IP version matching value (IPV) bit, 23-21
IPV (IP version matching value) bit, 23-21
IPVM (compare mask of IP version field)

bit, 23-13
IRCLK (internal receive clock select) bit,

19-53, 19-55

IrDA mode enable (IREN) bit, 15-31
IrDA mode operation, 15-8, 15-9, 15-31
IrDA RX polarity change (RPOLC) bit,

15-31
IrDA SIR physical layer, 15-5
IrDA TX polarity change (TPOLC) bit,

15-31
IREN (enable IrDA mode) bit, 15-31
IRFS (internal receive frame sync select) bit,

19-32, 19-53, 19-55
IR instruction register, B-2, B-4
IRPOL bit, 15-10
IRQ bit, 10-47
IRQ_ENA (interrupt request enable) bit,

10-41, 10-45, 10-47
ISR

supporting multiple interrupt sources,
5-7, 5-19

ISR and multiple interrupt sources, 5-9
ISR for the MMC interrupt, structure,

22-43
issue stop condition (STOP) bit, 16-32
ITCLK (internal transmit clock select) bit,

19-48, 19-50
ITFS (internal transmit frame sync select)

bit, 19-19, 19-32, 19-48, 19-51
ITHR[15: 0] field, 6-88
ITU-R 601 recommendation, 20-15
ITU-R 656 modes, 1-15, 1-16, 20-5, 20-9,

20-11, 20-28, 20-29
active video only submode, 20-9, 20-10
DLEN field usage, 20-25
entire field submode, 20-9
frame start detect, 20-34
frame synchronization, 20-11
SAV codes, 20-31
vertical blanking interval only submode,

20-9, 20-10
ADSP-BF51x Blackfin Processor Hardware Reference I-31

Index
J
JTAG port, B-1, B-3, B-4
JTAG_SE bit, 9-29

L
L1

data cache, 2-4
data memory, 1-5
data memory subbanks, 2-3
data SRAM, 2-3
instruction memory, 1-5, 2-2
memory and core, 4-4
memory and DMA controller, 6-5
scratchpad RAM, 1-5

L1DADABL (L1 data bank A memory
disable) bit, 25-48

L1 data bank A memory disable
(L1DADABL) bit, 25-48

L1 data bank B memory disable
(L1DBDABL) bit, 25-48

L1data cache bank select (DCBS) bit, 2-6
L1 data memory configure (DMC) bit, 2-6
L1DBDABL (L1 data bank B memory

disable) bit, 25-48
L1IDABL (L1 instruction memory disable)

bit, 25-48
L1 instruction memory

address alignment, 2-2
subbanks, 2-3

L1 instruction memory disable (L1IDABL)
bit, 25-48

LARFS (late receive frame sync) bit, 19-35,
19-53, 19-56

large descriptor mode, DMA, 6-14
large model mode, DMA, 6-69
late collision detected (RX_LATE) bit,

22-96, 22-101, 22-104
late collision detected (TX_RETRY) bit,

22-105

late collision error (TX_LATE) bit, 22-105,
22-109, 22-112

late collisions counter int
(TX_LATE_CNT) bit, 22-116,
22-118

late collisions detected (TX_RETRY) bit,
22-109, 22-112

late collisions (EMAC_TXC_LATECL)
register, 22-57

late frame sync, 19-17, 19-35
latency

DAB, 4-10
DMA, 6-24
general-purpose ports, 9-13
powerup, 7-56
SDC, 7-41
SDRAM, 7-72

late receive frame sync (LARFS) bit, 19-53
late transmit frame sync (LATFS) bit,

19-48
LATFS (late transmit frame sync) bit,

19-35, 19-48, 19-52
LB (internal loopback enable) bit, 22-60,

22-61
LCRTE (enable Tx retry on late collision)

bit, 22-27, 22-60, 22-62
left/right order (R/TRFST) bits, 19-49,

19-54
length error detected (RX_LEN) bit,

22-97, 22-102, 22-104
level shifters, 27-11
lines per frame (PPI_FRAME) register,

20-33, 20-34
line terminations, SPORT, 19-8
linked list, DMA, 22-122
little endian byte order, 16-46
loader, 26-19
local clock time high

(EMAC_PTP_TIMEHI) register,
23-28
I-32 ADSP-BF51x Blackfin Processor Hardware Reference

Index
local clock time low
(EMAC_PTP_TIMELO) register,
23-27

LOCAL_TIME_HI (higher 32 bits of local
time clock) bit, 23-28

LOCAL_TIME_LO (lower 32 bits of local
time clock) bit, 23-27

LOCKCNT field, 8-22
locked transfers, DMA, 4-10
long response enable (CMD_LRSP_EN)

bit, 21-59
loopback mode enable (LOOP_ENA) bit,

15-23
loopback operation

ethernet MAC port, 22-61
general-purpose timers, 10-55
PPI port, 20-10
UART port, 15-23

LOOP_ENA (loopback mode enable) bit,
15-23

losses of carrier detected (TX_LOSS) bit,
22-105, 22-110

loss of carrier int en (TX_LOSS) bit,
22-112

lost arbitration (LOSTARB) bit, 16-35
LOSTARB (lost arbitration) bit, 16-35,

16-38
lower 32 bits of local time clock

(LOCAL_TIME_LO) bit, 23-27
lower 32 bits of PPS start time

(PPS_STARTLO) bit, 23-36
lower 32 bits of receive snapshot of local

clock time (RX_SNAP_LO) bit,
23-29

lower 32 bits of target alarm time
(ALARM_TIME_LO) bit, 23-33

lower 32 bits of transmit snapshot of local
clock time (TX_SNAP_LO) bit,
23-31

lower PBS00 half page (PBS00L) register,
26-82, 26-83

lower PBS02 half page (PBS02L) register,
26-88

low receive frame sync select (LRFS) bit,
19-53

low transmit frame sync select (LTFS) bit,
19-48

LRFS (low receive frame sync select) bit,
19-12, 19-31, 19-33, 19-53, 19-56

LSB first (LSBF) bit, 17-37
LSBF (LSB first) bit, 17-37
LT_ERR_OVR (horizontal tracking

overflow error) bit, 20-30, 20-31
LT_ERR_UNDR (horizontal tracking

underflow error) bit, 20-30, 20-31
LTFS (low transmit frame sync select) bit,

19-19, 19-31, 19-33, 19-48, 19-51

M
MAC, 1-11, 22-1 to 22-126

addresses, 22-14, 22-47, 22-124
block diagram, 22-3
clocking, 22-4
code examples, 22-121
configuration, 22-45, 22-46, 22-47,

22-48
continuous polling, 22-43
control frames, 22-16
CRC usage, 22-36, 22-37, 22-71
CSMA/CD protocol, 22-3
ethernet event interrupts, 22-38
filters, 22-13
internal interface, 22-7
interrupts, 22-46
IP checksum, 22-19
late collisions, 22-27
magic packet detection, 22-33
management counters, 22-42
MII management interface, 22-8
ADSP-BF51x Blackfin Processor Hardware Reference I-33

Index
MAC (continued)
MMC interrupt, 22-39, 22-43
operation in sleep state, 22-32
peripheral, 22-10
PHYINT interrupt, 22-39
PHY usage, 22-48, 22-124, 22-126
pins, multiplexed, 22-5, 22-6, 22-45
power management states, 22-7
protocol compliance, 22-8
receiving data, 22-49
registers, 22-47, 22-50
RX automatic pad stripping, 22-17
RX receive status priority, 22-20
speculative read, 22-42
station management, 22-9, 22-40,

22-47, 22-48
transmitting data, 22-50
TX transmit status priority, 22-29
type definitions, 22-121
wake up (from hibernate/sleep), 22-30,

22-31
MAC control frames received

(EMAC_RXC_MACCTL) register,
22-55

MAC control frames transmitted
(EMAC_TXC_MACCTL) register,
22-58

MAC DMA
configuration, 22-121
data transfer, 22-49
descriptors, 22-12, 22-23, 22-25, 22-26,

22-122
linked lists, 22-122
receive operation, 22-11
RX buffer structure, 22-18
RX direction error detected, 22-40
RX direction errors, 22-22
transmit operation, 22-23
TX data alignment, 22-27

MAC DMA (continued)
TX direction error detected, 22-40
TX direction errors, 22-29

MAC frames
aborted frames, 22-16
discarded frames, 22-16
ethernet frame buffer, 22-122
ethernet frame header, 22-49
filter evaluation, 22-15
filtering and reception, 22-13
remote wakeup filters, 22-34
RX frame status, 22-19, 22-20, 22-39,

22-41
RX IP frame checksum, 22-21
transfer frame protocol, 22-9
TX frame status, 22-28, 22-39, 22-41,

22-42
wakeup frame detected, 22-40

MADDR[6: 0] field, 16-34
MADDR (master mode address) bit, 16-34
magic packet, 22-33
magic packet received status (MPKS) bit,

22-79
magic packet wakeup enable (MPKE) bit,

22-79
management counters control

(EMAC_MMC_CTL) register,
22-119

mask block done int (MBDI) bit, 6-83
mask for PTP control field of event

messages (RX_EM) bit, 23-23
mask for PTP control field of general

messages (RX_GN) bit, 23-23
master mode address (MADDR) bit, 16-34
master mode enable (MEN) bit, 16-32
master (MSTR) bit, 17-37
masters

DAB, 4-9
PAB, 4-6
I-34 ADSP-BF51x Blackfin Processor Hardware Reference

Index
master transfer complete (MCOMP) bit,
16-42

master transfer direction (MDIR) bit,
16-32

master transfer error interrupt mask
(MERRM) bit, 16-42

master transfer error (MERR) bit, 16-42
master transfer in progress (MPROG) bit,

16-35
MAXCIE (max count int en) bit, 13-21
MAXCII (max count interrupt identifier)

bit, 13-22
max count int en (MAXCIE) bit, 13-21
max count interrupt identifier (MAXCII)

bit, 13-22
maximal count (CNT_MAX) register,

13-19, 13-26
MBDI bit, 6-40
MBDI (mask block done int) bit, 6-83
MCCRM[1: 0] field, 19-65
MCDRXPE (multichannel DMA receive

packing) bit, 19-65
MCDTXPE (multichannel DMA transmit

packing) bit, 19-65
MCMEN (multichannel frame mode

enable) bit, 19-17, 19-65
MCOMP (master transfer complete) bit,

16-42, 16-44
MCOMPM (master transfer complete

interrupt mask) bit, 16-42
MCOMPM master transfer complete

interrupt mask (MCOMPM) bit,
16-42

MDCDIV[5: 0] field, 22-89
MDIO station management interface, 22-8
MDIR (master transfer direction) bit,

16-32, 16-33
MDMA channels, 6-6
MDMA controllers, 6-6

MDMA_ROUND_ROBIN_COUNT
field, 6-47, 6-89

MDMA_ROUND_ROBIN_PERIOD
field, 6-47, 6-89, 6-90

MDMA_yy_CONFIG (DMA
configuration) registers, 6-67

MDMA_yy_CURR_ADDR (current
address) registers, 6-74

MDMA_yy_CURR_DESC_PTR (current
descriptor pointer) registers, 6-81

MDMA_yy_CURR_X_COUNT (current
inner loop count) registers, 6-76

MDMA_yy_CURR_Y_COUNT (current
outer loop count) registers, 6-78

MDMA_yy_IRQ_STATUS (interrupt
status) registers, 6-71, 6-72

MDMA_yy_NEXT_DESC_PTR (next
descriptor pointer) registers, 6-80

MDMA_yy_PERIPHERAL_MAP
(peripheral map) registers, 6-66

MDMA_yy_START_ADDR (start
address) registers, 6-74

MDMA_yy_X_COUNT (inner loop
count) registers, 6-75

MDMA_yy_X_MODIFY (inner loop
address increment) registers, 6-77

MDMA_yy_Y_COUNT (outer loop
count) registers, 6-78

MDMA_yy_Y_MODIFY (outer loop
address increment) registers, 6-79

measurement report, general-purpose
timers, 10-25, 10-27, 10-28

memory, 2-1 to 2-7
accesses to internal, 2-1
architecture, 1-3, 2-1
asynchronous, 2-1, 7-2, 27-5
boot ROM, 2-4
configurations, 1-4
external, 1-5, 2-1, 2-5, 7-6
flash, 1-5
ADSP-BF51x Blackfin Processor Hardware Reference I-35

Index
memory (continued)
internal, 1-5, 7-32
I/O space, 1-5
L1 data, 1-5, 2-3, 4-4
L1 data cache, 2-4, 4-4
L1 instruction, 1-5, 2-2, 2-3, 4-4
L1 scratchpad, 1-5, 4-4
off-chip, 1-4, 1-5
on-chip, 1-3, 1-5
OTP, 1-6
SDRAM, 2-1, 7-26
SPORT transfers, 19-38
unpopulated, 7-9

memory conflict, DMA, 6-48
memory DMA, 1-8, 6-6

bandwidth, 6-43
buffers, 6-8
channels, 6-7
descriptor structures, 6-62
handshake operation, 6-8
priority, 6-46
scheduling, 6-46
timing, 6-44
transfers, 4-11, 4-12, 6-2, 6-5, 6-8
word size, 6-7

memory map, 2-2, 7-3
memory-mapped GPIO registers, 9-26
memory-mapped registers. See MMRs
memory-to-memory transfers, 6-7
MEN (master mode enable) bit, 16-32,

16-34
MERR (master transfer error) bit, 16-42,

16-43
MERRM (master transfer error interrupt

mask) bit, 16-42
message filter offset (EMAC_PTP_FOFF)

register, 23-20
message filter value 1 (EMAC_PTP_FV1)

register, 23-21

message filter value 2 (EMAC_PTP_FV2)
register, 23-22

message filter value 3 (EMAC_PTP_FV3)
register, 23-23

MFD[3: 0] field, 19-20, 19-65
MII protocol, 22-5, 22-6, 22-8, 22-47
MINCIE (minimum count int en) bit,

13-21
MINCII (min count interrupt identifier)

bit, 13-22
min count interrupt identifier (MINCII)

bit, 13-22
minimal count (CNT_MIN) register,

13-19, 13-26
minimum count int en (MINCIE) bit,

13-21
minutes[5: 0] field, 24-21, 24-23
minutes event flag bit, 24-22
minutes int en bit, 24-21
MISO enable (EMISO) bit, 17-37
MISO pin, 17-5, 17-12, 17-14, 17-15,

17-16, 17-20
MMC, continuous polling, 22-43
MMC counter enable (MMCE) bit,

22-119
MMC counter interrupt status

(MMCINT) bit, 22-91
MMCE (MMC counter enable) bit, 22-42,

22-119
MMC interrupt, 22-39, 22-43
MMCINT (MMC counter interrupt

status) bit, 22-91
MMC RX int en (EMAC_MMC_RIRQE)

register, 22-114
MMC RX interrupt status

(EMAC_MMC_RIRQS) register,
22-112

MMC TX interrupt status
(EMAC_MMC_TIRQS) register,
22-114
I-36 ADSP-BF51x Blackfin Processor Hardware Reference

Index
MMRs, 1-5
address range, A-2
for PPI, 20-25
memory-related, 2-5
width, A-2

mode fault error, 17-17, 17-41
mode fault error (MODF) bit, 17-40
modes

broadcast, 17-8, 17-14, 17-15
multichannel, 19-14
SPI port, 17-15, 17-17, 17-20
SPORT (serial port), 19-10
UART port, 15-15, 15-17

MODF (mode fault error) bit, 17-40,
17-41

module (PTP_TSYNC) registers, 23-11
module registers (PTP_TSYNC), 23-11
MOSI pin, 17-5, 17-12, 17-14, 17-15,

17-16, 17-20
moving data, serial port, 19-38
MPKE (magic packet wakeup enable) bit,

22-33, 22-79
MPKS (magic packet received status) bit,

22-33, 22-79
MPROG (master transfer in progress) bit,

16-35, 16-38
MRS command, 7-33, 7-48
MSEL (multiple select) field, 8-4, 8-21
MSTR (master) bit, 17-36, 17-37
µ-law companding, 19-23, 19-28
multibank operation, 7-43
multicast frame detected (TX_MULTI)

bit, 22-109
multicast frame int en (RX_MULTI) bit,

22-95, 22-101, 22-104
multicast frames received OK counter int

en (RX_MULTI_CNT) bit, 22-115
multicast frames received OK counter int

(RX_MULTI_CNT) bit, 22-113

multicast frames received ok
(EMAC_RXC_MULTI) register,
22-54

multicast frames transmitted OK counter
int en (TX_MULTI_CNT) bit,
22-118

multicast frames transmitted OK counter
int (TX_MULTI_CNT) bit, 22-116

multicast frames xmitted ok
(EMAC_TXC_MULTI) register,
22-58

multicast hash table high
(EMAC_HASHHI) register, 22-68

multicast hash table low
(EMAC_HASHLO) register, 22-68

multichannel DMA receive packing
(MCDRXPE) bit, 19-65

multichannel DMA transmit packing
(MSDTXPE) bit, 19-65

multichannel frame, 19-19
multichannel frame delay field, 19-20
multichannel frame mode enable

(MCMEM) bit, 19-65
multichannel mode, SPORT, 19-14,

19-17, 19-18
multichannel operation, SPORT, 19-14 to

19-24
multiple collision frames counter int en

(TX_MCOLL_CNT) bit, 22-118
multiple collision frames counter int

(TX_MCOLL_CNT) bit, 22-116
multiple collision frames

(EMAC_TXC_GT1COL) register,
22-57

multiple interrupt sources, 5-9
multiple select (MSEL) bit, 8-21
multiple slave SPI systems, 17-8
multiplexed SDRAM addressing scheme

figure, 7-27
multiplexing, MII and RMII, 22-5
ADSP-BF51x Blackfin Processor Hardware Reference I-37

Index
multiplexing, pins, 9-1
MVIP-90 compatibility mode, 19-25
MW_EN (SDIO interrupt moving

window enable) bit, 21-80

N
NAK (not acknowledge) bit, 16-28, 16-29
NDPH bit, 6-20
NDPL bit, 6-20
NDSIZE[3: 0] field, 6-15, 6-67, 6-69

legal values, 6-31
next descriptor pointer (NDP) field, 6-81,

6-82
next descriptor pointer registers

(DMAx_NEXT_DESC_PTR), 6-80
(MDMA_yy_NEXT_DESC_PTR),

6-80
NINT (pending int) bit, 15-28, 15-29
NMI (reflects detection of NMI) bit, 25-56
NMI_RST_BMODE_SE bit, 9-29
no carrier int en (TX_CRS) bit, 22-112
no carrier (TX_CRS) bit, 22-105, 22-110
NONGPIO_DRIVE (non-GPIO ports

drive strength control) register, 9-28
NONGPIO_HYSTERESIS (non-GPIO

hysteresis) register, 9-29
non-GPIO hysteresis

(NONGPIO_HYSTERESIS)
register, 9-29

non-GPIO ports drive strength control
(NONGPIO_DRIVE) register, 9-28

NOP (no operation) command, 7-54
NOPREBOOT, 25-48, 25-49
normal frame sync mode, 19-35
normal timing, serial port, 19-35
not acknowledge (NAK) bit, 16-28
NTSC systems, 20-6
number of 32-bit words remaining

(FIFO_COUNT) bit, 21-75

number of bytes still to be transferred
(DATA_COUNT) bit, 21-65

number of bytes to be transferred
(DATA_LENGTH) bit, 21-63

O
octets received all counter int en

(RX_ALLO_CNT) bit, 22-115
octets received all counter int

(RX_ALLO_CNT) bit, 22-113
octets received all

(EMAC_RXC_ALLOCT) register,
22-55

octets received OK counter int en
(RX_OCTET_CNT) bit, 22-115

octets received OK counter int
(RX_OCTET_CNT) bit, 22-113

octets received ok
(EMAC_RXC_OCTET) register,
22-53

octets transmitted all counter int en
(TX_ALLO_CNT) bit, 22-118

octets transmitted all counter int
(TX_ALLO_CNT) bit, 22-116

octets transmitted all
(EMAC_TXC_ALLOCT) register,
22-58

octets transmitted OK counter int en
(TX_OCTET_CNT) bit, 22-118

octets transmitted OK counter int
(TX_OCTET_CNT) bit, 22-116

octets transmitted ok
(EMAC_TXC_OCTET) register,
22-57

OE (overrun error) bit, 15-24
off-chip

bus connections, 4-8
infrared driver, 15-8
line drivers, 15-6
memory, 1-4, 1-5, 4-11
I-38 ADSP-BF51x Blackfin Processor Hardware Reference

Index
off-chip (continued)
peripherals, 6-2
signals, 9-18

off-core accesses, 4-4
offset of frame type EFT field (EFTOF) bit,

23-20
offset of frame type IP field (IPTOF) bit,

23-20
OFFSET (offset to local time) bit, 23-26
offset of PTP control field (PTPCOF) bit,

23-20
offset of UDP event port field (UEVOF)

bit, 23-20
offsets, DMA descriptor elements, 6-16
offset to local time (OFFSET) bit, 23-26
OIE (overflow int en) bit, 6-83
OI (overflow interrupt generated) bit, 6-83
on-chip

buses, 4-8
internal voltage regulator, 1-23
I/O devices, 1-5
memory, 1-3, 1-5
peripherals, 1-6, 6-2
PLL, 1-24
SDRAM controller, 7-47

ones word (BK_ONES) register, 26-81
one-time-programmable (OTP) memory,

1-6
open drain drivers, 17-2
open drain outputs, 17-15
open memory page, 7-34
operating mode (EMAC_OPMODE)

register, 22-60
operating modes, 8-7

active, 1-25, 8-8
deep sleep, 1-25, 8-9
full-on, 1-24, 8-8
hibernate state, 1-26, 8-10
PPI port, 20-4

operating modes (continued)
sleep, 1-25, 8-9
transition, 8-10, 8-12

OPT_ACC_VIO_ERROR error code,
3-22

OPT error codes
OPT_ACC_VIO_ERROR, 3-22
OTP_DATA_MULT_ERROR, 3-22
OTP_DATA_SB_WARN, 3-22
OTP_ECC_MULT_ERROR, 3-22
OTP_ECC_SB_WARN, 3-22
OTP_MASTER_ERROR, 3-22
OTP_PREV_WR_ERROR, 3-22
OTP_READ_ERROR, 3-22
OTP_SB_DEFECT_ERROR, 3-22
OTP_SUCCESS, 3-22
OTP_WRITE_ERROR, 3-22

optimization, of DMA performance, 6-40
oscilloscope probes, 27-12
OTP_BMODEx_DIS bits, 26-87
OTP_DATA_MULT_ERROR error

code, 3-22
OTP_DATA_SB_WARN error code, 3-22
OTP_DATAx registers, 3-3
OTP_EBIU_AMG bit, 26-84
OTP_EBIU_POWERON_DUMMY_W

RITE bit, 26-88
OTP_EBIU_SDBCTL bit, 26-88
OTP_EBIU_SDGCTL bit, 26-88
OTP_EBIU_SDRRC bit, 26-88
OTP_ECC_MULT_ERROR error code,

3-22
OTP_ECC_SB_WARN error code, 3-22
OTP_INVALID bit, 26-82
OTP_LOAD_PBSxH/L bits, 26-82
OTP_MASTER_ERROR error code, 3-22
OTP memory

bfrom_OtpCommand (), 3-10
BFROM_OTP_READ, 3-17
bfrom_OtpRead(), 3-10
ADSP-BF51x Blackfin Processor Hardware Reference I-39

Index
OTP memory (continued)
BFROM_OTP_WRITE, 3-18
bfrom_OtpWrite(), 3-10
BFROM_TOP_COMMAND, 3-15
error correction, 3-7
map, 3-3
overview, 3-2

OTP_PLL_CTL bit, 26-83
OTP_PLL_DIV bit, 26-83
OTP_PREV_WR_ERROR error code,

3-22
OTP_READ_ERROR error code, 3-22
OTP_RESETOUT_HWAIT bit, 26-82
OTP_SB_DEFECT_ERROR error code,

3-22
OTP secrets enable (OTPSEN) bit, 25-48
OTPSEN (OTP secrets enable) bit, 25-48
OTP_SET_FCTL bit, 26-84
OTP_SET_MODE bit, 26-84
OTP_SET_PLL bit, 26-82
OTP_SET_VR bit, 26-82
OTP_SPI_BAUD bit, 26-83
OTP_SPI_FASTREAD bit, 26-83
OTP_START_PAGE bit, 26-86
OTP_SUCCESS error code, 3-22
OTP_TIMING (OTP timing) register,

3-14
OTP timing (OTP_TIMING) register,

3-14
OTP_TPx bits, 3-14
OTP_USB_CALIB, 26-86
OTP_VR_CTL bit, 26-83
OTP_WRITE_ERROR error code, 3-22
OUT_DELAY bit, 8-21
OUT_DIS bit, 10-39, 10-46, 10-58
OUT_DIS (output pad disable) bit, 10-41
outer loop address increment registers

(DMAx_Y_MODIFY), 6-79
(MDMA_yy_Y_MODIFY), 6-79

outer loop count (DMAx_Y_COUNT)
registers, 6-78

outer loop count
(MDMA_yy_Y_COUNT) registers,
6-78

out-of-range length field counter int en
(RX_ORL_CNT) bit, 22-115

out-of-range length field counter int
(RX_ORL_CNT) bit, 22-113

out-of-range length field detected
(RX_RANGE) bit, 22-95, 22-101,
22-104

out of range length field
(EMAC_RXC_LNERRO) register,
22-54

output pad disable, timer, 10-13
output pad disable (OUT_DIS) bit, 10-41
overflow int en (OIE) bit, 6-83
overflow interrupt, DMA, 6-40
overflow interrupt generated (OI) bit, 6-83
overrun error (OE) bit, 15-24

P
PAB, 4-6

arbitration, 4-6
bus agents (masters, slaves), 4-6
clocking, 8-2
and EBIU, 7-5
performance, 4-7

PACK_EN (packing mode enable) bit,
20-26, 20-27

packing, serial port, 19-23
packing mode enable (PACK_EN) bit,

20-26
page hit/miss, 7-41, 7-52
page size, 7-64
PAL systems, 20-6
PAM (pass all multicast mode) bit, 22-60,

22-65
parallel peripheral interface. See PPI
I-40 ADSP-BF51x Blackfin Processor Hardware Reference

Index
parity enable (PEN) bit, 15-21
parity error (PE) bit, 15-24
partial array self-refresh (PASR) bits, 7-67
PASR feature, 7-28
PASR (partial array self-refresh) bits, 7-67,

7-69
pass all multicast mode (PAM) bit, 22-65
pass bad frames (PBF) bit, 22-65
pass control frames (PCF) bit, 22-75
pass short frames (PSF) bit, 22-64
PAUSE MAC control frames received

counter int en (RX_PAUSE_CNT)
bit, 22-115

PAUSE MAC control frames received
counter interrupt
(RX_PAUSE_CNT) bit, 22-113

PAUSE MAC ctrl frames received
(EMAC_RXC_PAUSE) register,
22-55

PBF (pass bad frames) bit, 22-60, 22-65
PBSxH (upper PBSx half page) registers,

26-84, 26-85, 26-86, 26-87
PBSxL (lower PBSx half page) registers,

26-82, 26-83, 26-88
PC133 SDRAM controller, 1-8
PCF (pass control frames) bit, 22-15, 22-75
PD_DAT3 (RSI_DATA3 pull-down

enable) bit, 21-80
PDWN (power down) bit, 8-21
pend enable (CMD_PEND_EN) bit,

21-59
pending int (NINT) bit, 15-29
PEN (parity enable) bit, 15-21
PE (parity error) bit, 15-24, 15-25
performance

DAB, 4-10
DCB, 4-10
DEB, 4-10, 4-11
DMA, 6-42
EAB, 4-11

performance (continued)
general-purpose ports, 9-13
memory DMA, 6-43
memory DMA transfers, 4-11, 4-12
optimization, DMA, 6-40
PAB, 4-7
SDRAM, 7-30

PERIOD_CNT bit, 10-13, 10-21, 10-25,
10-26, 10-45

PERIOD_CNT (period count) bit, 10-41
period count (PERIOD_CNT) bit, 10-41
period value[15: 0] field, 11-6
period value[31: 16] field, 11-6
peripheral

bus errors generated by SPORT, 19-39
DMA, 6-5
DMA channels, 6-41
DMA transfers, 6-2
error interrupts, 6-72
interrupt request lines, 5-16
supporting interrupts, 5-2

peripheral access bus. See PAB
peripheral DMA start address registers,

6-74
peripheral ID (RSI_PID) bit, 21-82
peripheral interrupts, 5-2, 5-3, 5-4 to 5-7
peripheral map registers

(DMAx_PERIPHERAL_MAP), 6-66
(MDMA_yy_PERIPHERAL_MAP),

6-66
peripheral pins, default configuration, 9-14
peripherals, 1-1

and buses, 1-2
compatible with SPI, 17-3
and DMA controller, 6-31
DMA support, 1-2
enabling, 9-4
interrupt generated by, 5-8
interrupts, clearing, 5-13
level-sensitivity of interrupts, 5-15
ADSP-BF51x Blackfin Processor Hardware Reference I-41

Index
peripherals (continued)
mapping to DMA, 6-6, 6-103, 6-105
multiplexing, 9-1
switching from DMA to non-DMA,

6-73
timing, 4-4
used to wake from idle, 5-6

PFx pins, 9-16, 17-7
phase locked loop. See PLL
PHY, 22-4

configuring, 22-48
control routines, 22-124
initialization, minimum requirements,

22-126
read access, 22-126

PHYAD[4: 0] field, 22-72
PHYCLKOE bit, 22-46
PHY error int en (RX_PHY) bit, 22-96,

22-101, 22-104
PHYIE (PHYINT int en) bit, 22-89
PHYINT int en (PHYIE) bit, 22-89
PHYINT interrupt, 22-39
PHYINT interrupt status (PHYINT) bit,

22-91
PHYINT (PHYINT interrupt status) bit,

22-91
PHY/PF15 wake enable (PHYWE) bit,

8-23
PHYWE (PHY/PF15 wake enable) bit,

8-23
pin information, 27-1
pins, 27-1

GPIO, 9-14
MAC, 22-6
multiplexing, 9-1
SDRAM, 7-55
terminations for SPORT, 19-8
unused, 27-14

pin state during SDC commands (table),
7-48

pin status (PS) bit, 6-83
pipeline, lengths of, 6-52
pipelining

DMA requests, 6-37
SDC supported, 7-74

PJSE bit, 9-30, 9-31, 9-32
PLL, 8-1 to 8-43

active mode, 8-8
architecture, 8-2, 8-3
BYPASS bit, 8-9
clock derivation, 4-4
clock derivation, CCLK, 8-3
clock derivation, SCLK, 8-2, 8-3
clock derivation, SDRAM, 8-10
clock ratios and dividers, 8-3, 8-4, 8-6
configuration and control, 8-1, 8-3,

8-10, 8-11
deep sleep mode, 8-9
DMA access, 8-8, 8-9
DPMC (dynamic power management

controller), 8-2, 8-7
enabling/disabling the PLL, 8-11
hibernate state, 8-10
multiplier select (MSEL) field, 8-4
operating modes, 8-7, 8-8, 8-9, 8-10,

8-13
PDWN bit, 8-11
performance mode, 8-8
PLL_OFF bit, 8-11
PLL status, 8-7
power domains, 8-15
power savings, 8-7
power to, applying/removing, 8-11
registers, 8-19
RTC interrupt, 8-10
sleep mode, 8-9
STOPCK bit, 8-11
voltage control, 8-7

PLL control (PLL_CTL) register, 8-3, 8-4,
8-20, 8-21
I-42 ADSP-BF51x Blackfin Processor Hardware Reference

Index
PLL_CTL (PLL control) register, 8-3, 8-4,
8-20, 8-21

PLL divide (PLL_DIV) register, 8-21
PLL divide register, 4-4
PLL_DIV (PLL divide) register, 8-5, 8-20,

8-21
PLL_LOCKCNT (PLL lock count)

register, 8-20, 8-22
PLL lock count (PLL_LOCKCNT)

register, 8-22
PLL_LOCKED bit, 8-22
PLL_OFF bit, 8-21
PLL registers, 8-19
PLL_STAT (PLL status) register, 8-20,

8-22
PLL status (PLL_STAT) register, 8-22
PLL VCO frequency, changing, 7-45
PMAP[3: 0] field, 6-5, 6-44, 6-66
PMAP bit, 6-66
polarity, GPIO, 9-18
polarity change (POLC) bit, 20-26
POLC (polarity change) bit, 20-4, 20-25,

20-26
polling DMA registers, 6-51
POLS bit, 20-4, 20-25, 20-26
PORT_CFG (port configuration) bits,

20-4, 20-26, 20-28
port configuration (PORT_CFG) bit,

20-26
port connection, SPORT, 19-7
PORT_DIR (direction) bit, 20-4, 20-26,

20-28
port enable (PORT_EN) bit, 20-26
PORT_EN (enable) bit, 20-26, 20-29
PORTF_FER (function enable) register,

9-10
port F/G/H

GPIO, 9-14
MAC operations, 22-45
peripherals, 9-2, 9-3, 9-5

port F/G/H (continued)
pins, 9-3, 17-39
pins, test access, B-2
structure, 9-4, 9-5, 9-6

port F/G/H hysteresis control
(PORTx_HYSTERESIS) registers,
9-26

port F/G/H hysteresis
(PORTx_HYSTERESIS) registers,
9-26, 9-27

port FG/H hysteresis
(PORTx_HYSTERESIS) registers,
9-26

port F/G/H multiplexer control
(PORTx_MUX) registers, 9-30, 9-31,
9-32

PORTF_HYSTERESIS register, 9-26
PORTG_HYSTERESIS register, 9-26
PORTH_HYSTERESIS register, 9-26
PORT_PREF0 bit, 2-6
PORT_PREF0 (DAG0 port preference)

bit, 2-6
PORT_PREF1 bit, 2-6
PORT_PREF1 (DAG1 port preference)

bit, 2-6
port width, PPI, 20-27
PORTx_FER (function enable) registers,

9-4, 9-10, 9-14, 9-18, 9-32
PORTx_FER registers, 9-32
PORTx_HYSTERESIS (port F/G/H

hysteresis) registers, 9-26, 9-27
PORTxIO_BOTH (GPIO set on both

edges) registers, 9-37
PORTxIO_BOTH registers, 9-37
PORTxIO_CLEAR (GPIO clear) registers,

9-35
PORTxIO_CLEAR registers, 9-35
PORTxIO_DIR (GPIO direction)

registers, 9-33, 14-42, 14-43, 14-44,
14-45, 14-48, 14-49, 14-50, 14-51
ADSP-BF51x Blackfin Processor Hardware Reference I-43

Index
PORTxIO_DIR registers, 9-33
PORTxIO_EDGE (interrupt sensitivity)

registers, 9-36
PORTxIO_EDGE registers, 9-36
PORTxIO (GPIO data) registers, 9-34
PORTxIO_INEN (GPIO input enable)

registers, 9-18, 9-33
PORTxIO_INEN registers, 9-33
PORTxIO_MASKA/B_CLEAR (GPIO

mask interrupt clear) registers, 9-21,
9-41, 9-42

PORTxIO_MASKA/B (GPIO mask int)
registers, 9-37, 9-38

PORTxIO_MASKA/B_SET (GPIO mask
interrupt set) registers, 9-39, 9-40

PORTxIO_MASKA/B_TOGGLE (GPIO
mask interrupt toggle) registers, 9-43,
9-44

PORTxIO_MASKA_CLEAR registers,
9-41

PORTxIO_MASKA registers, 9-37
PORTxIO_MASKA_SET registers, 9-39
PORTxIO_MASKA_TOGGLE registers,

9-43
PORTxIO_MASKB_CLEAR registers,

9-41
PORTxIO_MASKB registers, 9-37
PORTxIO_MASKB_SET registers, 9-39
PORTxIO_MASKB_TOGGLE registers,

9-43
PORTxIO_POLAR (GPIO polarity)

registers, 9-36
PORTxIO_POLAR registers, 9-36
PORTxIO registers, 9-34
PORTxIO_SET (GPIO set) registers, 9-34
PORTxIO_SET registers, 9-34
PORTxIO_TOGGLE (GPIO toggle)

registers, 9-35
PORTxIO_TOGGLE registers, 9-35

PORTx_MUX (port F/G/H multiplexer
control) registers, 9-30, 9-31, 9-32

PORTx_MUX (port multiplexer control)
register, 9-4, 9-30, 9-31, 9-32

PORTx_MUX (port multiplexer control)
registers, 9-4, 9-10

PORTx_MUX registers, 9-30, 9-31, 9-32
power

dissipation, 8-15
domains, 8-15
plane, 27-10

power down (PDWN) bit, 8-21
power management, 1-24, 8-1 to 8-30
power on (PWR_ON) bit, 21-55
power save enable (PWR_SV_EN) bit,

21-57
power-up

SDRAM, 7-48, 7-72
sequence mode, 7-71
start delay, 7-71
start enable, 7-72

power-up latency, SDC, 7-56
power-up sequence mode (PSM) bit, 7-67
power-up sequence start enable (PSSE) bit,

7-67
power-up start delay (PUPSD) bit, 7-67
PPI, 1-15, 20-2 to 20-37

active video only mode, 20-10
clock input, 20-3
control byte sequences, 20-8
control signal polarities, 20-25
data input modes, 20-14 to 20-16
data movement, 20-9
data output modes, 20-17 to 20-18
data width, 20-25
delay before starting, 20-32
DMA operations, 20-13, 20-22, 20-35,

20-36, 20-37
edge-sensitive inputs, 20-20
enabling, 20-29, 20-36
I-44 ADSP-BF51x Blackfin Processor Hardware Reference

Index
PPI (continued)
entire field mode, 20-9
FIFO, 20-31
frame, number of lines per, 20-33
frame start detect, 20-34
frame sync, internal/external, 20-15,

20-16, 20-17, 20-18, 20-19, 20-21
frame sync modes, 20-15, 20-16, 20-18,

20-19
frame track error, 20-30, 20-33
general-purpose mode, 13-4, 13-5, 13-8,

20-12, 20-14, 20-19
general-purpose timer operations, 10-57,

20-20
hardware signalling, 20-15
horizontal tracking, 20-31
ITU-R 601 recommendation, 20-15
ITU-R 656 mode, 20-5, 20-9, 20-11
loopback feature, 20-10
no frame syncs modes, 20-15, 20-17
operating modes, 20-4, 20-25
port width, 20-27
preamble, 20-7
programming model, 20-21
registers, 20-25, 20-36
samples, number of, 20-32
synchronization, 20-11, 20-13, 20-20,

20-32
timer pins, 20-20
transfers, 20-18, 20-29
valid data detection, 20-15
vertical blanking interval only mode,

20-10
video, interlaced, 20-6
video, progressive, 20-6
video frame partitioning, 20-7
video processing/streams, 20-5, 20-8

PPI_CLK cycle count, 20-32
PPI_CLK pin, 20-3
PPI_CLK signal, 20-25

PPI_CONTROL (PPI control) register,
20-25, 20-26

PPI control (PPI_CONTROL) register,
20-25, 20-26

PPI_COUNT field, 20-33
PPI_COUNT (PPI transfer count) register,

20-32, 20-33
PPI delay count (PPI_DELAY) register,

20-32
PPI_DELAY (delay count) register, 20-32
PPI_DELAY field, 20-32
PPI_DELAY (PPI delay count) register,

20-32
PPI_FRAME field, 20-34
PPI_FRAME (PPI lines per frame) register,

20-33, 20-34
PPI_FSx signals, 20-25, 20-31
PPI lines per frame (PPI_FRAME) register,

20-34
PPI_STATUS (PPI status) register, 20-29,

20-30
PPI status (PPI_STATUS) register, 20-30
PPI transfer count (PPI_COUNT) register,

20-33
PPSEN (pulse-per-second control) bit,

23-13
PPS period (EMAC_PTP_PPS_PERIOD)

register, 23-38
PPS_PERIOD (PPS signal period) bit,

23-38
PPS signal period (PPS_PERIOD) bit,

23-38
PPS start high

(EMAC_PTP_PPS_STARTHI)
register, 23-37

PPS_STARTHI (higher 32 bits of PPS start
time) bit, 23-37

PPS_STARTLO (lower 32 bits of PPS start
time) bit, 23-36
ADSP-BF51x Blackfin Processor Hardware Reference I-45

Index
PPS start low
(EMAC_PTP_PPS_STARTLO)
register, 23-36

preamble, PPI, 20-7
preboot, controlled by OTP programming,

26-3
preboot routine, 26-9
precharge command, 7-34, 7-52
PREN bit, 24-23
PRESCALE field, 16-27
prescaler, RTC, 24-2
prescaler enable (RTC_PREN) register,

24-5, 24-20
PRESCALE value, 16-5
prioritization, DMA, 6-44 to 6-50
prioritization, interrupt, 5-5
priority, DMA operation, 6-46
private instructions, B-4
private OTP memory map, 3-5
probes, oscilloscope, 27-12
processor

block diagram, 1-3
dynamic power management, 8-1
test features, B-1

programmable timing characteristics,
EBIU, 7-11

program Pxn bit, 9-34
progressive video, 20-6
promiscuous mode (PR) bit, 22-65
PR (promiscuous mode) bit, 22-60, 22-65
PSF (pass short frames) bit, 22-60, 22-64
PSM (power-up sequence mode) bit, 7-48,

7-57, 7-67, 7-71
PS (pin status) bit, 6-83
PSSE (power-up sequence start enable) bit,

7-45, 7-48, 7-57, 7-67, 7-72
PSSE (slave select enable) bit, 17-36, 17-37
PTP clock source (CKS) bit, 23-13
PTPCM (compare mask of PTP control

field) bit, 23-13

PTPCOF (offset of PTP control field) bit,
23-20

PTP int en (EMAC_PTP_IE) register,
23-16

PTP_TSYNC module enable (EN) bit,
23-13

PTP_TSYNC module registers, 23-11
public instructions, B-4
public JTAG scan instructions, B-6
public OTP memory map, 3-4
PU_DAT3 (RSI_DATA3 pull-up enable)

bit, 21-80
PU_DAT (pull-up enable) bit, 21-80
pull-up enable (PU_DAT) bit, 21-80
PULSE_HI bit, 10-15, 10-17, 10-25,

10-41, 10-45
PULSE_HI toggle mode, 10-16
pulse-per-second control (PPSEN) bit,

23-13
pulse width count and capture mode. See

WDTH_CAP mode
pulse width modulation mode. See

PWM_OUT mode
pulse width modulation mode. See

PWM_OUT mode
pulse width modulator, 1-19
PUPSD (power-up start delay) bit, 7-67,

7-71
PWM_AH output signal for S/W

observation (PWM_AH) bit, 14-51
PWM_AH (PWM_AH output signal for

S/W observation) bit, 14-51
PWM_AL output signal for S/W

observation (PWM_AL) bit, 14-51
PWM_AL (PWM_AL output signal for

S/W observation) bit, 14-51
PWM_BH output signal for S/W

observation (PWM_BH) bit, 14-51
PWM_BH (PWM_BH output signal for

S/W observation) bit, 14-51
I-46 ADSP-BF51x Blackfin Processor Hardware Reference

Index
PWM_BL output signal for S/W
observation (PWM_BL) bit, 14-51

PWM_BL (PWM_BL output signal for
S/W observation) bit, 14-51

PWMCHA (channel A duty two’s
complement) bit, 14-44

PWM_CHAL (channel A duty two’s
complement) bit, 14-39, 14-49

PWM channel AL duty control
(PWM_CHAL) register, 14-49

PWM channel BL duty control
(PWM_CHBL) register, 14-49

PWM channel CL duty control
(PWM_CHCL) register, 14-49

PWM_CHA (PWM duty control) register,
14-38, 14-44

PWMCHB (channel B duty two’s
complement) bit, 14-45

PWM_CHBL (channel B duty two’s
complement) bit, 14-39, 14-49

PWM_CHB (PWM duty control) register,
14-38, 14-45

PWMCHC (channel C duty two’s
complement) bit, 14-45

PWM_CHCL (channel C duty two’s
complement) bit, 14-39, 14-49

PWM_CHC (PWM duty control) register,
14-39, 14-44, 14-45

PWM_CH output signal for S/W
observation (PWM_CH) bit, 14-51

PWM_CH (PWM_CH output signal for
S/W observation) bit, 14-51

PWM_CLK signal, 10-21
PWM_CL output signal for S/W

observation (PWM_CL) bit, 14-51
PWM_CL (PWM_CL output signal for

S/W observation) bit, 14-51
PWM control (PWM_CTRL) register,

14-39

PWM crossover and output enable
(PWM_SEG) register, 14-46

PWM_CTRL (PWM control) register,
14-38, 14-39

PWM_DBL (double-update mode) bit,
14-39

PWM dead time (PWM_DT) register,
14-43

PWM dead time unsigned (PWM_DT)
bit, 14-43

PWM_DT (PWM dead time) register,
14-43

PWM_DT (PWM dead time unsigned)
bit, 14-38, 14-43

PWM duty control (PWM_CHA) register,
14-44

PWM duty control (PWM_CHB) register,
14-45

PWM duty control (PWM_CHC) register,
14-44, 14-45

PWM enable (PWM_EN) bit, 14-39
PWM_EN (PWM enable) bit, 14-39
PWM_EXTSYNC (external sync) bit,

14-39
PWM_GATE (chopping control) register,

14-38
PWM low side invert (PWM_LSI) register,

14-50
PWM_LSI (PWM low side invert) register,

14-39, 14-50
PWM_OUT mode, 10-11 to 10-23, 10-43

control bit and register usage, 10-45
error prevention, 10-44
externally clocked, 10-20
PULSE_HI toggle mode, 10-16
stopping the timer, 10-22

PWM output polarity
(PWM_POLARITY) bit, 14-39

PWM period (PWM_TM) register, 14-42
ADSP-BF51x Blackfin Processor Hardware Reference I-47

Index
PWM period unsigned (PWM_TM) bit,
14-42

PWM peripheral, 14-1 to 14-51
PWM_PHASE (PWM phase) bit, 14-41
PWM phase (PWM_PHASE) bit, 14-41
PWM_POLARITY (PWM output

polarity) bit, 14-39
PWM polarity (PWM_POL) bit, 14-41
PWM_POL (PWM polarity) bit, 14-41
PWM registers, 14-38
PWM_SEG (PWM crossover and output

enable) register, 14-39, 14-46
PWM simulation status (PWM_STAT2)

register, 14-51
PWM_SR_LSI_A/B/C (PWM SR mode

low side invert channel) bits, 14-50
PWM SR mode low side invert channel

A/B/C (PWM_SR_LSI_x) bits, 14-50
PWM SR mode (PWM_SR) bit, 14-41
PWM_SRMODE (PWM SR mode) bit,

14-39
PWM SR mode (PWM_SRMODE) bit,

14-39
PWM_SR (PWM SR mode) bit, 14-41
PWM_STAT2(PWM simulation status)

register, 14-39, 14-51
PWM_STAT (PWM status) register,

14-38, 14-41
PWM status (PWM_STAT) register,

14-41
PWM sync enable (PWM_SYNC_EN) bit,

14-39
PWM_SYNC_EN (PWM sync enable) bit,

14-39
PWM SYNC int en for sync

(PWMSYNCINT_EN) bit, 14-39
PWMSYNCINT_EN (int en for sync) bit,

14-39

PWM_SYNCINT (PWM sync int) bit,
14-41

PWM sync int (PWM_SYNCINT) bit,
14-41

PWM sync pulse width control
(PWM_SYNCWT) register, 14-48

PWM sync pulse width unsigned
(PWMSYNCWT) bit, 14-48

PWM_SYNCSEL (external sync select) bit,
14-39

PWM_SYNCWT (PWM sync pulse width
control) register, 14-39, 14-48

PWMSYNCWT (PWM sync pulse width
unsigned) bit, 14-48

PWM_TM (PWM period) register, 14-42
PWM_TM (PWM period unsigned) bit,

14-38, 14-42
PWMTRIP_DSBL (disable for trip input)

bit, 14-39
PWM TRIP int en for trip

(PWMTRIPINT_EN) bit, 14-39
PWMTRIPINT_EN (int en for trip) bit,

14-39
PWM_TRIPINT (PWM trip int) bit,

14-41
PWM trip int (PWM_TRIPINT) bit,

14-41
PWM_TRIP (PWM trip) bit, 14-41
PWM trip (PWM_TRIP) bit, 14-41
PWR_ON (power on) bit, 21-55
PWR_SV_EN (power save enable) bit,

21-57
Pxn (pin control) bits, 9-32, 9-33, 9-36,

9-37, 9-38

Q
query semaphore, 27-3
quick boot, 26-40
I-48 ADSP-BF51x Blackfin Processor Hardware Reference

Index
R
RAF (receive all frames) bit, 22-60, 22-64
RAS to CAS delay (TRCD) bit, 7-67
RBC (force reload) bit, 6-37, 6-83
RBSY (receive error) bit, 17-40, 17-42
RCKFE (clock falling edge select) bit,

19-33, 19-53, 19-56
RCVDATA16 (receive FIFO 16-bit data)

bits, 16-48
RCVDATA8 (receive FIFO 8-bit data)

bits, 16-47
RCVFLUSH (receive buffer flush) bit,

16-38, 16-39
RCVINTLEN (receive buffer interrupt

length) bit, 16-38, 16-39
RCVSERVM (receive FIFO service

interrupt mask) bit, 16-42
RCVSERV (receive FIFO service) bit,

16-42, 16-43
RCVSTAT (receive FIFO status) bits,

16-40
RDIV bits, 7-40, 7-56, 7-60
RDTYPE bits, 19-28, 19-53, 19-55
read, asynchronous, 7-12
read access, EBIU, 7-18
read access, SDRAM, 7-51
read command, 7-34
read/write access bit, 2-7
read/write command, 7-50
real-time clock. See RTC
real-time clock. See RTC
real time clock wake enable (WAKE) bit,

8-23
receive all frames (RAF) bit, 22-64
receive bit order (RLSBIT) bit, 19-53
receive buffer bits, 15-26
receive buffer flush (RCVFLUSH) bit,

16-38
receive buffer full int en (ERBFI) bit, 15-27

receive buffer interrupt length
(RCVINTLEN) bit, 16-38

receive complete (RX_COMP) bit, 22-98,
22-103, 22-104

receive configuration (SPORTx_RCR1,
SPORTx_RCR2) registers, 19-52

receive data available (RX_DAT_RDY) bit,
21-67

receive data available
(RX_DAT_RDY_MASK) bit, 21-72

receive data buffer bits, 17-44
receive data field, 19-60
received filtered frame int en

(RX_ACCEPT) bit, 22-93, 22-100,
22-104

receive enable (RE) bit, 22-66
receive enable (RSPEN) bit, 19-52, 19-53
receive error (RBSY) bit, 17-40
receive event int en (RXEIE) bit, 23-16
receive event interrupt status (RXEL) bit,

23-18
receive FIFO, SPORT, 19-59
receive FIFO 16-bit data (RCVDATA16)

bit, 16-48
receive FIFO 8-bit data (RCVDATA8) bit,

16-47
receive FIFO empty (RX_FIFO_ZERO)

bit, 21-67
receive FIFO empty

(RX_FIFO_ZER/W_MASK) bit,
21-72

receive FIFO full (RX_FIFO_FULL) bit,
21-67

receive FIFO full
(RX_FIFO_FULL_MASK) bit,
21-72

receive FIFO not empty status (RXNE) bit,
19-61

receive FIFO overrun error
(RX_OVERRUN) bit, 21-67
ADSP-BF51x Blackfin Processor Hardware Reference I-49

Index
receive FIFO overrun error
(RX_OVERRUN_MASK) bit, 21-72

receive FIFO service interrupt mask
(RCVSERVM) bit, 16-42

receive FIFO service (RCVSERV) bit,
16-42

receive FIFO status (RCVSTAT) bit, 16-40
receive FIFO watermark

(RX_FIFO_STAT) bit, 21-67
receive FIFO watermark

(RX_FIFO_STAT_MASK) bit,
21-72

receive frame DMA word alignment
(RXDWA) bit, 22-89

receive frame sync required select (RFSR)
bit, 19-53

receive frame TCP/UDP checksum enable
(RXCKS) bit, 22-89

receive general int en (RXGIE) bit, 23-16
receive general interrupt status (RXGL) bit,

23-18
receive overrun error int en (RXOVE) bit,

23-16
receive snapshot high

(EMAC_PTP_RXSNAPHI) register,
23-30

receive snapshot low
(EMAC_PTP_RXSNAPLO) register,
23-29

receive snapshot overrun status (RXOV)
bit, 23-18

receive stereo frame sync enable (RSFSE)
bit, 19-54

reception error, SPI, 17-42
reflects detection of NMI (NMI) bit, 25-56
refresh, SDRAM, 7-31
REGAD field, 22-72
register-based DMA, 6-9
registers

See also registers by name

registers, system, A-2
remote wakeup frame enable (RWKE) bit,

22-79
remote wakeup frame filters, MAC, 22-34
repeat start (RSTART) bit, 16-32
REP (request polarity) bit, 6-38, 6-83
request data control command, DMA, 6-34
request data urgent control command,

DMA, 6-34
request polarity (REP) bit, 6-83
RE (receive enable) bit, 22-41, 22-49,

22-60, 22-66
reserved SDRAM, 7-2
reset all counters (RSTC) bit, 22-119
reset disable (RSTDABL) bit, 25-48
RESET_DOUBLE (core-double-fault

reset) bit, 25-40, 26-75
RESET pin, 26-5
reset registers, 26-74
resets

core and system, 26-105
core double-fault, 26-5
core-only software, 26-5
hardware, 26-4, 26-7
interrupts, 26-7
software, 26-6
SPI, 17-16
system software, 26-4
watchdog timer, 26-4, 26-6

RESET_SOFTWARE (software reset
status) bit, 25-40, 26-75

reset vector, 26-1
RESET_WDOG (software watchdog timer

source) bit, 12-5, 25-40, 25-44, 26-75
resource sharing, with semaphores, 27-2
RESP_CMD (command index of last

received response) bit, 21-60
response (RSI_RESPONSEx) bits, 21-61
restart control command, DMA, 6-32,

6-33
I-50 ADSP-BF51x Blackfin Processor Hardware Reference

Index
restart or finish control command,
transmit, 6-34, 6-35

restrictions, DMA, 6-24, 6-34
RETI register, 26-7
RFSR (receive frame sync required select)

bit, 19-30, 19-31, 19-53, 19-55
RFSx signals, 19-5, 19-18, 19-30
RLSBIT (receive bit order) bit, 19-53,

19-55
RMII_IO (RMII port speed selector) bit,

22-60, 22-62
RMII mode (RMII) bit, 22-62
RMII port speed selector (RMII_IO) bit,

22-62
RMII protocol

multiplexing, 22-5
pins, 22-6

RMII (RMII mode) bit, 22-60, 22-62
ROM, 1-5, 7-1
rotary counter registers, 13-19
round robin operation, MDMA, 6-47
routing of interrupts, 5-17, 5-18
ROVF (sticky receive overflow status) bit,

19-61, 19-62
row activation, SDRAM, 7-31
row address, 7-64
row precharge, SDRAM, 7-31
RPOLC (IrDA RX polarity change) bit,

15-31
RPOLC (IrDA Rx polarity change) bit,

15-32
RRFST (left/right order) bit, 19-12, 19-54,

19-56
RSCLKx signals, 19-5, 19-29
RSFSE (receive stereo frame sync enable)

bit, 19-10, 19-54, 19-56
RSI_ARGUMENT (RSI argument)

register, 21-58
RSI argument (RSI_ARGUMENT)

register, 21-58

RSI_CEATA_CONTROL (RSI CE-ATA
control) register, 21-76

RSI CE-ATA control
(RSI_CEATA_CONTROL) register,
21-76

RSI_CLK_EN (RSI clocks enable) bit,
21-80

RSI_CLOCK enable (CLK_EN) bit,
21-57

RSI clocks enable (RSI_CLK_EN) bit,
21-80

RSI_CMD_OD (RSI command open
drain) bit, 21-55

RSI command open drain
(RSI_CMD_OD) bit, 21-55

RSI_COMMAND (RSI command)
register, 21-59

RSI command (RSI_COMMAND)
register, 21-59

RSI_CONFIG (RSI configuration)
register, 21-80

RSI configuration (RSI_CONFIG)
register, 21-80

RSI_DATA3 pull-down enable
(PD_DAT3) bit, 21-80

RSI_DATA3 pull-up enable (PU_DAT3)
bit, 21-80

RSI_DATA_CNT (RSI data counter)
register, 21-65

RSI_DATA_CONTROL (RSI data
control) register, 21-64

RSI data control
(RSI_DATA_CONTROL) register,
21-64

RSI data counter (RSI_DATA_CNT)
register, 21-65

RSI data FIFO (RSI_FIFO) register, 21-76
RSI data length (RSI_DATA_LGTH)

register, 21-63
ADSP-BF51x Blackfin Processor Hardware Reference I-51

Index
RSI_DATA_LGTH (RSI data length)
register, 21-63

RSI_DATA_TIMER (RSI data timer)
register, 21-62

RSI data timer (RSI_DATA_TIMER)
register, 21-62

RSI_EMASK (RSI exception mask)
register, 21-78

RSI_ESTAT (RSI exception status)
register, 21-77

RSI exception mask (RSI_EMASK)
register, 21-78

RSI exception status (RSI_ESTAT)
register, 21-77

RSI_FIFO_CNT (RSI FIFO counter)
register, 21-75

RSI FIFO counter (RSI_FIFO_CNT)
register, 21-75

RSI_FIFO (RSI data FIFO) register, 21-76
RSI interrupt mask (RSI_MASKx)

registers, 21-72
RSI_MASKx (RSI interrupt mask)

registers, 21-72
RSI peripheral ID (RSI_PIDx) registers,

21-82
RSI_PID (peripheral ID) bit, 21-82
RSI_PIDx (RSI peripheral ID) registers,

21-82
RSI power control

(RSI_PWR_CONTROL) register,
21-55, 21-57

RSI_PWR_CONTROL (RSI power
control) register, 21-55, 21-57

RSI_RD_WAIT_EN (RSI read wait
enable) register, 21-81

RSI read wait enable
(RSI_RD_WAIT_EN) register,
21-81

RSI read wait request enable
(SDIO_RWR) bit, 21-81

RSI registers, 21-53
RSI reset (RSI_RST) bit, 21-80
RSI_RESP_CMD (RSI response

command) register, 21-60
RSI response command

(RSI_RESP_CMD) register, 21-60
RSI response (RSI_RESPONSEx) registers,

21-61
RSI_RESPONSEx (response) bits, 21-61
RSI_RESPONSEx (RSI response) registers,

21-61
RSI_RST (RSI reset) bit, 21-80
RSI status clear (RSI_STATUSCL)

register, 21-70
RSI_STATUSCL (RSI status clear)

register, 21-70
RSI_STATUS (RSI status) register, 21-67
RSI status (RSI_STATUS) register, 21-67
RSPEN (receive enable) bit, 19-9, 19-52,

19-53, 19-54
RSTART (repeat start) bit, 16-32, 16-33
RSTC (reset all counters) bit, 22-42,

22-119
RSTDABL (reset disable) bit, 25-48
RTC, 1-22, 24-1 to 24-28

alarm clock features, 24-2, 24-27
block diagram, 24-3
clock operation, 24-3, 24-5
counters, 24-2
deep sleep, 24-10
digital watch features, -lxv, 24-1
disabling prescaler, 24-5
enabling prescaler, 24-5, 24-24
event flags, 24-11
initializing, 24-5
interfaces, 24-3
interrupts, 8-9, 24-6, 24-14, 24-16
latency, 24-9
prescaler, 24-2
programming, 24-6, 24-24
I-52 ADSP-BF51x Blackfin Processor Hardware Reference

Index
RTC (continued)
reads, 24-10
registers, 24-20
setting time of day, 24-13
state transitions, 24-17
stopwatch, 24-3, 24-13, 24-25
synchronization, 24-6
system state transition events, 24-18
test mode, 24-6
writes, 24-8, 24-9

RTC_ALARM (RTC alarm) register, 24-2,
24-20, 24-23

RTC alarm (RTC_ALARM) register,
24-23

RTC_ICTL (RTC interrupt control)
register, 24-20, 24-21

RTC interrupt control (RTC_ICTL)
register, 24-21

RTC_ISTAT (RTC interrupt status)
register, 24-20, 24-22

RTC_PREN (prescaler enable) register,
24-5, 24-20

RTC_PREN (RTC prescaler enable)
register, 24-23

RTC prescaler enable (RTC_PREN)
register, 24-23

RTC_STAT (RTC status) register, 24-13,
24-20, 24-21

RTC status (RTC_STAT) register, 24-13,
24-20, 24-21

RTC stopwatch count (RTC_SWCNT)
register, 24-22

RTC_SWCNT (RTC stopwatch count)
register, 24-3, 24-13, 24-20, 24-22

RUVF (sticky receive underflow status) bit,
19-60, 19-61, 19-62

RWKE (remote wakeup frame enable) bit,
22-34, 22-79

RWKS (wakeup frame received status) bits,
22-78

RX_ACCEPT (received filtered frame int
en) bit, 22-93, 22-100, 22-104

RX_ACT (data receive active) bit, 21-67
RX_ACT_MASK (data receive active) bit,

21-72
RX_ADDR (address filter failed) bit,

22-96, 22-101, 22-104
RX_ALIGN (alignment error) bit, 22-97,

22-102, 22-104
RX_ALIGN_CNT (alignment errors

counter int) bit, 22-113
RX_ALIGN_CNT (alignment errors

counter int en) bit, 22-115
RX_ALLF_CNT (frames received all

counter int) bit, 22-113
RX_ALLF_CNT (frames received all

counter int en) bit, 22-115
RX_ALLO_CNT (octets received all

counter int) bit, 22-113
RX_ALLO_CNT (octets received all

counter int en) bit, 22-115
RX_BROAD (broadcast frame detected)

bit, 22-101, 22-104
RX_BROAD (broadcast frames detected)

bit, 22-95
RX_BROAD_CNT (broadcast frames

received OK counter int) bit, 22-113
RX_BROAD_CNT (broadcast frames

received OK counter int en) bit,
22-115

RXCKS (enable receive frame TCP/UDP
checksum computation) bit, 22-89

RX_COMP (receive complete) bit, 22-98,
22-103, 22-104

RX_CRC (frame CRC error) bit, 22-97,
22-102, 22-104

RX_CTL (control frame int en) bit, 22-95,
22-100, 22-104

RX data buffer status (RXS) bit, 17-40
ADSP-BF51x Blackfin Processor Hardware Reference I-53

Index
RX_DAT_RDY_MASK (receive data
available) bit, 21-72

RX_DAT_RDY (receive data available) bit,
21-67

RX DMA direction error detected, 22-40
RX DMA direction error status

(RXDMAERR) bit, 22-91
RXDMAERR (RX DMA direction error

status) bit, 22-91
RX_DMAO (DMA overrun detected) bit,

22-96, 22-101, 22-104
RXDWA (receive frame DMA word

alignment) bit, 22-18, 22-49, 22-89
RXEIE (receive event int en) bit, 23-16
RXEL (receive event interrupt status) bit,

23-18
RX_EM (mask for PTP control field of

event messages) bit, 23-23
RX_EQ64_CNT (frames length equal to

64 received counter int) bit, 22-113
RX_EQ64_CNT (frames length equal to

64 received counter int en) bit, 22-115
RX_FCS_CNT (frame check sequence

errors counter int) bit, 22-113
RX_FCS_CNT (frame check sequence

errors counter int en) bit, 22-115
RX_FIFO_FULL_MASK (receive FIFO

full) bit, 21-72
RX_FIFO_FULL (receive FIFO full) bit,

21-67
RX_FIFO_STAT_MASK (receive FIFO

watermark) bit, 21-72
RX_FIFO_STAT (receive FIFO

watermark) bit, 21-67
RX_FIFO_ZERO (receive FIFO empty)

bit, 21-67
RX_FIFO_ZER/W_MASK (receive FIFO

empty) bit, 21-72
RX_FRAG (frame fragment detected) bit,

22-96, 22-102, 22-104

RX frame status interrupt, 22-39
RX frame-status interrupt status

(RXFSINT) bit, 22-91
RX_FRLEN[10: 0] field, 22-98
RXFSINT (RX frame-status interrupt

status) bit, 22-91
RX_GE1024_CNT (frames length

1024-max received counter int) bit,
22-113

RX_GE1024_CNT (frames length
1024-max received counter int en) bit,
22-115

RXGIE (receive general int en) bit, 23-16
RXGL (receive general interrupt status) bit,

23-18
RX_GN (mask for PTP control field of

general messages) bit, 23-23
RX hold register, 19-60
RX_IRL_CNT (in-range length errors

counter int) bit, 22-113
RX_IRL_CNT (in-range length errors

counter int en) bit, 22-115
RX_LATE (late collision detected) bit,

22-96, 22-101, 22-104
RX_LEN (length error detected) bit,

22-97, 22-102, 22-104
RX_LONG_CNT (frame too long errors

counter int) bit, 22-113
RX_LONG_CNT (frame too long errors

counter int en) bit, 22-115
RX_LONG (frame too long) bit, 22-97,

22-102, 22-104
RX_LOST_CNT (frames lost counter int)

bit, 22-113
RX_LOST_CNT (frames lost counter int

en) bit, 22-115
RX_LT1024_CNT (frames length

512-1023 received counter int) bit,
22-113
I-54 ADSP-BF51x Blackfin Processor Hardware Reference

Index
RX_LT1024_CNT (frames length
512-1023 received counter int en) bit,
22-115

RX_LT128_CNT (frames length 65-127
received counter int) bit, 22-113

RX_LT128_CNT (frames length 65-127
received counter int en) bit, 22-115

RX_LT256_CNT (frames length 128-255
received counter int) bit, 22-113

RX_LT256_CNT (frames length 128-255
received counter int en) bit, 22-115

RX_LT512_CNT (frames length 256-511
received counter int) bit, 22-113

RX_LT512_CNT (frames length 256-511
received counter int en) bit, 22-115

RX modes with external frame syncs, 20-20
RX_MULTI_CNT (multicast frames

received OK counter int) bit, 22-113
RX_MULTI_CNT (multicast frames

received OK counter int en) bit,
22-115

RX_MULTI (multicast frame int en) bit,
22-95, 22-101, 22-104

RXNE (receive FIFO not empty status) bit,
19-61

RX_OCTET_CNT (octets received OK
counter int) bit, 22-113

RX_OCTET_CNT (octets received OK
counter int en) bit, 22-115

RX_OK_CNT (frames received OK
counter int) bit, 22-113

RX_OK_CNT (frames received OK
counter int en) bit, 22-115

RX_OK (good received frame int en) bit,
22-98, 22-103, 22-104

RX_OPCODE_CNT (unsupported
opcodes received counter int) bit,
22-113

RX_OPCODE_CNT (unsupported
opcodes received counter int en) bit,
22-115

RX_ORL_CNT (out-of-range length field
counter int) bit, 22-113

RX_ORL_CNT (out-of-range length field
counter int en) bit, 22-115

RXOVE (receive overrun error int en) bit,
23-16

RX_OVERRUN_MASK (receive FIFO
overrun error) bit, 21-72

RX_OVERRUN (receive FIFO overrun
error) bit, 21-67

RX_OVERRUN_STAT (clear receive
FIFO overrun error) bit, 21-70

RXOV (receive snapshot overrun status)
bit, 23-18

RX_PAUSE_CNT (PAUSE MAC control
frames received counter int) bit,
22-113

RX_PAUSE_CNT (PAUSE MAC control
frames received counter int en) bit,
22-115

RX_PHY (PHY error int en) bit, 22-96,
22-101, 22-104

RX_RANGE (out-of-range length field
detected) bit, 22-101, 22-104

RX_RANGE (out-of-range length fields
detected) bit, 22-95

RXREQ signal, 15-7
RxSEC enable (RXSE) bit, 19-54
RXSE (RxSEC enable) bit, 19-54, 19-56
RX_SHORT_CNT (frames length less

than 64 received counter int) bit,
22-113

RX_SHORT_CNT (frames length less
than 64 received counter int en) bit,
22-115
ADSP-BF51x Blackfin Processor Hardware Reference I-55

Index
RX_SNAP_HI (higher 32 bits of receive
snapshot of local clock time) bit,
23-30

RX_SNAP_LO (lower 32 bits of receive
snapshot of local clock time) bit,
23-29

RXS (RX data buffer status) bit, 17-22,
17-40

RX status int en (ELSI) bit, 15-27
RX_TYPED_CNT (typed frames received

counter int) bit, 22-113
RX_TYPED_CNT (typed frames received

counter int en) bit, 22-115
RX_TYPE (typed frame int en) bit, 22-94,

22-100, 22-104
RX_UCTL (unsupported control frame)

bit, 22-95, 22-100, 22-104
RX_UNI_CNT (unicast frames received

OK counter int) bit, 22-113
RX_UNI_CNT (unicast frames received

OK counter int en) bit, 22-115
RX_VLAN1 (VLAN1 frame int en) bit,

22-94, 22-100, 22-104
RX_VLAN2 (VLAN2 frame detected) bit,

22-100, 22-104
RX_VLAN2 (VLAN2 frames detected) bit,

22-93

S
SA10 pin, 7-55
SADDR (slave mode address) bits, 16-30
SAMPLE/PRELOAD instruction, B-6
sampling clock period, UART, 15-8
sampling edge, SPORT, 19-33
SAV codes, 20-31
SAV signal, 20-6
SB (set break) bit, 15-21
scale value[7: 0] field, 11-6
scaling, of core timer, 11-7
scan paths, B-5

SCCB compatibility (SCCB) bit, 16-27
SCCB (SCCB compatibility) bit, 16-27
scheduling, memory DMA, 6-46
SCKELOW, 8-23
SCKE low reset (SCKELOW) bit, 8-23
SCKELOW (SCKE low reset) bit, 8-23
SCKE pin, 7-53
SCK signal, 17-5, 17-12, 17-14, 17-16
SCL clock divider (TWI_CLKDIV)

register, 16-27
SCLK, 1-24, 4-4, 8-5

changing frequency, 7-46
derivation, 8-2
EBIU, 7-2
operating mode, 8-7
status, 8-7

SCLOVR (serial clock override) bit, 16-32
SCL pin, 16-5
SCLSEN (serial clock sense) bit, 16-35,

16-36
SCL serial clock, 16-27
SCL (serial clock) signal, 16-4
SCOMPM (slave transfer complete

interrupt mask) bit, 16-42
SCOMP (slave transfer complete) bit,

16-42, 16-44
SCRATCH bits, 15-31
scratchpad memory and booting, 26-21
SCTLE bit, 7-53, 7-54, 7-57, 7-66, 7-67,

7-68, 7-73
SDAOVR (serial data override) bit, 16-32
SDA pin, 16-5
SDASEN (serial data sense) bit, 16-35,

16-36
SDA (serial data) signal, 16-4, 16-5
SDC, 1-8, 7-4, 7-24

address mapping, 7-26
address muxing, 7-42
architecture, 7-40
code examples, 7-77
I-56 ADSP-BF51x Blackfin Processor Hardware Reference

Index
SDC (continued)
commands, 7-47
component configurations, 7-25
core and DMA arbitration, 7-44
core transfers to SDRAM, 7-77
disabled CLKOUT, 7-78
initialization, 7-80
no burst mode, 7-41
operation, 7-39
pin state during commands, 7-47
power-up latency, 7-56
registers, 7-59
SA10 pin, 7-55
self-refresh mode, 7-78
transfers to SDRAM using byte mask,

7-78
SD_CARD_DET (card detect int) bit,

21-77
SD_CARD_DET_MASK (card detect int

en) bit, 21-78
SDC EAB sticky error status (SDEASE)

bit, 7-76
SDC idle (SDCI) bit, 7-76
SDCI (SDC idle) bit, 7-76
SDC powerup active (SDPUA) bit, 7-76
SDC powerup delay (SDRS) bit, 7-76
SDC self-refresh active (SDSRA) bit, 7-76
SDEASE (SDC EAB sticky error status)

bit, 7-76, 7-77
SDIO 4-bit enable (SDIO4_EN) bit,

21-80
SDIO4_EN (SDIO 4-bit enable) bit,

21-80
SDIO_INT_DET_MASK (SDIO int en)

bit, 21-78
SDIO_INT_DET (SDIO interrupt detect)

bit, 21-77
SDIO int en (SDIO_INT_DET_MASK)

bit, 21-78

SDIO interrupt detect (SDIO_INT_DET)
bit, 21-77

SDIO interrupt moving window enable
(MW_EN) bit, 21-80

SDIO_RWR (RSI read wait request
enable) bit, 21-81

SDIR (slave transfer direction) bit, 16-30,
16-31

SDPUA (SDC powerup active) bit, 7-76,
7-77

SDQM[1: 0] encodings during writes, 7-51
SDRAM, 1-5, 2-1

A[10] pin, 7-55
address connections, 7-42
address mapping, 7-26
banks, 2-5, 7-2, 7-3, 7-28, 7-32
bursts, 7-32
clock enables, setting, 7-66
column read/write, 7-31
configuration, 7-24, 7-62
exiting self-refresh mode, 7-53
external SDRAM, 7-26, 7-32, 7-71
initialization, 7-48, 7-72
interface, 7-29, 7-47
latency, 7-33, 7-72
memory size, 7-32
memory space, 7-2
multibank operation, 7-43
parallel connection, 7-28
performance, 7-30
power-up sequence, 7-45, 7-48, 7-72
read transfers, 7-51
refresh, 7-31
reserved, 7-2
row activation, 7-31
row precharge, 7-31
self-refresh mode, 7-34, 7-53
sharing, 7-71
sizes, 2-5, 7-24, 7-62
smaller than 16M byte, 7-64
ADSP-BF51x Blackfin Processor Hardware Reference I-57

Index
SDRAM (continued)
specification of system, 7-28
stall cycles, 7-30
start address, 7-2
system block diagram, 7-58, 7-59
timing, 7-35

SDRAM commands, 7-33
auto-refresh command, 7-34, 7-52
bank activate command, 7-33
ERMS command, 7-33
interface controller commands, 7-47
MRS command, 7-33
NOP command, 7-54
precharge all command, 7-34
precharge command, 7-34
read command, 7-34
read/write command, 7-50
write command, 7-34

SDRAM controller. See SDC
SDRAM control status (EBIU_SDSTAT)

register, 7-76
SDRAM control status register

(EBIU_SDSTAT), 7-76
SDRAM memory bank control

(EBIU_SDBCTL) register, 7-62,
7-63

SDRAM memory global control
(EBIU_SDGCTL) register, 7-66,
7-67

SDRAM refresh rate control
(EBIU_SDRRC) register, 7-60

SDRS (SDC powerup delay) bit, 7-56,
7-76, 7-77

SDSRA (SDC self-refresh active) bit, 7-76
SECMODE (secure mode control state)

bit, 25-56
seconds (1 Hz) event flag bits, 24-21,

24-22, 24-23
SECSTAT (secure status) bit, 25-56

SECURE_CONTROL (secure control)
register, 25-54

secure control (SECURE_CONTROL)
register, 25-54

secure mode control state (SECMODE)
bit, 25-56

secure status (SECSTAT) bit, 25-56
SECURE_STATUS (secure status)

register, 25-56
secure status (SECURE_STATUS)

register, 25-56
SECURE_SYSSWT (secure system switch)

register, 25-48
secure system switch (SECURE_SYSSWT)

register, 25-48
SECURE x (SECUREx) bits, 25-54
security registers, 25-46
self-refresh command, 7-53
self-refresh mode, 7-34, 7-53, 7-73, 7-78

entering, 7-53
exiting, 7-53

self-refresh setting (SRFS) bit, 7-67
semaphores, 27-2

coherency, 27-3
example code, 27-3
query, 27-3

send zero (SZ) bit, 17-37
SEN (slave enable) bit, 16-28, 16-29
serial

clock frequency, 17-35
communications, 15-5
data transfer, 19-4
scan paths, B-4

serial clock divide modulus [15: 0] field,
19-63

serial clock override (SCLOVR) bit, 16-32
serial clock sense (SCLSEN) bit, 16-35
serial data override (SDAOVR) bit, 16-32
serial data sense (SDASEN) bit, 16-35
serial peripheral interface. See SPI
I-58 ADSP-BF51x Blackfin Processor Hardware Reference

Index
serial port. See SPORT
serial scan paths, B-5
SERRM (slave transfer error interrupt

mask) bit, 16-42
SERR (slave transfer error) bit, 16-42,

16-44
set break (SB) bit, 15-21
set index bits, 2-7
SET_PHYAD macro, 22-125
set Pxn bit, 9-34
set Pxn interrupt A enable bit, 9-39
set Pxn interrupt B enable bit, 9-40
SET_REGAD macro, 22-125
setup EBIU asynchronous memory

controller, 7-18
setup SDRAM clock enables, 7-66
shared interrupts, 5-5
SIC_IAR (system interrupt assignment)

register, 5-11
SIC_IMASK (system interrupt mask)

register, 5-5
SIC registers, 5-10
SIC. See system interrupt controller
signal integrity, 27-8
signalling, via semaphores., 27-2
sine wave input, 1-24
single collision frames counter int en

(TX_SCOLL_CNT) bit, 22-118
single collision frames counter int

(TX_SCOLL_CNT) bit, 22-116
single collision frames

(EMAC_TXC_1COL) register,
22-56

single pulse generation, timer, 10-13
SINITM (slave transfer initiated interrupt

mask) bit, 16-42
SINIT (slave transfer initiated) bit, 16-42,

16-44
size of accesses, timer registers, 10-36
size of words (SIZE) bit, 17-37

SIZE (size of words) bit, 17-36, 17-37
skip enable (SKIP_EN) bit, 20-26
SKIP_EN (skip enable) bit, 20-25, 20-26
SKIP_EO (skip even odd) bit, 20-26,

20-27
skip even odd (SKIP_EO) bit, 20-26
slave enable (SEN) bit, 16-28
slave mode address (SADDR) bit, 16-30
slave mode control (TWI_SLAVE_CTL)

register, 16-28
slave mode setup, in TWI, 16-12, 16-54
slave overflow interrupt mask (SOVFM)

bit, 16-42
slave overflow (SOVF) bit, 16-42
slaves, EBIU, 7-4
slaves, PAB, 4-6
slave select enable (PSSE) bit, 17-37
slave select value (FLGx) bit, 17-38
slave SPI device, 17-5, 17-39
slave transfer complete interrupt mask

(SCOMPM) bit, 16-42
slave transfer complete (SCOMP) bit,

16-42
slave transfer direction (SDIR) bit, 16-30
slave transfer error interrupt mask

(SERRM) bit, 16-42
slave transfer error (SERR) bit, 16-42
slave transfer initiated interrupt mask

(SINITM) bit, 16-42
slave transfer initiated (SINIT) bit, 16-42
slave transmit data valid (STDVAL) bit,

16-28
sleep mode, 1-25, 8-9, 22-32
SLEN[4: 0] field, 19-49, 19-50, 19-54,

19-55
restrictions, 19-27
word length formula, 19-27

small descriptor mode, DMA, 6-14
small model mode, DMA, 6-68
ADSP-BF51x Blackfin Processor Hardware Reference I-59

Index
software
interrupts, 5-3
management of DMA, 6-50
watchdog timer, 1-23, 12-2

software reset, 26-6, 26-74
software reset status

(RESET_SOFTWARE) bit, 26-75
software reset (SWRESET) bit, 26-77
software reset (SWRST) register, 25-40,

26-75
software watchdog timer source

(RESET_WDOG) bit, 26-75
source channels, memory DMA, 6-7
source ID offset (EMAC_PTP_ID_OFF)

register, 23-34
source ID offset (SRC_ID_OFF) bit,

23-34
source ID snapshot

(EMAC_PTP_ID_SNAP) register,
23-35

source ID (SRC_ID) bit, 23-35
SOVFM (slave overflow interrupt mask)

bit, 16-42
SOVF (slave overflow) bit, 16-42, 16-44
speculative read and MAC, 22-42
SPE (SPI enable) bit, 17-36, 17-37
SPI, 1-19, 17-2 to 17-53

boot mode, 26-67
clock polarity, 17-12
data corruption, avoiding, 17-14
DMA operations, 17-10, 17-24, 17-26,

17-48
errors, 17-16, 17-40 to 17-42
examples, code, 17-44
full-duplex synchronous serial interface,

17-2
initialization, 17-45
interfaces, 17-10
interrupts, 17-16, 17-47
master mode, 17-15, 17-17, 17-24

SPI (continued)
mode fault error, 17-41
multiple slave systems, 17-8
operations, 17-14 to 17-21
peripherals, compatible, 17-3
reception error, 17-42
registers, 17-34
reset effects, 17-16
slave mode, 17-5, 17-15, 17-20, 17-21,

17-26, 17-38, 26-67
slave select, 17-39
SPI_FLG mapping to port pins, 17-39
system enabling, 17-36
timing, 17-6
transmit collisions, 17-42
word length, 17-36

SPI baud rate (SPI_BAUD) register, 17-35
SPI_BAUD (SPI baud rate) register, 17-34,

17-35
SPI clock

phase, 17-12, 17-14, 17-16
polarity, 17-16
SCK signal, 17-5
signal, 17-4, 17-16

SPI control (SPI_CTL) register, 17-37
SPI_CTL (SPI control) register, 17-5,

17-34, 17-36, 17-37
SPI data transfers, 17-15

completion detection, 17-40
formats, 17-12 to 17-14
initiate command, 17-18
modes, 17-19
preparation, 17-21
protocol, 17-13, 17-14
starting, 17-21, 17-46, 17-51
stopping, 17-21, 17-48, 17-51
transmit/receive, switching, 17-23

SPI enable (SPE) bit, 17-37
SPI finished (SPIF) bit, 17-40
SPI flag (SPI_FLG) register, 17-38
I-60 ADSP-BF51x Blackfin Processor Hardware Reference

Index
SPI_FLG (SPI flag) register, 17-7, 17-8,
17-34, 17-38

SPIF (SPI finished) bit, 17-9, 17-22, 17-40
SPI_RDBR (shadow) bits, 17-44
SPI RDBR shadow (SPI_SHADOW

register), 17-34
SPI RDBR shadow (SPI_SHADOW)

register, 17-44
SPI_RDBR (SPI receive data buffer)

register, 17-34, 17-43, 17-44
SPI receive data buffer (SPI_RDBR)

register, 17-44
SPI_SHADOW (SPI RDBR shadow)

register, 17-34, 17-44
SPISO_IEDSBL bit, 9-29
SPISO_PUPEN bit, 9-29
SPISS signal, 17-6, 17-8, 17-12
SPI_STAT (SPI status) register, 17-34,

17-40
SPI status (SPI_STAT) register, 17-40
SPI_TDBR data buffer status (TXS) bit,

17-40
SPI_TDBR (SPI transmit data buffer)

register, 17-34, 17-42, 17-43
SPI transmit data buffer (SPI_TDBR)

register, 17-43
SPORT, 1-17, 19-1 to 19-75

2X clock recovery control, 19-25
active low vs. active high frame syncs,

19-33
active pulses, shortened, 19-10
bit order selection, 19-27
channels, 19-14
companding, 19-29
configuration, 19-10
connections, 19-7, 19-8
disabling, 19-10
DMA data packing, 19-23
enable/disable, 19-9
enabling multichannel mode, 19-17

SPORT (continued)
errors, 19-38, 19-39
H.100 standard protocol, 19-24
initialization code, 19-55
internal memory access, 19-38
interrupts, 19-38, 19-58, 19-60
modes, 19-10
multichannel operation, 19-14 to 19-24
operations, 19-9
packing data, multichannel DMA, 19-23
peripheral bus access, 19-39
receive FIFO, 19-59
receive operations, 19-4, 19-29, 19-60
registers, 19-45, 19-46, 19-57, 19-60
sampling edge, 19-33
signals, 19-5
stereo serial operations, 19-8, 19-10,

19-17
terminations, 19-8
throughput, 19-5
timing, 19-39
transmit operations, 19-4
transmitter FIFO, 19-57
unpacking data, multichannel DMA,

19-23
window offset, 19-21

SPORT_CHNL (SPORT current channel)
register, 19-66

SPORT clock, 19-29
frequency, 19-25, 19-62
rate, 19-3, 19-27
single clock, receive and transmit with,

19-29
transmit clock, 19-29

SPORT current channel (SPORT_CHNL)
register, 19-66

SPORT data transfers
formats, 19-28, 19-56
framed serial transfers, 19-31
memory moves, 19-38
ADSP-BF51x Blackfin Processor Hardware Reference I-61

Index
SPORT data transfers (continued)
multichannel timing, 19-16
protocols, communication, 19-2, 19-24
single word, 19-38
unframed data flow, 19-31
word length, 19-27, 19-57, 19-60

SPORT frame sync, 19-32, 19-35
framed vs. unframed, 19-30
framing signals, 19-30
frequencies, 19-25
internal vs. external, 19-32
late frame sync, 19-17
modes, 19-17
multichannel frame, 19-19

SPORT_MCMCx (SPORT multichannel
configuration) registers, 19-64, 19-65

SPORT_MRCSx (SPORT multichannel
receive select) registers, 19-22, 19-23,
19-66, 19-67

SPORT_MTCSx (SPORT multichannel
transmit select) registers, 19-22,
19-23, 19-67, 19-68

SPORT multichannel configuration
(SPORT_MCMCx) registers, 19-65

SPORT multichannel receive select
(SPORT_MRCSx) registers, 19-67

SPORT multichannel transmit select
(SPORT_MTCSx) registers, 19-68

SPORT_RCLKDIV (SPORT receive serial
clock divider) registers, 19-62, 19-63

SPORT_RCRx (SPORT receive
configuration) registers, 19-52, 19-53,
19-54

SPORT receive configuration
(SPORT_RCRx) registers, 19-53,
19-54

SPORT receive data (SPORT_RX)
register, 19-60

SPORT receive frame sync divider
(SPORT_RFSDIV) register, 19-64

SPORT receive serial clock divider
(SPORT_RCLKDIV) register, 19-63

SPORT_RFSDIV (SPORT receive frame
sync divider) registers, 19-63, 19-64

SPORT_RX (SPORT receive data)
registers, 19-18, 19-59, 19-60

SPORT_STAT (SPORT status) registers,
19-61

SPORT status (SPORT_STAT) register,
19-61

SPORT_TCLKDIV (SPORT transmit
serial clock divider) registers, 19-62,
19-63

SPORT_TCRx (SPORT transmit
configuration) registers, 19-48, 19-49

SPORT_TCRx (transmit configuration)
registers, 19-47

SPORT_TFSDIV (SPORT transmit frame
sync divider) registers, 19-63, 19-64

SPORT transmit configuration
(SPORT_TCRx) registers, 19-48,
19-49

SPORT transmit data (SPORT_TX)
register, 19-58

SPORT transmit frame sync divider
(SPORT_TFSDIV) register, 19-64

SPORT transmit serial clock divider
(SPORT_TCLKDIV) register, 19-63

SPORT_TX (SPORT transmit data)
registers, 19-18, 19-37, 19-57, 19-58

SRAM ADDR[13: 12] field, 2-7
SRAM operation, 1-5, 7-1, 27-5
SRC_ID_OFF (source ID offset) bit,

23-34
SRC_ID (source ID) bit, 23-35
SRFS (self-refresh setting) bit, 7-53, 7-67,

7-68, 7-73
SSEL (system select) bit, 8-21
SSEL (system select) bits, 4-4, 8-5, 8-21,

27-2
I-62 ADSP-BF51x Blackfin Processor Hardware Reference

Index
STABUSY (STA busy status) bit, 22-72,
22-73

STA busy status (STABUSY) bit, 22-72
STADATA[15: 0] field, 22-74
STADISPRE (disable preamble generation)

bit, 22-72, 22-73
STAIE (station management transfer done

int en) bit, 22-72, 22-73
stall cycles, SDRAM, 7-30
STAOP (station management operation

code) bit, 22-72, 22-73
start address registers

(DMAx_START_ADDR), 6-74
(MDMA_yy_START_ADDR), 6-74

START_BIT_ERR_MASK (start bit error)
bit, 21-72

start bit error (START_BIT_ERR) bit,
21-67

start bit error (START_BIT_ERR_MASK)
bit, 21-72

START_BIT_ERR (start bit error) bit,
21-67

START_BIT_ERR_STAT (clear start bit
error) bit, 21-70

state transitions, RTC, 24-17
station management

read transfer, MAC, 22-48
transfer done, 22-40
write transfer, MAC, 22-47

station management address
(EMAC_STAADD) register, 22-72

station management data
(EMAC_STADAT) register, 22-74

station management operation code
(STAOP) bit, 22-72

station management transfer done int en
(STAIE) bit, 22-72

station management transfer done interrupt
status (STMDONE) bit, 22-91

status (CNT_STATUS) register, 13-19,
13-22

STATUS (status) bits, 15-28, 15-29
status (STATUS) bits, 15-29
STB (stop bits) bit, 15-21
STDVAL (slave transmit data valid) bit,

16-28, 16-29
stereo serial

data, 19-3
device, SPORT connection, 19-8
frame sync modes, 19-17
operation, SPORT, 19-10

stick parity (SP) bit, 15-21
sticky frame status (EMAC_RX_STKY)

register, 22-99
sticky frame status (EMAC_TX_STKY)

register, 22-109
sticky receive overflow status (ROVF) bit,

19-61
sticky receive underflow status (RUVF) bit,

19-61
STMDONE (station management transfer

done interrupt status) bit, 22-90,
22-91

stop bits (STB) bit, 15-21
STOPCK (stop clock) bit, 8-21
stop clock (STOPCK) bit, 8-21
STOP (issue stop condition) bit, 16-32,

16-33
stop mode, DMA, 6-11, 6-68
stopping DMA transfers, 6-28
stopwatch count[15: 0] field, 24-22
stopwatch event flag bit, 24-22
stopwatch interrupt enable bit, 24-21
stopwatch operation, 24-3, 24-13
STP (stick parity) bit, 15-21
streams, memory DMA, 6-7
subbank access bits, 2-7
subbanks, L1 memory, 2-3
supervisor mode, 26-7
ADSP-BF51x Blackfin Processor Hardware Reference I-63

Index
surface-mount capacitors, 27-10
SWRESET (software reset) bit, 25-48,

25-49, 26-77
SWRST (software reset) register, 25-40,

26-74, 26-75
synchronization, descriptor queue, 6-57
synchronization, DMA, 6-50 to 6-60
synchronization, interrupt-based methods,

6-51
synchronized transition, DMA, 6-27
synchronous serial data transfer, 19-4
synchronous serial ports. See SPORT
SYNC (work unit transitions) bit, 6-25,

6-26, 6-61, 6-67, 6-69, 15-17
SYSCR (system reset configuration)

register, 25-48, 25-49, 25-54, 25-56,
26-76, 26-77

system
events, 5-3
interrupts, 5-2, 5-8, 10-8
peripherals, 1-1
system clock (SCLK), 1-24, 7-45, 8-2,

27-2
system control (EMAC_SYSCTL) register,

22-89
system design, 27-1 to 27-13

high frequency considerations, 27-8
recommendations, 27-9, 27-12

system interrupt assignment (SIC_IAR)
register, 5-11

system interrupt controller (SIC), 5-2
controlling interrupts, 5-4
enabling flexible interrupt handling,

10-8
enabling individual peripheral interrupts,

5-4
main functions of, 5-4
peripheral interrupt events, 5-19
registers, 5-10

system interrupt mask (SIC_IMASK)
register, 5-5

system peripheral clock. See SCLK
system reset configuration (SYSCR)

register, 25-48, 25-49, 25-54, 25-56,
26-76, 26-77

SYSTEM_RESET (system software reset)
bits, 25-40, 25-44, 26-75

system select (SSEL) bit, 8-21
system software reset, 26-4
system software reset (SYSTEM_RESET)

bit, 26-75
system status (EMAC_SYSTAT) register,

22-90
SZ (send zero) bit, 17-20, 17-37

T
TAP registers

boundary-scan, B-7
BYPASS, B-6
instruction, B-2, B-4

TAP (test access port), B-2
target address, 26-27
target alarm time high

(EMAC_PTP_ALARMHI) register,
23-34

target alarm time low
(EMAC_PTP_ALARMLO) register,
23-33

TAUTORLD bit, 11-3, 11-5
TCKFE (clock drive/sample edge select)

bit, 19-33, 19-48, 19-52
TCNTL (core timer control) register, 11-3,

11-5
TCOUNT (core timer count) register,

11-3, 11-5, 11-6
TCP/IP-style checksums, MAC, 22-21
TCSR (temperature compensated

self-refresh) bit, 7-67, 7-75
TDM interfaces, 19-4
I-64 ADSP-BF51x Blackfin Processor Hardware Reference

Index
TDTYPE[1: 0] field, 19-28, 19-48, 19-50
technical support, lxvii
temperature compensated self-refresh

(TCSR) bit, 7-67
TEMT (TSR and UART_THR empty)

bit, 15-24
TEMT (TSR and UARTx_THR empty)

bit, 15-6, 15-25
termination, DMA, 6-28
terminations, SPORT pin/line, 19-8
test access port (TAP), B-2
test clock (TCK), B-6
test features, B-1 to B-7
testing circuit boards, B-1, B-6
test-logic-reset state, B-4
test point access, 27-12
TESTSET instruction, 4-10, 27-3
TE (transmitter enable) bit, 22-42, 22-50,

22-60, 22-64
TFSR (transmit frame sync required select)

bit, 19-30, 19-31, 19-48, 19-51
TFSx pins, 19-5, 19-18, 19-30, 19-37
THR empty (THRE) bit, 15-24
THRE (THR empty) bit, 15-6, 15-11,

15-16, 15-24, 15-25
throughput

DAB, 4-10
DMA, 6-40, 6-42
general-purpose ports, 9-13
SPORT, 19-5

TIMDISx (timer disable) bits, 10-37,
10-38

time-division-multiplexed (TDM) mode,
19-14

See also SPORT, multichannel operation
TIMENx (timer enable) bits, 10-36, 10-37
time offset (EMAC_PTP_OFFSET)

register, 23-26
timer clock select (CLK_SEL) bit, 10-41

TIMER_CONFIG (timer configuration)
registers, 10-5, 10-39, 10-41

timer configuration (TIMER_CONFIG)
registers, 10-5, 10-39, 10-41

timer counter[15: 0] field, 10-42
timer counter[31: 16] field, 10-42
timer counter overflow (TOVF_ERRx)

bits, 10-40
TIMER_COUNTER (timer counter)

register, 10-42
TIMER_COUNTER (timer counter)

registers, 10-5, 10-41, 10-42
timer counter (TIMER_COUNTER)

registers, 10-5, 10-41, 10-42
timer disable (TIMDISx) bits, 10-38
TIMER_DISABLE (timer disable) register,

10-5, 10-37, 10-38, 10-45
timer disable (TIMER_DISABLE) register,

10-5, 10-37, 10-38
TIMER_ENABLE bit, 10-45
timer enable (TIMENx) bits, 10-36, 10-37
TIMER_ENABLE (timer enable) register,

10-5, 10-36, 10-37, 20-23
timer enable (TIMER_ENABLE) register,

10-5, 10-36, 10-37
timer errors, 10-9
timer input select (TIN_SEL) bit, 10-41,

10-46
timer int (TIMILx) bits, 10-5, 10-40
timer mode (TMODE) bit, 10-41
timer period[15: 0] field, 10-44
timer period[31: 16] field, 10-44
timer period bits, 10-44
TIMER_PERIOD (timer period) register,

10-43, 10-44
TIMER_PERIOD (timer period) registers,

10-5, 10-43, 10-44
timer period (TIMER_PERIOD) registers,

10-5, 10-43, 10-44
ADSP-BF51x Blackfin Processor Hardware Reference I-65

Index
timers, 10-1 to 10-57
core, 11-2 to 11-8
EXT_CLK mode, 10-33
overview, 1-19
watchdog, 1-23, 12-2 to 12-10
WDTH_CAP mode, 15-15

timer slave enable status (TRUNx) bits,
10-40

TIMER_STATUS (timer status) register,
10-6, 10-38, 10-40

timer status (TIMER_STATUS) register,
10-6, 10-38, 10-40

timer width[15: 0] field, 10-45
timer width[31: 16] field, 10-45
timer width bits, 10-45
TIMER_WIDTH (timer width) register,

10-45
TIMER_WIDTH (timer width) registers,

10-43, 10-45
timer width (TIMER_WIDTH) registers,

10-43, 10-45
timestamp lock control (TL) bit, 23-13
TIMILx (timer int) bits, 10-5, 10-40
timing

auto-refresh, 7-60
memory DMA, 6-44
multichannel transfer, 19-16
peripherals, 4-4
SDRAM, 7-35
SPI, 17-6
SPORT, 19-39

TIMOD (transfer initiation mode) bits,
17-16, 17-19, 17-36, 17-37

TIN_SEL (timer input select) bit, 10-41,
10-46

TINT bit, 11-3, 11-5
TLSBIT (bit order select) bit, 19-48, 19-50
TL (timestamp lock control) bit, 23-13
TMODE (timer mode) bits, 10-12, 10-41,

10-45

TMPWR bit, 11-3, 11-5
TMRCLK input, 10-57
TMREN bit, 11-3, 11-5
TMR pin, 10-46
TMRx pins, 10-4, 10-16
TOGGLE_HI bit, 10-41, 10-46
TOGGLE_HI mode, 10-17
toggle Pxn bit, 9-35
toggle Pxn interrupt A enable bit, 9-43
toggle Pxn interrupt B enable bit, 9-44
tools, development, 1-27
TOVF_ERRx (timer counter overflow)

bits, 10-5, 10-8, 10-16, 10-25, 10-29,
10-39, 10-40, 10-47

TOVF (transmit overflow status) bit,
19-58, 19-61, 19-62

TPERIOD (core timer period) register,
11-6

TPOLC (IrDA TX polarity change) bit,
15-31, 15-32

traffic control, DMA, 6-44 to 6-50
transfer count (PPI_COUNT) register,

20-32, 20-33
transfer frame protocol, MAC, 22-9
transfer initiate command, 17-18
transfer initiation from SPI master, 17-19
transfer initiation mode (TIMOD) bit,

17-37
transfer rate

memory DMA channels, 6-42
peripheral DMA channels, 6-42

transfers, memory-to-memory, 6-7
transfer type (XFR_TYPE) bit, 20-26
transitions

continuous DMA, 6-24
DMA work unit, 6-24
operating mode, 8-10, 8-12
synchronized DMA, 6-24

transmission aborted frames counter int en
(TX_ABORT_CNT) bit, 22-118
I-66 ADSP-BF51x Blackfin Processor Hardware Reference

Index
transmission aborted frames counter int
(TX_ABORT_CNT) bit, 22-116

transmission error, SPI, 17-42
transmission error (TXE) bit, 17-40, 19-61
transmit buffer empty int en (ETBEI) bit,

15-27
transmit buffer flush (XMTFLUSH) bit,

16-38
transmit buffer interrupt length

(XMTINTLEN) bit, 16-38
transmit clock, serial (TSCLKx) pins,

19-29
transmit collision error, SPI, 17-42
transmit collision error (TXCOL) bit,

17-40
transmit command completion signal

disable (CEATA_TX_CCSD) bit,
21-76

transmit complete (TX_COMP) bit,
22-105

transmit configuration (SPORT_TCRx)
registers, 19-47

transmit data[15: 0] field, 19-58
transmit data[31: 16] field, 19-58
transmit data available (TX_DAT_RDY)

bit, 21-67
transmit data available

(TX_DAT_RDY_MASK) bit, 21-72
transmit data buffer bits, 17-43
transmit enable (TSPEN) bit, 19-48
transmit FIFO 16-bit data

(XMTDATA16) bit, 16-46
transmit FIFO 8-bit data (XMTDATA)

bit, 16-45
transmit FIFO empty (TX_FIFO_ZERO)

bit, 21-67
transmit FIFO empty

(TX_FIFO_ZER/W_MASK) bit,
21-72

transmit FIFO full (TX_FIFO_FULL) bit,
21-67

transmit FIFO full
(TX_FIFO_FULL_MASK) bit,
21-72

transmit FIFO service interrupt mask
(XMTSERVM) bit, 16-42

transmit FIFO service (XMTSERV) bit,
16-42

transmit FIFO status (XMTSTAT) bit,
16-40

transmit FIFO underrun error
(TX_UNDERRUN) bit, 21-67

transmit FIFO underrun error
(TX_UNDERRUN_MASK) bit,
21-72

transmit FIFO watermark
(TX_FIFO_STAT) bit, 21-67

transmit FIFO watermark
(TX_FIFO_STAT_MASK) bit,
21-72

transmit frame sync required select (TFSR)
bit, 19-48

transmit hold bits, 15-26
transmit hold register empty (TXHRE) bit,

19-61
transmit int en (TXIE) bit, 23-16
transmit overflow status (TOVF) bit, 19-61
transmit overrun error int en (TXOVE) bit,

23-16
transmit snapshot high

(EMAC_PTP_TXSNAPHI) register,
23-32

transmit snapshot low
(EMAC_PTP_TXSNAPLO) register,
23-31

transmit snapshot overrun status (TXOV)
bit, 23-18

transmit snapshot status (TXTL) bit, 23-18
ADSP-BF51x Blackfin Processor Hardware Reference I-67

Index
transmit stereo frame sync enable (TSFSE)
bit, 19-49

transmitter enable (TE) bit, 22-64
transmit underflow status (TUVF) bit,

19-61
TRAS (bank activate command delay) bits,

7-67, 7-69
tRAS operation, 7-35
tRCD operation, 7-36
TRCD (RAS to CAS delay) bits, 7-67, 7-70
tRC operation, 7-37
tREFI operation, 7-39
tREF operation, 7-38
tRFC operation, 7-38
TRFST (left/right order) bit, 19-49, 19-52
triggering DMA transfers, 6-60
TRP (bank precharge delay) bits, 7-67,

7-70
tRP operation, 7-37
tRRD operation, 7-36
tRRD operation, 7-36
TRUNx (timer slave enable status) bits,

10-22, 10-38, 10-40, 10-47
TSCALE (core timer scale) register, 11-3,

11-7
TSCLKx signal, 19-5
TSFSE (transmit stereo frame sync enable)

bit, 19-9, 19-10, 19-49, 19-52
TSPEN (transmit enable) bit, 19-47,

19-48, 19-49
TSR and UART_THR empty (TEMT)

bit, 15-24
TUVF (transmit underflow status) bit,

19-37, 19-58, 19-61, 19-62
TWI, 1-10, 16-2 to 16-61

block diagram, 16-3
bus arbitration, 16-9
clock generation, 16-8
clock setup, 16-13

TWI (continued)
controller, 16-2
electrical specifications, 16-61
fast mode, 16-11
features, 16-2
general call address, 16-11
general setup, 16-12
I2C compatibility, 1-10
master mode, 16-13, 16-14, 16-15
peripheral interface, 16-6
pins, 16-5
slave mode, 16-12
start and stop conditions, 16-9
synchronization, 16-8
transfer protocol, 16-7

TWI_CLKDIV (SCL clock divider)
register, 16-27

TWI_CONTROL (TWI control) register,
16-5, 16-27

TWI control (TWI_CONTROL) register,
16-27

TWI_DT (drive/tolerate) pin, 9-28
TWI enable (TWI_ENA) bit, 16-27
TWI_ENA (TWI enable) bit, 16-27
TWI FIFO control (TWI_FIFO_CTL)

register, 16-38
TWI_FIFO_CTL (TWI FIFO control)

register, 16-38
TWI FIFO receive data double byte

(TWI_RCV_DATA16) register,
16-48

TWI FIFO receive data single byte
(TWI_RCV_DATA8) register, 16-47

TWI_FIFO_STAT (TWI FIFO status)
register, 16-40

TWI FIFO status (TWI_FIFO_STAT)
register, 16-40

TWI FIFO transmit data double byte
(TWI_XMT_DATA16) register,
16-46
I-68 ADSP-BF51x Blackfin Processor Hardware Reference

Index
TWI FIFO transmit data single byte
(TWI_XMT_DATA8) register,
16-45

TWI interrupt mask (TWI_INT_MASK)
register, 16-42

TWI interrupt status (TWI_INT_STAT)
register, 16-43

TWI_INT_MASK (TWI interrupt mask)
register, 16-42

TWI_INT_STAT (TWI interrupt status)
register, 16-43

TWI_MASTER_ADDR (TWI master
mode address) register, 16-34

TWI_MASTER_CTL (TWI master mode
control) register, 16-31

TWI master mode address
(TWI_MASTER_ADDR) register,
16-34

TWI master mode control
(TWI_MASTER_CTL) register,
16-31

TWI master mode status
(TWI_MASTER_STAT) register,
16-35

TWI_MASTER_STAT (TWI master
mode status) register, 16-35

TWI_RCV_DATA16 (TWI FIFO receive
data double byte) register, 16-48

TWI_RCV_DATA8 (TWI FIFO receive
data single byte) register, 16-47

TWI_SLAVE_ADDR (TWI slave mode
address) register, 16-30

TWI_SLAVE_CTL (slave mode control)
register, 16-28

TWI slave mode address
(TWI_SLAVE_ADDR) register,
16-30

TWI slave mode status
(TWI_SLAVE_STAT) register,
16-31

TWI_SLAVE_STAT (TWI slave mode
status) register, 16-31

TWI_XMT_DATA16 (TWI FIFO
transmit data double byte) register,
16-46

TWI_XMT_DATA8 (TWI FIFO transmit
data single byte) register, 16-45

two-dimensional DMA, 6-11
two-wire interface. See TWI
tWR operation, 7-37
TWR (write to precharge delay) bits, 7-67,

7-71
TX_ABORTC_CNT (frames aborted due

to excess collisions counter int) bit,
22-116

TX_ABORTC_CNT (frames aborted due
to excess collisions counter int en) bit,
22-118

TX_ABORT_CNT (transmission aborted
frames counter int) bit, 22-116

TX_ABORT_CNT (transmission aborted
frames counter int en) bit, 22-118

TX_ACT (data transmit active) bit, 21-67
TX_ACT_MASK (data transmit active)

bit, 21-72
TX_ALLF_CNT (frames transmitted all

counter int) bit, 22-116
TX_ALLF_CNT (frames transmitted all

counter int en) bit, 22-118
TX_ALLO_CNT (octets transmitted all

counter int) bit, 22-116
TX_ALLO_CNT (octets transmitted all

counter int en) bit, 22-118
TX broadcast frame detected

(TX_BROAD) bit, 22-109, 22-112
TX_BROAD_CNT (broadcast frames

transmitted OK counter int) bit,
22-116
ADSP-BF51x Blackfin Processor Hardware Reference I-69

Index
TX_BROAD_CNT (broadcast frames
transmitted OK counter int en) bit,
22-118

TX_BROAD (TX broadcast frame
detected) bit, 22-109

TX_BROAD (TX broadcast frame int en)
bit, 22-112

TX_CCNT[3: 0] field, 22-105, 22-107
TXCOL flag, 17-42
TXCOL (transmit collision error) bit,

17-40
TX_COMP (frame transmission complete)

bit, 22-105
TX_COMP (frame transmissions

complete) bit, 22-109
TX_COMP (frame transmit complete int

en) bit, 22-112
TX_CRS_CNT (carrier sense errors

counter int) bit, 22-116
TX_CRS_CNT (carrier sense errors

counter int en) bit, 22-118
TX_CRS (no carrier) bit, 22-105, 22-109,

22-110
TX_CRS (no carrier int en) bit, 22-112
TX_DAT_RDY_MASK (transmit data

available) bit, 21-72
TX_DAT_RDY (transmit data available)

bit, 21-67
TX_DEFER_CNT (frames with deferred

transmission counter int) bit, 22-116
TX_DEFER_CNT (frames with deferred

transmission counter int en) bit,
22-110, 22-118

TX_DEFER (frame deferral int en) bit,
22-105, 22-109, 22-112

TX DMA direction error detected, 22-40
TX DMA direction error status

(TXDMAERR) bit, 22-91
TXDMAERR (TX DMA direction error

status) bit, 22-29, 22-91

TX_DMAU (DMA underrun) bit, 22-105
TXDWA (transmit frame DMA word

alignment) bit, 22-27
TX_ECOLL (excessive collision errors

detected) bit, 22-105, 22-109
TX_ECOLL (excessive collision errors int

en) bit, 22-112
TX_EDEFER (excessive deferrals detected)

bit, 22-105, 22-109
TX_EDEFER (excessive deferrals int en)

bit, 22-112
TX_EQ64_CNT (frames length equal to

64 transmitted counter int) bit,
22-116

TX_EQ64_CNT (frames length equal to
64 transmitted counter int en) bit,
22-118

TX_ER pin, 22-5
TXE (transmission error) bit, 17-40, 17-42,

19-58, 19-61
TX_EXDEF_CNT (frames with excessive

deferral counter int) bit, 22-116
TX_EXDEF_CNT (frames with excessive

deferral counter int en) bit, 22-118
TX_FIFO_FULL_MASK (transmit FIFO

full) bit, 21-72
TX_FIFO_FULL (transmit FIFO full) bit,

21-67
TX_FIFO_STAT_MASK (transmit FIFO

watermark) bit, 21-72
TX_FIFO_STAT (transmit FIFO

watermark) bit, 21-67
TX_FIFO_ZERO (transmit FIFO empty)

bit, 21-67
TX_FIFO_ZER/W_MASK (transmit

FIFO empty) bit, 21-72
TX frame status interrupt, 22-39
TX frame-status interrupt status

(TXFSINT) bit, 22-91
TX_FRLEN (frame length) bits, 22-105
I-70 ADSP-BF51x Blackfin Processor Hardware Reference

Index
TXFSINT (TX frame-status interrupt
status) bit, 22-91

TXF (transmit FIFO full status) bit, 19-61
TX_GE1024_CNT (frames length

1024-max transmitted counter int)
bit, 22-116

TX_GE1024_CNT (frames length
1024-max transmitted counter int en)
bit, 22-118

TX hold register, 19-57
TXHRE (transmit hold register empty) bit,

19-61
TXIE (transmit int en) bit, 23-16
TX_LATE_CNT (late collisions counter

int) bit, 22-116
TX_LATE_CNT (late collisions counter

int en) bit, 22-118
TX_LATE (late collision error) bit, 22-105,

22-109
TX_LATE (late collision error int en) bit,

22-112
TX_LOSS (losses of carrier detected) bit,

22-105, 22-109, 22-110
TX_LOSS (loss of carrier int en) bit,

22-112
TX_LOST_CNT (frames lost due to

internal MAC transmit error counter
int) bit, 22-116

TX_LOST_CNT (frames lost due to
internal MAC transmit error counter
int en) bit, 22-118

TX_LT1024_CNT (frames length
512-1023 transmitted counter int)
bit, 22-116

TX_LT1024_CNT (frames length
512-1023 transmitted counter int en)
bit, 22-118

TX_LT128_CNT (frames length 65-127
transmitted counter int) bit, 22-116

TX_LT128_CNT (frames length 65-127
transmitted counter int en) bit,
22-118

TX_LT256_CNT (frames length 128-255
transmitted counter int) bit, 22-116

TX_LT256_CNT (frames length 128-255
transmitted counter int en) bit,
22-118

TX_LT512_CNT (frames length 256-511
transmitted counter int) bit, 22-116

TX_LT512_CNT (frames length 256-511
transmitted counter int en) bit,
22-118

TX_MACCTL_CNT (MAC control
frames transmitted counter int) bit,
22-116

TX_MACCTL_CNT (MAC control
frames transmitted counter int en) bit,
22-118

TX_MACE (internal MAC error int en)
bit, 22-112

TX_MACE (internal MAC errors detected)
bit, 22-109

TX_MCOLL_CNT (multiple collision
frames counter int) bit, 22-116

TX_MCOLL_CNT (multiple collision
frames counter int en) bit, 22-118

TX multicast, TX broadcast[1: 0] field,
22-105

TX multicast frame int en (TX_MULTI)
bit, 22-112

TX_MULTI_CNT (multicast frames
transmitted OK counter int) bit,
22-116

TX_MULTI_CNT (multicast frames
transmitted OK counter int en) bit,
22-118

TX_MULTI (multicast frame detected)
bit, 22-109
ADSP-BF51x Blackfin Processor Hardware Reference I-71

Index
TX_MULTI (TX multicast frame int en)
bit, 22-112

TX_OCTET_CNT (octets transmitted
OK counter int) bit, 22-116

TX_OCTET_CNT (octets transmitted
OK counter int en) bit, 22-118

TX_OK_CNT (frames transmitted OK
counter int) bit, 22-116

TX_OK_CNT (frames transmitted OK
counter int en) bit, 22-118

TX_OK (frames transmitted OK) bit,
22-105, 22-109

TX_OK (frame transmit OK int en) bit,
22-112

TXOVE (transmit overrun error int en) bit,
23-16

TXOV (transmit snapshot overrun status)
bit, 23-18

TXREQ signal, 15-6
TX_RETRY (late collisions detected) bit,

22-105, 22-109
TX_RETRY (late collisions int en) bit,

22-112
TX retry on late collision en (LCRTE) bit,

22-62
TX_SCOLL_CNT (single collision frames

counter int) bit, 22-116
TX_SCOLL_CNT (single collision frames

counter int en) bit, 22-118
TxSEC enable (TXSE) bit, 19-49
TXSE (TxSEC enable) bit, 19-49, 19-52
TX_SNAP_HI (higher 32 bits of transmit

snapshot of local clock time) bit,
23-32

TX_SNAP_LO (lower 32 bits of transmit
snapshot of local clock time) bit,
23-31

tXSR operation, 7-38
TXS (SPI_TDBR data buffer status) bit,

17-22, 17-40

TXTL (transmit snapshot status) bit, 23-18
TX_UNDERRUN_MASK (transmit

FIFO underrun error) bit, 21-72
TX_UNDERRUN_STAT (clear transmit

FIFO underrun error) bit, 21-70
TX_UNDERRUN (transmit FIFO

underrun error) bit, 21-67
TX_UNI_CNT (unicast frames

transmitted OK counter int) bit,
22-116

TX_UNI_CNT (unicast frames
transmitted OK counter int en) bit,
22-118

type definitions, MAC, 22-121
typed frame int en (RX_TYPE) bit, 22-94,

22-100, 22-104
typed frames received counter int en

(RX_TYPED_CNT) bit, 22-115
typed frames received counter int

(RX_TYPED_CNT) bit, 22-113
typed frames received

(EMAC_RXC_TYPED) register,
22-55

U
UART, 1-20, 15-2 to 15-41

autobaud detection, 15-13
baud rate, 15-7, 15-13
bit rate, 15-12, 15-13
bitstream, 15-5
booting, 15-14
character transmission, 15-36
clock, 4-4, 15-8, 15-12
connected to peripheral access bus, 15-4
data communication via infrared signals,

15-5
data words, 15-5
diagram, 15-3
divisor reset, 15-30
I-72 ADSP-BF51x Blackfin Processor Hardware Reference

Index
UART (continued)
DMA operation, 15-17, 15-18, 15-19,

15-27
errors during reception, 15-7
examples, 15-32
external interfaces, 15-3
features, 15-2
glitch filtering, 15-9
initialization, 15-32
interrupts, 15-11, 15-12, 15-28, 15-38
IrDA mode, 15-2, 15-8, 15-9, 15-10
loopback mode, 15-23
mixing modes, 15-18
modem status, 15-4
non-DMA operation, 15-15, 15-18,

15-19, 15-38
overview, 1-20
polling, 15-37
receive operation, 15-7, 15-10
registers, 15-6, 15-20
sampling, 15-8, 15-10
standard compliance, 15-2
strings, 15-36
SYNC bit usage, 15-40
transmissions, 15-6, 15-36, 15-40

UART controller enable (UCEN) bit,
15-31

UART divisor latch high byte
(UART_DLH) register, 15-30

UART divisor latch low byte
(UART_DLL) register, 15-30

UART_DLH (UART divisor latch high
byte) register, 15-30

UART_DLH (UART divisor latch high
byte) registers, 15-20

UART_DLL (UART divisor latch low
byte) register, 15-30

UART_DLL (UART divisor latch low
byte) registers, 15-20, 15-30

UART_GCTL (UART global control)
register, 15-31

UART_GCTL (UART global control)
registers, 15-20, 15-31

UART global control (UART_GCTL)
register, 15-31

UART_IER (UART int en) register, 15-27
UART_IER (UART int en) registers,

15-20, 15-26
UART_IIR (UART interrupt

identification) register, 15-29
UART_IIR (UART interrupt

identification) registers, 15-12, 15-20
UART int en (UART_IER) register, 15-27
UART interrupt identification

(UART_IIR) register, 15-29
UART_LCR (UART line control) register,

15-21
UART_LCR (UART line control)

registers, 15-6, 15-20, 15-21
UART line control (UART_LCR) register,

15-21
UART line status (UART_LSR) register,

15-24
UART_LSR (UART line status) register,

15-24
UART_LSR (UART line status) registers,

15-20, 15-24
UART_MCR (UART modem control)

register, 15-23
UART_MCR (UART modem control)

registers, 15-20
UART modem control (UART_MCR)

register, 15-23
UART_RBR (UART receive buffer)

register, 15-26
UART_RBR (UART receive buffer)

registers, 15-7, 15-20
UART receive buffer registers

(UARTx_RBR), 15-7
ADSP-BF51x Blackfin Processor Hardware Reference I-73

Index
UART receive buffer (UART_RBR)
register, 15-26

UART scratch (UART_SCR) register,
15-31

UART_SCR (UART scratch) register,
15-31

UART_SCR (UART scratch) registers,
15-20, 15-31

UART_THR (UART transmit holding)
register, 15-26

UART_THR (UART transmit holding)
registers, 15-6, 15-20

UART transmit holding (UART_THR)
register, 15-26

UCEN (enable UART clocks) bit, 15-6,
15-12, 15-30, 15-32

UCEN (UART controller enable) bit,
15-31

UCIE (up count int en) bit, 13-21
UCII (up count interrupt identifier) bit,

13-22
UDPEM (compare mask of UDP event

port field) bit, 23-13
UDP event port matching value

(UDP_EVP) bit, 23-22
UDP_EVP (UDP event port matching

value) bit, 23-22
UDP general port matching value

(UDP_GNP) bit, 23-22
UDP_GNP (UDP general port matching

value) bit, 23-22
UEVOF (offset of UDP event port field)

bit, 23-20
UNDR (FIFO underrun) bit, 20-30, 20-31
unframed/framed, serial data, 19-30
unicast frames received OK counter int en

(RX_UNI_CNT) bit, 22-115
unicast frames received OK counter int

(RX_UNI_CNT) bit, 22-113

unicast frames received ok
(EMAC_RXC_UNICST) register,
22-53

unicast frames transmitted OK counter int
en (TX_UNI_CNT) bit, 22-118

unicast frames transmitted OK counter int
(TX_UNI_CNT) bit, 22-116

unicast frames xmitted ok
(EMAC_TXC_UNICST) register,
22-58

universal asynchronous
receiver/transmitter. See UART

unpopulated memory, 7-9
unsupported control frame (RX_UCTL)

bit, 22-95, 22-100, 22-104
unsupported opcodes received counter int

en (RX_OPCODE_CNT) bit,
22-115

unsupported opcodes received counter
interrupt (RX_OPCODE_CNT) bit,
22-113

unsupported opcodes received
(EMAC_RXC_OPCODE) register,
22-55

unused pins, 27-14
up count int en (UCIE) bit, 13-21
up count interrupt identifier (UCII) bit,

13-22
Upper PBS00 Half Page (PBS00H, Bits

31–0), 26-85, 26-86, 26-87, 26-88,
26-94, 26-95

upper PBS00 half page (PBS00H, bits 31–
0) register, 26-85

Upper PBS00 Half Page (PBS00H, Bits
63–32), 26-84

upper PBS00 half page (PBS00H, bits
63-32) register, 26-84

upper PBS01 half page (PBS01H, bits 15–
0) register, 26-87
I-74 ADSP-BF51x Blackfin Processor Hardware Reference

Index
upper PBS01 half page (PBS01H, bits 63–
16) register, 26-86

urgency threshold enable (UTE) bit, 6-39,
6-83

user mode, 26-7
UTE (urgency threshold enable) bit, 6-39,

6-83
UTHE[15: 0] field, 6-87

V
VCO, multiplication factors, 8-4
VCO signal, 8-2
VDDEXT pins, 27-10
VDDINT pins, 27-10
vertical blanking, 20-6
vertical blanking interval only submode,

20-10
video frame partitioning, 20-7
video streams

CIF, 20-8
NTSC, 20-5
PAL, 20-5
QCIF, 20-8

VLAN1 frame int en (RX_VLAN1) bit,
22-94, 22-100, 22-104

VLAN1TAG[15: 0] field, 22-77
VLAN1 tag (EMAC_VLAN1) register,

22-76
VLAN2 frame detected (RX_VLAN2) bit,

22-100, 22-104
VLAN2 frames detected (RX_VLAN2) bit,

22-93
VLAN2TAG[15: 0] field, 22-77
VLAN2 tag (EMAC_VLAN2) register,

22-76
voltage, 8-15

control, 8-7
dynamic control, 8-15

voltage controlled oscillator (VCO), 8-3

voltage regulator control (VR_CTL)
register, 8-20, 8-23

VR_CTL (voltage regulator control)
register, 8-20, 8-23

VR registers, 8-19
VSTAT bit, 8-22

W
W1C operations, 6-10
W1LCNT_MAX bit, 13-24
W1LCNT_MIN bit, 13-24
W1LCNT_ZERO bit, 13-24
W1LMAX_CNT bit, 13-24
W1LMAX_MIN bit, 13-24
W1LMAX_ZERO bit, 13-24
W1LMIN_CNT bit, 13-24
W1LMIN_ZERO bit, 13-24
W1ZMONCE bit, 13-24
wait for response (CMD_RSP_EN) bit,

21-59
wait states, additional, 7-15
WAKEDET (wake-up detected status) bit,

22-34
WAKEDET (wakeup detected status) bit,

22-91
wake from hibernate, MAC, 22-30
wake from sleep, MAC, 22-31
WAKE (real time clock wake enable) bit,

8-23
wakeup detected status (WAKEDET) bit,

22-91
wakeup filter 0 address type bit, 22-85
wakeup filter 0 pattern CRC[15: 0] field,

22-88
wakeup filter 0 pattern offset[7: 0] field,

22-87
wakeup filter 1 address type bit, 22-85
wakeup filter 1 pattern CRC[15: 0] field,

22-88
ADSP-BF51x Blackfin Processor Hardware Reference I-75

Index
wakeup filter 1 pattern offset[7: 0] field,
22-87

wakeup filter 2 address type bit, 22-85
wakeup filter 2 pattern CRC[15: 0] field,

22-88
wakeup filter 2 pattern offset[7: 0] field,

22-87
wakeup filter 3 address type bit, 22-85
wakeup filter 3 pattern CRC[15: 0] field,

22-88
wakeup filter 3 pattern offset[7: 0] field,

22-87
wakeup filter enable bits, 22-85
wakeup frame0 byte mask

(EMAC_WKUP_FFMSK0) register,
22-81

wakeup frame1 byte mask
(EMAC_WKUP_FFMSK1) register,
22-82

wakeup frame2 byte mask
(EMAC_WKUP_FFMSK2) register,
22-83

wakeup frame3 byte mask
(EMAC_WKUP_FFMSK3) register,
22-84

wakeup frame control and status
(EMAC_WKUP_CTL) register,
22-78

wakeup frame detected, 22-40
wakeup frame filter commands

(EMAC_WKUP_FFCMD MAC)
register, 22-85

wakeup frame filter CRC0/1
(EMAC_WKUP_FFCRC0) register,
22-87

wakeup frame filter CRC2/3
(EMAC_WKUP_FFCRC1) register,
22-87

wakeup frame filter offsets
(EMAC_WKUP_FFOFF) register,
22-87

wakeup frame received status (RWKS) bit,
22-78

wakeup frameX byte mask
(EMAC_WKUP_FFMSKx) registers,
22-80

wakeup function, 5-7
wake-up reset (WURESET) bit, 26-77
watchdog control (WDOG_CTL) register,

12-7, 12-8
watchdog count[15: 0] field, 12-6
watchdog count[31: 16] field, 12-6
watchdog count (WDOG_CNT) register,

12-6
watchdog reset (WDRESET) bit, 26-77
watchdog status[15: 0] field, 12-7
watchdog status[31: 16] field, 12-7
watchdog status (WDOG_STAT) register,

12-3, 12-4, 12-6, 12-7
watchdog timer, 1-23, 12-2 to 12-10

block diagram, 12-3
disabling, 12-5
and emulation mode, 12-3
enabling with zero value, 12-5
features, 12-2
internal interface, 12-3
overview, 1-23
registers, 12-5
reset, 12-5, 26-4, 26-6
starting, 12-4

watchdog timer registers, 12-5
waveform generation, pulse width

modulation, 10-14
WDEN[7: 0] field, 12-7
WDEN bit, 12-8
WDEV[1: 0] field, 12-4, 12-7
WDEV bit, 12-8
I-76 ADSP-BF51x Blackfin Processor Hardware Reference

Index
WDOG_CNT (watchdog count) register,
12-6

WDOG_CTL (watchdog control) register,
12-7, 12-8

WDOG_STAT (watchdog status) register,
12-3, 12-4, 12-6, 12-7

WDRESET (watchdog reset) bit, 25-48,
25-49, 26-77

WDSIZE[1: 0] field, 6-67, 6-70
WDTH_CAP mode, 10-24, 10-43, 10-45
WLS (word length select) bits, 15-21
WNR (DMA direction) bit, 6-67, 6-70
WOFF[9: 0] field, 19-21, 19-65
WOM (write open drain master) bit,

17-15, 17-37
word length

SPI, 17-36
SPORT, 19-27
SPORT receive data, 19-60
SPORT transmit data, 19-57

word length select (WLS) bit, 15-21
work unit

completion, 6-22
DMA, 6-14
interrupt timing, 6-25
restrictions, 6-24
transitions, 6-24

work unit transition (SYNC) bit, 6-67
WRDO-W1C bit, 12-8
write

asynchronous, 7-13
command, 7-34
with data mask command, 7-51

write access for EBIU asynchronous
memory controller, 7-19

write complete bit, 24-22
write complete int en bit, 24-21
write-one-to-clear (W1C) operations, 6-10
write open drain master (WOM) bit, 17-37
write operation, GPIO, 9-15

write pending status bit, 24-22
write to precharge delay (TWR) bit, 7-67
WSIZE[3: 0] field, 19-20, 19-65
WURESET, 25-48, 25-49
WURESET (wake-up reset) bit, 26-77

X
X_COUNT[15: 0] field, 6-75
XFR_TYPE[1: 0] field, 20-4, 20-26,

20-28, 20-29
XFR_TYPE (transfer type) bit, 20-26
X_MODIFY[15: 0] field, 6-77
XMTDATA16[15: 0] field, 16-46
XMTDATA16 (transmit FIFO 16-bit

data) bit, 16-46
XMTDATA8[7: 0] field, 16-45
XMTDATA (transmit FIFO 8-bit data)

bit, 16-45
XMTFLUSH (transmit buffer flush) bit,

16-38, 16-40
XMTINTLEN (transmit buffer interrupt

length) bit, 16-38, 16-39
XMTSERVM (transmit FIFO service

interrupt mask) bit, 16-42
XMTSERV (transmit FIFO service) bit,

16-42, 16-43
XMTSTAT[1: 0] field, 16-40, 16-41
XMTSTAT (transmit FIFO status) bit,

16-40

Y
YCbCr format, 20-27
Y_COUNT[15: 0] field, 6-78
Y_MODIFY[15: 0] field, 6-80

Z
zero marker error int en (CZMEIE) bit,

13-21
ADSP-BF51x Blackfin Processor Hardware Reference I-77

Index
zero word (BK_ZEROS) register, 26-80 ZMZC (CZM zeroes counter enable) bit,
13-20
I-78 ADSP-BF51x Blackfin Processor Hardware Reference

	ADSP-BF51x Blackfin Processor Hardware Reference, Revision 1.2
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	EngineerZone

	Notation Conventions
	Register Diagram Conventions

	1 Introduction
	Peripherals
	Memory Architecture
	Internal Memory
	External Memory
	I/O Memory Space
	One-Time-Programmable (OTP) Memory

	DMA Support
	External Bus Interface Unit
	SDRAM Controller
	Asynchronous Controller

	General-Purpose I/O (GPIO)
	Two-Wire Interface
	Ethernet MAC
	IEEE 1588 Support
	RSI Interface
	General-Purpose (GP) Counter
	3-Phase PWM Unit
	Parallel Peripheral Interface
	SPORT Controllers
	Serial Peripheral Interface (SPI) Ports
	Timers
	UART Ports
	Security
	Real-Time Clock
	Watchdog Timer
	Clock Signals
	Dynamic Power Management
	Full-On Mode (Maximum Performance)
	Active Mode (Moderate Power Savings)
	Sleep Mode (High Power Savings)
	Deep Sleep Mode (Maximum Power Savings)
	Hibernate State

	Instruction Set Description
	Development Tools

	2 Memory
	Memory Architecture
	L1 Instruction SRAM
	L1 Data SRAM
	L1 Data Cache
	Boot ROM
	External Memory
	Processor-Specific MMRs
	DMEM_CONTROL Register
	DTEST_COMMAND Register

	3 One-Time Programmable Memory
	OTP Memory Overview
	OTP Memory Map
	Error Correction
	Error Correction Policy

	OTP Access
	OTP Timing Parameters
	OTP_TIMING Register

	Callable ROM Functions for OTP ACCESS
	Initializing OTP
	bfrom_OtpCommand

	Programming and Reading OTP
	bfrom_OtpRead
	bfrom_OtpWrite
	Error Codes

	Write-Protecting OTP Memory
	Accessing Private OTP Memory

	OTP Programming Examples

	4 Chip Bus Hierarchy
	Chip Bus Hierarchy Overview
	Interface Overview
	Internal Clocks
	Core Bus Overview
	Peripheral Access Bus (PAB)
	PAB Arbitration
	PAB Agents (Masters, Slaves)
	PAB Performance

	DMA Access Bus (DAB), DMA Core Bus (DCB), DMA External Bus (DEB)
	DAB, DCB, and DEB Arbitration
	DAB Bus Agents (Masters)
	DAB, DCB, and DEB Performance

	External Access Bus (EAB)
	Arbitration of the External Bus
	DEB/EAB Performance

	5 System Interrupts
	Specific Information for the ADSP-BF51x
	Overview
	Features

	Description of Operation
	Events and Sequencing
	System Peripheral Interrupts

	Programming Model
	System Interrupt Initialization
	System Interrupt Processing Summary

	System Interrupt Controller Registers
	System Interrupt Assignment (SIC_IAR) Register
	System Interrupt Mask (SIC_IMASK) Register
	System Interrupt Status (SIC_ISR) Register
	System Interrupt Wakeup-Enable (SIC_IWR) Register

	Programming Examples
	Clearing Interrupt Requests

	Unique Information for the ADSP-BF51x Processor
	Interfaces
	System Peripheral Interrupts

	6 Direct Memory Access
	Specific Information for the ADSP-BF51x
	Overview and Features
	DMA Controller Overview
	External Interfaces
	Internal Interfaces
	Peripheral DMA
	Memory DMA
	Handshaked Memory DMA (HMDMA) Mode

	Modes of Operation
	Register-Based DMA Operation
	Stop Mode
	Autobuffer Mode

	Two-Dimensional DMA Operation
	Examples of Two-Dimensional DMA

	Descriptor-Based DMA Operation
	Descriptor List Mode
	Descriptor Array Mode
	Variable Descriptor Size
	Mixing Flow Modes

	Functional Description
	DMA Operation Flow
	DMA Startup
	DMA Refresh
	Work Unit Transitions
	DMA Transmit and MDMA Source
	DMA Receive

	Stopping DMA Transfers

	DMA Errors (Aborts)
	DMA Control Commands
	Restrictions
	Transmit Restart or Finish
	Receive Restart or Finish

	Handshaked Memory DMA Operation
	Pipelining DMA Requests
	HMDMA Interrupts

	DMA Performance
	DMA Throughput
	Memory DMA Timing Details
	Static Channel Prioritization
	Temporary DMA Urgency
	Memory DMA Priority and Scheduling
	Traffic Control

	Programming Model
	Synchronization of Software and DMA
	Single-Buffer DMA Transfers
	Continuous Transfers Using Autobuffering
	Descriptor Structures
	Descriptor Queue Management
	Descriptor Queue Using Interrupts on Every Descriptor
	Descriptor Queue Using Minimal Interrupts

	Software Triggered Descriptor Fetches

	DMA Registers
	DMA Channel Registers
	DMA Peripheral Map Registers (DMAx_PERIPHERAL_MAP/ MDMA_yy_PERIPHERAL_MAP)
	DMA Configuration Registers (DMAx_CONFIG/MDMA_yy_CONFIG)
	DMA Interrupt Status Registers (DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS)
	DMA Start Address Registers (DMAx_START_ADDR/MDMA_yy_START_ADDR)
	DMA Current Address Registers (DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR)
	DMA Inner Loop Count Registers (DMAx_X_COUNT/MDMA_yy_X_COUNT)
	DMA Current Inner Loop Count Registers (DMAx_CURR_X_COUNT /MDMA_yy_CURR_X_COUNT)
	DMA Inner Loop Address Increment Registers (DMAx_X_MODIFY/MDMA_yy_X_MODIFY)
	DMA Outer Loop Count Registers (DMAx_Y_COUNT/MDMA_yy_Y_COUNT)
	DMA Current Outer Loop Count Registers (DMAx_CURR_Y_COUNT/ MDMA_yy_CURR_Y_COUNT)
	DMA Outer Loop Address Increment Registers (DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY)
	DMA Next Descriptor Pointer Registers (DMAx_NEXT_DESC_PTR/ MDMA_yy_NEXT_DESC_PTR)
	DMA Current Descriptor Pointer Registers (DMAx_CURR_DESC_PTR/ MDMA_yy_CURR_DESC_PTR)

	HMDMA Registers
	Handshake MDMA Control Registers (HMDMAx_CONTROL)
	Handshake MDMA Initial Block Count Registers (HMDMAx_BCINIT)
	Handshake MDMA Current Block Count Registers (HMDMAx_BCOUNT)
	Handshake MDMA Current Edge Count Registers (HMDMAx_ECOUNT)
	Handshake MDMA Initial Edge Count Registers (HMDMAx_ECINIT)
	Handshake MDMA Edge Count Urgent Registers (HMDMAx_ECURGENT)
	Handshake MDMA Edge Count Overflow Interrupt Registers (HMDMAx_ECOVERFLOW)

	DMA Traffic Control Registers (DMA_TC_PER and DMA_TC_CNT)
	DMA_TC_PER Register
	DMA_TC_CNT Register

	Programming Examples
	Register-Based 2-D Memory DMA
	Initializing Descriptors in Memory
	Software-Triggered Descriptor Fetch Example
	Handshaked Memory DMA Example

	Unique Information for the ADSP-BF51x Processor
	DMA Control Commands
	Static Channel Prioritization

	7 External Bus Interface Unit
	EBIU Overview
	Block Diagram
	Internal Memory Interfaces
	Registers
	Shared and Multiplexed Pins
	System Clock
	Error Detection

	AMC Overview and Features
	Features
	Asynchronous Memory Interface
	Asynchronous Memory Address Decode

	AMC Pin Description
	AMC Description of Operation
	Avoiding Bus Contention
	External Access Extension

	AMC Functional Description
	Programmable Timing Characteristics
	Asynchronous Reads
	Asynchronous Writes
	Adding External Access Extension

	Byte Enables

	AMC Programming Model
	AMC Registers
	EBIU_AMGCTL Register
	EBIU_AMBCTL0 and EBIU_AMBCTL1 Registers

	AMC Programming Examples
	SDC Overview and Features
	Features
	SDRAM Configurations Supported
	SDRAM External Bank Size
	SDC Address Mapping
	Internal SDRAM Bank Select
	Parallel Connection of SDRAMs

	SDC Interface Overview
	SDC Pin Description
	SDRAM Performance

	SDC Description of Operation
	Definition of SDRAM Architecture Terms
	Refresh
	Row Activation
	Column Read/Write
	Row Precharge
	Internal Bank
	External Bank
	Memory Size
	Burst Length
	Burst Type
	CAS Latency
	Data I/O Mask Function
	SDRAM Commands
	Mode Register Set (MRS) Command
	Extended Mode Register Set (EMRS) Command
	Bank Activate Command
	Read/Write Command
	Precharge/Precharge All Command
	Auto-Refresh command
	Enter Self-Refresh Mode
	Exit Self-Refresh Mode

	SDC Timing Specs
	tMRD
	tRAS
	CL
	tRCD
	tRRD
	tWR
	tRP
	tRC
	tRFC
	tXSR
	tREF
	tREFI

	SDC Functional Description
	SDC Operation
	SDC Address Muxing
	Multibank Operation
	Core and DMA Arbitration
	Changing System Clock During Runtime
	Changing Power Management During Runtime
	Deep Sleep Mode
	Hibernate State

	SDC Commands
	Mode Register Set Command
	Extended Mode Register Set Command (Mobile SDRAM)
	Bank Activation Command
	Read/Write Command
	Partial Write
	Single Precharge Command
	Precharge All Command
	Auto-Refresh Command
	Self-Refresh Mode
	Self-Refresh Entry Command
	Self-Refresh Exit Command

	No Operation Command

	SDC SA10 Pin

	SDC Programming Model
	SDC Configuration
	Example SDRAM System Block Diagrams

	SDC Register Definitions
	EBIU_SDRRC Register
	EBIU_SDBCTL Register
	Using SDRAMs With Systems Smaller Than 16M Byte

	EBIU_SDGCTL Register
	SDRAM Clock Enable (SCTLE)
	CAS Latency (CL)
	Partial Array Self Refresh (PASR)
	Bank Activate Command Delay (TRAS)
	Bank Precharge Delay (TRP)
	RAS to CAS Delay (TRCD)
	Write to Precharge Delay (TWR)
	Power-Up Start Delay (PUPSD)
	Power-Up Sequence Mode (PSM)
	Power-Up Sequence Start Enable (PSSE)
	Self-Refresh Setting (SRFS)
	Enter Self-Refresh Mode
	Exit Self-Refresh Mode

	External Buffering Enabled (EBUFE)
	Fast Back-to-Back Read to Write (FBBRW)
	Extended Mode Register Enabled (EMREN)
	Temperature Compensated Self-Refresh (TCSR)

	EBIU_SDSTAT Register

	SDC Programming Examples

	8 Dynamic Power Management
	Phase Locked Loop and Clock Control
	PLL Overview
	PLL Clock Multiplier Ratios
	Core Clock/System Clock Ratio Control

	Dynamic Power Management Controller
	Operating Modes
	Dynamic Power Management Controller States
	Full-On Mode
	Active Mode
	Sleep Mode
	Deep Sleep Mode
	Hibernate State

	Operating Mode Transitions
	Programming Operating Mode Transitions
	Dynamic Supply Voltage Control
	Power Supply Management
	Changing Voltage
	Powering Down the Core (Hibernate State)

	PLL and VR Registers
	PLL_DIV Register
	PLL_CTL Register
	PLL_STAT Register
	PLL_LOCKCNT Register
	VR_CTL Register

	System Control ROM Function
	Programming Model
	Accessing the System Control ROM Function in C/C++
	Accessing the System Control ROM Function in Assembly

	Programming Examples
	Full-on Mode to Active Mode and Back
	Transition to Sleep Mode or Deep Sleep Mode
	Set Wakeups and Entering Hibernate State
	Perform a System Reset or Soft-Reset
	In Full-on Mode, Change VCO Frequency, Core Clock Frequency, and System Clock Frequency
	Changing Voltage Levels

	9 General-Purpose Ports
	Overview
	Features
	Interface Overview
	External Interface
	Port F Structure
	Port G Structure
	Port H Structure
	Input Tap Considerations
	PWM Unit Considerations
	RSI Considerations

	Internal Interfaces
	SPI0 and Internal Flash Usage
	GP Timer Interaction With Other Blocks
	Buffered CLKIN (CLKBUF)
	GP Counter
	PPI
	UART
	SPORT

	Performance/Throughput

	Description of Operation
	Operation
	General-Purpose I/O Modules
	GPIO Interrupt Processing

	Programming Model
	Memory-Mapped GPIO Registers
	PORTx Hysteresis Control (PORTx_HYSTERESIS) Register
	Non-GPIO Drive Strength Control Register
	Non-GPIO Hysteresis (NONGPIO_HYSTERESIS) Register
	Port Multiplexer Control Register (PORTF_MUX)
	Port Multiplexer Control Register (PORTG_MUX)
	Port Multiplexer Control Register (PORTH_MUX)
	Function Enable Registers (PORTx_FER)
	GPIO Direction Registers (PORTxIO_DIR)
	GPIO Input Enable Registers (PORTxIO_INEN)
	GPIO Data Registers (PORTxIO)
	GPIO Set Registers (PORTxIO_SET)
	GPIO Clear Registers (PORTxIO_CLEAR)
	GPIO Toggle Registers (PORTxIO_TOGGLE)
	GPIO Polarity Registers (PORTxIO_POLAR)
	Interrupt Sensitivity Registers (PORTxIO_EDGE)
	GPIO Set on Both Edges Registers (PORTxIO_BOTH)
	GPIO Mask Interrupt Registers (PORTxIO_MASKA/B)
	GPIO Mask Interrupt Set Registers (PORTxIO_MASKA/B_SET)
	GPIO Mask Interrupt Clear Registers (PORTxIO_MASKA/B_CLEAR)
	GPIO Mask Interrupt Toggle Registers (PORTxIO_MASKA/B_TOGGLE)

	Programming Examples

	10 General-Purpose Timers
	Specific Information for the ADSP-BF51x
	Overview
	External Interface
	Internal Interface

	Description of Operation
	Interrupt Processing
	Illegal States

	Modes of Operation
	Pulse Width Modulation (PWM_OUT) Mode
	Output Pad Disable
	Single Pulse Generation
	Pulse Width Modulation Waveform Generation
	PULSE_HI Toggle Mode
	Externally Clocked PWM_OUT
	Using PWM_OUT Mode With the PPI
	Stopping the Timer in PWM_OUT Mode

	Pulse Width Count and Capture (WDTH_CAP) Mode
	Autobaud Mode

	External Event (EXT_CLK) Mode

	Programming Model
	Timer Registers
	Timer Enable Register (TIMER_ENABLE)
	Timer Disable Register (TIMER_DISABLE)
	Timer Status Register (TIMER_STATUS)
	Timer Configuration Register (TIMER_CONFIG)
	Timer Counter Register (TIMER_COUNTER)
	Timer Period (TIMER_PERIOD) and Timer Width (TIMER_WIDTH) Registers
	Summary

	Programming Examples
	Unique Information for the ADSP-BF51x Processor
	Interface Overview
	External Interface

	11 Core Timer
	Specific Information for the ADSP-BF51x
	Overview and Features
	Timer Overview
	External Interfaces
	Internal Interfaces

	Description of Operation
	Interrupt Processing

	Core Timer Registers
	Core Timer Control Register (TCNTL)
	Core Timer Count Register (TCOUNT)
	Core Timer Period Register (TPERIOD)
	Core Timer Scale Register (TSCALE)

	Programming Examples
	Unique Information for the ADSP-BF51x Processor

	12 Watchdog Timer
	Specific Information for the ADSP-BF51x
	Overview and Features
	Interface Overview
	External Interface
	Internal Interface

	Description of Operation
	Register Definitions
	Watchdog Count (WDOG_CNT) Register
	Watchdog Status (WDOG_STAT) Register
	Watchdog Control (WDOG_CTL) Register

	Programming Examples
	Unique Information for the ADSP-BF51x Processor

	13 General-Purpose Counter
	Specific Information for the ADSP-BF51x
	Overview
	Features
	Interface Overview
	Description of Operation
	Quadrature Encoder Mode
	Binary Encoder Mode
	Up/Down Counter Mode
	Direction Counter Mode
	Timed Direction Mode

	Functional Description
	Input Noise Filtering (Debouncing)
	Zero Marker (Push Button) Operation
	Boundary Comparison Modes
	Control and Signaling Events
	Illegal Gray/Binary Code Events
	Up/Down Count Events
	Zero-Count Events
	Overflow Events
	Boundary Match Events
	Zero Marker Events

	Capturing Timing Information
	Capturing Time Interval Between Successive Counter Events
	Capturing Counter Interval and CNT_COUNTER Read Timing

	Programming Model
	Registers
	Counter Module Register Overview
	Counter Configuration Register (CNT_CONFIG)
	Counter Interrupt Mask Register (CNT_IMASK)
	Counter Status Register (CNT_STATUS)
	Counter Command Register (CNT_COMMAND)
	Counter Debounce Register (CNT_DEBOUNCE)
	Counter Count Value Register (CNT_COUNTER)
	Counter Boundary Registers (CNT_MIN and CNT_MAX)

	Programming Examples
	Unique Information for the ADSP-BF51x Processor

	14 PWM Controller
	Specific Information for the ADSP-BF51x
	Overview
	General Operation
	Functional Description
	Three-Phase PWM Timing Unit and Dead Time Control Unit
	PWM Switching Frequency (PWM_TM) Register
	PWM Switching Dead Time (PWM_DT) Register
	PWM Operating Mode (PWM_CTRL and PWM_STAT) Registers
	PWM Duty Cycle (PWM_CHA, PWM_CHB, and PWM_CHC) Registers
	Special Consideration for PWM Operation in Over-Modulation
	Three-Phase PWM Timing Unit Operation
	Effective PWM Accuracy
	Switched Reluctance Mode
	Output Control Unit
	Crossover Feature
	Mode Bits (POLARITY and SRMODE)
	Output Enable Function
	Brushless DC Motor (Electronically Commutated Motor) Control

	Gate Drive Unit
	High-Frequency Chopping
	PWM Polarity Control

	Output Control Feature Precedence
	Switched Reluctance (SR) Mode
	PWM Sync Operation
	Internal PWM SYNC Generation
	External PWM SYNC Generation

	PWM Shutdown and Interrupt Control Unit

	PWM Registers
	PWM Control (PWM_CTRL) Register
	PWM Status (PWM_STAT) Register
	PWM Period (PWM_TM) Register
	PWM Dead Time (PWM_DT) Register
	PWM Chopping Control (PWM_GATE) Register
	PWM Channel A, B, C Duty Control (PWM_CHA, PWM_CHB, PWM_CHC) Registers
	PWM Crossover and Output Enable (PWM_SEG) Register
	PWM Sync Pulse Width Control (PWM_SYNCWT) Register
	PWM Channel AL, BL, CL Duty Control (PWM_CHAL, PWM_CHBL, PWM_CHCL) Registers
	PWM Low Side Invert (PWM_LSI) Register
	PWM Simulation Status (PWM_STAT2) Register

	Unique Information for the ADSP-BF51x Processor

	15 UART Port Controllers
	Specific Information for the ADSP-BF51x
	Overview
	Features
	Interface Overview
	External Interface
	Internal Interface

	Description of Operation
	UART Transfer Protocol
	UART Transmit Operation
	UART Receive Operation
	IrDA Transmit Operation
	IrDA Receive Operation
	Interrupt Processing
	Bit Rate Generation
	Autobaud Detection

	Programming Model
	Non-DMA Mode
	DMA Mode
	Mixing Modes

	UART Registers
	UART Line Control (UART_LCR) Register
	UART Modem Control (UART_MCR) Register
	UART Line Status (UART_LSR) Register
	UART Transmit Holding (UART_THR) Register
	UART Receive Buffer (UART_RBR) Register
	UART Interrupt Enable (UART_IER) Register
	UART Interrupt Identification (UART_IIR) Register
	UART Divisor Latch (UART_DLL and UART_DLH) Registers
	UART Scratch (UART_SCR) Register
	UART Global Control (UART_GCTL) Register

	Programming Examples
	Unique Information for the ADSP-BF51x Processor

	16 Two-Wire Interface Controller
	Specific Information for the ADSP-BF51x
	Overview
	Interface Overview
	External Interface
	Serial Clock Signal (SCL)
	Serial Data Signal (SDA)
	TWI Pins

	Internal Interfaces

	Description of Operation
	TWI Transfer Protocols
	Clock Generation and Synchronization
	Bus Arbitration
	Start and Stop Conditions
	General Call Support
	Fast Mode

	Functional Description
	General Setup
	Slave Mode
	Master Mode Clock Setup
	Master Mode Transmit
	Master Mode Receive
	Repeated Start Condition
	Transmit/Receive Repeated Start Sequence
	Receive/Transmit Repeated Start Sequence

	Clock Stretching
	Clock Stretching During FIFO Underflow
	Clock Stretching During FIFO Overflow
	Clock Stretching During Repeated Start Condition

	Programming Model
	Register Descriptions
	TWI CONTROL Register (TWI_CONTROL)
	SCL Clock Divider Register (TWI_CLKDIV)
	TWI Slave Mode Control Register (TWI_SLAVE_CTL)
	TWI Slave Mode Address Register (TWI_SLAVE_ADDR)
	TWI Slave Mode Status Register (TWI_SLAVE_STAT)
	TWI Master Mode Control Register (TWI_MASTER_CTL)
	TWI Master Mode Address Register (TWI_MASTER_ADDR)
	TWI Master Mode Status Register (TWI_MASTER_STAT)
	TWI FIFO Control Register (TWI_FIFO_CTL)
	TWI FIFO Status Register (TWI_FIFO_STAT)
	TWI FIFO Status

	TWI Interrupt Mask Register (TWI_INT_MASK)
	TWI Interrupt Status Register (TWI_INT_STAT)
	TWI FIFO Transmit Data Single Byte Register (TWI_XMT_DATA8)
	TWI FIFO Transmit Data Double Byte Register (TWI_XMT_DATA16)
	TWI FIFO Receive Data Single Byte Register (TWI_RCV_DATA8)
	TWI FIFO Receive Data Double Byte Register (TWI_RCV_DATA16)

	Programming Examples
	Master Mode Setup
	Slave Mode Setup

	Electrical Specifications
	Unique Information for the ADSP-BF51x Processor

	17 SPI-Compatible Port Controller
	Specific Information for the ADSP-BF51x
	Overview
	Features
	Interface Overview
	External Interface
	SPI Clock Signal (SCK)
	Master-Out, Slave-In (MOSI) Signal
	Master-In, Slave-Out (MISO) Signal
	SPI Slave Select Input Signal (SPISS)
	SPI Slave Select Enable Output Signals
	Slave Select Inputs
	Use of FLS Bits in SPI_FLG for Multiple Slave SPI Systems

	Internal Interfaces
	DMA Functionality

	Description of Operation
	SPI Transfer Protocols
	SPI General Operation
	Clock Signals
	Interrupt Output

	Functional Description
	Master Mode Operation (Non-DMA)
	Transfer Initiation From Master (Transfer Modes)
	Slave Mode Operation (Non-DMA)
	Slave Ready for a Transfer

	Programming Model
	Beginning and Ending an SPI Transfer
	Master Mode DMA Operation
	Slave Mode DMA Operation

	SPI Registers
	SPI Baud Rate (SPI_BAUD) Register
	SPI Control (SPI_CTL) Register
	SPI Flag (SPI_FLG) Register
	SPI Status (SPI_STAT) Register
	Mode Fault Error (MODF)
	Transmission Error (TXE)
	Reception Error (RBSY)
	Transmit Collision Error (TXCOL)

	SPI Transmit Data Buffer (SPI_TDBR) Register
	SPI Receive Data Buffer (SPI_RDBR) Register
	SPI RDBR Shadow (SPI_SHADOW) Register

	Programming Examples
	Core-Generated Transfer
	Initialization Sequence
	Starting a Transfer
	Post Transfer and Next Transfer
	Stopping

	DMA-Based Transfer
	DMA Initialization Sequence
	SPI Initialization Sequence
	Starting a Transfer
	Stopping a Transfer

	Unique Information for the ADSP-BF51x Processor

	18 SPI Serial Flash
	Memory Organization
	Device Operation
	Reset Mode
	Status Register
	Busy
	Write Enable Latch (WEL)
	Auto Address Increment (AAI)
	Block-Protection (BP2, BP1, BP0)
	Block-Protection Lock-Down (BPL)

	Instructions
	Read (20 MHz)
	High-Speed-Read (25 MHz)
	Byte-Program
	Auto Address Increment (AAI) Word Program
	End-of-Write Detection
	Hardware End-of-Write Detection

	Sector-Erase
	32K Byte Block-Erase
	64K Byte Block-Erase
	Chip-Erase
	Read-Status-Register (RDSR)
	Write-Enable (WREN)
	Write-Disable (WRDI)
	Enable-Write-Status-Register (EWSR)
	Write-Status-Register (WRSR)
	Read-ID
	JEDEC Read-ID

	19 SPORT Controller
	Specific Information for the ADSP-BF51x
	Overview
	Features

	Interface Overview
	SPORT Pin/Line Terminations

	Description of Operation
	SPORT Disable
	Setting SPORT Modes
	Stereo Serial Operation
	Multichannel Operation
	Multichannel Enable
	Frame Syncs in Multichannel Mode
	The Multichannel Frame
	Multichannel Frame Delay
	Window Size
	Window Offset
	Other Multichannel Fields in SPORT_MCMC2
	Channel Selection Register
	Multichannel DMA Data Packing

	Support for H.100 Standard Protocol
	2× Clock Recovery Control

	Functional Description
	Clock and Frame Sync Frequencies
	Maximum Clock Rate Restrictions

	Word Length
	Bit Order
	Data Type
	Companding
	Clock Signal Options
	Frame Sync Options
	Framed Versus Unframed
	Internal Versus External Frame Syncs
	Active Low Versus Active High Frame Syncs
	Sampling Edge for Data and Frame Syncs
	Early Versus Late Frame Syncs (Normal Versus Alternate Timing)
	Data Independent Transmit Frame Sync

	Moving Data Between SPORTs and Memory
	SPORT RX, TX, and Error Interrupts
	Peripheral Bus Errors
	Timing Examples

	SPORT Registers
	Register Writes and Effective Latency
	SPORT Transmit Configuration (SPORT_TCR1 and SPORT_TCR2) Registers
	SPORT Receive Configuration (SPORT_RCR1 and SPORT_RCR2) Registers
	Data Word Formats
	SPORT Transmit Data (SPORT_TX) Register
	SPORT Receive Data (SPORT_RX) Register
	SPORT Status (SPORT_STAT) Register
	SPORT Transmit and Receive Serial Clock Divider (SPORT_TCLKDIV and SPORT_RCLKDIV) Registers
	SPORT Transmit and Receive Frame Sync Divider (SPORT_TFSDIV and SPORT_RFSDIV) Registers
	SPORT Multichannel Configuration (SPORT_MCMC1 and SPORT_MCMC2) Registers
	SPORT Current Channel (SPORT_CHNL) Register
	SPORT Multichannel Receive Selection (SPORT_MRCSn) Registers
	SPORT Multichannel Transmit Selection (SPORT_MTCSn) Registers

	Programming Examples
	SPORT Initialization Sequence
	DMA Initialization Sequence
	Interrupt Servicing
	Starting a Transfer

	Unique Information for the ADSP-BF51x Processor

	20 Parallel Peripheral Interface
	Specific Information for the ADSP-BF51x
	Overview
	Features
	Interface Overview
	Description of Operation
	Functional Description
	ITU-R 656 Modes
	ITU-R 656 Background
	ITU-R 656 Input Modes
	Entire Field
	Active Video Only
	Vertical Blanking Interval (VBI) Only

	ITU-R 656 Output Mode
	Frame Synchronization in ITU-R 656 Modes

	General-Purpose PPI Modes
	Data Input (RX) Modes
	No Frame Syncs
	1, 2, or 3 External Frame Syncs
	2 or 3 Internal Frame Syncs

	Data Output (TX) Modes
	No Frame Syncs
	1 or 2 External Frame Syncs
	1, 2, or 3 Internal Frame Syncs

	Frame Synchronization in GP Modes
	Modes With Internal Frame Syncs
	Modes With External Frame Syncs

	Programming Model
	DMA Operation

	PPI Registers
	PPI Control Register (PPI_CONTROL)
	PPI Status Register (PPI_STATUS)
	PPI Delay Count Register (PPI_DELAY)
	PPI Transfer Count Register (PPI_COUNT)
	PPI Lines Per Frame Register (PPI_FRAME)

	Programming Examples
	Unique Information for the ADSP-BF51x Processor

	21 Removable Storage Interface
	Overview
	Interface Overview
	Description of Operation
	Functional Description
	RSI Clock Configuration
	RSI Interface Configuration
	Card Detection

	RSI Power Saving Configuration
	RSI Commands and Responses
	IDLE State
	PEND State
	SEND State
	WAIT State
	RECEIVE State
	CEATA_INT_WAIT State
	CEATA_INT_DIS State

	RSI Command Path CRC
	RSI Data
	RSI Data Transmit Path
	RSI Data Receive Path
	RSI Data Path CRC
	RSI Data FIFO
	SDIO Interrupt and Read Wait Support

	Programming Model
	Card Identification
	SD Card Identification Procedure
	MMC Identification Procedure

	Single Block Write Operations
	Using Core
	Using DMA

	Single Block Read Operation
	Using Core
	Using DMA

	Multiple Block Write Operation
	Using Core
	Using DMA

	Multiple Block Read Operation
	Using Core
	Using DMA

	RSI Registers
	RSI Power Control Register (RSI_PWR_CONTROL)
	RSI Clock Control Register (RSI_CLK_CONTROL)
	RSI Argument Register (RSI_ARGUMENT)
	RSI Command Register (RSI_COMMAND)
	RSI Response Command Register (RSI_RESP_CMD)
	RSI Response Registers (RSI_RESPONSEx)
	RSI Data Timer Register (RSI_DATA_TIMER)
	RSI Data Length Register (RSI_DATA_LGTH)
	RSI Data Control Register (RSI_DATA_CONTROL)
	RSI Data Counter Register (RSI_DATA_CNT)
	RSI Status Register (RSI_STATUS)
	RSI Status Clear Register (RSI_STATUSCL)
	RSI Interrupt Mask Registers (RSI_MASKx)
	RSI FIFO Counter Register (RSI_FIFO_CNT)
	RSI CE-ATA Control Register (RSI_CEATA_CONTROL)
	RSI Data FIFO Register (RSI_FIFO)
	RSI Exception Status Register (RSI_ESTAT)
	RSI Exception Mask Register (RSI_EMASK)
	RSI Configuration Register (RSI_CONFIG)
	RSI Read Wait Enable Register (RSI_RD_WAIT_EN)
	RSI Peripheral ID Registers (RSI_PIDx)

	22 Ethernet MAC
	Specific Information for the ADSP-BF51x
	Overview
	Features

	Interface Overview
	External Interface
	Clocking
	Pins

	Internal Interface
	Power Management

	Description of Operation
	Protocol
	MII Management Interface

	Operation
	MII Management Interface Operation
	Receive DMA Operation
	Frame Reception and Filtering
	RX Automatic Pad Stripping
	RX DMA Data Alignment
	RX DMA Buffer Structure
	RX Frame Status Buffer
	RX Frame Status Classification
	RX IP Frame Checksum Calculation
	RX DMA Direction Errors

	Transmit DMA Operation
	Flexible Descriptor Structure
	TX DMA Data Alignment
	Late Collisions
	TX Frame Status Classification
	TX DMA Direction Errors

	Power Management
	Ethernet Operation in the Sleep State
	Magic Packet Detection
	Remote Wake-up Filters

	Ethernet Event Interrupts
	RX/TX Frame Status Interrupt Operation
	RX Frame Status Register Operation at Startup and Shutdown
	TX Frame Status Register Operation at Startup and Shutdown

	MAC Management Counters

	Programming Model
	Configure MAC Pins
	Multiplexing Scheme
	CLKBUF

	Configure Interrupts
	Configure MAC Registers
	MAC Address
	MII Station Management

	Configure PHY
	Receive and Transmit Data
	Receiving Data
	Transmitting Data

	Ethernet MAC Register Definitions
	Control-Status Register Group
	MAC Operating Mode (EMAC_OPMODE) Register
	MAC Address Low (EMAC_ADDRLO) Register
	MAC Address High Register (EMAC_ADDRHI) Register
	MAC Multicast Hash Table High (EMAC_HASHHI) and Low (EMAC_HASHLO) Registers
	MAC Station Management Address (EMAC_STAADD) Register
	MAC Station Management Data (EMAC_STADAT) Register
	MAC Flow Control (EMAC_FLC) Register
	MAC VLAN1 Tag (EMAC_VLAN1) and MAC VLAN2 Tag (EMAC_VLAN2)Registers
	MAC Wakeup Frame Control and Status (EMAC_WKUP_CTL) Register
	MAC Wakeup Frame0 Byte Mask (EMAC_WKUP_FFMSK0) MAC Wakeup Frame1 Byte Mask (EMAC_WKUP_FFMSK1) MAC Wakeup Frame2 Byte Mask (EMAC_WKUP_FFMSK2) MAC Wakeup Frame3 Byte Mask (EMAC_WKUP_FFMSK3) Registers
	MAC Wakeup Frame Filter Commands (EMAC_WKUP_FFCMD) Register
	Ethernet MAC Wakeup Frame Filter Offsets (EMAC_WKUP_FFOFF) Register
	MAC Wakeup Frame Filter CRC0/1 (EMAC_WKUP_FFCRC0) and CRC2/3 (EMAC_WKUP_FFCRC1) Registers

	System Interface Register Group
	MAC System Control (EMAC_SYSCTL) Register
	MAC System Status (EMAC_SYSTAT) Register

	Ethernet MAC Frame Status Registers
	Ethernet MAC RX Current Frame Status (EMAC_RX_STAT) Register
	Ethernet MAC RX Sticky Frame Status (EMAC_RX_STKY) Register
	Ethernet MAC RX Frame Status Interrupt Enable (EMAC_RX_IRQE) Register
	Ethernet MAC TX Current Frame Status (EMAC_TX_STAT) Register
	Ethernet MAC TX Sticky Frame Status (EMAC_TX_STKY) Register
	Ethernet MAC TX Frame Status Interrupt Enable (EMAC_TX_IRQE) Register
	Ethernet MAC MMC RX Interrupt Status (EMAC_MMC_RIRQS) Register
	Ethernet MAC MMC RX Interrupt Enable (EMAC_MMC_RIRQE) Register
	Ethernet MAC MMC TX Interrupt Status (EMAC_MMC_TIRQS) Register
	Ethernet MAC MMC TX Interrupt Enable (EMAC_MMC_TIRQE) Register

	MAC Management Counter Registers
	MAC Management Counters Control (EMAC_MMC_CTL) Register

	Programming Examples
	Ethernet Structures
	MAC Address Setup
	PHY Control Routines

	Unique Information for the ADSP-BF51x Processor

	23 IEEE 1588 PTP Engine
	PTP_TSYNC Overview
	Features

	General Operation
	PTP_TSYNC Module Description of Operation
	Clock Source Selection
	Clock Adjustment
	Event Message (Timestamping)
	Transmit Packet Detection
	Receive Packet Detection
	Alarm
	Pulse-Per-Second (PPS)
	Auxiliary Snapshot

	PTP_TSYNC Module Registers
	Control Register (EMAC_PTP_CTL)
	Interrupt Enable Register (EMAC_PTP_IE)
	Interrupt Status Register (EMAC_PTP_ISTAT)
	Message Filter Offset Register (EMAC_PTP_FOFF)
	Message Filter Value Register 1 (EMAC_PTP_FV1)
	Message Filter Value Register 2 (EMAC_PTP_FV2)
	Message Filter Value Register 3 (EMAC_PTP_FV3)
	Addend Register (EMAC_PTP_ADDEND)
	Accumulator Register (EMAC_PTP_ACCR)
	Time Offset Register (EMAC_PTP_OFFSET)
	Local Clock Time Low Register (EMAC_PTP_TIMELO)
	Local Clock Time High Register (EMAC_PTP_TIMEHI)
	Receive Snapshot Low Register (EMAC_PTP_RXSNAPLO)
	Receive Snapshot High Register (EMAC_PTP_RXSNAPHI)
	Transmit Snapshot Low Register (EMAC_PTP_TXSNAPLO)
	Transmit Snapshot High Register (EMAC_PTP_TXSNAPHI)
	Target Alarm Time Low Register (EMAC_PTP_ALARMLO)
	Target Alarm Time High Register (EMAC_PTP_ALARMHI)
	Source ID Offset Register (EMAC_PTP_ID_OFF)
	Source ID Snapshot Register (EMAC_PTP_ID_SNAP)
	PPS Start Low Register (EMAC_PTP_PPS_STARTLO)
	PPS Start High Register (EMAC_PTP_PPS_STARTHI)
	PPS Period Register (EMAC_PTP_PPS_PERIOD)

	PTP_TSYNC Module Programming Model
	IEEE 1588-2002 Implementation Over IP/UDP
	IEEE 1588-2008 Implementation Over IP/UDP
	IEEE 1588-2008 Implementation Over MAC Layer
	Pulse-Per-Second (PPS) Signal Generation

	24 Real-Time Clock
	Specific Information for the ADSP-BF51x
	Overview
	Interface Overview
	Description of Operation
	RTC Clock Requirements
	Prescaler Enable

	RTC Programming Model
	Register Writes
	Write Latency
	Register Reads
	Deep Sleep
	Event Flags
	Setting Time of Day
	Using the Stopwatch
	Interrupts
	State Transitions Summary

	Register Definitions
	RTC Status (RTC_STAT) Register
	RTC Interrupt Control (RTC_ICTL) Register
	RTC Interrupt Status (RTC_ISTAT) Register
	RTC Stopwatch Count (RTC_SWCNT) Register
	RTC Alarm (RTC_ALARM) Register
	RTC Prescaler Enable (RTC_PREN) Register

	Programming Examples
	Enable RTC Prescaler
	RTC Stopwatch For Exiting Deep Sleep Mode
	RTC Alarm to Come Out of Hibernate State

	Unique Information for the ADSP-BF51x Processor

	25 Security
	Overview
	Features
	Description of Operation
	Secure State Machine
	Open Mode
	Secure Entry Mode
	Secure Mode
	Secure Mode Control

	Security Features
	Digital Signature Authentication
	Digital Signature Authentication Performance Measurement

	Protection Features
	Operating in Secure Mode
	Entering Secure Mode
	Exiting Secure Mode

	Reset Handling in Secure Mode
	Hardware Reset
	Clearing Private Data

	Public Key Requirements
	Storing Public Cipher Key in Public OTP

	Cryptographic Ciphers
	Keys
	Debug Functionality
	Programming Examples

	Programming Model
	Secure Entry Service Routine (SESR) API
	Starting Authentication
	Memory Configuration
	Message Placement
	Digital Signature
	Message Size Constraints
	Memory Usage
	Memory Protection

	Secure Function and Secure Entry Service Routine Arguments
	Secure Function Arguments
	Secure Entry Service Routine Arguments
	usFlags
	uslRQMask
	ulMessageSize
	ulSFEntryPoint
	ulMessagePtr
	Secure Message Execution
	Return Codes
	SECURE HASH ALGORITHM (SHA-1) API
	ADI_SHA1 Data Type
	bfrom_Sha1Init ROM Routine
	bfrom_Sha1Hash ROM Routine

	Security Registers
	Secure System Switch (SECURE_SYSSWT) Register
	Secure Control (SECURE_CONTROL) Register
	Secure Status (SECURE_STATUS) Register

	26 System Reset and Booting
	Overview
	Reset and Power-up
	Hardware Reset
	Software Resets
	Reset Vector
	Servicing Reset Interrupts

	Preboot
	Factory Page Settings (FPS)
	Preboot Page Settings (PBS)
	Alternative PBS Pages
	Programming PBS Pages
	Recovering From Misprogrammed PBS Pages
	Customizing Power Management
	Customizing Booting Options
	Customizing the Asynchronous Port
	Customizing the Synchronous Port

	Basic Booting Process
	Block Headers
	Block Code
	DMA Code Field
	Block Flags Field
	Header Checksum Field
	Header Sign Field

	Target Address
	Byte Count
	Argument

	Boot Host Wait (HWAIT) Feedback Strobe
	Using HWAIT as Reset Indicator

	Boot Termination
	Single Block Boot Streams
	Direct Code Execution

	Advanced Boot Techniques
	Initialization Code
	Quick Boot
	Indirect Booting
	Callback Routines
	Error Handler
	CRC Checksum Calculation
	Load Functions
	Calling the Boot Kernel at Runtime
	Debugging the Boot Process

	Boot Management
	Booting a Different Application
	Multi-DXE Boot Streams
	Determining Boot Stream Start Addresses
	Initialization Hook Routine

	Specific Boot Modes
	No Boot Mode
	Flash Boot Modes
	SDRAM Boot Mode
	SPI Master Boot Modes
	SPI Device Detection Routine

	SPI Slave Boot Mode
	UART Slave Mode Boot
	OTP Boot Mode

	Reset and Booting Registers
	Software Reset (SWRST) Register
	System Reset Configuration (SYSCR) Register
	Boot Code Revision Control (BK_REVISION)
	Boot Code Date Code (BK_DATECODE)
	Zero Word (BK_ZEROS)
	Ones Word (BK_ONES)

	OTP Memory Pages for Booting
	Lower PBS00 Half Page
	Upper PBS00 Half Page
	Lower PBS01 Half Page
	Upper PBS01 Half Page
	Lower PBS02 Half Page
	Upper PBS02 Half Page
	Reserved Half Pages

	Data Structures
	ADI_BOOT_HEADER
	ADI_BOOT_BUFFER
	ADI_BOOT_DATA
	dFlags Word

	Callable ROM Functions for Booting
	BFROM_FINALINIT
	BFROM_PDMA
	BFROM_MDMA
	BFROM_MEMBOOT
	BFROM_SPIBOOT
	BFROM_OTPBOOT
	BFROM_BOOTKERNEL
	BFROM_CRC32
	BFROM_CRC32POLY
	BFROM_CRC32CALLBACK
	BFROM_CRC32INITCODE

	Programming Examples
	System Reset
	Exiting Reset to User Mode
	Exiting Reset to Supervisor Mode
	Initcode (SDRAM Controller Setup)
	Initcode (Power Management Control)
	Quickboot With Restore From SDRAM
	XOR Checksum
	Direct Code Execution
	Managing PBS Pages in OTP Memory

	27 System Design
	Pin Descriptions
	Managing Clocks
	Managing Core and System Clocks

	Configuring and Servicing Interrupts
	Semaphores
	Example Code for Query Semaphore

	Data Delays, Latencies and Throughput
	Bus Priorities
	External Memory Design Issues
	Example Asynchronous Memory Interfaces
	Avoiding Bus Contention

	High-Frequency Design Considerations
	Signal Integrity
	Decoupling Capacitors and Ground Planes
	5 Volt Tolerance
	Test Point Access
	Oscilloscope Probes
	Recommended Reading

	Resetting the Processor
	Recommendations for Unused Pins
	Programmable Outputs
	Voltage Regulation Interface

	A System MMR Assignments
	Processor-Specific Memory Registers
	Core Timer Registers
	System Reset and Interrupt Control Registers
	DMA/Memory DMA Control Registers
	Handshake MDMA Control Registers
	External Bus Interface Unit Registers
	Ports Registers
	Timer Registers
	Watchdog Timer Registers
	GP Counter Registers
	Real-Time Clock Registers
	OTP and Security Registers
	Dynamic Power Management Registers
	Ethernet MAC Registers
	IEEE 1588 PTP Registers
	PPI Registers
	SPI Controller Registers
	SPORT Controller Registers
	UART Controller Registers
	Motor Control PWM Registers
	Removable Storage Interface (RSI) Registers
	TWI Registers

	B Test Features
	JTAG Standard
	Boundary-Scan Architecture
	Instruction Register
	Public Instructions
	EXTEST – Binary Code 00000
	SAMPLE/PRELOAD – Binary Code 10000
	BYPASS – Binary Code 11111

	Boundary-Scan Register

	I Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

