







# **CE SAR Test Report**

Product Name: LM128 Rugged Phone

Model No. : LM128

Applicant: Shenzhen Xin Kingbrand Enterprises Co., Ltd

Address: Kingbrand Industrial Zone, Nanpu Road, Shang

liao ling pi keng, Shajing Town, Baoan District,

Shenzhen City, Guangdong

Date of Receipt: 06/08/2012

Date of Test : 10/08/2012

Issued Date : 21/08/2012

Report No. : 128S010R-HP-CE-P01V01

Report Version: V1.1

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.



# **Test Report Certification**

Issued Date: 13/08/2012

Report No.: 128S010R-HP-CE-P01V01

# QuieTek

Product Name : LM128 Rugged Phone

Applicant : Shenzhen Xin Kingbrand Enterprises Co., Ltd

Address : Kingbrand Industrial Zone, Nanpu Road, Shang liao ling pi keng,

Shajing Town, Baoan District, Shenzhen City, Guangdong

Manufacturer : Shenzhen Xin Kingbrand Enterprises Co., Ltd

Address : K building, Sheng Guang industrial, Nan Dong Dong Huan road,

Huang Pu community, Sha Jing town, Bao An district, Shenzhen

Model No. : LM128

EUT Voltage : DC: 3.7V

Brand Name : Xin Kingbrand
Applicable Standard : EN50360: 2001

EN62209-1: 2006 EN62311: 2008 EN62209-2:2010

Test Result : Max. SAR Measurement (10g)

Head: 0.515 W/kg Body: 0.680 W/kg

Performed Location : Suzhou EMC Laboratory

No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech

Development Zone., Suzhou, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

Documented By : Alice Wi

(Engineering ADM: Alice Ni)

Reviewed By :

(Engineering Supervisor: Robin Wu)

Approved By : Marlinchen

(Manager: Marlin Chen)



#### **Laboratory Information**

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

Taiwan R.O.C. : BSMI, NCC, TAF

Germany : TUV Rheinland

Norway : Nemko, DNV

USA : FCC, NVLAP

Japan : VCCI

China : CNAS

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : <a href="http://www.quietek.com/tw/ctg/cts/accreditations.htm">http://www.quietek.com/tw/ctg/cts/accreditations.htm</a>
The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : <a href="http://www.quietek.com/">http://www.quietek.com/</a>

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

#### **HsinChu Testing Laboratory:**

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C. TEL:+886-3-592-8859 E-Mail: <a href="mailto:service@guietek.com">service@guietek.com</a>

#### **LinKou Testing Laboratory:**

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C.

#### **Suzhou Testing Laboratory:**

No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech Development Zone., SuZhou, China



# TABLE OF CONTENTS

| De | scription                                                     | Page |
|----|---------------------------------------------------------------|------|
| 1. | General Information                                           | 6    |
| 1  | .1. EUT Description                                           | 6    |
| 1  | .2. Test Environment                                          | 7    |
| 2. | SAR Measurement System                                        | 8    |
| 2  | .1. DASY5 System Description                                  | 8    |
|    | 2.1.1. Applications                                           | 9    |
|    | 2.1.2. Area Scans                                             | 9    |
|    | 2.1.3. Zoom Scan (Cube Scan Averaging)                        | 9    |
|    | 2.1.4. Uncertainty of Inter-/Extrapolation and Averaging      | 9    |
| 2  | .2. DASY5 E-Field Probe                                       |      |
|    | 2.2.1. Isotropic E-Field Probe Specification                  |      |
|    | .3. Boundary Detection Unit and Probe Mounting Device         |      |
|    | .4. DATA Acquisition Electronics (DAE) and Measurement Server |      |
|    | .5. Robot                                                     |      |
|    | .6. Light Beam Unit                                           |      |
|    | .7. Device Holder                                             |      |
| 3. | Tissue Simulating Liquid                                      |      |
| 3  | .1. The composition of the tissue simulating liquid           | 14   |
| 3  | .2. Tissue Calibration Result                                 |      |
| 3  | .3. Tissue Dielectric Parameters for Head and Body Phantoms   | 15   |
| 4. | SAR Measurement Procedure                                     | 17   |
| 2  | .1. SAR System Validation                                     | 17   |
|    | 4.1.1. Validation Dipoles                                     | 17   |
|    | 4.1.2. Validation Result                                      | 18   |
| 4  | .2. SAR Measurement Procedure                                 | 19   |
| 5. | SAR Exposure Limits                                           | 20   |
| 6. | Test Equipment List                                           | 21   |
| 7. | Measurement Uncertainty                                       | 22   |
| 8. | Conducted Power Measurement                                   | 23   |
| 9. | Test Results                                                  | 24   |



| 9.1.   | SAR Test Results Summary                        | 24 |
|--------|-------------------------------------------------|----|
| Append | dix A. SAR System Validation Data               | 28 |
| Append | dix B. SAR measurement Data                     | 30 |
| Append | dix C. Test Setup Photographs & EUT Photographs | 54 |
| Append | dix D. Probe Calibration Data                   | 60 |
| Append | dix E. Dipole Calibration Data                  | 71 |
| Append | dix F. DAE Calibration Data                     | 95 |



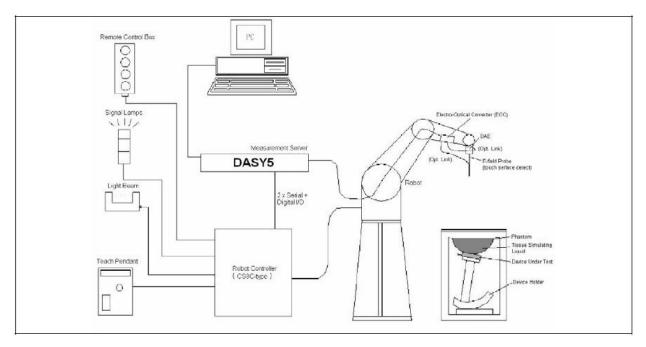
# 1. General Information

# 1.1. EUT Description

| Product Name            | LM128 Rugged Phone                            |
|-------------------------|-----------------------------------------------|
| Model No.               | LM128                                         |
| IMEI                    | 358688000000158                               |
| Hardware Version        | LM129_MB-V1.0-120611                          |
| Software Version        | LM129_OINOM_PCB01_gprs_MT6252_S01.SDT_R_LM129 |
|                         | _OINOM_WB_V2_01                               |
| Device Category         | Portable                                      |
| RF Exposure Environment | Uncontrolled                                  |
| Antenna Type            | Internal                                      |
| Support Band            | GSM900/DCS1800                                |
| GPRS Type               | Class B                                       |
| GPRS Class              | Class 12                                      |
| Uplink                  | GSM 900: 880 ~ 915 MHz                        |
|                         | DCS 1800: 1710 ~ 1785 MHz                     |
| Downlink                | GSM 900: 925 ~ 960 MHz                        |
|                         | DCS 1800: 1805 ~ 1880 MHz                     |
| Release Version         | R99                                           |
| Type of modulation      | GMSK for GSM/GPRS                             |
| Antenna Gain            | 3dBi                                          |
| Bluetooth Frequency     | 2402~2480MHz                                  |
| Bluetooth Version       | V2.1 + EDR                                    |
| Type of modulation      | FHSS                                          |
| Data Rate               | 1Mbps(GFSK), 2Mbps(Pi/4 DQPSK), 3Mbps (8DPSK) |
| Antenna Gain            | 0dBi                                          |
| Max. Output Power       | GSM 900: 32.92 dBm                            |
| (Conducted)             | DCS 1800: 30.13 dBm                           |



### 1.2. Test Environment


Ambient conditions in the laboratory:

| Items            | Required | Actual  |
|------------------|----------|---------|
| Temperature (°C) | 18-25    | 21.5± 2 |
| Humidity (%RH)   | 30-70    | 52      |



### 2. SAR Measurement System

### 2.1. DASY5 System Description



The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.



#### 2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383, EN62311 and others.

#### 2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm<sup>2</sup> step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

#### 2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

#### 2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.



$$f_1(x, y, z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$

$$f_2(x, y, z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$

$$f_3(x, y, z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

#### 2.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

#### 2.2.1. Isotropic E-Field Probe Specification

| Model         | EX3DV4                                                                                                                                                |                   |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| Construction  | Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) |                   |  |
| Frequency     | 10 MHz to 6 GHz<br>Linearity: ± 0.2 dB (30 MHz to 6 GHz)                                                                                              |                   |  |
| Directivity   | ± 0.3 dB in HSL (rotation around probe axis)<br>± 0.5 dB in tissue material (rotation normal to<br>probe axis)                                        | /                 |  |
| Dynamic Range | 10 μW/g to 100 mW/g<br>Linearity: ± 0.2 dB (noise: typically < 1 μW/g)                                                                                |                   |  |
| Dimensions    | Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm                        |                   |  |
| Application   | High precision dosimetric measurements in an (e.g., very strong gradient fields). Only procompliance testing for frequencies up to 6 GHz w 30%.       | obe which enables |  |



#### 2.3. Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.



#### 2.4. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs

are symmetrical and floating. Common mode rejection is above 80dB.



The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.





#### 2.5. Robot

The DASY5 system uses the high precision robots TX60 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller



### 2.6. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.





#### 2.7. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity  $\epsilon r = 3$  and loss tangent  $\delta = 0.02$ . The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.



#### 2.8. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- > Flat phantom



The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.



# 3. Tissue Simulating Liquid

# 3.1. The composition of the tissue simulating liquid

| INGREDIENT | 900MHz | 900MHz | 1800MHz | 1800MHz |
|------------|--------|--------|---------|---------|
| (% Weight) | Head   | Body   | Head    | Body    |
| Water      | 40.92  | 56     | 52.64   | 40.5    |
| Salt       | 1.48   | 0.768  | 0.36    | 0.5     |
| Sugar      | 56.5   | 41.76  | 0.00    | 58      |
| HEC        | 0.40   | 1.21   | 0.00    | 0.5     |
| Preventol  | 0.10   | 0.27   | 0.00    | 0.5     |
| DGBE       | 0.00   | 0.00   | 47.0    | 0.00    |

### 3.2. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

| Head/Body Tissue Simulant Measurement |                  |                       |              |              |  |  |
|---------------------------------------|------------------|-----------------------|--------------|--------------|--|--|
| Frequency                             | Description      | Dielectric Parameters |              | Tissue Temp. |  |  |
| [MHz]                                 | Description      | 8 <sub>r</sub>        | σ [s/m]      | [°C]         |  |  |
|                                       | Reference result | 41.50                 | 0.97         | N/A          |  |  |
| 900 MHz                               | ± 5% window      | 39.43 to 43.58        | 0.92 to 1.02 | IN/A         |  |  |
|                                       | 10-08-2012       | 40.72                 | 0.95         | 21.0         |  |  |
|                                       | Reference result | 40.00                 | 1.40         | N/A          |  |  |
| 1800 MHz                              | ± 5% window      | 38.00 to 42.00        | 1.33 to 1.47 | IN/A         |  |  |
|                                       | 10-08-2012       | 40.32                 | 1.39         | 21.0         |  |  |
|                                       | 1                |                       |              | 1            |  |  |

Page: 14 of 99



### 3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

| Target Frequency | Head           |         | Во             | dy      |
|------------------|----------------|---------|----------------|---------|
| (MHz)            | $\epsilon_{r}$ | σ (S/m) | ٤ <sub>r</sub> | σ (S/m) |
| 150              | 52.3           | 0.76    | 61.9           | 0.80    |
| 300              | 45.3           | 0.87    | 58.2           | 0.92    |
| 450              | 43.5           | 0.87    | 56.7           | 0.94    |
| 835              | 41.5           | 0.90    | 55.2           | 0.97    |
| 900              | 41.5           | 0.97    | 55.0           | 1.05    |
| 915              | 41.5           | 0.98    | 55.0           | 1.06    |
| 1450             | 40.5           | 1.20    | 54.0           | 1.30    |
| 1610             | 40.3           | 1.29    | 53.8           | 1.40    |
| 1800 – 2000      | 40.0           | 1.40    | 53.3           | 1.52    |
| 2450             | 39.2           | 1.80    | 52.7           | 1.95    |
| 3000             | 38.5           | 2.40    | 52.0           | 2.73    |
| 5800             | 35.3           | 5.27    | 48.2           | 6.00    |

(ε<sub>r</sub> = relative permittivity, σ = conductivity and ρ = 1000 kg/m<sup>3</sup>)

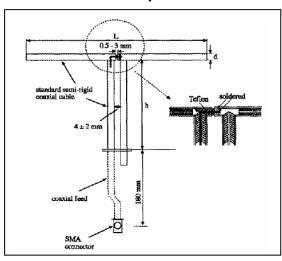
Page: 15 of 99



Table 1 – Dielectric properties of the tissue-equivalent liquid material

| Frequency | Real part of the complex relative permittivity, $\mathcal{E}_{\mathtt{r}}'$ | Conductivity, $oldsymbol{\sigma}$ |
|-----------|-----------------------------------------------------------------------------|-----------------------------------|
| MHz       |                                                                             | S/m                               |
| 30        | 55,0                                                                        | 0,75                              |
| 150       | 52,3                                                                        | 0,76                              |
| 300       | 45,3                                                                        | 0,87                              |
| 450       | 43,5                                                                        | 0,87                              |
| 750       | 41,9                                                                        | 0,89                              |
| 835       | 41,5                                                                        | 0,90                              |
| 900       | 41,5                                                                        | 0,97                              |
| 1 450     | 40,5                                                                        | 1,20                              |
| 1 800     | 40,0                                                                        | 1,40                              |
| 1 900     | 40,0                                                                        | 1,40                              |
| 1 950     | 40,0                                                                        | 1,40                              |
| 2 000     | 40,0                                                                        | 1,40                              |
| 2 100     | 39,8                                                                        | 1,49                              |
| 2 450     | 39,2                                                                        | 1,80                              |
| 2 600     | 39,0                                                                        | 1,96                              |
| 3 000     | 38,5                                                                        | 2,40                              |
| 3 500     | 37,9                                                                        | 2,91                              |
| 4 000     | 37,4                                                                        | 3,43                              |
| 4 500     | 36,8                                                                        | 3,94                              |
| 5 000     | 36,2                                                                        | 4,45                              |
| 5 200     | 36,0                                                                        | 4,66                              |
| 5 400     | 35,8                                                                        | 4,86                              |
| 5 600     | 35,5                                                                        | 5,07                              |
| 5 800     | 35,3                                                                        | 5,27                              |
| 6 000     | 35,1                                                                        | 5,48                              |

Note: According to EN 62209-2, the liquid parameters  $\epsilon_{r}$  and  $\sigma$  for head are the same as body requirements.


Page: 16 of 99



#### 4. SAR Measurement Procedure

# 4.1. SAR System Validation

# 4.1.1. Validation Dipoles



The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

| Frequency | L (mm) | h (mm) | d (mm) |
|-----------|--------|--------|--------|
| 900MHz    | 149.0  | 83.3   | 3.6    |
| 1800MHz   | 72.0   | 41.7   | 3.6    |



# 4.1.2. Validation Result

| System Performance Check at 900MH | z, 1800MHz, 2450MHz. |
|-----------------------------------|----------------------|
|-----------------------------------|----------------------|

Validation Kit: D900V2-SN: 1d096

| Frequency<br>[MHz] | Description                      | SAR [w/kg]<br>1g      | SAR [w/kg]<br>10g    | Tissue Temp.<br>[°C] |
|--------------------|----------------------------------|-----------------------|----------------------|----------------------|
| 900 MHz            | Reference result<br>± 10% window | 10.5<br>9.45 to 11.55 | 6.73<br>6.06 to 7.40 | N/A                  |
|                    | 10-08-2012                       | 10.6                  | 6.8                  | 21.0                 |

Validation Kit: D1800V2-SN: 2d179

| Frequency<br>[MHz] | Description                      | SAR [w/kg]<br>1g       | SAR [w/kg]<br>10g      | Tissue Temp.<br>[°C] |
|--------------------|----------------------------------|------------------------|------------------------|----------------------|
| 1800 MHz           | Reference result<br>± 10% window | 37.8<br>34.02 to 41.58 | 20.0<br>18.00 to 22.00 | N/A                  |
|                    | 10-08-2012                       | 35.32                  | 18.32                  | 21.0                 |

Note: All SAR values are normalized to 1W forward power.

Page: 18 of 99



#### 4.2. SAR Measurement Procedure

The DASY5 calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

σ: represents the simulated tissue conductivity

ρ: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm<sup>2</sup>) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm<sup>3</sup>).



# 5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of 1999/519/EC, EN50360, and EN62311.

# Limits for General Population/Uncontrolled Exposure (W/kg)

| Type Exposure                                         | Uncontrolled<br>Environment Limit |
|-------------------------------------------------------|-----------------------------------|
| Spatial Peak SAR (10g cube tissue for head and trunk) | 2.00 W/kg                         |
| Spatial Average SAR (whole body)                      | 0.08 W/kg                         |
| Spatial Peak SAR (10g for limb)                       | 4.00 W/kg                         |



# 6. Test Equipment List

| Instrument             | Manufacturer | Model No.     | Serial No.      | Cali. Due Date |
|------------------------|--------------|---------------|-----------------|----------------|
| Stäubli Robot TX60L    | Stäubli      | TX60L         | F10/5C90A1/A/01 | only once      |
| Controller             | Stäubli      | SP1           | S-0034          | only once      |
| Dipole Validation Kits | Speag        | D900V2        | 1d096           | 2013.02.17     |
| Dipole Validation Kits | Speag        | D1800V2       | 2d179           | 2013.02.22     |
| Dipole Validation Kits | Speag        | D1900V2       | 5d121           | 2013.02.22     |
| SAM Twin Phantom       | Speag        | SAM           | TP-1561/1562    | N/A            |
| Device Holder          | Speag        | SD 000 H01 HA | N/A             | N/A            |
| Data                   | Speag        | DAE4          | 1220            | 2013.01.23     |
| Acquisition Electronic |              |               |                 |                |
| E-Field Probe          | Speag        | EX3DV4        | 3710            | 2013.03.12     |
| SAR Software           | Speag        | DASY5         | V5.2 Build 162  | N/A            |
| Power Amplifier        | Mini-Circuit | ZVA-183-S+    | N657400950      | N/A            |
| Directional Coupler    | Agilent      | 778D          | 20160           | N/A            |
| Universal Radio        | R&S          | CMU 200       | 117088          | 2013.04.18     |
| Communication Tester   |              |               |                 |                |
| Vector Network         | Agilent      | E5071C        | MY48367267      | 2013.04.10     |
| Signal Generator       | Agilent      | E4438C        | MY49070163      | 2013.04.18     |
| Power Meter            | Anritsu      | ML2495A       | 0905006         | 2013.01.12     |
| Wide Bandwidth Sensor  | Anritsu      | MA2411B       | 0846014         | 2013.01.12     |



# 7. Measurement Uncertainty

|                               |          | DASY  | 5 Unc      | ertain | ıtv  |            |         |      |
|-------------------------------|----------|-------|------------|--------|------|------------|---------|------|
| Measurement uncertainty       |          |       |            |        | •    | / 10 gram. |         |      |
| Error Description             | Uncert.  | Prob. | Div.       | (Ci)   | (Ci) | Std.       | Std.    | (Vi) |
|                               | value    | Dist. |            | 1g     | 10g  | Unc.       | Unc.    | Veff |
|                               |          |       |            |        |      | (1g)       | (10g)   |      |
| Measurement System            |          |       | •          | •      | 1    | •          |         |      |
| Probe Calibration             | ±6.0%    | N     | 1          | 1      | 1    | ±6.0%      | ±6.0%   | ∞    |
| Axial Isotropy                | ±4.7%    | R     | √3         | 0.7    | 0.7  | ±1.9%      | ±1.9%   | ∞    |
| Hemispherical Isotropy        | ±9.6%    | R     | √3         | 0.7    | 0.7  | ±3.9%      | ±3.9%   | ∞    |
| Boundary Effects              | ±1.0%    | R     | √3         | 1      | 1    | ±0.6%      | ±0.6%   | ∞    |
| Linearity                     | ±4.7%    | R     | √3         | 1      | 1    | ±2.7%      | ±2.7%   | ∞    |
| System Detection Limits       | ±1.0%    | R     | √3         | 1      | 1    | ±0.6%      | ±0.6%   | ∞    |
| Readout Electronics           | ±0.3%    | N     | 1          | 1      | 1    | ±0.3%      | ±0.3%   | ∞    |
| Response Time                 | ±0.8%    | R     | √3         | 1      | 1    | ±0.5%      | ±0.5%   | ∞    |
| Integration Time              | ±2.6%    | R     | √3         | 1      | 1    | ±1.5%      | ±1.5%   | ∞    |
| RF Ambient Noise              | ±3.0%    | R     | √3         | 1      | 1    | ±1.7%      | ±1.7%   | ∞    |
| RF Ambient Reflections        | ±3.0%    | R     | √3         | 1      | 1    | ±1.7%      | ±1.7%   | ∞    |
| Probe Positioner              | ±0.4%    | R     | √3         | 1      | 1    | ±0.2%      | ±0.2%   | ∞    |
| Probe Positioning             | ±2.9%    | R     | $\sqrt{3}$ | 1      | 1    | ±1.7%      | ±1.7%   | ∞    |
| Max. SAR Eval.                | ±1.0%    | R     | √3         | 1      | 1    | ±0.6%      | ±0.6%   | ∞    |
| Test Sample Related           |          | 1     |            |        | l    | 1          | •       |      |
| Device Positioning            | ±2.9%    | N     | 1          | 1      | 1    | ±2.9%      | ±2.9%   | 145  |
| Device Holder                 | ±3.6%    | N     | 1          | 1      | 1    | ±3.6%      | ±3.6%   | 5    |
| Power Drift                   | ±5.0%    | R     | √3         | 1      | 1    | ±2.9%      | ±2.9%   | ∞    |
| Phantom and Setup             |          |       | •          | •      | 1    | •          |         |      |
| Phantom Uncertainty           | ±4.0%    | R     | √3         | 1      | 1    | ±2.3%      | ±2.3%   | ∞    |
| Liquid Conductivity           | . F. O0/ | П     | - To       | 0.64   | 0.42 | 14.00/     | 14.00/  |      |
| (target)                      | ±5.0%    | R     | √3         | 0.64   | 0.43 | ±1.8%      | ±1.2%   | ∞    |
| Liquid Conductivity           | 12.50/   | NI    | 1          | 0.64   | 0.42 | 14.60/     | 14 10/  | 8    |
| (meas.)                       | ±2.5%    | N     | 1          | 0.64   | 0.43 | ±1.6%      | ±1.1%   | ω    |
| Liquid Permittivity           | ±5 0%    | R     | . /5       | 0.6    | 0.49 | ±1.7%      | ±1 /10/ | 8    |
| (target)                      | ±5.0%    | 13    | √3         | 0.0    | 0.49 | ±1.170     | ±1.4%   |      |
| Liquid Permittivity           | ±2.5%    | N     | 1          | 0.6    | 0.49 | ±1.5%      | ±1.2%   | 8    |
| (meas.)                       | 12.5/0   | IN    | '          | 0.0    | 0.48 | 11.5/0     | ±1.∠/0  |      |
| Combined Std. Uncertain       | inty     |       |            |        |      | ±11.0%     | ±10.8%  | 387  |
| <b>Expanded STD Uncertain</b> | inty     |       |            |        |      | ±22.0%     | ±21.5%  |      |

Page: 22 of 99



# 8. Conducted Power Measurement

| Mode                                                                      | Frequency (MHz) | Output Power (dBm) | Path Loss (dB) | Result (dBm) |
|---------------------------------------------------------------------------|-----------------|--------------------|----------------|--------------|
| Maximum Power <s< td=""><td>IM 1&gt;</td><td></td><td></td><td></td></s<> | IM 1>           |                    |                |              |
|                                                                           | 880.2           | 32.22              | 0.7            | 32.92        |
| GSM900                                                                    | 897.4           | 32.16              | 0.7            | 32.86        |
|                                                                           | 914.8           | 32.15              | 0.7            | 32.85        |
|                                                                           | 880.2           | 32.21              | 0.7            | 32.91        |
| GPRS900(1 Slot)                                                           | 897.4           | 32.15              | 0.7            | 32.85        |
| GPRS900(1 Slot)                                                           | 914.8           | 32.13              | 0.7            | 32.83        |
|                                                                           | 880.2           | 31.70              | 0.7            | 32.40        |
| GPRS900(2 Slot)                                                           | 897.4           | 31.65              | 0.7            | 32.35        |
|                                                                           | 914.8           | 31.62              | 0.7            | 32.32        |
|                                                                           | 880.2           | 30.05              | 0.7            | 30.75        |
| GPRS900(3 Slot)                                                           | 897.4           | 29.98              | 0.7            | 30.68        |
|                                                                           | 914.8           | 29.96              | 0.7            | 30.66        |
|                                                                           | 880.2           | 29.08              | 0.7            | 29.78        |
| GPRS900(4 Slot)                                                           | 897.4           | 29.05              | 0.7            | 29.75        |
|                                                                           | 914.8           | 29.02              | 0.7            | 29.72        |
|                                                                           | 1710.2          | 29.09              | 1.0            | 30.09        |
| DCS1800                                                                   | 1747.4          | 29.11              | 1.0            | 30.11        |
|                                                                           | 1784.8          | 29.13              | 1.0            | 30.13        |
|                                                                           | 1710.2          | 29.08              | 1.0            | 30.08        |
| GPRS1800(1 Slot)                                                          | 1747.4          | 29.11              | 1.0            | 30.11        |
|                                                                           | 1784.8          | 29.13              | 1.0            | 30.13        |
|                                                                           | 1710.2          | 28.48              | 1.0            | 29.48        |
| GPRS1800(2 Slot)                                                          | 1747.4          | 28.53              | 1.0            | 29.53        |
|                                                                           | 1784.8          | 28.44              | 1.0            | 29.44        |
|                                                                           | 1710.2          | 26.92              | 1.0            | 27.92        |
| GPRS1800(3 Slot)                                                          | 1747.4          | 26.96              | 1.0            | 27.96        |
|                                                                           | 1784.8          | 26.87              | 1.0            | 27.87        |
|                                                                           | 1710.2          | 25.88              | 1.0            | 26.88        |
| GPRS1800(4 Slot)                                                          | 1747.4          | 25.93              | 1.0            | 26.93        |
|                                                                           | 1784.8          | 25.87              | 1.0            | 26.87        |
| Maximum Power <s< td=""><td>IM 2&gt;</td><td></td><td></td><td></td></s<> | IM 2>           |                    |                |              |
| GSM900                                                                    | 897.4           | 32.14              | 0.7            | 32.84        |
| DCS1800                                                                   | 1747.4          | 29.09              | 1.0            | 30.09        |

Note: All SAR testing was done in SIM 1.



# 9. Test Results

SAR MEASUREMENT

# 9.1. SAR Test Results Summary

Ambient Temperature (°C): 21.5 ± 2 Relative Humidity (%): 52

Liquid Temperature (°C): 21.0 ± 2 Depth of Liquid (cm):>15

Product: LM128 Rugged Phone

Test Mode: GSM 900 <SIM 1>

| Test Position                                                                        | osition Antenna |         | ency  | Conducted   | Power Drift | SAR 10g | Limit  |  |
|--------------------------------------------------------------------------------------|-----------------|---------|-------|-------------|-------------|---------|--------|--|
| Head                                                                                 | Position        | Channel | MHz   | Power (dBm) | (<±0.2)     | (W/kg)  | (W/kg) |  |
| Left-Cheek                                                                           | Fixed           | 975     | 880.2 | 32.92       |             |         | 2      |  |
| Left-Cheek                                                                           | Fixed           | 37      | 897.4 | 32.86       | 0.01        | 0.289   | 2      |  |
| Left-Cheek                                                                           | Fixed           | 124     | 914.8 | 32.85       |             |         | 2      |  |
| Left-Tilt                                                                            | Fixed           | 37      | 897.4 | 32.86       | -0.15       | 0.344   | 2      |  |
| Right-Cheek                                                                          | Fixed           | 975     | 880.2 | 32.92       |             |         | 2      |  |
| Right-Cheek                                                                          | Fixed           | 37      | 897.4 | 32.86       | 0.09        | 0.515   | 2      |  |
| Right-Cheek                                                                          | Fixed           | 124     | 914.8 | 32.85       |             |         | 2      |  |
| Right- Tilt                                                                          | Fixed           | 37      | 897.4 | 32.86       | 0.04        | 0.338   | 2      |  |
| Test Mode: GSM 900 <sim 2=""></sim>                                                  |                 |         |       |             |             |         |        |  |
| Right-Cheek                                                                          | Fixed           | 37      | 897.4 | 32.84       | 0.18        | 0.352   | 2      |  |
| Note: when the 10-g SAR is ≤ 1.0 W/kg, testing for low and high channel is optional. |                 |         |       |             |             |         |        |  |



| SAR MEASUREMENT |
|-----------------|
|-----------------|

Ambient Temperature (°C): 21.5 ±2 Relative Humidity (%): 52

Liquid Temperature (°C): 21.0  $\pm$ 2 Depth of Liquid (cm):>15

Product: LM128 Rugged Phone

Test Mode: GSM 900

(With Headset)

| Test Position<br>Body    | Antenna<br>Position      | Freque | ency<br>MHz | Separation<br>Distance<br>(mm) | Conducted<br>Power<br>(dBm) | Power<br>Drift<br>(<±0.2) | SAR<br>10g<br>(W/kg) | Limit<br>(W/kg) |  |
|--------------------------|--------------------------|--------|-------------|--------------------------------|-----------------------------|---------------------------|----------------------|-----------------|--|
| Body-worn                | Fixed                    | 975    | 880.2       | 15                             | 32.92                       |                           |                      | 2               |  |
| Body-worn                | Fixed                    | 37     | 897.4       | 15                             | 32.86                       | -0.01                     | 0.678                | 2               |  |
| Body-worn                | Fixed                    | 124    | 914.8       | 15                             | 32.85                       |                           |                      | 2               |  |
| Test Mode: GPRS9         | Test Mode: GPRS900-2slot |        |             |                                |                             |                           |                      |                 |  |
| Body-worn                | Fixed                    | 37     | 897.4       | 15                             | 32.35                       | -0.16                     | 0.582                | 2               |  |
| Test Mode: GPRS900-3slot |                          |        |             |                                |                             |                           |                      |                 |  |
| Body-worn                | Fixed                    | 37     | 897.4       | 15                             | 30.68                       | -0.16                     | 0.572                | 2               |  |
| Test Mode: GPRS900-4slot |                          |        |             |                                |                             |                           |                      |                 |  |
| Body-worn                | Fixed                    | 975    | 880.2       | 15                             | 29.78                       |                           |                      | 2               |  |
| Body-worn                | Fixed                    | 37     | 897.4       | 15                             | 29.75                       | -0.10                     | 0.680                | 2               |  |
| Body-worn                | Fixed                    | 124    | 914.8       | 15                             | 29.72                       |                           |                      | 2               |  |
| Body-front               | Fixed                    | 37     | 897.4       | 15                             | 29.75                       | -0.14                     | 0.539                | 2               |  |
| Body-worn                | Fixed                    | 37     | 897.4       | 15                             | 29.75                       | -0.10                     | 0.417                | 2               |  |

Note: when the 10-g SAR is  $\leq$  1.0 W/kg, testing for low and high channel is optional.

Page: 25 of 99



SAR MEASUREMENT

Ambient Temperature (°C): 21.5  $\pm$  2

Relative Humidity (%): 52

Liquid Temperature (°C): 21.0 ± 2

Depth of Liquid (cm):>15

Product: LM128 Rugged Phone

Test Mode: DCS1800 <SIM 1>

| Test Position                       | Antenna  | Frequ     | ency   | Conducted<br>Power | Power Drift | SAR 10g | Limit  |  |
|-------------------------------------|----------|-----------|--------|--------------------|-------------|---------|--------|--|
| Head                                | Position | Channel   | MHz    | (dBm)              | (<±0.2)     | (W/kg)  | (W/kg) |  |
| Left-Cheek                          | Fixed    | 512       | 1710.2 | 30.09              |             | -       | 2      |  |
| Left-Cheek                          | Fixed    | 698       | 1747.4 | 30.11              | 0.02        | 0.213   | 2      |  |
| Left-Cheek                          | Fixed    | 885       | 1784.8 | 30.13              |             |         | 2      |  |
| Left-Tilt                           | Fixed    | 698       | 1747.4 | 30.11              | -0.07       | 0.119   | 2      |  |
| Right-Cheek                         | Fixed    | 512       | 1710.2 | 30.09              |             |         | 2      |  |
| Right-Cheek                         | Fixed    | 698       | 1747.4 | 30.11              | -0.02       | 0.226   | 2      |  |
| Right-Cheek                         | Fixed    | 885       | 1784.8 | 30.13              |             |         | 2      |  |
| Right-Tilt                          | Fixed    | 698       | 1747.4 | 30.11              | -0.14       | 0.104   | 2      |  |
| Test Mode: DCS1800 <sim 2=""></sim> |          |           |        |                    |             |         |        |  |
| Right-Cheek                         | Fixed    | 698       | 1747.4 | 30.09              | 0.04        | 0.212   | 2      |  |
|                                     |          | < 4.0.144 |        |                    |             |         |        |  |

Note: when the 10-g SAR is  $\, \leq \,$  1.0 W/kg, testing for low and high channel is optional.



| SAR | ME | ASL | JRE | ME | NT |
|-----|----|-----|-----|----|----|
|     |    |     |     |    |    |

Ambient Temperature (°C): 21.5 ±2 Relative Humidity (%): 52

Liquid Temperature (°C): 21.0 ±2 Depth of Liquid (cm):>15

Product: LM128 Rugged Phone

Test Mode: DCS1800

(With Headset)

| 1001 111040. 200 100  | •                   |                  |             |                          |                       |                           |                      |                 |
|-----------------------|---------------------|------------------|-------------|--------------------------|-----------------------|---------------------------|----------------------|-----------------|
| Test Position<br>Body | Antenna<br>Position | Frequ<br>Channel | ency<br>MHz | Separation Distance (mm) | Conducted Power (dBm) | Power<br>Drift<br>(<±0.2) | SAR<br>10g<br>(W/kg) | Limit<br>(W/kg) |
| Body-worn             | Fixed               | 512              | 1710.2      | 15                       | 30.09                 |                           |                      | 2               |
| Body-worn             | Fixed               | 698              | 1747.4      | 15                       | 30.11                 | -0.12                     | 0.224                | 2               |
| Body-worn             | Fixed               | 885              | 1784.8      | 15                       | 30.13                 |                           |                      | 2               |
| Test Mode: GPRS18     | 800-2slot           |                  |             | ,                        | ,                     |                           |                      | •               |
| Body-worn             | Fixed               | 698              | 1747.4      | 15                       | 29.53                 | -0.12                     | 0.369                | 2               |
| Test Mode: GPRS18     | 300-3slot           |                  |             |                          |                       |                           |                      |                 |
| Body-worn             | Fixed               | 698              | 1747.4      | 15                       | 27.96                 | 0.13                      | 0.407                | 2               |
| Test Mode: GPRS18     | 300-4slot           |                  |             |                          |                       |                           |                      |                 |
| Body-worn             | Fixed               | 512              | 1710.2      | 15                       | 26.88                 |                           |                      | 2               |
| Body-worn             | Fixed               | 698              | 1747.4      | 15                       | 26.93                 | -0.02                     | 0.453                | 2               |
| Body-worn             | Fixed               | 885              | 1784.8      | 15                       | 26.87                 |                           |                      | 2               |
| Body-front            | Fixed               | 698              | 1747.4      | 15                       | 26.93                 | 0.04                      | 0.401                | 2               |
| Body- worn            | Fixed               | 698              | 1747.4      | 15                       | 26.93                 | -0.01                     | 0.441                | 2               |

Note: when the 10-g SAR is  $\leq$  1.0 W/kg, testing for low and high channel is optional.



### Appendix A. SAR System Validation Data

Date/Time: 10-08-2012

Test Laboratory: QuieTek Lab System Check Head 900MHz

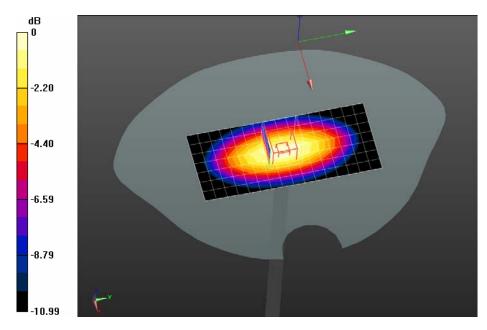
**DUT: Dipole 900 MHz D900V2; Type: D900V2** 

Communication System: CW; Communication System Band: D900 (900.0 MHz); Duty Cycle: 1:1; Frequency: 900 MHz; Medium parameters used: f = 900 MHz;  $\sigma = 0.95$  mho/m;  $\epsilon_r = 40.72$ ;  $\rho = 1000$  kg/m³; Phantom

section: Flat Section; Input Power=250mW

Ambient temperature ( $^{\circ}$ C): 21.5, Liquid temperature ( $^{\circ}$ C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.97, 8.97, 8.97); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/System Check Head 900MHz/Area Scan (8x17x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 2.77 mW/g

Configuration/System Check Head 900MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 54.970 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 4.006 mW/g

SAR(1 g) = 2.65 mW/g; SAR(10 g) = 1.7 mW/g Maximum value of SAR (measured) = 2.86 mW/g



0 dB = 2.86 mW/g = 9.13 dB mW/g



Test Laboratory: QuieTek Lab System Check Head 1800MHz

#### DUT: Dipole 1800 MHz D1800V2; Type: D1800V2

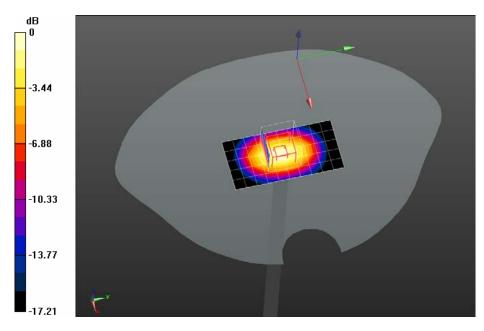
Communication System: CW; Communication System Band: D1800 (1800.0 MHz); Duty Cycle: 1:1;

Frequency: 1800 MHz; Medium parameters used: f = 1800 MHz;  $\sigma = 1.39$  mho/m;  $\epsilon_r = 40.32$ ;  $\rho = 1000$  kg/m³;

Phantom section: Flat Section; Input Power=250mW

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.32, 8.32, 8.32); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/System Check Head 1800MHz/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 9.00 mW/g

Configuration/System Check Head 1800MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 83.825 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.608 mW/g

SAR(1 g) = 8.83 mW/g; SAR(10 g) = 4.58 mW/g Maximum value of SAR (measured) = 9.92 mW/g



0 dB = 9.92 mW/g = 19.93 dB mW/g



### Appendix B. SAR measurement Data

Date/Time: 10-08-2012

Test Laboratory: QuieTek Lab GSM900 Mid Touch-Left

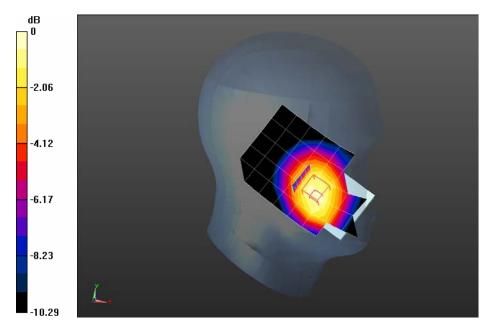
DUT: LM128 Rugged Phone; Type: LM128

Communication System: Generic GSM; Communication System Band: E-GSM900; Duty Cycle: 1:8.3; Frequency: 897.4 MHz; Medium parameters used: f = 897.4 MHz;  $\sigma = 0.98$  mho/m;  $\epsilon = 41.87$ ;  $\rho = 1000$ 

kg/m³; Phantom section: Left Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.97, 8.97, 8.97); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/GSM900 Mid Touch-Left/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.387 mW/g

Configuration/GSM900 Mid Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 4.677 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.545 mW/g

SAR(1 g) = 0.403 mW/g; SAR(10 g) = 0.289 mW/g Maximum value of SAR (measured) = 0.425 mW/g



0 dB = 0.425 mW/g = -7.43 dB mW/g



Test Laboratory: QuieTek Lab

GSM900 Mid Tilt-Left

DUT: LM128 Rugged Phone; Type: LM128

Communication System: Generic GSM; Communication System Band: E-GSM900; Duty Cycle: 1:8.3; Frequency: 897.4 MHz; Medium parameters used: f = 897.4 MHz;  $\sigma = 0.98$  mho/m;  $\epsilon = 41.87$ ;  $\rho = 1000$ 

kg/m³; Phantom section: Left Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.97, 8.97, 8.97); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/GSM900 Mid Touch-Right/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.462 mW/g

Configuration/GSM900 Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 16.441 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.554 mW/g

**SAR(1 g) = 0.452 mW/g; SAR(10 g) = 0.344 mW/g** Maximum value of SAR (measured) = 0.470 mW/g



0 dB = 0.470 mW/g = -6.56 dB mW/g



Test Laboratory: QuieTek Lab GSM900 Mid Touch-Right

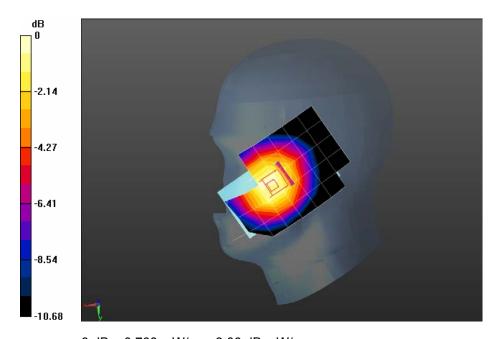
DUT: LM128 Rugged Phone; Type: LM128

Communication System: Generic GSM; Communication System Band: E-GSM900; Duty Cycle: 1:8.3; Frequency: 897.4 MHz; Medium parameters used: f = 897.4 MHz;  $\sigma = 0.98$  mho/m;  $\epsilon = 41.87$ ;  $\rho = 1000$ 

kg/m³; Phantom section: Right Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.97, 8.97, 8.97); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/GSM900 Mid Touch-Right/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.645 mW/g

Configuration/GSM900 Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 8.098 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.808 mW/g

**SAR(1 g) = 0.680 mW/g; SAR(10 g) = 0.515 mW/g** Maximum value of SAR (measured) = 0.708 mW/g



0 dB = 0.708 mW/g = -3.00 dB mW/g



Test Laboratory: QuieTek Lab

GSM900 Mid Tilt-Right

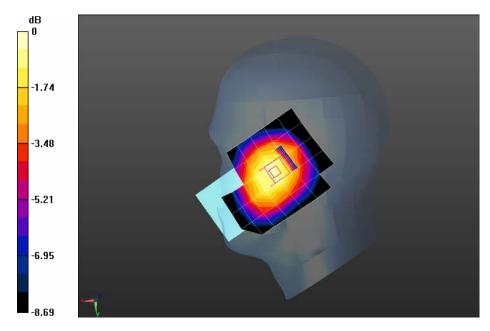
DUT: LM128 Rugged Phone; Type: LM128

Communication System: Generic GSM; Communication System Band: E-GSM900; Duty Cycle: 1:8.3; Frequency: 897.4 MHz; Medium parameters used: f = 897.4 MHz;  $\sigma = 0.98$  mho/m;  $\epsilon = 41.87$ ;  $\rho = 1000$ 

kg/m³; Phantom section: Right Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.97, 8.97, 8.97); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/GSM900 Mid Touch-Right/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.446 mW/g

Configuration/GSM900 Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 15.094 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.550 mW/g

**SAR(1 g) = 0.445 mW/g; SAR(10 g) = 0.338 mW/g** Maximum value of SAR (measured) = 0.462 mW/g



0 dB = 0.462 mW/g = -6.71 dB mW/g



Test Laboratory: QuieTek Lab
GSM900 Mid Touch-Right <SIM 2>

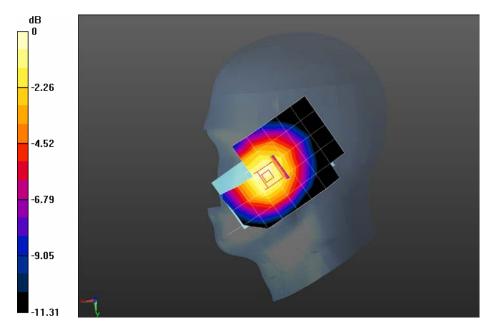
DUT: LM128 Rugged Phone; Type: LM128

Communication System: Generic GSM; Communication System Band: E-GSM900; Duty Cycle: 1:8.3; Frequency: 897.4 MHz; Medium parameters used: f = 897.4 MHz;  $\sigma = 0.98$  mho/m;  $\epsilon = 41.87$ ;  $\rho = 1000$ 

kg/m³; Phantom section: Right Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.97, 8.97, 8.97); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/GSM900 Mid Touch-Right/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.450 mW/g

Configuration/GSM900 Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 6.967 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.565 mW/g

SAR(1 g) = 0.468 mW/g; SAR(10 g) = 0.352 mW/g Maximum value of SAR (measured) = 0.491 mW/g



0 dB = 0.491 mW/g = -6.18 dB mW/g



Test Laboratory: QuieTek Lab GSM900 Mid Body-Back

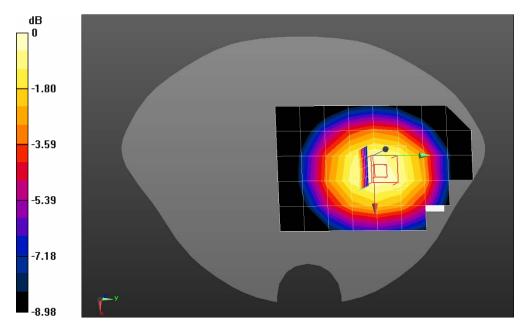
#### DUT: LM128 Rugged Phone; Type: LM128

Communication System: Generic GSM; Communication System Band: E-GSM900; Duty Cycle: 1:8.3; Frequency: 897.4 MHz; Medium parameters used: f = 897.4 MHz;  $\sigma = 0.98$  mho/m;  $\epsilon = 41.87$ ;  $\rho = 1000$ 

kg/m³; Phantom section: Flat Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.97, 8.97, 8.97); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/GSM900 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.924 mW/g

Configuration/GSM900 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 14.901 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.155 mW/g

SAR(1 g) = 0.909 mW/g; SAR(10 g) = 0.678 mW/g Maximum value of SAR (measured) = 0.959 mW/g



0 dB = 0.959 mW/g = -0.36 dB mW/g



Test Laboratory: QuieTek Lab GPRS 900 Mid Body-Back(2up)

DUT: LM128 Rugged Phone; Type: LM128

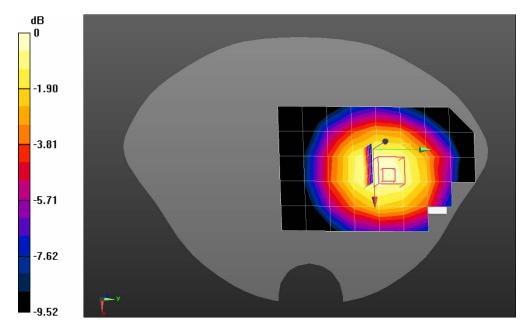
Communication System: GPRS/EGPRS-2 Slot; Communication System Band: E-GSM900; Duty Cycle: 1:4.2;

Frequency: 897.4 MHz; Medium parameters used: f = 897.4 MHz;  $\sigma = 0.98$  mho/m;  $\epsilon r = 41.87$ ;  $\rho = 1000$ 

kg/m³; Phantom section: Flat Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.97, 8.97, 8.97); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/GPRS900 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.788 mW/g

Configuration/GPRS900 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.206 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.116 mW/g

SAR(1 g) = 0.793 mW/g; SAR(10 g) = 0.582 mW/g Maximum value of SAR (measured) = 0.835 mW/g



0 dB = 0.835 mW/g = -1.57 dB mW/g



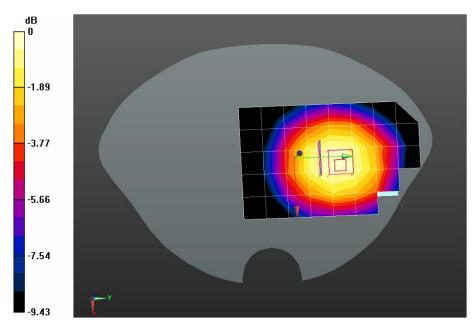
Test Laboratory: QuieTek Lab GPRS 900 Mid Body-Back(3up)

## DUT: LM128 Rugged Phone; Type: LM128

Communication System: GPRS/EGPRS-3 Slot; Communication System Band: E-GSM 900; Duty Cycle: 1:2.8 ; Frequency: 897.4 MHz; Medium parameters used: f = 897.4 MHz;  $\sigma = 0.98$  mho/m;  $\epsilon r = 41.87$ ;  $\rho = 1000$  kg/m³; Phantom section: Flat Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

**DASY5** Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.97, 8.97, 8.97); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/GPRS900 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.771 mW/g

Configuration/GPRS900 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.183 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.085 mW/g

**SAR(1 g) = 0.777 mW/g; SAR(10 g) = 0.572 mW/g** Maximum value of SAR (measured) = 0.817 mW/g



0 dB = 0.817 mW/g = -1.76 dB mW/g



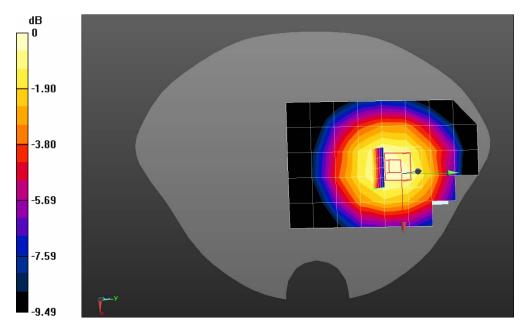
Test Laboratory: QuieTek Lab GPRS 900 Mid Body-Back(4up)

## DUT: LM128 Rugged Phone; Type: LM128

Communication System: GPRS/EGPRS-4 Slot; Communication System Band: E-GSM 900; Duty Cycle: 1:2.1; Frequency: 897.4 MHz; Medium parameters used: f = 897.4 MHz;  $\sigma = 0.98$  mho/m;  $\epsilon = 41.87$ ;  $\rho = 1000$  kg/m³; Phantom section: Flat Section

Ambient temperature ( $^{\circ}$ C): 21.5, Liquid temperature ( $^{\circ}$ C): 21.0

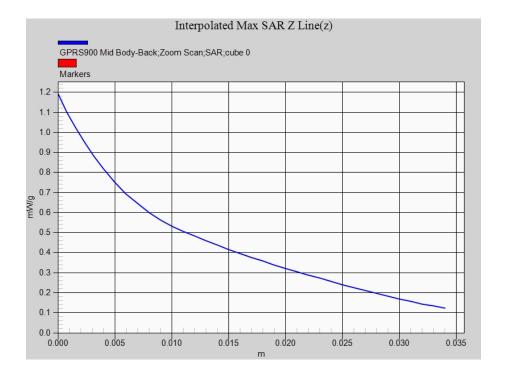
DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.97, 8.97, 8.97); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/GPRS900 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.973 mW/g

Configuration/GPRS900 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 13.032 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 1.193 mW/g


SAR(1 g) = 0.939 mW/g; SAR(10 g) = 0.680 mW/g Maximum value of SAR (measured) = 1.01 mW/g



0 dB = 1.01 mW/g = 0.09 dB mW/g



## **Z-Axis Plot**





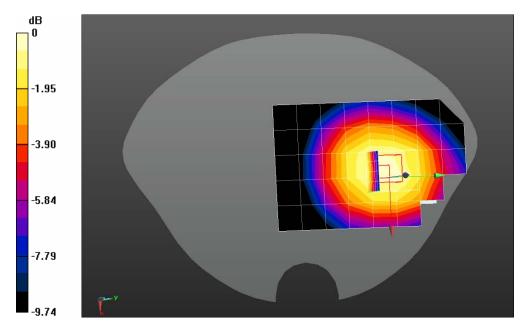
Test Laboratory: QuieTek Lab GPRS 900 Mid Body-Front(4up)

## DUT: LM128 Rugged Phone; Type: LM128

Communication System: GPRS/EGPRS-4 Slot; Communication System Band: E-GSM 900; Duty Cycle: 1:2.1 ; Frequency: 897.4 MHz; Medium parameters used: f = 897.4 MHz;  $\sigma = 0.98$  mho/m;  $\epsilon = 41.87$ ;  $\rho = 1000$  kg/m³; Phantom section: Flat Section

Ambient temperature ( $^{\circ}$ C): 21.5, Liquid temperature ( $^{\circ}$ C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.97, 8.97, 8.97); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/GPRS900 Mid Body-Front/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.756 mW/g

Configuration/GPRS900 Mid Body-Front/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 10.242 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.978 mW/g

**SAR(1 g) = 0.735 mW/g; SAR(10 g) = 0.539 mW/g** Maximum value of SAR (measured) = 0.784 mW/g



0 dB = 0.784 mW/g = -2.11 dB mW/g



Test Laboratory: QuieTek Lab

GPRS 900 Mid Body-Back(4up)(with headset)

DUT: LM128 Rugged Phone; Type: LM128

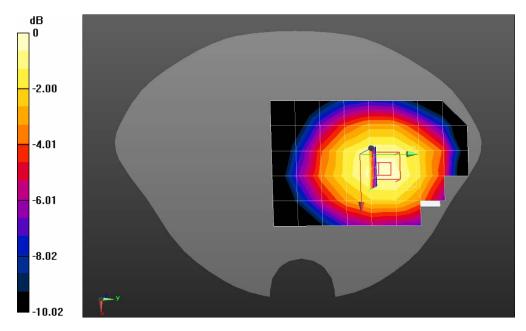
 $Communication \ System: \ GPRS/EGPRS-4 \ Slot; \ Communication \ System \ Band: \ E-GSM \ 900; \ Duty \ Cycle:$ 

1:2.1 ; Frequency: 897.4 MHz; Medium parameters used: f = 897.4 MHz;  $\sigma = 0.98$  mho/m;  $\epsilon r = 41.87$ ;  $\rho = 0.98$ 

1000 kg/m³; Phantom section: Flat Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.97, 8.97, 8.97); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/GPRS900 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.561 mW/g

Configuration/GPRS900 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.014 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.739 mW/g

**SAR(1 g) = 0.573 mW/g; SAR(10 g) = 0.417 mW/g** Maximum value of SAR (measured) = 0.607 mW/g



0 dB = 0.607 mW/g = -4.34 dB mW/g



Test Laboratory: QuieTek Lab DCS 1800 Mid Touch-Left

DUT: LM128 Rugged Phone; Type: LM128

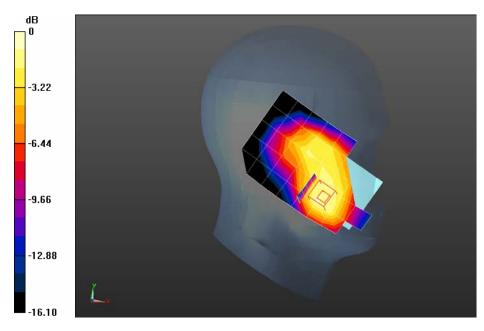
Communication System: Generic GSM; Communication System Band: DCS1800; Duty Cycle: 1:8.3;

Frequency: 1747.4 MHz; Medium parameters used: f = 1747.4 MHz;  $\sigma = 1.36$  mho/m;  $\epsilon r = 40.54$ ;  $\rho = 1000$ 

kg/m3; Phantom section: Left Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.32, 8.32, 8.32); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/DCS 1800 Mid Touch-Left/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.308 mW/g

Configuration/DCS 1800 Mid Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 7.998 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.549 mW/g

SAR(1 g) = 0.353 mW/g; SAR(10 g) = 0.213 mW/g Maximum value of SAR (measured) = 0.377 mW/g



0 dB = 0.377 mW/g = -8.47 dB mW/g



Test Laboratory: QuieTek Lab

DCS 1800 Mid Tilt-Left

DUT: LM128 Rugged Phone; Type: LM128

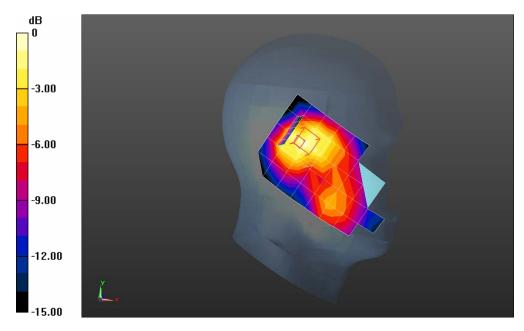
Communication System: Generic GSM; Communication System Band: DCS1800; Duty Cycle: 1:8.3;

Frequency: 1747.4 MHz; Medium parameters used: f = 1747.4 MHz;  $\sigma = 1.36$  mho/m;  $\epsilon r = 40.54$ ;  $\rho = 1000$ 

kg/m³; Phantom section: Left Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.32, 8.32, 8.32); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/DCS 1800 Mid Tilt-Left/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.185 mW/g

Configuration/DCS 1800 Mid Tilt-Left/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 11.966 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.291 mW/g

SAR(1 g) = 0.186 mW/g; SAR(10 g) = 0.119 mW/g Maximum value of SAR (measured) = 0.202 mW/g



0 dB = 0.202 mW/g = -13.89 dB mW/g



Test Laboratory: QuieTek Lab DCS 1800 Mid Touch-Right

DUT: LM128 Rugged Phone; Type: LM128

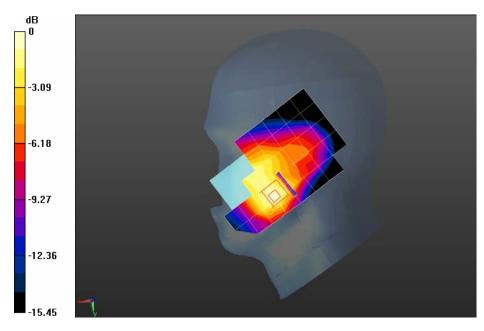
Communication System: Generic GSM; Communication System Band: DCS1800; Duty Cycle: 1:8.3;

Frequency: 1747.4 MHz; Medium parameters used: f = 1747.4 MHz;  $\sigma = 1.36$  mho/m;  $\epsilon r = 40.54$ ;  $\rho = 1000$ 

kg/m³; Phantom section: Right Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.32, 8.32, 8.32); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/DCS 1800 Mid Touch-Right/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.381 mW/g

Configuration/DCS 1800 Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 8.389 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.565 mW/g

SAR(1 g) = 0.365 mW/g; SAR(10 g) = 0.226 mW/g Maximum value of SAR (measured) = 0.388 mW/g



0 dB = 0.388 mW/g = -8.22 dB mW/g



Test Laboratory: QuieTek Lab
DCS 1800 Mid Tilt-Right

## DUT: LM128 Rugged Phone; Type: LM128

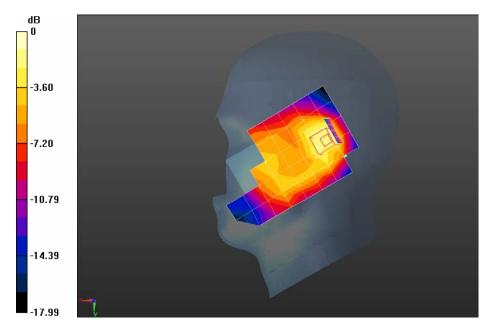
Communication System: Generic GSM; Communication System Band: DCS1800; Duty Cycle: 1:8.3;

Frequency: 1747.4 MHz; Medium parameters used: f = 1747.4 MHz;  $\sigma = 1.36$  mho/m;  $\epsilon r = 40.54$ ;  $\rho = 1000$ 

kg/m³; Phantom section: Right Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.32, 8.32, 8.32); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/DCS 1800 Mid Tilt-Right/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.135 mW/g

Configuration/DCS 1800 Mid Tilt-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 11.973 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.288 mW/g

**SAR(1 g) = 0.179 mW/g; SAR(10 g) = 0.104 mW/g** Maximum value of SAR (measured) = 0.193 mW/g



0 dB = 0.193 mW/g = -14.29 dB mW/g



Test Laboratory: QuieTek Lab

DCS 1800 Mid Touch-Right <SIM 2>

DUT: LM128 Rugged Phone; Type: LM128

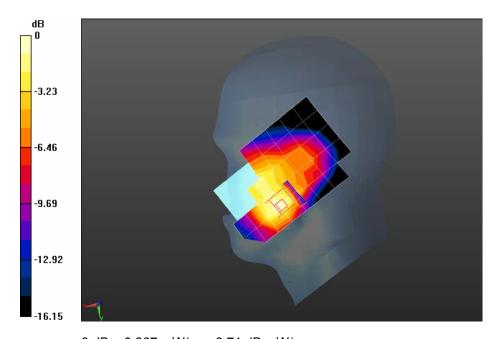
Communication System: Generic GSM; Communication System Band: DCS1800; Duty Cycle: 1:8.3;

Frequency: 1747.4 MHz; Medium parameters used: f = 1747.4 MHz;  $\sigma = 1.36$  mho/m;  $\epsilon r = 40.54$ ;  $\rho = 1000$ 

kg/m³; Phantom section: Right Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.32, 8.32, 8.32); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/DCS 1800 Mid Touch-Right/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.369 mW/g

Configuration/DCS 1800 Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 7.780 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.544 mW/g

SAR(1 g) = 0.343 mW/g; SAR(10 g) = 0.212 mW/g Maximum value of SAR (measured) = 0.367 mW/g



0 dB = 0.367 mW/g = -8.71 dB mW/g



Test Laboratory: QuieTek Lab DCS1800 Mid Body-Back

DUT: LM128 Rugged Phone; Type: LM128

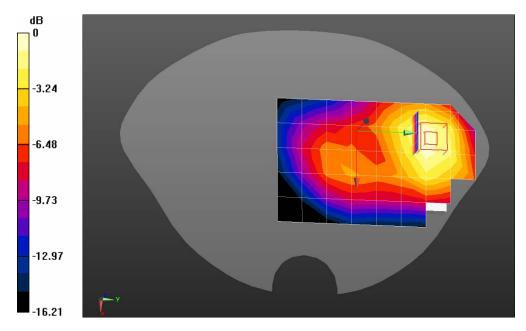
Communication System: Generic GSM; Communication System Band: DCS1800; Duty Cycle: 1:8.3;

Frequency: 1747.4 MHz; Medium parameters used: f = 1747.4 MHz;  $\sigma = 1.36$  mho/m;  $\epsilon r = 40.54$ ;  $\rho = 1000$ 

kg/m³; Phantom section: Flat Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.32, 8.32, 8.32); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/DCS1800 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.359 mW/g

Configuration/DCS1800 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 6.678 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.618 mW/g

**SAR(1 g) = 0.372 mW/g; SAR(10 g) = 0.224 mW/g** Maximum value of SAR (measured) = 0.403 mW/g



0 dB = 0.403 mW/g = -7.89 dB mW/g



Test Laboratory: QuieTek Lab GPRS1800 Mid Body-Back(2up)

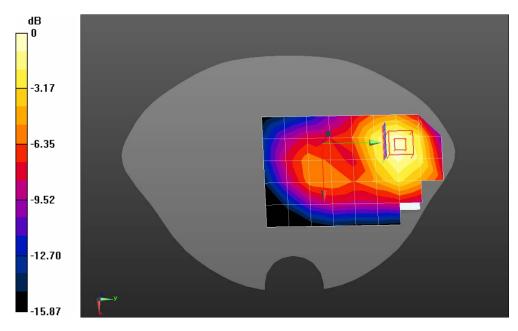
DUT: LM128 Rugged Phone; Type: LM128

Communication System: GPRS/EGPRS-2 Slot; Communication System Band: DCS1800; Duty Cycle: 1:4.2; Frequency: 1747.4 MHz; Medium parameters used: f = 1747.4 MHz;  $\sigma = 1.36$  mho/m;  $\epsilon = 40.54$ ;  $\rho = 1000$ 

kg/m³; Phantom section: Flat Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.32, 8.32, 8.32); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/GPRS1800 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.608 mW/g

Configuration/GPRS1800 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 9.181 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.015 mW/g

**SAR(1 g) = 0.616 mW/g; SAR(10 g) = 0.369 mW/g** Maximum value of SAR (measured) = 0.670 mW/g



0 dB = 0.670 mW/g = -3.48 dB mW/g



Test Laboratory: QuieTek Lab GPRS1800 Mid Body-Back(3up)

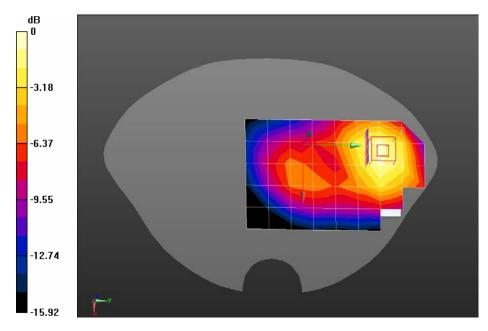
## DUT: LM128 Rugged Phone; Type: LM128

Communication System: GPRS/EGPRS-3 Slot; Communication System Band: DCS 1800; Duty Cycle: 1:2.8; Frequency: 1747.4 MHz; Medium parameters used: f = 1747.4 MHz;  $\sigma = 1.36$  mho/m;  $\epsilon r = 40.54$ ;  $\rho = 1000$ 

kg/m³; Phantom section: Flat Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.32, 8.32, 8.32); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/GPRS1800 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.649 mW/g

Configuration/GPRS1800 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 9.342 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.120 mW/g

**SAR(1 g) = 0.680 mW/g; SAR(10 g) = 0.407 mW/g** Maximum value of SAR (measured) = 0.740 mW/g



0 dB = 0.740 mW/g = -2.62 dB mW/g



Test Laboratory: QuieTek Lab GPRS1800 Mid Body-Back(4up)

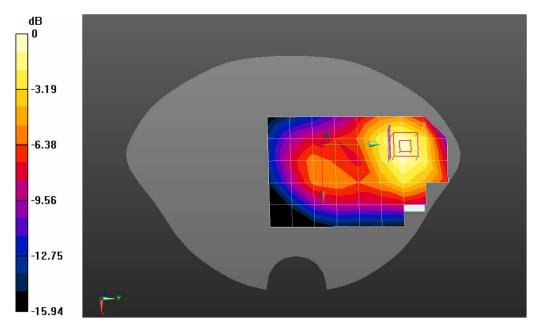
## DUT: LM128 Rugged Phone ; Type: LM128

Communication System: GPRS/EGPRS-4 Slot; Communication System Band: DCS 1800; Duty Cycle: 1:2.1; Frequency: 1747.4 MHz; Medium parameters used: f = 1747.4 MHz;  $\sigma = 1.36$  mho/m;  $\epsilon = 40.54$ ;  $\rho = 1000$ 

kg/m³; Phantom section: Flat Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

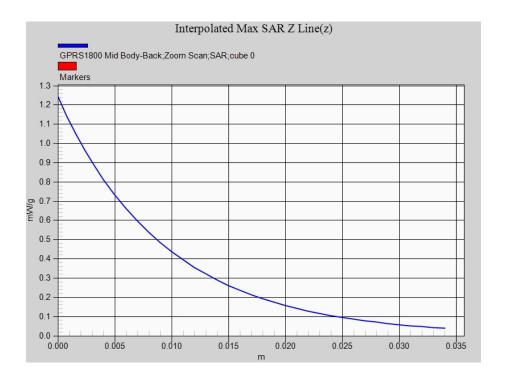
DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.32, 8.32, 8.32); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/GPRS1800 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.743 mW/g

Configuration/GPRS1800 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 9.997 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.244 mW/g


**SAR(1 g) = 0.755 mW/g; SAR(10 g) = 0.453 mW/g** Maximum value of SAR (measured) = 0.820 mW/g



0 dB = 0.820 mW/g = -1.72 dB mW/g



## **Z-Axis Plot**





Test Laboratory: QuieTek Lab GPRS1800 Mid Body-Front(4up)

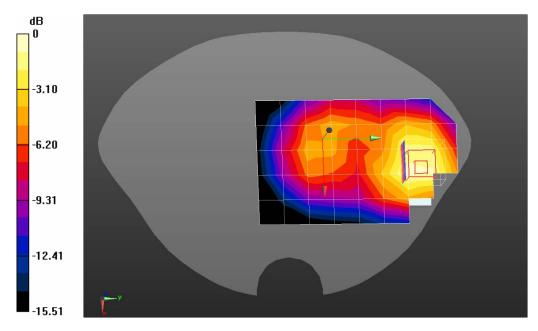
## DUT: LM128 Rugged Phone; Type: LM128

Communication System: GPRS/EGPRS-4 Slot; Communication System Band: DCS 1800; Duty Cycle: 1:2.1; Frequency: 1747.4 MHz; Medium parameters used: f = 1747.4 MHz;  $\sigma = 1.36$  mho/m;  $\epsilon r = 40.54$ ;  $\rho = 1000$ 

kg/m³; Phantom section: Flat Section

Ambient temperature ( $^{\circ}$ ): 21.5, Liquid temperature ( $^{\circ}$ ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(8.32, 8.32, 8.32); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/GPRS1800 Mid Body-Front/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.638 mW/g

Configuration/GPRS1800 Mid Body-Front/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 9.297 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.131 mW/g

**SAR(1 g) = 0.675 mW/g; SAR(10 g) = 0.401 mW/g** Maximum value of SAR (measured) = 0.726 mW/g



0 dB = 0.726 mW/g = -2.78 dB mW/g



Test Laboratory: QuieTek Lab

GPRS1800 Mid Body-Back(4up)(with headset)

DUT: LM128 Rugged Phone ; Type: LM128

Communication System: GPRS/EGPRS-4 Slot; Communication System Band: DCS 1800; Duty Cycle: 1:2.1;

Frequency: 1747.4 MHz; Medium parameters used: f = 1747.4 MHz;  $\sigma = 1.36$  mho/m;  $\epsilon r = 40.54$ ;  $\rho = 1000$ 

kg/m³; Phantom section: Flat Section

Ambient temperature ( $^{\circ}$ C): 21.5, Liquid temperature ( $^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(8.32, 8.32, 8.32); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

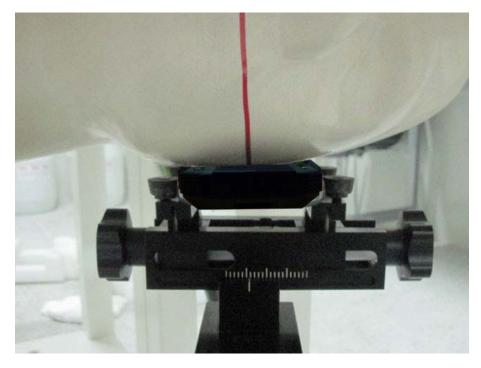
Configuration/GPRS1800 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.718 mW/g

Configuration/GPRS1800 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 8.614 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.201 mW/g

SAR(1 g) = 0.733 mW/g; SAR(10 g) = 0.441 mW/g Maximum value of SAR (measured) = 0.792 mW/g



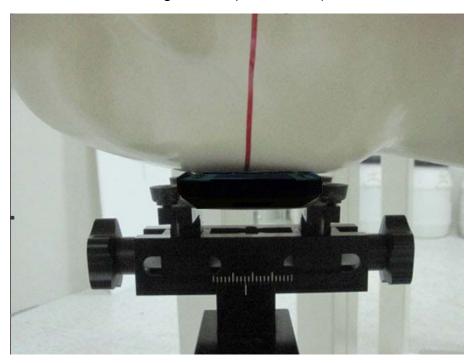

0 dB = 0.792 mW/g = -2.03 dB mW/g



# **Appendix C. Test Setup Photographs & EUT Photographs**

# **Test Setup Photographs**

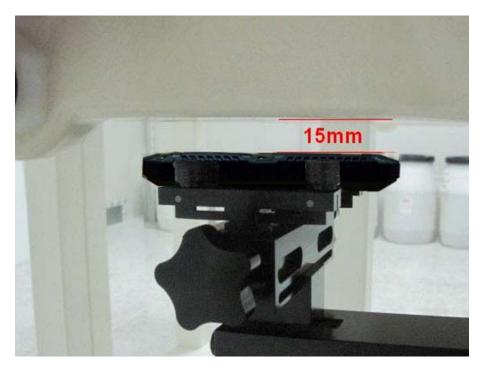
Left Head (EUT Cheek)



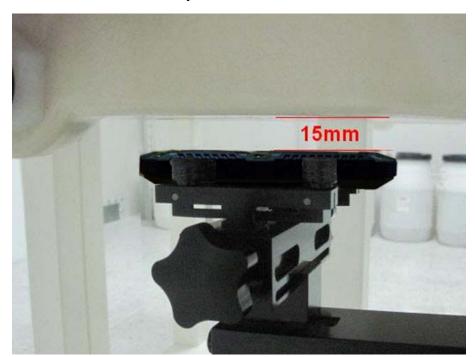

Left Head (EUT Tilted)






# Right Head (EUT Cheek)




Right Head (EUT Tilted)



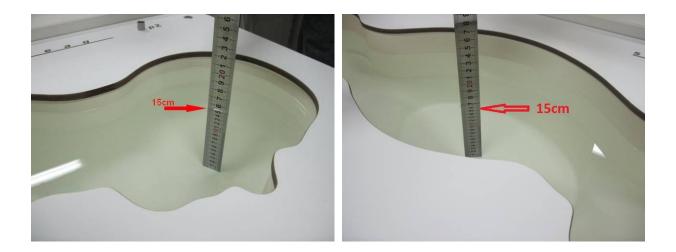




Body SAR Back 15mm



Body SAR Front 15mm






Body SAR Back 15mm with Headset



# Depth of the liquid in the phantom – Zoom in



Note: The position used in the measurements were according to IEEE 1528 - 2003



# **EUT Photographs**







# **Appendix D. Probe Calibration Data**

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Quietek-CN (Auden)

Certificate No: EX3-3710\_Mar12

Accreditation No.: SCS 108

## CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3710

Calibration procedure(s) QA CAL-01.v8, QA CAL-12.v7, QA CAL-14.v3, QA CAL-23.v4,

QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date: March 12, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID              | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|-----------------|-----------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 31-Mar-11 (No. 217-01372)         | Apr-12                 |
| Power sensor E4412A        | MY41498087      | 31-Mar-11 (No. 217-01372)         | Apr-12                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 29-Mar-11 (No. 217-01369)         | Apr-12                 |
| Reference 20 dB Attenuator | SN: S5086 (20b) | 29-Mar-11 (No. 217-01367)         | Apr-12                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 29-Mar-11 (No. 217-01370)         | Apr-12                 |
| Reference Probe ES3DV2     | SN: 3013        | 29-Dec-11 (No. ES3-3013_Dec11)    | Dec-12                 |
| DAE4                       | SN: 654         | 3-May-11 (No. DAE4-654_May11)     | May-12                 |
| Secondary Standards        | ID              | Check Date (in house)             | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Apr-11)  | In house check: Apr-13 |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 |

Calibrated by:

Jeton Kastrati

Approved by:

Katja Pokovic

Technical Manager

Issued: March 13, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: EX3-3710\_Mar12 Page 1 of 11



Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal
A, B, C modulation dependent linearization parameters

Polarization φ orotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- iEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
   NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
  power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
  maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Page: 61 of 99

Certificate No: EX3-3710\_Mar12



EX3DV4 - SN:3710 March 12, 2012

# Probe EX3DV4

SN:3710

Manufactured:

July 21, 2009

Repaired: Calibrated: February 21, 2012

March 12, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3710\_Mar12 Page 3 of 11

Page: 62 of 99



EX3DV4-SN:3710 March 12, 2012

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

# **Basic Calibration Parameters**

|                                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |  |
|--------------------------------------------|----------|----------|----------|-----------|--|
| Norm (µV/(V/m) <sup>2</sup> ) <sup>A</sup> | 0.51     | 0.56     | 0.44     | ± 10.1 %  |  |
| DCP (mV) <sup>8</sup>                      | 101.3    | 98.9     | 100.9    |           |  |

#### Modulation Calibration Parameters

| UID   | Communication System Name | PAR  |   | A<br>dB | B<br>dB | C<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|-------|---------------------------|------|---|---------|---------|---------|----------|---------------------------|
| 10000 | CW 0.00                   | 0.00 | X | 0.00    | 0.00    | 1.00    | 114.4    | ±2.2 %                    |
|       |                           |      | Υ | 0.00    | 0.00    | 1.00    | 94.4     |                           |
|       |                           |      | Z | 0.00    | 0.00    | 1.00    | 114.2    |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3710\_Mar12

A The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6).
 B Numerical linearization parameter: uncertainty not required.
 E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.



March 12, 2012 EX3DV4-SN:3710

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity F | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth<br>(mm) | Unct.<br>(k=2) |
|----------------------|----------------------------|-------------------------|---------|---------|---------|-------|---------------|----------------|
| 450                  | 43.5                       | 0.87                    | 9.61    | 9.61    | 9.61    | 0.12  | 1.00          | ± 13.4 %       |
| 750                  | 41.9                       | 0.89                    | 9.51    | 9.51    | 9.51    | 0.24  | 1.16          | ± 12.0 %       |
| 835                  | 41.5                       | 0.90                    | 9.18    | 9.18    | 9.18    | 0.22  | 1.15          | ± 12.0 %       |
| 900                  | 41.5                       | 0.97                    | 8.97    | 8.97    | 8.97    | 0.19  | 1.35          | ± 12.0 %       |
| 1810                 | 40.0                       | 1.40                    | 8.32    | 8.32    | 8.32    | 0.79  | 0.60          | ± 12.0 %       |
| 1900                 | 40.0                       | 1.40                    | 8.16    | 8.16    | 8.16    | 0.72  | 0.66          | ± 12.0 %       |
| 2450                 | 39.2                       | 1.80                    | 7.25    | 7.25    | 7.25    | 0.36  | 0.91          | ± 12.0 %       |
| 2600                 | 39.0                       | 1.96                    | 6.96    | 6.96    | 6.96    | 0.39  | 0.95          | ± 12.0 %       |
| 3500                 | 37.9                       | 2.91                    | 6.80    | 6.80    | 6.80    | 0.33  | 1.09          | ± 13.1 %       |
| 5200                 | 36.0                       | 4.66                    | 5.21    | 5.21    | 5.21    | 0.35  | 1.80          | ± 13.1 %       |
| 5500                 | 35.6                       | 4.96                    | 4.9.5   | 4.9.5   | 4.9.5   | 0.35  | 1.80          | ± 13.1 %       |
| 5800                 | 35.3                       | 5.27                    | 4.56    | 4.56    | 4.56    | 0.45  | 1.80          | ± 13.1 %       |

<sup>&</sup>lt;sup>©</sup> Frequency validity of ± 100 MI lz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS

Page 5 of 11 Certificate No: EX3-3710\_Mar12

Frequency saiding of 1 to write only applies to DAST val.4 and ingler (see Fage 2), less it is restricted to ± 50 km²s. The uncertainty is the ROS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.



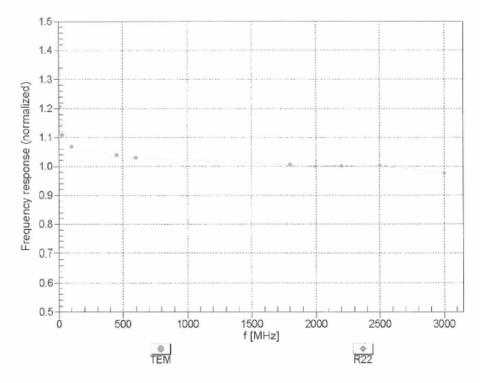
EX3DV4-SN:3710 March 12, 2012

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

## Calibration Parameter Determined in Body Tissue Simulating Media

| f (MHz) <sup>c</sup> | Relative<br>Permittivity F | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth<br>(mm) | Unct.<br>(k=2) |
|----------------------|----------------------------|-------------------------|---------|---------|---------|-------|---------------|----------------|
| 450                  | 56.7                       | 0.94                    | 10.69   | 10.69   | 10.69   | 0.06  | 1.00          | ± 13.4 %       |
| 750                  | 55.5                       | 0.96                    | 9.33    | 9.33    | 9.33    | 0.43  | 0.86          | ± 12.0 %       |
| 835                  | 55.2                       | 0.97                    | 9.13    | 9.13    | 9.13    | 0.63  | 0.70          | ± 12.0 %       |
| 900                  | 55.0                       | 1.05                    | 9.04    | 9.04    | 9.04    | 0.39  | 0.88          | ± 12.0 %       |
| 1810                 | 53.3                       | 1.52                    | 7.73    | 7.73    | 7.73    | 0.33  | 1.10          | ± 12.0 %       |
| 1900                 | 53.3                       | 1.52                    | 7.43    | 7.43    | 7.43    | 0.42  | 0.90          | ± 12.0 %       |
| 2450                 | 52.7                       | 1.95                    | 6.98    | 6.98    | 6.98    | 0.79  | 0.59          | ± 12.0 %       |
| 2600                 | 52.5                       | 2.16                    | 6.68    | 6.68    | 6.68    | 0.79  | 0.52          | ± 12.0 %       |
| 3500                 | 51.3                       | 3.31                    | 6.23    | 6.23    | 6.23    | 0.36  | 1.13          | ± 13.1 %       |
| 5200                 | 49.0                       | 5.30                    | 4.20    | 4.20    | 4.20    | 0.50  | 1.90          | ± 13.1 %       |
| 5500                 | 48.6                       | 5.65                    | 3.82    | 3.82    | 3.82    | 0.50  | 1.90          | ± 13.1 %       |
| 5800                 | 48.2                       | 6.00                    | 3.89    | 3.89    | 3.89    | 0.60  | 1.90          | ± 13.1 %       |

Certificate No: EX3-3710\_Mar12 Page 6 of 11


<sup>&</sup>lt;sup> $\Gamma$ </sup> frequency validity of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

<sup> $\Gamma$ </sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

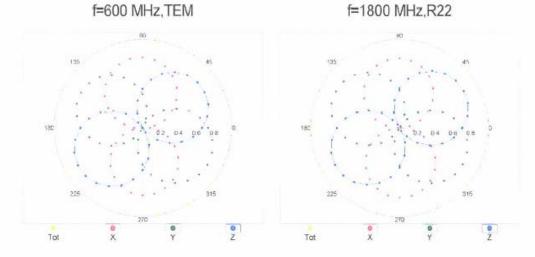


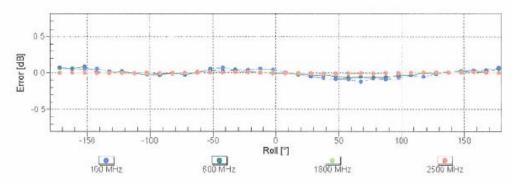
EX3DV4-SN:3710 March 12, 2012

# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: EX3-3710\_Mar12



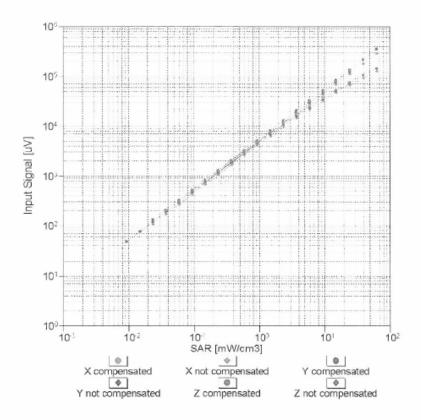

EX3DV4- SN:3710 March 12, 2012

# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$








Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

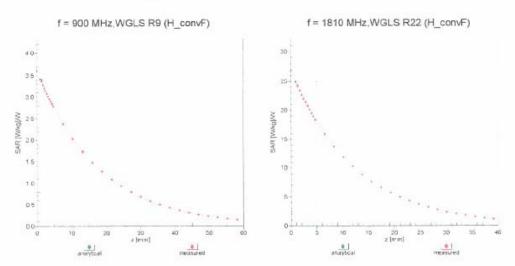
Certificate No: EX3-3710\_Mar12 Page 8 of 11



EX3DV4- SN:3710 March 12, 2012

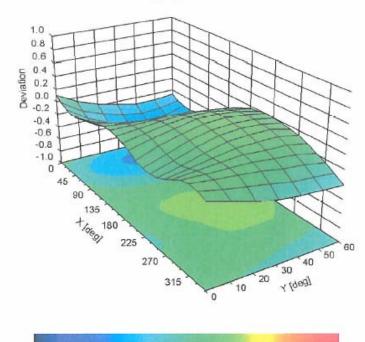
# Dynamic Range f(SAR<sub>head</sub>) (TEM cell, f = 900 MHz)






Uncertainty of Linearity Assessment: ± 0.6% (k=2)




EX3DV4- SN:3710 Merch 12, 2012

# **Conversion Factor Assessment**



Deviation from Isotropy in Liquid

Error (φ, θ), f = 900 MHz



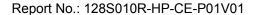
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3710\_Mar12

Page 10 of 11



EX3DV4- SN:3710 March 12, 2012


# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

## Other Probe Parameters

| Sensor Arrangement                            | Triangular     |
|-----------------------------------------------|----------------|
| Connector Angle (°)                           | Not applicable |
| Mechanical Surface Detection Mode             | enabled        |
| Optical Surface Detection Mode                | disabled       |
| Probe Overall Length                          | 337 mm         |
| Probe Body Diameter                           | 10 mm          |
| Tip Length                                    | 9 mm           |
| Tip Diameter                                  | 2.5 mm         |
| Probe Tip to Sensor X Calibration Point       | 1 mm           |
| Probe Tip to Sensor Y Calibration Point       | 1 mm           |
| Probe Tip to Sensor Z Calibration Point       | 1 mm           |
| Recommended Measurement Distance from Surface | 2 mm           |
|                                               |                |

Certificate No: EX3-3710\_Mar12

Page 11 of 11





# **Appendix E. Dipole Calibration Data**

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

| lient Quietek-CN (Au                     | ıden)                             | Certificate                                                                                                                           | Certificate No: D900V2-1d096_Feb12 |  |  |  |
|------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|--|--|
| CALIBRATION C                            | ERTIFICATE                        |                                                                                                                                       |                                    |  |  |  |
| Dbject                                   | D900V2 - SN: 1d096                |                                                                                                                                       |                                    |  |  |  |
| Calibration procedure(s)                 | QA CAL-05.v8<br>Calibration proce | dure for dipole validation kits a                                                                                                     | above 700 MHz                      |  |  |  |
| Calibration date:                        | February 17, 201                  | 2                                                                                                                                     |                                    |  |  |  |
| The measurements and the unce            | rtainties with confidence p       | onal standards, which realize the physica<br>robability are given on the following page:<br>y facility: environment temperature (22 ± | s and are part of the certificate, |  |  |  |
| Driver - Character and                   | ID#                               | Cal Date (Certificate No.)                                                                                                            | Scheduled Calibration              |  |  |  |
| rimary Standards<br>Power meter EPM-442A | GB37480704                        | 05-Oct-11 (No. 217-01451)                                                                                                             | Oct-12                             |  |  |  |
| ower sensor HP 8481A                     | US37292783                        | 05-Oct-11 (No. 217-01451)                                                                                                             | Oct-12                             |  |  |  |
| eference 20 dB Attenuator                | SN: 5086 (20g)                    | 29-Mar-11 (No. 217-01368)                                                                                                             | Apr-12                             |  |  |  |
| /pe-N mismatch combination               | SN: 5047.2 / 06327                | 29-Mar-11 (No. 217-01371)                                                                                                             | Apr-12                             |  |  |  |
| eference Probe ES3DV3                    | SN: 3205                          | 30-Dec-11 (No. ES3-3205_Dec11)                                                                                                        | Dec-12                             |  |  |  |
| AE4                                      | SN: 601                           | 04-Jul-11 (No. DAE4-601_Jul11)                                                                                                        | Jul-12                             |  |  |  |
| Secondary Standards                      | ID#                               | Check Date (in house)                                                                                                                 | Scheduled Check                    |  |  |  |
| Power sensor HP 8481A                    | MY41092317                        | 18-Oct-02 (in house check Oct-11)                                                                                                     | In house check: Oct-13             |  |  |  |
| RF generator R&S SMT-06                  | 100005                            | 04-Aug-99 (in house check Oct-11)                                                                                                     | In house check: Oct-13             |  |  |  |
| Network Analyzer HP 8753E                | US37390585 S4206                  | 18-Oct-01 (in house check Oct-11)                                                                                                     | In house check: Oct-12             |  |  |  |
|                                          | Name                              | Function                                                                                                                              | Cit                                |  |  |  |
| 2-11                                     |                                   |                                                                                                                                       | Signature                          |  |  |  |
| Calibrated by:                           | Israe El-Naouq                    | Laboratory Technician                                                                                                                 | Asrea El Vaou                      |  |  |  |
| Approved by:                             | Katja Pokovic                     | Technical Manager                                                                                                                     | BUS-                               |  |  |  |
|                                          |                                   |                                                                                                                                       | Issued: February 20, 2012          |  |  |  |

Certificate No: D900V2-1d096\_Feb12

Page 1 of 8

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.







# Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Accreditation No.: SCS 108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### **Additional Documentation:**

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D900V2-1d096\_Feb12

Page 2 of 8



#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.0     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 900 MHz ± 1 MHz        |             |

# **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.5         | 0.97 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.3 ± 6 %   | 0.95 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                           |
|-------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                          | 250 mW input power | 2.60 mW / g               |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 10.5 mW /g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 1.67 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 6.73 mW /g ± 16.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.0         | 1.05 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 55.1 ± 6 %   | 1.08 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 250 mW input power | 2.80 mW / g                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 11.0 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 250 mW input power | 1.80 mW / g                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 7.08 mW / g ± 16.5 % (k=2) |

Certificate No: D900V2-1d096\_Feb12



#### **Appendix**

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 53.1 $\Omega$ + 1.4 j $\Omega$ |
|--------------------------------------|--------------------------------|
| Return Loss                          | - 29.7 dB                      |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 48.5 Ω - 1.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 32.3 dB       |

### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.410 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG              |
|-----------------|--------------------|
| Manufactured on | September 22, 2009 |

Certificate No: D900V2-1d096\_Feb12

Page 4 of 8



#### **DASY5 Validation Report for Head TSL**

Date: 17.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 1d096

Communication System: CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz;  $\sigma = 0.95 \text{ mho/m}$ ;  $\varepsilon_r = 40.3$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 30.12.2011

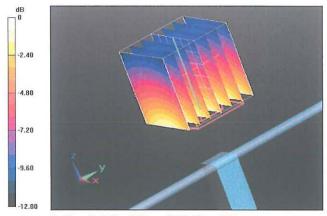
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

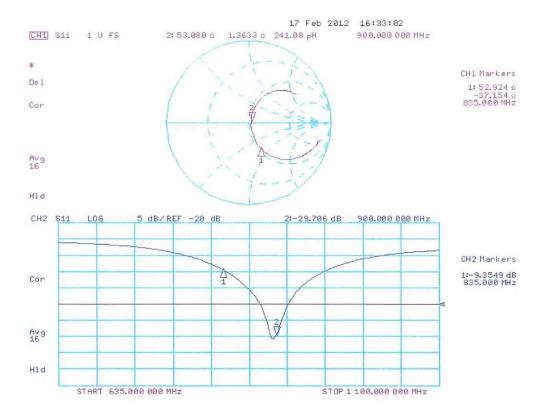

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.787 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.8810

SAR(1 g) = 2.6 mW/g; SAR(10 g) = 1.67 mW/g

Maximum value of SAR (measured) = 3.046 mW/g




0 dB = 3.050 mW/g = 9.69 dB mW/g

Certificate No: D900V2-1d096\_Feb12



# Impedance Measurement Plot for Head TSL





#### **DASY5 Validation Report for Body TSL**

Date: 17.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 1d096

Communication System: CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz;  $\sigma = 1.08 \text{ mho/m}$ ;  $\varepsilon_r = 55.1$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.94, 5.94, 5.94); Calibrated: 30.12.2011

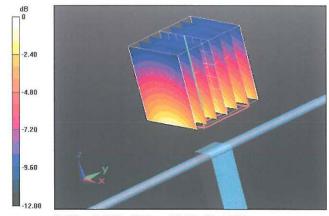
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

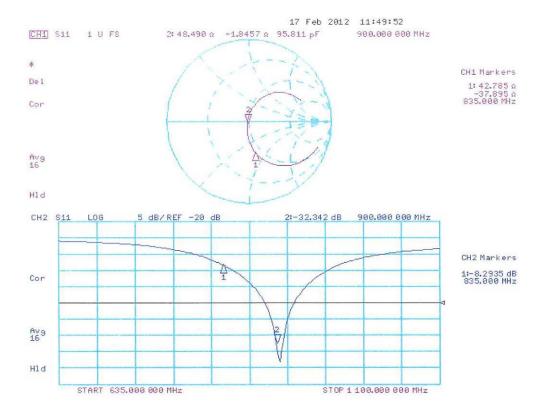

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.370 V/m; Power Drift = 0.0075 dB

Peak SAR (extrapolated) = 4.2490

SAR(1 g) = 2.8 mW/g; SAR(10 g) = 1.8 mW/g

Maximum value of SAR (measured) = 3.283 mW/g




0 dB = 3.280 mW/g = 10.32 dB mW/g

Certificate No: D900V2-1d096\_Feb12



# Impedance Measurement Plot for Body TSL





C

Accreditation No.: SCS 108

Report No.: 128S010R-HP-CE-P01V01



Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Quietek-CN (Auden)

Certificate No: D1800V2-2d179 Feb12

#### CALIBRATION CERTIFICATE D1800V2 - SN: 2d179 Object Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: February 22, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) Primary Standards ID# Scheduled Calibration GB37480704 Power meter EPM-442A 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) Oct-12 Power sensor HP 8481A US37292783 Reference 20 dB Attenuator 29-Mar-11 (No. 217-01368) Apr-12 SN: 5086 (20g) SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Type-N mismatch combination Apr-12 Reference Probe ES3DV3 SN: 3205 30-Dec-11 (No. ES3-3205\_Dec11) Dec-12 04-Jul-11 (No. DAE4-601\_Jul11) Jul-12 DAE4 SN: 601 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) In house check: Oct-13 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-11) In house check: Oct-12 Name Function Signature Calibrated by: Israe El-Naouq Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: February 22, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1800V2-2d179\_Feb12

Page 1 of 8





#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1800V2-2d179\_Feb12



# **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.0     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 1800 MHz ± 1 MHz       |             |

# **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.5 ± 6 %   | 1.34 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                           |
|-------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                          | 250 mW input power | 9.17 mW / g               |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 37.8 mW /g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 4.91 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 20.0 mW /g ± 16.5 % (k=2) |

Body TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.3         | 1.52 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 53.1 ± 6 %   | 1.49 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 250 mW input power | 9.27 mW / g                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 37.5 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 250 mW input power | 4.92 mW / g                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 19.8 mW / g ± 16.5 % (k=2) |

Certificate No: D1800V2-2d179\_Feb12



#### **Appendix**

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 50.2 Ω - $2.9$ jΩ |  |
|--------------------------------------|-------------------|--|
| Return Loss                          | - 30.7 dB         |  |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 46.1 Ω - 2.8 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 26.0 dB       |  |

#### General Antenna Parameters and Design

| 1                                |          |
|----------------------------------|----------|
| Electrical Delay (one direction) | 1.214 ns |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG              |
|-----------------|--------------------|
| Manufactured on | September 05, 2008 |

Certificate No: D1800V2-2d179\_Feb12 Page 4 of 8



#### **DASY5 Validation Report for Head TSL**

Date: 22.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d179

Communication System: CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz;  $\sigma = 1.34 \text{ mho/m}$ ;  $\varepsilon_r = 40.5$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(5.07, 5.07, 5.07); Calibrated: 30.12.2011

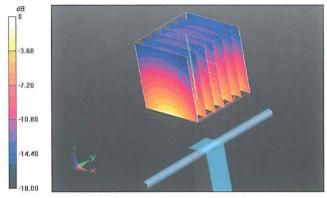
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.07.2011

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

• DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

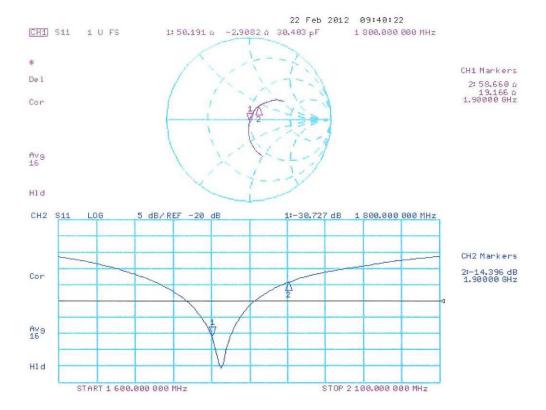

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.908 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 16.0120

SAR(1 g) = 9.17 mW/g; SAR(10 g) = 4.91 mW/g

Maximum value of SAR (measured) = 11.315 mW/g




0 dB = 11.320 mW/g = 21.08 dB mW/g

Certificate No: D1800V2-2d179\_Feb12



#### Impedance Measurement Plot for Head TSL



Certificate No: D1800V2-2d179\_Feb12



#### **DASY5 Validation Report for Body TSL**

Date: 22.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d179

Communication System: CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz;  $\sigma = 1.49$  mho/m;  $\varepsilon_r = 53.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.74, 4.74, 4.74); Calibrated: 30.12.2011

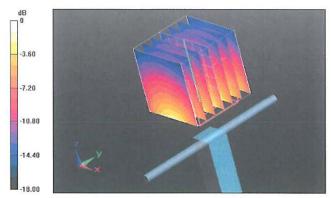
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

• DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

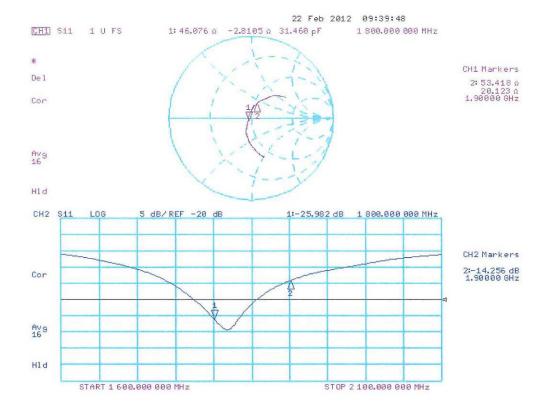

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.820 V/m; Power Drift = 0.0038 dB

Peak SAR (extrapolated) = 16.0810

SAR(1 g) = 9.27 mW/g; SAR(10 g) = 4.92 mW/g

Maximum value of SAR (measured) = 11.751 mW/g




0 dB = 11.750 mW/g = 21.40 dB mW/g

Certificate No: D1800V2-2d179\_Feb12 Page 7 of 8



# Impedance Measurement Plot for Body TSL





Report No.: 128S010R-HP-CE-P01V01



Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Quietek-CN (Auden)

Certificate No: D1900V2-5d121\_Feb12

# CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d121

Calibration procedure(s)

QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

February 22, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration     |
|-----------------------------|--------------------|-----------------------------------|---------------------------|
| Power meter EPM-442A        | GB37480704         | 05-Oct-11 (No. 217-01451)         | Oct-12                    |
| Power sensor HP 8481A       | US37292783         | 05-Oct-11 (No. 217-01451)         | Oct-12                    |
| Reference 20 dB Attenuator  | SN: 5086 (20g)     | 29-Mar-11 (No. 217-01368)         | Apr-12                    |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 29-Mar-11 (No. 217-01371)         | Apr-12                    |
| Reference Probe ES3DV3      | SN: 3205           | 30-Dec-11 (No. ES3-3205_Dec11)    | Dec-12                    |
| DAE4                        | SN: 601            | 04-Jul-11 (No. DAE4-601_Jul11)    | Jul-12                    |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check           |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13    |
| RF generator R&S SMT-06     | 100005             | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13    |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12    |
|                             | Name               | Function                          | Signature                 |
| Calibrated by:              | Israe El-Naouq     | Laboratory Technician             | Krace Et-Daong            |
| Approved by:                | Katja Pokovic      | Technical Manager                 | Relly-                    |
|                             |                    |                                   | Issued: February 22, 2012 |

Certificate No: D1900V2-5d121\_Feb12

Page 1 of 8

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.



Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d121\_Feb12 Page 2 of 8



#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.0     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 1900 MHz ± 1 MHz       |             |

# Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.4 ± 6 %   | 1.40 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                           |
|-------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                          | 250 mW input power | 9.84 mW / g               |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 39.4 mW /g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 5.19 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 20.8 mW /g ± 16.5 % (k=2) |

# **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.3         | 1.52 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 53.0 ± 6 %   | 1.56 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 250 mW input power | 9.84 mW / g                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 38.7 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 250 mW input power | 5.15 mW / g                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.4 mW / g ± 16.5 % (k=2) |

Certificate No: D1900V2-5d121\_Feb12

Page 3 of 8



#### Appendix

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 51.6 Ω + 7.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.8 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | $47.4~\Omega + 7.4~j\Omega$ |
|--------------------------------------|-----------------------------|
| Return Loss                          | - 21.9 dB                   |

## General Antenna Parameters and Design

|                              |     |          | _ |
|------------------------------|-----|----------|---|
| Electrical Delay (one direct | on) | 1.205 ns |   |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG           |  |
|-----------------|-----------------|--|
| Manufactured on | August 25, 2009 |  |

Certificate No: D1900V2-5d121\_Feb12

Page 4 of 8



#### **DASY5 Validation Report for Head TSL**

Date: 22.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d121

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz;  $\sigma = 1.4 \text{ mho/m}$ ;  $\varepsilon_r = 40.4$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011

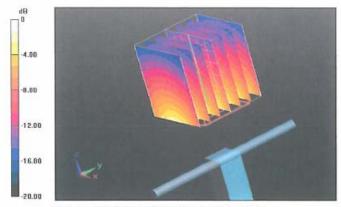
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

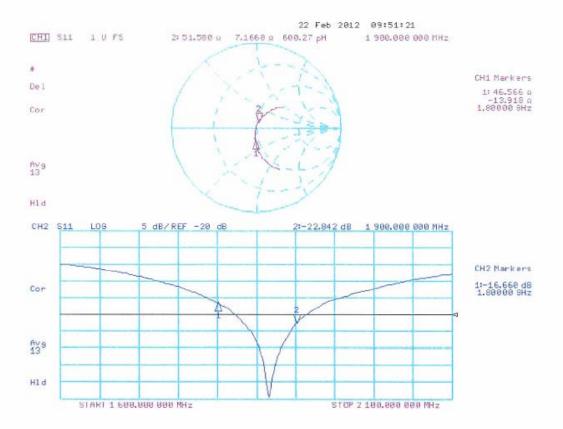

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.900 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 17.5160

SAR(1 g) = 9.84 mW/g; SAR(10 g) = 5.19 mW/g

Maximum value of SAR (measured) = 12.195 mW/g




0 dB = 12.200 mW/g = 21.73 dB mW/g

Certificate No: D1900V2-5d121\_Feb12



# Impedance Measurement Plot for Head TSL



Certificate No: D1900V2-5d121\_Feb12

Page 6 of 8



#### DASY5 Validation Report for Body TSL

Date: 22.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d121

Communication System; CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz;  $\sigma = 1.56 \text{ mho/m}$ ;  $\varepsilon_r = 53$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011

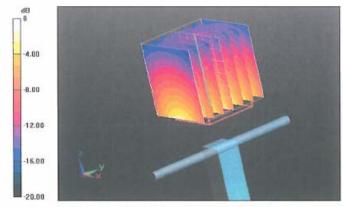
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

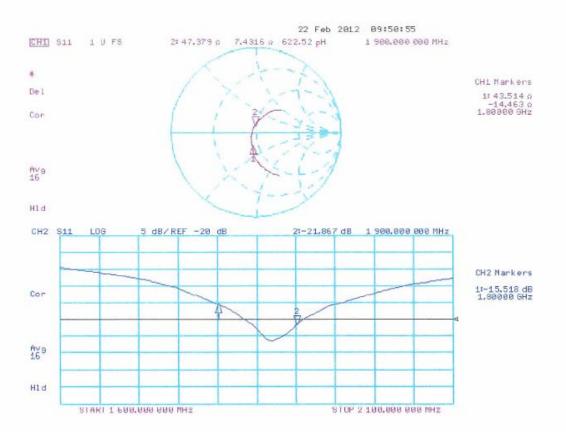
# Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.537 V/m; Power Drift = 0.0039 dB

Peak SAR (extrapolated) = 17.3450

SAR(1 g) = 9.84 mW/g; SAR(10 g) = 5.15 mW/g


Maximum value of SAR (measured) = 12.473 mW/g



0 dB = 12.470 mW/g = 21.92 dB mW/g



# Impedance Measurement Plot for Body TSL





# **Appendix F. DAE Calibration Data**

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Quietek-CN (Auden)

Certificate No: DAE4-1220\_Jan12

Accreditation No.: SCS 108

| CALIBRATION CERTIFICATE                                                                  |                                                                                |                                                                                                                                                                  |                          |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Object                                                                                   | DAE4 - SD 000 D                                                                | 04 BJ - SN: 1220                                                                                                                                                 |                          |
| Calibration procedure(s)                                                                 | QA CAL-06.v24 Calibration procedure for the data acquisition electronics (DAE) |                                                                                                                                                                  |                          |
| Calibration date:                                                                        | January 23, 2012                                                               |                                                                                                                                                                  |                          |
| The measurements and the uncerta                                                         | ainties with confidence pro                                                    | nal standards, which realize the physical units of obability are given on the following pages and are facility: environment temperature $(22\pm3)^{\circ}$ C and | part of the certificate. |
| Primary Standards                                                                        | ID # Cal Date (Certificate No.) Scheduled Calibration                          |                                                                                                                                                                  |                          |
| Keithley Multimeter Type 2001                                                            | SN: 0810278                                                                    | 28-Sep-11 (No:11450)                                                                                                                                             | Sep-12                   |
| Secondary Standards                                                                      | ID#                                                                            | Check Date (in house)                                                                                                                                            | Scheduled Check          |
| Calibrator Box V2.1 SE UWS 053 AA 1001 05-Jan-12 (in house check) In house check: Jan-13 |                                                                                |                                                                                                                                                                  | In house check: Jan-13   |
|                                                                                          | Name Function Signature                                                        |                                                                                                                                                                  |                          |
| Calibrated by:                                                                           | Dominique Steffen                                                              | Technician                                                                                                                                                       |                          |
| Approved by:                                                                             | Fin Bomholt                                                                    | R&D Director                                                                                                                                                     | Bonhalf                  |
| This calibration certificate shall not                                                   | be reproduced except in t                                                      | full without written approval of the laboratory.                                                                                                                 | Issued: January 23, 2012 |
|                                                                                          |                                                                                |                                                                                                                                                                  |                          |

Certificate No: DAE4-1220\_Jan12 Page 1 of 5



#### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

#### Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
  - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
  - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
  - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
  - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
  - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
  - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1220\_Jan12

Page 2 of 5



# **DC Voltage Measurement**

A/D - Converter Resolution nominal

| Calibration Factors | Х                    | Y                    | z                    |
|---------------------|----------------------|----------------------|----------------------|
| High Range          | 405.267 ± 0.1% (k=2) | 404.990 ± 0.1% (k=2) | 404.221 ± 0.1% (k=2) |
| Low Range           | 3.97762 ± 0.7% (k=2) | 3.99629 ± 0.7% (k=2) | 3.98707 ± 0.7% (k=2) |

# **Connector Angle**

| Connector Angle to be used in DASY system | 176.5 ° ± 1 ° |
|-------------------------------------------|---------------|

Certificate No: DAE4-1220\_Jan12

Page 3 of 5



# **Appendix**

1. DC Voltage Linearity

| High Range        | Reading (μV) | Difference (μV) | Error (%) |
|-------------------|--------------|-----------------|-----------|
| Channel X + Input | 199991.77    | -2.52           | -0.00     |
| Channel X + Input | 20001.19     | 1.01            | 0.01      |
| Channel X - Input | -19996.52    | 3.93            | -0.02     |
| Channel Y + Input | 199992.70    | -2.15           | -0.00     |
| Channel Y + Input | 19999.00     | -1.14           | -0.01     |
| Channel Y - Input | -19999.75    | 0.71            | -0.00     |
| Channel Z + Input | 199991.55    | -3.11           | -0.00     |
| Channel Z + Input | 19999.33     | -0.76           | -0.00     |
| Channel Z - Input | -20001.23    | -0.67           | 0.00      |

| Low Range |         | Reading (μV) | Difference (μV) | Error (%) |
|-----------|---------|--------------|-----------------|-----------|
| Channel X | + Input | 1999.14      | -1.60           | -0.08     |
| Channel X | + Input | 201.79       | 0.59            | 0.29      |
| Channel X | - Input | -198.19      | 0.48            | -0.24     |
| Channel Y | + Input | 1999.56      | -0.99           | -0.05     |
| Channel Y | + Input | 200.20       | -0.96           | -0.48     |
| Channel Y | - Input | -199.38      | -0.54           | 0.27      |
| Channel Z | + Input | 2000.07      | -0.52           | -0.03     |
| Channel Z | + Input | 200.32       | -0.83           | -0.41     |
| Channel Z | - Input | -199.60      | -0.78           | 0.39      |

# 2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Common mode<br>Input Voltage (mV) | High Range<br>Average Reading (μV) | Low Range<br>Average Reading (μV) |
|-----------|-----------------------------------|------------------------------------|-----------------------------------|
| Channel X | 200                               | 10.22                              | 8.65                              |
|           | - 200                             | -6.99                              | -8.91                             |
| Channel Y | 200                               | -10.43                             | -11.02                            |
|           | - 200                             | 7.95                               | 9.22                              |
| Channel Z | 200                               | 14.25                              | 13.66                             |
|           | - 200                             | -15.77                             | -14.99                            |

# 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) |
|-----------|--------------------|----------------|----------------|----------------|
| Channel X | 200                | -              | -1.62          | -2.79          |
| Channel Y | 200                | 8.07           |                | -2.95          |
| Channel Z | 200                | 7.90           | 6.93           | -              |

Certificate No: DAE4-1220\_Jan12

Page 4 of 5



# 4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | High Range (LSB) | Low Range (LSB) |
|-----------|------------------|-----------------|
| Channel X | 15896            | 16218           |
| Channel Y | 16012            | 15924           |
| Channel Z | 15702            | 15710           |

#### 5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) |
|-----------|--------------|------------------|------------------|---------------------|
| Channel X | 0.67         | -0.77            | 1.84             | 0.43                |
| Channel Y | -1.44        | -2.35            | -0.02            | 0.39                |
| Channel Z | -0.81        | -1.60            | 0.01             | 0.37                |

#### 6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

|           | Zeroing (kOhm) | Measuring (MOhm) |
|-----------|----------------|------------------|
| Channel X | 200            | 200              |
| Channel Y | 200            | 200              |
| Channel Z | 200            | 200              |

8. Low Battery Alarm Voltage (Typical values for information)

| Typical values | Alarm Level (VDC) |  |
|----------------|-------------------|--|
| Supply (+ Vcc) | +7.9              |  |
| Supply (- Vcc) | -7.6              |  |

9. Power Consumption (Typical values for information)

| Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) |
|----------------|-------------------|---------------|-------------------|
| Supply (+ Vcc) | +0.01             | +6            | +14               |
| Supply (- Vcc) | -0.01             | -8            | -9                |

Certificate No: DAE4-1220\_Jan12 Page 5 of 5

Page: 99 of 99