
Custard Pi 1 - Breakout Board with protection for the Raspberry Pi GPIO

Full Technical Documentation

CONTENTS

Introduction

Circuit Description

Schematic

Parts List

Project 1 - FLASHING an LED

Project 2 - READING A SWITCH

Project 3 - ELECTRONIC DICE

INTRODUCTION

The Raspberry Pi GPIO allows the control of external electronics. There are two rows of 13 pins which are brought

out to a 26 way header on the edge of the board. The Custard Pi 1 board simply plugs into the Raspberry Pi GPIO

connector and allows users to quickly connect to all the pins. At the same time it protects the Raspberry Pi from

possible damage from the wrong voltage being accidentally connected to the GPIO.

Custard Pi 1

CIRCUIT DESCRIPTION

When the Custard Pi is plugged into the GPIO, two LEDs come ON, showing that the 5V and 3.3V rail are working

correctly.

GPIO connections showing power rails

The 3.3V is supplied on pin 1 of the GPIO and the 5V is supplied on pin 2. The 2 LEDs are connected to these pins

with a 1k current limiting resistor. Note that there are no connections to pins 4, 9, 14, 17, 20 & 25 of the GPIO. On

Revision 1 Raspberry Pi boards nothing should be connected to these pins. On Revision 2 boards, these are

connected to 5V, 3.3V or Gnd as shown in the chart below.

Layout of GPIO port pins on Rev 1 and Rev 2 boards

This chart shows the layout of the GPIO port pins. It looks quite complex, but once it is described piece by piece, it

will be easier to understand.

Power pins (J3)

These are brought out to connector J3 on the Custard Pi 1 and have a fuse fitted to each line. This is to prevent the

user from drawing too much current from the Raspberry Pi. The fuses are resettable and are both rated at 0.1 Amp

(100 m Amp).

5V and 3.3V pins with fuses

General Purpose Input Output (I/O) pins (J2)

The pins marked green are general purpose digital input output pins. These are pins 11, 12, 13, 15, 16, 18, 22 and 7.

They can be set high (to 3.3V) or low (0V) by program control from the Raspberry Pi. The Pi can also read whether

these pins are high or low, say to a switch being pressed.

General purpose I/O pins

Each of these pins is protected by a 3.3V zener and a 1k ohm current limiting resistor. The 3.3V zener prevents any

voltages in excess of 3.3V from being applied to the pins of the Integrated Circuit on the Raspberry Pi and damaging

it. It also protects from negative voltages being applied to the pins. Due to the diode action of the zener voltages on

the pins are limited to -0.7V.

 The 1k ohm (1000 ohm) current limiting resistors are there to prevent too much current flowing in the zener if a

wrong voltage was to be connected. However on later Custard Pi 1 boards this has been reduced to 220 ohms. The

1000 ohm resistor has colour bands brown, black red and the 220 ohm resistor has colour bands red, red and brown.

I2C serial bus (J7)

This bus is used to interconnect various integrated circuits such as A to D and D to A convertors, Port expanders and

tone generators. The bus has a bi-directional data line and a clock line and can interface to many devices connected

to the same 2 lines as the devices are addressable individually.

I2C bus pins

Internally, the Raspberry Pi uses two pull up resistors (1.8 k ohms) on these 2 pins. If you are planning to use the I2C

bus then make sure that the current limiting resistors are 220 ohm and not 1000 ohms. If you have a Custard Pi 1

board with a 1k ohm resistor fitted, then either replace this with a 220 ohm resistor or solder a 220 ohm resistor on

top of the 1k ohm resistor.

SPI serial bus (J5)

This serial bus can also be used to interface to a number of external integrated circuits. However it is different from

the I2C bus in that it has separate data out and data in lines and the devices are not addressable. There are separate

chip enable lines for each integrated circuit. The Raspberry Pi SPI bus is provided with 2 chip enable outputs.

SPI bus pins

UART serial port (J6)

This is a serial port and can be used to communicate with external devices equipped with an RS232 serial interface.

UART pins

SCHEMATIC

Note: On the latest version boards, 220 ohms are fitted instead of 1 k ohm.

Custard Pi 1 schematic

On the latest version boards, 220 ohms are fitted instead of 1 k ohm.

PARTS LIST

Custard Pi -1 Protection layer for the Raspberry Pi GPIO (rev 3 August 23rd 2013)

Description Circuit reference Notes

Printed Circuit Board

(PCB)

26 way connector J1 Solder to underside of PCB

4 x 2 way screw terminal

connectors

J2 Interlock the four terminals

before soldering with wire

access facing the edge of the

PCB.

1 x 3 way screw terminal

connector

J3 Make sure the wire access is

facing the edge of the PCB

1 x 2 way screw terminal

connector

J7 Make sure the wire access is

facing the edge of the PCB

1 x 2way and 1 x 3 way

screw terminal

connectors

J5 Interlock the two terminals

before soldering with wire

access facing the edge of the

PCB.

1 x 2 way screw terminal

connector

J6 Make sure the wire access is

facing the edge of the PCB

2 x Multifuse F1, F2 Can be inserted either way

round

2 x Leds LD1, LD2 Make sure that the longer leg

is inserted into hole marked +

19 x 220 ohm resistors R1 to R19 Can be inserted either way

round

18 x 3.6V zener D1 to D15, D17 to D19 The black line on the zener

has to line up with the line on

the PCB

1 x 5.6V zener D16 The black line on the zener

has to line up with the line on

the PCB

2 x sticky pads To isolate the Custard Pi from

Raspberry Pi components

THE CUSTARD PI 1 ASSEMBLY

The positions of the connectors are shown below. These are mini screw terminals into which wires can be quickly

connected.

Positions of the connectors

This is a compact assembly that simply plugs into the Raspberry Pi GPIO. This can be done even with the Raspberry

Pi is powered. Just make sure that the 2 power LEDs are on as soon as you plug in. If not there could be a fault with

the Custard Pi 1 or it has not been plugged in properly.

Custard Pi 1 plugged into the Raspberry Pi GPIO

There is a risk of shorting between the pins on the base of the Custard Pi 1 and some of the components of the

Raspberry Pi, such as the HDMI connector or capacitor C6. For this reason, the Custard Pi is supplied with a length of

double sided sticky pad to act as insulation. If the Custard Pi 1 is bought as a kit of parts for self assembly, then sticky

pads are supplied and must be used.

Sticky pads to insulate Custard Pi 1 from Raspberry Pi

PROJECT 1 - FLASHING an LED

Driving LEDs from the Custard Pi 1 is very easy. As there is a current limiting resistor built in (1k on early versions,

220 ohm on later versions). All one has to do is to connect an LED between one of the pins on connector J1 and Gnd.

Just make sure that the long leg on the LED is connected to the pin and the short leg is connected to Gnd. In the code

below, we assume that the LED is connected to pin 11 of J2, which is one of the general purpose I/O pins.

Custard Pi 1 connected to an LED

#sample Python code to flash an led

#www.sf-innovations.co.uk

import RPi.GPIO as GPIO # import GPIO library

import time #import time library

GPIO.setmode(GPIO.BOARD) #use board pin numbers

GPIO.setup(11, GPIO.OUT) #setup pin 11 as output

for x in range (0,10): #repeat for x=0 to 9

 GPIO.output(11, True) #set pin 11 high

 time.sleep(0.2) #wait 0.2 seconds

 GPIO.output(11, False) #set pin 11 low

 time.sleep(0.2) #wait 0.2 seconds

GPIO.cleanup() #tidy up GPIO port

import sys #exit program

sys.exit()

If you would like the LED to flash faster, then change the time.sleep(0.2) to a smaller value. For example

time.sleep(0.1) would make the LED flash twice as fast. Both the time.sleep commands will need to be changed to

halve the LED ON time and the LED OFF time.

If you would like the LED to carry on flashing 50 times, instead of just 10, then change the command “for x in range

(0,10):” to “for x in range (0,50):”.

The GPIO.setmode command uses the board pin numbers as opposed to the port numbers of the IC used to control

the GPIO port. In my experience it is much easier to use the pin numbers as these are clearly identified on the

Custard Pi board.

PROJECT 2 - READING A SWITCH

In this mini project, we look at reading a switch and flash the LED only when the switch is pressed. The LED is

connected to pin 11 as before. Connect the switch between pin 12 and Gnd. When the switch is pressed, pin 12 will

be taken low. The Python code for this is presented below.

Custard Pi 1 connected to a switch and an LED

#sample Python code to flash an led when a switch is pressed

#www.sf-innovations.co.uk

import RPi.GPIO as GPIO # import GPIO library

import time #import time library

GPIO.setmode(GPIO.BOARD) #use board pin numbers

GPIO.setwarnings(False)

GPIO.setup(11, GPIO.OUT) #setup pin 11 as output

GPIO.setup(12, GPIO.IN, pull_up_down=GPIO.PUD_UP)

 #setup pin 12 as input with pull up

while True: #do forever

 while GPIO.input(12)==False: #while switch is pressed

 GPIO.output(11, True) #set pin 11 high

 time.sleep(0.2) #wait 0.2 seconds

 GPIO.output(11, False) #set pin 11 low

 time.sleep(0.2) #wait 0.2 seconds

GPIO.cleanup() #tidy up GPIO port

import sys #exit program

sys.exit()

This code is similar to the previous code but the LED flash is only executed if pin 12 goes low (FALSE) when the switch

is pressed. Otherwise the “while True” command keeps the program in an endless loop, waiting for the switch to be

pressed.

To exit the program, the user has to press CTRL and C at the same time on the keyboard. Because this exits the

program without cleaning up the GPIO interface, we use the command “GPIO.setwarnings(False)” command to stop

any warnings from being displayed.

PROJECT 3 - ELECTRONIC DICE

This project uses a 7-segment display and a switch to simulate the roll of a dice. We will use 7 pins from J2 as outputs

to drive the 7-segment display and the 8th pin as an input to read the switch. The drawing below shows how to

connect up the 7-segment display to the Custard Pi 1.

Connecting the 7-segment display to the Custard Pi 1

Connect a switch between pin 7 of connector J2 and Gnd so that pin7 goes low (False) when the switch is pressed.

Electronic Dice using the Custard Pi 1

The Python code for the electronic Dice is presented below. When the program is started, the 7-segment shows the

digit 0. When the switch is pressed, the 7-segment display will randomly display a digit from 1 to 6. This will stay on

the display until the switch is pressed again.

#!/usr/bin/env python

#sample Python code to display a random digit

#from 1 to 6 when a switch is pressed

#www.sf-innovations.co.uk

import RPi.GPIO as GPIO

import time

import random

GPIO.setwarnings(False)

GPIO.setmode(GPIO.BOARD)

#setup output pins

GPIO.setup(11, GPIO.OUT)

GPIO.setup(12, GPIO.OUT)

GPIO.setup(13, GPIO.OUT)

GPIO.setup(15, GPIO.OUT)

GPIO.setup(16, GPIO.OUT)

GPIO.setup(18, GPIO.OUT)

GPIO.setup(22, GPIO.OUT)

#setup inpt pin with pull up resistor

GPIO.setup(7, GPIO.IN, pull_up_down=GPIO.PUD_UP)

#define 7 segment digits

digitclr=[1,1,1,1,1,1,1]

digit0=[0,0,0,0,0,0,1]

digit1=[1,0,0,1,1,1,1]

digit2=[0,0,1,0,0,1,0]

digit3=[0,0,0,0,1,1,0]

digit4=[1,0,0,1,1,0,0]

digit5=[0,1,0,0,1,0,0]

digit6=[0,1,0,0,0,0,0]

gpin=[11,12,13,15,16,18,22]

#routine to clear and then write to display

def digdisp(digit):

 for x in range (0,7):

 GPIO.output(gpin[x], digitclr[x])

 time.sleep(0.5)

 for x in range (0,7):

 GPIO.output(gpin[x], digit[x])

#wait for switch to be released

def swwait():

 while GPIO.input(7)==False:

 time.sleep(0.1)

#display random digit

def randigit(digit):

 digdisp(digit)

 swwait()

#initialise by clearing display and writing 0

for x in range (0,7):

 GPIO.output(gpin[x], digitclr[x])

digdisp (digit0)

#main routine to read switch and display random digit from 1 to 6

while True:

 if GPIO.input(7)==False:

 rand = random.randint(1,6)

 if rand == 1:

 randigit(digit1)

 if rand == 2:

 randigit(digit2)

 if rand == 3:

 randigit(digit3)

 if rand == 4:

 randigit(digit4)

 if rand == 5:

 randigit(digit5)

 if rand == 6:

 randigit(digit6)

#tidy up

GPIO.cleanup()

import sys

sys.exit()

