Si53154

## PCI-Express Gen 1, Gen 2, \& Gen 3 Quad FANOUT BUFFER

## Features

- PCI-Express Gen 1,Gen 2, and Gen 3 compliant
- Supports Serial ATA (SATA) at 100 MHz
- $100-210 \mathrm{MHz}$ operation
- Low power, push pull, differential output buffers
- Internal termination for maximum integration
- Dedicated output enable pin for each output
- Four PCI-Express buffered clock outputs
- Clock input spread tolerable
- Supports LVDS outputs
- $I^{2} \mathrm{C}$ support with readback capabilities
- Extended temperature: -40 to $85^{\circ} \mathrm{C}$
- 3.3 V power supply
- 24-pin QFN package


## Functional Block Diagram

- Wireless access point
- Routers


## Description

The Si53154 is a spread tolerable PCle clock buffer that can source four PCle clocks simultaneously. The device has four hardware output enable control inputs for enabling the respective differential outputs on the fly. The device also features output enable control through $I^{2} \mathrm{C}$ communication. $I^{2} \mathrm{C}$ programmability is also available to dynamically control skew, edge rate and amplitude on the true, compliment, or both differential signals on the clock outputs. This control feature enables optimal signal integrity as well as optimal EMI signature on the clock outputs.


Patents pending


Si53154

## Table of Contents

Section Page

1. Electrical Specifications ..... 4
2. Functional Description ..... 7
2.1. OE Pin Definition ..... 7
2.2. OE Assertion ..... 7
2.3. OE Deassertion ..... 7
3. Test and Measurement Setup ..... 8
4. Control Registers ..... 10
4.1. $I^{2} \mathrm{C}$ Interface ..... 10
4.2. Data Protocol ..... 10
5. Pin Descriptions: 24-Pin QFN ..... 15
6. Ordering Guide ..... 17
7. Package Outline ..... 18
Contact Information ..... 20

## Si53154

## 1. Electrical Specifications

Table 1. DC Electrical Specifications

| Parameter | Symbol | Test Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.3 V Operating Voltage | VDD core | $3.3 \pm 5 \%$ | 3.135 | - | 3.465 | V |
| 3.3 V Input High Voltage | $\mathrm{V}_{\mathrm{IH}}$ | Control input pins | 2.0 | - | $V_{D D}+0.3$ | V |
| 3.3 V Input Low Voltage | $\mathrm{V}_{\text {IL }}$ | Control input pins | $\mathrm{V}_{\text {SS }}-0.3$ | - | 0.8 | V |
| Input High Voltage | $\mathrm{V}_{\mathrm{IH} 12 \mathrm{C}}$ | SDATA, SCLK | 2.2 | - | - | V |
| Input Low Voltage | $\mathrm{V}_{\mathrm{ILI} 2 \mathrm{C}}$ | SDATA, SCLK | - | - | 1.0 | V |
| Input High Leakage Current | $\mathrm{I}_{\mathrm{H}}$ | Except internal pull-down resistors, $0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{DD}}$ | - | - | 5 | $\mu \mathrm{A}$ |
| Input Low Leakage Current | IIL | Except internal pull-up resistors, $0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{DD}}$ | -5 | - | - | $\mu \mathrm{A}$ |
| 3.3 V Output High Voltage (Single-Ended Outputs) | $\mathrm{V}_{\mathrm{OH}}$ | $\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$ | 2.4 | - | - | V |
| 3.3 V Output Low Voltage (Single-Ended Outputs) | $\mathrm{V}_{\text {OL }}$ | $\mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}$ | - | - | 0.4 | V |
| High-impedance Output Current | $\mathrm{I}_{\mathrm{OZ}}$ |  | -10 | - | 10 | $\mu \mathrm{A}$ |
| Input Pin Capacitance | $\mathrm{C}_{\text {IN }}$ |  | 1.5 | - | 5 | pF |
| Output Pin Capacitance | $\mathrm{C}_{\text {OUT }}$ |  | - | - | 6 | pF |
| Pin Inductance | $\mathrm{L}_{\text {IN }}$ |  | - | - | 7 | nH |
| Dynamic Supply Current in Fanout Mode | $\mathrm{IDD}_{\text {_3.3V }}$ | Differential clocks with 5" traces and 2 pF load, frequency at 100 MHz | - | - | 35 | mA |

Table 2. AC Electrical Specifications

| Parameter | Symbol | Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIFFIN at 0.7 V |  |  |  |  |  |  |
| Input Frequency Range | $\mathrm{f}_{\text {in }}$ |  | 100 | - | 210 | MHz |
| Rising and Falling Slew Rates for Each Clock Output Signal in a Given Differential Pair | $\mathrm{T}_{\mathrm{R}} / \mathrm{T}_{\mathrm{F}}$ | Single ended measurement: $\mathrm{V}_{\mathrm{OL}}=$ 0.175 to $\mathrm{V}_{\mathrm{OH}}=0.525 \mathrm{~V}$ (Averaged) | 0.6 | - | 4 | V/ns |
| Differential Input High Voltage | $\mathrm{V}_{\mathrm{IH}}$ |  | 150 | - | - | mV |
| Differential Input Low Voltage | $\mathrm{V}_{\text {IL }}$ |  | - | - | -150 | mV |
| Crossing Point Voltage at 0.7 V Swing | $\mathrm{V}_{\text {OX }}$ | Single-ended measurement | 250 | - | 550 | mV |
| Vcross Variation over all Edges | $\Delta \mathrm{V}_{\mathrm{OX}}$ | Single-ended measurement | - | - | 140 | mV |
| Differential Ringback Voltage | $\mathrm{V}_{\mathrm{RB}}$ |  | -100 | - | 100 | mV |
| Time before Ringback Allowed | $\mathrm{T}_{\text {STABLE }}$ |  | 500 | - | - | ps |
| Absolute Maximum Input Voltage | $\mathrm{V}_{\text {MAX }}$ |  | - | - | 1.15 | v |
| Absolute Minimum Input Voltage | $\mathrm{V}_{\text {MIN }}$ |  | -0.3 | - | - | v |
| Duty Cycle for Each Clock Output Signal in a Given Differential Pair | $\mathrm{T}_{\mathrm{DC}}$ | Measured at crossing point $\mathrm{V}_{\text {OX }}$ | 45 | - | 55 | \% |
| Rise/Fall Matching | $\mathrm{T}_{\text {RFM }}$ | Determined as a fraction of $2 \times\left(T_{R}-T_{F}\right) /\left(T_{R}+T_{F}\right)$ | - | - | 20 | \% |
| DIFF at 0.7 V |  |  |  |  |  |  |
| Duty Cycle | $\mathrm{T}_{\mathrm{DC}}$ | Measured at 0 V differential | 45 | - | 55 | \% |
| Clock Skew | $\mathrm{T}_{\text {SKEW }}$ | Measured at 0 V differential | - | - | 50 | ps |
| Additive Peak Jitter | Pk-Pk |  | 0 | - | 10 | ps |
| Additive PCle Gen 2 Phase Jitter | $\mathrm{RMS}_{\text {GEN2 }}$ | $10 \mathrm{kHz}<\mathrm{F}<1.5 \mathrm{MHz}$ | 0 | - | 0.5 | ps |
|  |  | $1.5 \mathrm{MHz}<\mathrm{F}$ < Nyquist Rate | 0 | - | 0.5 | ps |
| Additive PCIe Gen 3 Phase Jitter | $\mathrm{RMS}_{\text {GEN3 }}$ | $\begin{gathered} \text { Includes PLL BW 2-4 MHz } \\ (C D R=10 \mathrm{MHz}) \end{gathered}$ | 0 | - | 0.10 | ps |
| Additive Cycle to Cycle Jitter | $\mathrm{T}_{\text {CCJ }}$ | Measured at 0 V differential | - | 20 | 50 | ps |
| Long-term Accuracy | $\mathrm{L}_{\text {ACC }}$ | Measured at 0 V differential | - | - | 100 | ppm |

## Si53154

Table 2. AC Electrical Specifications (Continued)

| Parameter | Symbol | Condition | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Rising/Falling Slew rate | $\mathrm{T}_{\mathrm{R}} / \mathrm{T}_{\mathrm{F}}$ | Measured differentially from <br> $\pm 150 \mathrm{mV}$ | 2.5 | - | 8 | $\mathrm{~V} / \mathrm{ns}$ |
| Crossing Point Voltage at <br> 0.7 V Swing | $\mathrm{V}_{\mathrm{OX}}$ |  | 300 | - | 550 | mV |
| Enable/Disable and Setup       <br> Clock Stabilization from <br> Power-Up $\mathrm{T}_{\text {STABLE }}$  - - 5 ms <br> Stopclock Set-up Time $\mathrm{T}_{\mathrm{SS}}$  10.0 - - ns |  |  |  |  |  |  |

Table 3. Absolute Maximum Conditions

| Parameter | Symbol | Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Main Supply Voltage | V ${ }_{\text {DD_3.3V }}$ | Functional | - | - | 4.6 | V |
| Input Voltage | $\mathrm{V}_{\text {IN }}$ | Relative to $\mathrm{V}_{\mathrm{SS}}$ | -0.5 | - | 4.6 | $\mathrm{V}_{\mathrm{DC}}$ |
| Temperature, Storage | $\mathrm{T}_{\mathrm{S}}$ | Non-functional | -65 | - | 150 | ${ }^{\circ} \mathrm{C}$ |
| Industrial Temperature, Operating Ambient | $\mathrm{T}_{\mathrm{A}}$ | Functional | -40 | - | 85 | ${ }^{\circ} \mathrm{C}$ |
| Commercial Temperature, Operating Ambient | $\mathrm{T}_{\mathrm{A}}$ | Functional | 0 | - | 85 | ${ }^{\circ} \mathrm{C}$ |
| Temperature, Junction | TJ | Functional | - | - | 150 | ${ }^{\circ} \mathrm{C}$ |
| Dissipation, Junction to Case | $\emptyset_{J C}$ | JEDEC (JESD 51) | - | - | 35 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Dissipation, Junction to Ambient | $\varnothing_{\text {JA }}$ | JEDEC (JESD 51) | - | - | 37 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| ESD Protection (Human Body Model) | ESD ${ }_{\text {HBM }}$ | JEDEC (JESD 22 - A114) | 2000 | - | - | V |
| Flammability Rating | UL-94 | UL (Class) | V-0 |  |  |  |

Note: Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is not required.

## 2. Functional Description

### 2.1. OE Pin Definition

The OE pins are active high inputs used to enable and disable the output clocks. To enable the output clock, the OE pin needs to be logic high and the $I^{2} \mathrm{C}$ output enable bit needs to be logic high. There are two methods to disable the output clocks: the OE is pulled to a logic low, or the $I^{2} \mathrm{C}$ enable bit is set to a logic low. The OE pins is required to be driven at all time and even though it has an internal $100 \mathrm{k} \Omega$ resistor.

### 2.2. OE Assertion

The OE signals are active high inputs used for synchronous stopping and starting the DIFF output clocks respectively while the rest of the clock generator continues to function. The assertion of the OE signal by making it logic high causes stopped respective DIFF outputs to resume normal operation. No short or stretched clock pulses are produced when the clock resumes. The maximum latency from the assertion to active outputs is no more than two to six output clock cycles.

### 2.3. OE Deassertion

When the OE pin is deasserted by making it logic low, the corresponding DIFF output is stopped, and the final output state is driven low.

## 3. Test and Measurement Setup

Figures 1-3 show the test load configuration for differential clock signals.


Figure 1. 0.7 V Differential Load Configuration


Figure 2. Differential Measurement for Differential Output Signals (for AC Parameters Measurement)


Figure 3. Single-Ended Measurement for Differential Output Signals (for AC Parameters Measurement)

## 4. Control Registers

## 4.1. $I^{2} C$ Interface

To enhance the flexibility and function of the clock buffer, an $I^{2} C$ interface is provided. Through the $I^{2} C$ Interface, various device functions are available, such as individual clock output enable. The registers associated with the $\mathrm{I}^{2} \mathrm{C}$ Interface initialize to their default setting at power-up. The use of this interface is optional. Clock device register changes are normally made at system initialization, if any are required. Power management functions can only be programed in program mode and not in normal operation modes.

### 4.2. Data Protocol

The $I^{2} C$ protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transferred. For byte write and byte read operations, the system controller can access individually indexed bytes.
The block write and block read protocol is outlined in Table 4 while Table 5 outlines byte write and byte read protocol. The slave receiver address is 11010110 (D6h).

Table 4. Block Read and Block Write Protocol

| Block Write Protocol |  | Block Read Protocol |  |
| :---: | :--- | :---: | :--- |
| Bit | Description | Bit | Description |
| 1 | Start | 1 | Start |
| $8: 2$ | Slave address-7 bits | $8: 2$ | Slave address-7 bits |
| 9 | Write | 9 | Write |
| 10 | Acknowledge from slave | 10 | Acknowledge from slave |
| $18: 11$ | Command Code-8 bits | $18: 11$ | Command Code-8 bits |
| 19 | Acknowledge from slave | 20 | Repeat start |
| $27: 20$ | Byte Count-8 bits | $27: 21$ | Slave address-7 bits |
| 28 | Acknowledge from slave | 28 | Read = 1 |
| $36: 29$ | Data byte 1-8 bits | 29 | Acknowledge from slave |
| 37 | Acknowledge from slave | $37: 30$ | Byte Count from slave-8 bits |
| $45: 38$ | Data byte 2-8 bits | 38 | Acknowledge |
| 46 | Acknowledge from slave | $46: 39$ | Data byte 1 from slave-8 bits |
| $\ldots$. | Data Byte/Slave Acknowledges | $55: 48$ | Data byte 2 from slave-8 bits |
| $\ldots$. | Data Byte N-8 bits | 56 | Acknowledge |
| $\ldots$. | Acknowledge from slave | $\ldots$. | Data bytes from slave/Acknowledge |
| $\ldots$. | Stop | $\ldots$ | Data Byte N from slave-8 bits |
|  |  | $\ldots$ | NOT Acknowledge |
|  |  | $\ldots$ | Stop |
|  |  |  |  |

Table 5. Byte Read and Byte Write Protocol

| Byte Write Protocol |  | Byte Read Protocol |  |
| :---: | :--- | :---: | :--- |
| Bit | Description | Bit | Description |
| 1 | Start | 1 | Start |
| $8: 2$ | Slave address-7 bits | $8: 2$ | Slave address-7 bits |
| 9 | Write | 9 | Write |
| 10 | Acknowledge from slave | 10 | Acknowledge from slave |
| $18: 11$ | Command Code-8 bits | $18: 11$ | Command Code-8 bits |
| 19 | Acknowledge from slave | 19 | Acknowledge from slave |
| $27: 20$ | Data byte-8 bits | 20 | Repeated start |
| 28 | Acknowledge from slave | 28 | Slave address-7 bits |
| 29 | Stop | 29 | Read |
|  |  | $37: 30$ | Acknowledge from slave |
|  |  | 38 | NOT from slave-8 bits |
|  |  | 39 | Stop |
|  |  |  |  |

Si53154

## Control Register 0. Byte 0

| Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name |  |  |  |  |  |  |  |  |
| Type | R/W |

Reset settings $=00000000$

| Bit | Name | Function |
| :---: | :---: | :---: |
| $7: 0$ | Reserved |  |

Control Register 1. Byte 1

| Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name |  |  |  |  |  | DIFF0_OE |  | DIFF1_OE |
| Type | R/W |

Reset settings $=00000101$

| Bit | Name | Function |
| :---: | :---: | :--- | :--- |
| $7: 3$ | Reserved |  |
| 2 | DIFF0_OE | Output Enable for DIFF0. <br> 0: Output disabled. <br> 1: Output enabled. |
| 1 | Reserved |  |
| 0 | DIFF1_OE | Output Enable for DIFF1. <br> 0: Output disabled. <br> 1: Output enabled. |

Control Register 2. Byte 2

| Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | DIFF2_OE | DIFF3_OE |  |  |  |  |  |  |
| Type | R/W |

Reset settings $=11000000$

| Bit | Name | Function |
| :---: | :---: | :--- | :--- |
| 7 | DIFF2_OE | Output Enable for DIFF2. <br> 0: Output disabled. <br> 1: Output enabled. |
| 6 | DIFF3_OE | Output Enable for DIFF3. <br> 0: Output disabled. <br> 1: Output enabled. |
| $5: 0$ | Reserved |  |

Control Register 3. Byte 3

| Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | Rev Code <br> Bit 3 | Rev Code <br> Bit 2 | Rev Code <br> Bit 1 | Rev Code <br> Bit 0 | Vendor ID <br> bit 3 | Vendor ID <br> bit 2 | Vendor ID <br> bit 1 | Vendor ID <br> bit 0 |
| Type | R/W |

Reset settings $=00001000$

| Bit | Name | Function |
| :---: | :---: | :--- |
| $7: 4$ | Rev Code Bit 3:0 | Program Revision Code. |
| 3:0 | Vendor ID bit 3:0 | Vendor Identification Code. |

Control Register 4. Byte 4

| Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | BC7 | BC7 | BC5 | BC4 | BC3 | BC2 | BC1 | BC0 |
| Type | R/W |

Reset settings = 00000110

| Bit | Name |  | Function |
| :--- | :--- | :--- | :--- |
| $7: 0$ | BC7:0 | Byte Count Register. |  |

## Control Register 5. Byte 5

| Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | DIFF_Amp_Sel | DIFF_Amp_Cnt[[2] | DIFF_Amp_Cnt[[1] | DIFF_Amp_Cnt[[0] |  |  |  |  |
| Type | R/W |

Reset settings $=11011000$

| Bit | Name | Function |
| :---: | :---: | :--- |
| 7 | DIFF_Amp_Sel | Amplitude Control for DIFF Differential Outputs. <br> 0: Differential outputs with Default amplitude. <br> 1: Differential outputs amplitude is set by Byte 5[6:4]. |
| 6 | DIFF_Amp_Cnt[2] | DIFF Differential Outputs Amplitude Adjustment. |
| 5 | DIFF_Amp_Cnt[[1] | 000: 300 mV 001: 400 mV 010: $500 \mathrm{mV} \quad 011: 600 \mathrm{mV}$ <br> 100: $700 \mathrm{mV} \mathrm{101:} 800 \mathrm{mV} \mathrm{110:} 900 \mathrm{mV} \quad 111: 1000 \mathrm{mV}$ |
| 4 | DIFF_Amp_CntI[0] |  |
| $3: 0$ | Reserved |  |

## 5. Pin Descriptions: 24-Pin QFN


*Note: Internal 100 kohm pull-up.
Figure 4. 24-Pin QFN
Table 6. Si53154 24-Pin QFN Descriptions

| Pin \# | Name | Type | Description |
| :---: | :---: | :---: | :---: |
| 1 | VDD | PWR | 3.3 V power supply. |
| 2 | OE1 | I,PU | Active high input pin enables DIFF1 (internal $100 \mathrm{k} \Omega$ pull-up). Refer to Table 1 on page 4 for OE specifications. |
| 3 | VDD | PWR | 3.3 V power supply. |
| 4 | VSS | GND | Ground. |
| 5 | OE2 | I,PU | Active high input pin enables DIFF2 (internal $100 \mathrm{k} \Omega$ pull-up). Refer to Table 1 on page 4 for OE specifications. |
| 6 | VDD | PWR | 3.3 V power supply. |
| 7 | OEO | I,PU | Active high input pin enables DIFFO (internal $100 \mathrm{k} \Omega$ pull-up). Refer to Table 1 on page 4 for OE specifications. |
| 8 | DIFF0 | O, DIF | 0.7 V, differential clock output. |
| 9 | $\overline{\text { DIFF0 }}$ | O, DIF | 0.7 V, differential clock output. |
| 10 | DIFF1 | O, DIF | 0.7 V, differential clock output. |
| 11 | $\overline{\text { DIFF1 }}$ | O, DIF | 0.7 V, differential clock output. |
| 12 | VDD | PWR | 3.3 V power supply. |
| 13 | $\overline{\text { DIFF2 }}$ | O, DIF | 0.7 V, differential clock output. |

Table 6. Si53154 24-Pin QFN Descriptions

| Pin \# | Name | Type | Description |
| :---: | :---: | :---: | :---: |
| 14 | DIFF2 | O, DIF | 0.7 V, differential clock output. |
| 15 | $\overline{\text { DIFF3 }}$ | O, DIF | 0.7 V, differential clock output. |
| 16 | DIFF3 | O, DIF | 0.7 V, differential clock output. |
| 17 | VDD | PWR | 3.3 V power supply. |
| 18 | OE3 | I,PU | Active high input pin enables DIFF3 (internal $100 \mathrm{k} \Omega$ pull-up). Refer to Table 1 on page 4 for OE specifications. |
| 19 | SCLK | 1 | SMBus compatible SCLOCK. |
| 20 | SDATA | I/O | SMBus compatible SDATA. |
| 21 | VDD | PWR | 3.3 V power supply. |
| 22 | DIFFIN | 1 | 0.7 V Differential True Input, typically 100 MHz . Input frequency range 100 to 210 MHz . |
| 23 | $\overline{\text { DIFFIN }}$ | 0 | 0.7 V Differential Complement Input, typically 100 MHz . Input frequency range 100 to 210 MHz . |
| 24 | VSS | GND | Ground. |
| 25 | GND | GND | Ground for bottom pad of the IC. |

## 6. Ordering Guide

| Part Number | Package Type | Temperature |
| :---: | :---: | :---: |
| Lead-free | 24-pin QFN | Extended, -40 to $85^{\circ} \mathrm{C}$ |
| Si53154-A01AGM | 24-pin QFN-Tape and Reel | Extended, -40 to $85^{\circ} \mathrm{C}$ |
| Si53154-A01AGMR |  |  |

## 7. Package Outline

Figure 5 illustrates the package details for the Si53154. Table 7 lists the values for the dimensions shown in the illustration.


Figure 5. 24-Pin Quad Flat No Lead (QFN) Package
Table 7. Package Diagram Dimensions

| Symbol | Millimeters |  |  |
| :---: | :---: | :---: | :---: |
|  | Min | Nom | Max |
| A | 0.70 | 0.75 | 0.80 |
| A1 | 0.00 | 0.025 | 0.05 |
| b | 0.20 | 0.25 | 0.30 |
| D | 4.00 BSC |  |  |
| D2 | 2.60 | 2.70 | 2.80 |
| e | 0.50 BSC |  |  |
| E | 2.60 | 2.00 BSC |  |
| E2 | 0.30 | 0.40 | 0.50 |
| L |  |  |  |
| aaa | 0.10 |  |  |
| bbb | 0.08 |  |  |
| ccc | 0.07 |  |  |
| ddd |  |  |  |

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MO-220, variation VGGD-8
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components

## Document Change List

Revision 0.1 to Revision 1.0

- Updated Features and Description.
- Updated Table 2.
- Updated Table 3.
- Updated Section 4.1.


## CONTACT InFORMATION

## Silicon Laboratories Inc.

400 West Cesar Chavez

Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.

## Patent Notice

Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analogintensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.

> The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

