
a

 1.0

C/C++ Compiler and Library Manual
for Blackfin® Processors

Revision 1.2, April 2013

Part Number
82-100116-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2013 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, CrossCore, EngineerZone, EZ-Board,
EZ-KIT Lite, and VisualDSP++ are registered trademarks of Analog
Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CrossCore Embedded Studio 1.0 iii
C/C++ Compiler and Library Manual for Blackfin Processors

CONTENTS

PREFACE

Purpose of This Manual ... xliii

Intended Audience ... xliii

Manual Contents .. xliv

What’s New in This Manual ... xlv

Technical Support ... xlvi

Supported Processors .. xlvii

Product Information .. xlvii

Analog Devices Web Site .. xlvii

EngineerZone ... xlviii

Notation Conventions ... xlix

COMPILER

C/C++ Compiler Overview ... 1-3

Compiler Components .. 1-5

Compiler Command-Line Interface ... 1-7

Running the Compiler ... 1-8

Contents

iv CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Compiler Command-Line Switches 1-13

C/C++ Mode Selection Switch Descriptions 1-28

-c89 ... 1-28

-c99 ... 1-28

-c++ ... 1-29

C/C++ Compiler Common Switch Descriptions 1-29

sourcefile .. 1-29

-@ filename ... 1-29

-A name (tokens) ... 1-30

-add-debug-libpaths .. 1-31

-alttok ... 1-31

-always-inline ... 1-32

-annotate .. 1-32

-annotate-loop-instr .. 1-33

-auto-attrs .. 1-33

-bss .. 1-33

-build-lib .. 1-33

-C .. 1-34

-c ... 1-34

-component file.xml ... 1-34

-const-read-write .. 1-34

-const-strings .. 1-35

-cplbs ... 1-35

-D macro[=definition] ... 1-35

CrossCore Embedded Studio 1.0 v
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

-dcplbs .. 1-36

-decls-{weak|strong} .. 1-36

-dependency-add-target target 1-37

-double-size-{32 | 64} .. 1-37

-double-size-any ... 1-37

-dry .. 1-38

-dryrun ... 1-38

-E ... 1-38

-ED .. 1-38

-EE ... 1-39

-eh .. 1-39

-enum-is-int .. 1-40

-expand-symbolic-links .. 1-40

-expand-windows-shortcuts ... 1-40

-extra-keywords ... 1-40

-file-attr name[=value] .. 1-41

-fixed-point-io .. 1-41

-flags{-asm | -compiler | -ipa | -lib | -link | -mem |
-prelink} switch [,switch2[,...]] 1-42

-force-circbuf .. 1-43

-force-link ... 1-43

-fp-associative ... 1-43

-full-io .. 1-43

-full-version .. 1-44

-fx-contract ... 1-44

Contents

vi CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-fx-rounding-mode-biased ... 1-44

-fx-rounding-mode-truncation 1-45

-fx-rounding-mode-unbiased ... 1-45

-g ... 1-45

-glite .. 1-46

-gnu-style-dependencies .. 1-46

-H ... 1-46

-HH ... 1-47

-h[elp] .. 1-47

-I directory [{,|;} directory...] 1-47

-I- .. 1-48

-i .. 1-48

-icplbs .. 1-48

-include filename ... 1-49

-ipa .. 1-49

-jcs2l .. 1-49

-L directory[{,|;} directory…] 1-49

-l library ... 1-50

-list-workarounds .. 1-50

-M ... 1-51

-MD .. 1-51

-MM .. 1-51

-Mo filename ... 1-51

-Mt name .. 1-51

CrossCore Embedded Studio 1.0 vii
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

-map filename .. 1-52

-mem .. 1-52

-multiline ... 1-52

-never-inline ... 1-52

-no-alttok ... 1-53

-no-annotate ... 1-53

-no-annotate-loop-instr ... 1-53

-no-assume-vols-are-mmrs ... 1-54

-no-auto-attrs .. 1-54

-no-bss .. 1-54

-no-circbuf .. 1-55

-no-const-strings ... 1-55

-no-cplbs .. 1-55

-no-defs .. 1-55

-no-eh ... 1-56

-no-expand-symbolic-links .. 1-56

-no-expand-windows-shortcuts 1-56

-no-extra-keywords .. 1-56

-no-force-link .. 1-57

-no-fp-associative .. 1-57

-no-full-io ... 1-58

-no-fx-contract .. 1-58

-no-int-to-fract ... 1-58

-no-jcs2l ... 1-59

Contents

viii CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-no-mem .. 1-59

-no-multiline .. 1-59

-no-progress-rep-timeout .. 1-59

-no-rtcheck ... 1-60

-no-rtcheck-arr-bnd .. 1-60

-no-rtcheck-div-zero ... 1-61

-no-rtcheck-heap .. 1-61

-no-rtcheck-null-ptr .. 1-61

-no-rtcheck-shift-check ... 1-62

-no-rtcheck-stack .. 1-62

-no-rtcheck-unassigned ... 1-62

-no-sat-associative ... 1-63

-no-saturation ... 1-63

-no-std-ass .. 1-64

-no-std-def ... 1-64

-no-std-inc ... 1-64

-no-std-lib .. 1-64

-no-threads ... 1-64

-no-utility-rom ... 1-65

-no-workaround workaround_id[,workaround_id…] 1-65

-no-zero-loop-counters .. 1-65

-O[0|1] .. 1-65

-Oa .. 1-66

-Os ... 1-66

CrossCore Embedded Studio 1.0 ix
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

-Ov num ... 1-66

-o filename ... 1-69

-overlay ... 1-69

-overlay-clobbers clobbered-regs 1-69

-P ... 1-70

-PP ... 1-70

-p ... 1-70

-path {-asm | -compiler | -ipa | -lib | -link | -prelink}
pathname .. 1-70

-path-install directory .. 1-71

-path-output directory ... 1-71

-path-temp directory ... 1-71

-pgo-session session-id .. 1-71

-pguide ... 1-72

-pplist filename .. 1-72

-proc processor .. 1-73

-prof-hw ... 1-74

-progress-rep-func ... 1-74

-progress-rep-opt ... 1-74

-progress-rep-timeout .. 1-75

-progress-rep-timeout-secs secs 1-75

-R directory[,directory …] 1-75

-R- ... 1-76

-reserve register[,register …] 1-76

-rtcheck .. 1-76

Contents

x CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-rtcheck-arr-bnd ... 1-77

-rtcheck-div-zero .. 1-77

-rtcheck-heap ... 1-78

-rtcheck-null-ptr ... 1-78

-rtcheck-shift-check .. 1-79

-rtcheck-stack ... 1-79

-rtcheck-unassigned .. 1-80

-S ... 1-80

-s .. 1-80

-sat-associative .. 1-81

-save-temps ... 1-81

-sdram .. 1-81

-section id=section_name[,id=section_name...] 1-82

-show ... 1-83

-signed-bitfield ... 1-83

-signed-char .. 1-83

-si-revision version ... 1-84

-structs-do-not-overlap ... 1-84

-syntax-only .. 1-85

-sysdefs ... 1-85

-T filename .. 1-85

-threads .. 1-85

-time .. 1-86

-U macro .. 1-86

CrossCore Embedded Studio 1.0 xi
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

-unsigned-bitfield .. 1-86

-unsigned-char .. 1-87

-utility-rom ... 1-87

-v .. 1-87

-verbose .. 1-88

-version ... 1-88

-W{annotation|error|remark|suppress|warn}
number[, number...] ... 1-88

-Wannotations .. 1-89

-Werror-limit number ... 1-89

-Werror-warnings .. 1-89

-Wremarks .. 1-89

-Wterse ... 1-90

-w ... 1-90

-warn-component .. 1-90

-warn-protos ... 1-90

-workaround workaround_id[,workaround_id ……] 1-91

-xref filename ... 1-91

-zero-loop-counters ... 1-92

C Mode (MISRA) Compiler Switch Descriptions 1-92

-misra ... 1-92

-misra-linkdir directory ... 1-93

-misra-no-cross-module ... 1-93

-misra-no-runtime ... 1-93

-misra-strict .. 1-93

Contents

xii CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-misra-suppress-advisory ... 1-94

-misra-testing ... 1-94

-Wmis_suppress rule_number [, rule_number] 1-94

-Wmis_warn rule_number [, rule_number] 1-94

MISRA-C Command-Line Switch Restrictions 1-95

C++ Mode Compiler Switch Descriptions 1-95

-anach .. 1-95

-check-init-order ... 1-97

-friend-injection ... 1-97

-full-cpplib ... 1-98

-full-dependency-inclusion .. 1-98

-implicit-inclusion .. 1-98

-no-anach ... 1-99

-no-friend-injection .. 1-99

-no-full-cpplib .. 1-99

-no-implicit-inclusion ... 1-99

-no-rtti ... 1-99

-no-std-templates .. 1-100

-rtti .. 1-100

-std-templates ... 1-100

Environment Variables Used by the Compiler 1-101

Additional Path Support .. 1-102

Windows Shortcut Support ... 1-102

Cygwin Path Support .. 1-103

CrossCore Embedded Studio 1.0 xiii
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

Cygwin Symbolic Links ... 1-103

Cygdrive Folders ... 1-104

Cygwin Mounted Directories 1-104

Optimization Control .. 1-105

Optimization Levels .. 1-105

Interprocedural Analysis .. 1-108

Interaction With Libraries ... 1-109

Controlling Silicon Revision and Anomaly Workarounds
Within the Compiler .. 1-109

 Using the -si-revision Switch .. 1-110

Using the -workaround Switch .. 1-111

Using the -no-workaround Switch 1-112

Interactions: Silicon Revision vs. Workaround
Switches ... 1-113

Anomalies in Assembly Sources 1-113

Using Native Fixed-Point Types ... 1-114

Fixed-Point Type Support .. 1-114

Native Fixed-Point Types ... 1-115

Native Fixed-Point Constants ... 1-117

A Motivating Example ... 1-117

Fixed-Point Arithmetic Semantics .. 1-119

Data Type Conversions and Fixed-Point Types 1-120

Bit-Pattern Conversion Functions: bitsfx and fxbits 1-122

Arithmetic Operators for Fixed-Point Types 1-123

FX_CONTRACT ... 1-125

Contents

xiv CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Rounding Behavior ... 1-128

Arithmetic Library Functions .. 1-131

divifx ... 1-131

idivfx ... 1-132

fxdivi .. 1-133

mulifx .. 1-134

absfx .. 1-135

roundfx .. 1-135

countlsfx .. 1-136

strtofxfx ... 1-137

I/O Conversion Specifiers ... 1-137

Setting the Rounding Mode .. 1-139

Porting Code Written Using fract16 and fract32 1-141

Fixed-Point Type Example ... 1-148

Language Standards Compliance ... 1-151

C Mode .. 1-151

C++ Mode .. 1-153

MISRA-C Compiler ... 1-154

MISRA-C Compiler Overview .. 1-154

MISRA-C Compliance .. 1-155

Using the Compiler to Achieve Compliance 1-156

Rules Descriptions .. 1-159

CrossCore Embedded Studio 1.0 xv
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

Run-Time Checking ... 1-167

Enabling Run-Time Checking ... 1-168

Command-Line Switches for Run-Time Checking 1-169

Pragmas for Run-Time Checking 1-170

Supported Run-Time Checks ... 1-171

Response When Problems Are Detected 1-172

Limitations of Run-Time Checking 1-173

C/C++ Compiler Language Extensions 1-173

Function Inlining .. 1-177

Inlining and Optimization .. 1-180

Inlining and Out-of-Line Copies 1-180

Inlining and Global asm Statements 1-181

Inlining and Sections .. 1-181

Inlining and Run-Time Checking 1-182

Variable Argument Macros ... 1-182

Restricted Pointers ... 1-183

Variable-Length Arrays .. 1-184

Non-Constant Initializer Support .. 1-186

Designated Initializers ... 1-186

Hexadecimal Floating-Point Numbers 1-189

Declarations Mixed With Code .. 1-189

Compound Literals Support .. 1-190

C++ Style Comments ... 1-191

Enumeration Constants That Are Not int Type 1-191

Contents

xvi CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Boolean Type Support Keywords (bool, true, false) 1-192

Native Fixed-Point Types fract and accum 1-192

Inline Assembly Language Support Keyword (asm) 1-192

asm() Construct Syntax ... 1-195

asm() Construct Syntax Rules 1-196

asm() Construct Template Example 1-197

Assembly Construct Operand Description 1-198

Using long long Types in asm Constraints 1-204

Assembly Constructs With Multiple Instructions 1-204

Assembly Construct Reordering and Optimization 1-205

Assembly Constructs With Input and Output
Operands ... 1-206

Assembly Constructs With Compile-Time Constants 1-207

Assembly Constructs and Flow Control 1-208

Guidelines for Using asm() Statements 1-209

Memory Banks .. 1-209

Memory Banks Versus Sections 1-210

Pragmas and Qualifiers ... 1-210

Memory Bank Selection .. 1-210

Memory Banks for Code ... 1-211

Memory Banks for Data .. 1-211

Performance Characteristics .. 1-214

Memory Bank Kinds ... 1-214

Predefined Banks .. 1-215

Defining Additional Banks .. 1-215

CrossCore Embedded Studio 1.0 xvii
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

Placement Support Keyword (section) 1-215

Placement of Compiler-Generated Code and Data 1-216

Long Identifiers ... 1-217

Compiler Built-In Functions .. 1-217

builtins.h .. 1-219

Fractional Value Built-In Functions 1-220

16-Bit Fractional Built-In Functions 1-222

32-Bit Fractional Built-In Functions 1-226

fract2x16 Built-In Functions 1-231

ETSI Support ... 1-239

32-Bit Fractional ETSI Routines Using
Double-Precision Format .. 1-242

32-Bit Fractional ETSI Routines Using 1.31 Format 1-245

16-Bit Fractional ETSI Routines 1-250

fract16 and fract32 Literal Values 1-256

Converting Between Fractional and
Floating-Point Values ... 1-256

Complex Fractional Built-In Functions in C 1-260

Changing the RND_MOD Bit .. 1-262

Complex Operations in C++ ... 1-264

Packed 16-Bit Integer Built-In Functions 1-266

Division Functions .. 1-267

Full-Precision Accumulator Built-In Functions 1-269

Accumulator Built-In Function Prototypes 1-269

Accumulator Built-In Functions and the Optimizer 1-272

Contents

xviii CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Viterbi History and Decoding Functions 1-274

Search Built-in Functions .. 1-276

Circular Buffer Built-In Functions 1-277

Automatic Circular Buffer Generation 1-277

Explicit Circular Buffer Generation 1-278

Circular Buffer Increment of an Index 1-278

Circular Buffer Increment of a Pointer 1-279

Endian-Swapping Intrinsics .. 1-280

System Built-In Functions .. 1-281

Cache Built-In Functions .. 1-282

flush ... 1-282

flushinv .. 1-283

flushinvmodup ... 1-283

flushmodup .. 1-283

iflush .. 1-284

iflushmodup ... 1-284

prefetch .. 1-284

prefetchmodup ... 1-285

Compiler Performance Built-In Functions 1-285

Video Operation Built-In Functions 1-288

Function Prototypes .. 1-289

Example of Use: Sum of Absolute Difference 1-293

Misaligned Data Built-In Functions 1-295

Memory-Mapped Register Access Built-In Functions 1-296

CrossCore Embedded Studio 1.0 xix
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

Pragmas .. 1-297

Pragmas With Declaration Lists 1-298

Data Declaration Pragmas ... 1-299

#pragma align num .. 1-300

#pragma alignment_region (alignopt) 1-302

#pragma pack (alignopt) .. 1-304

#pragma pad (alignopt) .. 1-305

#pragma no_partial_initialization 1-306

Interrupt Handler Pragmas .. 1-307

Loop Optimization Pragmas .. 1-308

#pragma all_aligned .. 1-309

#pragma different_banks .. 1-309

#pragma loop_count(min, max, modulo) 1-309

#pragma loop_unroll N ... 1-309

#pragma no_alias .. 1-312

#pragma no_vectorization ... 1-313

#pragma vector_for ... 1-313

General Optimization Pragmas .. 1-313

Fixed-Point Arithmetic Pragmas 1-315

#pragma FX_CONTRACT {ON|OFF} 1-315

#pragma FX_ROUNDING_MODE
{TRUNCATION|BIASED|UNBIASED} 1-316

#pragma STDC FX_FULL_PRECISION
{ON|OFF|DEFAULT} .. 1-317

Contents

xx CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

#pragma STDC FX_FRACT_OVERFLOW
{SAT|DEFAULT} ... 1-317

#pragma STDC FX_ACCUM_OVERFLOW
{SAT|DEFAULT} ... 1-317

Inline Control Pragmas ... 1-318

#pragma always_inline .. 1-318

#pragma inline ... 1-319

#pragma never_inline ... 1-319

Linking Control Pragmas .. 1-320

#pragma linkage_name identifier 1-320

#pragma core .. 1-320

#pragma retain_name ... 1-325

#pragma section/#pragma default_section 1-327

#pragma file_attr(“name[=value]”
[, “name[=value]” [...]]) .. 1-330

#pragma symbolic_ref ... 1-331

#pragma weak_entry ... 1-334

Function Side-Effect Pragmas ... 1-334

#pragma alloc ... 1-335

#pragma const .. 1-335

#pragma inline ... 1-336

#pragma misra_func(arg) .. 1-336

#pragma no_vectorization ... 1-336

#pragma noreturn ... 1-336

#pragma pgo_ignore ... 1-337

CrossCore Embedded Studio 1.0 xxi
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

#pragma pure .. 1-337

#pragma regs_clobbered string 1-338

#pragma regs_clobbered_call string 1-342

#pragma overlay .. 1-346

#pragma result_alignment (n) 1-346

Class Conversion Optimization Pragmas 1-347

#pragma param_never_null param_name [...] 1-347

#pragma suppress_null_check 1-348

Template Instantiation Pragmas 1-350

#pragma instantiate instance .. 1-351

#pragma do_not_instantiate instance 1-351

#pragma can_instantiate instance 1-352

Header File Control Pragmas ... 1-352

#pragma no_implicit_inclusion 1-352

#pragma once ... 1-353

#pragma system_header ... 1-353

Diagnostic Control Pragmas .. 1-354

Modifying the Severity of Specific Diagnostics 1-354

Modifying the Behavior of an Entire Class
of Diagnostics .. 1-355

Saving or Restoring the Current Behavior
of All Diagnostics ... 1-356

Run-Time Checking Pragmas .. 1-357

#pragma rtcheck(off) .. 1-358

#pragma rtcheck(on) ... 1-358

Contents

xxii CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Memory Bank Pragmas ... 1-358

#pragma code_bank(bankname) 1-359

#pragma data_bank(bankname) 1-359

#pragma stack_bank(bankname) 1-360

#pragma default_code_bank(bankname) 1-362

#pragma default_data_bank(bankname) 1-362

#pragma default_stack_bank(bankname) 1-362

#pragma bank_memory_kind(bankname, kind) 1-363

#pragma bank_read_cycles(bankname, cycles[, bits]) 1-363

#pragma bank_write_cycles(bankname, cycles[, bits]) 1-364

#pragma bank_maximum_width(bankname, width) 1-365

Exceptions Tables Pragma ... 1-365

GCC Compatibility Extensions ... 1-366

Statement Expressions .. 1-367

Type Reference Support Keyword (typeof) 1-368

Generalized lvalues ... 1-370

Conditional Expressions With Missing Operands 1-370

Zero-Length Arrays .. 1-370

GCC Variable Argument Macros 1-371

Line Breaks in String Literals .. 1-371

Arithmetic on Pointers to Void and Pointers
to Functions .. 1-372

Cast to Union ... 1-372

Ranges in Case Labels ... 1-372

Escape Character Constant ... 1-372

CrossCore Embedded Studio 1.0 xxiii
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

Alignment Inquiry Keyword (__alignof__) 1-372

(asm) Keyword for Specifying Names in
Generated Assembler .. 1-373

Function, Variable, and Type Attribute
Keyword (__attribute__) .. 1-374

Unnamed struct/union Fields Within struct/unions 1-376

Preprocessor-Generated Warnings .. 1-377

C/C++ Preprocessor Features ... 1-377

Predefined Macros ... 1-378

Writing Preprocessor Macros .. 1-382

Compound Macros ... 1-383

C/C++ Run-Time Model and Environment 1-385

Registers .. 1-386

Dedicated Registers ... 1-387

Preserved Registers .. 1-388

Scratch Registers ... 1-389

Loop Counters, Overlays and DMA’d Code 1-390

Stack Registers .. 1-391

Event Stack Register .. 1-391

Call-Expansion Register .. 1-392

Parameter Registers ... 1-392

Return Registers .. 1-392

Aggregate Return Register ... 1-392

Comparison Return Register ... 1-392

Reservable Register .. 1-393

Contents

xxiv CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Managing the Stack ... 1-393

Function Call and Return .. 1-395

Transferring Function Arguments and Return Value 1-397

Basic Argument Passing .. 1-397

Passing Parameters for Variable Argument Lists 1-398

Passing a C++ Class Instance 1-398

Return Values ... 1-399

Parameter and Return Value Examples 1-400

Calling Assembly Subroutines From C/C++ Programs 1-401

Calling C/C++ Functions From Assembly Programs 1-402

Symbol Names in C/C++ and Assembly 1-403

C/C++ and Assembly: Extern Linkage 1-404

C and Assembly: Underscore Prefix 1-404

Other Approaches ... 1-405

Exceptions Tables in Assembly Routines 1-405

Data Storage Formats .. 1-410

Floating-Point Data Size ... 1-412

Floating-Point Binary Formats .. 1-414

IEEE Floating-Point Format 1-414

IEEE Floating-Point Implementation 1-416

fract and accum Data Representation 1-417

fract16 and fract32 Data Representation 1-421

CrossCore Embedded Studio 1.0 xxv
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

Memory Section Usage .. 1-422

Code Storage .. 1-422

Data Storage ... 1-422

Run-Time Stack .. 1-423

Run-Time Heap Storage .. 1-423

Global Array Alignment ... 1-423

Controlling System Heap Size and Placement 1-424

Managing the System Heap in the IDE 1-424

Managing the System Heap in the .ldf File 1-425

Standard Heap Interface .. 1-427

Using Multiple Heaps .. 1-427

Defining a Heap ... 1-428

Defining Additional Heaps in the IDE 1-428

Defining Heaps at Runtime ... 1-429

Tips for Working With Heaps ... 1-430

Allocating C++ STL Objects to a Non-Default Heap 1-430

Using the Alternate Heap Interface 1-433

C++ Run-Time Support for the Alternate
Heap Interface ... 1-435

Freeing Space .. 1-435

Contents

xxvi CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Startup and Termination ... 1-436

Memory Initialization ... 1-437

Global Constructors ... 1-438

Constructors and Destructors of Global
Class Instances ... 1-438

Constructors, Destructors, and Memory Placement 1-439

Support for argv/argc .. 1-440

Compiler C++ Template Support .. 1-441

Template Instantiation .. 1-441

Exported Templates .. 1-442

Implicit Instantiation .. 1-443

Generated Template Files .. 1-444

Identifying Un-Instantiated Templates 1-445

File Attributes .. 1-446

Automatically-Applied Attributes .. 1-447

Default LDF Placement .. 1-449

Sections Versus Attributes ... 1-450

Granularity ... 1-450

Hard Mapping Versus Soft Mapping 1-450

Number of Values ... 1-451

Using Attributes .. 1-451

Example 1 .. 1-452

Example 2 .. 1-454

CrossCore Embedded Studio 1.0 xxvii
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

Implementation Defined Behavior ... 1-454

Enumeration Type Implementation Details 1-454

ISO/IEC 9899:1990 C Standard (C89 Mode) 1-456

G3.1 Translation ... 1-456

G3.2 Environment .. 1-456

G3.3 Identifiers .. 1-456

G3.4 Characters .. 1-457

G3.5 Integers .. 1-459

G3.6 Floating-Point .. 1-460

G3.7 Arrays and Pointers .. 1-461

G3.8 Registers .. 1-462

G3.9 Structures, Unions, Enumerations and Bit-Fields 1-462

G3.10 Qualifiers ... 1-463

G3.11 Declarators ... 1-464

G3.12 Statements ... 1-464

G3.13 Preprocessing Directives 1-464

G3.14 Library Functions ... 1-465

ISO/IEC 9899:1999 C Standard (C99 Mode) 1-471

J3.1 Translation .. 1-471

J3.2 Environment ... 1-472

J3.3 Identifiers .. 1-474

J3.4 Characters ... 1-475

J3.5 Integers ... 1-477

J3.6 Floating-Point ... 1-478

Contents

xxviii CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

ISO/IEC 14822:2003 C++ Standard (C++ Mode) 1-480

1.7 The C++ Memory Model .. 1-480

1.9 Program Execution ... 1-481

2.1 Phases of Translation .. 1-481

2.2 Character Sets ... 1-481

2.13.2 Character Literals ... 1-482

2.13.4 String Literals .. 1-483

3.6.1 Main Function ... 1-483

3.6.2 Initialization of Non-Local Objects 1-483

3.9 Types .. 1-484

3.9.1 Fundamental Types .. 1-484

3.9.2 Compound Types .. 1-485

4.7 Integral Conversions ... 1-485

4.8 Floating-Point Conversions 1-486

4.9 Floating-Integral Conversions 1-486

5.2.8 Type Identification .. 1-486

5.2.10 Reinterpret Cast ... 1-486

5.3.3 Sizeof .. 1-487

5.6 Multiplicative Operators ... 1-488

5.7 Additive Operators ... 1-489

5.8 Shift Operators ... 1-489

7.1.5.2 Simply Type Specifiers .. 1-489

7.2 Enumeration Declarations ... 1-490

7.4 The asm Declaration ... 1-490

CrossCore Embedded Studio 1.0 xxix
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

7.5 Linkage Specifications ... 1-490

9.6 Bit-Fields .. 1-491

14 Templates .. 1-492

14.7.1 Implicit Instantiation ... 1-492

15.5.1 The terminate() Function 1-492

15.5.2 The unexpected() Function 1-493

16.1 Conditional Inclusion .. 1-493

16.2 Source File Inclusion ... 1-494

16.6 Pragma Directive ... 1-494

16.8 Predefined Macro Names ... 1-495

17.4.4.5 Reentrancy .. 1-495

17.4.4.8 Restrictions on Exception Handling 1-496

18.3 Start and Termination ... 1-496

18.4.2.1 Class bad_alloc .. 1-497

18.5.1 Class type_info ... 1-497

18.5.2 Class bad_cast .. 1-498

18.5.3 Class bad_typeid .. 1-498

18.6.1 Class Exception .. 1-498

18.6.2.1 Class bad_exception .. 1-499

21 Strings Library ... 1-499

21.1.3.2 struct char_traits<wchar_t> 1-500

22.1.1.3 Locale Members .. 1-500

22.2.1.3 ctype Specializations .. 1-500

22.2.1.3.2 ctype<char> Members 1-500

Contents

xxx CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

22.2.5.1.2 time_get Virtual Functions 1-501

22.2.5.3.2 time_put Virtual Functions 1-501

22.2.7.1.2 Messages Virtual Functions 1-502

26.2.8 Complex Transcendentals 1-503

27.1.2 Positioning Type Limitations 1-503

27.4.1 Types ... 1-503

27.4.2.4 ios_base Static Members 1-503

27.4.4.3 basic_ios iostate Flags Functions 1-504

27.7.1.3 Overridden Virtual Functions 1-504

27.8.1.4 Overridden Virtual Functions 1-504

C.2.2.3 Macro NULL ... 1-505

D.6 Old iostreams Members ... 1-505

ACHIEVING OPTIMAL PERFORMANCE FROM
C/C++ SOURCE CODE

General Guidelines ... 2-3

How the Compiler Can Help .. 2-4

Using the Compiler Optimizer .. 2-4

Using Compiler Diagnostics ... 2-5

Warnings, Annotations and Remarks 2-6

Run-Time Diagnostics .. 2-7

Steps for Developing Your Application 2-7

CrossCore Embedded Studio 1.0 xxxi
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

Using Profile-Guided Optimization 2-9

Using Profile-Guided Optimization With a Simulator 2-10

Using Profile-Guided Optimization With Hardware 2-12

Profile-Guided Optimization and Multiple
Source Uses .. 2-17

Profile-Guided Optimization and the
-Ov num Switch ... 2-18

Profile-Guided Optimization and Multiple PGO
Data Sets .. 2-18

When to Use Profile-Guided Optimization 2-18

Using Interprocedural Optimization 2-19

The volatile Type Qualifier .. 2-20

Data Types .. 2-21

Optimizing a struct ... 2-23

Bit-Fields .. 2-25

Avoiding Emulated Arithmetic .. 2-26

Getting the Most From IPA ... 2-26

Initializing Constants Statically ... 2-27

Word-Aligning Your Data .. 2-28

Using the aligned() built-in ... 2-29

Avoiding Aliases .. 2-31

Indexed Arrays Versus Pointers ... 2-33

Trying Pointer and Indexed Styles 2-33

Using Function Inlining .. 2-34

Using Inline asm Statements .. 2-35

Contents

xxxii CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Memory Usage .. 2-36

Using the Bank Qualifier .. 2-38

Improving Conditional Code .. 2-39

Using Compiler Performance Built-In Functions 2-40

Using PGO in Function Profiling .. 2-43

Example of Using Profile-Guided Optimization 2-43

Opening the Project .. 2-44

Gathering the Profile .. 2-45

Rebuilding With the Profile .. 2-46

Loop Guidelines ... 2-47

Keeping Loops Short ... 2-47

Avoiding Unrolling Loops ... 2-48

Avoiding Loop-Carried Dependencies 2-48

Avoiding Loop Rotation by Hand .. 2-49

Avoiding Complex Array Indexing ... 2-51

Inner Loops Versus Outer Loops ... 2-51

Avoiding Conditional Code in Loops 2-52

Avoiding Placing Function Calls in Loops 2-53

Avoiding Non-Unit Strides .. 2-53

Using 16-Bit Data Types and Vector Instructions 2-54

Loop Control .. 2-55

Using the Restrict Qualifier ... 2-56

CrossCore Embedded Studio 1.0 xxxiii
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

Manipulating Fixed-Point and Fractional Data 2-57

Using Integer Arithmetic to Encode Fractional Semantics 2-58

Using the Native Fixed-Point Types fract and accum 2-59

Using Built-In Functions to Perform Fixed-Point
Arithmetic .. 2-60

Using Built-In Functions in Code Optimization 2-61

Fractional Data .. 2-61

Using System Support Built-In Functions 2-61

Using Circular Buffers ... 2-62

Smaller Applications: Optimizing for Code Size 2-64

Effect of Data Type Size on Code Size 2-66

Using Pragmas for Optimization .. 2-67

Function Pragmas .. 2-68

#pragma alloc ... 2-68

#pragma const .. 2-68

#pragma pure .. 2-69

#pragma result_alignment ... 2-69

#pragma regs_clobbered .. 2-70

#pragma optimize_
{off|for_speed|for_space|as_cmd_line} 2-72

Loop Optimization Pragmas .. 2-72

#pragma loop_count ... 2-72

#pragma no_vectorization ... 2-73

#pragma vector_for ... 2-73

#pragma all_aligned .. 2-75

Contents

xxxiv CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

#pragma different_banks .. 2-76

#pragma no_alias .. 2-76

Useful Optimization Switches ... 2-77

How Loop Optimization Works .. 2-77

Terminology ... 2-78

Clobbered .. 2-78

Live .. 2-78

Spill ... 2-79

Scheduling ... 2-79

Loop Kernel ... 2-79

Loop Prolog ... 2-79

Loop Epilog ... 2-80

Loop Invariant ... 2-80

Hoisting ... 2-80

Sinking .. 2-80

Loop Optimization Concepts .. 2-81

Software Pipelining ... 2-82

Loop Rotation .. 2-82

Loop Vectorization ... 2-85

Modulo Scheduling .. 2-87

Initiation Interval (II) and the Kernel 2-88

Minimum Initiation Interval Due to
Resources (Res MII) ... 2-91

CrossCore Embedded Studio 1.0 xxxv
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

Minimum Initiation Interval Due to
Recurrences (Rec MII) .. 2-92

Stage Count (SC) .. 2-93

Variable Expansion and MVE Unroll 2-95

Trip Count ... 2-100

A Worked Example .. 2-101

Assembly Optimizer Annotations .. 2-104

Annotation Examples .. 2-105

Importing Annotation Examples 2-106

Viewing Annotation Examples in the IDE 2-107

Viewing Annotation Examples in Generated Assembly 2-108

Global Information ... 2-109

Procedure Statistics .. 2-110

Instruction Annotations ... 2-111

Loop Identification .. 2-112

Loop Identification Annotations 2-113

Resource Definitions ... 2-115

File Position .. 2-117

Infinite Hardware Loop Wrappers 2-118

Vectorization ... 2-120

Unroll and Jam ... 2-121

Loop Flattening .. 2-123

Vectorization Annotations ... 2-124

Contents

xxxvi CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Modulo Scheduling Information ... 2-125

Annotations for Modulo-Scheduled Instructions 2-126

Warnings, Failure Messages, and Advice 2-132

Analyzing Your Application ... 2-136

Application Analysis Configuration 2-137

Application Analysis and File Naming 2-137

Device for Profiling Output .. 2-138

Frequency of Flushing Profile Data 2-139

Profiling With Instrumented Code 2-139

Generating an Application With Instrumented
Profiling .. 2-140

Running the Executable .. 2-141

Invoking the Reporter Tool ... 2-141

Invoking the instrprof.exe Command-Line Reporter 2-142

Contents of the Profiling Report 2-142

Reporter Tool Report Format .. 2-144

instrprof Command-Line Tool Report Format 2-145

Profiling Data Storage ... 2-146

Computing Cycle Counts ... 2-146

Multi-Threaded and Non-Terminating Applications 2-147

Flushing Profile Data .. 2-147

Profiling of Interrupts and Kernel Time 2-148

Behavior That Interferes With Instrumented
Profiling .. 2-148

CrossCore Embedded Studio 1.0 xxxvii
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

Profile-Guided Optimization and Code Coverage 2-149

Code Coverage Report .. 2-150

Unexpected Line Counts in a Code Coverage
Report ... 2-150

Heap Debugging ... 2-150

Getting Started With Heap Debugging 2-152

Linking With the Heap Debugging Library 2-153

Heap Debugging Macro .. 2-153

Default Behavior ... 2-154

Additional Heap Overheads ... 2-155

The Heap Debugging Report 2-155

Using the Heap Debugging Library 2-156

Detected Errors ... 2-157

Viewing Reports ... 2-159

stderr Diagnostics ... 2-159

Call Stack ... 2-161

Setting the Severity of Error Messages 2-162

Default Diagnostic Severities 2-164

Guard Regions .. 2-165

Enabling and Disabling Features 2-168

Buffering .. 2-170

Pausing Heap Debugging .. 2-171

Finishing Heap Debugging .. 2-172

Verifying Heaps .. 2-172

Contents

xxxviii CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Behavior of Heap Debugging Library 2-172

Unfreed File I/O Buffers ... 2-174

Memory Used by Operating Systems 2-175

Stack Overflow Detection ... 2-175

About Stack Overflows ... 2-175

What is Stack Overflow? ... 2-176

Likely Causes of Stack Overflow 2-176

Difficulties in Diagnosing Stack Overflow 2-177

Compiler’s Stack Overflow Detection Facility 2-178

Limitations on the Compiler’s Stack Detection
Capability .. 2-178

Fixing a Stack Overflow .. 2-179

C/C++ RUN-TIME LIBRARY

C and C++ Run-Time Library Guide .. 3-2

Calling Library Functions .. 3-3

Using the Compiler’s Built-In Functions 3-4

Linking Library Functions ... 3-5

Functional Breakdown .. 3-5

Library Location ... 3-6

Library Selection .. 3-7

Library Naming .. 3-7

Library Startup Files ... 3-9

CrossCore Embedded Studio 1.0 xxxix
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

Library Attributes .. 3-9

Exceptions to Library Attribute Conventions 3-13

Mapping Objects to Flash Using Attributes 3-15

Library Function Re-Entrancy and Thread Safety 3-15

Non-Reentrant Functions .. 3-15

Thread-Safe Libraries .. 3-17

Using the Thread-Safe Libraries ... 3-17

Working With Library Header Files 3-18

adi_types.h ... 3-20

assert.h ... 3-20

ccblkfn.h .. 3-21

ctype.h ... 3-21

errno.h ... 3-22

float.h ... 3-22

heap_debug.h ... 3-23

instrprof.h .. 3-25

iso646.h ... 3-25

libdyn.h .. 3-26

limits.h ... 3-26

locale.h ... 3-26

math.h .. 3-26

mc_data.h ... 3-28

misra_types.h .. 3-28

pgo_hw.h .. 3-28

Contents

xl CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

setjmp.h ... 3-28

signal.h .. 3-29

stdarg.h .. 3-29

stdbool.h .. 3-29

stddef.h .. 3-29

stdfix.h ... 3-29

stdint.h .. 3-30

stdio.h .. 3-32

stdlib.h ... 3-36

string.h .. 3-36

time.h .. 3-36

Calling a Library Function From an ISR 3-38

C++ Library Support ... 3-39

Embedded C++ Library Header Files 3-40

Standard C++ Library Header Files 3-41

Common Standard and Embedded C++ Library
Header Files ... 3-42

C++ Header Files for C Library Facilities 3-43

Standard Template Library (STL) Header Files 3-44

File I/O Support ... 3-46

Fatal Error Handling ... 3-46

FatalError.xml .. 3-47

General Codes .. 3-47

CrossCore Embedded Studio 1.0 xli
C/C++ Compiler and Library Manual for Blackfin Processors

Contents

Specific Codes ... 3-48

Library Errors ... 3-48

Run-Time Errors ... 3-51

Unhandled Exceptions .. 3-53

Parity Errors .. 3-54

Errno Values ... 3-56

Documented Library Functions ... 3-56

C Run-Time Library Reference .. 3-63

DSP RUN-TIME LIBRARY

DSP Run-Time Library Guide ... 4-2

Working With Library Source Code ... 4-2

Library Attributes .. 4-3

DSP Header Files .. 4-3

complex.h ... 4-4

cycle_count.h .. 4-8

cycles.h ... 4-8

filter.h .. 4-9

math.h .. 4-19

matrix.h .. 4-23

stats.h ... 4-37

vector.h ... 4-44

window.h .. 4-60

Contents

xlii CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Measuring Cycle Counts ... 4-63

Basic Cycle-Counting Facility ... 4-64

Cycle-Counting Facility With Statistics 4-66

Using time.h to Measure Cycle Counts 4-69

Determining the Processor Clock Rate 4-71

Considerations When Measuring Cycle Counts 4-72

DSP Run-Time Library Reference ... 4-75

MULTI-CORE PROGRAMMING

Dual-Core Blackfin Architecture Overview A-1

Application Model .. A-2

Compiler and Library Support .. A-3

Project Creation .. A-3

.ldf Files .. A-4

Startup Code .. A-5

MCAPI ... A-5

Library Functions ... A-5

INDEX

CrossCore Embedded Studio 1.0 xliii
C/C++ Compiler and Library Manual for Blackfin Processors

 PREFACE

Thank you for purchasing Analog Devices development software for
Blackfin® embedded media processors.

Purpose of This Manual
The C/C++ Compiler and Library Manual contains information about the
C/C++ compiler and run-time libraries for Blackfin embedded processors
that support a Media Instruction Set Computing (MISC) architecture.
This architecture is the natural merging of RISC, media functions, and
signal processing characteristics that delivers signal processing perfor-
mance in a microprocessor-like environment.

Intended Audience
The primary audience for this manual are programmers who are familiar
with Analog Devices Blackfin processors. This manual assumes that the
audience has a working knowledge of the Blackfin processors’ architecture
and instruction set and C/C++ programming languages.

Programmers who are unfamiliar with Blackfin processors can use this
manual, but should supplement it with other texts (such as the appropri-
ate hardware reference, programming reference, and data sheet) that
provide information about their Blackfin processor architecture and
instructions).

Manual Contents

 xliv CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Manual Contents
This manual contains:

• Chapter 1, Compiler
Provides information on compiler options, language extensions,
C/C++/assembly interfacing, and support for C++ templates

• Chapter 2, Achieving Optimal Performance From C/C++ Source
Code
Shows how to optimize compiler operation.

• Chapter 3, C/C++ Run-Time Library
Shows how to use library functions and provides a complete C/C++
library function reference

• Chapter 4, DSP Run-Time Library
Shows how to use DSP library functions and provides a complete
DSP library function reference

• Appendix A, Multi-Core Programming
Provides various approaches and programming guidance for
developing systems on dual-core Blackfin processors

CrossCore Embedded Studio 1.0 xlv
C/C++ Compiler and Library Manual for Blackfin Processors

Preface

What’s New in This Manual
This is Revision 1.2 of the C/C++ Compiler and Library Manual, support-
ing CrossCore® Embedded Studio (CCES) 1.0. Additions/changes to the
previous revision of the manual include the following.

• Table 1-36, Clobbered Register Sets, added

• New library functions added:

• dyn_AddHeap

• dyn_alloc

• dyn_FreeEntryPointArray

• dyn_GetEntryPointArray

• dyn_GetHeapForWidth

• dyn_heap_init

• dyn_RecordRelocOutOfRange

• dyn_RetrieveRelocOutOfRange

• dyn_RewriteImageToFile

• dyn_SetSectionMem

• Modifications and corrections based on errata reports against this
manual have been made.

Technical Support

 xlvi CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Technical Support
You can reach Analog Devices processors and DSP technical support in
the following ways:

• Post your questions in the processors and DSP support community
at EngineerZone®:
http://ez.analog.com/community/dsp

• Submit your questions to technical support directly at:
http://www.analog.com/support

• E-mail your questions about processors, DSPs, and tools develop-
ment software from CrossCore Embedded Studio or
VisualDSP++®:

Choose Help > Email Support. This creates an e-mail to
processor.tools.support@analog.com and automatically attaches
your CrossCore Embedded Studio or VisualDSP++ version infor-
mation and license.dat file.

• E-mail your questions about processors and processor applications
to:
processor.support@analog.com or
processor.china@analog.com (Greater China support)

• In the USA only, call 1-800-ANALOGD (1-800-262-5643)

• Contact your Analog Devices sales office or authorized distributor.
Locate one at:
www.analog.com/adi-sales

http://ez.analog.com/community/dsp
http://www.analog.com/support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.china@analog.com
http://www.analog.com/adi-sales

CrossCore Embedded Studio 1.0 xlvii
C/C++ Compiler and Library Manual for Blackfin Processors

Preface

• Send questions by mail to:
Processors and DSP Technical Support
Analog Devices, Inc.
Three Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Supported Processors
The name “Blackfin” refers to a family of 16-bit, embedded processors.
Refer to the CCES online help for a complete list of supported processors.

Product Information
Product information can be obtained from the Analog Devices Web site
and the CCES online help.

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, myAnalog is a free feature of the Analog Devices Web site that
allows customization of a Web page to display only the latest information

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/MyAnalog

Product Information

 xlviii CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

about products you are interested in. You can choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests, including documentation errata against all manuals. myAnalog
provides access to books, application notes, data sheets, code examples,
and more.

Visit myAnalog to sign up. If you are a registered user, just log on. Your
user name is your e-mail address.

EngineerZone
EngineerZone is a technical support forum from Analog Devices, Inc. It
allows you direct access to ADI technical support engineers. You can
search FAQs and technical information to get quick answers to your
embedded processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://ez.analog.com

CrossCore Embedded Studio 1.0 xlix
C/C++ Compiler and Library Manual for Blackfin Processors

Preface

Notation Conventions
Text conventions in this manual are identified and described as follows.

Example Description

File > Close Titles in reference sections indicate the location of an item within the
CCES environment’s menu system (for example, the Close command
appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipsis; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Notation Conventions

 l CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

CrossCore Embedded Studio 1.0 1-1
C/C++ Compiler and Library Manual for Blackfin Processors

1 COMPILER

The C/C++ compiler (ccblkfn) is part of Analog Devices development
software for Blackfin processors.

 The code examples in this manual have been compiled using
CCES 1.0.2.

This chapter contains:

• C/C++ Compiler Overview
provides an overview of the C/C++ compiler for Blackfin
processors.

• Compiler Command-Line Interface
describes the operation of the compiler as it processes programs,
including input and output files and command-line switches.

• Using Native Fixed-Point Types
describes the compiler’s support for the native fixed-point types
fract and accum, defined in Chapter 4 of the “Extensions to support
embedded processors” ISO/IEC draft technical report TR 18037.

• Language Standards Compliance
describes how to enable the best possible compliance to the
ISO/IEC 9899:1990 C standard, the ISO/IEC 9899:1999 C
standard, or the ISO/IEC 14882:2003 C++ standard.

• MISRA-C Compiler
describes the compiler support for MISRA-C:2004 Guidelines for
the use of the C language in critical systems.

1-2 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• Run-Time Checking
describes the additional run-time checks supported by the
compiler.

• C/C++ Compiler Language Extensions
describes the ccblkfn compiler’s extensions to the ANSI/ISO stan-
dard for the C and C++ languages.

• C/C++ Preprocessor Features
contains information on the preprocessor and ways to modify
source compilation.

• C/C++ Run-Time Model and Environment
contains reference information about implementation of C/C++
programs, data, and function calls in Blackfin processors.

• Compiler C++ Template Support
describes how templates are instantiated at compile time.

• File Attributes
describes how file attributes help with the placement of run-time
library functions.

• Implementation Defined Behavior
describes how the compiler implements language features for which
the standards allow some flexibility.

CrossCore Embedded Studio 1.0 1-3
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

C/C++ Compiler Overview
The C/C++ compiler is designed to aid your DSP project development
efforts by:

• Processing C and C++ source files, producing machine-level
versions of the source code and object files

• Providing relocatable code and debugging information within the
object files

• Providing relocatable data and program memory segments for
placement by the linker in the processors’ memory

Using C/C++, developers can significantly decrease time-to-market since
it gives them the ability to efficiently work with complex signal processing
data types. It also allows them to take advantage of specialized signal pro-
cessing operations without having to understand the underlying processor
architecture.

The C/C++ compiler compiles ANSI/ISO standard C and C++ code to
support signal data processing. Additionally, Analog Devices includes
within the compiler a number of C language extensions designed to assist
in DSP development. The ccblkfn compiler runs from the CCES envi-
ronment or from the operating system command line.

The C/C++ compiler processes your C and C++ language source files and
produces Blackfin assembler source files. The assembler source files are
assembled by the Blackfin processor assembler (easmblkfn). The assembler
creates Executable and Linkable Format (ELF) object files that can be
linked (using the linker) to create a Blackfin processor executable file or
included in an archive library using the librarian tool (elfar). The way in
which the compiler controls the assemble, link, and archive phases of the
process depends on the source input files and the compiler options used.

C/C++ Compiler Overview

1-4 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Your source files contain the C/C++ program to be processed by the
compiler. The ccblkfn compiler supports the following standards, each
with Analog Devices extensions enabled:

• A hosted implementation of the ISO/IEC 9899:1990 C standard
(“C89”).

• A freestanding implementation of the ISO/IEC 9899:1999 C
standard (“C99”).

• A hosted implementation of the ISO/IEC 14882:2003 C++ stan-
dard (“C++ 2003”). The compiler supports the language features
supported by a standard subset of the C++ Library. You can view
the abridged C++ library reference in the CCES online help.

RTTI and exceptions for C++ are supported, but disabled by default. See
information on these switches: -rtti and -eh.

For information on the C or C++ language standards, see any of the many
reference texts.

The ccblkfn compiler supports a set of C/C++ language extensions. These
extensions support hardware features of the Blackfin processors. For infor-
mation on these extensions, see C/C++ Compiler Language Extensions.

You can specify compiler options from the Preference pages of the CCES
Integrated Development Environment (IDE). These selections control
how the compiler processes your source files, letting you select features
that include the language dialect, error reporting, and debugger output.

The Preferences pages are accessible from the Properties choice on the
Project menu. Within the Preferences pages, navigate to C/C++ Build,
then to Settings. Alternatively, click on the Settings icon in the Project
Explorer view. For both routes, the compiler options are then available
from Settings > Tool Settings > CrossCore Blackfin C/C++ Compiler.

For more information on the CCES environment, refer to the online help.

CrossCore Embedded Studio 1.0 1-5
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Compiler Components
The compiler is not a single program, but a collection of programs, each
with a different task.

Compiler Driver

The compiler driver, ccblkfn, is the user interface to the other programs,
and is the program you invoke when you run the compiler on the com-
mand line. Its responsibility is to marshall and interpret the
command-line arguments to determine what other components and
code-generation tools need invoking, and in what order. The compiler
driver hides the complexity and presents a consistent interface. For this
reason, throughout the documentation, “the compiler”, “compiler driver”
and “ccblkfn” are used interchangeably.

Compiler Proper

The compiler proper, found in Blackfin\etc\compiler, is the actual com-
piler; it compiles a single C/C++ source file into a single assembly output
file. The compiler driver invokes the compiler proper for each C/C++
source file specified.

The Assembler

The assembler, easmblkfn, assembles a single assembly source file into a
single object file. The compiler driver invokes the assembler to translate
both user-supplied assembly files and compiler-generated assembly files.

The Linker

The linker, linker, combines object files into executable files, and
searches library files to resolve references to undefined symbols. The linker
relies on a .ldf file to specify how the resulting collection of symbols
should be mapped into memory. The compiler driver invokes the linker
when the specified output file is an executable file.

C/C++ Compiler Overview

1-6 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The Prelinker

The prelinker is found at Blackfin\etc\prelinker. Its purpose is to
examine the set of objects and libraries prior to linking, and to instruct the
compiler driver to recompile files or add additional libraries or switches, as
needed. The compiler driver invokes the prelinker just prior to invoking
the linker. Language features supported by the prelinker include:

• C++ template instantiation

• Interprocedural Analysis

• Instrumented Profiling

IPA Solver

The IPA Solver, Blackfin\etc\ipa, propagates information between com-
piled modules, as part of Interprocedural Analysis. The IPA Solver might
direct the compiler driver to recompile a source file, if propagated infor-
mation can improve optimization. The IPA Solver is invoked by the
prelinker when any of the input files were compiled with IPA optimiza-
tion enabled.

PGO Merger

The PGO merger, Blackfin\etc\pgo, combines multiple profiles gathered
through profiled executions of an application, and produces a single pro-
file for the compiler to use. The PGO merger is invoked by the compiler
driver whenever more than one PGO profile is specified.

Librarian

The librarian, elfar, provides facilities for creating, modifying and
inspecting library files. The compiler driver invokes the librarian when the
output file is a library file.

CrossCore Embedded Studio 1.0 1-7
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Memory Initializer

The memory initializer, MemInit, creates an initialization stream within
the executable file. The compiler driver directs the linker to invoke the
memory initializer after linking, when the -mem switch (on page 1-52) is
specified.

The assembler, linker and librarian are documented in the Assembler and
Preprocessor Manual and the Linker and Utilities Manual. The other com-
ponents should always be invoked only through the compiler driver, never
directly.

Compiler Command-Line Interface
This section describes how the ccblkfn compiler is invoked from the
command line, the various types of files used by and generated from the
compiler, and the switches used to tailor the compiler’s operation.

This section contains:

• Running the Compiler

• C/C++ Compiler Command-Line Switches

• Environment Variables Used by the Compiler

• Additional Path Support

• Optimization Control

• Controlling Silicon Revision and Anomaly Workarounds Within
the Compiler

By default, the compiler runs with Analog Extensions for C code enabled.
This means that the compiler processes source files written in ISO/IEC
9899:1999 standard C language supplemented with Analog Devices
extensions. Table 1-2 lists valid extensions of source files the compiler

Compiler Command-Line Interface

1-8 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

operates upon. By default, the compiler processes input files through the
listed stages to produce a .dxe file. (See file names in Table 1-3.) Table 1-4
lists switches that select the language dialect.

Although many switches are generic between C and C++, some are valid in
C++ mode only. A summary of the generic C/C++ compiler switches
appears in Table 1-5. A summary of the C++-specific compiler switches
appears in Table 1-6. The summaries are followed by descriptions of each
switch.

 When developing a DSP project, sometimes it is useful to modify
the compiler’s default options settings. The way the compiler’s
options are set depends on the environment used to run the DSP
development software. For more information, see Environment
Variables Used by the Compiler.

Running the Compiler
Use the following syntax for the ccblkfn command line:

ccblkfn [-switch [-switch …] sourcefile [sourcefile …]]

Table 1-1 describes the command-line syntax.

Table 1-1. ccblkfn Command-Line Syntax

Parameter Description

ccblkfn Name of the compiler program for Blackfin processors.

-switch Switch (or switches) to process.
The compiler has many switches. These switches select the
operations and modes for the compiler and other tools.
Command-line switches are case-sensitive.
For example, -O is not the same as -o.

sourcefile Name of the file to be preprocessed, compiled, assembled, and/or linked

CrossCore Embedded Studio 1.0 1-9
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

A file name can include the directory, file name, and file extension. The
compiler supports both Win32- and POSIX-style paths, using either for-
ward slashes or back slashes as the directory delimiter. It also supports
UNC path names (starting with two slashes and a network name).

 When file names or other switches for the compiler include spaces
or other special characters, you must ensure that these are properly
quoted (usually using double-quote characters), to ensure that they
are not interpreted by the operating system before being passed to
the compiler.

The ccblkfn compiler uses the file extension to determine what the file
contains and what operations to perform upon it. Table 1-3 lists the
allowed extensions.

Examples
For example, the following command line runs ccblkfn with the following
options:

ccblkfn -proc ADSP-BF533 -O -Wremarks -o program.dxe source.c

-proc ADSP-BF533 Specifies compiler instructions unique to the
ADSP-BF533 processor

-O Specifies optimization for the compiler

-Wremarks Selects extra diagnostic remarks in addition to
warning and error messages

-o program.dxe Specifies a name for the compiled, linked output

source.c Specifies the C language source file to be compiled

Compiler Command-Line Interface

1-10 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The following example command line for C++ mode runs ccblkfn with
these options:

ccblkfn -proc ADSP-BF533 -c++ source.cpp

-c++ Specifies all of the source files to be compiled in
C++ mode

source.cpp Specifies the C++ language source file to be
compiled

The normal function of ccblkfn is to invoke the compiler, assembler, and
linker as required to produce an executable object file. The precise opera-
tion is determined by the extensions of the input file names and by various
switches.

In normal operation, the compiler uses the files listed in Table 1-2 to per-
form a specified action.

If multiple files are specified, each is processed to produce an object file
and then all the object files are presented to the linker.

You can stop this sequence at various points using appropriate compiler
switches (-E,-P,-M,-H,-S, and -c.), or by selecting options within the
IDE.

Many of the compiler’s switches take a file name as an optional parameter.
If you do not use the optional output name switch, ccblkfn names the

Table 1-2. File Extensions Specifying Compiler Action

Extension Action

.c .C .cpp .cxx .cc .c++ Source file is compiled, assembled, and linked.

.asm .dsp .s Assembly language source file is assembled and linked.

.doj Object file (from previous assembly) is linked.

.pgo .pgi Profile-guided optimization information file is used during
compilation.

CrossCore Embedded Studio 1.0 1-11
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

output for you. Table 1-3 lists the type of files, names, and extensions
ccblkfn appends to output files.

File extensions vary by command-line switch and file type. These exten-
sions are influenced by the program that is processing the file. The
programs search directories that you specify and path information that
you include in the file name. Table 1-3 indicates the extensions that the
preprocessor, compiler, assembler, and linker support. The compiler sup-
ports relative and absolute directory names to define file extension paths.
For information on additional search directories, see the command-line
switch that controls the specific type of extensions.

When providing an input or output file name as an optional parameter,
follow these guidelines.

• Use a file name (include the file extension) with an unambiguous
relative path or an absolute path. A file name with an absolute path
includes the directory, file name, and file extension. The compiler
uses the file extension convention listed in Table 1-3 to determine
the input file type.

• Verify that the compiler is using the correct file. If you do not
provide the complete file path as part of the parameter or add
additional search directories, ccblkfn looks for input in the current
directory.

 Use the verbose output switches for the preprocessor, compiler,
assembler, and linker to cause each of these tools to display
command-line information as they process each file.

Compiler Command-Line Interface

1-12 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The compiler refers to a number of environment variables during its oper-
ation, and these environment variables can affect the compiler’s behavior.

Table 1-3. Input and Output File Extensions

File Extension File Extension Description

.c .C C source file

.cpp .cxx .cc .c++ C++ source file

.h Header file (referenced by an #include statement)

.hpp .hh .hxx .h++ C++ header file (referenced by a #include statement)

.hpl Heap debugging output file—used by the Reporter Tool to produce a
report on heap usage and related errors

.ii .ti Template instantiation files—used internally by the compiler when
instantiating templates

.et Exported template files—used internally by the compiler when
instantiating exported templates

.ipa Interprocedural analysis files—used internally by the compiler when
performing interprocedural analysis.

.pgo .pgi .pgt Execution profile generated by a simulation run or instrumented exe-
cutable

.i Preprocessed source file—created when preprocess only is specified

.s, .asm Assembly language source files

.is Preprocessed assembly language source—retained when
-save-temps (on page 1-81) is specified

.sbn Binary data included by an assembly language source file

.ldf Linker description file

.misra Text file used by prelinker for MISRA-C Guidelines checking

.doj .o Object file to be linked

.dlb .a Library of object files to be linked as needed

.dxe Executable file produced by compiler

.xml Processor memory map file output

.sym Processor symbol map file output

CrossCore Embedded Studio 1.0 1-13
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Refer to Environment Variables Used by the Compiler for more
information.

C/C++ Compiler Command-Line Switches
This section describes command-line switches used when compiling.
Tables, organized by switch type, provide a brief description of each
switch. Following these tables is a detailed description of each switch.

This section contains the following tables:

• C/C++ Mode Selection Switches (Table 1-4)

• C/C++ Compiler Common Switches (Table 1-5)

• C Mode (MISRA) Compiler Switches (Table 1-6)

• C++ Mode Compiler Switches (Table 1-7)

Table 1-4. C/C++ Mode Selection Switches

Switch Name Description

-c89
on page 1-28

Supports programs that conform to a hosted implemen-
tation of the ISO/IEC 9899:1990 standard with Analog
Devices extensions

-c99
on page 1-28

Supports programs that conform to a freestanding
implementation of the ISO/IEC 9899:1999 standard
with Analog Devices extensions. This is the default
mode.

-c++
on page 1-29

Supports programs that conform to a hosted implemen-
tation of the ISO/IEC 14882:2003 C++ standard with
Analog Devices extensions. (-full-cpplib)

Compiler Command-Line Interface

1-14 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Table 1-5. C/C++ Compiler Common Switches

Switch Name Description

sourcefile
on page 1-29

This parameter specifies the file to be compiled

-@ filename
on page 1-29

Reads command-line input from the file

-A symbol [tokens]
on page 1-30

Asserts the specified name as a predicate

-add-debug-libpaths
on page 1-31

Links against debug-specific variants of system libraries,
where available.

-alttok
on page 1-31

Allows alternative keywords and sequences in sources

-always-inline
on page 1-32

Treats inline keyword as a requirement rather than a
suggestion.

-annotate
on page 1-32

Enables assembly annotations

-annotate-loop-instr
on page 1-33

Provides additional annotation information for the pro-
log, kernel and epilog of a loop

-auto-attrs
on page 1-33

Directs the compiler to emit automatic attributes based
on the files it compiles. Enabled by default.

-bss
on page 1-33

Causes the compiler to put global zero-initialized data
into a separate BSS-style section. Set by default.

-build-lib
on page 1-33

Directs the librarian to build a library file

-C
on page 1-34

Retains preprocessor comments in the output file

-c
on page 1-34

Compiles and/or assembles only, but does not link

-component file.xml
on page 1-34

Reads additional options from the specified XML file.

-const-read-write
on page 1-34

Specifies that data accessed via a pointer to const data
may be modified elsewhere

-const-strings
on page 1-35

Directs the compiler to mark string literals as const
qualified

CrossCore Embedded Studio 1.0 1-15
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-cplbs
on page 1-35

Instructs the compiler to assume that CPLBs are active

-D macro[=definition]
on page 1-35

Defines macro

-dcplbs
on page 1-36

Instructs the compiler to assume that data CPLBs are
active

-decls-weak
-decls-strong
on page 1-36

Determines whether uninitialized global variables
should be treated as definitions or declarations

-dependency-add-target target
on page 1-37

Adds target to any emitted dependency information

-double-size-32
-double-size-64
on page 1-37

Selects 32- or 64-bit IEEE format for double.
-double-size-32 is the default mode

-double-size-any
on page 1-37

Indicates that the resulting object can be linked with
objects built with any double size

-dry
on page 1-38

Displays, but does not perform, main driver actions
(verbose dry run)

-dryrun
on page 1-38

Displays, but does not perform, top-level driver actions
(terse dry run)

-E
on page 1-38

Preprocesses, but does not compile, the source file

-ED
on page 1-38

Preprocesses and sends all output to a file

-EE
on page 1-39

Preprocesses and compiles the source file

-eh
on page 1-39

Enables exception handling

-enum-is-int
on page 1-40

By default, an enum can have a type larger than int.
This option ensures the enum type is int.

-expand-symbolic-links
on page 1-40

Provides support for Cygwin path extensions within
command-line switches and #include preprocessor
directives

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-16 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-expand-windows-shortcuts
on page 1-40

Provides support for Windows shortcuts within
command-line switches and #include preprocessor
directives

-extra-keywords
on page 1-40

Recognizes Blackfin processor extensions to ANSI/ISO
standards for C (default mode)

-file-attr name[=value]
on page 1-41

Adds the specified attribute name/value pair to the
file(s) being compiled

-fixed-point-io
on page 1-41

Links with a variant of the Analog Devices I/O library
containing support for printing native fixed-point types
in decimal format

-flags-asm switches
-flags-compiler switches
-flags-ipa switches
-flags-lib switches
-flags-link switches
-flags-mem switches
-flags-prelink switches
on page 1-42

Passes command-line switches through the compiler to
other build tools

-force-circbuf
on page 1-43

Treats array references of the form array[i%n] as cir-
cular buffer operations

-force-link
on page 1-43

Forces stack frame creation for leaf functions.
(defaults to ON with -g option set, enforced for the -p
option)

-fp-associative
on page 1-43

Treats floating-point multiplication and addition as
associative operations

-full-io
on page 1-43

Links with a third party, proprietary I/O library

-full-version
on page 1-44

Displays the version number of the driver and processes
invoked by the driver

-fx-contract
on page 1-44

Sets the default mode of FX_CONTRACT to ON

-fx-rounding-mode-biased
on page 1-44

Sets the default mode of FX_ROUNDING_MODE to
BIASED

-fx-rounding-mode-truncation
on page 1-45

Sets the default mode of FX_ROUNDING_MODE to
TRUNCATION

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

CrossCore Embedded Studio 1.0 1-17
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-fx-rounding-mode-unbiased
on page 1-45

Sets the default mode of FX_ROUNDING_MODE to
UNBIASED

-g
on page 1-45

Generates DWARF-2 debug information

-glite
on page 1-46

Generates lightweight DWARF-2 debug information

-gnu-style-dependencies
on page 1-46

Produces dependency information in the style expected
by the GNU make program

-H
on page 1-46

Outputs a list of included header files, but does not
compile

-HH
on page 1-47

Outputs a list of included header files and compiles

-h
-help
on page 1-47

Outputs a list of command-line switches with brief syn-
tax descriptions

-I directory
on page 1-47

Appends directory to the standard search path

-I-
on page 1-48

Specifies the point in the include directory list where
the search for header files enclosed in angle brackets
should begin

-i
on page 1-48

Outputs only header details or makefile dependencies
for include files specified in double quotes

-icplbs
on page 1-48

Instructs the compiler to assume that instruction
CPLBs are active

-include filename
on page 1-49

Includes named file prior to each source file

-ipa
on page 1-49

Specifies that interprocedural analysis should be per-
formed for optimization between translation units

-jcs2l
on page 1-49

Enables the conversion of short jumps to long jumps
when necessary but uses the P1 register for indirect
jumps when long jumps are insufficient (enabled by
default)

-L directory
on page 1-49

Appends directory to the standard library search path

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-18 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-l library
on page 1-50

Searches library for functions when linking

-list-workarounds
on page 1-50

Lists all compiler-supported errata workarounds

-M
on page 1-51

Generates make rules only, but does not compile

-MD
on page 1-51

Generates make rules, compiles, and prints to a file

-MM
on page 1-51

Generates make rules and compiles

-Mo filename
on page 1-51

Writes dependency information to filename. This
switch is used in conjunction with the -ED or -MD
options.

-Mt filename
on page 1-51

Makes dependencies, where the target is renamed as
filename

-map filename
on page 1-52

Directs the linker to generate a memory map of all sym-
bols

-mem
on page 1-52

Causes the compiler to invoke the Memory Initializer
after linking the executable file

-multiline
on page 1-52

Enables string literals over multiple lines (default)

-never-inline
on page 1-52

Ignores inline keyword on function definitions

-no-alttok
on page 1-53

Disallows alternative keywords and sequences in sources

-no-annotate
on page 1-53

Disables the annotation of assembly files

-no-annotate-loop-instr
on page 1-53

Disables the production of additional loop annotation
information by the compiler (default mode)

-no-assume-vols-are-mmrs
on page 1-54

Directs the compiler not to apply workarounds for
MMR-related silicon errata to arbitrary
volatile-qualified memory accesses

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

CrossCore Embedded Studio 1.0 1-19
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-no-auto-attrs
on page 1-54

Directs the compiler not to emit automatic attributes
based on the files it compiles

-no-bss
on page 1-54

Causes the compiler to group global zero-initialized
data into the same section as global data with non-zero
initializers

-no-circbuf
on page 1-55

Disables the automatic generation of circular buffering
code

-no-const-strings
on page 1-55

Directs the compiler not to make string literals const
qualified

-no-cplbs
on page 1-55

Directs the compiler that CPLBs are not enabled

-no-defs
on page 1-55

Disables preprocessor definitions: macros, include
directories, library directories or keyword extensions

-no-eh
on page 1-56

Disables exception-handling

-no-expand-symbolic-links
on page 1-56

Disables support for Cygwin path extensions in com-
mand-line paths and preprocessor include directives

-no-expand-windows-shortcuts
on page 1-56

Disables support for Windows shortcuts in com-
mand-line paths and preprocessor include directives

-no-extra-keywords
on page 1-56

Disables language extension keywords that could be
valid C/C++ identifiers

-no-force-link
on page 1-57

Does not create a new stack frame for leaf functions, if
one can be omitted. Overrides the default for -g.

-no-fp-associative
on page 1-57

Does not treat floating-point multiplication and
addition as associative operations

-no-full-io
on page 1-58

Links with the Analog Devices I/O library. Enabled by
default.

-no-fx-contract
on page 1-58

Sets the default mode of FX_CONTRACT to OFF

-no-int-to-fract
on page 1-58

Prevents the compiler from turning integer into frac-
tional arithmetic

-no-jcs2l
on page 1-59

Prevents the linker from converting compiler-generated
short jumps to long jumps using register P1

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-20 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-no-mem
on page 1-59

Causes the compiler to not invoke the Memory Initial-
izer after linking. Set by default.

-no-multiline
on page 1-59

Disables multiple line string literal support

-no-progress-rep-timeout
on page 1-59

Prevents the compiler from issuing a diagnostic during
excessively long compilations

-no-rtcheck
on page 1-60

Disables run-time checking

-no-rtcheck-arr-bnd
on page 1-60

Disables checking of array boundaries at run-time

-no-rtcheck-div-zero
on page 1-61

Disables checking for division by zero at run-time

-no-rtcheck-heap
on page 1-61

Disables checking of heap operations at run-time

-no-rtcheck-null-ptr
on page 1-61

Disables checking for NULL pointer dereferences at
run-time

-no-rtcheck-shift-check
on page 1-62

Disables checking for negative/too-large shifts at
run-time

-no-rtcheck-stack
on page 1-62

Disables checking for stack overflow at run-time

-no-rtcheck-unassigned
on page 1-62

Disables checking for unassigned variables at run-time

-no-sat-associative
on page 1-63

Saturating addition is not associative

-no-saturation
on page 1-63

Causes the compiler not to introduce saturation seman-
tics when optimizing expressions that do not explicitly
specify saturating semantics

-no-std-ass
on page 1-64

Prevents the compiler from defining standard assertions

-no-std-def
on page 1-64

Disables normal macro definitions and also Analog
Devices keyword extensions that do not have leading
underscores (__)

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

CrossCore Embedded Studio 1.0 1-21
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-no-std-inc
on page 1-64

Searches only for preprocessor include header files in
the current directory and in directories specified with
the -I switch

-no-std-lib
on page 1-64

When linking, searches for only those library files
specified with the -l switch

-no-threads
on page 1-64

Specifies that no support is required for multi-threaded
applications

-no-utility-rom
on page 1-65

Do not link against the Tools Utility ROM
(ADSP-BF592-A processors only)

-no-workaround workaround_id
on page 1-65

Disables specific hardware anomaly workarounds
within the compiler

-no-zero-loop-counters
on page 1-65

Do not zero loop counters (LC0 and LC1) on function
exit

-O
-O1
-O0
on page 1-65

Enables (-O or -O1) or disables (-O0) code
optimizations (uppercase “O” optionally followed
by a zero or a one)

-Oa
on page 1-66

Enables automatic function inlining

-Os
on page 1-66

Optimizes the file to decrease code size

-Ov num
on page 1-66

Controls speed versus size optimizations

-o filename
on page 1-69

Specifies the output file name

-overlay
on page 1-69

Disables the propagation of register information
between functions and forces the compiler to assume
that all functions clobber all scratch registers

-overlay-clobbers registers
on page 1-69

Specifies the registers assumed to be clobbered by an
overlay manager

-P
on page 1-70

Preprocesses, but does not compile, the source file; out-
put does not contain #line directives

-PP
on page 1-70

Preprocesses and compiles the source file; output does
not contain #line directives

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-22 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-p
on page 1-70

Generates profiling instrumentation

-path-asm filename
-path-compiler filename
-path-ipa filename
-path-lib filename
-path-link filename
-path-prelink filename
on page 1-70

Uses the specified filename as the location of the
specified compilation tool (assembler, compiler, IPA
solver, library builder, linker or prelinker)

-path-install directory
on page 1-71

Uses the specified directory as the location of all
compilation tools

-path-output directory
on page 1-71

Specifies the location of non-temporary files

-path-temp directory
on page 1-71

Specifies the location of temporary files

-pgo-session session-id
on page 1-71

Used with profile-guided optimization

-pguide
on page 1-72

Adds instrumentation for the gathering of a profile as
the first stage of performing profile-guided optimiza-
tion

-pplist filename
on page 1-72

Outputs a raw preprocessed listing to the specified file

-proc processor
on page 1-73

Specifies a processor for which the compiler should pro-
duce suitable code

-prof-hw
on page 1-74

Instructs the compiler to generate profiling code
targeted for execution on hardware. Requires use of a
supported profiling switch.

-progress-rep-func
on page 1-74

Issues a diagnostic message each time the compiler
starts compiling a new function. Equivalent to
-Wwarn=cc1472.

-progress-rep-opt
on page 1-74

Issues a diagnostic message each time the compiler
starts a new optimization pass on the current function.
Equivalent to -Wwarn=cc1473.

-progress-rep-timeout
on page 1-75

Issues a diagnostic message if the compiler exceeds a
time limit during compilation

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

CrossCore Embedded Studio 1.0 1-23
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-progress-rep-timeout-secs secs
on page 1-75

Specifies how many seconds must elapse during a com-
pilation before the compiler issues a diagnostic on the
length of compilation

-R directory
on page 1-75

Appends directory to the standard search path for
source files

-R-
on page 1-76

Removes all directories from the source file search direc-
tory list

-reserve register(s)
on page 1-76

Reserves certain registers from compiler use.
Note: Reserving registers can have a detrimental effect
on the compiler’s optimization capabilities.

-rtcheck
on page 1-76

Enables run-time checking

-rtcheck-arr-bnd
on page 1-77

Enables checking of array boundaries at run-time

-rtcheck-div-zero
on page 1-77

Enables checking for division by zero at run-time

-rtcheck-heap
on page 1-78

Enables checking of heap operations at run-time

-rtcheck-null-ptr
on page 1-78

Enables checking for NULL pointer dereferences at
run-time

-rtcheck-shift-check
on page 1-79

Enables checking for negative/too-large shifts at
run-time

-rtcheck-stack
on page 1-79

Enables checking for stack overflow at run-time

-rtcheck-unassigned
on page 1-80

Enables checking for unassigned variables at run-time

-S
on page 1-80

Stops compilation before running the assembler

-s
on page 1-80

When linking, removes debugging information from
the output executable file

-sat-associative
on page 1-81

Saturating addition is associative

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-24 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-save-temps
on page 1-81

Saves intermediate files

-sdram
on page 1-81

Instructs the compiler to assume that at least bank 0 of
external SDRAM will be present and enabled

-section id=section
on page 1-82

Orders the compiler to place data/program of type id
into the section section

-show
on page 1-83

Displays the driver command-line information

-signed-bitfield
 on page 1-83

Makes the default type for int bitfields signed

-signed-char
on page 1-83

Makes the default type for char signed

-si-revision version
on page 1-84

Specifies a silicon revision of the specified processor.
The default setting is the latest silicon revision at the
time of release.

-structs-do-not-overlap
on page 1-84

Specifies that struct copies may use “memcpy” seman-
tics, rather than the usual “memmove” behavior

-syntax-only
on page 1-85

Checks the source code for compiler syntax errors, but
does not write any output

-sysdefs
on page 1-85

Instructs the driver to define preprocessor macros that
describe the current user and machine

-T filename
on page 1-85

Specifies the linker description file

-threads
on page 1-85

Enables the support for multi-threaded applications

-time
on page 1-86

Displays the elapsed time as part of the output informa-
tion on each part of the compilation process

-U macro
on page 1-86

Undefines macro

-unsigned-bitfield
on page 1-86

Makes the default type for plain int bit-fields unsigned

-unsigned-char
on page 1-87

Makes the default type for char unsigned

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

CrossCore Embedded Studio 1.0 1-25
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-utility-rom
on page 1-87

Link against the Tools Utility ROM (ADSP-BF592-A
processors only)

-v
on page 1-87

Displays version and command-line information for all
compilation tools

-verbose
on page 1-88

Displays command-line information for all compilation
tools as they process each file

-version
on page 1-88

Directs the compiler to display its version number

-Wannotation number
-Werror number
-Wremark number
-Wsuppress number
-Wwarn number
on page 1-88

Overrides the default severity of the specified messages
(annotations, errors, remarks, or warnings)

-Wannotations
on page 1-89

Indicates that the compiler may issue code generation
annotations, which are messages milder than warnings
that may help you to optimize your code

-Werror-limit number
on page 1-89

Stops compiling after reaching the specified number of
errors

-Werror-warnings
on page 1-89

Directs the compiler to treat all warnings as errors

-Wremarks
on page 1-89

Issues compiler remarks

-Wterse
 on page 1-90

Issues the briefest form of compiler warnings, errors,
and remarks

-w
on page 1-90

Disables all warnings

-warn-component
on page 1-90

Issues warnings if any libraries specified by component
XML files could not be located

-warn-protos
on page 1-90

Issues warnings about functions without prototypes

-workaround workaround_id
on page 1-91

Enables code generator workaround for specific hard-
ware errata

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-26 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-xref filename
on page 1-91

Outputs cross-reference information to the specified file

-zero-loop-counters
on page 1-92

Ensures used loop counters (LC0 and LC1) are zeroed on
function exit

Table 1-6. C Mode (MISRA) Compiler Switches

Switch Name Description

-misra
on page 1-92

Enables checking for MISRA-C:2004 Guidelines. Allows
some relaxation of interpretation. For more information,
see Rules Descriptions.

-misra-linkdir directory
on page 1-93

Specifies directory for generation of .misra files.
If this option is not specified, a local directory called
MISRARepository is created. The .misra files allow the
compiler to record information across modules to support
the implementation of MISRA rules 5.5, 8.8, and 8.10.

-misra-no-cross-module
on page 1-93

Implies -misra, but inhibits the generation of .misra files
to check for link-time rule violations. It therefore disables
checking of MISRA rules 5.5, 8.8, and 8.10.

-misra-no-runtime
on page 1-93

Implies -misra, but inhibits the generation of extra code
to perform run-time checking in support of Rule 21. The
disabling of run-time checks also suppresses checking for
rules 17.1, 17.2 and 17.3. It limits rules 9.1, 12.8, 16.3
and 17.4 to compile-time checks.

-misra-strict
on page 1-93

Enables checking for MISRA-C:2004 Guidelines. Rules
relaxed by -misra option are enforced fully by this option.
For more information, see Rules Descriptions.

-misra-suppress-advisory
on page 1-94

Implies -misra, but suppresses the reporting of advisory
rules

-misra-testing
on page 1-94

Implies -misra, but suppresses reporting of MISRA rules
20.4, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12. This
allows the use of I/O and other support functions during
development testing.

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

CrossCore Embedded Studio 1.0 1-27
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-Wmis_suppress
on page 1-94

Overrides the default severity of the specified messages
relating to the specified MISRA rules. For example,
-Wmis_suppress 16.1 will suppress the reporting of
violations of rule 16.1.

-Wmis_warn
on page 1-94

Overrides the default severity of the specified messages
relating to the specified MISRA rules. For example,
-Wmis_warn 16.1 will change the reporting of violations of
rule 16.1 as an error to a warning.

Table 1-7. C++ Mode Compiler Switches

Switch Name Description

-anach
on page 1-95

Supports some language features (anachronisms) that are
prohibited by the C++ standard but still in common use

-check-init-order
on page 1-97

Adds run-time checking to the generated code highlighting
potential uninitialized external objects. For development
purposes only—do not use in production code.

-friend-injection
on page 1-97

Allows non-standard behavior with respect to friend decla-
rations. When friend names are not injected, function
names are visible only when using dependent lookup.

llib
on page 1-98

Directs the compilation to include ISO/IEC 14882:2003
C++ standard header files and link with the full standard
library

-full-dependency-inclusion
on page 1-98

Ensures re-inclusion of implicitly included files when gen-
erating dependency information

-implicit-inclusion
on page 1-98

Allows implicit inclusion of source files as a method of
finding definitions of template entities to be instantiated.
It is not compatible with exported templates.

-no-anach
on page 1-99

Disallows the use of anachronisms that are prohibited by
the C++ standard

-no-full-cpplib
on page 1-99

Links the application with the abridged C++ library

Table 1-6. C Mode (MISRA) Compiler Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-28 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Mode Selection Switch Descriptions

The following command-line switches provide C/C++ mode selection.

-c89

The -c89 switch directs the compiler to support programs that conform
to the ISO/IEC 9899:1990 standard. For greater conformance to the stan-
dard, see Language Standards Compliance.

-c99

The -c99 switch directs the compiler to support programs that conform to
a freestanding implementation of the ISO/IEC 9899:1999 standard. For
greater conformance to the standard see Language Standards Compliance.

-no-friend-injection
on page 1-99

Allows standard behavior. Friend function names are visi-
ble only when using argument-dependent lookup and
friend class names are never visible. This is the default
mode.

-no-implicit-inclusion
(on page 1-99)

Prevents implicit inclusion of source files as a method of
finding definitions of template entities to be instantiated.
This is the default mode.

-no-rtti
on page 1-99

Disables run-time type information

-no-std-templates
on page 1-100

Disables the special lookup of names used in templates

-rtti
on page 1-100

Enables run-time type information

-std-templates
on page 1-100

Enables the lookup of names used in templates

Table 1-7. C++ Mode Compiler Switches (Cont’d)

Switch Name Description

CrossCore Embedded Studio 1.0 1-29
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

 The compiler does not support the _Complex and _Imaginary key-
words. Complex arithmetic in C mode is enabled by including the
Analog Devices-specific header file <complex.h>.

-c++

The –c++ (C++ mode) switch directs the compiler to assume that the
source file(s) are written in ANSI/ISO 14882:2003 standard C++ with
Analog Devices language extensions. The compiler implicitly adds this
switch when compiling files with a .cpp extension.

All the standard features of C++ are accepted in the default mode except
exception handling and run-time type identification because these impose
a run-time overhead that is not desirable for all embedded programs.
Support for these features can be enabled with the -eh switch
(on page 1-39) and -rtti switch (on page 1-100). For greater confor-
mance to the standard see Language Standards Compliance.

C/C++ Compiler Common Switch Descriptions

The following command-line switches apply in both C and C++ modes.

sourcefile

The sourcefile parameter (or parameters) specifies the name of the file
(or files) to be preprocessed, compiled, assembled, and/or linked. A file
name can include the drive, directory, file name, and file extension. The
ccblkfn compiler uses the file extension to determine the operations to
perform. Table 1-3 lists the permitted extensions and matching compiler
operations.

-@ filename

The -@ filename (command file) switch directs the compiler to read
command-line input from filename. The specified file must contain
driver options and may also contain source file names and environment

Compiler Command-Line Interface

1-30 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

variables. It can be used to store frequently used options as well as to read
from a file list.

-A name (tokens)

The -A (assert) switch directs the compiler to assert name as a predicate
with the specified tokens. This has the same effect as the #assert
preprocessor directive. The following assertions (Table 1-8) are
predefined.

The -A name(value) switch is equivalent to including

#assert name(value)

in your source file, and both may be tested in a preprocessor condition
in the following manner:

#if #name(value)

// do something

#else

// do something else

#endif

For example, the default assertions may be tested as:

#if #machine(adspblkfn)

// do something else

#endif

Table 1-8. Predefined Assertions

Assertion Value

system embedded

machine adspblkfn

cpu adspblkfn

compiler ccblkfn

CrossCore Embedded Studio 1.0 1-31
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

 The parentheses in the assertion need quotes when using the -A
switch to prevent misinterpretation. Quotes are not required for an
#assert directive in a source file.

-add-debug-libpaths

The -add-debug-libpaths switch prepends the Debug subdirectory to the
search paths passed to the linker. The Debug subdirectory, found in each
of the silicon-revision-specific library directories, contains variants of cer-
tain libraries (for example, system services), which provide additional
diagnostic output to assist in debugging problems arising from their use.

 Invoke this switch from the IDE via Project > Properties > C/C++
Build > Settings > Tool Settings > Linker > Processor > Use
Debug System libraries.

-alttok

In C89 and C99 modes, the -alttok (alternative tokens) switch directs
the compiler to allow digraph sequences in source files. This switch is
enabled by default in C89 and C99 modes.

In C++ mode, this switch is disabled by default. When enabled in C++
mode, the switch also enables the recognition of alternative operator key-
words listed in Table 1-9, in C++ source files.

Table 1-9. Alternative Operator Keywords

Keyword Equivalent

and &&

and_eq &=

bitand &

bitor |

compl ~

or ||

Compiler Command-Line Interface

1-32 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

 The -alttok switch has no effect on the use of the alternative
tokens listed in Table 1-9 when in C89 or C99 mode. Instead,
when in C89 or C99 mode, include header file <iso646.h> to use
alternative tokens.

See also -no-alttok.

-always-inline

The -always-inline switch instructs the compiler to attempt to inline
any call to a function that is defined with the inline qualifier. This switch
is equivalent to applying #pragma always_inline to all functions in the
module that have the inline qualifier. See also the –never-inline switch
(on page 1-52).

 Invoke this switch from the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Inlining to All functions declared inline.

-annotate

The -annotate (enable assembly annotations) switch directs the compiler
to annotate assembly files generated by the compiler. By default, when
optimizations are enabled, all assembly files generated by the compiler are
annotated with information on the performance of the generated assem-
bly. See Assembly Optimizer Annotations for more details on this feature.

or_eq |=

not !

not_eq !=

xor ^

xor_eq ^=

Table 1-9. Alternative Operator Keywords (Cont’d)

Keyword Equivalent

CrossCore Embedded Studio 1.0 1-33
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

 Invoke this switch from the IDE via Project > Properties > C/C++
Build > Settings > Tool Settings > Compiler > General > Generate
annotations.

See also -no-annotate.

-annotate-loop-instr

The -annotate-loop-instr switch directs the compiler to provide addi-
tional annotation information for the prolog, kernel, and epilog of a loop.
See Assembly Optimizer Annotations for more details on this feature.

See also -no-annotate-loop-instr.

-auto-attrs

The -auto-attrs (automatic attributes) switch directs the compiler to
emit automatic attributes based on the files it compiles. Emission of auto-
matic attributes is enabled by default. See File Attributes for more
information about attributes and what automatic attributes the compiler
emits. See also the -no-auto-attrs switch (on page 1-54) and the
-file-attr switch (on page 1-41).

 Invoke this switch from the IDE via Project > Properties > C/C++
Build > Settings > Tool Settings > Compiler > General >
Auto-generated attributes.

-bss

The -bss switch causes the compiler to place global zero-initialized data
into a BSS-style section (called “bsz”), rather than into the normal global
data section. This is the default mode. See also the –no-bss switch
(on page 1-54).

-build-lib

The -build-lib (build library) switch directs the compiler to use elfar
(the librarian) to produce a library file (.dlb) instead of using the linker to

Compiler Command-Line Interface

1-34 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

produce an executable file (.dxe). The -o option (on page 1-69) must be
used to specify the name of the resulting library.

-C

The -C (comments) switch, which is only active when used with the –E,
-EE, -ED, -P, or -PP switches, directs the preprocessor to retain comments
in its output.

-c

The -c (compile only) switch directs the compiler to compile and/or
assemble the source files, but to stop before linking. The output is an
object file (.doj) for each source file.

-component file.xml

The -component (read component file) switch instructs the compiler to
read the specified XML file, and to retrieve additional switches for use
when building applications that make use of the component. The IDE
uses this switch to build projects that employ additional products beside
CCES.

See also -warn-component.

-const-read-write

The -const-read-write switch directs the compiler to specify that con-
stants may be accessed as read-write data (as in ANSI C). The compiler’s
default behavior assumes that data referenced through const pointers
never changes.

The -const-read-write switch changes the compiler’s behavior to match
the ANSI C assumption, which is that other non-const pointers may be
used to change the data at some point.

CrossCore Embedded Studio 1.0 1-35
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Pointers to const may point to non-const
data.

-const-strings

The -const-strings (const-qualify strings) switch directs the compiler to
mark string literals as const-qualified. See also the –no-const-strings
switch (on page 1-55).

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Literal strings are const.

-cplbs

The -cplbs (CPLBs are active) switch instructs the compiler to assume
that all memory accesses will be validated by the Blackfin processor’s
memory protection hardware. This switch is best used in conjunction with
the -workaround switch, as it allows the compiler to identify situations
where the cacheability protection lookaside buffers (CPLBs) will avoid
problems, thus avoiding the need for extra workaround instructions. See
also the -no-cplbs switch (on page 1-55).

If only instruction CPLBs or data CPLBs are enabled, use the -icplbs
switch or the -dcplbs switch, respectively.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Processor >
CPLBs are enabled.

-D macro[=definition]

The -D (define macro) switch directs the compiler to define a macro.
If you do not include the optional definition string, the compiler defines

Compiler Command-Line Interface

1-36 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

the macro as the string ‘1’. Note that the compiler processes -D switches
on the command line before any -U (undefine macro) switches.

 Add instances of this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Preprocessor > Preprocessor definitions.

-dcplbs

The -dcplbs (data CPLBs are active) switch instructs the compiler to
assume that all data memory accesses will be validated by the Blackfin
processor’s memory protection hardware. This allows the compiler to
identify situations where the cacheability protection lookaside buffers
(CPLBs) will avoid problems the compiler would otherwise workaround
(for example, anomaly 05-00-0428), improving code size and
performance.

If both ICPLBs and DCPLBs are active, use the -cplbs switch.

-decls-{weak|strong}

The -decls-weak and -decls-strong switches control how the compiler
interprets uninitialized global variable definitions, such as int x;, when in
C mode.

The -decls-strong switch treats this as equivalent to int x = 0;,
specifying that other definitions of the same variable in other modules
cause a “multiply-defined symbol” error. The -decls-weak switch treats
this as equivalent to “extern int x;”, such as a declaration of a symbol
that is defined in another module. The default is -decls-strong. ANSI C
behavior is -decls-weak.

This switch has no effect when compiling in C++ mode.

CrossCore Embedded Studio 1.0 1-37
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

 Invoke this switch in the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Preprocessor > Treat uninitialized global vars as to
zero-initialized.

-dependency-add-target target

The -dependency-add-target switch adds target as another target that
relies upon the dependencies in this build. Use this switch in conjunction
with switches for emitting dependency information, e.g. -M
(on page 1-51).

For example, if you are building apple.doj from apple.c, the compiler’s
dependency output would indicate that apple.doj depends on apple.c.
Using -dependency-add-target pear.doj would cause the compiler to
emit additional dependency information to indicate that pear.doj also
depends on apple.c.

-double-size-{32 | 64}

The -double-size-32 (double is 32 bits) and -double-size-64 (double is
64 bits) switches specify the size of the double data type. The default is
-double-size-32 (32-bit data type).

The -double-size-64 switch promotes double to a 64-bit data type,
making it equivalent to long double. This switch does not affect the sizes
of float or long double. Refer to Data Storage Formats for more infor-
mation on data types.

 Invoke this switch in the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Processor >
Double size to the required value.

-double-size-any

The -double-size-any switch specifies that the input source files make no
use of double-typed data, and that resulting object files should be marked

Compiler Command-Line Interface

1-38 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

in such a way that will enable them to be linked against objects built with
doubles, either 32 bits or 64 bits in size. Refer to Data Storage Formats
for more information on data types.

 Invoke this switch in the IDE via Project > Properties > C/C++
Build > Settings > Tool Settings > Compiler > Processor > Allow
mixing of sizes.

-dry

The -dry (verbose dry run) switch directs the compiler to display main
ccblkfn actions, but not to perform them.

-dryrun

The -dryrun (terse dry run) switch directs the compiler to display
top-level ccblkfn actions, but not to perform them.

-E

The -E (stop after preprocessing) switch directs the compiler to stop
after the C/C++ preprocessor runs (without compiling). The output
(preprocessed source code) prints to the standard output stream unless
the output file is specified with the -o switch (on page 1-69).

-ED

The -ED (run after preprocessing to file) switch directs the compiler to
write the output of the C/C++ preprocessor to a file named
“original_filename.i”. After preprocessing, compilation proceeds
normally.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Generate preprocessed file.

CrossCore Embedded Studio 1.0 1-39
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-EE

The -EE (run after preprocessing) switch directs the compiler to write the
output of the C/C++ preprocessor to standard output. After preprocess-
ing, compilation proceeds normally.

-eh

The -eh (enable exception handling) switch directs the compiler to allow
C++ code that contains catch statements and throw exceptions and other
features associated with ANSI/ISO standard C++ exceptions. When this
switch is enabled, the compiler defines the macro __EXCEPTIONS as 1.

If used when compiling C programs, without the -c++ (C++ mode) switch
(on page 1-29), the -eh switch directs the compiler to generate exceptions
tables but does not change the language accepted. In this case,
__EXCEPTIONS is not defined.

The –eh switch also causes the compiler to define __ADI_LIBEH__ during
the linking stage so that appropriate sections can be activated in the .ldf
file, and the program can be linked with a library built with exceptions
enabled.

Object files created with exceptions enabled may be linked with objects
created without exceptions enabled. However, exceptions can only be
thrown from and caught, and cleanup code executed, in modules com-
piled with -eh. If an attempt is made to throw an exception through the
execution of a function not compiled -eh, then abort or the function reg-
istered with set_terminate is called. See also Exceptions Tables Pragma.

In non-threaded applications, the buffer used for the passing of exception
data is not returned to the heap on application exit. This is to avoid
unnecessary code and will have no impact on behavior. See also -no-eh.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > C++ exceptions and RTTI.

Compiler Command-Line Interface

1-40 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-enum-is-int

The -enum-is-int switch ensures that the type of an enum is int. By
default, the compiler may define enumeration types with integral types
larger than int, if int is insufficient to represent all the values in the enu-
meration. This switch prevents the compiler from selecting a type wider
than int. See Enumeration Type Implementation Details for more
information.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Enumerated types are always int.

-expand-symbolic-links

The -expand-symbolic-links (expand symbolic links) switch directs the
compiler to recognize Cygwin path extensions (see Cygwin Path Support)
within command-line switches and #include preprocessor directives. This
option is disabled by default. See also the -no-expand-symbolic-links
switch (on page 1-56).

-expand-windows-shortcuts

The -expand-windows-shortcuts (expand Windows shortcuts) switch
directs the compiler to recognize Windows shortcuts (Windows Shortcut
Support) within command-line switches and #include preprocessor direc-
tives. This option is disabled by default. See also the
-no-expand-windows-shortcuts switch (on page 1-56).

-extra-keywords

The -extra-keywords (enable short-form keywords) switch directs the
compiler to recognize the Analog Devices keyword extensions to
ANSI/ISO standard C/C++ without leading underscores, which can affect
conforming ANSI/ISO C/C++ programs. This is the default mode.

CrossCore Embedded Studio 1.0 1-41
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

When the -extra-keywords switch is in effect, the same set of keywords is
available regardless of language mode; which of those keywords is an
extension, and which is a part of the language Standard, varies according
to the current language mode, as indicated in Table 1-10.

Use the -no-extra-keywords switch (on page 1-56) to disallow support
for the additional keywords. Table 1-24 provides a list and a brief descrip-
tion of keyword extensions.

-file-attr name[=value]

The -file-attr (file attribute) switch directs the compiler to add the
specified attribute name/value pair to all the files it compiles. To add
multiple attributes, use the switch multiple times. If “=value” is omitted,
the default value of “1” will be used. See File Attributes for more informa-
tion about attributes, and what automatic attributes the compiler emits.
See also the -auto-attrs switch (on page 1-33) and the -no-auto-attrs
switch (on page 1-54).

 Add instances of this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Additional attributes.

-fixed-point-io

The -fixed-point-io (use fixed-point I/O library) switch links the appli-
cation with a variant of the Analog Devices I/O library with support for
printing fract and accum types in decimal format with the printf family of
functions using the %k, %K, %r, and %R conversion specifiers. This library

Table 1-10. Extra Keywords Supported According to Language Mode

Language Mode Extra Keywords Supported Beyond the Language Standard

C89 Mode inline, asm, bank, section, bool, true, false, restrict, segment

C99 Mode asm, bank, section, bool, true, false, segment

C++ Mode bank, section, restrict, segment

Compiler Command-Line Interface

1-42 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

provides output that adheres to the embedded C Technical Report 18037
at the expense of increased code size footprint. Linking with the default
I/O library provides output using the %k, %K, %r, and %R specifiers only in
hexadecimal format. Note that the Analog Devices libraries contains a
faster implementation of C standard I/O than the alternative third-party
I/O library (see -full-io.) but that the functionality provided is not as com-
prehensive. For details, refer to stdio.h.

This switch passes the _ADI_FX_LIBIO macro to the compiler and linker.

 Invoke this switch in the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Linker > Processor >
I/O libraries to High-performance I/O with support for
fixed-point types.

See also -full-io and -no-full-io.

-flags{-asm | -compiler | -ipa | -lib | -link | -mem | -prelink} switch
[,switch2[,...]]

The -flags (command-line input) switch directs the compiler to pass
command-line switches to the other build tools.

Versions of this switch are listed in Table 1-11.

Table 1-11. Switches Passed to Other Build Tools

Option Tool

-flags-asm Assembler

-flags-compiler Compiler executable

-flags-ipa IPA Solver

-flags-lib Library Builder (elfar.exe)

-flags-link Linker

-flags-mem Memory Initializer

-flags-prelink Prelinker

CrossCore Embedded Studio 1.0 1-43
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-force-circbuf

The -force-circbuf (circular buffer) switch instructs the compiler to use
circular buffer facilities, even if the compiler cannot verify that the circular
index or pointer is always within the range of the buffer. Without this
switch, the compiler’s default behavior is conservative, and does not use
circular buffers unless it can verify that the circular index or pointer is
always within the circular buffer range. See Circular Buffer Built-In
Functions.

 Invoke this switch in the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Circular buffer generation to Even when
pointer may be outside buffer range.

-force-link

The -force-link (force stack frame creation) switch directs the compiler
to create a new stack frame for leaf functions.

This is selected by default if the –g switch (on page 1-45) is selected as it
improves the quality of debugging information, but can be switched off
with –no-force-link. When –p (on page 1-70) is selected, this switch is
always in force. See also –no-force-link switch (on page 1-57).

-fp-associative

The -fp-associative switch directs the compiler to treat floating-point
multiplication and addition as associative operations. This switch is on by
default.

See also -no-fp-associative.

-full-io

The -full-io switch links the application with a third-party, proprietary
I/O library. The third-party I/O library provides a complete
implementation of the ANSI C Standard I/O functionality at the cost of

Compiler Command-Line Interface

1-44 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

performance (compared to the Analog Devices I/O library). For details,
see stdio.h.

In addition, the third-party library will print fixed-point values in decimal
format with the printf family of functions using the %k, %K, %r, and %R
conversion specifiers.

This switch defines the _DINKUM_IO macro during compilation and
linking.

 Invoke this switch in the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Linker > Processor >
I/O libraries to Full ANSI C compliant I/O.

See also -no-full-io and -fixed-point-io.

-full-version

The -full-version (display version) switch directs the compiler to display
version information for all the compilation tools as they process each file.

-fx-contract

The -fx-contract switch sets the default state of FX_CONTRACT to ON,
which is the default setting. This switch controls the performance and
accuracy of arithmetic on the native fixed-point types fract and accum.
See FX_CONTRACT for more information.

See also -no-fx-contract.

-fx-rounding-mode-biased

The -fx-rounding-mode-biased switch sets the default state of
FX_ROUNDING_MODE to BIASED. This switch controls the rounding behavior
of arithmetic on the native fixed-point types fract and accum. See Setting
the Rounding Mode for more information. It should be used in conjunc-
tion with the set_rnd_mod_biased() built-in function, described in
Changing the RND_MOD Bit.

CrossCore Embedded Studio 1.0 1-45
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-fx-rounding-mode-truncation

The -fx-rounding-mode-truncation switch sets the default state of
FX_ROUNDING_MODE to TRUNCATION, which is the default setting. This switch
controls the rounding behavior of arithmetic on the native fixed-point
types fract and accum. See Setting the Rounding Mode for more
information.

-fx-rounding-mode-unbiased

The -fx-rounding-mode-unbiased switch sets the default state of
FX_ROUNDING_MODE to UNBIASED. This switch controls the rounding behav-
ior of arithmetic on the native fixed-point types fract and accum. See
Setting the Rounding Mode for more information. It should be used in
conjunction with the set_rnd_mod_unbiased() built-in function,
described in Changing the RND_MOD Bit.

-g

The -g (generate debugging information) switch directs the compiler to
output symbols and other information used by the debugger.

If the -g switch is used with the -O (enable optimization) switch, the com-
piler performs standard optimizations. The compiler also outputs symbols
and other information to provide limited source-level debugging. This
combination of options provides line debugging and global variable
debugging.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Generate debug information.

 When the -g and -O switches are specified, no debug information is
available for local variables and the standard optimizations can
sometimes rearrange program code in a way that produces inaccu-
rate line number information. For full debugging capabilities, use
the -g switch without the -O switch.

Compiler Command-Line Interface

1-46 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-glite

The -glite (lightweight debugging) switch can be used on its own, or in
conjunction with the -g compiler switch. When this switch is enabled, it
instructs the compiler to remove any unnecessary debug information for
the code that is compiled.

When used on its own, the switch also enables the -g option.

 This switch can be used to reduce the size of object and executable
files, but will have no effect on the size of the code loaded onto the
target.

-gnu-style-dependencies

The -gnu-style-dependencies switch changes the format in which
dependency information, such as that produced by the -M switch, is
produced, so that it matches the format used by the GNU make program.
The differences are shown in Table 1-12.

The IDE applies this switch automatically.

-H

The -H (list headers) switch directs the compiler to output a list of the files
included by the preprocessor via the #include directive, without compil-
ing. The -o switch (on page 1-69) may be used to redirect the list to a file.

Table 1-12. Effect of -gnu-style-dependencies Switch

Without
-gnu-style-dependencies

With
-gnu-style-dependencies

Quoting Yes (”foo”) No (foo)

Whitespace Quoted (“x y”) Escaped with backslash (x \ y)

Directory separators Backslash (\) Forward slash (/)

Path form Canonical (“c:\foo\bar”) Relative (../bar)

CrossCore Embedded Studio 1.0 1-47
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-HH

The -HH (list headers and compile) switch directs the compiler to print to
the standard output file stream a list of the files included by the preproces-
sor via the #include directive. After preprocessing, compilation proceeds
normally.

-h[elp]

The -h or -help (command-line help) switches directs the compiler to
output a list of command-line switches with a brief syntax description.

-I directory [{,|;} directory...]

The -I (include search directory) switch directs the C/C++ preprocessor
to append the directory (or directories) to the search path for include
files. This option can be specified more than once; all specified directories
are added to the search path.

 Add instances of this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Preprocessor > Additional include directories.

Include files, whose names are not absolute path names and that are
enclosed in “...” when included, are searched for in the following directo-
ries in this order:

1. The directory containing the current input file (the primary source
file or the file containing the #include)

2. Any directories specified with the -I switch in the order they are
listed on the command line

3. Any directories on the standard list:
<install_path>\...\include

 If a file is included using the <...> form, this file is only searched
for by using directories defined in items 2 and 3 above.

Compiler Command-Line Interface

1-48 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Invoke this switch with the Additional include directories text field
located in the CCES Tool Settings dialog box (Compiler :
Preprocessor page).

-I-

The -I- (start include directory list) switch establishes the point in the
include directory list at which the search for header files enclosed in angle
brackets begins. Normally, for header files enclosed in double quotes, the
compiler searches in the directory containing the current input file; then
the compiler reverts back to looking in the directories specified with the
-I switch; and then the compiler searches in the standard include
directory.

It is possible to replace the initial search (within the directory containing
the current input file) by placing the -I- switch at the point on the com-
mand line where the search for all types of header file begins. All include
directories on the command line specified before the -I- switch are used
only in the search for header files that are enclosed in double quotes.

 This switch removes the directory containing the current input file
from the include directory list.

-i

The -i (less includes) switch may be used with the –H, -HH, -M, or -MM
switches to direct the compiler to only output header details (-H, -HH)
or makefile dependencies (-M, -MM) for include files specified in double
quotes.

-icplbs

The -icplbs (instruction CPLBs are active) switch instructs the compiler
to assume that all instruction memory accesses will be validated by the
Blackfin processor’s memory protection hardware. This allows the com-
piler to identify situations where the cacheability protection lookaside
buffers (CPLBs) will avoid problems the compiler would otherwise

CrossCore Embedded Studio 1.0 1-49
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

workaround (for example, anomaly 05-00-0426), improving code size and
performance.

If both ICPLBs and DCPLBs are active, use the -cplbs switch.

-include filename

The -include filename (include file) switch directs the preprocessor to
process the specified file before processing the regular input file. Any -D
and -U options on the command line are processed before an -include
file.

-ipa

The -ipa (interprocedural analysis) switch turns on interprocedural
analysis (IPA) in the compiler. This option enables optimization across
the entire program, including between source files that were compiled
separately. If used, the -ipa switch should be applied to all C and C++
files in the program. For more information, see Interprocedural Analysis.
Specifying -ipa also implies setting the -O switch (on page 1-65).

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Interprocedural optimization.

-jcs2l

The -jcs2l switch requests the linker to convert compiler-generated
short jumps to long jumps when necessary, but uses the P1 register for
indirect jumps/calls when long jumps/calls are insufficient. This switch is
enabled by default.

See also -no-jcs2l.

-L directory[{,|;} directory…]

The -L directory (library search directory) switch directs the linker to
append the directory (or directories) to the search path for library files.

Compiler Command-Line Interface

1-50 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

 Add instances of this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Linker > General >
Search directories.

-l library

The -l library (link library) switch directs the linker to search the library
for functions and global variables when linking. The library name is the
portion of the file name between the “lib” prefix and the .dlb extension.
For example, the -lc compiler switch directs the linker to search in the
library named c. This library resides in a file named libc.dlb.

List all object files on the command line before listing libraries using the
-l switch. When a reference to a symbol is made, the symbol definition
will be taken from the left-most object or library on the command line
that contains the global definition of that symbol. If two objects on the
command line contain definitions of the symbol x, x will be taken from
the left-most object on the command line that contains a global definition
of x.

If one of the definitions for x comes from user objects, and the other
comes from a user library, and the library definition should be overridden
by the user object definition, it is important that the user object comes
before the library on the command line.

Libraries included in the default .ldf file are searched last for symbol
definitions.

 Add instances of this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Linker > General >
Additional libraries and object files.

-list-workarounds

The -list-workarounds (list supported errata workarounds) switch
displays a list of all errata workarounds which the compiler supports.
See Controlling Silicon Revision and Anomaly Workarounds Within the

CrossCore Embedded Studio 1.0 1-51
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Compiler for details of valid workarounds and the interaction of the
-si-revision (on page 1-84), -workaround (on page 1-91), and
-no-workaround (on page 1-65) switches.

-M

The -M (generate make rules only) switch directs the compiler not to
compile the source file, but to output a rule suitable for the make utility,
describing the dependencies of the main program file.

The format of the make rule output by the preprocessor is:
object-file: include-file ...

-MD

The -MD (generate make rules and compile) switch directs the preprocessor
to print to a file called original_filename.d a rule describing the
dependencies of the main program file. After preprocessing, compilation
proceeds normally. See also the –Mo switch (on page 1-51).

-MM

The -MM (generate make rules and compile) switch directs the preprocessor
to print to the standard output stream a rule describing the dependencies
of the main program file. After preprocessing, compilation proceeds
normally.

-Mo filename

The -Mo filename (preprocessor output file) switch directs the compiler
to use filename for the output of –MD or –ED switches.

-Mt name

The -Mt name (output make rule for the named source) switch modifies the
target of generated dependencies, renaming the target to name. This
switch is in effect only when used in conjunction with the -M or -MM
switch.

Compiler Command-Line Interface

1-52 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-map filename

The -map filename (generate a memory map) switch directs the linker to
output a memory map of all symbols. The map file name corresponds to
the filename argument. For example, if the file name argument is test,
the map file name is test.xml. The.xml extension is added where
necessary.

-mem

The -mem (invoke memory initializer) switch causes the compiler to invoke
the Memory Initializer after linking the executable file. The Memory Ini-
tializer can be controlled through the -flags-mem switch (on page 1-42) or
disabled using the -no-mem switch (on page 1-59).

For more information, see:

• Processor Startup, in the System Run-Time Documentation.

• Memory Initializer, in the Linker and Utilities Manual.

-multiline

The -multiline switch directs the compiler to allow string literals to span
multiple lines without the need for a backslash character “\” at the end of
each line. This is the default mode.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Allow multi-line character strings.

See also -no-multiline.

-never-inline

The -never-inline switch instructs the compiler to ignore the inline
qualifier on function definitions, so that no calls to such functions will be
inlined. See also -always-inline.

CrossCore Embedded Studio 1.0 1-53
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

 Invoke this switch in the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Inlining to Never.

-no-alttok

The -no-alttok (disable alternative tokens) switch directs the compiler
not to accept digraph sequences in the source files. This switch is enabled
by default in C++ mode, and disabled by default in C89 and C99 modes.
In C++ mode, the switch also controls the acceptance of alternative opera-
tor keywords. For more information, see -alttok.

-no-annotate

The -no-annotate (disable assembly annotations) switch directs the com-
piler not to annotate assembly files generated by the compiler. By default,
whenever optimizations are enabled, all assembly files generated by the
compiler are annotated with information on the performance of the gener-
ated assembly. See Assembly Optimizer Annotations for more details on
this feature.

 Invoke this switch in the IDE by clearing Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Generate annotations.

See also -annotate.

-no-annotate-loop-instr

The -no-annotate-loop-instr switch disables the production of addi-
tional loop annotation information by the compiler. This is the default
mode.

See also -annotate-loop-instr.

Compiler Command-Line Interface

1-54 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-no-assume-vols-are-mmrs

When the compiler has to apply workarounds for silicon errata, it takes a
conservative approach concerning volatile-qualified accesses to arbitrary
memory. By default, the compiler assumes that such memory accesses may
be to memory-mapped registers (MMRs), and therefore must be protected
against any errata that affect MMR accesses.

The -no-assume-vols-are-mmrs switch disables this assumption, so that
arbitrary volatile-qualified memory will not be considered affected by
MMR-related errata. Specific MMR accesses, such as via a literal pointer
or the memory-mapped register access functions (on page 1-296), will still
receive such workarounds. For more information, see Controlling Silicon
Revision and Anomaly Workarounds Within the Compiler.

-no-auto-attrs

The -no-auto-attrs (no automatic attributes) switch directs the compiler
not to emit automatic attributes based on the files it compiles. Emission of
automatic attributes is enabled by default. See File Attributes for more
information about attributes, and what automatic attributes the compiler
emits. See also the -auto-attrs switch (on page 1-33) and the -file-attr
switch (on page 1-41).

 Invoke this switch in the IDE by clearing Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Auto-generated attributes.

-no-bss

The -no-bss switch causes the compiler to keep both zero-initialized and
non-zero-initialized data in the same data section, rather than separating
zero-initialized data into a different, BSS-style section. See also the –bss
switch (on page 1-33).

CrossCore Embedded Studio 1.0 1-55
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-no-circbuf

The -no-circbuf (no circular buffer) switch directs the compiler not to
automatically use circular buffer mechanisms (such as for referencing
array[i % n]). The use of the circindex() and circptr() functions (that
is, explicit circular buffer operations) is not affected.

 Invoke this switch in the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Circular Buffer Generation to Never.

-no-const-strings

The -no-const-strings switch directs the compiler not to make string lit-
erals const qualified. This is the default. See also the -const-strings
switch (on page 1-35).

 Invoke this switch in the IDE by clearing Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Literal strings are const.

-no-cplbs

The -no-cplbs (CPLBs are not enabled) switch informs the compiler that
neither Data CPLBs nor Instruction CPLBs are enabled, and therefore the
compiler should be conservative when generating code that will cause
speculative accesses to memory. This is the default. See also the -cplbs
switch (on page 1-35), the -dcplbs switch (on page 1-36) and the -icplbs
switch (on page 1-48).

-no-defs

The -no-defs (disable defaults) switch directs the compiler not to define
any default preprocessor macros, include directories, library directories or
libraries.

Compiler Command-Line Interface

1-56 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-no-eh

The -no-eh (disable exception handling) switch directs the compiler to
disallow ANSI/ISO C++ exception handling. This is the default mode.
See the -eh switch (on page 1-39) for more information.

-no-expand-symbolic-links

The -no-expand-symbolic-links switch directs the compiler not to recog-
nize Cygwin path entities (see Cygwin Path Support) within
command-line paths and preprocessor #include directives. This option is
enabled by default. See also the -expand-symbolic-links switch
(on page 1-40).

-no-expand-windows-shortcuts

The -no-expand-windows-shortcuts switch directs the compiler not to
recognize Windows shortcut entities (see Windows Shortcut Support)
within command-line paths and preprocessor #include directives. This
option is enabled by default. See also the -expand-windows-shortcuts
switch (on page 1-40).

-no-extra-keywords

The -no-extra-keywords (disable short-form keywords) switch directs the
compiler not to recognize Analog Devices keyword extensions that might
conflict with valid C/C++ identifiers, for example, section. Alternate key-
words (prefixed with two leading underscores, such as __section)
continue to work.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Disable Analog Devices extension keywords.

See also -extra-keywords.

CrossCore Embedded Studio 1.0 1-57
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-no-force-link

The -no-force-link (do not force stack frame creation) switch directs the
compiler not to create a new stack frame for leaf functions.

This switch is most useful in combination with the –g switch
(on page 1-45) when debugging optimized code. When optimization is
requested, the compiler does not generate stack frames for functions that
do not need them; this improves the size and speed of the code, but
reduces the quality of information displayed in the debugger. Therefore,
when the –g switch is used, the compiler by default always generates a
stack frame. Consequently, the code generated with the –g switch differs
from the code generated without using this switch and may result in
different behavior. The –no-force-link switch causes the same code to be
generated regardless of whether –g is used.

See also -force-link.

-no-fp-associative

The -no-fp-associative switch directs the compiler NOT to
treat floating-point multiplication and addition as associative operations.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Do not treat floating-point operations as
associative.

See also -fp-associative.

Compiler Command-Line Interface

1-58 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-no-full-io

The -no-full-io switch links the application with the Analog Devices
I/O library, which contains a faster implementation of C Standard I/O
than the alternative third-party I/O library. (See -full-io.) The functional-
ity provided by the Analog Devices I/O library is not as comprehensive as
the third-party I/O library. For details, refer to stdio.h.

This switch defines the _ADI_LIBIO macro during compilation and link-
ing. This switch is enabled by default.

-no-fx-contract

The -no-fx-contract switch sets the default state of FX_CONTRACT to OFF.
This switch controls the performance and accuracy of arithmetic on the
native fixed-point types fract and accum. See FX_CONTRACT for more
information.

See also -fx-contract.

-no-int-to-fract

The -no-int-to-fract (disable conversion of integer to fractional
arithmetic) switch directs the compiler not to turn integer arithmetic into
fractional arithmetic.

For example, the following statement may be changed, by default, into a
fractional multiplication.

short a = ((b*c)>>15);

The saturation properties of integer and fractional arithmetic are different;
therefore, if the expression overflows, the results differ. Specifying the
-no-int-to-fract switch disables this optimization. Note that the switch
does not affect arithmetic on the native fixed-point types fract and accum.

CrossCore Embedded Studio 1.0 1-59
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-no-jcs2l

The -no-jcs2l switch prevents the linker from converting compiler-gen-
erated short jumps to long jumps using register P1.

See also -jcs2l.

-no-mem

The -no-mem (disable memory initialization) switch causes the compiler
not to invoke the Memory Initializer after linking the executable. This is
the default setting.

See also -mem.

-no-multiline

The -no-multiline switch directs the compiler to disallow string literals
that span multiple lines without a “\” at the end of each line.

 Invoke this switch by clearing Project > Properties > C/C++ Build
> Settings > Tool Settings > Compiler > Language Settings >
Allow multi-line character strings.

See also -multiline.

-no-progress-rep-timeout

The -no-progress-rep-timeout (disable progress message for long
compilations) switch disables the diagnostic message issued by the com-
piler to indicate that it is still working when a function’s compilation is
taking an excessively long time. The message is disabled by default. See
also the -progress-rep-timeout switch (on page 1-75) and the -prog-
ress-rep-timeout-secs switch (on page 1-75).

Compiler Command-Line Interface

1-60 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-no-rtcheck

The -no-rtcheck (disable run-time checking) switch directs the compiler
to disable generation of additional code to check at runtime for common
programming errors. This switch is the default, and is equivalent to speci-
fying all of the following switches:

• -no-rtcheck-arr-bnd

• -no-rtcheck-div-zero

• -no-rtcheck-heap

• -no-rtcheck-null-ptr

• -no-rtcheck-shift-check

• -no-rtcheck-stack

• -no-rtcheck-stack

See also -rtcheck.

-no-rtcheck-arr-bnd

The -no-rtcheck-arr-bnd (do not check array bounds at runtime) switch
directs the compiler not to generate additional code to verify that array
accesses are within the bounds of the array.

 Invoke this behavior in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

CrossCore Embedded Studio 1.0 1-61
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-no-rtcheck-div-zero

The -no-rtcheck-div-zero (do not check for division by zero at runtime)
switch directs the compiler not to generate additional code to verify that
divisors are non-zero before performing division operations.

 Invoke this behavior in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-no-rtcheck-heap

The -no-rtcheck-heap (do not check heap operations at runtime) switch
directs the compiler not to link against the debugging version of the heap
library.

 Invoke this behavior in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-no-rtcheck-null-ptr

The -no-rtcheck-null-ptr (do not check for NULL pointers at runtime)
switch directs the compiler not to generate additional code to verify that
pointers are not NULL, before dereferencing them.

 Invoke this behavior in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

Compiler Command-Line Interface

1-62 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-no-rtcheck-shift-check

The -no-rtcheck-shift-check (do not check shift values at runtime)
switch directs the compiler not to generate additional code to verify that,
when shifting a value X by some amount Y, Y is a positive amount, and
less than the number of bits used to represent X’s type.

 Invoke this behavior in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-no-rtcheck-stack

The -no-rtcheck-stack (do not check for stack overflow at runtime)
switch directs the compiler not to generate additional code to verify that
increases in stack usage do not exceed the bounds of the available stack.

 Invoke this behavior in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-no-rtcheck-unassigned

The -no-rtcheck-unassigned (do not check variables are assigned at run-
time) switch directs the compiler not to generate additional code to verify
that variables have been assigned a value before they are used.

 Invoke this behavior in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

CrossCore Embedded Studio 1.0 1-63
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-no-sat-associative

The -no-sat-associative (saturating addition is not associative) switch
instructs the compiler not to consider saturating addition operations as
associative: (a+b)+c may not be rewritten as a+(b+c), when the addition
operator saturates. The default is that saturating addition is not
associative.

See also -sat-associative.

-no-saturation

The -no-saturation switch directs the compiler not to introduce faster
operations in cases where the faster operation would saturate (if the
expression overflowed) when the original operation would have wrapped
the result. Note that since accumulator registers A0 and A1 will saturate if
an accumulation overflows 40 bits, the -no-saturation switch will also
prevent use of these registers for integer arithmetic when the compiler
cannot be sure that saturation will not occur. The code produced may be
less efficient than when the switch is not used.

Saturation is enabled by default when optimizing, and may be disabled by
this switch. Saturation is disabled when not optimizing (this switch is the
default when not optimizing).

Note that this switch does not affect the behavior of arithmetic with
defined saturating semantics. For example, code written using the native
fixed-point types fract and accum, or code written using fractional or
accumulator built-in functions, will not change its behavior when this
switch is used.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Processor >
Do not introduce saturation to integer arithmetic.

Compiler Command-Line Interface

1-64 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-no-std-ass

The -no-std-ass (disable standard assertions) switch prevents the com-
piler from defining the standard assertions. See the -A switch
(on page 1-30) for the list of standard assertions.

-no-std-def

The -no-std-def (disable standard macro definitions) switch prevents the
compiler from defining default preprocessor macro definitions.

-no-std-inc

The -no-std-inc (disable standard include search) switch directs the
C/C++ preprocessor to search only for header files in the current directory
and directories specified with the -I switch.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Preproces-
sor > Ignore standard include paths.

-no-std-lib

The -no-std-lib (disable standard library search) switch directs the linker
to limit its search for libraries to directories specified with the -L switch
(on page 1-49). The compiler also defines __NO_STD_LIB during the
linking stage and passes it to the linker, so that the SEARCH_DIR directives
in the .ldf file can de disabled.

-no-threads

The -no-threads (disable thread-safe build) switch directs the compiler to
link against the non-thread-safe variants of the C/C++ variants of the
run-time libraries. This is the default. See also the -threads switch
(on page 1-85).

CrossCore Embedded Studio 1.0 1-65
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-no-utility-rom

The -no-utility-rom (do not use Tools Utility ROM) switch directs the
tools not to link against the library functions in the processor’s ROM,
when building the executable image. This switch passes the macro
NO_UTILITY_ROM to the linker.

This switch is only supported for the ADSP-BF592-A processor. It is dis-
abled by default, for silicon revision 0.2 onwards.

See also -utility-rom.

-no-workaround workaround_id[,workaround_id…]

The -no-workaround workaround_id switch (disable avoidance of specific
errata) switch disables compiler code generator workarounds for specific
hardware errata. See Controlling Silicon Revision and Anomaly Work-
arounds Within the Compiler for details of valid workarounds and the
interactions of the -si-revision, -workaround, and -no-workaround
switches.

See also -workaround workaround_id [,workaround_id ...] switch
on page 1-91.

-no-zero-loop-counters

The -no-zero-loop-counters switch directs the compiler to not zero loop
counter registers on function exit. This is the default mode.

Use the -zero-loop-counters switch (see -zero-loop-counters) to enable
the zeroing of loop counter registers on function exit.

-O[0|1]

The -O (enable optimizations) switch directs the compiler to produce code
that is optimized for performance. Optimizations are not enabled by
default for the compiler. (Note that the switch settings begin with the

Compiler Command-Line Interface

1-66 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

uppercase letter “O” and end with a digit—a zero or a one.) The -O or -O1
switch turns on optimization, and -O0 turns off all optimizations.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Enable optimization.

-Oa

The -Oa (automatic function inlining) switch enables the inline expansion
of C/C++ functions, which are not necessarily declared inline in the source
code. The amount of auto-inlining the compiler performs is controlled
using the –Ov (optimize for speed versus size) switch (on page 1-66).
Therefore, the use of -Ov100 indicates that as many functions as possible
will be auto-inlined, whereas –Ov0 prevents any function from being
auto-inlined. Specifying -Oa implies the use of -O.

 Invoke this switch in the IDE by setting Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Inlining to Automatic.

-Os

The -Os (enable code size optimization) switch directs the compiler to
produce code that is optimized for size. This is achieved by performing all
optimizations except those that increase code size. The optimizations not
performed include loop unrolling and jump avoidance.

-Ov num

The -Ov num (optimize for speed versus size) switch informs the compiler
of the relative importance of speed versus size, when considering whether
such trade-offs are worthwhile. The num variable should be an integer
between 0 (purely size) and 100 (purely speed).

For any given optimization, the compiler modifies the code being gener-
ated. Some optimizations produce code that will execute in fewer cycles,

CrossCore Embedded Studio 1.0 1-67
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

but will require more code space. In such cases, there is a trade-off
between speed and space.

The num variable indicates a sliding scale between 0 and 100, which is the
probability that a linear piece of generated code (a “basic block”) will be
optimized for speed or for space. -Ov0 optimizes all blocks for space
(equivalent to -Os), and -Ov100 optimizes all blocks for speed (equivalent
to -O). At any point in between, the decision is based upon num and how
many times the block is expected to be executed (the “execution count” of
the block). Figure 1-1 demonstrates this relationship.

For any given optimization where speed and size conflict, the potential
benefit is dependent on the execution count. An optimization that
increases performance at the expense of code size is considerably more
beneficial if applied to the core loop of a critical algorithm than if applied
to one-time initialization code or to rarely-used error-handling functions.
If code only appears to be executed once, it will be optimized for space. As
its execution count increases, so too does the likelihood that the compiler
will consider the code increase worthwhile for the corresponding benefit
in performance.

As Figure 1-1 shows, the -Ov switch affects the point at which a given exe-
cution count is considered sufficient to switch optimization from “for
space” to “for speed”. Where num is a low value, the compiler is biased
towards space, so a block’s execution count has to be relatively high for the
compiler to apply code-increasing transformations. Where num has a high
value, the compiler is biased towards speed, so the same transformation
will be considered valid for a much lower execution count.

Compiler Command-Line Interface

1-68 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The -Ov switch is most effective when used in conjunction with profile-
guided optimization (PGO), where accurate execution counts are avail-
able. Without profile-guided optimization (see Optimization Control),
the compiler makes estimates of the relative execution counts using
heuristics.

 Invoke this switch in the IDE by entering an appropriate value into
Project > Properties > C/C++ Build > Settings > Tool Settings >
Compiler > General > Optimize for code size/speed.

For more information, see Using PGO in Function Profiling.

Figure 1-1. -Ov Switch Optimization Curve

0

E
x
e
c
u
t
i
o
n

c
o
u
n
t

Optimize for speed

-Ovnum
0 100

Infinity

Optimize for space

Limit line

CrossCore Embedded Studio 1.0 1-69
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-o filename

The -o filename (output file) switch directs the compiler to use filename
for the name of the final output file.

-overlay

The -overlay (program may use overlays) switch disables the propagation
of register information between functions and forces the compiler to
assume that all functions clobber all scratch registers. Note that this switch
affects all functions in the source file and may result in a performance
degradation. For information on disabling the propagation of register
information only for specific functions, see #pragma overlay.

-overlay-clobbers clobbered-regs

The -overlay-clobbers (registers clobbered by overlay manager) switch
identifies the set of registers clobbered by an overlay manager, if one is
used. The compiler will assume that any call to an overlay-managed func-
tion will clobber the values in clobbered-regs, in addition to those
clobbered by the function in question. A function is considered to be an
overlay-managed function if the -overlay switch (on page 1-69) is speci-
fied, or if the function is marked with #pragma overlay (on page 1-346).

The clobbered-regs is a single string formatted as per the argument to
#pragma regs_clobbered, except that individual components of the list
may also be separated by commas.

 Whitespace and semicolons are valid separators for the components
of the list, but must be properly quoted when being passed to the
compiler.

Examples:
ccblkfn -O t.c -overlay -overlay-clobbers r0,r1

ccblkfn -O t.c -overlay -overlay-clobbers Dscratch

ccblkfn -O t.c -overlay -overlay-clobbers "p0 p1;r0"

Compiler Command-Line Interface

1-70 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-P

The -P (omit line numbers) switch directs the compiler to stop after the
C/C++ preprocessor runs (without compiling) and to omit #line
preprocessor directives (with line number information) in the output from
the preprocessor. The -C switch can be used with the -P switch to retain
comments.

-PP

The -PP (omit line numbers and compile) switch is similar to the -P
switch; however, it does not halt compilation after preprocessing.

-p

The -p (generate instrumented profiling) switch directs the compiler to
generate the additional instructions needed to profile the program by
recording the number of cycles spent in each function.

The -p switch writes the data to a .prf file. For more information on
profiling, see Profiling With Instrumented Code.

 Instrumented profiling generates calls to supporting libraries to
implement this functionality. This will increase the stack space
used by your application.

 Invoke this switch in the IDE via Project >Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Profiling >
Enable compiler instrumented profiling.

-path {-asm | -compiler | -ipa | -lib | -link | -prelink} pathname

The -path-{asm|compiler|ipa|lib|link|prelink}pathname (tool loca-
tion) switch directs the compiler to use the specified component in place
of the default-installed version of the compilation tool. The component
comprises a relative or absolute path to its location. Respectively, the tools
are the assembler, compiler, IPA solver, library builder, linker and pre-
linker. Use this switch when overriding the normal version of one or more

CrossCore Embedded Studio 1.0 1-71
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

of the tools. The -path-{...} switch also overrides the directory specified
by the -path-install switch (on page 1-71).

-path-install directory

The -path-install directory (installation location) switch directs the
compiler to use the specified directory as the location for all compilation
tools instead of the default path. This is useful when working with
multiple versions of the tool set.

 You can selectively override this switch with the -path-{asm|com-
piler|lib|link} switch.

-path-output directory

The -path-output directory (non-temporary files location) switch directs
the compiler to place output files in the specified directory.

-path-temp directory

The -path-temp directory (temporary files location) switch directs the
compiler to place temporary files in the specified directory.

-pgo-session session-id

The -pgo-session session-id (specify PGO session identifier) switch is
used with profile-guided optimization. It has the following effects:

• When used with the -pguide switch (on page 1-72), the compiler
associates all counters for this module with the session identifier
session-id.

• When used with a previously-gathered profile (.pgo file), the
compiler ignores the profile contents, unless they have the same
session-id identifier.

This is most useful when the same source file is being built in more than
one way (for example, different macro definitions, or for multiprocessors)

Compiler Command-Line Interface

1-72 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

in the same application. Each variant of the build can have a different
session-id associated with it, which means that the compiler will be able
to identify which parts of the gathered profile are to be used when opti-
mizing for the final build.

If each source file is built only in a single manner within the system
(the usual case), the -pgo-session switch is not needed.

 Invoke this switch in the IDE by entering a suitable name into the
Project > Properties > C/C++ Build > Settings > Tool Settings >
Compiler > Profile-guided Optimization > PGO Session name
field.

For more information, see Using PGO in Function Profiling.

-pguide

The -pguide (PGO) switch causes the compiler to add instrumentation to
gather a profile (a .pgo file) as the first stage of performing profile-guided
optimization.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Profile-guided Optimization > Prepare application to create new
profile.

For more information, see Using PGO in Function Profiling.

-pplist filename

The -pplist filename (preprocessor listing) switch directs the
preprocessor to output a listing to the named file. When more than one
source file is preprocessed, the listing file contains information about the
last file processed. The generated file contains raw source lines,
information on transitions into and out of include files, and diagnostics
generated by the compiler.

CrossCore Embedded Studio 1.0 1-73
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Key characters are described in Table 1-13.

-proc processor

The -proc processor (target processor) switch directs the compiler to
produce code suitable for the specified processor. Refer to the CCES
online help for the list of supported Blackfin processors.

For example,

ccblkfn -proc ADSP-BF533 -o bin/p1.doj p1.asm

 If no target is specified with the -proc switch, the default processor
is set to ADSP-BF532.

When compiling with the -proc switch, the appropriate processor macro
is defined as “1”. The compiler additionally defines the __ADSPBLACKFIN__
and __ADSPLPBLACKFIN__ preprocessor macros as “1”.

For example, when -proc ADSP-BF531 is used, the compiler predefines the
__ADSPBF531__, __ADSPBLACKFIN__, and __ADSPLPBLACKFIN__ macros to
“1”.

Table 1-13. Key Characters

Character Meaning

N Normal line of source

X Expanded line of source

S Line of source skipped by #if or #ifdef

L Change in source position

R Diagnostic message (remark)

W Diagnostic message (warning)

E Diagnostic message (error)

C Diagnostic message (catastrophic error)

Compiler Command-Line Interface

1-74 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

 See also -si-revision version for more information on the silicon
revision of the specified processor.

-prof-hw

The -prof-hw switch instructs the compiler to generate profiling code that
shall be run on hardware (rather than on the simulator). The switch
requires a supported profiling switch to also be specified on the command
line. Supported profiling methods are:

• Profile guided optimization (-pguide).

 Instrumented profiling (-p) does not differentiate between execu-
tion on hardware or simulator, and can be executed on both
targets. It does not require the -prof-hw switch.

 Profiling on hardware may rely on code instrumentation and may
make calls into supporting libraries to implement this functional-
ity. Be aware that this can considerably increase the necessary stack
space for your application.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings >Tool Settings > Compiler >
Profile-guided Optimization > Gather profile using hardware.

-progress-rep-func

The -progress-rep-func switch provides feedback on the compiler’s
progress that may be useful when compiling and optimizing very large
source files. It issues a warning message each time the compiler starts
compiling a new function. The warning message is a remark that is
disabled by default, and this switch enables the remark as a warning.
The switch is equivalent to -Wwarn=cc1472.

-progress-rep-opt

The -progress-rep-opt switch provides feedback on the compiler’s prog-
ress that may be useful when compiling and optimizing a very large,

CrossCore Embedded Studio 1.0 1-75
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

complex function. It issues a warning message each time the compiler
starts a new optimization pass on the current function. The warning
message is a remark that is disabled by default, and this switch enables
the remark as a warning. The switch is equivalent to -Wwarn=cc1473.

-progress-rep-timeout

The -progress-rep-timeout switch issues a diagnostic message if the
compiler exceeds a time limit during compilation. This indicates the
compiler is still operating, but is taking a long time.

See also -no-progress-rep-timeout.

-progress-rep-timeout-secs secs

The -progress-rep-timeout-secs secs switch specifies how many
seconds must elapse during a compilation before the compiler issues a
diagnostic message about the length of time the compilation has used so
far.

See also -no-progress-rep-timeout.

-R directory[,directory …]

The -R directory (add source directory) switch directs the compiler to
add the specified directory to the list of directories searched for source
files. Multiple source directories can be presented as a comma-separated
list.

The compiler searches for the source files in the order specified on the
command line. The compiler searches the specified directories before
reverting to the current directory. This switch is dependent on its position
on the command line; that is, it effects only source files that follow it.

 Source files, whose file names begin with /, ./, or ../,
(or Windows equivalent) or contain drive specifiers (on Windows
platforms), are not affected by this option.

Compiler Command-Line Interface

1-76 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-R-

The -R- (disable source path) switch removes all directories from the
standard search path for source files, effectively disabling this feature.

 This option is position-dependent on the command line; it only
affects files following it.

-reserve register[,register …]

The -reserve register (reserve register) switch directs the compiler not
to use the specified registers. Only the m3 register can be reserved.

-rtcheck

The -rtcheck (run-time checking) switch directs the compiler to generate
additional code to check at runtime for common programming errors.
This switch is equivalent to specifying all of the following switches:

• -rtcheck-arr-bnd

• -rtcheck-div-zero

• -rtcheck-heap

• -rtcheck-null-ptr

• -rtcheck-shift-check

• -rtcheck-stack

• -rtcheck-unassigned

 Because of the additional overhead imposed by the checking code,
this switch should only be employed during application develop-
ment, and should not be used to build products for release.

CrossCore Embedded Studio 1.0 1-77
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Processor >
Enable run-time checking.

-rtcheck-arr-bnd

The -rtcheck-arr-bnd (check array bounds at runtime) switch directs the
compiler to generate additional code to verify that array accesses are
within the bounds of the array.

 Because of the additional overhead imposed by the checking code,
this switch should only be employed during application develop-
ment, and should not be used to build products for release.

 Invoke this switch in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-rtcheck-div-zero

The -rtcheck-div-zero (check for division by zero at runtime) switch
directs the compiler to generate additional code to verify that divisors are
non-zero before performing division operations.

 Because of the additional overhead imposed by the checking code,
this switch should only be employed during application develop-
ment, and should not be used to build products for release.

Compiler Command-Line Interface

1-78 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

 Invoke this switch in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-rtcheck-heap

The -rtcheck-heap (check heap operations at runtime) switch directs the
compiler to link against the debugging version of the heap library. For
more information, see Heap Debugging.

 Because of the additional overhead imposed by the checking code,
this switch should only be employed during application develop-
ment, and should not be used to build products for release.

 Invoke this switch in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-rtcheck-null-ptr

The -rtcheck-null-ptr (check for NULL pointers at runtime) switch
directs the compiler to generate additional code to verify that pointers are
not NULL, before dereferencing them.

 Because of the additional overhead imposed by the checking code,
this switch should only be employed during application develop-
ment, and should not be used to build products for release.

 Invoke this switch in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

CrossCore Embedded Studio 1.0 1-79
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-rtcheck-shift-check

The -rtcheck-shift-check (check shift values at runtime) switch directs
the compiler to generate additional code to verify that, when shifting a
value X by some amount Y, Y is a positive amount, and less than the num-
ber of bits used to represent X’s type.

 Because of the additional overhead imposed by the checking code,
this switch should only be employed during application develop-
ment, and should not be used to build products for release.

 Invoke this switch in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-rtcheck-stack

The -rtcheck-stack (check for stack overflow at runtime) switch directs
the compiler to generate additional code to verify, when increasing the
amount of stack space in use, that the current stack bounds are not
exceeded. For more information, see Stack Overflow Detection.

 Because of the additional overhead imposed by the checking code,
this switch should only be employed during application develop-
ment, and should not be used to build products for release.

 Invoke this switch in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

Compiler Command-Line Interface

1-80 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-rtcheck-unassigned

The -rtcheck-unassigned (check variables are assigned at runtime) switch
directs the compiler to generate additional code to verify that variables
have been assigned a value before they are used.

 Because of the additional overhead imposed by the checking code,
this switch should only be employed during application develop-
ment, and should not be used to build products for release.

 Invoke this switch in the IDE via the run-time checking options
under Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Processor.

See also -rtcheck.

-S

The -S (stop after compilation) switch directs the compiler to stop
compilation before running the assembler. The compiler outputs an
assembly file with an .s extension.

-s

The -s (strip debug information) switch directs the compiler to remove
debug information (symbol table and other items) from the output
executable file during linking.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Linker > General >
Strip all symbols.

 Executables produced by this switch are not suitable for use with
the Memory Initializer. (See -mem for more information.)

CrossCore Embedded Studio 1.0 1-81
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-sat-associative

The -sat-associative (saturating addition is associative) switch instructs
the compiler to consider saturating addition operations as associative;
(a+b)+c may be rewritten as a+(b+c), when the addition operator satu-
rates. The default is that saturating addition is not associative.

See also -no-sat-associative.

-save-temps

The -save-temps (save intermediate files) switch directs the compiler
to retain intermediate files generated, which are normally removed as part
of the various compilation stages. These intermediate files are placed
in the –path-output specified output directory or the build directory
(when the –path-output switch (on page 1-81) is not used). See Table 1-3
for a list of intermediate files.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > General >
Save temporary files.

-sdram

The -sdram (SDRAM is active) switch instructs the compiler to assume
that at least Bank 0 of external SDRAM (the lower 32 Mbytes of space)
is active and enabled. This switch is most useful for reducing the number
of silicon anomaly workarounds needed. For more information, refer to
Controlling Silicon Revision and Anomaly Workarounds Within the
Compiler.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Processor >
SDRAM Bank 0 is in use.

Compiler Command-Line Interface

1-82 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-section id=section_name[,id=section_name...]

The -section switch controls the placement of types of data produced
by the compiler. The data is placed into the section_name section as
provided on the command line.

The compiler currently supports the following section identifiers; see
Placement of Compiler-Generated Code and Data for more details.

Note that alldata is not a real section kind, but rather a placeholder for
data, constdata, bsz, strings, and autoinit.

code Controls placement of machine instructions

data Controls placement of initialized variable data

constdata Controls placement of constant data

bsz Controls placement of zero-initialized variable data

sti Controls placement of the static C++ class constructor “start” func-
tions. Default is program.
For more information, see Constructors and Destructors of Global
Class Instances.

switch Controls placement of jump tables used to implement C/C++ switch
statements. Default is constdata.

vtbl Controls placement of the C++ virtual lookup tables

vtable Synonym for vtbl

strings Controls the placement of string literals

autoinit Controls placement of data used to initialize aggregate autos

alldata Controls placement of data, constdata, bsz, strings, and
autoinit all at once

CrossCore Embedded Studio 1.0 1-83
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Therefore,

-section alldata=X

is equivalent to:

-section data=X

-section constdata=X

-section bsz=X

-section strings=X

-section autoinit=X

Ensure that the section selected via the command line exists within the
.ldf file (refer to the Linker and Utilities Manual).

-show

The -show (display command line) switch shows the command-line
arguments passed to ccblkfn, including expanded option files and
environment variables. This allows you to ensure that command-line
options have been passed successfully.

-signed-bitfield

The -signed-bitfield (make plain bit-fields signed) switch directs the
compiler to make plain bit-field—those which have not been declared
with an explicit signed or unsigned keyword—be signed. This is the
default mode. See -unsigned-bitfield for more information.

-signed-char

The -signed-char (make char signed) switch directs the compiler to make
the default type for char signed. The compiler also defines the
__SIGNED_CHARS__ macro. This is the default mode when the
-unsigned-char switch is not used (on page 1-87).

Compiler Command-Line Interface

1-84 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-si-revision version

The -si-revision version (silicon revision) switch directs the compiler
to build for a specific hardware revision (version). Any errata workarounds
available for the targeted silicon revision will be enabled. For more infor-
mation on valid revisions and the interactions of the -si-revision,
-workaround, and -no-workaround switches, see Controlling Silicon Revi-
sion and Anomaly Workarounds Within the Compiler.

-structs-do-not-overlap

The -structs-do-not-overlap switch specifies that the source code
being compiled contains no structure copies such that the source and the
destination memory regions overlap each other in a non-trivial way.

For example, in the statement

*p = *q;

where p and q are pointers to some structure type S, the compiler, by
default, always ensures that, after the assignment, the structure pointed to
by “p” contains an image of the structure pointed to by “q” prior to the
assignment. When p and q are not identical (in which case the assignment
is trivial) but the structures pointed to by the two pointers may overlap
each other, doing this means that the compiler must use the functionality
of the C library function “memmove” rather than “memcpy”.

Using “memmove” to copy data is slower than using “memcpy”. Therefore,
if your source code does not contain such overlapping structure copies,
you can obtain higher performance by using the command-line switch
-structs-do-not-overlap.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Structs/classes do not overlap.

CrossCore Embedded Studio 1.0 1-85
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-syntax-only

The -syntax-only (only check syntax) switch directs the compiler to
check the source code for syntax errors and warnings. No output files are
generated with this switch.

-sysdefs

The -sysdefs (system macro definitions) switch directs the compiler to
define several preprocessor macros describing the current user and user’s
system. The macros are defined as character string constants.

These macros are defined if the system returns information for them.

-T filename

The -T filename (linker description file) switch directs the compiler
(and linker) to use the specified linker description file (.ldf) as control
input for linking. If -T is not specified, a default .ldf file is selected, based
on the processor variant.

-threads

The -threads switch directs the compiler to link against the thread-safe
variants of the C/C++ run-time libraries. The -threads switch defines the
_ADI_THREADS macro as “1” at the compile, assemble, and link phases of a
build.

Table 1-14. System Macros Defined

Macro Description

__HOSTNAME__ Name of the host machine

__SYSTEM__ Operating system name of the host machine

__USERNAME__ Current user’s login name

Compiler Command-Line Interface

1-86 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

 The -threads switch does not imply that the compiler will produce
thread-safe code when compiling C/C++ source. Make sure to use
multi-threaded programming practices in code.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Linker > Processor >
Link against thread-safe run-time libraries.

See also -no-threads.

-time

The -time (tell time) switch directs the compiler to display elapsed time as
part of the output information on each part of the compilation process.

-U macro

The -U macro (undefine macro) switch directs the compiler to undefine
macros. If you specify a macro name, it is undefined. Note the compiler
processes all -D (define macro) switches on the command line before any
-U (undefine macro) switches.

 Add instances of this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Preprocessor > Preprocessors undefines.

-unsigned-bitfield

The -unsigned-bitfield (make plain bit-fields unsigned) switch directs
the compiler to make plain bit-fields—those which have not been declared
with an explicit signed or unsigned keyword—be unsigned.

For example, given the declaration

struct {

int a:2;

int b:1;

signed int c:2;

CrossCore Embedded Studio 1.0 1-87
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

unsigned int d:2;

} x;

Table 1-15 lists the bitfield values.

See also the -signed-bitfields switch (on page 1-83).

-unsigned-char

The -unsigned-char (make char unsigned) switch directs the compiler to
make the default type for char unsigned. The compiler also undefines the
__SIGNED_CHARS__ preprocessor macro.

-utility-rom

The -utility-rom (use Tools Utility ROM) switch directs the tools to
make use of the library routines in the processor’s ROM, rather than
retrieving versions from the libraries and linking them into the executable
image. This can reduce the size of the final executable. This switch is only
supported for ADSP-BF592-A processors. It is enabled by default for sili-
con revision 0.2 onwards.

See also -no-utility-rom.

-v

The -v (version and verbose) switch directs the compiler to display the
version and command-line information for all the compilation tools as
they process each file.

Table 1-15. Bit-Field Values

Field -unsigned-bitfield -signed-bitfield Why

x.a -2..1 0..3 Plain field

x.b 0..1 -1..0 Plain field

x.c -2..1 -2..1 Explicit signed

x.d 0..3 0..3 Explicit unsigned

Compiler Command-Line Interface

1-88 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-verbose

The -verbose (display command line) switch directs the compiler to
display command-line information for all the compilation tools as they
process each file.

-version

The -version (display version) switch directs the compiler to display its
version information.

-W{annotation|error|remark|suppress|warn} number[, number...]

The -Wannotation, -Werror, -Wremark, -Wsuppress, and -Wwarn (override
error message) switches with a number argument direct the compiler to
override the severity of the specified diagnostic messages (errors, remarks,
or warnings). The number argument identifies the specific message to
override.

At compilation time, the compiler produces a number for each specific
compiler diagnostic message. A {D} (discretionary) following the diagnos-
tic message number indicates that the diagnostic may have its severity
overridden. Each diagnostic message is identified by a number that is used
across all compiler software releases.

 If the processing of the compiler command line generates a diag-
nostic, the position of the -W switch on the command-line is
important. If the -W switch changes the severity of the diagnostic,
it must occur before the command-line switch that generates the
diagnostic; otherwise, no change of severity will occur.

Also, as shown in the Output view and in help, error codes
sometimes begin with a leading zero (for example, cc0025). If you
try to suppress error codes with -W{annota-
tion|error|remark|suppress|warn} or #pragma diag() and

CrossCore Embedded Studio 1.0 1-89
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

supply the code with a leading zero, it will not work. This is
because the compiler reads the number as an octal value, and will
suppress a different warning or error.

-Wannotations

The -Wannotations (enable code generation annotations) switch directs
the compiler to issue code generation annotations, which are messages
milder than warnings that may help you to optimize your code.

 Invoke this switch in the IDE by settings Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Warning >
Warning/annotation/remark control to Errors, warnings and
annotations.

-Werror-limit number

The -Werror-limit number (maximum compiler errors) switch sets a
maximum number of errors for the compiler before it aborts.

-Werror-warnings

The -Werror-warnings (treat warnings as errors) switch directs the
compiler to treat all warnings as errors, with the result that a warning will
cause the compilation to fail.

-Wremarks

The -Wremarks (enable diagnostic remarks) switch directs the compiler to
issue remarks, which are diagnostic messages that are milder than warn-
ings. Code generation annotations will also be issued, unless disabled with
the -no-annotate switch (see -no-annotate).

 Invoke this switch in the IDE by settings Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Warning >
Warning/annotation/remark control to Errors, warnings, annota-
tions and remarks.

Compiler Command-Line Interface

1-90 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-Wterse

The -Wterse (enable terse warnings) switch directs the compiler to issue
the briefest form of warnings. This also applies to errors and remarks.

-w

The -w (disable all warnings) switch directs the compiler not to issue
warnings.

 If the processing of the compiler command line generates a
warning, the position of the -w switch on the command line is
important. If the -w switch is located before the command-line
switch that causes the warning, the warning will be suppressed;
otherwise, it will not be suppressed.

 Invoke this switch in the IDE by settings Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Warning >
Warning/annotation/remark control to Errors only.

-warn-component

The -warn-component (warn if component elements are missing) switch
instructs the compiler to issue warnings if it cannot locate libraries that are
requested by the component’s XML file. For more information, see -com-
ponent file.xml.

-warn-protos

The -warn-protos (warn if incomplete prototype) switch directs the
compiler to issue a warning when it calls a function for which an
incomplete function prototype has been supplied. This option has no
effect in C++ mode.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Warning >
Function declarations without prototypes.

CrossCore Embedded Studio 1.0 1-91
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-workaround workaround_id[,workaround_id ……]

The -workaround workaround_id [,workaround_id ...] (enable avoid-
ance of specific errata) switch enables compiler code generator
workarounds for specific hardware errata. See Controlling Silicon Revi-
sion and Anomaly Workarounds Within the Compiler for details of valid
workarounds and the interaction of the -si-revision, -workaround, and
-no-workaround switches.

See also -no-workaround workaround_id switch on page 1-65.

-xref filename

The -xref filename (cross-reference list) switch directs the compiler to
write cross-reference listing information to the specified file. When more
than one source file has been compiled, the listing contains information
about the last file processed.

For each reference to a symbol in the source program, a line of the
following form is written to the named file.

symbol-id name ref-code filename line-number column-number

The symbol-id represents a unique decimal number for the symbol, and
ref-code is one of the characters listed in Table 1-16.

Table 1-16. ref-code Characters

Character Meaning

D Definition

d Declaration

M Modification

A Address taken

U Used

C Changed (used and modified)

Compiler Command-Line Interface

1-92 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

 The compiler’s -xref switch differs from the linker’s -xref switch.
Refer to the Linker and Utilities Manual for more information.

-zero-loop-counters

The -zero-loop-counters switch directs the compiler to ensure any used
loop counters are set to zero on function exit. This switch should be used
in the compilation of initcode that is overwritten with other code by an
overlay manager or boot ROM that does not ensure loop counters are
reset. Failure to do so may mean live hardware loops from initcode are
encountered in the newly-loaded code, resulting in a random amount of
loops over unrelated code (see the “Hardware Loops” section of the
Blackfin Processor Programming Reference). Live hardware loops may be left
when the compiler generates code that jumps out of a hardware loop
before it reaches zero, for instance when generating an optimized "while"
loop.

See also -no-zero-loop-counters.

C Mode (MISRA) Compiler Switch Descriptions

The following MISRA switches apply only to the C compiler.
See MISRA-C Compiler for more information.

-misra

The –misra switch enables checking for MISRA-C Guidelines. Some rules
or parts of rules are relaxed with this switch enabled. Rules relaxed by this
option are 5.1, 5.7, 6.3, 6.4, 8.1, 8.2, 8.5, 10.5, 12.8, 13.7 and 19.7. This
is explained in more detail, see Rules Descriptions.

R Any other type of reference

E Error (unknown type of reference)

Table 1-16. ref-code Characters (Cont’d)

Character Meaning

CrossCore Embedded Studio 1.0 1-93
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

The -misra switch is not supported in conjunction with some switches.
For more information, see MISRA-C Command-Line Switch Restrictions.
The switch predefines the _MISRA_RULES preprocessor macro.

-misra-linkdir directory

The –misra-linkdir switch specifies a directory in which to place .misra
files. The default is a local directory called MISRARepository. The .misra
files enable checking of violations of rules 5.5, 8.8, 8.9, and 8.10.

-misra-no-cross-module

The –misra-no-cross-module switch implies -misra, but also disables
checking for a number of rules that require the use of the prelinker to
check across multiple modules for rule violation. The MISRA-C rules
suppressed are 5.5, 8.8, 8.9, and 8.10.

The -misra-no-cross-module switch is not supported in conjunction with
some switches. For more information, see MISRA-C Command-Line
Switch Restrictions.

-misra-no-runtime

The –misra-no-runtime switch implies -misra, but also disables run-time
checking for MISRA-C rules 17.1, 17.2, 7.3, and 21.1. It limits the
checking of rules 9.1, 12.8, 16.2, and 17.4.

The -misra-no-runtime switch is not supported in conjunction with some
switches. For more information, see MISRA-C Command-Line Switch
Restrictions.

-misra-strict

The –misra-strict switch enables checking for MISRA-C Guidelines.
The switch ensures a strict interpretation of the MISRA-C:2004
Guidelines. See Rules Descriptions for more detail.

Compiler Command-Line Interface

1-94 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The -misra-strict switch is not supported in conjunction with some
switches. For more information, see MISRA-C Command-Line Switch
Restrictions. The switch predefines the _MISRA_RULES preprocessor macro.

-misra-suppress-advisory

The –misra-suppress-advisory switch implies -misra, but suppresses the
reporting of advisory rules. The –misra-suppress-advisory switch is not
supported in conjunction with some switches. For more information, see
MISRA-C Command-Line Switch Restrictions.

-misra-testing

The –misra-testing switch implies –misra but also suppresses checking
of MISRA-C rules 20.4, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12.

The -misra-testing switch is not supported in conjunction with some
switches. For more information, see MISRA-C Command-Line Switch
Restrictions.

-Wmis_suppress rule_number [, rule_number]

The -Wmis_suppress switch with a rule_number argument directs the
compiler to suppress the specified diagnostic for a MISRA-C rule. The
rule_number argument identifies the specific message to override

-Wmis_warn rule_number [, rule_number]

The -Wmis_warn switch with a rule_number argument directs the compiler
to override the severity of the specified diagnostic to produce a warning
for a MISRA-C rule. The rule_number argument identifies the specific
message to override.

CrossCore Embedded Studio 1.0 1-95
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

MISRA-C Command-Line Switch Restrictions

Table lists the command-line switches that are disallowed in MISRA-C
mode.

C++ Mode Compiler Switch Descriptions

The following switches apply only to the C++ compiler.

-anach

The -anach (enable C++ anachronisms) switch directs the compiler to
accept some language features that are prohibited by the C++ standard but
are still in common use. Use the –no-anach switch for greater standard
compliance.

Table 1-17. Switches Disallowed by MISRA-C

Switch name

-w (on page 1-90)

-Wsuppress (on page 1-88)

-Wwarn (on page 1-88)

-c++ (on page 1-29)

-enum-is-int (on page 1-40)

-warn-protos (on page 1-90)

-decls-weak (on page 1-36)

-alttok (on page 1-31)

Compiler Command-Line Interface

1-96 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The following anachronisms are accepted when the -anach switch is
enabled:

• Overload is allowed in function declarations. It is accepted and
ignored.

• The number of elements in an array may be specified in an array
delete operation. The value is ignored.

• A single operator++() function can be used to overload both prefix
and postfix ++ operations.

• A single operator--() function can be used to overload both prefix
and postfix -- operations.

• The base class name may be omitted in a base class initializer if
there is only one immediate base class.

• A bound function pointer (a pointer to a member function for a
given object) can be cast to a pointer to a function.

• A nested class name may be used as an un-nested class name pro-
vided no other class of that name has been declared. The
anachronism is not applied to template classes.

• A reference to a non-const type may be initialized from a value of a
different type. A temporary is created; it is initialized from the
(converted) initial value, and the reference is set to the temporary.

• A reference to a non-const class type may be initialized from an
rvalue of the class type or a derived class thereof. No (additional)
temporary is used.

• A function with old-style parameter declarations is allowed and
may participate in function overloading as though it were proto-
typed. Default argument promotion is not applied to parameter

CrossCore Embedded Studio 1.0 1-97
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

types of such functions when the check for compatibility is done,
so that the following statements declare the overload of two
functions named f:

int f(int);

int f(x) char x; { return x; }

See also -no-anach.

-check-init-order

It is not guaranteed that global objects requiring constructors are initial-
ized before their first use in a program consisting of separately compiled
units. The compiler will output warnings if these objects are external to
the compilation unit and are used in dynamic initialization or in
constructors of other objects. These warnings are not dependent on the
-check-init-order switch.

In order to catch uses of these objects and to allow the opportunity for
code to be rewritten, the -check-init-order switch adds run-time
checking to the code. This will generate output to stderr to indicate that
uses of such objects are unsafe.

 This switch generates extra code to aid development. Do not use
this switch when building production systems.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Check initialization order.

-friend-injection

The -friend-injection switch directs the compiler to perform name
lookup in a non-standard way with respect to friend declarations. With
this switch enabled, a friend declaration will be injected into the scope
enclosing the class containing the friend declaration.

See also -no-friend-injection.

Compiler Command-Line Interface

1-98 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

-full-cpplib

The -full-cpplib switch ensures the compilation uses the full ISO/IEC
14882:2003 standard library header files and library.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > Use the Full C++ Standard Library and not
the abridged library.

This switch defines the macro _ADI_FULLCPPLIB during compilation and
linking.

See also -no-full-cpplib.

-full-dependency-inclusion

The -full-dependency-inclusion switch ensures that when generating
dependency information for implicitly-included .cpp files, the .cpp file is
re-included. This file is re-included only if the .cpp files are included
more than once in the source (via re-inclusion of their corresponding
header file). This switch is required only if your C++ sources files are com-
piled more than once with different macro guards.

 Enabling this switch may increase the time required to generate
dependencies.

-implicit-inclusion

The -implicit-inclusion switch directs the compiler to enable the
implicit inclusion of source files as a method of finding definitions of tem-
plate entities to be instantiated. The compiler will automatically include a
source file suffixed by .C, .c, or .cpp when the corresponding header file
.h or .hxx is included.

See also -no-implicit-inclusion.

CrossCore Embedded Studio 1.0 1-99
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

-no-anach

The -no-anach (disable C++ anachronisms) switch directs the compiler to
disallow some old C++ language features that are prohibited by the C++
standard. See the –anach switch (on page 1-95) for a full description of
these features.

-no-friend-injection

The -no-friend-injection switch directs the compiler to conform to the
ISO/IEC 14882:2003 standard with respect to friend declarations. The
friend declaration is visible when the class to which it is a friend is among
the associated classes considered by argument-dependent lookup. This is
the default mode.

See also -friend-injection.

-no-full-cpplib

The -no-full-cpplib switch links the application with the abridged C++
library which consists of the embedded C++ library (EC++) and the stan-
dard template library (STL) as defined by the ISO/IEC 14882:2003 C++
standard. This switch is enabled by default.

-no-implicit-inclusion

The -no-implicit-inclusion switch prevents implicit inclusion of source
files as a method of finding definitions of template entities to be instanti-
ated. This is the default mode.This switch is accepted but ignored when
compiling C files.

See also -implicit-inclusion.

-no-rtti

The -no-rtti (disable run-time type identification) switch directs the
compiler to disallow support for dynamic_cast and other features of

Compiler Command-Line Interface

1-100 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

ANSI/ISO C++ run-time type identification. This is the default mode.
Use –rtti to enable this feature.

See also -rtti.

-no-std-templates

The -no-std-templates switch disables dependent name processing
(that is, the special lookup of names used in templates as required by the
C++ standard).

See also -std-templates.

-rtti

The -rtti (enable run-time type identification) switch directs the com-
piler to accept programs containing dynamic_cast expressions and other
features of ANSI/ISO C++ run-time type identification. The switch also
causes the compiler to define the macro __RTTI to 1. See also the –no-rtti
switch.

 Invoke this switch in the IDE via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Language Settings > C++ exceptions and RTTI.

See also -no-rtti.

-std-templates

The -std-templates switch enables dependent name processing, that is,
the special lookup of names used in templates as required by the ISO/IEC
14882:2003 C++ standard. This is the default mode.

See also -no-std-templates.

CrossCore Embedded Studio 1.0 1-101
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Environment Variables Used by the Compiler
The compiler refers to several environment variables during its operation,
as listed below. The majority of the environment variables identify path
names to directories.

 Placing network paths into these environment variables may
adversely affect the time required to compile applications.

• PATH

This is your System search path, which is used to locate when you
run them. The operating system uses this environment variable to
locate the compiler when you execute it from the command line.

• TMP

This directory is used by the compiler for temporary files, when
building applications. For example, if you compile a C file to an
object file, the compiler first compiles the C file to an assembly file
which can be assembled to create the object file. The compiler
usually creates a temporary directory within the TMP directory into
which to put such files. However, if the -save-temps switch is
specified, the compiler creates temporary files in the current direc-
tory instead. This directory should exist and be writable. If this
directory does not exist, the compiler issues a warning.

• TEMP

This environment variable is also used by the compiler when look-
ing for temporary files, but only if TMP was examined and was not
set or the directory that TMP specified did not exist.

• ADI_DSP

The compiler locates other tools in the tool-chain through the
CCES installation directory, or through the -path-install switch.
If neither is successful, the compiler looks in ADI_DSP for other
tools.

Compiler Command-Line Interface

1-102 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• CCBLKFN_OPTIONS

If this environment variable is set, and CCBLKFN_IGNORE_ENV is not
set, this environment variable is interpreted as a list of additional
switches to be prepended to the command line. Multiple switches
are separated by spaces or new lines. A vertical-bar (|) character
may be used to indicate that any switches following it will be pro-
cessed after all other command-line switches.

• CCBLKFN_IGNORE_ENV

If this environment variable is set, CCBLKFN_OPTIONS is ignored.

Additional Path Support
The compiler driver and compiler provide support for extensions to stan-
dard Windows pathnames. Both Windows shortcuts and Cygwin paths
are supported. The extensions are controlled independently by compiler
switches. Both features are disabled by default.

 When either support is enabled, compilation time may be increased
in cases where many include paths are passed to the compiler.

Windows Shortcut Support

Enable Windows shortcut support with the -expand-windows-
shortcuts command-line switch (on page 1-40), and disable it with the
-no-expand-windows-shortcuts switch (on page 1-56). The support is
disabled by default. When enabled, the compiler recognizes elements of
paths that refer to Windows shortcuts.

For example, if the source file test.c exists in the directory

c:\src\blackfin\

and a Windows shortcut is created as

c:\src\platform

CrossCore Embedded Studio 1.0 1-103
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

which points to the source directory, the source file can be compiled with
the command line:

ccblkfn -proc ADSP-BF533 c:\src\platform\test.c

-expand-windows-shortcuts

The compiler also recognizes path directory elements which are Windows
shortcuts within preprocessor #include directives. For example, using the
example above, a file containing:

#include <platform\test.h>

could be compiled with the command line:

ccblkfn -proc ADSP-BF533 c:\src\platform\test.c -I c:\src

-expand-windows-shortcuts

Cygwin Path Support

The compiler provides support for Cygwin paths. The Cygwin environ-
ment provides users with a UNIX-like command-line environment on a
Microsoft Windows machine.

 The Cygwin environment is not part of CCES. It is provided by
Red Hat, Inc. and can be downloaded from their Web site.

Cygwin path support is enabled with the -expand-symbolic-links switch
and disabled with the -no-expand-symbolic-links switch. The support is
disabled by default. The compiler recognizes three types of path exten-
sions that are supported by Cygwin: symbolic links, cygdrive folders, and
Cygwin mounted directories.

Cygwin Symbolic Links

Symbolic links are created within Cygwin using the “ln -s” command.
The symbolic-links behave in a similar manner to Windows shortcuts,
providing a secondary link to a file or directory.

Compiler Command-Line Interface

1-104 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

For example, for the source file test.c located in the directory
c:\src\blackfin\, a symbolic link can be created using the commands:

cd \cygdrive\c\src

ln -s platform blackfin

The source file can be compiled with the commands:

cd \cygdrive\c\src

ccblkfn -proc ADSP-BF533 platform\test.c -expand-symbolic-links

 The compiler supports local symbolic links only. CCES does not
support symbolic links to remote devices and machines.

Cygdrive Folders

The Cygwin \cygdrive directory is a pseudo-directory that provides
access to all the drives that can be located through the “My Computer”
folder in Windows Explorer. The drives are accessed via the sub-directory
corresponding to their drive letter.

For example, the C: drive is accessed via the directory \cygdrive\c, and
the file c:\src\blackfin\test.c can be compiled using the command
line:

ccblkfn -proc ADSP-BF533 \cygdrive\c\src\blackfin\test.c

-expand-symbolic-links

Cygwin Mounted Directories

Cygwin provides a mount command that reproduces the behavior of the
UNIX mount command. It allows directories and devices to be accessed via
an alternative “mounted” directory.

For example, to mount the directory d:\testsuites as \tests, issue the
command:

mount d:\\testsuites \tests

CrossCore Embedded Studio 1.0 1-105
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

The contents of d:\testsuites will then be visible as if they existed
within \tests. The file d:\testsuites\test.c can be compiled with the
command:

ccblkfn -proc ADSP-BF533 \tests\test.c -expand-symbolic-links

 The compiler supports local Cygwin mounts only. It does not sup-
port Cygwin mounts to remote devices and machines, nor does it
support \etc\fstab mounts.

Optimization Control
The general aim of compiler optimization is to generate correct code that
executes quickly and is small in size. Not all optimizations are suitable for
every application or can be used all the time. Therefore, the compiler opti-
mizer has a number of configurations, or optimization levels, which can be
applied when needed. Each of these levels are enabled by one or more
compiler switches (and CCES properties page) or pragmas.

 Refer to Achieving Optimal Performance From C/C++ Source
Code for information on how to obtain maximal code performance
from the compiler.

The compiler’s optimization capabilities are described in Optimization
Levels and Interprocedural Analysis.

Optimization Levels

The following list identifies several optimization levels. The levels are
notionally ordered with least optimization listed first and most optimiza-
tion listed last. The descriptions for each level outline the optimizations
performed by the compiler and identify any required switches or pragmas
that have direct influence on them.

Compiler Command-Line Interface

1-106 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• Debug
The compiler produces debug information to ensure that the object
code matches the appropriate source code line. For more informa-
tion, see -g.

• Default
The compiler does not perform any optimization by default when
none of the compiler optimization switches are used (or enabled in
the CCES Properties dialog box). Default optimization level can
be enabled using the optimize_off pragma (on page 1-313).

• Procedural Optimizations
The compiler performs advanced, aggressive optimization on each
procedure in the file being compiled. The optimizations can be
directed to favor optimizations for speed (-O1 or O) or space (-Os)
or a factor between speed and space (-Ov). If debugging is also
requested, the optimization is given priority so the debugging func-
tionality may be limited. See -O[0|1], -Os and -Ov num.

Procedural optimizations for speed and space (-O and -Os) can be
enabled in C/C++ source using the pragma
optimize_{for_speed|for_space}. For more information, see
General Optimization Pragmas.

• Profile-Guided Optimizations (PGO)
The compiler performs advanced aggressive optimizations using
profiler statistics (.pgo files) generated from running the applica-
tion using representative training data. PGO can be used in
conjunction with interprocedural analysis (IPA) and automatic
inlining. See -pguide for more information.

The most common scenario in collecting PGO data is to set up one
or more simple file-to-device streams where the file is a standard
ASCII stream input file and the device is any stream device
supported by the simulator target, such as memory and peripherals.

CrossCore Embedded Studio 1.0 1-107
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

The PGO process can be broken down into the execution of one or
more data sets where a data set is the association of zero or more
input streams with one and only one .pgo output file.

For more information, see Using Profile-Guided Optimization.

 Be aware of the requirement for allowing command-line arguments
in your project when using PGO. For further details refer to Sup-
port for argv/argc.

• Automatic Inlining
The compiler automatically inlines C/C++ functions which are not
necessarily declared as inline in the source code. It does this when
it has determined that doing so reduces execution time. The -Ov
switch controls how aggressively the compiler performs automatic
inlining. Automatic inlining is enabled using the -Oa switch which
additionally enables procedural optimizations (-O). See -Oa, -Ov
num, -O[0|1], and Function Inlining for more information.

 When remarks are enabled, the compiler produces a remark to
indicate each function that is inlined.

• Interprocedural Optimizations
The compiler performs advanced, aggressive optimization over the
whole program, in addition to the per-file optimizations in proce-
dural optimization. Interprocedural analysis (IPA) is enabled using
the -ipa switch which additionally enables procedural optimiza-
tions (-O). See -ipa, -O[0|1], and Interprocedural Analysis for more
information.

The compiler optimizer attempts to vectorize loops when it is safe to do
so. IPA can identify additional safe candidates for vectorization which
might not be classified as safe at a procedural optimization level. Addi-
tionally, there may be other loops that are known to be safe candidates for
vectorization that can be identified to the compiler using various pragmas.
(See Loop Optimization Pragmas.)

Compiler Command-Line Interface

1-108 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Using the various compiler optimization levels is an excellent way of
improving application performance. However, consideration should be
given to how applications are written so that compiler optimizations are
given the best opportunity to be productive. These issues are the topic of
Achieving Optimal Performance From C/C++ Source Code.

Interprocedural Analysis

The compiler has an optimization capability called interprocedural analysis
(IPA) that allows the compiler to optimize across translation units instead
of within individual translation units. This capability allows the compiler
to see all of the source files used in a final link at compilation time and to
use that information while optimizing.

Enable interprocedural analysis by selecting the Interprocedural analysis
check box on the Compile : General page of the CCES Properties dialog
box, or by specifying the -ipa command-line switch (on page 1-49).

The -ipa switch automatically enables the -O switch to turn on
optimization.

The -ipa switch generates additional files along with the object file pro-
duced by the compiler. These files have .ipa extensions and should not be
deleted manually unless the associated object file is also deleted.

All of the -ipa optimizations are invoked after the initial link, when a spe-
cial program called the prelinker reinvokes the compiler to perform the
new optimizations, recompiling source files where necessary, to make use
of gathered information.

 Because a file may be recompiled by the prelinker, do not use the
-S option to see the final optimized assembler file when -ipa is
enabled. Instead, use the -save-temps switch, so that the full com-
pile/link cycle can be performed first.

CrossCore Embedded Studio 1.0 1-109
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Interaction With Libraries

When IPA is enabled, the compiler examines all of the source files to build
usage information about all of the function and data items. It then uses
that information to make additional optimizations across all of the source
files by recompiling where necessary.

Because IPA operates only during the final link, the -ipa switch has no
benefit when initially compiling source files to object format for inclusion
in a library. IPA gathers information about each file and embeds this
within the object format, but cannot make use of it at this point, because
the library contents have not yet been used in a specific context.

When IPA is invoked during linking, it will recover the gathered informa-
tion from all linked-in object files that were built with -ipa, and where
necessary and possible, will recompile source files to apply additional opti-
mizations. Modules linked in from a library are not recompiled in this
manner, as source is not available for them. Therefore, the gathered infor-
mation in a library module can be used to further optimize application
sources, but does not provide a benefit to the library module itself.

If a library module references a function in a user module in the program,
this will be detected during the initial linking phase, and IPA will not
eliminate the function. If the library module was not compiled with -ipa,
IPA will not make any assumptions about how the function may be called,
so the function may not be optimized as effectively as if all references to it
were in source code visible to IPA, or from library modules compiled with
-ipa.

Controlling Silicon Revision and Anomaly
Workarounds Within the Compiler

The compiler provides three switches which specify that code produced by
the compiler will be generated for a specific revision of a specific proces-
sor, and appropriate revision specific system run-time libraries will be
linked against. Targeting a specific processor allows the compiler to

Compiler Command-Line Interface

1-110 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

produce code that avoids specific hardware errata reported against that
revision. For the simplest control, use the -si-revision switch
(on page 1-84), which automatically controls the use of compiler
workarounds.

 The compiler cannot apply errata workarounds to code inside
asm() constructs.

When developing using the CCES IDE, the silicon revision used to build
sources is part of a projects processor settings.

 Using the -si-revision Switch

The -si-revision version (silicon revision) switch directs the compiler
to build for a specific hardware revision. Any errata workarounds available
for the targeted silicon revision will be enabled. The parameter version
represents a silicon revision for the processor specified by the -proc switch
(on page 1-73). For example,

ccblkfn -proc ADSP-BF533 -si-revision 0.5 prog.c

If silicon version none is used, then no errata workarounds are enabled,
whereas specifying silicon version any will enable all errata workarounds
for all supported revisions of the target processor.

If the -si-revision switch is not used, the compiler will default to target
the latest known silicon revision for the target processor at the time of
release, and any errata workarounds which are appropriate for the latest
silicon revision will be enabled.

In the Blackfin\lib CCES installation directory there are a number of
subdirectories. Within each of these is a complete set of libraries built for
specific parts and silicon revisions. When linking an executable, the com-
piler driver selects and links against the best of these sets of libraries that is
correct for the target part and has been built with the necessary silicon
anomaly workarounds enabled to match the silicon revision switch. Note
that an individual set of libraries may cover more than one specific part or

CrossCore Embedded Studio 1.0 1-111
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

silicon revision, so if several silicon revisions are affected by the same
errata, then one common set of libraries might be used.

The __SILICON_REVISION__ macro is set by the compiler to two hexadeci-
mal digits, representing the major and minor numbers in the silicon
revision. For example, 1.0 becomes 0x100, and 10.21 becomes 0xa15.

If the silicon revision is set to any, the __SILICON_REVISION__ macro is set
to 0xffff. If the -si-revision switch is set to none, the compiler will not
set the __SILICON_REVISION__ macro.

The compiler driver will pass the -si-revision switch, as specified in the
command line, when invoking other tools in the CCES tool chain.

 Visit http://www.analog.com/processors/tools/anomalies for
information on specific anomalies (including anomaly IDs).

Using the -workaround Switch

The -workaround workaround_id switch (on page 1-91) enables compiler
code generator workarounds for specific hardware errata.

When workarounds are enabled, the compiler defines the macro
__WORKAROUNDS_ENABLED at the compile, assembly, and link build stages.
The compiler also defines individual macros for each of the enabled work-
arounds for each of these stages, as indicated by each macro description.

For a complete list of anomaly workarounds and associated workaround_id
keywords, refer to the anomaly .xml files provided in the
<install_path>\System\ArchDef directory. These are named in the
format <platform_name>-anomaly.xml.

To find which workarounds are enabled for each chip and silicon revision,
refer to the appropriate <chip_name>-compiler.xml file in the same
directory (for example, ADSP-BF533-compiler.xml). Each *-compiler.xml
file references an *-anomaly.xml file via the name in the <cces-anom-
aly-dictionary> element.

http://www.analog.com/processors/tools/anomalies

Compiler Command-Line Interface

1-112 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The anomaly .xml files relevant to Blackfin processors are BLACK-
FIN-5xx-anomaly.xml and BLACKFIN-60x-anomaly.xml.

 Certain silicon anomalies affect the access of memory-mapped
registers (MMRs), in particular 05-00-0122 (which is worked
around by default), 05-00-0157 (under control of -workaround
killed-mmr-write), and 05-00-0198 (under control of -work-
around sdram-mmr-read). The compiler applies the appropriate
workarounds to a memory access which it can identify as being to
an MMR (for example, if the pointer to the MMR is assigned a lit-
eral address, or the value of the pointer can be calculated at
compile time).

For pointers whose destination may not be known until runtime,
the compiler will take the conservative approach and assume that
the pointer may access MMRs if it is volatile-qualified. To disable
this assumption, use the -no-assume-vols-are-mmrs switch
(on page 1-54); the memory-mapped register access functions
(on page 1-296) should be used to ensure the MMR access is made
anomaly-safe.

Using the -no-workaround Switch

The -no-workaround workaround_id[,workaround_id ...] switch
disables compiler code generator workarounds for specific hardware
errata. For a list of valid workarounds, refer to the instructions in
Using the -workaround Switch.

The -no-workaround switch can be used to disable workarounds enabled
via the -si-revision version or -workaround workaround_id switches.

All workarounds can be disabled by providing -no-workaround with all
valid workarounds for the selected silicon revision or by using the option
-no-workaround all. Disabling all workarounds via the -no-workaround
switch will provide linking against libraries with no silicon revision in
cases where the silicon revision is not none.

CrossCore Embedded Studio 1.0 1-113
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Interactions: Silicon Revision vs. Workaround Switches

Interactions between -si-revision, -workaround, and -no-workaround
switches can only be determined once all the command-line arguments
have been parsed. To this effect, options are evaluated as follows:

1. The -si-revision version switch is parsed to determine which
revision of the run-time libraries the application is to link against.
It also produces an initial list of all the default compiler errata
workarounds to enable.

2. Any additional workarounds specified with the -workaround switch
is added to the errata list.

3. Any workarounds specified with -no-workaround is then removed
from this list.

4. If silicon revision is not none or if any workarounds were declared
via -workaround, the macro __WORKAROUNDS_ENABLED is defined at
compile, assembly, and link stages, even if -no-workaround disables
all workarounds.

Anomalies in Assembly Sources

If your project includes some hand-written assembly code, you will have
to ensure that you explicitly avoid any relevant anomalies that apply to
your target processor. This can be simplified by the use of the
sys/anomaly_macros_rtl.h header file. This header file defines macros for
each of the anomalies that affect the run-time libraries, which allow for
conditional inclusion of avoidance code.

For example, the following code makes use of the WA_05000428 macro to
conditionally select code that avoids problems with speculative reads from
another core.

Using Native Fixed-Point Types

1-114 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

 r3 = r1 ^ r2;

#if WA_05000428

 nop;

#endif

 r6 = r2 +|+ r0 || r2 = [p2++] || nop;

Using Native Fixed-Point Types
This section provides an overview of the compiler’s support for the native
fixed-point types fract and accum, defined in Chapter 4 of the “Extensions
to support embedded processors” ISO/IEC draft technical report Technical
Report 18037.

Fixed-Point Type Support
A fixed-point data type is one where the radix point is at a fixed position.
This includes the integer types (the radix point is immediately to the right
of the least-significant bit). However, this section uses the term to apply
exclusively to those that have a non-zero number of fractional bits—
that is, bits to the right of the radix point. There may also be integer bits
to the left of the radix point.

The Blackfin processor has hardware support for arithmetic on a number
of these fixed-point data types. For example, it is able to perform addition,
subtraction and multiplication on 16-bit and 32-bit fractional values.
However, the C language does not make it easy to express the semantics of
the arithmetic that maps to the underlying hardware support.

To make it easier to use this hardware capability, and to facilitate expres-
sion of DSP algorithms that manipulate fixed-point data, the compiler
supports a number of native fixed-point types whose arithmetic obeys the
fixed-point semantics. This makes it easy to write high-performance algo-
rithms that manipulate fixed-point data, without having to resort to
compiler built-ins, or inline assembly.

CrossCore Embedded Studio 1.0 1-115
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

An emerging standard for such fixed-point types is set out in Chapter 4 of
the “Extensions to support embedded processors” ISO/IEC Technical Report
18037. CCES provides all the functionality specified in that chapter, and
the chapter is a useful reference that explains the subtleties of the seman-
tics of the library functions and arithmetic operators. However, the
following sections give an overview of these data types, the semantics of
arithmetic using these types, and guidelines for how to write high-perfor-
mance code using these types.

Native Fixed-Point Types
Two keywords, _Fract and _Accum, are used to declare variables of
fixed-point type. Each of these keywords may also be used in conjunction
with the type specifiers short and long, and signed and unsigned. There
are therefore 12 fixed-point types available, although some of these are
aliases for types of the same size and format.

By including the header file stdfix.h, the more convenient alternative
spellings—fract and accum—may be used instead of _Fract and _Accum.
This header file also provides prototypes for many useful functions and it
is highly recommended that you include it in source files that use
fixed-point types. Therefore, the discussion that follows uses the spelling
fract and accum as does the rest of the CCES documentation.

The formats of the fixed-point types are given in table Table 1-18. In the
“Representation” column of the table, the number after the point indi-
cates the number of fractional bits, while the number before the point
refers to the number of integer bits, including a sign bit when it is
preceded by “s”. Signed types are in two’s complement form. The range of
values that can be represented is also given in the table. Note that the
bottom of the range can be represented exactly, whereas the top of the
range cannot—only the value one bit less than this limit can be
represented.

Using Native Fixed-Point Types

1-116 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The Technical Report also defines a _Sat (alternative spelling sat) type
qualifier for the fixed-point types. This stipulates that all arithmetic on
fixed-point types shall be saturating arithmetic (that is, that the result of
arithmetic that overflows the maximum value that can be represented by
the type shall saturate at the largest or smallest representable value). When
the sat qualifier is not used, the standard says that arithmetic that over-
flows may behave in an undefined manner. CCES accepts the sat qualifier
for compatibility but will always produce code that saturates on overflow
whether the sat qualifier is used or not. This gives maximum
reproducibility of results and permits code to be written without worrying
about obtaining unexpected results on overflow.

Table 1-18. Data Storage Formats, Ranges, and Sizes of the Native
Fixed-Point Types

Type Representation Range sizeof returns

short fract s1.15 [-1.0,1.0) 2

fract s1.15 [-1.0,1.0) 2

long fract s1.31 [-1.0,1.0) 4

unsigned short fract 0.16 [0.0,1.0) 2

unsigned fract 0.16 [0.0,1.0) 2

unsigned long fract 0.32 [0.0,1.0) 4

short accum s9.31 [-256.0,256.0) 8

accum s9.31 [-256.0,256.0) 8

long accum s9.31 [-256.0,256.0) 8

unsigned short accum 8.32 [0.0,256.0) 8

unsigned accum 8.32 [0.0,256.0) 8

unsigned long accum 8.32 [0.0,256.0) 8

CrossCore Embedded Studio 1.0 1-117
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Native Fixed-Point Constants
Fixed-point constants may be specified in the same format as for
floating-point constants, inclusive of any decimal or binary exponent.
For more information on these formats, refer to strtofxfx. Suffixes are used
to identify the type of constants. The stdfix.h header also declares mac-
ros for the maximum and minimum values of the fixed-point types. See
Table 1-19 for details of the suffixes and maximum and minimum
fixed-point values.

A Motivating Example
Consider a very simple example—a fixed-point dot product. How might
you write this using the native fixed-point types? The algorithm performs
multiplication of each pair of fractional values in the input arrays. The
accum type is designed to hold the results of accumulations, which is

Table 1-19. Fixed-Point Type Constant Suffixes and Macros

Type Suffix Example Minimum value Maximum value

short fract hr 0.5hr SFRACT_MIN SFRACT_MAX

fract r 0.5r FRACT_MIN FRACT_MAX

long fract lr 0.5lr LFRACT_MIN LFRACT_MAX

unsigned short fract uhr 0.5uhr 0.0uhr USFRACT_MAX

unsigned fract ur 0.5ur 0.0ur UFRACT_MAX

unsigned long fract ulr 0.5ulr 0.0ulr ULFRACT_MAX

short accum hk 12.4hk SACCUM_MIN SACCUM_MAX

accum k 12.4k ACCUM_MIN ACCUM_MAX

long accum lk 12.4lk LACCUM_MIN LACCUM_MAX

unsigned short accum uhk 12.4uhk 0.0uhk USACCUM_MAX

unsigned accum uk 12.4uk 0.0uk UACCUM_MAX

unsigned long accum ulk 12.4ulk 0.0ulk ULACCUM_MAX

Using Native Fixed-Point Types

1-118 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

exactly what is needed. Assume that the data consist of vectors of 16-bit
values, representing values in the range [-1.0,1.0). Then it is natural to
write:

Example

#include <stdfix.h>

accum dot_product(fract *a, fract *b, int n)

{

accum sum = 0.0k;

 int i;

 for (i = 0; i < n; i++)

 sum += a[i] * b[i];

 return sum;

}

The above algorithm performs a pair-wise fractional multiplication of
elements of the input arrays and accumulates the result into a variable that
saturates on overflow. In fact, this simple expression of the algorithm
hides a subtlety related to the semantics of the arithmetic which is dis-
cussed in FX_CONTRACT, but it does show that it is easy to express
algorithms that manipulate fixed-point data and perform saturation on
overflow without needing to find special ways to express these semantics
through integer arithmetic.

CrossCore Embedded Studio 1.0 1-119
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Fixed-Point Arithmetic Semantics
The semantics of fixed-point arithmetic according to the Technical
Report are as follows:

1. If a binary operator has one floating-point operand, the other
operand is converted to floating-point and the operator is applied
to two floating-point operands to give a floating-point result.

2. If the operator has two fixed-point operands of different signed-
ness, convert the unsigned one to signed without changing its size.
(However, see also FX_CONTRACT.)

3. Deduce the result type. The result type is the operand type of
highest rank. Rank increases in the following order: short fract,
fract, long fract, short accum, accum, long accum (or their
unsigned equivalents). An operator with only one fixed-point
operand produces a result of this fixed-point type. (An exception is
the result of a comparison, which gives a boolean result.)

4. The result is the mathematical result of applying the operator to
the operand values, converted to the result type deduced in step 3.
In other words, the result is as if it was computed to infinite
precision before converting this result to the final result type.

The conversions between different types are discussed in Data Type Con-
versions and Fixed-Point Types.

Using Native Fixed-Point Types

1-120 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Data Type Conversions and Fixed-Point Types
The rules for conversion to and from fixed-point types are as follows:

1. When converting to a fixed-point type, if the value of the operand
can be represented by the fixed-point type, the result is this value.
If the operand value is out of range of the fixed-point type, the
result is the closest fixed-point value to the operand value. In other
words, conversion to fixed-point saturates the operand’s mathemat-
ical value to the fixed-point type’s range. If the operand value is
within the range of the fixed-point type, but cannot be represented
exactly, the result is the closest value either higher or lower than
the operand value. For more information, see Rounding Behavior.

2. When converting to an integer type from a fixed-point type, the
result is the integer part of the fixed-point type. The fractional part
is discarded, so rounding is towards zero; (int)(1.9k) gives 1,
and (int)(-1.9k) gives -1.

3. When converting to a floating-point type, the result is the closest
floating-point value to the operand value.

These rules have some important consequences of which you should be
aware:

 Conversion of an integer to a fractional type is only useful when
the integer is -1, 0, or 1. Any other integer value will be saturated
to the fractional type. So a statement like

fract f = 0x4000; // try to assign 0.5 to f

will not assign 0.5 to f, but will instead result in FRACT_MAX,
because 0x4000 is an integer greater than 1. Instead, use

fract f = 0.5r;

CrossCore Embedded Studio 1.0 1-121
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

- or -

fract f = 0x4000p-15r;

Note that the second format above uses the binary exponent syntax
available for fixed-point constants; specifically the value 0x4000 is
scaled by 2-15.

 Assignment of a fractional value to an integer yields zero unless the
fractional value is -1.0. Assignment of an unsigned fractional value
to an integer always results in zero.

 Be very careful to avoid mixing fract16 and fract32 types with
fract and long fract. The former are typedefs to integer types. So

#include <stdfix.h>

#include <fract.h>

fract16 f16;

fract f;

void foo(void) {

 f16 = -0x4000; // stores -0.5 into f16

 f = f16; // gives f = -1.0

}

because f16 is an integer value and therefore saturates on assign-
ment to the true fractional type. The compiler will emit an error
when it can detect that a fract16 or fract32 value has been con-
verted to a fract or long fract type (or vice versa), because this
nearly always indicates a programming error. To convert between
the integer typedefs and the native types, use Bit-Pattern Conver-
sion Functions: bitsfx and fxbits.

Compiler warnings will be produced to aid in the diagnosis of problems
where these conversions are likely to produce unexpected results.

Using Native Fixed-Point Types

1-122 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Bit-Pattern Conversion Functions: bitsfx and fxbits
The stdfix.h header file provides functions to convert a bit pattern to a
fixed-point type and vice versa. These functions are particularly useful for
converting between native types (fract, long fract) and integer typedefs
(fract16, fract32).

For each fixed-point type, a corresponding integer type is declared, which
is big enough to hold the bit pattern for the fixed-point type. These are
int_fx_t, where fx is one of hr, r, lr, hk, k, or lk, and uint_fx_t where fx
is one of uhr, ur, ulr, uhk, uk, or ulk.

To convert a fixed-point type to a bit pattern, use the bitsfx family of
functions. fx may be any of hr, r, lr, hk, k, lk, uhr, ur, ulr, uhk, uk, or ulk.
For example, using the prototype

uint_ur_t bitsur(unsigned fract);

you can write

#include <stdfix.h>

unsigned fract f;

uint_ur_t f_bit_pattern;

void foo(void) {

f = 0.5ur;

f_bit_pattern = bitsur(f); // gives 0x8000

}

 This is a good way to convert from a fract to a fract16 or a long
fract to a fract32 where necessary. For example,

#include <stdfix.h>

#include <fract.h>

fract f;

fract16 f16;

CrossCore Embedded Studio 1.0 1-123
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

void foo(void) {

f = 0.5r;

f16 = bitsr(f); // 0x4000 as expected

}

For more information, see bitsfx.

Similarly, to convert to a fixed-point type from a bit pattern, use the
fxbits family of functions. So, to convert from a fract32 to a long fract,
use:

#include <stdfix.h>

#include <fract.h>

fract32 f32;

long fract lf;

void foo(void) {

f32 = 0x40000000; // that’s 0.5

lf = lrbits(f32); // gets 0.5lr as expected

}

For more information, see fxbits.

Arithmetic Operators for Fixed-Point Types
You can use the +, -, *, and / operators on fixed-point types, which have
the same meaning as their integer or floating-point equivalents, aside from
any overflow or rounding semantics. As discussed on page 1-115,
fixed-point operations that overflow give results saturated at the highest or
lowest fixed-point value. Rounding is discussed in Rounding Behavior.

Using Native Fixed-Point Types

1-124 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

You can use << to shift a fixed-point value up by a positive integer shift
amount less than the fixed-point type size in bits. This gives the same
result as multiplication by a power of 2, including overflow semantics:

#include <stdfix.h>

fract f1, f2;

void foo1(void) {

f1 = 0.125r;

f2 = f1 << 2; // gives 0.5r

}

void foo2(void) {

f1 = -0.125r;

f2 = f1 << 10; // gives -1.0r

}

You can also use >> to shift a fixed-point value down by an integer shift
amount in the same range. This is defined to give the same result as divi-
sion by a power of 2, including any rounding behavior:

#include <stdfix.h>

fract f1, f2;

void foo1(void) {

f1 = 0.5r;

f2 = f1 >> 2; // gives 0.125r

}

void foo2(void) {

f1 = 0x0003p-15r;

f2 = f1 >> 2; // gives 0x0000p-15r when rounding mode

// is truncation

// and 0x0001p-15r when rounding mode

CrossCore Embedded Studio 1.0 1-125
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

// is biased or unbiased

}

Any of these operators can be used in conjunction with assignment, for
example:

#include <stdfix.h>

fract f1, f2;

void foo1(void) {

f1 = 0.2r;

f2 = 0.3r;

f2 += f1;

}

In addition, there are a number of unary operators that may be used with
fixed-point types. These are:

• ++ Equivalent to adding integer 1

• -- Equivalent to subtracting integer 1

• + Unary plus, equivalent to adding value to 0.0 (no effect)

• - Unary negate, equivalent to subtracting value from 0.0

• ! 1 if equal to 0.0, 0 otherwise

FX_CONTRACT
The example of a dot product (see A Motivating Example) contained the
accumulation:

sum += a[i] * b[i];

where sum was an accum type and a[i], b[i] were fract types. Bearing in
mind the rules discussed in the previous section, what is the result of the
multiplication? Since both a[i] and b[i] are fract types, the result of the

Using Native Fixed-Point Types

1-126 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

multiplication is also a fract—in other words, two s1.15 operands are
multiplied together to yield an s1.15 result. So the rules say that it should
be equivalent to writing:

fract tmp = a[i] * b[i];

sum += tmp;

However, this means that:

• The multiply result must be rounded to s1.15; 15 bits of precision
are lost.

• The result of multiplying -1.0r by -1.0r should be FRACT_MAX—
that is, not quite 1.0.

There are two problems with this:

• You probably do not want to round away those extra bits of preci-
sion before adding the result of the multiplication to sum. Doing so
decreases the accuracy of the accumulation. Moreover, the Blackfin
processor has an efficient single-cycle multiply-accumulate instruc-
tion, but this does not discard the extra bits of precision in the
multiply result before accumulation.

• On Blackfin processors, the multiply-accumulate instruction does
not saturate -1.0r * -1.0r before adding to the accumulator regis-
ter. This again has the effect of increasing the accuracy of the
accumulated result, but does not match the fixed-point type
semantics for the dot product example.

To generate efficient code without losing precision, you should really
write:

sum += (accum)a[i] * (accum)b[i];

This is because the conversion to the higher-precision accum type prior to
multiplication means that the generated code can hold the intermediate
multiply result in s9.31 format, which means there is no requirement to

CrossCore Embedded Studio 1.0 1-127
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

saturate the result or round off the lower order bits. This allows the com-
piler to use the hardware multiply-accumulate instruction.

For convenience, the compiler can do this step for you, using a mode
known as FX_CONTRACT. The name FX_CONTRACT is used as the behavior is
similar to that of FP_CONTRACT in C99. When FX_CONTRACT is on, the com-
piler may keep intermediate results in greater precision than that specified
by the Technical Report. In other words, it may choose not to round away
extra bits of precision or to saturate an intermediate result unnecessarily.
More precisely, the compiler keeps the intermediate result in greater preci-
sion when:

• Maintaining the higher-precision intermediate result will be more
efficient—it maps better to the underlying hardware.

• The intermediate result is not stored back to any named variable.

• No explicit casts convert the type of the intermediate result.

In other words,

sum += a[i] * b[i];

will result in a multiply-accumulate instruction, but

sum += (fract)(a[i] * b[i]);

- or -

fract tmp = a[i] * b[i];

sum += tmp;

will both force the result of the multiply to be converted back to fract
type before the accumulation.

Using Native Fixed-Point Types

1-128 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

There are other examples where FX_CONTRACT may keep intermediate
results in higher precision:

• Implicit conversion of unsigned fixed-point type to a larger signed
fixed-point type does not first convert to the signed fixed-point
type of the smaller size.

• Multiplication of signed fract and unsigned fract can create a
mixed-mode fractional multiply rather than first converting the
unsigned fract to a signed fract.

By default, the compiler permits FX_CONTRACT behavior. The FX_CONTRACT
mode can be controlled with a pragma (see also #pragma
FX_CONTRACT {ON|OFF}) or with command-line switches, -fx-con-
tract and –no-fx-contract (see -fx-contract and -no-fx-contract). The
pragma may be used at file scope or within functions. It obeys the same
scope rules as the FX_ROUNDING_MODE pragma discussed on page 1-139 with
an example in Listing 1-1.

Rounding Behavior
What happens if a long fract is converted to a fract? The 16 least-signif-
icant bits cannot be represented in the result, so they must be discarded
during the conversion. In the case where the long fract value cannot be
represented exactly by the fract type, there is a choice: the result can be
the nearest fract value greater than the long fract value, or the nearest
value less than the long fract value. This is known as the rounding
behavior.

Some fixed-point operations are also affected by rounding. For example,
multiplication of two fractional values to produce a fractional result of the
same size requires discarding a number of bits of the exact result. For
example, s1.15 * s1.15 produces an exact s2.30 result. This is saturated to
s1.30 and the fifteen least-significant bits must be discarded to produce an
s1.15 result.

CrossCore Embedded Studio 1.0 1-129
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

By default, any bits that must be discarded are truncated—in other words,
they are simply chopped off the end of the value. For example:

#include <stdfix.h>

fract f1, f2, prod;

void foo(void) {

f1 = 0x3ffp-15r;

f2 = 0x1000p-15r;

prod = f1 * f2; // gives 0x007fp-15r, discarded

// least-significant bits 0xe000

}

This is equivalent to always rounding down toward negative infinity. It
tends to produce results whose accuracy tends to deteriorate as any round-
ing errors are generally in the same direction and are compounded as the
calculations proceed.

If this does not give you the accuracy you require, you can use either
biased or unbiased round-to-nearest rounding. The compiler supports
pragmas and switches to control the rounding mode. In the biased or
unbiased rounding modes, the above product will be rounded to the
nearest value that can be represented by the result type, so the final result
will be 0x0080p-15r.

The difference between biased and unbiased rounding occurs when the
value to be rounded lies exactly half-way between the two closest values
that can be represented by the result type. In this case, biased rounding
will always round toward the greater of the two values (applying saturation
if this rounding overflows) whereas unbiased rounding will round toward
the value whose least-significant bit is zero. For example:

#include <stdfix.h>

fract f;

long fract lf;

Using Native Fixed-Point Types

1-130 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

void foo1(void) {

lf = 0x34568000p-31lr;

f = lf; // gives 0x3456p-15r in unbiased rounding mode,

// but 0x3457p-15r in biased rounding mode

}

void foo2(void) {

lf = 0x34578000p-31lr;

f = lf; // gives 0x3458p-15r in both biased

// and unbiased rounding modes

}

In general, unbiased rounding is more costly than biased rounding in
terms of cycles, but yields a more accurate result since rounding errors in
the half-way case are not all in the same direction and therefore are not
compounded so strongly in the final result.

The rounding discussed here only affects operations that yield a
fixed-point result. Operations that yield an integer result round toward
zero. There are also a few exceptions to the rounding rules:

• Conversion of a floating-point value to a fixed-point value rounds
towards zero.

• The roundfx, strtofxfx, and fxdivi functions always perform
either biased or unbiased rounding, dependent on the current state
of the RND_MOD bit. They do not support the truncation rounding
mode.

Details of how to set rounding mode are given in Setting the Rounding
Mode.

CrossCore Embedded Studio 1.0 1-131
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Arithmetic Library Functions
The stdfix.h header file also declares a number of functions that permit
useful arithmetic operations on combinations of fixed-point and integer
types. These are the divifx, idivfx, fxdivi, mulifx, absfx, roundfx,
countlsfx, and strtofxfx families of functions.

divifx

The divifx functions, where fx is one of r, lr, k, lk, ur, ulr, uk, or ulk,
allow division of an integer value by a fixed-point value to produce an
integer result. If you write

#include <stdfix.h>

fract f;

int i, quo;

void foo(void) {

// BAD: division of int by fract gives fract result, not int

f = 0.5r;

i = 2;

quo = i / f;

}

then the result of the division is a fract whose integer part is stored in the
variable quo. This means that the value of quo is zero, as the division over-
flows and thus produces a fractional result that is nearly one.

To get the desired result, write

#include <stdfix.h>

fract f;

int i, quo;

void foo(void) {

// GOOD: uses divifx to give integer result

Using Native Fixed-Point Types

1-132 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

f = 0.5r;

i = 2;

quo = divir(i, f);

}

which will store the value 4 into the variable quo.

For more information, see divifx.

idivfx

The idivfx functions, where fx is one of r, lr, k, lk, ur, ulr, uk, or ulk,
allow division of a fixed-point value by a fixed-point value to produce an
integer result. If you write

#include <stdfix.h>

fract f1, f2;

int quo;

void foo(void) {

// BAD: division of two fracts gives fract result, not int

f1 = 0.5r;

f2 = 0.25r;

quo = f1 / f2;

}

then the result of the division is a fract whose integer part is stored in the
variable quo. This means that the value of quo is zero, as the division over-
flows and thus produces a fractional result that is nearly one.

To get the desired result, write

#include <stdfix.h>

fract f1, f2;

int quo;

CrossCore Embedded Studio 1.0 1-133
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

void foo(void) {

// GOOD: uses idivfx to give integer result

f1 = 0.5r;

f2 = 0.25r;

quo = idivr(f1, f2);

}

which will store the value 2 into the variable quo.

For more information, see idivfx.

fxdivi

The fxdivi functions, where fx is one of r, lr, k, lk, ur, ulr, uk, or ulk,
allow division of an integer value by an integer value to produce a
fixed-point result. If you write

#include <stdfix.h>

int i1, i2;

fract quo;

void foo(void) {

// BAD: division of int by int gives int result, not fract

i1 = 5;

i2 = 10;

quo = i1 / i2;

}

then the result of the division is an integer which is then converted to a
fract to be stored in the variable quo. This means that the value of quo is
zero, as the division is rounded to integer zero and then converted to
fract.

Using Native Fixed-Point Types

1-134 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

To get the desired result, write

#include <stdfix.h>

int i1, i2;

fract quo;

void foo(void) {

// GOOD: uses fxdivi to give fract result

i1 = 5;

i2 = 10;

quo = rdivi(i1, i2);

}

which will store the value 0.5 into the variable quo.

For more information, see fxdivi.

mulifx

The mulifx functions, where fx is one of r, lr, k, lk, ur, ulr, uk, or ulk,
allow multiplication of an integer value by a fixed-point value to produce
an integer result. If you write

#include <stdfix.h>

int i, prod;

fract f;

void foo(void) {

// BAD: multiplication of int by fract

// produces fract result, not int

i = 50;

f = 0.5r;

prod = i * f;

}

CrossCore Embedded Studio 1.0 1-135
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

then the result of the multiplication is a fract whose integer part is stored
in the variable prod. This means that the value of prod is zero, as the mul-
tiplication overflows and thus produces a fractional result that is nearly
one.

To get the desired result, write

#include <stdfix.h>

int i, prod;

fract f;

void foo(void) {

// GOOD: uses mulifx to give integer result

i = 50;

f = 0.5r;

prod = mulir(i, f);

}

which will store the value 25 into the variable prod.

For more information, see mulifx.

absfx

The absfx functions, where fx is one of hr, r, lr, hk, k, or lk, compute the
absolute value of a fixed-point value.

In addition, you can also use the type-generic macro absfx(), where the
operand type can be any of the signed fixed-point types.

For more information, see absfx.

roundfx

The roundfx functions, where fx is one of hr, r, lr, hk, k, lk, uhr, ur, ulr,
uhk, uk, or ulk, take two arguments. The first is a fixed-point operand
whose type corresponds to the name of the function called. The second

Using Native Fixed-Point Types

1-136 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

gives a number of fractional bits. The first operand is rounded to the
number of fractional bits given by the second operand. The second oper-
and must specify a value between 0 and the number of fractional bits in
the type. Rounding is to-nearest. However, whether the rounding is biased
or unbiased depends on the state of the RND_MOD bit on the hardware. See
Rounding Behavior for more details.

#include <stdfix.h>

long fract lf, rnd;

void foo1(void) {

lf = 0x45608100p-31lr;

rnd = roundlr(lf, 15); // produces 0x45610000p-31lr;

}

void foo2(void) {

lf = 0x7fff9034p-31lr;

rnd = roundlr(lf, 15); // produces 0x7fffffffp-31lr;

}

In addition, you can also use the type-generic macro roundfx(), where the
first operand type can be any of the signed fixed-point types.

For more information, see roundfx.

countlsfx

The countlsfx functions, where fx is one of hr, r, lr, hk, k, lk, uhr, ur,
ulr, uhk, uk, or ulk, return the largest integer value k such that its oper-
and, when shifted up by k, does not overflow. For zero input, the result is
the size in bits of the operand type.

#include <stdfix.h>

int scal1, scal2;

CrossCore Embedded Studio 1.0 1-137
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

void foo(void) {

scal1 = countlsk(-3.0k); // gives 6, because

// -3.0k<<6 = -192.0k

scal2 = countlsuk(3.0uk); // gives 6, because

// 3.0uk<<6 = 192.0uk

}

In addition, you can also use the type-generic macro countlsfx(), where
the operand type can be any of the signed fixed-point types.

For more information, see countlsfx.

strtofxfx

The strtofxfx functions, where fx is one of hr, r, lr, hk, k, lk, uhr, ur,
ulr, uhk, uk, or ulk, parse a string representation of a fixed-point number
and return a fixed-point result. They behave similarly to strtod, and
accept input in the same format.

For more information, see strtofxfx.

I/O Conversion Specifiers
The printf and scanf families of functions support conversion specifiers
for the fixed-point types. These are given in Table 1-20. Note that the
conversion specifiers for the signed types, %r and %k, are lowercase while
those for the unsigned types, %R and %K, are uppercase.

Table 1-20. I/O Conversion Specifiers for the Fixed-Point Types

Type Conversion Specifier

short fract %hr

fract %r

long fract %lr

unsigned short fract %hR

Using Native Fixed-Point Types

1-138 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

When used with the scanf family of functions, these conversion specifiers
accept input in the same format as consumed by the strtofxfx functions,
which is the same as that accepted for %f. (For more information, see
strtofxfx.)

When used with the printf family of functions, fixed-point values are
printed:

• As hexadecimal values by default, or when the -fast-io compiler
switch is used. For example,

printf(“fract: %r\n”, 0.5r); // prints fract: 4000

• Like floating-point values when the -fixed-point-io or -full-io
compiler switches are used. For example,

printf(“fract: %r\n”, 0.5r); // prints fract: 0.500000

Optional precision specifiers are accepted that control the number of dec-
imal places printed, and whether a trailing decimal point is printed.
However, these will have no effect unless either -fixed-point-io or
-full-io are used. For more information, see fprintf.

unsigned fract %R

unsigned long fract %lR

short accum %hk

accum %k

long accum %lk

unsigned short accum %hK

unsigned accum %K

unsigned long accum %lK

Table 1-20. I/O Conversion Specifiers for the Fixed-Point Types (Cont’d)

Type Conversion Specifier

CrossCore Embedded Studio 1.0 1-139
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Setting the Rounding Mode
As discussed in Rounding Behavior, there are three rounding modes sup-
ported for fixed-point arithmetic:

• Truncation (this is the default rounding mode)

• Biased round-to-nearest rounding

• Unbiased round-to-nearest rounding

To set the rounding mode, you can use a pragma or a compile-time
switch.

The following compile-time switches control rounding behavior:

• -fx-rounding-mode-truncation (on page 1-45)

• -fx-rounding-mode-biased (on page 1-44)

• -fx-rounding-mode-unbiased (on page 1-45)

The given rounding mode will then be the default for the whole of the
source file being compiled.

You can also use a pragma to allow finer-grained control of rounding.
The pragmas are:

• #pragma FX_ROUNDING_MODE TRUNCATION

• #pragma FX_ROUNDING_MODE BIASED

• #pragma FX_ROUNDING_MODE UNBIASED

If one of these pragmas is applied at file scope, it applies until the end of
the translation unit or until another pragma at file scope changes the
rounding mode.

If one of these pragmas is applied within a compound statement (that is,
within a block enclosed by braces), the pragma applies to the end of the

Using Native Fixed-Point Types

1-140 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

compound statement where it is specified. The rounding mode will return
to the outer scope rounding mode on exit from the compound statement.
An example of how to use these pragmas is given in Listing 1-1.

Listing 1-1. Use of #pragma FX_ROUNDING_MODE to Control
Rounding of Arithmetic on Fixed-Point Types

#include <stdfix.h>

#pragma FX_ROUNDING_MODE BIASED

fract my_func(void) {

// rounding mode here is biased

{

#pragma FX_ROUNDING_MODE UNBIASED

// rounding mode here is unbiased

}

// rounding mode here is biased

}

#pragma FX_ROUNDING_MODE TRUNCATION

fract my_func2(void) {

// rounding mode here is truncation

}

Blackfin has specialized instructions to support round-to-nearest round-
ing. However, whether these perform biased or unbiased rounding is
dependent on the current state of the RND_MOD bit. In order to facilitate
generation of efficient code, the compiler will assume that when the
rounding mode is either biased or unbiased, the RND_MOD bit has been set
to the same type of rounding. This means that the compiler can use the
hardware support for these rounding modes efficiently without needing to
set or clear this bit every time it uses a RND_MOD bit-dependent instruction.

CrossCore Embedded Studio 1.0 1-141
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Thus, it is your responsibility to ensure that the RND_MOD bit is set
correctly. Built-in functions are provided to make this task easier:

• int set_rnd_mod_biased(void)

• int set_rnd_mod_unbiased(void)

The return value of these built-in functions is the previous state of the
RND_MOD bit. So, another built-in function (void restore_rnd_mod(int))
resets the RND_MOD bit to a saved value.

For example, you could write:

#include <stdfix.h>

#include <builtins.h>

fract my_func(void) {

#pragma FX_ROUNDING_MODE BIASED

int saved_rnd_mod = set_rnd_mod_biased();

// rounding mode now biased

restore_rnd_mod(saved_rnd_mod);

// rounding mode now same as on function entry

}

If you use the pragmas to specify biased or unbiased rounding without
setting the RND_MOD bit, you may get a mixture of biased and unbiased
rounding behavior.

For more information, see #pragma FX_ROUNDING_MODE {TRUN-
CATION|BIASED|UNBIASED} and Changing the RND_MOD Bit.

Porting Code Written Using fract16 and fract32
If you have code written using fract16 and fract32 types, along with
built-in functions and calls to library functions, you may wish to rewrite

Using Native Fixed-Point Types

1-142 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

your code to use the new native fixed-point types. This section contains a
number of tips for the easiest ways to do that.

Since fract is a 16-bit type and long fract is a 32-bit type, the basic
strategy will be to replace uses of fract16 variables with fract-typed ones,
and fract32 variables with long fract-typed ones.

Firstly, code written using fract16 and fract32 will often contain
constants. If these are written using the r16 and r32 suffixes, you can
simply change the suffix to create a native fixed-point type.

For example:

fract16 f1 = 0.5r16;

fract32 f2 = 0.75r32;

becomes

fract f1 = 0.5r;

long fract f2 = 0.75lr;

If your code contains hexadecimal constants, it is convenient to use the
binary exponent syntax to convert your constants:

fract16 f1 = 0x1234;

fract32 f2 = 0x12345678;

becomes

fract f1 = 0x1234p-15r;

long fract f2 = 0x12345678p-31lr;

Many built-ins are no longer necessary once you have converted to the
native fixed-point types—you can use native arithmetic instead. The
correspondence between the fract16 and fract32 built-in functions and
native fixed-point arithmetic is given in Table 1-21.

CrossCore Embedded Studio 1.0 1-143
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Table 1-21. Correspondence Between fract16 and fract32 Built-In
Functions and Native Fixed-Point Arithmetic

fract16 or fract32 Built-In Function Native Fixed-Point Type Arithmetic

fract16 f1, f2;
fract16 f3 = add_fr1x16(f1, f2);

fract f1, f2;
fract f3 = f1+ f2;

fract16 f1, f2;
fract16 f3 = sub_fr1x16(f1, f2);

fract f1, f2;
fract f3 = f1- f2;

fract16 f1, f2;
fract16 f3 = mult_fr1x16(f1, f2);

fract f1, f2;
fract f3 = f1* f2; // in truncation
rounding mode

fract16 f1, f2;
fract16 f3 = multr_fr1x16(f1,
f2);

fract f1, f2;
fract f3 = f1* f2; // in biased/unbi-
ased rounding mode

fract16 f1, f2;
fract32 f3 = mult_fr1x32(f1, f2);

fract f1, f2;
long fract f3 = (long fract)f1* (long
fract)f2;

fract16 f1;
fract16 f2 = abs_fr1x16(f1);

fract f1;
fract f2 = absr(f1);

fract16 f1;
fract16 f2 = negate_fr1x16(f1);

fract f1;
fract f2 = -f1;

fract16 f1;
int n = norm_fr1x16(f1);

fract f1;
int n = countlsr(f1);

fract32 f1, f2;
fract32 f3 = add_fr1x32(f1, f2);

long fract f1, f2;
long fract f3 = f1+ f2;

fract32 f1, f2;
fract32 f3 = sub_fr1x32(f1, f2);

long fract f1, f2;
long fract f3 = f1- f2;

fract32 f1;
fract32 f2 = negate_fr1x32(f1);

long fract f1;
long fract f2 = -f1;

fract32 f1;
int n = norm_fr1x32(f1);

long fract f1;
int n = countlslr(f1);

Using Native Fixed-Point Types

1-144 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

For convenience, built-in functions are also provided giving the same
functionality on native fixed-point types, and it is simply necessary to
change the built-in name replacing “fr” with “fx”. For example, if your
original code says

#include <fract.h>

#include <builtins.h>

fract16 offset = 0.5r16;

fract16 add_offset(fract16 f) {

return add_fr1x16(f, offset);

}

fract32 f1;
fract16 = trunc_fr1x32(f1);

long fract f1;
fract f2 = f1; // in truncation round-
ing mode

#include <fract2float_conv.h>
fract16 f1;
fract32 f2;
float f3;
f2 = fr16_to_fr32(f1);
f1 = fr32_to_fr16(f2);
f3 = fr16_to_float(f1);
f3 = fr32_to_float(f2);
f1 = float_to_fr16(f3);
f2 = float_to_fr32(f3);

fract f1;
long fract f2;
float f3;
f2 = f1;
f1 = f2;
f3 = f1;
f3 = f2;
f1 = f3;
f2 = f3;

Table 1-21. Correspondence Between fract16 and fract32 Built-In
Functions and Native Fixed-Point Arithmetic (Cont’d)

fract16 or fract32 Built-In Function Native Fixed-Point Type Arithmetic

CrossCore Embedded Studio 1.0 1-145
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

you could change it to

#include <stdfix.h>

#include <builtins.h>

fract offset = 0.5r;

fract add_offset(fract f) {

return add_fx1x16(f, offset);

}

although it would be clearer to write

#include <stdfix.h>

fract offset = 0.5r;

fract add_offset(fract f) {

return f + offset;

}

There are a number of built-ins that do not map directly onto fixed-point
arithmetic but similar functionality is available. See Table 1-22 for details.
These built-ins perform 1.31 fractional multiplication, rounding the
result. However, the result may not be bit-identical to the result of native
long fract multiplication, even in round-to-nearest mode, as the rounding
performed by the native types is more exact than that provided by the
built-ins. It is recommended that you use the native fixed-point arithmetic
unless you require bit-exact results with respect to your previous
implementation. In that case, you can use the bit-exact equivalent built-in
functions, mult_fx1x32x32, mult_fx1x32x32NS, and multr_fx1x32x32.

Using Native Fixed-Point Types

1-146 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

There are many library functions that use fract16 and fract32 types. As a
general rule, you can simply replace the “fr” with “fx” to obtain a library
function that accepts and/or returns native fixed-point types instead.
However, there is no fixed-point version of the vector type fract2x16 or
the complex fractional types complex_fract16 and complex_fract32, so
special care must be taken when a mixture of native fixed-point types and
vector or complex fractional types is used. The fract2x16,
complex_fract16, and complex_fract32 types can be used with the native
fixed-point types so long as care is taken to access the data members with
the constructor and accessor functions given in Table 1-23.

Table 1-22. fract16 and fract32 Built-In Functions and Native Fixed-Point
Arithmetic with Similar Semantics

fract16 or fract32 Built-In Function Native Fixed-Point Type Arithmetic

fract32 f1, f2;
fract32 f3 =
mult_fr1x32x32(f1, f2);

long fract f1, f2;
long fract f3 = f1* f2 // in biased/unbi-
ased rounding mode;

fract32 f1, f2;
fract32 f3 =
multr_fr1x32x32(f1, f2);

long fract f1, f2;
long fract f3 = f1* f2 // in biased/unbi-
ased rounding mode;

fract32 f1, f2;
fract32 f3 =
mult_fr1x32x32NS(f1, f2);

long fract f1, f2;
long fract f3 = f1* f2 // in biased/unbi-
ased rounding mode;

CrossCore Embedded Studio 1.0 1-147
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

The naming convention for library functions that take a mixture of
fixed-point type and fract2x16, complex_fract16, or complex_fract32
types is to add “fx_” before the “fr2x16”, “fr16”, or “fr32” in the func-
tion name. You can check the name to use by consulting the
documentation page for the library function. Note that function names
that do not use fract16 or fract32 types will not need to be changed.

Table 1-23. Constructor and Accessor Functions for Using Native
Fixed-Point Types with Complex and Vector Fractional Types

Built-In Function Description

complex_fract16
ccompose_fx_fr16(fract real,

fract imag);

Create a complex_fract16 value from
fract-typed real and imaginary parts.

fract real_fx_fr16(complex_fract16
c);

Extract the fract-typed real part of a
complex_fract16 value.

fract imag_fx_fr16(complex_fract16
c);

Extract the fract-typed imaginary part
of a complex_fract16 value.

complex_fract32 ccompose_fx_fr32(long
fract real,

long fract imag);

Create a complex_fract32 value from
long fract-typed real and imaginary
parts.

long fract
real_fx_fr32(complex_fract32 c);

Extract the long fract-typed real part
of a complex_fract32 value.

long fract
imag_fx_fr32(complex_fract32 c);

Extract the long fract-typed imaginary
part of a complex_fract32 value.

fract2x16 compose_fx_fr2x16(fract x,
fract y);

Create a fract2x16 value from two
fract-typed parts.

fract low_of_fx_fr2x16(fract2x16
vec);

Extract the fract-typed low part of a
fract2x16 value.

fract high_of_fx_fx2x16(fract2x16
vec);

Extract the fract-typed high part of a
fract2x16 value.

Using Native Fixed-Point Types

1-148 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Fixed-Point Type Example
This section examines an example program to compute the variance of an
array of 16-bit fractional values.

The variance of an array of values samples[] is given by:

where n is the number of samples in the array.

How does this map onto the fixed-point types? samples is an array of
fract values, so in order to compute the sum of all the samples values, a
type with greater range than a fractional type is needed. If there are fewer
than 256 samples, it is certain that the sum will fit in an accum type
without saturation occurring. The same argument applies to the sum of
the squares of the samples elements.

However, the formula above also needs to calculate the intermediate result
sample_length * sum(samples[i] * samples[i]). The multiplication by
sample_length means that it is not certain that the result of the multipli-
cation will be within the range of an accum type.

variance

n samplesi
2

i 0=

n 1–

 samplesi
i 0=

n 1–

 2

–

n n 1–
---=

CrossCore Embedded Studio 1.0 1-149
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

An equivalent formula for the variance is:

This alternative definition means that the necessary intermediate values
can be computed in an accum type. A possible implementation is given in
Listing 1-2.

Listing 1-2. A Function to Compute the Variance of an Array of 16-bit
Fractional Values

#include <stdfix.h>

#include <builtins.h>

// FX_CONTRACT ON ensures that the compiler recognizes

// accum += fract * fract idioms

#pragma FX_CONTRACT ON

fract fract_variance(const fract *samples, int sample_length) {

fract variance = 0.0r;

if (sample_length > 1) {

#pragma FX_ROUNDING_MODE UNBIASED

int i, saved_rnd_mod = set_rnd_mod_unbiased();

accum diff, sum_of_samples = 0.0k, sum_of_squares = 0.0k;

long fract mean;

// this is guaranteed not to saturate

variance

samplesi
2

i 0=

n 1–

samplesi

i 0=

n 1–

n

2

–

n 1–
--=

Using Native Fixed-Point Types

1-150 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

// so long as sample_length <= 255

for (i = 0; i < sample_length; i++) {

sum_of_samples += samples[i];

sum_of_squares += samples[i] * samples[i];

}

mean = sum_of_samples / sample_length;

diff = sum_of_squares - (mean * sum_of_samples);

variance = diff / (sample_length - 1);

restore_rnd_mod(saved_rnd_mod);

}

return variance;

}

Firstly, stdfix.h has been included in order to be able to use the natural
spellings fract and accum. The next thing you might notice is the explicit
use of #pragma FX_CONTRACT ON. Since this is the default setting of the
FX_CONTRACT mode, this statement is not strictly necessary, but it is useful
to document the assumptions made by the program.

It only makes sense to compute the variance if there is more than one
sample, otherwise the function returns zero.

Next, the function sets the rounding mode. Here, unbiased rounding has
been used to maintain the highest accuracy in the result. This is done by
using the FX_ROUNDING_MODE UNBIASED pragma and set_rnd_mod_unbiased
built-in function together, as discussed in Setting the Rounding Mode.

The loop computes the sum of the samples and the sum of the squares.
Since FX_CONTRACT mode is ON, no precision is lost as the fracts are multi-
plied together and summed into the accum type.

CrossCore Embedded Studio 1.0 1-151
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

After the loop, the sum of the samples is divided by the sample_length to
give the mean sample value. This must be in the range [-1.0,1.0). It is
stored into a long fract to retain as much accuracy as possible.

Next, the function computes the difference between the sum of the
squares and the product of the mean and the sum of the samples. Since
the absolute value of the mean is less than or equal to one, this product fits
in an accum and, since this product and the sum of the squares are both
non-negative, the difference must also fit in an accum.

Finally, the variance is computed by dividing this difference by one less
than the sample_length. In theory, this value may be greater than one;
in this case the returned value will be saturated to give FRACT_MAX.

Language Standards Compliance
The compiler supports code that adheres to the ISO/IEC 9899:1990 C
standard, ISO/IEC 9899:1999 C standard, and the ISO/IEC 14882:2003
C++ standard.

The compiler’s level of conformance to the applicable ISO/IEC standards
is validated using commercial test-suites from Plum Hall, Perennial, and
Dinkumware.

C Mode
The compiler shall compile any program that adheres to a hosted imple-
mentation of the ISO/IEC 9899:1990 C standard, but it does not prohibit
the use of language extensions (C/C++ Compiler Language Extensions)
that are compatible with the correct translation of standard-conforming
programs. To enable this mode, the -c89 switch should be used. (See
-c89).

Language Standards Compliance

1-152 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The compiler shall compile any program that adheres to a freestanding
implementation of the ISO/IEC 9899:1999 C standard, but it does not
prohibit the use of language extensions (C/C++ Compiler Language
Extensions) that are compatible with the correct translation of stan-
dard-conforming programs. The compiler does not support the C99
keywords _Complex and _Imaginary. The ISO/IEC 9899:1990 C standard
library provided in C89 mode is used in C99 mode. This is the default
mode (See -c99).

In C mode, the best standard conformance is achieved using the default
switches and the following non-default switches:

• -const-strings (See -const-strings)

• -double-size-64 (See -double-size-{32 | 64} and Floating-Point
Data Size)

• -full-io (See -full-io)

• -decls-weak (See -decls-{weak|strong})

• -enum-is-int (See Enumeration Type Implementation Details)

The floating-point arithmetic emulation library used by the compiler is
based on IEEE-754; see IEEE Floating-Point Implementation for
deviations.

The language extensions cannot be disabled to ensure strict compliance to
the language standards. However, when compiling for MISRA-C
(MISRA-C Compiler Overview) compliance checking, language exten-
sions are disabled.

CrossCore Embedded Studio 1.0 1-153
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

When the -c89 switch is enabled, these extensions already include many of
the ISO/IEC 9899:1999 standard features. The following features are only
available in C99 mode.

• Type qualifiers may appear more than once in the same
specifier-qualifier-list.

• __func__ predefined identifier is supported.

• Universal character names (\u and \U) are accepted.

• The use of function declarations with non-prototyped parameter
lists are faulted.

• The first statement of a for-loop can be a declaration, not just
restricted to an expression.

• Type qualifiers and static are allowed in parameter array
declarators.

C++ Mode
The compiler shall compile any program that adheres to a hosted imple-
mentation of the ISO/IEC 14882:2003 C++ standard, but it does not
prohibit the use of language extensions (C/C++ Compiler Language
Extensions) that are compatible with the correct translation of stan-
dard-conforming programs. A library fully conformant to the ISO/IEC
14882:2003 C++ standard is available (-full-cpplib), but by default the
Abridged Library is used, which is a proper subset of the full Standard
C++ Library and is designed specifically for the needs of the embedded
market.

MISRA-C Compiler

1-154 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

In C++ mode, the best possible standard conformance is achieved using
the following default switches:

• -no-anach (See -no-anach)

• -no-friend-injection (See -no-friend-injection)

• -no-implicit-inclusion (See -no-implicit-inclusion)

• -std-templates (See -std-templates)

In addition, the best possible standard conformance is achieved using the
following non-default switches:

• -const-strings (See -const-strings)

• -double-size-64 (See -double-size-{32 | 64})

• -eh (See -eh)

• -full-cpplib (See -full-cpplib)

• -full-io (See -full-io)

• -decls-weak (See -decls-{weak|strong})

• -rtti (See -rtti)

MISRA-C Compiler
This section provides an overview of MISRA-C compiler and
MISRA-C:2004 Guidelines.

MISRA-C Compiler Overview
The Motor Industry Software Reliability Association (MISRA) in 1998
published a set of guidelines for the C Programming Language to promote
best practice in developing safety related electronic systems in road

CrossCore Embedded Studio 1.0 1-155
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

vehicles and other embedded systems. The latest release of
MISRA-C:2004 has addressed many issues raised in the original guidelines
specified in MISRA-C:1998. Complex rules are now split into component
parts. There are 121 mandatory rules and 20 advisory rules. The compiler
issues a discretionary error for mandatory rules and a warning for advisory
rules. More information on MISRA-C can be obtained at
http://www.misra.org.uk/.

The compiler detects violations of the MISRA rules at compile-time,
link-time, and run-time. It has full support for the MISRA-C:2004
Guidelines, including the Technical clarifications given by
MISRA-C:2004 Technical Corrigendum 1. The majority of MISRA rules
are easy to interpret. Those that require further explanation can be found
in Rules Descriptions. As a documented extension, the compiler supports
the integral types long long and unsigned long long. No other language
extensions are supported when MISRA checking is enabled. Common
extensions, such as the keywords section and inline, are not allowed in
the MISRA mode, but the same effects can be achieved by using pragmas
#pragma section/#pragma default_section and #pragma inline. Rules
can be suppressed by the use of command-line switches or the MISRA
extensions to Diagnostic Control Pragmas.

 The run-time checking that is used for validating a number of rules
should not be used in production code. The cost of detecting these
violations is expensive in both run-time performance and code size.
A subset of these run-time checks can also be enabled when
MISRA-C is not enabled. For more information, see Run-Time
Checking.

Refer to Table 1-6 for the list of MISRA-C command-line switches.

MISRA-C Compliance
The MISRA-C:2004 Guidelines document is an essential reference for
ensuring that code developed or requiring modification complies to these

http://www.misra.org.uk

MISRA-C Compiler

1-156 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Guidelines. A rigorous checking tool, such as this compiler, makes achiev-
ing compliance a lot easier than using a less capable tool or simply relying
on manual reviews of the code. The MISRA-C:2004 Guidelines document
describes a compliance matrix that a developer uses to ensure that each
rule has a method of detecting the rule violation. A compliance checking
tool is a vital component in detecting rule violations. It is recognized in
the Guidelines document that in some circumstances it may be necessary
to deviate from the given rules. A formal procedure has to be used to
authorize these deviations rather than an individual programmer having to
deviate at will.

Using the Compiler to Achieve Compliance

The CCES compiler is one of the most comprehensive MISRA-C:2004
compliance checking tools available. The compiler provides com-
mand-line switches (on page 1-92) and diagnostic control pragmas
(on page 1-354) to enable you to achieve MISRA-C:2004 compliance.

During development it is recommended that the application is built with
maximum compliance enabled.

Use the -misra-strict command-line switch to detect the maximum
number of rule violations at compile-time. However, if existing code is
being modified, using -misra-strict may result in a lot of errors and
warnings. The majority are usually common rule violations that are
mainly advisory and typically found in header files as a result of macro
expansion. These can be suppressed using the -misra command-line
switch. This has the potential benefit of focussing change on individual
source file violations, before changing headers that may be shared by more
than one project.

The -misra-no-cross-module command-line switch disables checking
rule violations that occur across source modules. During development
some external variables may not be fully utilized and rather than add in
artificial uses to avoid rule violations, use this switch.

CrossCore Embedded Studio 1.0 1-157
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

The -misra-no-runtime command-line switch disables the additional
run-time overheads imposed by some rules. During development these
checks are essential in ensuring code executes as expected. Use this switch
in release mode to disable the run-time overheads.

You can use the -misra-testing command-line switch during develop-
ment to record the behavior of executable code. Although the
MISRA-C:2004 Guidelines do not allow library functions such as those as
defined in the header <stdio.h>, it is recognized that they are an essential
part of validating the development process.

During development, it is likely that you will encounter areas where some
rule violations are unavoidable. In such circumstances you should follow
the procedure regarding rule deviations described in the MISRA-C:2004
Guidelines document. Use the -Wmis_suppress and -Wmis_warn switches
to control the detection of rule violations for whole source files.

Finer control is provided by the diagnostic control pragmas. These prag-
mas allow you to suppress the detection of specified rule violations for any
number of C statements and declarations.

Example

#include <misra_types.h>

#include <defBF532.h>

#include "proto.h" /* prototype for func_state and my_state */

int32_t func_state(int32_t state)

{

return state & TIMOD;

/* both operands signed, violates rule 12.7 */

}

#define my_flag 1

int32_t my_state(int32_t state)

{

MISRA-C Compiler

1-158 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

return state & my_flag;

/* both operands signed, violates rule 12.7 */

}

In the above example, <defBF532.h> uses signed masks and signed literal
values for register values. The code is meaningful and trusted in this con-
text. You may suppress this rule and document the deviation in the code.
For code violating the rule that is not from the system header, you may
wish to rewrite the code:

#include <misra_types.h>

#include <defBF532.h>

#include "proto.h" /* prototype for func_state and my_state */

#ifdef _MISRA_RULES

#pragma diag(push)

#pragma diag(suppress:misra_rule_12_7:

 "Using the def file is a safe and justified

 deviation for rule 12.7")

#endif /* _MISRA_RULES */

int32_t func_state(int32_t state)

{

return state & TIMOD;

/* both operands signed, violates rule 12.7 */

}

#ifdef _MISRA_RULES

#pragma diag(pop)

/* allow violations of 12.7 to be detected again */

#endif /* _MISRA_RULES */

#define my_flag 1u

CrossCore Embedded Studio 1.0 1-159
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

uint32_t my_state(uint32_t state)

{

return state & my_flag; /* o.k both unsigned */

}

Rules Descriptions
The following are brief explanations of how some of the MISRA-C rules
are supported and interpreted in this CCES release due to the fact that
some rules are handled in a nonstandard way, or some are not handled at
all:

• Rule 1.4 (required): The compiler/linker shall be checked to
ensure that 31 character significance and case sensitivity are sup-
ported for external identifiers.
The compiler and linker fully support this requirement.

• Rule 1.5 (required): Floating-point implementations should com-
ply with a defined floating-point standard.
Refer to Floating-Point Binary Formats.

• Rule 2.4 (advisory): Sections of code should not be “commented
out”.
A diagnostic is reported if one of the following is encountered
inside of a comment.
- character ‘{‘ or ‘}’

- character ‘;’ followed by a new-line character

• Rule 5.1 (required): Identifiers (internal and external) shall not
rely on the significance of more than 31 characters.
This rule is only enforced when the -misra-strict compiler switch
is enabled (on page 1-93).

• Rule 5.5 (advisory): No object or function identifier with static
storage duration should be reused.
This rule is enforced by the compiler prelinker. The compiler

MISRA-C Compiler

1-160 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

generates .misra extension files that the prelinker uses to ensure
that the same identifier is not used at file-scope within another
module. This rule is not enforced if the -misra-no-cross-module
compiler switch is specified (on page 1-93).

• Rule 5.7 (advisory): No identifier shall be reused.
This rule is limited to a single source file. The rule is only enforced
when the -misra-strict compiler switch is enabled
(on page 1-93).

• Rule 6.3 (advisory): typedefs that indicate size and signedness
should be used in place of basic types.
The typedefs for the basic types are provided by the system header
files <stdint.h> and <stdbool.h>. The rule is only enforced when
the -misra-strict compiler switch is enabled (on page 1-93).

• Rule 6.4 (advisory): Bit fields shall only be defined to be of type
unsigned int or signed int.
The rule regarding the use of plain int is only enforced when the
-misra-strict compiler switch is enabled (on page 1-93).

• Rule 8.1 (required): Functions shall have prototype declarations
and the prototype shall be visible at both the function definition
and the call.
For static and inline functions, this rule is only enforced when the
-misra-strict compiler switch is enabled (on page 1-93).

• Rule 8.2 (required): Whenever an object or function is declared or
defined, its type shall be explicitly stated.
For function main, this rule is only enforced when the
-misra-strict switch is enabled.

• Rule 8.5 (required): There shall be no definitions of objects or
functions in a header file.
This rule is only enforced when the -misra-strict switch is
enabled.

CrossCore Embedded Studio 1.0 1-161
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

• Rule 8.8 (required): An external object or function shall be
declared in one and only one file.
This rule is enforced by the compiler prelinker. The compiler
generates .misra extension files that the prelinker uses to ensure
that the global is used in another file. The rule is not enforced if
the -misra-no-cross-module switch is enabled (on page 1-93).

• Rule 8.10 (required): All declarations and definitions of objects or
functions at file scope shall have internal linkage unless external
linkage is required.
This rule is enforced by the compiler prelinker. The compiler gen-
erates .misra extension files that the prelinker uses to ensure that
the global is used in another file. The rule is not enforced if the
-misra-no-cross-module switch is enabled (on page 1-93).

• Rule 9.1 (required): All automatic variables shall have been
assigned a value before being used.
The compiler attempts to detect some instances of violations of this
rule at compile-time. There is additional code added at run-time to
detect unassigned scalar variables. The additional integral types
with a size less than an int are not checked by the additional
run-time code. This check is also available separately, via the
-rtcheck switch (on page 1-76) and the -rtcheck-unassigned
switch (on page 1-80). The run-time code is not added if the
-misra-no-runtime compiler switch is enabled (on page 1-93), or
if the -no-rtcheck-unassigned switch is enabled (on page 1-62).

MISRA-C Compiler

1-162 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• Rule 10.5 (required): If the bitwise operators ~ and << are applied
to an operand of underlying type unsigned char or unsigned
short, the result shall be immediately cast to the underlying type
of the operand.
When constant-expressions violate this rule, they are only detected
when the -misra-strict compiler switch is enabled
(on page 1-93).

• Rule 11.3 (advisory): A cast shall not be performed between a
pointer type and an integral type.
The compiler always allows a constant of integral type to be cast to
a pointer to a volatile type.
volatile int32_t *n;

n = (volatile int32_t *)10;

There is only one case where this rule is not applied.
int32_t *n;

n = (int32_t *)10;

• Rule 12.4 (required): The right-hand operand of a logical && or
|| operator shall not contain side-effects.
A function call used as the right-hand operand will not be faulted if
it is declared with an associated #pragma pure directive.

• Rule 12.7 (required): Bitwise operators shall not be applied to
operands whose underlying type is signed.
The compiler will not enforce this rule if the two operands are
constants.

• Rule 12.8 (required): The right-hand operand of a shift operator
shall lie between zero and one less than the width in bits of the
underlying type of the left-hand operand.
If the right-hand operand is not a constant expression, the viola-
tion will be checked by additional run-time code when
-misra-no-runtime is not enabled. If both operands are constants,
the rule is only enforced when neither the -misra-strict compiler

CrossCore Embedded Studio 1.0 1-163
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

switch (on page 1-93) nor the -no-rtcheck-shift-check switch
(on page 1-62) are enabled. This check is also available separately,
via the -rtcheck switch (on page 1-76), and the
-rtcheck-shift-check switch (on page 1-79).

• Rule 12.12 (required): The underlying bit representations of
floating-point values shall not be used.
MISRA-C rules such as 11.4 prevent casting of bit-patterns to
floating-point values. Hexadecimal floating-point constants are
also not allowed when MISRA-C switches are enabled.

• Rule 13.2 (advisory): Tests of a value against zero should be made
explicit, unless the operand is effectively Boolean.
The compiler treats variables which use the type bool (a typedef is
declared in <stdbool.h>) as “effectively Boolean” and will not raise
an error when these are implicitly tested as zero, as follows:
bool b = 1;

if(bool)

…;

• Rule 13.7 (required): Boolean operations whose results are invari-
ant shall not be used.
The compiler does not detect cases where there is a reliance on
more than one conditional statement. Constant expressions violat-
ing the rule are only detected when the -misra-strict compiler
switch is enabled (on page 1-93).

• Rule 16.2 (required): Functions shall not call themselves, either
directly or indirectly.
A compile-time check is performed for a single file. Run-time code
is added to ensure that functions do not call themselves directly or
indirectly, but this code is not generated if the -misra-no-runtime
compiler switch is enabled (on page 1-93).

MISRA-C Compiler

1-164 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• Rule 16.4 (required): The identifiers used in the declaration and
definition of a function shall be identical.
A declaration of a parameter name may have one leading under-
score that the definition does not contain. This is to prevent name
clashing. If the -misra-strict compiler switch is enabled
(on page 1-93), the underscore is significant and results in the vio-
lation of this rule.

• Rule 16.5 (required): Functions with no parameters shall be
declared and defined with the parameter list void.
Function main shall only be reported as violating this rule if the
-misra-strict compiler switch is enabled (on page 1-93).

• Rule 16.10 (required): If a function returns error information,
then the error information shall be tested.
A function declared with return type bool, which is a typedef
declared in header file <stdbool.h> will be faulted if the result of
the call is not used.

• Rule 17.1 (required): Pointer arithmetic shall only be applied to
pointers that address an array or array element.
Checking is performed at run-time. A run-time function looks at
the value of the pointer and checks to see whether it violates this
rule. This check is also available via the -rtcheck switch
(on page 1-76) and the -rtcheck-arr-bnd switch (on page 1-77).
It can be disabled via the -no-rtcheck-arr-bnd switch
(on page 1-60).

• Rule 17.2 (required): Pointer subtraction shall only be applied to
pointers that address elements of the same array.
Checking is performed at runtime. A run-time function looks at
the value of the pointers and checks to see whether it violates this
rule.

CrossCore Embedded Studio 1.0 1-165
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

• Rule 17.3 (required): >, >=, <, <= shall not be applied to pointers
that address elements of different arrays.
Checking is performed at run-time. A run-time function looks at
the value of the pointers and checks to see whether it violates this
rule.

• Rule 17.6 (required): The address of an object with automatic
storage shall not be assigned to another object that may persist
after the first object has ceased to exist.
Rule is not enforced under the following circumstances: if the
address of a local variable is passed as a parameter to another func-
tion, the compiler cannot detect whether that address has been
assigned to a global object.

• Rule 18.2 (required): An object shall not be assigned to an over-
lapping object.
The rule is not enforced by the compiler.

• Rule 18.3 (required): An area of memory shall not be reused for
unrelated purposes.
The rule is not enforced by the compiler.

• Rule 19.7 (advisory): A function shall be used in preference to a
function-like macro.
The rule is only enforced when the compiler option -misra-strict
is enabled.

• Rule 19.15 (required): Precautions shall be taken in order to pre-
vent the contents of a header file being included twice.
The compiler will report this violation if a header file is included
more than once and does not prevent redeclarations of types, vari-
ables, or functions.

• Rule 20.3 (required): The validity of values passed to library
functions shall be checked.
This is not enforced by the compiler. The rule puts the responsibil-
ity on the programmer.

MISRA-C Compiler

1-166 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• Rule 20.4 (required): Dynamic heap memory allocation shall not
be used.
Prototype declarations for functions performing heap allocation
should be declared with an associated #pragma misra_func(heap)
directive. This directive allows the compiler to detect violations of
this rule when these functions are used.

• Rule 20.7 (required): The setjmp macro and longjmp function
shall not be used.
Prototype declarations for these should be declared with an associ-
ated #pragma misra_func(jmp) directive. This directive allows the
compiler to detect violations of this rule when these functions are
used.

• Rule 20.8 (required): The signal handling facilities of <signal.h>
shall not be used.
Prototype declarations for functions in this header should be
declared with an associated #pragma misra_func(handler) direc-
tive. This directive allows the compiler to detect violations of this
rule when these functions are used.

• Rule 20.9 (required): The input/output library <stdio.h> shall
not be used.
Prototype declarations for functions in this header should be
declared with an associated #pragma misra_func(io) directive.
This directive allows the compiler to detect violations of this rule
when these functions are used.

• Rule 20.10 (required): The library functions atof, atoi and atol
from library <stdlib.h> shall not be used.
Prototype declarations for these functions should be declared with
an associated #pragma misra_func(string_conv) directive. This
directive allows the compiler to detect violations of this rule when
these functions are used.

CrossCore Embedded Studio 1.0 1-167
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

• Rule 20.11 (required): The library functions abort, exit, getenv
and system from library <stdlib.h> shall not be used.
Prototype declarations for these functions should be declared with
an associated #pragma misra_func(system) directive. This direc-
tive allows the compiler to detect violations of this rule when these
functions are used.

• Rule 20.12 (required): The time handling functions of library
<time.h> shall not be used.
Prototype declarations for these functions should be declared with
an associated #pragma misra_func(time) directive. This directive
allows the compiler to detect violations of this rule when these
functions are used.

• Rule 21.1 (required): Minimization of run-time failures shall be
ensured by the use of at least one of: (a) static analysis tools/tech-
niques; (b) dynamic analysis tools/techniques; (c) explicit coding
of checks to handle run-time faults.
The compiler performs some static checks on uses of unassigned
variables before conditional code and use of constant expressions.
The compiler performs run-time checks for arithmetic errors, such
as division by zero, array bound errors, unassigned variable check-
ing, and pointer dereferencing. Run-time checking has a negative
effect on code performance. The -misra-no-runtime compiler
switch turns off the run-time checking (on page 1-93).

Run-Time Checking
The compiler provides support for detecting common programming mis-
takes, such as dereferencing a NULL pointer, or accessing an array beyond
its bounds. The compiler does this by generating additional code to check
for such conditions at runtime. Such code occupies space and incurs a per-
formance penalty, so you should only use run-time checking when

Run-Time Checking

1-168 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

developing and debugging your application; products for release should
always have run-time checking disabled.

The compiler’s run-time checks are a subset of those enabled when
MISRA-C run-time checking is active. For more information, see
MISRA-C Compiler.

The following sections describe run-time checking in more detail:

• Enabling Run-Time Checking

• Supported Run-Time Checks

• Response When Problems Are Detected

• Limitations of Run-Time Checking

Enabling Run-Time Checking
Because of the associated overheads, run-time checking is disabled by
default. You can enable run-time checking:

• By specifying command-line switches;

• Through the IDE, via run-time checking options under Project >
Properties > C/C++ Build > Settings > Tool Settings > Compiler
> Run-time Checks.

In both cases, you can enable all supported run-time checks, or just enable
specific subsets.

Once run-time checking is enabled to some level, you can further turn
that checking off and on again within your code, with pragmas. This
allows you to narrow your focus down to particular functions, or to
exclude certain functions from checking.

CrossCore Embedded Studio 1.0 1-169
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Command-Line Switches for Run-Time Checking

The following switches are used to turn run-time checking on:

• -rtcheck: Turns on all run-time checks.

• -rtcheck-arr-bnd: Turns on checking of array boundaries.

• -rtcheck-div-zero: Turns on checking for division by zero.

• -rtcheck-heap: Turns on checking of heap operations.

• -rtcheck-null-ptr: Turns on checking for NULL pointer
dereferencing.

• -rtcheck-shift-check: Turns on checking of shift operations.

• -rtcheck-stack: Turns on checking for stack overflow.

• -rtcheck-unassigned: Turns on checking for use of variables
before they’ve been assigned values.

The following switches are used to turn run-time checking off:

• -no-rtcheck: Turns off all run-time checks.

• -no-rtcheck-arr-bnd: Turns off checking of array boundaries.

• -no-rtcheck-div-zero: Turns off checking for division by zero.

• -no-rtcheck-heap: Turns off checking of heap operations.

• -no-rtcheck-null-ptr: Turns off checking for NULL pointer
dereferencing.

• -no-rtcheck-shift-check: Turns off checking of shift operations.

• -no-rtcheck-stack: Turns off checking for stack overflow.

• -no-rtcheck-unassigned: Turns off checking for use of variables
before they’ve been assigned values.

Run-Time Checking

1-170 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

You can use combinations of these switches to enable the subset you
require. For example, the following two sets of switches are equivalent:

• -rtcheck -no-rtcheck-arr-bnd -no-rtcheck-div-zero \

 -no-rtcheck-heap -no-rtcheck-stack

• -rtcheck-null-ptr -rtcheck-shift-check -rtcheck-unassigned

For more information, see -rtcheck.

Pragmas for Run-Time Checking

The following pragmas are used to enable and disable run-time checks.

• #pragma rtcheck(on): Turns on that subset of run-time checking
that has been enabled by command-line switches.

• #pragma rtcheck(off): Turns off all run-time checking.

Note that these pragmas do not affect which run-time checks apply—use
command-line switches to select the appropriate checks, then use the
pragmas to enable those checks during compilation of your functions of
interest.

 These pragmas cannot disable and re-enable heap-operation check-
ing. If the debugging version of the heap library is selected, it is
used by the whole application.

For more information, see Run-Time Checking Pragmas.

CrossCore Embedded Studio 1.0 1-171
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Supported Run-Time Checks
The following run-time checks are supported by the compiler:

Array Boundary Checks

When generating code to access arrays, the compiler generates additional
code to see whether the location accessed falls within the boundaries of a
live automatic array.

Division by Zero Checks

When generating code to perform an integer or floating-point division,
the compiler generates additional code to check that the divisor is
non-zero.

Heap Checks

The debugging version of the heap library checks for leaks, multiple frees
of the same pointer, writes beyond the bounds of an allocation, and so on.

NULL Pointer Checks

When generating code to read the value pointed to by a pointer, the com-
piler generates additional code to verify that the pointer is not NULL.

Shift Checks

When generating code to shift a value X by some amount Y, the compiler
generates additional code to check that:

• Y is not a negative value.

• Y is less than the number of bits required to represent X’s type.

Run-Time Checking

1-172 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Stack Overflow Checks

When increasing the amount of stack space in use, the compiler generates
additional code to verify that the bounds of the current stack are not
about to be exceeded.

Unassigned Variable Checks

When generating code to read the value of a variable, the compiler gener-
ates additional code to make sure a value has previously been assigned to
the variable.

Response When Problems Are Detected
In most cases, the additional code generated by the compiler includes code
for emitting a diagnostic message to the stderr stream. This message is
emitted when the run-time check finds a problem.

When stack overflow is detected, however, the generated code transfers
control to the special label __adi_stack_overflowed, as emitting a
diagnostic to the stderr stream would require additional stack space. The
IDE normally places a breakpoint on the __adi_stack_overflowed label.
For more information, see Stack Overflow Detection.

The heap debugging library also provides support for logging problems to
a file instead of reporting them immediately to the stderr stream. or more
information, see Heap Debugging.

CrossCore Embedded Studio 1.0 1-173
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Limitations of Run-Time Checking
Besides the space/performance overheads incurred by the additional code,
the following limitations apply to run-time checking:

• Compiled code only: Because the run-time checks rely on addi-
tional code emitted during function compilation, the run-time
checks can only apply to code compiled by the compiler, while
run-time checks are enabled. Hand-written assembly or previ-
ously-compiled code cannot make benefit from run-time checking.

• No asm statements: The compiler has no visibility into the con-
tents of asm statements, so any actions carried out by asm
statements will not be checked by any enabled run-time checking.
or more information, see Inline Assembly Language Support Key-
word (asm).

• Stdio support required: Because the generated diagnostics are emit-
ted to the stderr stream, run-time checking is only beneficial when
the application supports the standard error stream, and the stream
is attached to some suitable output device (such as the IDE con-
sole, which is the usual case when running an application within
the debugger).

C/C++ Compiler Language Extensions
The compiler supports extensions to the ANSI/ISO standard for the C
and C++ languages. These extensions add support for DSP hardware and
permit some C++ programming features when compiling in C mode.
Most extensions are also available when compiling in C++ mode.

C/C++ Compiler Language Extensions

1-174 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

This section contains information on ISO/IEC 9899:1999 standard fea-
tures that are supported in C89 mode:

• Function Inlining

• Variable Argument Macros

• Restricted Pointers

• Variable-Length Arrays

• Non-Constant Initializer Support

• Designated Initializers

• Hexadecimal Floating-Point Numbers

• Declarations Mixed With Code

• Compound Literals Support

• C++ Style Comments

• Enumeration Constants That Are Not int Type

• Boolean Type Support Keywords (bool, true, false)

This section also contains information on other language extensions:

• Native Fixed-Point Types fract and accum

• Inline Assembly Language Support Keyword (asm)

• Memory Banks

• Placement Support Keyword (section)

• Placement of Compiler-Generated Code and Data

• Long Identifiers

• Compiler Built-In Functions

CrossCore Embedded Studio 1.0 1-175
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

• Pragmas

• GCC Compatibility Extensions

• Preprocessor-Generated Warnings

The additional keywords that are part of the C/C++ extensions do not
conflict with ANSI C/C++ keywords. The formal definitions of these
extension keywords are prefixed with a leading double underscore (__).
Unless the -no-extra-keywords command-line switch is used, the com-
piler defines the shorter form of the keyword extension that omits the
leading underscores. For more information, see the brief descriptions of
each switch beginning on page 1-29.

 This section describes the shorter forms of the keyword extensions.
In most cases, you can use either form in your code. For example,
all references to the inline keyword in this text appear without the
leading double underscores, but you can interchange inline and
__inline in your code.

You might exclusively use the longer form (such as __inline) if porting a
program that uses the extra Analog Devices keywords as identifiers. For
example, if a program declares local variables, such as asm or inline, use
the -no-extra-keywords switch. If you need to declare a function as
inline, use __inline.

Table 1-24 and Table 1-25 provide descriptions of each extension and
direct you to sections that describe each extension in more detail.

C/C++ Compiler Language Extensions

1-176 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Table 1-24. Keyword Extensions

Keyword Extensions Description

inline Directs the compiler to integrate the function code into the code
of its callers. For more information, see Function Inlining.

asm() Places Blackfin core assembly language commands directly in your
C/C++ program. For more information, see Inline Assembly Lan-
guage Support Keyword (asm).

bank(“string”) Specifies a name which the user assigns to associate declarations
that reside in particular memory banks. For more information, see
Memory Banks.

section(“string”) Specifies the section in which an object or function is placed.
For more information, see Placement Support Keyword (section).

bool

true

false

Specifies a Boolean type. For more information, see Boolean Type
Support Keywords (bool, true, false).

restrict Specifies restricted pointer features. For more information, see
Restricted Pointers.

Table 1-25. Operational Extensions

Operational Extensions Description

Non-constant initializers Permits the use of non-constants as elements of aggregate initializ-
ers for automatic variables. For more information, see Non-Con-
stant Initializer Support.

Designated initializers Specifies elements of an aggregate initializer in arbitrary order. For
more information, see Designated Initializers.

Variable-length arrays Creates local arrays with a variable size. For more information, see
Variable-Length Arrays.

Long identifiers Supports identifiers of up to 1022 characters in length. For more
information, see Long Identifiers.

Preprocessor-generated
warnings

Generates warning messages from the preprocessor. For more
information, see Preprocessor-Generated Warnings.

C++ style comments Allows for “//” C++ style comments in C programs. For more
information, see C++ Style Comments.

CrossCore Embedded Studio 1.0 1-177
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Function Inlining
The inline keyword directs the compiler to integrate the code for the
function you declare as inline into the code of its callers. Inline function
support and the inline keyword is a standard feature of the ISO/IEC
14882:2003 C++ standard and the ISO/IEC 9899:1999 C standard; the
ccblkfn compiler provides this keyword as an extension when the -c89
switch is enabled. For more information, see -c89.

This keyword eliminates the function call overhead and increases the
speed of your program’s execution. Argument values that are constant and
that have known values may permit simplifications at compile time so that
not all of the inline function’s code needs to be included.

The following example shows a function definition that uses the inline
keyword.

inline int max3 (int a, int b, int c) {

return max (a, max(b, c));

}

The compiler can decide not to inline a particular function declared with
the inline keyword; a diagnostic remark of cc1462 issued if the compiler
chooses to do this. The diagnostic can be raised to a warning by use of the
-Wwarn switch. For more information, see -W{annota-
tion|error|remark|suppress|warn} number[, number...].

Function inlining can also occur by use of the -Oa (automatic function
inlining) switch (-Oa), which enables the inline expansion of C/C++ func-
tions that are not necessarily declared inline in the source code. The
amount of auto-inlining the compiler performs is controlled using the –Ov
(optimize for speed versus size) switch.

C/C++ Compiler Language Extensions

1-178 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The compiler follows a specific order of precedence when determining
whether a call can be inlined. The order is:

1. If the definition of the function is not available (for example, it is a
call to an external function), the compiler cannot inline the call.

2. If the -never-inline switch has been specified (on page 1-52), the
compiler will not inline the call. If the call is to a function that has
#pragma always_inline specified (see Inline Control Pragmas), a
warning will also be issued.

3. If the call is to a function that has #pragma never_inline specified,
the call will not be inlined.

4. If the call is via a pointer-to-function, the call will not be inlined
unless the compiler can prove that the pointer will always point to
the same function definition.

5. If the call is to a function that has a variable number of arguments,
the call will not be inlined.

6. If the module contains asm statements at global scope (outside
function definitions), the call may not be inlined because the asm
statement restricts the compiler’s ability to reorder the resulting
assembly output.

7. If the call is to a function that has #pragma always_inline speci-
fied, the call is inlined. If the call exceeds the current speed/space
ratio limits, the compiler will issue a warning, but will still inline
the call.

8. If the call is to a function that has the inline qualifier or has
#pragma inline specified, and the -always-inline switch has been
specified, the compiler will inline the call. If the call exceeds the
current speed/space ratio limits, the compiler will issue a warning,
but will still inline the call.

CrossCore Embedded Studio 1.0 1-179
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

9. If the caller and callee are mapped to different code sections, the
call will not be inlined unless the callee has the inline qualifier or
has #pragma inline specified.

10.If the call is to a function that has the inline qualifier or has
#pragma inline specified, and optimization is enabled, the called
function will be compared against the current speed/size ratio lim-
its for code size and stack size. The calling function will also be
examined against these limits. Depending on the limits and the rel-
ative sizes of the caller and callee, the inlining may be rejected.

11.If the call is to a function that does not have the inline qualifier or
#pragma inline, and does not have #pragma weak_entry, then if
the -Oa switch has been specified to enable automatic inlining, the
called function will be considered as a possible candidate for inlin-
ing, according to the current speed/size ratio limits, as if the inline
qualifier were present.

The compiler bases its code-related speed/size comparisons on the -Ov
switch (-Ov num). When -Ov is in the range 1...100, the compiler per-
forms a calculation upon the size of the generated code using the -Ov
value, and this will determine whether the generated code is too large for
inlining to occur. When -Ov has the value 1, only very small functions are
considered small enough to inline; when -Ov has the value 100, larger
functions are more likely to be considered suitable as well.

When -Ov has the value 0, the compiler is optimizing for space. The
speed/space calculation will only accept a call for inlining if it appears that
the inlining is likely to result in less code than the call itself would
(although this is an approximation, since the inlining process is a
high-level optimization process, before actual machine instructions have
been selected).

C/C++ Compiler Language Extensions

1-180 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Inlining and Optimization

The inlining process operates regardless of whether optimization has been
selected (although if optimization is not enabled, then inlining will only
happen when forced by #pragma always_inline or the -always-inline
switch). The speed/size calculation still has an effect, although an opti-
mized function is likely to have a different size from a non-optimized one,
which is smaller (and therefore more likely to be inlined) and dependent
on the kind of optimization done.

A non-optimized function has loads and stores to temporary values which
are optimized away in the optimized version, but an optimized function
may have unrolled or vectorized loops with multiple variants, selected at
run-time for the most efficient loop kernel. So an optimized function may
run faster, but not be smaller.

Given that the optimization emphasis may be changed within a module—
or even turned off completely—by the optimization pragmas, it is possible
for either, both, or neither of the caller and callee to be optimized. The
inlining process still operates, and is only affected by this in as far as the
speed/size ratios of the resulting functions are concerned.

Inlining and Out-of-Line Copies

If a function is static (that is, private to the module being compiled) and
all calls to that function are inlined, there are no calls remaining that are
not inline. Consequently, the compiler does not generate an out-of-line
copy for the function, thus reducing the size of the resulting application.

If the address of the function is taken, it is possible that the function could
be called through that derived pointer, so the compiler cannot guarantee
that all calls have been accounted for. In such cases, an out-of-line copy is
generated.

CrossCore Embedded Studio 1.0 1-181
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

A function declared inline must be defined (its body must be included)
in every file in which the function is used. This is normally done by plac-
ing the inline definition in a header file. Usually it is also declared static.

In C99 mode (-c99), the compiler fully supports inline functions with
external linkage as described in the ISO/IEC 9899:1999 standard; other-
wise it treats the function as if it were declared with internal linkage.

In C++ mode, the compiler ensures non-static inline functions conform to
the ISO/IEC:14882:2003 C++ standard.

Inlining and Global asm Statements

Inlining imposes a particular ordering on functions. If functions A and B
are marked as inline, and each calls the other, only one of the inline qual-
ifiers can be followed. Depending on which the compiler chooses to apply,
either A will be generated with inline versions of B, or B will be generated
with inline versions of A. Either case may result in no out-of-line copy of
the inlined function being generated. The compiler reorders the functions
within a module to get the best inlining result. Functionally, the code is
the same, but this affects the resulting assembly file.

When global asm statements are used with the module, between the func-
tion definitions, the compiler cannot do this reordering process, because
the asm statement might affect the behavior of the assembly code that is
generated from the following C function definitions. Because of this,
global asm statements can greatly reduce the compiler’s ability to inline a
function call.

Inlining and Sections

Before inlining, the compiler checks any section directives or pragmas on
the function definitions. For example,

section("secA") inline int add(int a, int b) { return a + b; }

section("secB") int times_two(int a) { return add(a, a); }

C/C++ Compiler Language Extensions

1-182 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Since add() and times_two() are to be generated into different code sec-
tions, this call is ignored during the inlining process, so the call is not
inlined. If the callee is marked with #pragma always_inline
(on page 1-336), however, or the -always-inline switch (on page 1-32) is
in force, the compiler will inline the call despite the mismatch in sections.

Inlining and Run-Time Checking

When run-time checking is enabled, the compiler generates the additional
code for the checks when the function is first defined. The implications
for function inlining are as follows:

• When a function defined with run-time checking enabled is inlined
into a function without run-time checking enabled, the inlined
version still includes the run-time checks.

• When a function defined with run-time checking disabled is
inlined into a function with run-time checking enabled, the inlined
version does not acquire any run-time checks.

For more information, see Run-Time Checking.

Variable Argument Macros
This ISO/IEC 9899:1999 C standard feature is enabled as an extension in
C89 mode and in C++ mode. The final parameter in a macro declaration
may be an ellipsis (...) to indicate the parameter stands for a variable
number of arguments. In the replacement text for the macro, the
predefined name __VA_ARGS__ represents the parameters that were sup-
plied for the ellipsis in the macro invocation. At least one argument must
be provided for the ellipsis, in an invocation.

For example:

#define tracec99(file,line,...) logmsg(file,line, __VA_ARGS__)

CrossCore Embedded Studio 1.0 1-183
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

can be used with differing numbers of arguments: the following
statements:

tracec99("a.c", 999, "one", "two", "three");

tracec99("a.c", 999, "one", "two");

tracec99("a.c", 999, "one");

tracec99("a.c", 999);

expand to the following code:

logmsg("a.c", 999, "one", "two", "three");

logmsg("a.c", 999, "one", "two");

logmsg("a.c", 999, "one");

logmsg("a.c", 999,); // error - must provide an argument

 This variable argument macro syntax comes from the ISO/IEC
9899:1999 C standard. The compiler supports both GCC and C99
variable argument macro formats in C89, C99, and C++ modes.
(See GCC Variable Argument Macros.)

Restricted Pointers
The restrict keyword is a standard feature of the ISO/IEC 9899:1999 C
standard, and is available as an extension in C89 and C++ modes.

The use of restrict is limited to the declaration of a pointer. This key-
word specifies that the pointer provides exclusive initial access to the
pointed object. More simply, the restrict keyword is a way to identify
that a pointer does not create an alias. Also, two different restricted point-
ers cannot designate the same object, and therefore, they are not aliases.

The compiler is free to use the information about restricted pointers and
aliasing in order to better optimize C/C++ code that uses pointers. The
restrict keyword is most useful when applied to function parameters
that the compiler would otherwise have little information about.

C/C++ Compiler Language Extensions

1-184 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

For example,

void fir(short *in, short *c, short *restrict out, int n)

The behavior of a program is undefined if it contains an assignment
between two restricted pointers. Exceptions are:

• A function with a restricted pointer parameter may be called with
an argument that is a restricted pointer.

• A function may return the value of a restricted pointer that is local
to the function, and the return value may then be assigned to
another restricted pointer.

If your program uses a restricted pointer in a way that it does not uniquely
refer to storage, the behavior of the program is undefined.

Variable-Length Arrays
The compiler supports variable-length automatic arrays. This ISO/IEC
9899:1999 standard feature is also allowed as an extension in C89 mode.
(-c89) Variable-length arrays are not supported in C++ mode.

Unlike other automatic arrays, variable-length arrays are declared with a
non-constant length. This means that the space is allocated when the array
is declared, and space is deallocated when the brace-level is exited.

 Variable-length arrays are only supported as an extension to C;
variable-length arrays are not supported in C++.

The compiler does not allow jumping into the brace-level of the array and
produces a compile-time error message if this is attempted. The compiler
does allow breaking or jumping out of the brace-level, and it deallocates
the array when this occurs.

CrossCore Embedded Studio 1.0 1-185
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

You can use variable-length arrays as function arguments, such as:

void

var_array (int array_len, char data[array_len][array_len])

{

 /* code using data[][] */

}

The variable used for the array length must be in scope, and must have
been previously declared.

The compiler calculates the length of an array at the time of allocation.
It then remembers the array length until the brace-level is exited and can
return it as the result of the sizeof() function performed on the array.

As an example, if you were to implement a routine for computation of a
product of three matrices, you need to allocate a temporary matrix of the
same size as input matrices. Declaring an automatic variable size matrix is
more convenient than allocating it from a heap. Note, however, that vari-
able-length arrays are allocated on the stack, which means that sufficient
stack space must be available.

The expression declares an array with a size that is computed at runtime.
The length of the array is computed on entry to the block and saved in
case sizeof() is applied to the array. For multi-dimensional arrays, the
boundaries are also saved for address computation. After leaving the block,
all the space allocated for the array and size information is deallocated.

For example, the following program prints 40, not 50:

#include <stdio.h>

void foo(int);

main ()

{

foo(40);

}

C/C++ Compiler Language Extensions

1-186 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

void foo (int n)

{

char c[n];

n = 50;

printf("%d", sizeof(c));

}

Non-Constant Initializer Support
The compiler does not require the elements of an aggregate initializer for
an automatic variable to be constant expressions. This is a standard feature
of the ISO/IEC 9899:1999 C standard and the ISO/IEC 14882:2003
C++ standard. The compiler supports it as an extension in C89 mode.

The following example shows an initializer with elements that vary at
runtime.

void initializer (float a, float b)
{

float the_array[2] = { a-b, a+b };
}

All automatic structures can be initialized by arbitrary expressions involv-
ing literals, previously declared variables, and functions.

Designated Initializers
This is a standard feature of the ISO/IEC 9899:1999 C standard. The
compiler supports it as an extension in C89 and C++ modes.

This feature lets you specify the elements of an array or structure initial-
izer in any order by specifying their designators—the array indices or
structure field names to which they apply. All designators must be con-
stant expressions, even in automatic arrays.

CrossCore Embedded Studio 1.0 1-187
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

For an array initializer, the syntax [INDEX] appearing before an initializer
element value specifies the index initialized by that value. Subsequent ini-
tializer elements are then applied to the sequentially following elements of
the array, unless another use of the [INDEX] syntax appears. The index val-
ues must be constant expressions, even when the array being initialized is
automatic.

The following example shows equivalent array initializers—the first in
C89 form (without using the extension) and the second in C99 form,
using the designators. Note that the [INDEX] designator precedes the value
being assigned to that element.

/* Example 1 C Array Initializer */

/* C89 array initializer (no designators) */

int a[6] = { 0, 0, 15, 0, 29, 0 };

/* Equivalent C99 array initializer (with designators) */

int a[6] = { [4] 29, [2] 15 };

You can combine this technique of designated elements with initialization
of successive non-designated elements. The two instructions below are
equivalent. Note that any non-designated initial value is assigned to the
next consecutive element of the structure or array.

/* Example 2 Mixed Array Initializer */

/* C89 array initializer (no designators) */

int a[6] = { 0, v1, v2, 0, v4, 0 };

/* Equivalent C99 array initializer (with designators) */

 int a[6] = { [1] v1, v2, [4] v4 };

C/C++ Compiler Language Extensions

1-188 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The following example shows how to label the array initializer elements
when the designators are characters or enum type.

/* Example 3 C Array Initializer With enum Type Indices */

/* C99 C array initializer (with designators) */

int whitespace[256] =

{

[' '] 1, ['\t'] 1, ['\v'] 1, ['\f'] 1, ['\n'] 1, ['\r'] 1

};

enum { e_ftp = 21, e_telnet = 23, e_smtp = 25, e_http = 80, e_nntp

= 119 };

char *names[] = {

[e_ftp] "ftp",

[e_http] "http",

[e_nntp] "nntp",

[e_smtp] "smtp",

[e_telnet] "telnet"

};

In a structure initializer, specify the name of the field to initialize with
fieldname: before the element value. The C89 and C99 struct initializers
in the example below are equivalent.

/* Example 4 struct Initializer */

/* C89 struct Initializer (no designators) */

struct point {int x, y;};

struct point p = {xvalue, yvalue};

/* Equivalent C99 struct Initializer (with designators) */

struct point {int x, y;};

struct point p = {y: yvalue, x: xvalue};

CrossCore Embedded Studio 1.0 1-189
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Hexadecimal Floating-Point Numbers
This is a standard feature of the ISO/IEC:9899 1999 C standard. The
compiler supports this as an extension in C89 mode and in C++ mode.

Hexadecimal floating-point numbers have the following syntax.

hexadecimal-floating-constant:

{0x|0X} hex-significand binary-exponent-part [floating-suffix]

hex-significand: hex-digits [. [hex-digits]]

binary-exponent-part: {p|P} [+|-] decimal-digits

floating-suffix: { f | l | F | L }

The hex-significand is interpreted as a hexadecimal rational number.
The digit sequence in the exponent part is interpreted as a decimal integer.
The exponent indicates the power of two by which the significand is to be
scaled. The floating suffix has the same meaning that it has for decimal
floating constants: a constant with no suffix is of type double, a constant
with suffix F is of type float, and a constant with suffix L is of type long
double.

Hexadecimal floating constants enable the programmer to specify the
exact bit pattern required for a floating-point constant. For example, the
declaration

float f = 0x1p-126f;

causes f to be initialized with the value 0x800000.

Declarations Mixed With Code
In C89 mode, the compiler accepts declarations placed in the middle of
code. This allows the declaration of local variables to be placed at the
point where they are required. Therefore, the declaration can be combined
with initialization of the variable. This is a standard feature of the

C/C++ Compiler Language Extensions

1-190 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

ISO/IEC 9899:1999 C standard and the ISO/IEC 14882:2003 C++
standard.

For example, in the following function:

void func(Key k) {

Node *p = list;

while (p && p->key != k)

p = p->next;

if (!p)

return;

Data *d = p->data;

while (*d)

process(*d++);

}

the declaration of d is delayed until its initial value is available, so that no
variable is uninitialized at any point in the function.

Compound Literals Support
This is a standard feature of the ISO/IEC:9899 1999 standard. The
compiler supports it as an extension in C89 mode. It is not allowed in
C++ mode.

The following example shows an ISO/IEC 9899:1990 standard C struct
usage, followed by an equivalent ISO/IEC 9899:1999 standard C code
that has been simplified using a compound literal.

/* Standard C89/C++ code*/
struct foo {int a; char b[2];};
struct foo make_foo(int x, char *s)
{

struct foo temp;
temp.a = x;
temp.b[0] = s[0];
if (s[0] != '\0')

CrossCore Embedded Studio 1.0 1-191
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

temp.b[1] = s[1];
else

temp.b[1] = '\0';
return temp;

}

/* Standard C99 code*/
struct foo{ int a; charb[2];};
struct foo make_foo(int x, char *s)
{

return((struct foo) {x, {s[0], s[0] ? s[1] : '\0'}});
}

C++ Style Comments
The compiler accepts C++ comments, beginning with // and ending at
the end of the line, as in C programs. This comment representation is
essentially compatible with standard C, except for the following case.

a = b

//* highly unusual */ c

;

which a standard C compiler processes as:

a = b/c;

and a C++ compiler and ccblkfn process as:

a = b;

Enumeration Constants That Are Not int Type
The CCES compiler allows enumeration constants to be integer types
other than int such as unsigned int, long long or unsigned long long.
See Enumeration Type Implementation Details for more information.

C/C++ Compiler Language Extensions

1-192 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Boolean Type Support Keywords (bool, true, false)
The compiler supports a Boolean data type bool, with values true and
false. This is a standard feature of the ISO/IEC 14882:2003 C++ stan-
dard, and is available as a standard feature in the ISO/IEC 9899:1999 C
standard when the stdbool.h header is included. It is supported as an
extension in C89 mode, and as an extension in C99 mode when the std-
bool.h header has not been included.

The bool keyword is a unique signed integral type. There are two built-in
constants of this type: true and false. When converting a numeric or
pointer value to bool, a zero value becomes false, and a nonzero value
becomes true. A bool value may be converted to int by promotion,
taking true to one and false to zero. A numeric or pointer value is con-
verted automatically to bool when needed.

Native Fixed-Point Types fract and accum
The compiler has support for the native fixed-point types fract and accum
as defined by Chapter 4 of the “Extensions to support embedded processors”
ISO/IEC draft technical report TR 18037. This support is available for
the C language only. A discussion of how to use this support is given in
Using Native Fixed-Point Types.

Inline Assembly Language Support Keyword (asm)
The compiler’s asm() construct is used to code Blackfin assembly language
instructions within a C/C++ function and to pass declarations and direc-
tives to the assembler. Use the asm() construct to express assembly
language statements that cannot be expressed easily or efficiently with
C/C++ constructs.

Using asm(), you can code complete assembly language instructions and
specify the operands of the instruction using C expressions. When

CrossCore Embedded Studio 1.0 1-193
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

specifying operands with a C/C++ expression, you do not need to know
which registers or memory locations contain C/C++ variables.

 The compiler does not analyze code defined with the asm() con-
struct—it passes this code directly to the assembler. The compiler
performs substitutions for operands of the formats %0 through %9;
however, it passes everything else to the assembler without reading
or analyzing it. This means that the compiler cannot apply any
enabled workarounds for silicon errata that may be triggered either
by the contents of the asm() construct, or by the sequence of
instructions formed by the asm() construct and the surrounding
code produced by the compiler.

 asm() constructs with inputs, outputs or affected registers are exe-
cutable statements, and as such, may not appear before declarations
within C/C++ functions in MISRA-C mode. asm() constructs may
also be used at global scope, outside function declarations; such
asm() constructs are used to pass declarations and directives
directly to the assembler. They are not executable constructs, and
may not have any inputs or outputs, or affect any registers.

 When optimizing, the compiler sometimes changes the order in
which generated functions appear in the output assembly file.
However, if global-scope asm() constructs are placed between two
function definitions, the compiler ensures that the function order
is retained in the generated assembly file. Consequently, function
inlining may be inhibited.

A simplified asm() construct without operands takes the following form.
asm(" NOP; ");

The complete assembly language instruction, enclosed in double quotes,
is the argument to asm(). Using asm() constructs with operands requires
additional syntax.

C/C++ Compiler Language Extensions

1-194 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

 The compiler generates a label before and after inline assembly
instructions when generating debug code. (See -g switch
on page 1-45.) These labels are used to generate the debug line
information used by the debugger. If the inline assembler inserts
conditionally assembled code, an undefined symbol error is likely
to occur at link-time. For example, the following code could cause
undefined symbols if MACRO is undefined:

asm("#ifdef MACRO");

asm(" // assembly statements");

asm("#endif");

If the inline assembler changes the current section and thereby causes the
compiler labels to be placed in another section, such as a data section
(instead of the default code section), then the debug line information will
be incorrect for these lines.

The construct syntax is described in:

• asm() Construct Syntax

• Assembly Construct Operand Description

• Using long long Types in asm Constraints

• Assembly Constructs With Multiple Instructions

• Assembly Construct Reordering and Optimization

• Assembly Constructs With Input and Output Operands

• Assembly Constructs With Compile-Time Constants

• Assembly Constructs and Flow Control

• Guidelines for Using asm() Statements

CrossCore Embedded Studio 1.0 1-195
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

asm() Construct Syntax

Use the following general syntax for asm() constructs.

asm [volatile] (

template

[:[constraint(output operand)[,constraint(output operand)…]]

[:[constraint(input operand)[,constraint(input operand)…]]

[:clobber string]]]

);

The syntax elements are defined as follows:

template
The template is a string containing the assembly instruction(s) with
%number, indicating where the compiler should substitute the operands.
Operands are numbered in order of occurrence from left to right, starting
at 0. Separate multiple instructions with a semicolon; then enclose the
entire string within double quotes.

For more information on templates containing multiple instructions, see
Assembly Constructs With Multiple Instructions.

constraint
The constraint is a string that directs the compiler to use certain groups of
registers for the input and output operands. Enclose the constraint string
within double quotes. For more information on operand constraints, see
Assembly Construct Operand Description.

output operand
The output operands are the names of C/C++ variables that receive output
from corresponding operands in the assembly instructions.

input operand
The input operand is a C/C++ expression that provides an input to a cor-
responding operand in the assembly instruction.

C/C++ Compiler Language Extensions

1-196 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

clobber string
The clobber string notifies the compiler that a list of registers is overwrit-
ten by the assembly instructions. Use lowercase characters to name
clobbered registers. Enclose each name within double quotes, and separate
each quoted register name with a comma. The input and output operands
are guaranteed not to use any of the clobbered registers, so you can read
and write the clobbered registers as often as you like.

See Table 1-27 for the list of individual registers that can be used, and
Table 1-36 for the list of register sets that can be used.

It is vital that any register overwritten by an assembly instruction and not
allocated by the constraints is listed in the clobber list. The list must
include memory if an assembly instruction accesses memory.

asm() Construct Syntax Rules

These rules apply to assembly construct template syntax.

• The template is the only mandatory argument to asm(). All other
arguments are optional.

• An operand constraint string followed by a C/C++ expression in
parentheses describes each operand. For output operands, it must
be possible to assign to the expression; that is, the expression must
be legal on the left side of an assignment statement.

• A colon separates:

• The template from the first output operand

• The last output operand from the first input operand

• The last input operand from the clobbered registers

• A space must be placed between adjacent colon field delimiters in
order to avoid a clash with the C++ “::” reserved global resolution
operator.

CrossCore Embedded Studio 1.0 1-197
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

• A comma separates operands and registers within arguments.

• The number of operands in arguments must match the number of
operands in your template.

• The maximum permissible number of operands is ten (%0, %1, %2,
%3, %4, %5, %6, %7, %8, and %9).

 The compiler cannot check whether the operands have data types
that are reasonable for the instruction being executed. The com-
piler does not parse the assembler instruction template, does not
interpret the template, and does not verify whether the template
contains valid input for the assembler.

asm() Construct Template Example

The following example shows how to apply the asm() construct template
to the Blackfin assembly language assignment instruction.

{

int result, x;

...
asm (

"%0=%1;" :

"=d" (result) :

"d" (x)

);

}

C/C++ Compiler Language Extensions

1-198 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

In the example above, note that:

• The template is "%0=%1;". The %0 is replaced with operand zero
(result). The first operand, %1, is replaced with operand one (x).

• The output operand is the C/C++ variable result. The letter d is
the operand constraint for the variable. This constrains the output
to a data register, R{0-7}. The compiler generates code to copy the
output from the data register to the variable result, if necessary.
The = in =d indicates that the operand is an output.

• The input operand is the C/C++ variable x. The letter d in the
operand constraint position for this variable constrains x to a data
register, R{0-7}. If x is stored in a different kind of register or in
memory, the compiler generates code to copy the value into a data
register before the asm() construct uses it.

Assembly Construct Operand Description

The second and third arguments to the asm() construct describe the
operands in the assembly language template. Several pieces of information
must be conveyed for the compiler to know how to assign registers to
operands. This information is conveyed with an operand constraint. The
compiler needs to know what kind of registers the assembly instructions
can operate on, so it can allocate the correct register type.

You convey this information with a letter in the operand constraint string
that describes the class of allowable registers.

Table 1-26 describes the correspondence between constraint letters and
register classes.

 The use of any letter not listed in Table 1-26 results in unspecified
behavior. The compiler does not check the validity of the code by
using the constraint letter.

CrossCore Embedded Studio 1.0 1-199
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

To assign registers to the operands, the compiler must also be informed of
which operands in an assembly language instruction are inputs, which are
outputs, and which outputs may not overlap inputs. The compiler is told
this in three ways.

• The output operand list appears as the first argument after the
assembly language template. The list is separated from the assembly
language template with a colon. The input operands are separated
from the output operands with a colon and they always follow the
output operands.

• The operand constraints describe which registers are modified by
an assembly language instruction. The “=” in =constraint indi-
cates that the operand is an output; all output operand constraints
must use =. Operands that are input-outputs must use “+”. (See
below.)

• The compiler may allocate an output operand in the same register
as an unrelated input operand, unless the output or input operand
has the &= constraint modifier. This situation can occur because the
compiler assumes the inputs are consumed before the outputs are
produced.

This assumption may be false if the assembler code actually consists
of more than one instruction. In such a case, use &= for each output
operand that must not overlap an input or supply an & for the
input operand.

Operand constraints indicate the kind of operand they describe by means
of preceding symbols. Preceding symbols include: no symbol, =, +, &, ?,
and #.

• (no symbol)
The operand is an input. It must appear as part of the third
argument to the asm() construct. The allocated register is loaded
with the value of the C/C++ expression before the asm() template

C/C++ Compiler Language Extensions

1-200 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

is executed. Its C/C++ expression is not modified by the asm()
construct, and its value may be a constant or literal.
Example: d

• = symbol
The operand is an output. It must appear as part of the second
argument to the asm() construct. Once the asm() template has
been executed, the value in the allocated register is stored into the
location indicated by its C/C++ expression; therefore, the expres-
sion must be one that would be valid as the left-hand side of an
assignment.
Example: =d

• + symbol
The operand is both an input and an output. It must appear as part
of the second argument to the asm() construct. The allocated regis-
ter is loaded with the C/C++ expression value, the asm() template
is executed, and then the allocated register’s new value is stored
back into the C/C++ expression. Therefore, as with pure outputs,
the C/C++ expression must be one that is valid on the left-hand
side of an assignment.
Example: +d

• ? symbol
The operand is temporary. It must appear as part of the third
argument to the asm() construct. A register is allocated as working
space for the duration of the asm() template execution. The regis-
ter’s initial value is undefined, and the register’s final value is
discarded. The corresponding C/C++ expression is not loaded into
the register, but must be present. This expression is normally
specified using a literal zero.
Example: ?d

• & symbol
This operand constraint may be applied to inputs and outputs.
It indicates that the register allocated to the input (or output) may

CrossCore Embedded Studio 1.0 1-201
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

not be one of the registers that are allocated to the outputs
(or inputs). This operand constraint is used when one or more
output registers are set while one or more inputs are yet to be
referenced. (This situation sometimes occurs if the asm() template
contains more than one instruction.)
Example: &d

• # symbol
The operand is an input, but the register’s value is clobbered by the
asm() template execution. The compiler may make no assumptions
about the register’s final value. An input operand with this con-
straint will not be allocated the same register as any other input or
output operand of the asm(). The operand must appear as part of
the second argument to the asm() construct.
Example: #d

Table 1-26 lists the registers that may be allocated for each register con-
straint letter. The use of any letter not listed in the “Constraint” column
of this table results in unspecified behavior. The compiler does not check
the validity of the code by using the constraint letter. Table 1-27 lists the
registers that may be named as part of the clobber list.

It is also possible to claim registers directly, instead of requesting a register
from a certain class using the constraint letters. You can claim the registers
directly by simply naming the register in the location where the class letter
would be. The register names are the same as those used to specify the
clobber list; see Table 1-27.

The following example loads sum into A0, loads x and y into two DREG
halves, executes the operation, and then stores the new total from A0 back
into sum.

asm("%0 += %1 * %2;"

:"+a0"(sum) /* output */

:"H"(x),"H"(y) /* input */

);

C/C++ Compiler Language Extensions

1-202 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

 Naming registers in this way allows the asm() construct to specify
several registers that must be related, such as the DAG registers for a
circular buffer. This also allows the use of registers not covered by
the register classes accepted by the asm() construct.

Table 1-26. asm() Operand Constraints

Constraint Register Type Registers

a General addressing registers P0 — P5

p General addressing registers P0 — P5

i DAG addressing registers I0 — I3

b DAG addressing registers I0 — I3

d General data registers R0 — R7

r General data registers R0 — R7

D General data registers R0 — R7

A Accumulator registers A0, A1

e Accumulator registers A0, A1

f Modifier registers M0 — M3

E Even general data registers R0,R2,R4,R6

O Odd general data registers R1,R3,R5,R7

h High halves of the general data registers R0.H,R1.H...R7.H

l Low halves of the general data registers R0.L,R1.L...R7.L

H Low or high halves of the general data registers R0.L,R1.L...R7.L

L Loop counter registers LC0,LC1

I General data register pairs (R0-R1), (R2-R3),
(R4-R5), (R6-R7)

n None (For more information, see Assembly Con-
structs With Compile-Time Constants.)

constraint Indicates the constraint is an input operand

=constraint Indicates the constraint is applied to an output
operand

CrossCore Embedded Studio 1.0 1-203
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

&constraint Indicates the constraint is applied to an input
operand that may not be overlapped with an out-
put operand

=&constraint Indicates the constraint is applied to an output
operand that may not overlap an input operand

?constraint Indicates the constraint is temporary

+constraint Indicates the constraint is both an input and out-
put operand

#constraint Indicates the constraint is an input operand
whose value will be changed

Table 1-27. Register Names for asm() Constructs

Clobber String Meaning

"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" General data register

"p0", "p1", "p2", "p3", "p4", "p5" General addressing register

"i0", "i1", "i2", "i3" DAG addressing register

"m0", "m1", "m2", "m3" Modify register

"b0", "b1", "b2", "b3" Base register

"l0", "l1", "l2", "l3" Length register

"astat" ALU status register

"seqstat" Sequencer status register

"rets" Subroutine address register

"cc" Condition code register

"a0", "a1" Accumulator result register

"lc0", "lc1" Loop counter register

"r1:0", "r3:2", "r5:4", "r7:6" General data register pair

"memory" Unspecified memory location(s)

Table 1-26. asm() Operand Constraints (Cont’d)

Constraint Register Type Registers

C/C++ Compiler Language Extensions

1-204 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Using long long Types in asm Constraints

It is possible to use an asm() constraint to specify a long long value, in
which case the compiler will claim a valid register pair. The syntax for
operands within the template is extended to allow the suffix “H” for the
top 32 bits of the operand and the suffix “L” for the bottom 32 bits of the
operand. A long long type is represented by the constraint letter “I”.

For example,

long long int res;

int main(void) {

long long result64, x64 = 123;

asm(

"%0H = %1H; %0L = %1L;" :

"=I" (result64) :

"I" (x64)

);

res = result64;

}

In this example, the template is “%0H=%1H; %0L=%1L;”. The %0H is replaced
with the register containing the top 32 bits of operand zero (result64),
and %0L is replaced with the register containing the bottom 32 bits of
operand zero (result64). Similarly, %1H and %1L are replaced with the
registers containing the top 32 bits and bottom 32 bits, respectively, of
operand one (x64).

Assembly Constructs With Multiple Instructions

There can be many assembly instructions in one template. Normal rules
for line-breaking apply. In particular, the statement may spread over
multiple lines. You are recommended not to split a string over more than
one line, but to use the C language’s string concatenation feature.

CrossCore Embedded Studio 1.0 1-205
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

If you are placing the inline assembly statement in a preprocessor macro,
see Compound Macros.

This is an example of multiple instructions in a template:

/* (pseudo code) r7 = x; r6 = y; result = x + y; */

asm ("r7=%1;"

"r6=%2;"

"%0=r6+r7;"

: "=d" (result) /* output */

: "d" (x), "d" (y) /* input */

: "r7", "r6"); /* clobbers */

 Do not attempt to produce multiple-instruction asm constructs via
a sequence of single-instruction asm constructs, as the compiler is
not guaranteed to maintain the ordering.

For example, avoid the following:

/* BAD EXAMPLE: Do not use sequences of single-instruction

** asms. Use a single multiple-instruction asm instead. */

asm("r7=%0;" : : "d" (x) : "r7");

asm("r6=%0;" : : "d" (y) : "r6");

asm("%0=r6+r7;" : "=d" (result));

Assembly Construct Reordering and Optimization

For the purpose of optimization, the compiler assumes that the side effects
of an asm() construct are limited to changes in the output operands or the
items specified using the clobber specifiers. This does not mean that you
cannot use instructions with side effects, but be careful to notify the com-
piler that you are using them by using the clobber specifiers. (See
Table 1-27.)

The compiler may eliminate supplied assembly instructions (if the output
operands are not used), move them out of loops, or reorder them with

C/C++ Compiler Language Extensions

1-206 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

respect to other statements, where there is no visible data dependency.
Also, if the instruction has a side effect on a variable that otherwise
appears not to change, the old value of the variable may be reused later if
it happens to be found in a register.

Use the keyword volatile to prevent an asm() instruction from being
moved or deleted. For example,

#define set_priority(x) \

asm volatile ("STI %0;": /* no outs */ : "d" (x))

A sequence of asm volatile() constructs is not guaranteed to be com-
pletely consecutive; it may be moved across jump instructions or in other
ways that are not significant to the compiler. To force the compiler to
keep the output consecutive, use one asm volatile() construct only, or
use the output of the asm() construct in a C/C++ statement.

Assembly Constructs With Input and Output Operands

When an asm construct has both inputs and outputs, there are two aspects
to consider:

1. Whether a value read from an input variable will be written back to
the same variable or a different variable, on output.

2. Whether the input and output values will reside in the same regis-
ter or different registers.

The most common case is when both input and output variables and
input and output registers are different. In this case, the asm construct
reads from one variable into a register, performs an operation which leaves
the result in a different register, and writes that result from the register
into a different output variable.

asm("%0 = %1;" : "=p" (newptr) : "p" (oldptr));

CrossCore Embedded Studio 1.0 1-207
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

When the input and output variables are the same, the input and output
registers are usually the same register. In this case, use the “+” constraint.

asm("%0 += 4;" : "+p" (sameptr));

When the input and output variables are different, but the input and out-
put registers have to be the same (usually because of requirements of the
assembly instructions), you indicate this to the compiler by using a differ-
ent syntax for the input’s constraint. Instead of specifying the register or
class to be used, specify the output to which the input must be matched.

For example,

asm("%0 += 4;"

:"=p" (newptr) // an output, given a preg,

// stored into newptr.

:"0" (oldptr)); // an input, given same reg as %0,

// initialized from oldptr

This specifies that the input oldptr has 0 (zero) as its constraint string,
which means it must be assigned the same register as %0 (newptr).

Assembly Constructs With Compile-Time Constants

The n input constraint informs the compiler that the corresponding input
operand should not have its value loaded into a register. Instead, the com-
piler is to evaluate the operand, and then insert the operand’s value into
the assembly command as a literal numeric value. The operand must be a
compile-time constant expression.

For example,

int r; int arr[100];

asm("%0 = %1;" : "=d" (r) : "d" (sizeof(arr))); // "d"

constraint

C/C++ Compiler Language Extensions

1-208 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

produces code like:

R0 = 400 (X); // compiler loads value into register

R1 = R0; // compiler replaces %1 with register

whereas:

int r; int arr[100];

asm("%0 = %1;" : "=d" (r) : "n" (sizeof(arr))); // "n"

constraint

produces code like:

R1 = 400; // compiler replaces %1 with value

If the expression is not a compile-time constant, the compiler gives an
error:

int r; int arr[100];

asm("%0 = %1;" : "=d" (r) : "n" (arr));

// error: operand

// for "n" constraint

// must be a compile-time constant

Assembly Constructs and Flow Control

 Do not place flow-control operations within an asm() construct
that “leaves” the asm() construct, such as calling a procedure or
performing a jump to another piece of code that is not within the
asm() construct itself. Such operations are invisible to the com-
piler, may result in multiple-defined symbols, and may violate
assumptions made by the compiler.

For example, the compiler is careful to adhere to the calling conventions
for preserved registers when making a procedure call. If an asm() construct
calls a procedure, the asm() construct must also ensure that all

CrossCore Embedded Studio 1.0 1-209
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

conventions are obeyed, or the called procedure may corrupt the state
used by the function containing the asm() construct.

It is also inadvisable to use labels in asm() statements, especially when
function inlining is enabled. If a function containing such asm statements
is inlined more than once in a file, there will be multiple definitions of the
label, resulting in an assembler error. If possible, use PC-relative jumps in
asm statements.

Guidelines for Using asm() Statements

Certain operations are performed more efficiently using other compiler
features, and result in source code that is more clear and easier to read.

Accessing System Registers

System registers are accessed most efficiently using the functions in
sysreg.h instead of using asm() statements (see also System Built-In
Functions).

Accessing Memory-Mapped Registers (MMRs)

MMRs can be accessed using the macros in the cdef*.h files (for example,
cdefBF531.h) that are supplied with CCES (see also Memory-Mapped
Register Access Built-In Functions).

Memory Banks
By default, the compiler assumes that all memory may be accessed with
equal performance, but this is not always the case: some parts of your
application may be in faster internal memory, and other parts in slower,
external memory. The compiler supports the concept of memory banks to
group code or data with equivalent performance characteristics. By pro-
viding this information to the compiler, you can improve the performance
of your application.

C/C++ Compiler Language Extensions

1-210 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Memory Banks Versus Sections

Note that memory banks are different from sections:

• Section is a “hard” directive, using a name that is meaningful to the
linker. If the .ldf file does not map the named section, a linker
error occurs.

• A memory bank is a “soft” informational characterization, using a
name that is not visible to the linker. The compiler uses optimiza-
tion to take advantage of the bank’s performance characteristics.
However, if the .ldf file maps the code or data to memory that
performs differently, the application still functions (albeit with a
possible reduction in performance).

Pragmas and Qualifiers

Memory banks may be referenced through both memory bank pragmas
and memory bank qualifiers:

• Use memory bank pragmas to specify the memory banks used by
all the code or data of a function. For example:

#pragma data_bank(bank_external)

int *getptr(void) { return ptr2; }

• Use memory bank qualifiers to specify the memory bank referenced
by individual variables. For example:

int bank("bank_internal") *ptr1;

int bank("bank_external") *ptr2;

Memory Bank Selection

The compiler applies the following process for determine which bank is
being referenced.

CrossCore Embedded Studio 1.0 1-211
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Memory Banks for Code

The compiler uses the following process for deducing the memory bank
which contains instructions:

1. If the function is immediately preceded by #pragma
code_bank(bank), then the function’s instructions are considered
to reside in memory bank bank.

2. If the function is immediately preceded by #pragma code_bank or
#pragma code_bank(), then the function’s instructions are not con-
sidered to reside in any defined memory bank.

3. Otherwise, if #pragma default_code_bank(defbank) has been used
in the compilation unit prior to the definition of the function, the
function’s instructions are considered to reside in memory bank
defbank.

4. Otherwise, the function’s instructions are not considered to reside
in any defined memory bank.

For more information, see #pragma code_bank(bankname).

Memory Banks for Data

The compiler uses the following process for deducing which memory bank
contains variables that are auto storage class:

1. If the variable declaration includes a memory bank qualifier, for
example,

int bank(“bank”) x;

then the variable will be considered to reside in bank bank.

2. Otherwise, if the function is immediately preceded by #pragma
stack_bank(bank), then the variable is considered to reside in
memory bank bank.

C/C++ Compiler Language Extensions

1-212 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

3. Otherwise, if the function is immediately preceded by #pragma
stack_bank or #pragma stack_bank(), then the variable is not con-
sidered to reside in any memory bank.

4. Otherwise, if #pragma default_stack_bank(defbank) has been
used in the compilation unit prior to the definition of the function,
the variable is considered to reside in memory bank defbank.

5. Otherwise, the variable is not considered to reside in any defined
memory bank.

For more information, see #pragma stack_bank(bankname).

The compiler uses the following process for selecting the memory bank to
contain static variables defined within a function:

1. If the variable declaration includes a memory bank qualifier, for
example,

static int bank(“bank”) x;

then the variable will be considered to reside in bank bank.

2. Otherwise, if the function is immediately preceded by #pragma
data_bank(bank), then the variable is considered to reside in mem-
ory bank bank.

3. Otherwise, if the function is immediately preceded by #pragma
data_bank or #pragma data_bank(), then the variable is not con-
sidered to reside in any memory bank.

4. Otherwise, if #pragma default_data_bank(defbank) has been used
in the compilation unit prior to the definition of the function, the
variable is considered to reside in memory bank defbank.

5. Otherwise, the variable is not considered to reside in any defined
memory bank.

For more information, see #pragma data_bank(bankname).

CrossCore Embedded Studio 1.0 1-213
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

The compiler uses the following process for selecting the memory bank to
contain variables defined at global scope:

1. If the variable declaration includes a memory bank qualifier, for
example,

int bank(“bank”) x;

then the variable will be considered to reside in bank bank.

2. Otherwise, if #pragma default_data_bank(defbank) has been used
in the compilation unit prior to the definition of the variable, the
variable is considered to reside in memory bank defbank.

3. Otherwise, the variable is not considered to reside in any defined
memory bank.

The identified memory bank is used for pointer dereferences. For
example:

#pragma data_bank(bank_external)

int f(int *a, int *b) {

 return *a + *b; // *a and *b both considered to be

} // loads from “bank_external”

For more information, see #pragma default_data_bank(bankname).

C/C++ Compiler Language Extensions

1-214 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Performance Characteristics

You can specify the performance characteristics of a memory bank. This
will allow the compiler to generate optimal code when accessing the bank.
You can specify the following characteristics:

• Cycles required to read the memory bank. Use #pragma
bank_read_cycles(bankname, cycles[, bits]) to specify this
characteristic.

• Cycles required to write the memory bank. Use #pragma
bank_write_cycles(bankname, cycles[, bits]) to specify this
characteristic.

• The maximum bit width supported by accesses to the memory
bank. Use #pragma bank_maximum_width(bankname, width) to
specify this characteristic.

Memory Bank Kinds

Each memory bank has a defined kind. The memory bank kinds sup-
ported on Blackfin processors are listed in Table 1-28. Not all kinds are
available on all processors.

Table 1-28. Memory Bank Kinds

Kind Meaning

internal Corresponds to L1 Instr SRAM

L2 Corresponds to on-processor, off-core memory.

L2_cached Corresponds to on-processor, off-core memory that is cached in L1.

external Corresponds to memory that is external to the processor.

external_cached Corresponds to memory that is external to the processor, but cached in L1.

CrossCore Embedded Studio 1.0 1-215
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Predefined Banks

The compiler predefines a memory bank for each supported memory bank
kind, using the same name but with a “bank_” prefix. For example, the fol-
lowing uses the internal and external memory banks:

#pragma code_bank("bank_external")

int next_counter(void) {

 static int bank("bank_internal") counter;

 return counter++;

}

These predefined memory banks have predefined performance characteris-
tics, such as read and write cycle counts, that are appropriate for the kind
of memory. You can override these performance characteristics via prag-
mas. For more information, see Memory Bank Pragmas.

The memory bank kinds are listed in Table 1-28.

Defining Additional Banks

New memory banks are defined when first used, whether this happens in a
memory bank pragma, or in a memory bank qualifier. When created,
memory banks have kind internal, unless otherwise specified by #pragma
memory_bank_kind.

The compiler does not attach any significance to the name of any new
memory banks you create.

Placement Support Keyword (section)
The section() keyword directs the compiler to place an object or func-
tion in an assembly .SECTION of the compiler’s intermediate output file.
You name the assembly .SECTION with the string literal parameter of the
section() keyword. If you do not specify a section() keyword for an
object or function declaration, the compiler uses a default section.

C/C++ Compiler Language Extensions

1-216 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The .ldf file supplied to the linker must also be updated to support the
additional named section. For information on the default sections, see
Memory Section Usage.

Applying section() is meaningful only when the data item is something
that the compiler can place in the named section. Apply section() only to
top-level, named objects that have static duration (for example, objects
that are explicitly static, or are given as external-object definitions).

The following example shows the definition of a static variable that is
placed in the section called bingo.

static section("bingo") int x;

The section() keyword has the limitation that section initialization qual-
ifiers cannot be used within the section name string. The compiler may
generate labels containing this string, which will result in assembly syntax
errors. Additionally, the keyword is not compatible with any pragmas that
precede the object or function. For finer control over section placement
and compatibility with other pragmas, use #pragma section.

Refer to #pragma section/#pragma default_section for more information.

 The section keyword replaces the segment keyword in earlier
releases of the compiler. Although the segment() keyword is
supported by the compiler of the current release, Analog Devices
recommends that you revise legacy code.

Placement of Compiler-Generated Code and
Data

If the section() keyword is not used, the compiler emits code and data
into default sections. The -section switch (on page 1-82) can be used to
specify alternatives for these defaults on the command-line, and the
#pragma section/#pragma default_section can be used to specify alterna-
tives for some of them within the source file.

CrossCore Embedded Studio 1.0 1-217
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

In addition, when using certain features of C/C++, the compiler may be
required to produce internal data structures. The -section switch and the
default_section pragma allow you to override the default location where
the data would be placed.

For example, the following command instructs the compiler to place all
the C++ virtual function look-up tables into the vtbl_data section, rather
than the default vtbl section.

ccblkfn -section vtbl=vtbl_data test.cpp -c++

 It is the user’s responsibility to ensure that appropriately named
sections exist in the .ldf file.

When both -section switches and default_section pragmas are used, the
default_section pragmas take priority.

Long Identifiers
The compiler supports C identifiers of up to 1022 characters in length;
C++ identifiers typically have a slightly shorter limit, as the limit applies
to the identifier after name mangling is used to transform it into a suitable
symbol for linking, and for C++, some of the symbol space is required to
represent the identifier’s type.

Compiler Built-In Functions
The compiler supports built-in functions (sometimes called intrinsics) that
enable efficient use of hardware resources. These functions are:

• builtins.h

• Fractional Value Built-In Functions

• ETSI Support

• fract16 and fract32 Literal Values

C/C++ Compiler Language Extensions

1-218 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• Converting Between Fractional and Floating-Point Values

• Complex Fractional Built-In Functions in C

• Changing the RND_MOD Bit

• Complex Operations in C++

• Packed 16-Bit Integer Built-In Functions

• Division Functions

• Full-Precision Accumulator Built-In Functions

• Viterbi History and Decoding Functions

• Search Built-in Functions

• Circular Buffer Built-In Functions

• Endian-Swapping Intrinsics

• System Built-In Functions

• Cache Built-In Functions

• Compiler Performance Built-In Functions

• Video Operation Built-In Functions

• Misaligned Data Built-In Functions

• Memory-Mapped Register Access Built-In Functions

Knowledge of these functions is built into the ccblkfn compiler. Your
program uses them via normal function call syntax. The compiler notices
the invocation and generates one or more machine instructions, just as it
does for normal operators, such as + and *.

CrossCore Embedded Studio 1.0 1-219
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Built-in functions have names that begin with __builtin_. Note that
identifiers beginning with double underscores (__) are reserved by the C
standard, so these names will not conflict with user program identifiers.

These functions are specific to individual architectures, and the following
sections list built-in functions currently supported on Blackfin processors.
Various system header files provide definitions and access to the intrinsics
as described below.

builtins.h

The builtins.h header file defines prototypes for all built-in functions
supported by the compiler; include this header file in any module that
invokes a built-in function.

The header file also defines short names for each built-in function: for
each built-in function __builtin_func(), the header file defines the short
name func(). These short names can be disabled selectively or en masse, by
defining macros prior to include the header file. Table 1-29 lists these
macros.

Table 1-29. Macros Controlling builtins.h

Macro name Effect

__NO_SHORTNAMES If defined, prevents any short names from being defined.

__SPECIFIC_NAMES If defined, short name func will only be defined if corre-
sponding macro __ENABLE_FUNC is defined.

__ENABLE_FUNC Causes short name func to be defined, if
__SPECIFIC_NAMES is also defined.

__DISABLE_FUNC Prevents short name func from being defined.

__DEFINED_FUNC Multiple-inclusion guard. The header file defines this
macro when it defines short name func, but will not
define short name func if this macro is already defined.

C/C++ Compiler Language Extensions

1-220 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Fractional Value Built-In Functions

Two approaches may be used to access the fractional arithmetic and the
parallel 16-bit operations supported by the Blackfin processor instruc-
tions. One is to use the native fixed-point types fract and accum. This
approach is discussed in Using Native Fixed-Point Types. Alternatively,
built-in functions may be used to specify fractional operations. This sec-
tion discusses the use of these built-in functions.

The various data types used in the built-in functions described in this sec-
tion are defined (See Table 1-32).

 See Data Storage Formats for information on how fract16,
fract32, fract, long fract, and fract2x16 types are represented.
See the Blackfin Processor Programming Reference for information
on saturation, rounding (biased and unbiased), and truncating.

Because fractional arithmetic uses slightly different instructions to normal
arithmetic, you cannot normally use the standard C operators on the
fract16 and fract32 data types and get the right result. Instead, use the
built-in functions described here to work with fractional data.

Table 1-30. Fractional Value Data Types

C type Usage

fract16 Single 16-bit signed fractional value, typedef to short

fract32 Single 32-bit signed fractional value, typedef to long

fract Single 16-bit signed fractional value, native type

long fract Single 32-bit signed fractional value, native type

fract2x16 Double 16-bit signed fractional value

dpf16 Part of a 32-bit dpf32 value.

dpf32 A 32-bit value composed from two dpf16 values, hi and lo:
dpf32 = (hi<<16) + (lo<<1)

CrossCore Embedded Studio 1.0 1-221
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

The fract.h header file provides access to the definitions for each of the
built-in functions that support fractional values. These functions have
names with suffixes _fr1x16 for single fract16, _fr2x16 for dual fract16,
and _fr1x32 for single fract32. All the functions in fract.h are marked as
inline, so when compiling with the compiler optimizer, the built-in func-
tions are inlined.

 The 16-bit fractional shift built-in functions without “_clip” in
the name ignore all but the least significant five bits of the shift
magnitude. The 32-bit fractional shift built-in functions without
“_clip” in the name ignore all but the least significant 6 bits of the
shift magnitude. The _clip variants of these built-in functions
automatically clip the shift magnitude to within a 5- or 6-bit range.

For example, where a 5-bit (-16..+15) range is required, the
“_clip” variants would clip the value +63 to be +15, while the
non-“_clip” variant would discard the upper bits and interpret
bit 5 as the sign bit, giving a value of -1. To avoid unexpected
results, use the “_clip” variants of the functions unless the shift
magnitude is known to be within the 5- or 6-bit range.

See 16-Bit Fractional Built-In Functions for descriptions of built-in
functions that work primarily with fract16 data. See 32-Bit Fractional
Built-In Functions for descriptions of built-in functions that work primar-
ily with fract32 data.

See fract2x16 Built-In Functions for descriptions of built-in functions
that work primarily with fract2x16 data. Note that when compiling pro-
grams that use the single data fract16 operations, the compiler optimizer
attempts to automatically detect cases where parallel operations can be
performed. In other words, re-coding an algorithm to make explicit use of
fract2x16 built-in functions in place of the fract1x16 ones does not
always yield a performance benefit.

C/C++ Compiler Language Extensions

1-222 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See ETSI Support for information on mapping the European Telecommu-
nications Standards Institute (ETSI) fract functions onto the compiler
built-in functions.

16-Bit Fractional Built-In Functions

All the built-in functions described here are saturating unless otherwise
stated. These built-ins operate primarily on the fract16 and fract types
although one of the multiplies returns a fract32.

The following built-in functions are available.

fract16 add_fr1x16(fract16 f1,fract16 f2)

fract add_fx1x16(fract f1,fract f2)

Performs 16-bit addition of the two input parameters (f1+f2). The fract
version is included for completeness only; it is exactly equivalent to the +
operator on fract types.

fract16 sub_fr1x16(fract16 f1,fract16 f2)

fract sub_fx1x16(fract f1,fract f2)

Performs 16-bit subtraction of the two input parameters (f1-f2). The
fract version is included for completeness only; it is exactly equivalent to
the - operator on fract types.

fract16 mult_fr1x16(fract16 f1,fract16 f2)

fract mult_fx1x16(fract f1,fract f2)

Performs 16-bit multiplication of the input parameters (f1*f2).
The result is truncated to 16 bits. The fract version is exactly equivalent
to the * operator on fract types in the truncation rounding mode.

CrossCore Embedded Studio 1.0 1-223
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

fract16 multr_fr1x16(fract16 f1,fract16 f2)

fract multr_fx1x16(fract f1,fract f2)

Performs a 16-bit fractional multiplication (f1*f2) of the two input
parameters. The result is rounded to 16 bits. Whether the rounding is
biased or unbiased depends on what the RND_MOD bit in the ASTAT register
is set to. The fract version is exactly equivalent to the * operator on fract
types when the biased or unbiased rounding mode is used.

fract32 mult_fr1x32(fract16 f1,fract16 f2)

long fract mult_fx1x32(fract f1,fract f2)

Performs a fractional multiplication on two 16-bit fractions, returning the
32-bit result. The fract version is included for completeness only; it is
exactly equivalent to writing (long fract)f1 * (long fract)f2.

fract16 abs_fr1x16(fract16 f1)

fract abs_fx1x16(fract f1)

Returns the 16-bit value that is the absolute value of the input parameter.
Where the input is 0x8000, saturation occurs and 0x7fff is returned. The
fract version is included for completeness only; it is exactly equivalent to
the absr function.

fract16 min_fr1x16(fract16 f1, fract16 f2)

fract min_fx1x16(fract f1, fract f2)

Returns the minimum of the two input parameters.

C/C++ Compiler Language Extensions

1-224 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fract16 max_fr1x16(fract16 f1, fract16 f2)

fract max_fx1x16(fract f1, fract f2)

Returns the maximum of the two input parameters.

fract16 negate_fr1x16(fract16 f1)

fract negate_fx1x16(fract f1)

Returns the 16-bit result of the negation of the input parameter (-f1).
If the input is 0x8000, saturation occurs and 0x7fff is returned. The fract
version is included for completeness only; it is exactly equivalent to writ-
ing -f1.

fract16 shl_fr1x16(fract16 src, short shft)

fract shl_fx1x16(fract src, short shft)

Arithmetically shifts the src variable left by shft places. The empty bits
are zero-filled. If shft is negative, the shift is to the right by abs(shft)
places with sign extension.

fract16 shl_fr1x16_clip(fract16 src, short shft)

fract shl_fx1x16_clip(fract src, short shft)

Arithmetically shifts the src variable left by shft (clipped to 5 bits) places.
The empty bits are zero filled. If shft is negative, the shift is to the right
by abs(shft) places with sign extension.

CrossCore Embedded Studio 1.0 1-225
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

fract16 shr_fr1x16(fract16 src, short shft)

fract shr_fx1x16(fract src, short shft)

Arithmetically shifts the src variable right by shft places with sign
extension. If shft is negative, the shift is to the left by abs(shft) places,
and the empty bits are zero-filled.

fract16 shr_fr1x16_clip(fract16 src, short shft)

fract shr_fx1x16_clip(fract src, short shft)

Arithmetically shifts the src variable right by shft (clipped to 5 bits)
places with sign extension. If shft is negative, the shift is to the left by
abs(shft) places, and the empty bits are zero-filled.

fract16 shrl_fr1x16(fract16 src, short shft)

fract shrl_fx1x16(fract src, short shft)

Logically shifts the src variable right by shft places. There is no sign
extension and no saturation—the empty bits are zero-filled.

fract16 shrl_fr1x16_clip(fract16 src, short shft)

fract shrl_fx1x16_clip(fract src, short shft)

Logically shifts the src variable right by shft (clipped to 5 bits) places.
There is no sign extension and no saturation—the empty bits are
zero-filled.

C/C++ Compiler Language Extensions

1-226 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

int norm_fr1x16(fract16 f1)

int norm_fx1x16(fract f1)

Returns the number of left shifts required to normalize the input variable
so that it is either in the interval 0x4000 to 0x7fff, or in the interval
0x8000 to 0xc000. In other words,

fract16 x;

shl_fr1x16(x,norm_fr1x16(x));

Returns a value in the range 0x4000 to 0x7fff, or in the range
0x8000 to 0xc000, except in the special case where x is zero. The
fract version is equivalent to the countlsr function.

32-Bit Fractional Built-In Functions

All the built-in functions described here are saturating unless otherwise
stated. These built-in functions operate primarily on the fract32 and long
fract types, although there are a couple of functions that convert between
16- and 32-bit fractional types.

fract32 add_fr1x32(fract32 f1,fract32 f2)

long fract add_fx1x32(long fract f1,long fract f2)

Performs 32-bit addition of the two input parameters (f1+f2). The long
fract version is included for completeness only; it is exactly equivalent to
the + operator on long fract types.

fract32 sub_fr1x32(fract32 f1,fract32 f2)

long fract sub_fx1x32(long fract f1,long fract f2)

Performs 32-bit subtraction of the two input parameters (f1-f2). The
long fract version is included for completeness only; it is exactly
equivalent to the - operator on long fract types.

CrossCore Embedded Studio 1.0 1-227
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

fract32 mult_fr1x32x32(fract32 f1,fract32 f2)

long fract mult_fx1x32x32(long fract f1,long fract f2)

Performs 32-bit multiplication of the input parameters (f1*f2).
The result (which is calculated internally with an accuracy of 40 bits) is
rounded (biased rounding) to 32 bits. You might also consider using the *
operator on the long fract type in biased rounding mode. This provides
better rounding precision and may offer comparable performance.

fract32 multr_fr1x32x32(fract32 f1,fract32 f2)

long fract multr_fx1x32x32(long fract f1,long fract f2)

Same as mult_fr1x32x32 and mult_fx1x32x32 but with additional round-
ing precision. You might also consider using the * operator on the long
fract type in biased rounding mode, which offers comparable perfor-
mance. The results may differ in the rounding performed.

fract32 mult_fr1x32x32NS(fract32 f1, fract32 f2)

long fract mult_fx1x32x32NS(long fract f1, long fract f2)

Performs 32-bit non-saturating multiplication of the input parameters
(f1*f2). This is somewhat faster than mult_fr1x32x32 or mult_fx1x32x32.
The result (which is calculated internally with an accuracy of 40 bits) is
rounded (biased rounding) to 32 bits. You might also consider using the *
operator on the long fract type in biased rounding mode. This performs
a saturating multiplication and gives a more precisely-rounded result at
some cost of efficiency.

C/C++ Compiler Language Extensions

1-228 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fract32 abs_fr1x32(fract32 f1)

long fract abs_fx1x32(long fract f1)

Returns the 32-bit value that is the absolute value of the input parameter.
Where the input is 0x80000000, saturation occurs and 0x7fffffff is
returned. The long fract version is included for completeness only; it is
exactly equivalent to the abslr function.

fract32 min_fr1x32(fract32 f1, fract32 f2)

long fract min_fx1x32(long fract f1, long fract f2)

Returns the minimum of the two input parameters

fract32 max_fr1x32(fract32 f1, fract32 f2)

long fract max_fx1x32(long fract f1, long fract f2)

Returns the maximum of the two input parameters

fract32 negate_fr1x32(fract32 f1)

long fract negate_fx1x32(long fract f1)

Returns the 32-bit result of the negation of the input parameter (-f1).
If the input is 0x80000000, saturation occurs and 0x7fffffff is returned.
The long fract version is included for completeness only; it is exactly
equivalent to writing -f1.

CrossCore Embedded Studio 1.0 1-229
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

fract32 shl_fr1x32(fract32 src, short shft)

long fract shl_fx1x32(long fract src, short shft)

Arithmetically shifts the src variable left by shft places. The empty bits
are zero filled. If shft is negative, the shift is to the right by abs(shft)
places with sign extension.

fract32 shl_fr1x32_clip(fract32 src, short shft)

long fract shl_fx1x32_clip(long fract src, short shft)

Arithmetically shifts the src variable left by shft (clipped to 6 bits) places.
The empty bits are zero filled. If shft is negative, the shift is to the right
by abs(shft) places with sign extension.

fract32 shr_fr1x32(fract32 src, short shft)

long fract shr_fx1x32(long fract src, short shft)

Arithmetically shifts the src variable right by shft places with sign exten-
sion. If shft is negative, the shift is to the left by abs(shft) places, and
the empty bits are zero-filled.

fract32 shr_fr1x32_clip(fract32 src, short shft)

long fract shr_fx1x32_clip(long fract src, short shft)

Arithmetically shifts the src variable right by shft (clipped to 6 bits)
places with sign extension. If shft is negative, the shift is to the left by
abs(shft) places, and the empty bits are zero-filled.

C/C++ Compiler Language Extensions

1-230 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fract16 sat_fr1x32(fract32 f1)

fract sat_fx1x32(long fract f1)

If f1>0x00007fff, it returns 0x7fff. If f1<0xffff8000, it returns 0x8000.
Otherwise, it returns the lower 16 bits of f1.

fract16 round_fr1x32(fract32 f1)

fract round_fx1x32(long fract f1)

Rounds the 32-bit fract to a 16-bit fract using biased rounding. The
long fract version is equivalent to casting a long fract to fract in
biased rounding mode.

int norm_fr1x32(fract32 f1)

int norm_fx1x32(long fract f1)

Returns the number of left shifts required to normalize the input variable
so that it is either in the interval 0x40000000 to 0x7fffffff, or in the
interval 0x80000000 to 0xc0000000. In other words,

fract32 x;

shl_fr1x32(x,norm_fr1x32(x));

Returns a value in the range 0x40000000 to 0x7fffffff, or in the
range 0x80000000 to 0xc0000000, except in the special case where x
is zero. The long fract version is equivalent to the countlslr
function.

CrossCore Embedded Studio 1.0 1-231
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

fract16 trunc_fr1x32(fract32 f1)

fract trunc_fx1x32(long fract f1)

Returns the top 16 bits of f1—it truncates f1 to 16 bits. The long fract
version is equivalent to casting a long fract to fract in truncation
rounding mode.

fract2x16 Built-In Functions

All built-in functions described here are saturating unless otherwise stated.
These built-ins operate primarily on the fract2x16 type, although there
are composition and decomposition functions for the fract2x16 type,
multiplies that return fract32 and long fract results, and operations on a
single fract2x16 pair that return fract16 and fract types.

The notation used to represent two fract16 or fract values packed into a
fract2x16 is {a,b}, where “a” is the fract16 or fract packed into the
high half, and “b” is the fract16 or fract packed into the low half. A
fract2x16 can be thought of as two fract16s or two fracts as the repre-
sentation of the two types is the same.

fract2x16 compose_fr2x16(fract16 f1, fract16 f2)

fract2x16 compose_fx_fr2x16(fract f1, fract f2)

Takes two 16-bit fractional values, and returns a fract2x16 value.

Input: two fract16 or fract values

Returns: {f1,f2}

C/C++ Compiler Language Extensions

1-232 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fract16 high_of_fr2x16(fract2x16 f)

fract high_of_fx_fr2x16(fract2x16 f)

Takes a fract2x16 and returns the “high half” fract16 or fract.

Input: f{a,b}

Returns: a

fract16 low_of_fr2x16(fract2x16 f)

fract low_of_fx_fr2x16(fract2x16 f)

Takes a fract2x16 and returns the “low half” fract16 or fract

Input: f{a,b}

Returns: b

fract2x16 add_fr2x16(fract2x16 f1,fract2x16 f2)

Adds two packed fracts.

Input: f1{a,b} f2{c,d}

Returns: {a+c,b+d}

fract2x16 sub_fr2x16(fract2x16 f1,fract2x16 f2)

Subtracts two packed fracts.

Input: f1{a,b} f2{c,d}

Returns: {a-c,b-d}

CrossCore Embedded Studio 1.0 1-233
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

fract2x16 mult_fr2x16(fract2x16 f1,fract2x16 f2)

Multiplies two packed fracts. Truncates the results to 16 bits.

Input: f1{a,b} f2{c,d}

Returns: {trunc16(a*c),trunc16(b*d)}

fract2x16 multr_fr2x16(fract2x16 f1,fract2x16 f2)

Multiplies two packed fracts. Rounds the result to 16 bits. Whether the
rounding is biased or unbiased depends on what the RND_MOD bit in the
ASTAT register is set to.

Input: f1{a,b} f2{c,d}

Returns: {round16{a*c},round16{b*d}}

fract2x16 negate_fr2x16(fract2x16 f1)

Negates both 16-bit fracts in the packed fract. If one of the fract16 val-
ues is 0x8000, saturation occurs and 0x7fff is the result of the negation.

Input: f1{a,b}

Returns: {-a,-b}

C/C++ Compiler Language Extensions

1-234 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fract2x16 shl_fr2x16(fract2x16 f1,short shft)

Arithmetically shifts both fract16s in the fract2x16 left by shft places,
and returns the packed result. The empty bits are zero-filled. If shft is
negative, the shift is to the right by abs(shft) places with sign extension.

Input: f1{a,b} shft

Returns: {a<<shft,b<<shft}

fract2x16 shl_fr2x16_clip(fract2x16 f1,short shft)

Arithmetically shifts both fract16s in the fract2x16 left by shft (clipped
to 5 bits) places, and returns the packed result. The empty bits are zero
filled. If shft is negative, the shift is to the right by abs(shft) places with
sign extension.

fract2x16 shr_fr2x16(fract2x16 f1,short shft)

Arithmetically shifts both fract16s in the fract2x16 right by shft places
with sign extension, and returns the packed result. If shft is negative, the
shift is to the left by abs(shft) places and the empty bits are zero-filled.

Input: f1{a,b} shft

Returns: {a>>shft,b>>shft}

CrossCore Embedded Studio 1.0 1-235
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

fract2x16 shr_fr2x16_clip(fract2x16 f1,short shft)

Arithmetically shifts both fract16s in the fract2x16 right by shft
(clipped to 5 bits) places with sign extension, and returns the packed
result. If shft is negative, the shift is to the left by abs(shft) places and
the empty bits are zero-filled.

fract2x16 shrl_fr2x16(fract2x16 f1,short shft)

Logically shifts both fract16s in the fract2x16 right by shft places.
There is no sign extension and no saturation—the empty bits are
zero-filled.

Input: f1{a,b} shft

Returns: {a>>shft,b>>shft} //logical shift

fract2x16 shrl_fr2x16_clip(fract2x16 f1,short shft)

Logically shifts both fract16s in the fract2x16 right by shft places
(clipped to 5 bits). There is no sign extension and no saturation—the
empty bits are zero-filled.

fract2x16 abs_fr2x16(fract2x16 f1)

Returns the absolute value of both fract16s in the fract2x16.

Input: f1{a,b}

Returns: {abs(a),abs(b)}

C/C++ Compiler Language Extensions

1-236 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fract2x16 min_fr2x16(fract2x16 f1,fract2x16 f2)

Returns the minimums of the two pairs of fract16s in the two input
fract2x16s.

Input: f1{a,b} f2{c,d}

Returns: {min(a,c),min(b,d)}

fract2x16 max_fr2x16(fract2x16 f1,fract2x16 f2)

Returns the maximums of the two pairs of fract16s in the two input
fract2x16s.

Input: f1{a,b} f2{c,d}

Returns: {max(a,c),max(b,d)}

fract16 sum_fr2x16(fract2x16 f1)

fract sum_fx_fr2x16(fract2x16 f1)

Performs a sideways addition of the two fract16s or fracts in f1.

Input: f1{a,b}

Returns: a+b

CrossCore Embedded Studio 1.0 1-237
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

fract2x16 add_as_fr2x16(fract2x16 f1,fract2x16 f2)

Performs a vector add/subtract on the two input fract2x16s.

Input: f1{a,b} f2{c,d}

Returns: {a+c,b-d}

fract2x16 add_sa_fr2x16(fract2x16 f1,fract2x16 f2)

Performs a vector subtract/add on the two input fract2x16s.

Input: f1{a,b} f2{c,d}

Returns: {a-c,b+d}

fract16 diff_hl_fr2x16(fract2x16 f1)

fract diff_hl_fx_fr2x16(fract2x16 f1)

Takes the difference (high-low) of the two fract16s or fracts in the
fract2x16.

Input: f1{a,b}

Returns: a-b

C/C++ Compiler Language Extensions

1-238 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fract16 diff_lh_fr2x16(fract2x16 f1)

fract diff_lh_fx_fr2x16(fract2x16 f1)

Takes the difference (low-high) of the two fract16s or fracts in the
fract2x16.

Input: f1{a,b}

Returns: b-a

fract32 mult_ll_fr2x16(fract2x16 f1, fract2x16 f2)

long fract mult_ll_fx_fr2x16(fract2x16 f1, fract2x16 f2)

Cross-over multiplication. Multiplies the low half of f1 with the low half
of f2.

Input: f1{a,b} f2{c,d}

Returns: (fract32) b*d or (long fract) b*d

fract32 mult_hl_fr2x16(fract2x16 f1, fract2x16 f2)

long fract mult_hl_fx_fr2x16(fract2x16 f1, fract2x16 f2)

Cross-over multiplication. Multiplies the high half of f1 with the low half
of f2.

Input: f1{a,b} f2{c,d}

Returns: (fract32) a*d or (long fract) a*d

CrossCore Embedded Studio 1.0 1-239
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

fract32 mult_lh_fr2x16(fract2x16 f1, fract2x16 f2)

long fract mult_lh_fx_fr2x16(fract2x16 f1, fract2x16 f2)

Cross-over multiplication. Multiplies the low half of f1 with the high half
of f2.

Input: f1{a,b} f2{c,d}

Returns: (fract32) b*c or (long fract) b*c

fract32 mult_hh_fr2x16(fract2x16 f1, fract2x16 f2)

long fract mult_hh_fx_fr2x16(fract2x16 f1, fract2x16 f2)

Cross-over multiplication. Multiplies the high half of f1 with the high
half of f2.

Input: f1{a,b} f2{c,d}

Returns: (fract32) a*c or (long fract) a*c

ETSI Support

In addition to the native fixed-point types as defined by the ISO/IEC
draft technical report Technical Report 18037 that the compiler supports
(Using Native Fixed-Point Types), CCES also provides support for a set
of functions that manipulate fixed-point data using operations defined by
the European Telecommunications Standards Institute (ETSI). These
operations (or “macros”) are a set of functions for performing fixed-point,
bit-accurate, arithmetic—they were initially defined by ETSI in 1993 for
the standardization of the half-rate GSM speech code and are also used to
define the GSM enhanced full-rate (EFR) and adaptive multi-rate (AMR)
speech codecs. The ETSI functions supported by CCES are defined in the
header file libetsi.h.

One of the features of the ETSI functions is the support they include to
detect overflow and carry. When overflow or a carry occurs, an ETSI

C/C++ Compiler Language Extensions

1-240 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

function will set one of the appropriate global variables Overflow or
Carry. The global variables are defined in the ETSI library and are
declared in the header file libetsi.h as:

extern int Overflow;

extern int Carry;

The Overflow and Carry flags are sticky which means that the ETSI func-
tions will only set the global variables but will not unset them. It is your
responsibility to ensure the variables are reset between operations.

The default behavior of the ETSI functions is, however, to disable detec-
tion of overflow and carry. This means that more efficient versions of the
functions can be provided, often as inline code that the compiler can
expand and insert directly into the code stream that it generates, thus
avoiding the overheads associated with a function call.

In general, the definition of the ETSI functions assume intermediate
results will be rounded using biased rounding. Some inline versions of the
ETSI functions will therefore be affected by the RND_MOD flag in the
ASTAT register. For bit-exact results, set the RND_MOD flag to provide
biased rounding. For more information, see Changing the RND_MOD
Bit.

If an application wants to enable carry and overflow detection in the ETSI
functions, then it must ensure that the macro __SET_ETSI_FLAGS is
defined before it includes the libetsi.h header file—one way of doing this
is by using the compiler switch -D__SET_ETSI_FLAGS.

CrossCore Embedded Studio 1.0 1-241
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

CCES provides two different versions of the ETSI library:

• libetsi.dlb: this library has been built with support for carry and
overflow detection disabled for optimal performance. This is the
default ETSI library that will be used when linking an application.

• libetsico.dlb: this version of the library has full support for carry
and overflow detection. To link against this library, specify the
compiler switch -letsico. Note that the ETSI functions in this
library are not thread-safe.

If the macro RENAME_ETSI_NEGATE is defined, the ETSI function negate
will be renamed to etsi_negate. This is useful because the C++ Standard
declares a template function called negate (found in the C++ include
functional).

By default, the following ETSI shift functions conform to the ETSI defi-
nition by clipping the second parameter to the size of the first parameter:

fract16 shl (fract16 var1, short var2)

fract16 shr (fract16 var1, short var2)

fract32 L_shl (fract32 L_var1, short var2)

fract32 L_shr (fract32 L_var1, short var2)

If the macro __SET_ETSI_FLAGS is not set to 1 (see above), then faster ver-
sions of these shift functions are available that do not clip the second
parameter and only use the least significant five bits of the second parame-
ter as the shift count. The faster versions will be used if the macro
_ADI_FAST_ETSI is defined, either before including libetsi.h in the
source of the application, or by using the compiler’s -D switch.

C/C++ Compiler Language Extensions

1-242 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The following routines are available in the ETSI library. These routines
are commonly classified into three groups:

• Those that return or primarily operate on 32-bit fractional values
in double-precision format (DPF).

• Those that return or primarily operate on 32-bit fractional values
in 1.31 format.

• Those that return or primarily operate on 16-bit fractional values
in 1.15 format.

32-Bit Fractional ETSI Routines Using Double-Precision Format

Double-precision format (DPF) is represented as:

dpf32 = (hi<<16) + (lo<<1)

where:

• dpf32 is a 32-bit signed integer (typedef’d to fract32, itself a
typedef to int)

• hi and lo are 16-bit signed integers (typedef’d to short)

• hi contains the 16 most-significant bits of a 32-bit fractional value,
and lo contains the next 15 bits as a signed value.

A 32-bit DPF value ranges from 0x80000000 to 0x7ffffffe.

The following two functions, which are defined in libetsi.h, will convert
a dpf32-type value into a fract32, and a fract32 into a dpf32-type value
respectively:

 fract32 dpf32_to_fract32(dfp32 x);
 dpf32 fract32_to_dpf32(fract32 x);

(A call to these functions will compile into a simple assignment
statement.)

CrossCore Embedded Studio 1.0 1-243
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

The ETSI operations that use DPF are:

dpf32 L_Comp(dpf16 hi, dpf16 lo)

Composes a 32-bit value from the given high and low DPF components.
The sign is provided with the low half, and the result is calculated as:

(hi<<16) + (lo<<1);

void L_Extract(dpf32 src, dpf16 *hi, dpft16 *lo)

Extracts low and high halves of a 32-bit value into 16-bit DPF component
values pointed to by the hi and lo parameters. The values calculated are:

*hi = bit16 to bit31 of src

*lo = (src - (hi<<16))>>1

dpf32 Mpy_32(dpf16 hi1, dpf16 lo1, dpf16 hi2, dpf16 lo2)

Performs the multiplication of two 32-bit values, each provided as high
and low DPF components. The result returned is calculated as:

Res = L_mult(hi1, hi2);

Res = L_mac(Res, mult(hi1, lo2), 1);

Res = L_mac(Res, mult(lo1, hi2), 1);

dpf32 Mpy_32_16(dpf16 hi, dpf16 lo, fract16 v)

Multiplies the parameter v, which is a fract16 value, by a 32-bit DPF
value provided as high and low halves, and returns the result as a 32-bit
value.

C/C++ Compiler Language Extensions

1-244 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

dpf32 Div_32(dpf32 L_num, dpf16 denom_hi, dpf16 denom_lo)

Performs a 32-bit fractional division using a 32-bit dividend (L_num) and a
32-bit DPF divisor (denom_hi and denom_lo). Both the dividend and the
divisor must be positive fractional values. Also, the value of the dividend
must be less than the value of the divisor, and the value of the divisor must
not be less than 0x40000000 (which is equivalent to the value 0.5).

The result of Div_32 is accurate to 24 bits of precision.

Use of these functions typically requires fractional data to be converted to
and from DPF. The L_Extract() and L_Comp() functions can be used for
this purpose.

An example that uses these DPF operators follows. The example imple-
ments a 32-bit fractional multiplication (also implemented by the
compiler built-in function mult_fr1x32x32()).

#include <libetsi.h>

fract32 mul32by32_etsi(fract32 a, fract32 b)

{

 dpf32 exp_prec_res;

 dpf16 a_hi, a_lo;

 dpf16 b_hi, b_lo;

 fract32 res;

 /* Extract two 16-bit DPF components from a 32-bit fract */

 L_Extract(a, &a_hi, &a_lo);

 L_Extract(b, &b_hi, &b_lo);

 /* 32-bit extended precision multiply */

 exp_prec_res = Mpy_32(a_hi, a_lo, b_hi, b_lo);

CrossCore Embedded Studio 1.0 1-245
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

 /* Convert from a dpf32 to fract32 - a simple assignment */

 res = dpf32_to_fract32(exp_prec_res);

 /* return result */

 return res;

}

32-Bit Fractional ETSI Routines Using 1.31 Format

The following functions return or primarily operate on 32-bit fractional
data, in 1.31 format.

fract32 L_add_c(fract32 a, fract32 b)

Performs a 32-bit addition of the two input parameters. Saturation occurs
if the sum overflows or underflows. If the sum overflows, the function will
return 0x7fffffff; if it underflows, the function will return 0x80000000.
When linking with the library libetsico.dlb, saturation will cause the
Overflow flag to be set, while the Carry flag will be set if a carry was
detected.

fract32 L_abs(fract32 a)

Returns the 32-bit absolute value of the input parameter. In cases where
the input is equal to 0x80000000, saturation occurs and 0x7fffffff is
returned.

fract32 L_add(fract32 a, fract32 b)

Returns the 32-bit saturated result of the addition of the two input param-
eters. If overflow occurs, the Overflow flag will be set provided that the
application is linked with the library libetsico.dlb.

C/C++ Compiler Language Extensions

1-246 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fract32 L_deposit_h(fract16 hi)

Deposits the 16-bit parameter into the 16 most significant bits of the
32-bit result. The least-significant 16 bits are set to zero.

fract32 L_deposit_l(fract16 lo)

Deposits the 16-bit parameter into the 16 least significant bits of the
32-bit result. The most significant bits are sign-extended for the input.

fract32 L_mac(fract32 acc, fract16 f1, fract16 f2)

Performs a fractional multiplication of the two 16-bit parameters and
returns the saturated sum of the product and the 32-bit parameter.

fract32 L_macNs(fract32 Lf,fract16 f1, fract16 f2)

Performs a non-saturating version of the L_mac operation. When linking
with the library libetsico.dlb, the Overflow and Carry flags are set if a
carry or overflow/underflow occurs.

fract32 L_mls (fract32 Lf, fract16 f)

Multiplies both the most significant bits and the least significant bits of
the 32-bit parameter Lf, by the 16-bit parameter f.

CrossCore Embedded Studio 1.0 1-247
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

fract32 L_msu(fract32 Lf, fract16 f1, fract16 f2)

Performs a fractional multiplication of the two 16-bit parameters and
returns the saturated difference between the product and the 32-bit
parameter.

fract32 L_msuNs(fract32 Lf, fract16 f1, fract16 f2)

Performs a non-saturating version of the L_msu operation. When linking
with the library libetsico.dlb, the Overflow and Carry flags are set if a
carry or overflow/underflow occurs.

fract32 L_mult(fract16 f1, fract16 f2)

Returns the 32-bit saturated result of the fractional multiplication of the
two 16-bit parameters.

fract32 L_negate(fract32 Lf)

Returns the 32-bit result of the negation of the parameter. Where the
input parameter is 0x80000000 saturation occurs and 0x7fffffff is
returned.

fract32 L_sat(fract32 Lf)

Returns 0x80000000 if Carry and Overflow flags are set (corresponding to
an underflow condition); otherwise, if Overflow is set, returns
0x7fffffff. The default version of the function simply returns Lf as no
checking or setting of the Overflow and Carry flags is performed.

C/C++ Compiler Language Extensions

1-248 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fract32 L_shl(fract32 src, short shft)

Arithmetically shifts the 32-bit first parameter to the left by the value
given in the 16-bit second parameter. The empty bits of the 32-bit value
are zero-filled. If the shifting value, shft, is negative, the source is shifted
to the right by -shft with sign-extension. The result is saturated in cases
of overflow and underflow.

When linking with the library libetsico.dlb, the Overflow flag is set
when overflow occurs.

 To avoid unexpected results when the shift count exceeds the num-
ber of bits in the first parameter, the function normally clips the
second parameter to the size of the first. If clipping is not required,
then a faster version of the function is available, but only if the
macro __SET_ETSI_FLAGS is not defined as 1. To use the faster ver-
sion of the shift function that will use the least significant five bits
of the second parameter as the shift count, define the macro
_ADI_FAST_ETSI before including libetsi.h, or define it on the
compile command-line.

fract32 L_shr(fract32 src, short shft)

Arithmetically shifts the 32-bit first parameter to the right by the value
given in the 16-bit second parameter with sign extension. If the shifting
value is negative, the source is shifted to the left. The result is saturated in
cases of overflow and underflow.

When linking with the library libetsico.dlb, the Overflow flag is set
when overflow occurs.

 To avoid unexpected results when the shift count exceeds the num-
ber of bits in the first parameter, the function normally clips the
second parameter to the size of the first. If clipping is not required,
then a faster version of the function is available, but only if the

CrossCore Embedded Studio 1.0 1-249
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

macro __SET_ETSI_FLAGS is not defined as 1. To use the faster ver-
sion of the shift function that will use the least significant five bits
of the second parameter as the shift count, define the macro
_ADI_FAST_ETSI before including libetsi.h, or define it on the
compile command-line.

fract32 L_shr_r(fract32 src, short shft)

Performs the shift-right operation as per L_shr but with rounding. When
linking with the library libetsico.dlb, the Overflow and Carry flags are
set if a carry or overflow/underflow occurs.

fract32 L_shift_r(fract32 src, short shft)

Arithmetically shifts the first parameter; if the second parameter is posi-
tive, then shift left. Otherwise, shift right. The result is rounded and then
saturated if necessary.

fract32 L_sub(fract32 Lf1, fract32 Lf2)

Returns the 32-bit saturated result of the subtraction of two 32-bit param-
eters (Lf1 – Lf2).

fract32 L_sub_c(fract32 Lf1, fract32 Lf2)

Performs 32-bit subtraction of two fractional values (Lf1 – Lf2). When
linking with the library libetsico.dlb, the Carry and Overflow flags are
set if a carry and overflow/underflow occurs during subtraction.

C/C++ Compiler Language Extensions

1-250 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

16-Bit Fractional ETSI Routines

The following functions return or primarily operate on 16-bit fractional
data.

fract16 abs_s(fract16 f)

Returns the 16-bit value that is the absolute value of the input parameter.
When the input is 0x8000, saturation occurs and 0x7fff is returned.

fract16 add(fract16 f1, fract16 f2)

Returns the 16-bit sum of the two fract16 input parameters.

Saturation occurs if the sum overflows or underflows. If the sum over-
flows, the function will return 0x7fff; if it underflows, the function will
return 0x8000. When linking with the library libetsico.dlb, the
Overflow and Carry flags are set when carry or overflow/underflow occurs.

fract16 div_l (fract32 L_num, fract16 den)

This function produces a result which is the fractional integer division of
the first parameter by the second. Both inputs must be positive and the
least significant word of the second parameter must be greater or equal to
the first; the result is positive (leading bit equal to 0) and truncated to 16
bits. The function calls abort() on division error conditions.

fract16 div_s(fract16 f1, fract16 f2)

Returns the 16-bit result of the fractional integer division of f1 by f2.
Both f1 and f2 must be positive fractional values with f2 greater than f1.

CrossCore Embedded Studio 1.0 1-251
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

fract16 extract_l(fract32 Lf)

Returns the 16 least significant bits of the 32-bit parameter provided.

fract16 extract_h(fract32 Lf)

Returns the 16 most significant bits of the 32-bit parameter provided.

fract16 mac_r(fract32 acc, fract16 f1, fract16 f2)

Performs an L_mac operation using the three parameters provided. The
result is the rounded 16 most significant bits of the 32-bit results from the
L_mac operation.

fract16 msu_r(fract32 Lf, fract16 f1, fract16 f2)

Performs an L_msu operation using the three parameters provided. The
result is the rounded 16 most significant bits of the 32-bit result from the
L_msu operation.

fract16 mult(fract16 f1, fract16 f2)

Returns the 16-bit result of the fractional multiplication of the input
parameters. The result is saturated.

fract16 mult_r(fract16 f1, fract16 f2)

Performs a 16-bit multiply with rounding of the result of the fractional
multiplication of the two input parameters.

C/C++ Compiler Language Extensions

1-252 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

 The compiler generates the following 16-bit fractional multiply
instruction for this function:

Rx.L = Ry.L * Rz.L;

This instruction’s result is affected by the RND_MOD bit in the ASTAT
register, which means that the results may not always be
ETSI-compliant. To avoid this issue, set RND_MOD before using this
function, or link against the library libetsico.dlb, which contains
a version of the function that ensures the RND_MOD bit is set as nec-
essary for the duration of the function’s execution. For more
information, see Changing the RND_MOD Bit.

fract16 negate(fract16 f)

Returns the 16-bit result of the negation of the input parameter. If the
input is 0x8000, saturation occurs and 0x7fff is returned.

 This function will be renamed as etsi_negate if the macro
RENAME_ETSI_NEGATE is defined; this will avoid a conflict with the
C++ template function negate that is defined in the include file
functional.

int norm_l(fract32 Lf)

Returns the number of left shifts required to normalize the input variable
so that it is either in the interval 0x40000000 to 0x7fffffff, or in the
interval 0x80000000 to 0xc0000000. In other words,

fract32 Lx;

fract32 Lxn = L_shl(Lx, norm_l(x));

CrossCore Embedded Studio 1.0 1-253
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

will set Lxn to a value in the range 0x40000000 to 0x7fffffff, or in the
range 0x80000000 to 0xc0000000, except in the special case where Lx is
zero.

 This function uses the Blackfin SIGNBITS instruction.

int norm_s(fract16 f)

Returns the number of left shifts required to normalize the input variable
so that it is either in the interval 0x4000 to 0x7fff, or in the interval
0x8000 to 0xc000. In other words,

fract16 x;

fract16 xn = shl(x, norm_s(x));

will set xn to a value in the range 0x4000 to 0x7fff, or in the range 0x8000
to 0xc000, except in the special case where x is zero.

 This function uses the Blackfin SIGNBITS instruction.

fract16 round(fract32 Lf)

Rounds the lower 16 bits of the 32-bit input parameter into the most sig-
nificant 16 bits with saturation. The resulting bits are shifted right by 16.

fract16 saturate(fract32)

Uses biased rounding with saturation to return the most significant 16 bits
of the input parameter. If the input parameter is less than 0x8000, 0x8000
is returned.

C/C++ Compiler Language Extensions

1-254 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fract16 shl(fract16 src, short shft)

Arithmetically shifts the src variable left by shft places. The empty bits
are zero-filled. If shft is negative, the shift is to the right by shft places.

When linking with the library libetsico.dlb, the Overflow and Carry
flags are set when carry or overflow/underflow occurs.

 To avoid unexpected results when the shift count exceeds the num-
ber of bits in the first parameter, the function normally clips the
second parameter to the size of the first. If clipping is not required,
then a faster version of the function is available, but only if the
macro __SET_ETSI_FLAGS is not defined as 1. To use the faster ver-
sion of the shift function that will use the least significant five bits
of the second parameter as the shift count, define the macro
_ADI_FAST_ETSI before including libetsi.h, or define it on the
compile command-line.

fract16 shr(fract16 src, short shft)

Arithmetically shifts the src variable right by shft places with sign exten-
sion. If shft is negative, the shift is to the left by shft places.

When linking with the library libetsico.dlb, the Overflow and Carry
flags are set when carry or overflow/underflow occurs. A built-in version
of this function is also provided.

 To avoid unexpected results when the shift count exceeds the num-
ber of bits in the first parameter, the function normally clips the
second parameter to the size of the first. If clipping is not required,
then a faster version of the function is available, but only if the
macro __SET_ETSI_FLAGS is not defined as 1. To use the faster ver-
sion of the shift function that will use the least significant five bits

CrossCore Embedded Studio 1.0 1-255
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

of the second parameter as the shift count, define the macro
_ADI_FAST_ETSI before including libetsi.h, or define it on the
compile command-line.

fract16 shr_r(fract16 src, short shft)

Performs a shift to the right as per the shr() operation with additional
rounding and saturation of the result.

fract16 shift_r(fract16 src, short shft)

Arithmetically shifts the first parameter; if the second parameter is positive
then shift left otherwise shift right; the result is rounded and then satu-
rated if necessary.

fract16 sub(fract16 f1, fract16 f2)

Returns the 16-bit result of the subtraction of the two parameters (f1 –
f2). Saturation occurs if the result overflows or underflows. If the result
overflows, the function will return 0x7fff; if it underflows, the function
will return 0x8000.

When linking with the library libetsico.dlb, the Overflow and Carry
flags are set when carry or overflow/underflow occurs.

short i_mult(short v1, short v2)

Multiplies two 16-bit integers, with no saturation.

C/C++ Compiler Language Extensions

1-256 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fract16 and fract32 Literal Values

This section discusses natural ways to define fract16 and fract32 literal
values. For discussion of literals of the native fixed-point types fract and
accum, see Native Fixed-Point Constants.

A constant with an “r” suffix is defined to be a native fixed-point constant
of fract type. This should not be used to initialize a fract16 or fract32
constant since the type conversion will yield an unexpected result (see
Data Type Conversions and Fixed-Point Types for more details).

The suffixes “r32” and “r16” can be used in C mode to represent fract32
and fract16 literals. They allow users to naturally express literals in frac-
tional format. These literals are represented as 32-bit signed integral types.

For example,

0x4000 is the same as 0.5r16

0x40000000 is the same as 0.5r32

These literals cannot be used in the expressions of the preprocessing
directives #if or #elif.

 Despite appearances, literal values expressed in this syntax are still
“normal” integer values, and are subject to the usual rules of inte-
ger arithmetic and type promotion/conversion. Be sure to use the
built-in functions if you require fractional arithmetic.

Converting Between Fractional and Floating-Point Values

The CCES run-time libraries contain high-level support for converting
between fractional and floating-point values. The include file
fract2float_conv.h defines functions which perform conversions
between fract16, fract32, and float types.

CrossCore Embedded Studio 1.0 1-257
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

The following functions are defined:

// Converting between fract16 and fract32

fract32 fr16_to_fr32(fract16);

fract16 fr32_to_fr16(fract32);

// Converting from float to fract16/fract32

fract32 float_to_fr32(float);

fract16 float_to_fr16(float);

// Converting from long double to fract16/fract32

fract32 long_double_to_fr32(long double);

fract16 long_double_to_fr16(long double);

// Converting from fract16/fract32 to float

float fr16_to_float(fract16);

float fr32_to_float(fract32);

// Converting from fract16/fract32 to long double

long double fr16_to_long_double(fract16);

long double fr32_to_long_double(fract32);

In addition, the following functions are defined for use on the native
fixed-point types fract and long fract. These are provided for complete-
ness only, as casts between the different types provide the same
functionality.

// Convert between fract and long fract

long fract fx16_to_fx32(fract);

fract fx32_to_fx16(long fract);

// Convert from float to fract/long fract

long fract float_to_fx32(float);

fract float_to_fx16(float);

C/C++ Compiler Language Extensions

1-258 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

// Convert from long double to fract/long fract

long fract long_double_to_fx32(long double);

fract long_double_to_fx16(long double);

// Convert from fract/long fract to float

float fx16_to_float(fract);

float fx32_to_float(long fract);

// Convert from fract/long fract to long double

long double fx16_to_long_double(fract);

long double fx32_to_long_double(long fract);

The float-to-fract conversions are saturating such that the result lies in the
range of the fractional data type.

These functions can be employed to aid implementation of critical parts
of applications using fractional arithmetic that would otherwise use
floating-point arithmetic. Such implementations usually requires data
to be scaled into the fractional range before converting to fract16 or
fract32, and this is still true when using the functions defined in
fract2float_conv.h.

Listing 1-3 implements a floating-point multiplication using an ETSI
fract implementation.

Listing 1-3. Floating-Point Multiplication Using fracts

#include <fract2float_conv.h>

#include <fract_typedef.h>

#include <libetsi.h>

#include <math.h>

/* return a*b calculated using fract implementation */

float mul_fp(float a, float b) {

float scaled_a, scaled_b, fract_div_res, result;

CrossCore Embedded Studio 1.0 1-259
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

int exp_a, exp_b, exp_res;

fract32 fract_a, fract_b, fract_res;

fract32 fract_exp_a, fract_exp_b, fract_exp_res;

dpf16 hia, loa, hib, lob;

/* if either input is 0, return 0 */

if (a == 0.0 || b == 0.0)

return 0.0;

/* scale inputs */

scaled_a = frexpf(a, &exp_a);

scaled_b = frexpf(b, &exp_b);

/* convert scaled inputs to fract */

fract_a = float_to_fr32(scaled_a);

fract_b = float_to_fr32(scaled_b);

/* extract the 16-bit DPF words from the fract inputs */

L_Extract(fract_a, &hia, &loa);

L_Extract(fract_b, &hib, &lob);

/* do fractional multiplication in extended precision */

fract_res = Mpy_32(hia, loa, hib, lob);

/* multiply exponents by adding */

exp_res = exp_a + exp_b;

/* convert mul result back to float */

fract_div_res = fr32_to_float(fract_res);

/* compose the floating-point result */

result = ldexpf(fract_div_res, exp_res);

C/C++ Compiler Language Extensions

1-260 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

/* return result */

return result;

} /* mul_fp */

Complex Fractional Built-In Functions in C

The complex_fract16 type is used to hold complex fractional numbers.
It contains real and imaginary values, both as 16-bit fractional numbers.

typedef struct {

fract16 re, im;

} complex_fract16;

The complex_fract32 type is used to hold complex fractional numbers.
It contains real and imaginary values, both as 32-bit fractional numbers.

typedef struct {

fract32 re, im;

} complex_fract32;

The complex_fract16 and complex_fract32 types are defined by the
complex.h header file. The complex.h header file also declares numerous
library functions for manipulating complex fractional numbers, in addi-
tion to the built-in functions listed in this section. These functions are
documented in DSP Run-Time Library Reference.

The compiler also supports the following built-in operations for complex
fractional numbers. For each of these built-ins, fractional results values are
rounded and saturated as required. The rounding mode is determined by
the RND_MOD bit in the ASTAT register.

• The following built-in function generates instructions to calculate
and return the complex fractional square of a.

complex_fract16 csqu_fr16(complex_fract16 a);

CrossCore Embedded Studio 1.0 1-261
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

• The following functions can be used to extract the real (real_fr32)
and imaginary (imag_fr32) parts of the complex_fract16 or
complex_fract32 input a.

fract16 real_fr16(complex_fract16 a);

fract16 imag_fr16(complex_fract16 a);

fract real_fx_fr16(complex_fract16 a);

fract imag_fx_fr16(complex_fract16 a);

fract32 real_fr32(complex_fract32 a);

fract32 imag_fr32(complex_fract32 a);

long fract real_fx_fr32(complex_fract32 a);

long fract imag_fx_fr32(complex_fract32 a);

• The following functions can be used to create a complex_fract16
or complex_fract32 type instance from two fractional inputs which
correspond to the required result’s real and imaginary parts.

complex_fract16 ccompose_fr16

(fract16 real, fract16 imag);

complex_fract16 ccompose_fx_fr16

(fract real, fract imag);

complex_fract32 ccompose_fr32

(fract32 real, fract32 imag);

complex_fract32 ccompose_fx_fr32

(long fract real, long fract imag);

• The following functions perform a complex addition of the inputs
and returns the result.

complex_fract16 cadd_fr16(complex_fract16 a,

complex_fract16 b);

complex_fract32 cadd_fr32(complex_fract32 a,

complex_fract32 b);

C/C++ Compiler Language Extensions

1-262 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• The following function performs a complex subtraction of the
inputs and returns the result.

complex_fract16 csub_fr16(complex_fract16 a,

complex_fract16 b);

complex_fract32 csub_fr32(complex_fract32 a,

complex_fract32 b);

• The following function performs a complex multiplication of the
inputs.

complex_fract16 cmlt_fr16(complex_fract16 a,

complex_fract16 b);

• The following function returns the complex conjugate of the input.

complex_fract32 conj_fr32(complex_fract32 a);

Changing the RND_MOD Bit

Three built-in functions (set_rnd_mod_biased, set_rnd_mod_unbiased,
and restore_rnd_mod) provide a convenient way to change the state of the
RND_MOD bit that controls whether the hardware performs biased or
unbiased rounding. The builtins.h header file should be included to use
these built-in functions.

• The following built-in function generates instructions to set the
RND_BIT bit. This will mean that instructions that depend on the
state of the RND_MOD bit will perform biased rounding. The previous
state of the RND_MOD bit is returned.

int set_rnd_mod_biased(void);

CrossCore Embedded Studio 1.0 1-263
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

• The following built-in function generates instructions to unset the
RND_BIT bit. This will mean that instructions that depend on the
state of the RND_MOD bit will perform unbiased rounding. The previ-
ous state of the RND_MOD bit is returned.

int set_rnd_mod_unbiased(void);

• The following built-in function generates instructions to reset the
RND_BIT bit to a previous value, which is passed into the function.

void restore_rnd_mod(int);

The following example shows how you might use these built-in functions.

#include <stdfix.h>

#include <builtins.h>

fract divide_biased(fract num, fract denom)

{

fract rtn;

int prev_rnd_mod = set_rnd_mod_biased();

#pragma FX_ROUNDING_MODE BIASED;

rtn = num / denom;

restore_rnd_mod(prev_rnd_mod);

return rtn;

}

Note that the pragma to set FX_ROUNDING_MODE is necessary due to the use
of the fract type in the example. This pragma does not affect the state of
the RND_MOD bit. See #pragma FX_ROUNDING_MODE {TRUNCA-
TION|BIASED|UNBIASED} and Setting the Rounding Mode for further
details.

C/C++ Compiler Language Extensions

1-264 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Complex Operations in C++

Enabling the -full-cpplib (-full-cpplib) switch ensures that complex
operations adhere to the ISO/IEC 14882:2003 C++ standard. When using
the abridged C++ library, the C++ complex class is defined by the Analog
Devices specific <complex> header file, and defines a template class for
manipulating complex numbers. The standard arithmetic operators are
overloaded, and there are real() and imag() methods for obtaining the
relevant part of the complex number.

For example, the determinate and inverse of a 2x2 matrix of complex
doubles may be computed using the following C++ function:

#include <complex>

using std::complex;

complex<double> inverse2d(const complex<double> mx[4],

complex<double> mxinv[4])

{

complex<double> det = mx[0] * mx[3] - mx[2] * mx[1];

if((det.real() != 0.0) || (det.imag() != 0.0)) {

complex<double> invdet = complex<double>(1.0,0.0) / det;

mxinv[0] = invdet * mx[3];

mxinv[1] = -(invdet * mx[1]);

mxinv[2] = -(invdet * mx[2]);

mxinv[3] = invdet * mx[0];

}

return det;

}

CrossCore Embedded Studio 1.0 1-265
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

By comparison, the equivalent function in C is:

#include <complex.h>

complex_double inverse2d(const complex_double mx[4],

complex_double mxinv[4])

{

complex_double det;

complex_double invdet;

complex_double tmp;

det = cmlt(mx[0],mx[3]);

tmp = cmlt(mx[2],mx[1]);

det = csub(det,tmp);

if((det.re != 0.0) || (det.im != 0.0)) {

invdet = cdiv((complex_double){1.0,0.0},det);

mxinv[0] = cmlt(invdet,mx[3]);

mxinv[1] = cmlt(invdet,mx[1]);

mxinv[1].re = -mxinv[1].re;

mxinv[1].im = -mxinv[1].im;

mxinv[2] = cmlt(invdet,mx[2]);

mxinv[2].re = -mxinv[2].re;

mxinv[2].im = -mxinv[2].im;

mxinv[3] = cmlt(invdet,mx[0]);

}

return det;

}

C/C++ Compiler Language Extensions

1-266 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Packed 16-Bit Integer Built-In Functions

The compiler provides built-in functions that manipulate and perform
basic arithmetic functions on two 16-bit integers packed into a single
32-bit type, int2x16. Use of the built-in functions produce optimal code
sequences, using vectorized operations where possible. The types and
operations are defined in the i2x16.h header file.

Composition and decomposition of the packed type are performed with
the following functions:

int2x16 compose_i2x16(short _x, short _y);

short high_of_i2x16(int2x16 _x);

short low_of_i2x16(int2x16 _x);

The following functions perform vectorized arithmetic operations:

int2x16 add_i2x16(int2x16 _x, int2x16 _y);

int2x16 sub_i2x16(int2x16 _y, int2x16 _y);

int2x16 mult_i2x16(int2x16 _x, int2x16 _y);

int2x16 abs_i2x16(int2x16 _x);

int2x16 min_i2x16(int2x16 _x, int2x16 _y);

int2x16 max_i2x16(int2x16 _x, int2x16 _y);

The following function performs summation of the two packed
components:

int sum_i2x16(int2x16 _x);

The following functions provide cross-wise multiplication:

int mult_ll_i2x16(int2x16 _x, int2x16 _y);

int mult_hl_i2x16(int2x16 _x, int2x16 _y);

int mult_lh_i2x16(int2x16 _x, int2x16 _y);

int mult_hh_i2x16(int2x16 _x, int2x16 _y);

CrossCore Embedded Studio 1.0 1-267
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

The following function:

int2x16 add_on_sign(int2x16 _x, int2x16 _y);

is equivalent to the following operation on _x { a, b} and _y { c, d}, return-
ing result {r, r}:

r = ((a < 0) ? -b : b) + ((c < 0) ? -d : d);

Division Functions

Two built-in functions (divs and divq) provide access to the “divide
primitive” instructions:

#include <builtins.h>

int divs(int numerator, int denominator, int *aq);

int divq(int partialres, int denominator, int *aq);

The divs() and divq() built-in functions give access to the respective
Blackfin instructions, DIVS and DIVQ, that are the foundation elements of a
non-restoring, conditional, add-subtract, integer division algorithm.

The dividend (numerator) is a 32-bit value, and the divisor (denominator)
is a 16-bit value; the high half of denominator is ignored. For details of
the instructions, refer to “DIVS, DIVQ (Divide Primitive)” in the
Blackfin Processor Programming Reference.

First, divs() initializes the processor’s AQ flag and the quotient’s sign bit
(the initial value for partialres); successive uses of divq() generate a value
bit for the quotient, producing a new partialres, and update the AQ flag.
The aq parameter is used by the compiler to track the value of the AQ flag;
divs() writes to *aq, and each invocation of divq() updates *aq.
Typically, when optimizing, these reads and writes will be optimized
away.

C/C++ Compiler Language Extensions

1-268 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The following example uses the divs() and divq() primitives to imple-
ment a saturating, fractional division algorithm.

#include <builtins.h>

#include <fract.h>

fract16 saturating_fract_divide(fract16 nom, fract16 denom)

{

int partialres = (int)nom;

int divisor = (int)denom;

fract16 rtn;

int i;

int aq; /* initial value irrelevant */

if (partialres == 0) {

/* 0/anything gives 0 */

rtn = 0;

} else if (partialres >= divisor) {

/* fract16 values have the range -1.0 <= x < +1.0, */

/* so our result cannot be as high as 1.0. */

/* Therefore, for x/y, if x is larger than y, */

/* saturate the result to positive maximum. */

rtn = 0x7fff;

} else {

/* nom is a 16-bit fractional value, so move */

/* the 16 bits to the top of partialres. */

/* (promote fract16 to fract32) */

partialres <<= 16;

/* initialize sign bit and AQ, via divs(). */

partialres = divs(partialres, divisor, &aq);

/* Update each of the value bits of the partial result */

/* and reset AQ via divq(). */

for (i=0; i<15; i++) {

partialres = divq(partialres, divisor, &aq);

}

rtn = (fract16) partialres;

CrossCore Embedded Studio 1.0 1-269
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

}

return rtn;

}

Full-Precision Accumulator Built-In Functions

The compiler provides built-in functions to take advantage of the full
40-bit precision of the accumulator registers.

Listing 1-4 shows a dot product that is guaranteed to accumulate in
40-bits and to saturate the final sum to 32-bits.

Listing 1-4. Fractional Dot Product Implemented with Accumulator
Built-Ins

#include <builtins.h>

fract32 dot(fract16 a[], fract16 b[], int n) {

int i;

acc40 sum = 0;

for (i = 0; i < n; ++i)

sum = A_mac(sum, a[i], b[i]);

return A_mad(sum);

}

Accumulator Built-In Function Prototypes

Table 1-31 lists all the full-precision accumulator built-in functions with
their characteristic instruction. Each function implements the same com-
putation as this characteristic instruction, but the compiler may generate
an alternative instruction sequence to do so. See the Blackfin Processor
Programming Reference for details of the instructions.

C/C++ Compiler Language Extensions

1-270 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Table 1-31. Accumulator Built-In Functions

Function Instruction

acc40 A_mult(fract16, fract16); An = Dx.lh * Dy.lh

acc40 A_mult_FU(fract16, fract16); An = Dx.lh * Dy.lh (FU)

acc40 A_mult_M(fract16, fract16); A1 = Dx.lh * Dy.lh (M)

acc40 A_mult_IS(short, short); An = Dx.lh * Dy.lh (IS)

acc40 A_mult_MIS(short, unsigned short); A1 = Dx.lh * Dy.lh (M,IS)

acc40 A_mac(acc40,fract16, fract16); An += Dx.lh * Dy.lh

acc40 A_mac_FU(acc40,fract16, fract16); An += Dx.lh * Dy.lh (FU)

acc40 A_mac_M(acc40,fract16, fract16); A1 += Dx.lh * Dy.lh (M)

acc40 A_mac_IS(acc40,short, short); An += Dx.lh * Dy.lh (IS)

acc40 A_mac_MIS(acc40,short, unsigned short); A1 += Dx.lh * Dy.lh (M,IS)

acc40 A_msu(acc40,fract16, fract16); An -= Dx.lh * Dy.lh

acc40 A_msu_FU(acc40,fract16, fract16); An -= Dx.lh * Dy.lh (FU)

acc40 A_msu_M(acc40,fract16, fract16); A1 -= Dx.lh * Dy.lh (M)

acc40 A_msu_IS(acc40,short, short); An -= Dx.lh * Dy.lh (IS)

acc40 A_msu_MIS(acc40,short, unsigned short); A1 -= Dx.lh * Dy.lh (M,IS)

int A_eq(acc40, acc40); CC = A0 == A1

int A_lt(acc40, acc40); CC = A0 < A1

int A_le(acc40, acc40); CC = A0 <= A1

acc40 A_add(acc40, acc40); A0 += A1

acc40 A_sub(acc40, acc40); A0 -= A1

acc40 A_neg(acc40); An = -An

acc40 A_abs(acc40); An = ABS An

int A_bitmux_ASR(int, int, acc40, int*, acc40*); BITMUX(Dx, Dy, A0) (ASR)

int A_bitmux_ASL(int, int, acc40, int*, acc40*); BITMUX(Dx, Dy, A0) (ASL)

short A_bxorshift_mask32(acc40, int, int*); Dn.L = CC = BXORSHIFT(A0, Dx)

short A_bxor_mask32(acc40, int, int*); Dn.L = CC = BXOR(A0, Dx)

CrossCore Embedded Studio 1.0 1-271
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

 The results of the functions marked with a dagger (†) in
Table 1-31 are affected by the setting of the RND_MOD bit in the
ASTAT register. See the Blackfin Processor Programming Reference for
details.

acc40 A_bxorshift_mask40(acc40, acc40, int); A0 = BXORSHIFT(A0, A1, CC);

short A_bxor_mask40(acc40, acc40, int, int*); Dn.L = CC = BXOR(A0, A1, CC);

short A_signbits(acc40); Dx.L = SIGNBITS An;

acc40 A_ashift(acc40, short); An = ASHIFT An BY Dx.L ‡
An = An >>> uimm5
An = An << uimm5

acc40 A_lshift(acc40, short); An = LSHIFT An BY Dx.L ‡
An = An >> uimm5
An = An << uimm5

acc40 A_sat(acc40); An = An (S)

fract32 A_mad(acc40); Dn = An

fract32 A_mad_FU(acc40); Dn = An (FU)

fract32 A_mad_S2RND(acc40); Dn = An (S2RND)

int A_mad_ISS2(acc40); Dn = An (ISS2)

fract16 A_madh(acc40); Dn.lh = An †

fract16 A_madh_FU(acc40); Dn.lh = An (FU) †

short A_madh_IS(acc40); Dn.lh = An (IS)

unsigned short A_madh_IU(acc40); Dn.lh = An (IU)

fract16 A_madh_T(acc40); Dn.lh = An (T)

fract16 A_madh_TFU(acc40); Dn.lh = An (TFU)

fract16 A_madh_S2RND(acc40); Dn.lh = An (S2RND) †

short A_madh_ISS2(acc40); Dn.lh = An (ISS2)

short A_madh_IH(acc40); Dn.lh = An (IH) †

Table 1-31. Accumulator Built-In Functions (Cont’d)

Function Instruction

C/C++ Compiler Language Extensions

1-272 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

 The functions marked with a double dagger (‡) in Table 1-31 will
return their first operand An shifted left by Dx.L places if Dx.L is
positive, or shifted right by ABS(Dx.L) places if Dx.L is negative.
See the Blackfin Processor Programming Reference for details.

Accumulator Built-In Functions and the Optimizer

The compiler will usually generate an accumulator instruction for each
call to an accumulator built-in function, but it will not map acc40 typed
variables to accumulator registers unless optimization is enabled. See the
-O (enable optimizations) switch on page 1-65.

Other circumstances may impact the efficiency of the generated code; for
example, the Blackfin processor has two 40-bit accumulator registers, so C
code that has more than two acc40 variables in use at the same time will

Table 1-32. Types Used in Table 1-31

C Type Usage

acc40 Any value in an accumulator. This is a signed 64-bit integer containing the
40-bit accumulator value. The most significant 24 bits are ignored by these
built-in functions. 40-bit accumulator values are sign-extended to 64 bits
when moving values from accumulator registers to other registers or
memory.

fract32 32-bit signed or unsigned fractional value

fract16 16-bit signed or unsigned fractional value

int 32-bit signed integer value

unsigned 32-bit unsigned integer value

short 16-bit signed integer value

unsigned short 16-bit unsigned integer value

Dx, Dy, Dn Data registers (R0 ... R7)

lh A low-half specifier (.L) or a high-half specifier (.H)

An Accumulator registers (A0 or A1)

CrossCore Embedded Studio 1.0 1-273
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

require some inefficient shuffling of values in and out of the accumulators
to perform the calculation.

The accumulator data type acc40 is a signed 64-bit integral type, so arith-
metic operators can be used with variables of this type. However, this is
not equivalent to using the accumulator intrinsics and usually translates to
expensive 64-bit arithmetic, which may offset any performance benefit of
using an accumulator. In addition, the acc40 type should not be confused
with the native fixed-point type accum available through the stdfix.h
header file.

Since the acc40 type is a signed 64-bit integral type, constants used to ini-
tialize it are interpreted as 64 bits in size. For example, the code:

#include <builtins.h>

acc40 acc = 0x80000000;

will result in the accumulator register being initialized to 0x0080000000,
not 0xff80000000.

When optimization is enabled, the compiler may also use accumulator
registers to implement short multiplication and int addition operations.
This use of a 40-bit accumulator to implement 32-bit addition will pro-
duce the same results as long as the 32-bit operation would not have
overflowed. Consequently, the two versions of dot product in Listing 1-5
may translate to the same assembly code depending on compilation
options, but only the version that uses the A_mac_IS built-in function is
guaranteed to compute the same result as an assembly function which uses
an accumulator register, for all possible inputs and with any compiler
option. If your computations are at risk of overflow and you want to be
certain that saturation does not occur, consider using the -no-saturation
switch (on page 1-63). This switch will prevent the use of accumulator
registers for addition operations but at the expense of reduced
performance.

C/C++ Compiler Language Extensions

1-274 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Listing 1-5. Comparison of Two Dot Products

#include <builtins.h>

/* may accumulate in 40 bits with optimization,

** but not guaranteed.

*/

int dot32(short a[], short b[], int n) {

int i;

int sum = 0;

for (i = 0; i < n; ++i)

sum += a[i] * b[i];

return sum;

}

/* guaranteed to accumulate in 40 bits */

int dot40(short a[], short b[], int n) {

int i;

acc40 sum = 0;

for (i = 0; i < n; ++i)

sum = A_mac_IS(sum, a[i], b[i]);

return (int)sum;

}

Viterbi History and Decoding Functions

Four built-in functions provide the selection function of a Viterbi
decoder. Specifically, these four functions provide the maximum value
selection and history update parts. The functions use the A0 accumulator
to maintain the history value. (The accumulator register maintains the
history values by shifting the previous value along one place and setting
a bit to indicate the result of the current iteration’s selection.)

CrossCore Embedded Studio 1.0 1-275
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

To use the Viterbi functions, you must include ccblkfn.h in the source
modules in which they are used. Failure to do so leads to errors at
compile-time.

The four Viterbi functions allow for left- or right-shifting (setting the least
or most significant bit, accordingly) and for 1x16 or 2x16 operands.

The first two functions provide left- and right-shifting operations for
single 16-bit input operands:

short lvitmax1x16(int value, int oldhist, int *newhist)

short rvitmax1x16(int value, int oldhist, int *newhist)

lvitmax1x16() and rvitmax1x16() perform selection-and-update opera-
tions for two 16-bit operands, which are in the high and low halves of
value. The oldhist operand contains the history value from the preceding
iteration. The short value returned contains the selection result, and the
pointer newhist contains the history state after the operation.

The returned value is set to contain the largest half of value. The newhist
operand is set to contain the oldhist value, shifted one place (left for
lvitmax, right for rvitmax), and with one bit (LSB for lvitmax, MSB for
rvitmax) set to 1 if the high half was selected; 0 otherwise.

The next two Viterbi functions provide left- and right-shifting operations
for pairs of 16-bit input operands. The functions are:

int lvitmax2x16(int val_x, int val_y, int oldhist, int *newhist)

int rvitmax2x16(int val_x, int val_y, int oldhist, int *newhist)

The two functions, lvitmax2x16() and rvitmax2x16(), perform two
selection-and-update operations. Each of the val_x and val_y input
expressions contain two 16-bit operands. A selection operation is per-
formed on the two 16-bit operands in val_x, and another selection
operation is performed on the two 16-bit operands in val_y. The oldhist
value is shifted and updated into newhist, as described above.

C/C++ Compiler Language Extensions

1-276 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

However, in this example, oldhist is shifted two places, and two bits are
set. The history value is shifted one place, and a bit is set to indicate the
result of the val_x selection operation. Then, the history value is shifted a
second place, and another bit is set to indicate the result for the val_y
selection operation.

The selected value from val_x is stored in the low half of the returned
value, and the selected value from val_y is stored in the high half.

Search Built-in Functions

The compiler provides several built-in functions for locating the largest or
smallest 16-bit signed values in an array, using a loop. Each version of the
search built-in function has the following signature:

int2x16 *search_op(int2x16 cmp_vals,

int2x16 *cmp_ptr,

int2x16 *prev_hi_ptr,

int2x16 *prev_lo_ptr,

short prev_hi,

short prev_lo,

int2x16 **new_lo_ptr,

short *new_hi,

short *new_lo);

The available search functions are listed in Table 1-33. Each invocation of
a search function compares two values from the array against current best
solutions, updating those partial results if appropriate. If a value being
tested is better than the current solution, the function also saves the cur-
rent pointer.

Upon completion of the search process, the function will have identified
two parallel sets of results, one for the values in the low half of the int2x16
value, and one for the values in the high half. Each set of results contains
the best solution identified (i.e. the largest or smallest value) and the cor-
responding pointer value.

CrossCore Embedded Studio 1.0 1-277
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

The function returns the new pointer value for the low half comparison,
and passes the new pointer value for the high half comparison back via
new_lo_ptr. The new partial results are returned in new_hi and new_lo.

Circular Buffer Built-In Functions

The C/C++ compiler provides built-in functions that use the Blackfin
processor’s circular buffer mechanisms. These functions provide auto-
matic circular buffer generation, circular indexing, and circular pointer
references.

Automatic Circular Buffer Generation

If optimization is enabled, the compiler automatically attempts to use
circular buffer mechanisms where appropriate. For example,

void func(int *array,int n,int incr)

{

int i;

for (i = 0;i < n;i++)

array [i % 10] += incr;

}

Table 1-33. Built-in Search Functions

Function Name Operation

search_gt new = (cmp > prev)? cmp : prev
new_ptr = (cmp > prev)? cmp_ptr : prev_ptr

search_ge new = (cmp >= prev)? cmp : prev
new_ptr = (cmp >= prev)? cmp_ptr : prev_ptr

search_lt new = (cmp < prev)? cmp : prev
new_ptr = (cmp < prev)? cmp_ptr : prev_ptr

search_le new = (cmp <= prev)? cmp : prev
new_ptr = (cmp <= prev)? cmp_ptr : prev_ptr

C/C++ Compiler Language Extensions

1-278 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The compiler recognizes that the “[i % 10]” expression is a circular
reference, and uses a circular buffer if possible. There are cases where the
compiler is unable to verify that the memory access is always within the
bounds of the buffer. The compiler is conservative in such cases, and does
not generate circular buffer accesses.

The compiler can be instructed to still generate circular buffer accesses
even in such cases, by specifying the -force-circbuf switch. (For more
information, see -force-circbuf.)

Explicit Circular Buffer Generation

The compiler also provides built-in functions that can explicitly generate
circular buffer accesses, subject to available hardware resources. The
built-in functions provide circular indexing and circular pointer refer-
ences. Both built-in functions are defined in the ccblkfn.h header file.

Circular Buffer Increment of an Index

The following operation performs a circular buffer increment of an index.

ptrdiff_t circindex(ptrdiff_t ptr, ptrdiff_t incr, size_t len);

The operation is equivalent to:

index += incr;

if (index < 0)

index += len;

else if (index >= len)

index -= len;

An example of this built-in function is:

#include <ccblkfn.h>

void func(int *array, int n, int incr, int len)

{

int i, idx = 0;

CrossCore Embedded Studio 1.0 1-279
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

for (i = 0; i < n; i++) {

array[idx] += incr;

idx = circindex(idx, incr, len);

}

}

 Note that, for correct operation, the increment should not exceed
the buffer length.

Circular Buffer Increment of a Pointer

The following operation performs a circular buffer increment of a pointer.

void *circptr(const void *ptr, ptrdiff_t incr,

 const void *base, size_t buflen);

Both incr and buflen are specified in bytes, since the operation deals in
void pointers.

The operation is equivalent to:

ptr += incr;

if (ptr < base)

ptr += buflen;

else if (ptr >= (base+buflen))

ptr -= buflen;

An example of this built-in function is:

#include <ccblkfn.h>

void func(int *array, int n, int incr, int len)

{

int i, idx = 0;

int *ptr = array;

// scale increment and length by size

// of item pointed to.

C/C++ Compiler Language Extensions

1-280 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

incr *= sizeof(*ptr);

len *= sizeof(*ptr);

for (i = 0; i < n; i++) {

*ptr += incr;

ptr = circptr(ptr, incr, array, len);

}

}

 Note that, for correct operation, the increment should not exceed
the buffer length.

Endian-Swapping Intrinsics

The following two intrinsics are available for changing data from
big-endian to little-endian, or vice versa.

#include <ccblkfn.h>

int byteswap4(int);

short byteswap2(short);

For example, byteswap2(0x1234) returns 0x3412.

Since Blackfin processors use a little-endian architecture, these intrinsics
are useful when communicating with big-endian devices, or when using a
protocol that requires big-endian format. For example,

struct bige_buffer {

int len;

char data[MAXLEN];

} buf;

int i, len;

buf = get_next_buffer();

len = byteswap4(buf.len);

CrossCore Embedded Studio 1.0 1-281
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

for (i = 0; i < len; i++)

process_byte(buf.data[i]);

System Built-In Functions

The following built-in functions allow access to system facilities on
Blackfin processors. The functions are defined in the ccblkfn.h header
file. Include the ccblkfn.h file before using these functions. Failure to do
so leads to unresolved symbols at link-time.

Stack Space Allocation

void *alloca(unsigned)

This function allocates the requested number of bytes on the local stack,
and returns a pointer to the start of the buffer. The space is freed when the
current function exits.

The compiler supports this function via __builtin_alloca().

System Register Values

unsigned int sysreg_read(int reg)

void sysreg_write(int reg, unsigned int val)

unsigned long long sysreg_read64(int reg)

void sysreg_write64(int reg,unsigned long long val)

These functions get (read) or set (write) the value of a system register.
In all cases, reg is a constant from the file <sysreg.h>.

IMASK Values

unsigned cli(void)

void sti(unsigned mask)

C/C++ Compiler Language Extensions

1-282 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The cli() function retrieves the old value of IMASK, and disables inter-
rupts by setting IMASK to all zeros. The sti() function installs a new value
into IMASK, enabling the interrupt system according to the new mask
stored.

Interrupts and Exceptions

void raise_intr(int)

void excpt(int)

These two functions raise interrupts and exceptions, respectively. In both
cases, the parameter supplied must be an integer literal value.

Idle Mode

void idle(void)

places the processor in idle mode.

Synchronization

void csync(void)

void ssync(void)

These two functions provide synchronization. The csync() function is a
core-only synchronization—it flushes the pipeline and store buffers. The
ssync() function is a system synchronization, and also waits for an ACK
instruction from the system bus.

Cache Built-In Functions

The following built-in functions can be used to control the instruction
and data caches.

flush

void __builtin_flush(void * __a);

CrossCore Embedded Studio 1.0 1-283
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

When compiled, this built-in function will be replaced by the assembly:

FLUSH[Preg]; // Preg is loaded with the address __a

__builtin_flush (data cache line flush) causes the data cache to synchro-
nize the cache line associated with the specified address with higher levels
of memory. If the cached data line is dirty, the instruction writes the line
out and marks the line clean in the data cache. If the specified data cache
line is already clean or does not exist, the instruction functions like a NOP.

flushinv

void __builtin_flushinv(void * __a);

When compiled, this built-in function will be replaced by the assembly:

FLUSHINV[Preg]; // Preg is loaded with the address __a

__builtin_flushinv (data cache line flush and invalidate) causes the data
cache to perform the same function as flush (on page 1-282) and then
invalidate the specified line in the cache. If the line is in the cache and
dirty, the cache line is first written out. The Valid bit in the cache line is
then cleared. If the line is not in the cache, flushinv functions like a NOP.

flushinvmodup

void * __builtin_flushinvmodup(void * __a);

When compiled, this built-in function will be replaced by the assembly:

FLUSHINV[Preg++]; // Preg is loaded with the address __a

__builtin_flushinvmodup functions exactly the same way as flushinv
(on page 1-283); however, the specified address is post-incremented by
the size of a cache block (for example, 32 bytes) and then returned.

flushmodup

void * __builtin_flushmodup(void * __a);

C/C++ Compiler Language Extensions

1-284 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

When compiled, this built-in function will be replaced by the assembly:

FLUSH[Preg++]; // Preg is loaded with the address __a

__builtin_flushmodup functions exactly the same way as flush
(on page 1-282); however, the specified address is post-incremented by
the size of a cache block (for example, 32 bytes) and then returned.

iflush

void * __builtin_iflush(void * __a);

When compiled, this built-in function will be replaced by the assembly:

IFLUSH[Preg]; // Preg is loaded with the address __a

__builtin_iflush (instruction cache flush) causes the instruction cache to
invalidate the cache line associated with the address specified. The instruc-
tion cache contains no dirty bit. Consequently, the contents of the
instruction cache are never flushed to higher levels.

iflushmodup

void * __builtin_iflushmodup(void * __a);

When compiled, this built-in function will be replaced by the assembly:

IFLUSH[Preg++]; // Preg is loaded with the address __a

__builtin_iflushmodup functions exactly the same way as iflush
(on page 1-284); however, the specified address is post-incremented by
the size of a cache block (for example, 32 bytes) and then returned.

prefetch

void * __builtin_prefetch(void * __a);

When compiled, this built-in function will be replaced by the assembly:

PREFETCH[Preg]; // Preg is loaded with the address __a

CrossCore Embedded Studio 1.0 1-285
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

__builtin_prefetch (data cache prefetch) causes the data cache to
prefetch the cache line that is associated with the specified address. The
operation causes the line to be fetched if it is not currently in the data
cache and if the address is cacheable. If the line is already in the cache or if
the cache is already fetching a line, prefetch performs like a NOP.

prefetchmodup

void * __builtin_prefetchmodup(void * __a);

When compiled, this built-in function will be replaced by the assembly:

PREFETCH[Preg++]; // Preg is loaded with the address __a

__builtin_prefetchmodup functions exactly the same way as prefetch
(on page 1-284); however, the specified address is post-incremented by
the size of a cache block (for example, 32 bytes) and then returned.

Compiler Performance Built-In Functions

The compiler performance built-in functions do not have any effect on
the functional behavior of compiled code. Instead, they provide the com-
piler with additional information about the code being compiled, allowing
the compiler to generate more efficient code. The facilities are:

• Expected behavior, which allows you to tell the compiler which
way a condition is most likely to be resolved.

• Known values, which allows you to tell the compiler about the val-
ues that your variables will have at certain points in the program.

Expected Behavior
The expected_true and expected_false functions provide the compiler
with information about the expected behavior of the program. You can
use these built-in functions to tell the compiler which parts of the
program are most likely to be executed; the compiler can then arrange for
the most common cases to be those that execute most efficiently.

C/C++ Compiler Language Extensions

1-286 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

#include <ccblkfn.h>

int expected_true(int cond);

int expected_false(int cond);

For example, consider the code

extern int func(int);

int example(int call_the_function, int value)

{

int r = 0;

if (call_the_function)

r = func(value);

return r;

}

If you expect that parameter call_the_function to be true in the majority
of cases, you can write the function in the following manner:

extern int func(int);

int example(int call_the_function, int value)

{

int r = 0;

if (expected_true(call_the_function))

// indicate most likely true

r = func(value);

return r;

}

This indicates to the compiler that you expect call_the_function to be
true in most cases, so the compiler arranges for the default case to be to
call function func().

CrossCore Embedded Studio 1.0 1-287
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

On the other hand, if you write the function as follows, the compiler
arranges the generated code to default to the opposite case, of not calling
function func().

extern int func(int);

int example(int call_the_function, int value)

{

int r = 0;

if (expected_false(call_the_function))

// indicate most likely false

r = func(value);

return r;

}

These built-in functions do not change the operation of the generated
code, which will still evaluate the boolean expression as normal. Instead,
they indicate to the compiler which flow of control is most likely, helping
the compiler to ensure that the most commonly-executed path is the one
that uses the most efficient instruction sequence.

The expected_true and expected_false built-in functions take effect
only when optimization is enabled in the compiler. They are supported in
conditional expressions only.

Known Values

The __builtin_assert() function provides the compiler with informa-
tion about the values of variables which it may not be able to deduce from
the context. For example, consider the code

int example(int value, int loop_count)

{

int r = 0;

int i;

for (i = 0; i < loop_count; i++) {

r += value;

}

C/C++ Compiler Language Extensions

1-288 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

return r;

}

The compiler has no way of knowing what values may be passed to the
function. If you know that the loop count will always be greater than four,
you can allow the optimizer to make use of that knowledge using
__builtin_assert().

int example(int value, int loop_count)

{

int r = 0;

int i;

__builtin_assert(loop_count > 4);

for (i = 0; i < loop_count; i++) {

r += value;

}

return r;

}

The optimizer can now omit the jump over the loop body it would other-
wise have to emit to cover loop_count == 0. In more complicated code,
further optimizations may be possible when bounds for variables are
known.

Video Operation Built-In Functions

The C/C++ compiler provides built-in functions for using the Blackfin
processor’s video pixel operations. Include the video.h header file before
using these functions.

Some video operation built-in functions take an 8-byte sequence of data,
and select from it a sequence of four bytes to use as input. The operation
selects the four bytes at an offset of 0, 1, 2, or 3 bytes from lowest byte
of the 8-byte sequence, depending on the value of a pointer parameter.
Where reverse variants of the operations exist (the operation name is

CrossCore Embedded Studio 1.0 1-289
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

suffixed by “r”), the two 4-byte halves of the 8-byte sequence are accessed
in reverse order.

Where a video operation generates more than one result, the operation
may be implemented by more than one built-in function. In these cases,
macros are provided to generate the appropriate built-in calls.

For further information regarding the underlying Blackfin processor
instructions that implement the video operations, refer to the Blackfin
Processor Programming Reference.

Function Prototypes

Align Operations

int align8(int src1, int src2); /* 1 byte offset */

int align16(int src1, int src2); /* 2 byte offset */

int align24(int src1, int src2); /* 3 byte offset */

These three operations treat their two inputs as a single 8-byte sequence,
and extract a specific 4-byte sequence from it, starting at offset 1, 2, or 3
bytes, as shown.

Packing Operations

int bytepack(int src1, int src2);

This operation treats its two inputs as four 16-bit values, and packs each
16-bit value into an 8-bit value in the result. Effectively, it converts an
array of four shorts to an array of four chars.

long long compose_i64(int low, int high);

This operation produces a 64-bit value from the two 32-bit values pro-
vided as input and can be used to efficiently generate a long long type
that is needed for many of the following operations.

C/C++ Compiler Language Extensions

1-290 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Misaligned Loads

int loadbytes(int *ptr);

This operation is used to load a 4-byte sequence from memory using ptr
as the address, where ptr may be misaligned. The actual data retrieved is
aligned by masking off the bottom two bits of ptr, where ptr is intended
to select bytes from input operands in subsequent operations. Misaligned
read exceptions are prevented from occurring.

Unpacking

byteunpack(long long src, char *ptr, int dst1, int dst2)

byteunpackr(long long src, char *ptr, int dst1, int dst2)

These macros provide the unpacking operations, where PTR selects four
bytes from the eight-byte sequence in SRC. Each of the four bytes is
expanded to a 16-bit value. The first two 16-bit values are returned in
DST1, and the second two are returned in DST2.

Quad 8-Bit Add Subtract

add_i4x8(long long src1, char *ptr1, long long src2,

char *ptr2, int dst1, int dst2);

add_i4x8r(long long src1, char *ptr1, long long src2,

char *ptr2, int dst1, int dst2);

sub_i4x8(long long src1, char *ptr1, long long src2,

char *ptr2, int dst1, int dst2);

sub_i4x8r(long long src1, char *ptr1, long long src2,

char *ptr2, int dst1, int dst2);

These macros provide the operations to select two four-byte sequences
from the two eight-byte operands provided, add or subtract the corre-
sponding bytes, and generate four 16-bit results. The first two results are
stored in DST1, and the second two are stored in DST2. PTR1 selects the

CrossCore Embedded Studio 1.0 1-291
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

bytes from SRC1, and PTR2 selects the bytes from SRC2. The add_i4x8r()
and sub_i4x8r() variants produce the same instructions as add_i4x8()
and sub_i4x8(), but with the “reverse” option enabled; this swaps the
order of the two 32-bit elements in the SRC parameters.

Dual 16-Bit Add/Clip

int addclip_lo(long long src1, char *ptr1, long long src2,

char *ptr2);

int addclip_hi(long long src1, char *ptr1, long long src2,

char *ptr2);

int addclip_lor(long long src1, char *ptr1, long long src2,

char *ptr2);

int addclip_hir(long long src1, char *ptr1, long long src2,

char *ptr2);

These operations select two 16-bit values from src1 using ptr1, and two
8-bit values from src2 using ptr2. The pairs are added and then clipped to
the range 0 to 255, producing two 8-bit results. The _lo versions select
bytes 3 and 1 from src2, while the _hi versions select bytes 2 and 0. The
_lor and _hir versions reverse the order of the 32-bit elements in src1
and src2.

Quad 8-Bit Average

int avg_i4x8(long long src1, char *ptr1, long long src2,

char *ptr2);

int avg_i4x8_t(long long src1, char *ptr1, long long src2,

char *ptr2);

int avg_i4x8_r(long long src1, char *ptr1, long long src2,

char *ptr2);

C/C++ Compiler Language Extensions

1-292 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

int avg_i4x8_tr(long long src1, char *ptr1, long long src2,

char *ptr2);

These operations select two 4-byte sequences from src1 and src2, using
ptr1 and ptr2. They add the corresponding bytes from each sequence, and
then shift each result right once to produce four byte-size averages. There
are four variants of the operation to select the reverse and truncate options
for the operation.

int avg_i2x8_lo (long long src1, char *ptr1, long long src2);

int avg_i2x8_lot (long long src1, char *ptr1, long long src2);

int avg_i2x8_lor (long long src1, char *ptr1, long long src2);

int avg_i2x8_lotr(long long src1, char *ptr1, long long src2);

int avg_i2x8_hi (long long src1, char *ptr1, long long src2);

int avg_i2x8_hit (long long src1, char *ptr1, long long src2);

int avg_i2x8_hir (long long src1, char *ptr1, long long src2);

int avg_i2x8_hitr(long long src1, char *ptr1, long long src2);

These operations produce two 8-bit average values. Each selects two
four-byte sequences from src1 and src2 using ptr, and then produces
averages of the 4-byte sequences as two 2x2-byte clusters. The two results
are byte-sized, and are stored in two bytes of the output result; the other
two bytes are set to zero. The variants allow for the generation of different
options: truncate or round, reverse input pairs, or store results in the low
or high bytes of each 16-bit half of the result register.

CrossCore Embedded Studio 1.0 1-293
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Accumulator Extract With Addition

extract_and_add(long long src1, long long src2, int dst1,

int dst2);

This macro provides the operation to add the high and low halves of SRC1
with the high and low halves of SRC2 to produce two 32-bit results.

Subtract Absolute Accumulate

saa(long long src1, char *ptr1, long long src2, char *ptr2,

int sum1, int sum2, int dst1, int dst2);

saar(long long src1, char *ptr1, long long src2, char *ptr2,

int sum1, int sum2, int dst1, int dst2);

These macros provide the operations to select two 4-byte sequences from
SRC1 and SRC2, using PTR1 and PTR2 to select. The bytes from SRC2 are sub-
tracted from their corresponding bytes in SRC1, and then the absolute
value of each subtraction is computed. These four results are then added
to the four 16-bit values in SUM1 and SUM2, and the results are stored in
DST1 and DST2, as four 16-bit values.

Example of Use: Sum of Absolute Difference

As an example use of the video operation built-in functions, a block-based
video motion estimation algorithm might use sum of absolute difference
(SAD) calculations to measure distortion. A reference SAD function may
be implemented as:

int ref_SAD16x16(unsigned char *image, unsigned char *block,

int imgWidth)

{

int dist = 0;

int x, y;

for (y = 0; y < 16; y++) {

C/C++ Compiler Language Extensions

1-294 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

for (x = 0; x < 16; x++)

dist += abs(image[x] - block[x]);

image += 16+ (imgWidth-16);

block += 16;

}

return dist;

}

Using video operation built-in functions, the code could be written
as follows. (Note: imgWidth should be divisible by 4.)

int vid_SAD16x16(unsigned char *image, unsigned char *block,

int imgWidth)

{

int x, y;

long long srcI, srcB;

int bytesI1, bytesI2, bytesB1, bytesB2;

int sum1, sum2, res1, res2;

sum1 = sum2 = 0;

bytesI2 = bytesB2 = 0;

/* get 4-byte aligned pointers */

int *iPtr = ((int)image)&~3;

int *bPtr = ((int)block)&~3;

for (y = 0; y < 16; y++) {

bytesI1 = *iPtr;

bytesB1 = *bPtr;

for (x = 0; x < 16; x += 8) {

iPtr++; bytesI2 = *iPtr++;

bPtr++; bytesB2 = *bPtr++;

srcI = compose_i64(bytesI1, bytesI2);

srcB = compose_i64(bytesB1, bytesB2);

CrossCore Embedded Studio 1.0 1-295
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

saa(srcI, image, srcB, block, sum1, sum2, sum1, sum2);

bytesI1 = *iPtr;

bytesB1 = *bPtr;

srcI = compose_i64(bytesI1, bytesI2);

srcB = compose_i64(bytesB1, bytesB2);

saar(srcI, image, srcB, block, sum1, sum2, sum1, sum2);

}

iPtr += (imgWidth - 16)/4;

}

extract_and_add(sum1, sum2, res1, res2);

return res1 + res2;

}

Misaligned Data Built-In Functions

The following intrinsic functions allow you to explicitly perform loads
from misaligned memory locations and stores to misaligned memory loca-
tions. These functions generate expanded code to read and write from
such memory locations, regardless of whether the access is aligned or not.

#include <ccblkfn.h>

short misaligned_load16(void *);

short misaligned_load16_vol(volatile void *);

void misaligned_store16(void *, short);

void misaligned_store16_vol(volatile void *, short);

int misaligned_load32(void *);

int misaligned_load32_vol(volatile void *);

void misaligned_store32(void *, int);

void misaligned_store32_vol(volatile void *, int);

C/C++ Compiler Language Extensions

1-296 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

long long misaligned_load64(void *);

long long misaligned_load64_vol(volatile void *);

void misaligned_store64(void *, long long);

void misaligned_store64_vol(volatile void *, long long);

Note that there are also volatile variants of these functions. Because of the
operations required to read from and write to such misaligned memory
locations, no assumptions should be made regarding the atomicity of these
operations. Refer to #pragma pack (alignopt) for more information.

Memory-Mapped Register Access Built-In Functions

The following built-in functions can be used to ensure that the compiler
applies any necessary silicon anomaly workarounds for memory-mapped
register (MMR) accesses. These workarounds may be necessary for any
source that uses non-literal address type accesses (particularly when the
-no-assume-vols-are-mmrs switch (on page 1-54) is specified) as the
compiler is not normally able to identify such code as implementing
MMR accesses. An example of this is where an access is made via a pointer
whose value cannot be determined at compile time.

The prototypes for the following functions that implement this support
are defined in the ccblkfn.h include file:

unsigned short mmr_read16(volatile void *);

// Performs 16-bit MMR load

unsigned int mmr_read32(volatile void *);

// Performs 32-bit MMR load

void mmr_write16(volatile void *,

unsigned short); // Performs 16-bit MMR store

void mmr_write32(volatile void *,

unsigned int); // Performs 32-bit MMR store

The compiler generates equivalent code for uses of these built-in functions
as it would for a normal dereference of the specified pointer. The only
difference when the built-ins are used is that the compiler can ensure that

CrossCore Embedded Studio 1.0 1-297
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

the generated code avoids any silicon anomalies that impact MMR
accesses, provided the workarounds are enabled by building for the appro-
priate silicon revision, or are explicitly enabled via the -workaround switch
(on page 1-91).

Pragmas
The Blackfin C/C++ compiler supports pragmas. Pragmas are implemen-
tation-specific directives that modify the compiler’s behavior. There are
two types of pragma usage: pragma directives and pragma operators.

Pragma directives have the following syntax:

#pragma pragma-directive pragma-directive-operands new-line

Pragma operators have the following syntax:

_Pragma (string-literal)

When processing a pragma operator, the compiler effectively turns it into
a pragma directive using a non-string version of string-literal. This
means that the following pragma directive

#pragma linkage_name mylinkname

can also be equivalently expressed using the following pragma operator.

_Pragma ("linkage_name mylinkagename")

The examples in this manual use the directive form.

The compiler issues a warning when it encounters an unrecognized
pragma directive or pragma operator.

The following sections describe the supported pragmas:

• Pragmas With Declaration Lists

• Data Declaration Pragmas

C/C++ Compiler Language Extensions

1-298 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• Interrupt Handler Pragmas

• Loop Optimization Pragmas

• General Optimization Pragmas

• Fixed-Point Arithmetic Pragmas

• Inline Control Pragmas

• Linking Control Pragmas

• Function Side-Effect Pragmas

• Class Conversion Optimization Pragmas

• Template Instantiation Pragmas

• Header File Control Pragmas

• Diagnostic Control Pragmas

• Run-Time Checking Pragmas

• Memory Bank Pragmas

• Exceptions Tables Pragma

Pragmas With Declaration Lists

When using pragmas that can be applied to declarations, in most cases,
they only affect the immediately-following definition, even if it is part of a
list; for example:

#pragma align 8

int i1, i2, i3;

In the above example, the pragma applies only to i1, meaning i1 is 8-byte
aligned, while i2 and i3 use the default alignment. The single exception

CrossCore Embedded Studio 1.0 1-299
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

to this is the “section” pragma, which applies to the entire declaration list
that follows it; for example:

#pragma section("foo")

int x, y, z;

In the above example, x, y, and z are placed in section foo, and the
compiler issues warning cc1738 to allow you to decide whether this is
what was intended.

Data Declaration Pragmas

Data declaration pragmas affect the declaration of data and data types.

Data alignment pragmas are used to modify how the compiler arranges
data within the processor’s memory. Since the Blackfin processor
architecture requires memory accesses to be naturally aligned, each data
item is normally aligned at least as strongly as itself—two-byte shorts
have an alignment of 2, and four-byte longs have an alignment of 4.
An 8-byte long long also has an alignment of 4.

When a struct is defined, the struct’s overall alignment is the same as the
field which has the largest alignment. The struct’s size may need padding
to ensure that all fields are properly aligned and that the struct’s overall
size is a multiple of its alignment.

Sometimes, it is useful to change these alignments. A struct may have its
alignment increased to improve the compiler’s opportunities in
vectorizing access to the data. A struct may have its alignment reduced so
that a large array occupies less space.

 If a data item’s alignment is reduced, the compiler cannot safely
access the data item without the risk of causing misaligned memory
access exceptions. Programs that use reduced-alignment data must
ensure that accesses to the data are made using data types that
match the reduced alignment, rather than the default one. For

C/C++ Compiler Language Extensions

1-300 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

example, if an int has its alignment reduced from the default (4)
to 2, it must be accessed as two shorts or four bytes, rather than as
a single int.

Data alignment pragmas include the align, pack, and pad pragmas.
Alignments specified using these pragmas must be a power of two. The
compiler rejects uses of those pragmas that specify alignments that are not
powers of two.

#pragma align num

The align pragma may be used before variable declarations and field
declarations. It applies to the variable or field declaration that immedi-
ately follows the pragma.

The pragma’s effect is that the next variable or field declaration is forced
to be aligned on a boundary specified by num, as follows:

• If the pragma is being applied to a local variable (which will be
stored on the stack), the alignment of the variable will only be
changed when num is not greater than the stack alignment, that is 4
bytes. If num is greater than the stack alignment, a warning is given
that the pragma is being ignored.

• If num is greater than the alignment normally required by the fol-
lowing variable or field declaration, the variable or field
declaration’s alignment is changed to num.

• If num is less than the alignment normally required, the variable or
field declaration’s alignment is changed to num, and a warning is
given that the alignment has been reduced.

CrossCore Embedded Studio 1.0 1-301
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

The pragma also allows the following keywords as allowable alignment
specifications:

_WORD – Specifies a 32-bit alignment

_LONG – Specifies a 64-bit alignment

_QUAD – Specifies a 128-bit alignment

If the pack pragma (on page 1-304) or pad pragma (on page 1-305) are
currently active, then align overrides the immediately-following field
declaration.

The following examples show how to use #pragma align.

struct s{

#pragma align 8 /* field a aligned on 8-byte boundary */

int a;

int bar;

#pragma align 16 /* field b aligned on 16-byte boundary */

int b;

} t[2];

#pragma align 256

int arr[128]; /* declares an int array with 256 alignment */

The following example shows a use that is valid, but emits a compiler
warning.

#pragma align 1

int warns; /* declares an int with byte alignment, */
/* causes a compiler warning */

C/C++ Compiler Language Extensions

1-302 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The following is an example of an invalid use of #pragma align. Since the
alignment is not a power of two, the compiler rejects it and issues an error.

#pragma align 3

int errs; /* INVALID: declares an int with non-power of */

/* two alignment, causes a compiler error */

 The align pragma only applies to the immediately-following
definition, even if that definition is part of a list. For example,

#pragma align 8

int i1, i2, i3; // pragma only applies to i1

#pragma alignment_region (alignopt)

Sometimes it is desirable to specify an alignment for a group of consecu-
tive data items rather than individually. This can be done using the
alignment_region and alignment_region_end pragmas:

• #pragma alignment_region sets the alignment for all following
data symbols up to the corresponding alignment_region_end
pragma

• #pragma alignment_region_end removes the effect of the active
alignment region and restores the default alignment rules for data
symbols

The rules concerning the argument are the same as for the align pragma
(on page 1-300). The compiler faults an invalid alignment (such as an
alignment that is not a power of two). The compiler warns if the
alignment of a data symbol within the control of an alignment_region is
reduced below its natural alignment (as for #pragma align).

Use of the align pragma overrides the region alignment specified by the
currently active alignment_region pragma (if there is one). The currently
active alignment_region does not affect the alignment of fields.

CrossCore Embedded Studio 1.0 1-303
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Example:

#pragma align 16

int aa; /* alignment 16 */

int bb; /* alignment 4 */

#pragma alignment_region (8)

int cc; /* alignment 8 */

int dd; /* alignment 8 */

int ee; /* alignment 8 */

#pragma align 16

int ff; /* alignment 16 */

int gg; /* alignment 8 */

int hh; /* alignment 8 */

#pragma alignment_region_end

int ii; /* alignment 4 */

#pragma alignment_region (2)

long double jj; /* alignment 2, but the compiler warns

about the reduction */

#pragma alignment_region_end

#pragma alignment_region (5)

long double kk; /* the compiler faults this, alignment

is not a power of two */

#pragma alignment_region_end

C/C++ Compiler Language Extensions

1-304 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

#pragma pack (alignopt)

The pack pragma may be applied to struct definitions. It applies to all
struct definitions that follow, until the default alignment is restored by
omitting alignopt (for example, by #pragma pack() with empty
parentheses).

The pack pragma is used to reduce the default alignment of the struct to
be alignopt. If fields within the struct have a default alignment greater
than align, their alignment is reduced to alignopt. If fields within the
struct have alignment less than align, their alignment is unchanged.

If alignopt is specified, it is illegal to invoke #pragma pad until the default
alignment is restored. The compiler generates an error message if the pad
and pack pragmas are used in a manner that conflicts.

The following example shows how to use #pragma pack:

#pragma pack(1)

/* struct minimum alignment now 1 byte, uses of

"#pragma pad" would cause a compilation error now */

struct is_packed {

char a;

/* normally the compiler would add three padding bytes here,

but not now because of prior pragma pack use */

int b;

} t[2]; /* t definition requires 10 packed bytes */

#pragma pack()

/* struct minimum alignment now, not one byte,

"#pragma pad"can now be used legally */

struct is_packed u[2]; /* u definition requires 10 packed
bytes */

/* struct not_packed is a new type, and will not be packed. */

CrossCore Embedded Studio 1.0 1-305
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

struct not_packed {

char a;

/* compiler will insert three padding bytes here */

int b;

} w[2]; /* w definition required 16 bytes */

The Blackfin processor does not support misaligned memory accesses at
the hardware level; the compiler generates additional code to correctly
handle reads from (and writes to) misaligned structure members. The code
generated will not necessarily be as efficient as reading from (or writing to)
an aligned structure member, but that is the trade-off that must be
accepted in return for getting packed structures.

Only direct reads from (and writes to) misaligned structure members are
automatically handled by the compiler. As a result, taking the address of a
misaligned field and assigning it to a pointer causes the compiler to emit a
warning. The reason for the warning is that the compiler does not detect a
misaligned memory access if the address of a misaligned field is taken and
stored in a pointer of a different type to that of the structure.

 Since #pragma pack reduces alignment constraints, and therefore
reduces the need for padding within the struct, the overall size of
the struct can be reduced; in fact, this reduction in size is often the
reason for using the pragma. Be aware, however, that the reduced
alignment also applies to the struct as a whole, so instances of the
struct may start on alignopt boundaries instead of the default
boundaries of the equivalent unpacked struct.

#pragma pad (alignopt)

Th pad pragma may be applied to struct definitions. It applies to struct
definitions that follow until the default alignment is restored by omitting
alignopt (for example, by #pragma pad() with empty parentheses).

C/C++ Compiler Language Extensions

1-306 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The pad pragma is effectively shorthand for placing #pragma align before
every field within the struct definition. Like the pack pragma, it reduces
the alignment of fields that default to an alignment greater than alignopt.

However, unlike the pack pragma, it also increases the alignment of fields
that default to an alignment less than alignopt.

 Although the pack alignopt pragma emits a warning when a field
alignment is reduced, the pad alignopt pragma does not.

If alignopt is specified, it is illegal to invoke #pragma pack until the
default alignment is restored.

The following example shows how to use #pragma pad().

#pragma pad(4)

struct {

int i;

int j;

} s = {1,2};

#pragma pad()

#pragma no_partial_initialization

The no_partial_initialization pragma indicates that the compiler
should raise a diagnostic if the following structure declaration does not
provide an initialization value for all members of the structure. The
pragma is useful when a structure declaration is extended between revi-
sions of the software.

The following example shows how to use #pragma
no_partial_initialization:

struct no_err {

int x;

int y;

};

CrossCore Embedded Studio 1.0 1-307
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

#pragma no_partial_initialization

struct with_err {

int x;

int y;

};

struct no_err s1 = { 5 }; // no diagnostic

struct with_err s2 = { 5 }; // diagnostic reported

Interrupt Handler Pragmas

The interrupt, nmi, and exception pragmas declare that the following
function declaration or definition is to be used as an entry in the event
vector table (EVT). The compiler arranges for the function to save its con-
text. This is more than the usual called-preserved set of registers. The
function returns using an instruction appropriate to the type of event
specified by the pragma.

Normally, these pragmas are not used directly; the supported interrupt
model uses a dispatcher. See the System Run-Time Documentation for more
information.

Interrupt handler pragmas may be specified on a function’s declaration or
its definition. Only one of the three pragmas listed above may be specified
for a particular function.

The interrupt_reentrant pragma is used with the interrupt pragma to
specify that the function’s context-saving prologue should also arrange for
interrupts to be re-enabled for the duration of the function’s execution.

The interrupt_level_interrupt pragmas are also used to specify that a
function should be compiled as an interrupt service routine (ISR). Use
these pragmas instead of the interrupt pragma when compiling interrupt
handler functions with the -isr-imask-check workaround enabled, or
when the workaround is enabled by default for the targeted processor and
silicon revision. These pragmas are supported for interrupt levels 5
(#pragma interrupt_level_5) to 15 (#pragma interrupt_level_15).

C/C++ Compiler Language Extensions

1-308 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

If the isr-imask-check workaround is enabled, ISRs declared without
explicit interrupt levels—such as those declared using
EX_INTERRUPT_HANDLER()—check for interrupts occurring while a CLI
instruction is committed and return immediately if this is detected.
They do not attempt to re-raise the interrupt.

Loop Optimization Pragmas

Loop optimization pragmas give the compiler additional information
about usage within a particular loop, allowing the compiler to perform
more aggressive optimization. These pragmas are placed before the loop
statement, and apply to the statement that immediately follows, which
must be a for, while, or do statement to have effect. In general, it is most
effective to apply loop optimization pragmas to inner-most loops, since
the compiler can achieve the most savings there.

The optimizer always attempts to vectorize loops when it is safe to do so.
The optimizer exploits the information generated by the interprocedural
analysis to increase the cases where it knows it is safe to do so. (See Inter-
procedural Analysis.)

Consider the code:

void copy(short *a, short *b) {

int i;

for (i=0; i<100; i++)

a[i] = b[i];

}

If you call copy with two calls, such as copy(x,y) and later copy(y,z),
interprocedural analysis is unable to tell that “a” never aliases “b”.
Therefore, the optimizer cannot be sure that one iteration of the loop is
not dependent on the data calculated by the previous iteration of the loop.
If it is known that each iteration of the loop is not dependent on the pre-
vious iteration, then the vector_for pragma can be used to explicitly
notify the compiler that this is the case.

CrossCore Embedded Studio 1.0 1-309
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

#pragma all_aligned

The all_aligned pragma applies to the subsequent loop. This pragma
asserts that all pointers are initially aligned on the most desirable
boundary.

#pragma different_banks

The different_banks pragma allows the compiler to assume that groups
of memory accesses based on different pointers within a loop reside in
different memory banks. By scheduling them together, memory access
performance may be improved.

#pragma loop_count(min, max, modulo)

The loop_count pragma appears just before the loop it describes. It asserts
that the loop iterates at least min times, no more than max times, and a
multiple of modulo times. This information enables the optimizer to omit
loop guards and to decide whether the loop is worth completely unrolling
and whether code needs to be generated for odd iterations. Any of the
parameters of the pragma that are unknown may be left blank. For
example,

int i;

#pragma loop_count(24, 48, 8)

for (i=0; i < n; i++)

#pragma loop_unroll N

The loop_unroll pragma can be used only before a for, while, or
do.. while loop. The pragma takes one positive integer argument, N,
and instructs the compiler to unroll the loop N times prior to further
transforming the code.

In the most general case, the effect of:

#pragma loop_unroll N

for (init statements; condition; increment code) {

C/C++ Compiler Language Extensions

1-310 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

loop_body

}

is equivalent to transforming the loop to:

for (init statements; condition; increment code) {

loop_body /* copy 1 */

increment_code

if (!condition)

break;

loop_body /* copy 2 */

increment_code

if (!condition)

break;

...

loop_body /* copy N-1 */

increment_code

if (!condition)

break;

loop_body /* copy N */

}

Similarly, the effect of:

#pragma loop_unroll N

while (condition) {

loop_body

}

is equivalent to transforming the loop to:

while (condition) {

loop_body /* copy 1 */

CrossCore Embedded Studio 1.0 1-311
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

if (!condition)

break;

loop_body /* copy 2 */

if (!condition)

break;

...

loop_body /* copy N-1 */

if (!condition)

break;

loop_body /* copy N */

}

and the effect of:

#pragma loop_unroll N

do {

loop_body

} while (condition)

is equivalent to transforming the loop to:

do {

loop_body /* copy 1 */

if (!condition)

break;

loop_body /* copy 2 */

if (!condition)

break;

...

C/C++ Compiler Language Extensions

1-312 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

loop_body /* copy N-1 */

if (!condition)

break;

loop_body /* copy N */

} while (condition)

#pragma no_alias

Use the no_alias pragma to inform the compiler that the following loop
has no loads or stores that conflict. When the compiler finds memory
accesses that potentially refer to the same location through different point-
ers (known as “aliases”), the compiler is restricted in how it may reorder
or vectorize the loop, because all the accesses from earlier iterations must
be complete before the compiler can arrange for the next iteration to start.

For example,

void vadd(int *a, int *b, int *out, int n) {

int i;

#pragma no_alias

for (i=0; i < n; i++)

out[i] = a[i] + b[i];

}

The no_alias pragma appears just before the loop it describes. This
pragma asserts that in the next loop, no load or store operations conflict
with each other. In other words, no load or store in any iteration of the
loop has the same address as any other load or store in the current or in
any other iteration of the loop. In the example above, if pointers a and b
point to two memory areas that do not overlap, no load from b is using
the same address as any store to a. Therefore, a is never an alias for b.

Using the no_alias pragma can lead to better code because it allows any
number of iterations to be performed concurrently (rather than just two at
a time), thus providing better software pipelining by the optimizer.

CrossCore Embedded Studio 1.0 1-313
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

#pragma no_vectorization

When specified on a loop, the no_vectorization pragma turns off all vec-
torization for the loop.

This pragma may also be specified on a function definition. For more
information, see #pragma no_vectorization.

#pragma vector_for

The vector_for pragma notifies the optimizer that it is safe to execute two
iterations of the loop in parallel. The vector_for pragma does not force
the compiler to vectorize the loop. The optimizer checks various proper-
ties of the loop and does not vectorize it if it believes to be unsafe or if it
cannot deduce that the various properties necessary for the vectorization
transformation are valid.

Strictly speaking, the pragma simply disables checking for loop-carried
dependencies.

void copy(short *a, short *b) {

int i;

#pragma vector_for

for (i=0; i<100; i++)

a[i] = b[i];

}

In cases where vectorization is impossible (for example, if array a is aligned
on a word boundary but array b is not), the information given in the asser-
tion made by vector_for may still be put to good use in aiding other
optimizations.

General Optimization Pragmas

The compiler supports several pragmas which can change the optimization
level while a given module is being compiled. These pragmas must be used
globally, immediately prior to a function definition. The pragmas do not

C/C++ Compiler Language Extensions

1-314 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

just apply to the immediately-following function; they remain in effect
until the end of the compilation, or until they are superseded by one of
the following optimize_ pragmas.

• #pragma optimize_off

This pragma turns off the optimizer, if it was enabled. It has the
same effect as compiling with no optimization enabled.

• #pragma optimize_for_space

This pragma turns on the optimizer, if it was disabled, or sets the
focus to give reduced code size a higher priority than high perfor-
mance, where these conflict.

• #pragma optimize_for_speed

This pragma turns on the optimizer, if it was disabled, or sets the
focus to give high performance a higher priority than reduced code
size, where these conflict.

• #pragma optimize_as_cmd_line

This pragma resets the optimization settings to be those specified
on the ccblkfn command line when the compiler was invoked.

The following are code examples of optimize_ pragmas.

#pragma optimize_off

void non_op() { /* non-optimized code */ }

#pragma optimize_for_space

void op_for_si() { /* code optimized for size */ }

#pragma optimize_for_speed

void op_for_sp() { /* code optimized for speed */ }

/* subsequent functions declarations optimized for speed */

CrossCore Embedded Studio 1.0 1-315
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Fixed-Point Arithmetic Pragmas

The compiler supports several pragmas which can change the semantics of
arithmetic on the native fixed-point types fract and accum. These are
#pragma FX_CONTRACT {ON|OFF} and #pragma FX_ROUNDING_MODE {TRUN-
CATION|BIASED|UNBIASED}. In addition, #pragma STDC
FX_FULL_PRECISION {ON|OFF|DEFAULT}, #pragma STDC
FX_FRACT_OVERFLOW {SAT|DEFAULT}, and #pragma STDC
FX_ACCUM_OVERFLOW {SAT|DEFAULT} are accepted by the compiler but have
no effect on generated code.

These pragmas may be used at file scope, in which case they apply to all
following functions until another pragma is respecified to change the
pragma state. Alternatively, they may be specified in a { } delimited scope
(or compound statement), where they will temporarily override the
current setting of the pragma’s state until the end of the scope.

For more information, see Using Native Fixed-Point Types.

#pragma FX_CONTRACT {ON|OFF}

The FX_CONTRACT {ON|OFF} pragma may be used to control the precision
of intermediate results of calculations on the native fixed-point types
fract and accum. If FX_CONTRACT is ON, where an intermediate result is not
stored back to a named variable, the compiler may choose to keep the
intermediate result in greater precision than that mandated by the
ISO/IEC C Technical Report 18037. It will do this where maintaining
the higher precision allows more efficient code to be generated.

When FX_CONTRACT is OFF, the compiler will adhere strictly to the
ISO/IEC Technical Report 18037 and will convert all intermediate results
to the type dictated in this standard before use.

The following example shows the use of this pragma.

accum mac(accum a, fract f1, fract f2) {

#pragma FX_CONTRACT ON

C/C++ Compiler Language Extensions

1-316 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

a += f1 * f2; /* compiler creates multiply-accumulate

instruction */

return a;

}

The default state of the FX_CONTRACT pragma is ON.

#pragma FX_ROUNDING_MODE {TRUNCATION|BIASED|UNBIASED}

The FX_ROUNDING_MODE {TRUNCATION|BIASED|UNBIASED} pragma may be
used to control the rounding mode used during calculations on the native
fixed-point types fract and accum.

When FX_ROUNDING_MODE is set to TRUNCATION, the exact mathematical
result of a computation is rounded by truncating the least significant bits
beyond the precision of the result type. This is equivalent to rounding
towards negative infinity.

When FX_ROUNDING_MODE is set to BIASED, the exact mathematical result of
a computation is rounded to the nearest value that fits in the result type. If
the exact result lies exactly half-way between two consecutive values in the
result type, the result is rounded up to the higher one. Note that this
rounding mode pragma should be used in conjunction with the
set_rnd_mod_biased() built-in function. For more information, see
Changing the RND_MOD Bit.

When FX_ROUNDING_MODE is set to UNBIASED, the exact mathematical result
of a computation is rounded to the nearest value that fits in the result
type. If the exact result lies exactly half-way between two consecutive val-
ues in the result type, the result is rounded to the even value. Note that
this rounding mode pragma should be used in conjunction with the
set_rnd_mod_unbiased() built-in function. For more information, see
Changing the RND_MOD Bit.

CrossCore Embedded Studio 1.0 1-317
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

The following example shows the use of this pragma.

fract divide_biased(fract f1, fract f2) {

#pragma FX_ROUNDING_MODE BIASED

 set_rnd_mod_biased();

return f1 / f2; /* compiler creates divide with biased

rounding */

}

The default state of the FX_ROUNDING_MODE pragma is TRUNCATION.

#pragma STDC FX_FULL_PRECISION {ON|OFF|DEFAULT}

The STDC FX_FULL_PRECISION {ON|OFF|DEFAULT} pragma is used by the
ISO/IEC Technical Report 18037 to permit an implementation to
generate faster code for fixed-point arithmetic, but produce lower-accu-
racy results.

The compiler always produces full-accuracy results. Therefore, although
the pragma is accepted by the compiler, the code generated will be the
same regardless of the state of FX_FULL_PRECISION.

#pragma STDC FX_FRACT_OVERFLOW {SAT|DEFAULT}

The STDC FX_FRACT_OVERFLOW {SAT|DEFAULT} pragma is used by the
ISO/IEC Technical Report 18037 to permit an implementation to
generate code that does not saturate fract-typed results on overflow.

fract arithmetic with the CCES compiler always saturates on overflow.
Therefore, although the pragma is accepted by the compiler, the code
generated will be the same regardless of the state of FX_FRACT_OVERFLOW.

#pragma STDC FX_ACCUM_OVERFLOW {SAT|DEFAULT}

The STDC FX_ACCUM_OVERFLOW {SAT|DEFAULT} pragma is used by the
ISO/IEC Technical Report 18037 to permit an implementation to
generate code that does not saturate accum-typed results on overflow.

C/C++ Compiler Language Extensions

1-318 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

accum arithmetic with the CCES compiler always saturates on overflow.
Therefore, although the pragma is accepted by the compiler, the code gen-
erated will be the same regardless of the state of FX_ACCUM_OVERFLOW.

Inline Control Pragmas

The compiler supports three pragmas to control the inlining of code
(#pragma always_inline, #pragma inline, and #pragma never_inline).

#pragma always_inline

The always_inline pragma may be applied to a function definition to
indicate to the compiler that the function should always be inlined, and
never called “out of line”. The pragma may only be applied to function
definitions with the inline qualifier, and may not be used on functions
with variable-length argument lists. This pragma is not valid for function
definitions that have interrupt-related pragmas associated with them.

If the function in question has its address taken, the compiler cannot
guarantee that all calls are inlined, so a warning is issued.

See Function Inlining for details of pragma precedence during inlining.

The following are examples of the always_inline pragma.

int func1(int a) { // only consider inlining

return a + 1; // if -Oa switch is on

}

inline int func2(int b) { // probably inlined, if optimizing

return b + 2;

}

#pragma always_inline

inline int func3(int c) { // always inline, even unoptimized

return c + 3;

}

CrossCore Embedded Studio 1.0 1-319
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

#pragma always_inline

int func4(int d) { // error: not an inline function

return d + 4;

}

#pragma inline

The inline pragma instructs the compiler to inline the function if it is
considered desirable. The pragma is equivalent to specifying the inline
keyword, but may be applied when the inline keyword is not allowed
(such as when compiling in MISRA-C mode). For more information, see
MISRA-C Compiler.

#pragma inline

int func5(int a, int b) { /* can be inlined */

return a / b;

}

#pragma never_inline

The never_inline pragma may be applied to a function definition to indi-
cate to the compiler that function should always be called “out of line”,
and that the function’s body should never be inlined.

This pragma may not be used on function definitions that have the inline
qualifier.

See Function Inlining for details of pragma precedence during inlining.

The following are code examples for the never_inline pragma.

#pragma never_inline

int func5(int e) { // never inlined, even with -Oa switch

return e + 5;

}

C/C++ Compiler Language Extensions

1-320 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

#pragma never_inline

inline int func5(int f) { // error: inline function

return f + 6;

}

Linking Control Pragmas

Linking control pragmas (linkage_name, core, retain_name, section,
file_attr, symbolic_ref, and weak_entry) change how a given global
function or variable is viewed during the linking stage.

#pragma linkage_name identifier

The linkage_name pragma associates the identifier with the next exter-
nal function declaration. It ensures that the identifier is used as the
external reference, instead of following the compiler’s usual conventions.
If the identifier is not a valid function name, as could be used in normal
function definitions, the compiler generates an error. See also the asm key-
word (on page 1-373).

The following example shows the use of this pragma.

#pragma linkage_name realfuncname

void funcname ();

void func() {

funcname(); /* compiler will generate a call to realfuncname

*/

}

#pragma core

When building a project that targets multiple processors or multiple cores
on a processor, a link stage may produce executables for more than one
core or processor. The interprocedural analysis (IPA) framework requires
that some conventions be adhered to in order to successfully perform its
analyses for such projects.

CrossCore Embedded Studio 1.0 1-321
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Because the IPA framework collects information about the whole pro-
gram, including information on references which may be to definitions
outside the current translation unit, the IPA framework must be able to
distinguish these definitions and their references without ambiguity.

If any confusion were allowed about which definition a reference refers to,
then the IPA framework could potentially cause bad code to be generated,
or could cause translation units in the project to be continually recom-
piled ad infinitum. Global symbols are relevant in this respect. The IPA
framework correctly handles locals and static symbols because multiple
definitions are not possible within the same file, so there can be no
ambiguity.

In order to disambiguate all references and the definitions to which they
refer, each definition within a given project must have a unique name. It is
illegal to define two different functions or variables with the same name.
This is illegal in single-core projects because this would lead to multiple
definitions of a symbol and the link would fail. In multi-core projects,
however, it may be possible to link a project with multiple definitions
because one definition could be linked into each link project, resulting in
a valid link. Without detailed knowledge of what actions the linker had
performed, however, the IPA framework would not be able disambiguate
such multiple definitions. For this reason, to use the IPA framework, you
must ensure unique names even in projects targeting multiple cores or
processors.

There are a few cases for which it is not possible to ensure unique names
in multi-core or multiprocessor projects. One such case is main. Each pro-
cessor or core will have its own _main function, and these need to be
disambiguated for the IPA framework to be able to function correctly.
Another case is where a library (or the C run-time startup) references a
symbol which the user may wish to define differently for each core.

For this reason, the #pragma core(corename) is provided.

C/C++ Compiler Language Extensions

1-322 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The core pragma can be provided immediately prior to a definition or a
declaration. The pragma allows you to give a unique identifier to each def-
inition. It also allows you to indicate to which definition each reference
refers. The IPA framework uses this core identifier to distinguish all
instances of symbols with the same name and will therefore be able to
carry out its analyses correctly.

 The specified corename, which is case-sensitive, must consist of
alphanumeric characters only.

Use the core pragma on:

• Every definition (not in a library) for which there needs to be a
distinct definition for each core.

• Every declaration of a symbol (not in a library) for which the
relevant definition includes the use of #pragma core. The core
specified for a declaration must agree with the core specified for the
definition.

The IPA framework will not need to be informed of any distinction if
there are two identical copies of the same function or data with the same
name. Functions or data that come from objects and that are duplicated in
memory local to each core, for example, will not need to be distinguished.
The IPA framework does not need to know exactly which instance each
reference will get linked to because the information processed by the
framework is identical for each copy. Essentially, the pragma only needs to
be specified on items where there will be different functions or data with
the same name incorporated into the executable for each core.

The following example of #pragma core usage distinguishes two different
main functions:

/* foo.c */

#pragma core("coreA")

int main(void) { /* Code to be executed by core A */

CrossCore Embedded Studio 1.0 1-323
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

}

/* bar.c */

#pragma core("coreB")

int main(void) {

/* Code to be executed by core B */

}

Omitting either instance of the pragma will cause the IPA framework to
issue a fatal error, indicating that the pragma has been omitted on at least
one definition.

The following example issues an error because the name contains a
non-alphanumeric character:

#pragma core("core/A")

int main(void) { /* Code to executed on core A */

}

In the following example, the core pragma must be specified on a declara-
tion as well as the definitions. A library contains a reference to a symbol,
which is expected to be defined for each core. Two more modules define
the main functions for the two cores. Two further modules, each only used
by one of the cores, references this symbol, and therefore require the
pragma.

/* libc.c */

#include <stdio.h>

extern int core_number;

void print_core_number(void) {

printf("Core %d\n", core_number);

}

/* maina.c */

extern void fooa(void);

#pragma core("coreA")

int core_number = 1;

#pragma core("coreA")

C/C++ Compiler Language Extensions

1-324 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

int main(void) {

/* Code to be executed by core A */

print_core_number();

fooa();

}

/* mainb.c */

extern void foob(void);

#pragma core("coreB")

int core_number = 2;

#pragma core("coreB")

int main(void) {

/* Code to be executed by core B */

print_core_number();

foob();

}

/* fooa.c */

#include <stdio.h>

#pragma core("coreA")

extern int core_number;

void fooa(void) {

printf("Core: is core%c\n", 'A' - 1 + core_number);

}

/* foob.c */

#include <stdio.h>

#pragma core("coreB")

extern int core_number;

void fooa(void) {

printf("Core: is core%c\n", 'A' - 1 + core_number);

}

In general, it is only necessary to use #pragma core in this manner when
there is a reference from outside the application (in a library, for example)
where there is expected to be a distinct definition provided for each core,
and where there are other modules that also require access to their respec-
tive definition. Notice also that the declaration of core_number in lib.c

CrossCore Embedded Studio 1.0 1-325
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

does not require the use of the core pragma because it is part of a transla-
tion unit to be included in a library.

A project that includes more than one definition of main will undergo
extra checking to catch problems that would otherwise occur in the IPA
framework. For any non-template symbol that has more than one defini-
tion, the tool chain will fault any definitions that are outside libraries that
do not specify a core name with the core pragma. This check does not
affect the normal behavior of the prelinker with respect to templates and
in particular the resolution of multiple template instantiations.

To clarify:

Inside a library, #pragma core is not required on declarations or defini-
tions of symbols that are defined more than once. However, a library can
be responsible for forcing the application to define a symbol more than
once (that is, once for each core). In this case, the definitions and declara-
tions require the core pragma to be used outside the library to distinguish
the multiple instances.

 The tool chain cannot check that uses of #pragma core are consis-
tent. If you use the pragma inconsistently or ambiguously, the IPA
framework may cause incorrect code to be generated or may cause
continual recompilation of the application’s files.

It is also important to note that the core pragma does not change the
linkage name of the symbol it is applied to in any way.

For more IPA information, see Interprocedural Analysis.

#pragma retain_name

The retain_name pragma indicates that the function or variable declara-
tion that follows the pragma is not to be removed even though it has no
apparent use. Normally, when interprocedural analysis or linker
elimination are enabled, the CCES tools will identify unused functions
and variables and will eliminate them from the resulting executable to

C/C++ Compiler Language Extensions

1-326 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

reduce memory requirements. The retain_name pragma instructs the tools
to retain the specified symbol regardless.

The following example shows how to use this pragma.

int delete_me(int x) {

return x-2;

}

#pragma retain_name

int keep_me(int y) {

return y+2;

}

int main(void) {

return 0;

}

Since the program has no uses for delete_me() or keep_me(), the compiler
removes delete_me(), but keeps keep_me() because of the pragma. You do
not need to specify retain_name for main().

The pragma is only valid for global symbols. It is not valid for the follow-
ing kinds of symbols:

• Symbols with static storage class

• Function parameters

• Symbols with auto storage class (locals). These are allocated on the
stack at runtime.

• Members/fields within structs/unions/classes

• Type declarations

For more information on IPA, see Interprocedural Analysis.

CrossCore Embedded Studio 1.0 1-327
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

#pragma section/#pragma default_section

The section pragma and default_section pragma provide greater con-
trol over the sections in which the compiler places symbols.

The section(SECTSTRING [, QUALIFIER, ...]) pragma is used to
override the target section for any global or static symbol immediately
following it. The pragma allows greater control over section qualifiers
compared to the section keyword.

The default_section(SECTKIND [, SECTSTRING [, QUALIFIER, ...]])
pragma is used to override the default sections in which the compiler is
placing its symbols.

The default sections fall into the categories listed under SECTKIND. Except
for the STI category, this pragma remains in force for a section category
until its next use with that particular category, or the end of the file. The
STI is an exception, in that only one STI default_section can be specified
and its scope is the entire file scope, not just the part following the use of
STI. A warning is issued if several STI sections are specified in the same
file.

The omission of a section name results in the default section being reset to
be the section that was in use at the start of the file, which can be either a
compiler default value, or a value set by the user through the -section
command-line switch (for example, -section SECTKIND=SECTSTRING).

In all cases (including STI), the default_section pragma overwrites the
value specified with the -section command line switch.

#pragma default_section(DATA, "NEW_DATA1")

int x;

#pragma default_section(DATA, "NEW_DATA2")

int x=5;

#pragma default_section(DATA, "NEW_DATA3")

int x;

C/C++ Compiler Language Extensions

1-328 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

In this case, x is placed in NEW_DATA2 because the definition of x is within
its scope.

A default_section pragma can only be used at global scope, where global
variables are allowed.

SECTKIND can be one of the keywords shown in Table 1-34.

SECTSTRING is a double-quoted string containing the section name, exactly
as it will appear in the assembler file.

Changing one section kind has no effect on other section kinds. For
instance, even though STRINGS and CONSTDATA are, by default, placed by
the compiler in the same section, if the default section for CONSTDATA is
changed, the change has no effect on the STRINGS data.

Note that ALLDATA is not a real section, but rather pseudo-kind that stands
for DATA, CONSTDATA, STRINGS, AUTOINIT, and BSZ. Changing ALLDATA is
equivalent to changing all of these section kinds.

Table 1-34. SECTKIND Keywords

Keyword Description

CODE Section is used to contain procedures and functions

ALLDATA Shorthand notation for DATA, CONSTDATA, BSZ, STRINGS, and AUTOINIT

DATA Section is used to contain “normal data”

CONSTDATA Section is used to contain read-only data

BSZ Section is used to contain zero-filled data

SWITCH Section is used to contain jump tables to implement C/C++ switch statements

VTABLE Section is used to contain C++ virtual-function tables

STI Section that contains code required to be executed by C++ initializations.
For more information, see Constructors and Destructors of Global Class
Instances.

STRINGS Section that stores string literals

AUTOINIT Contains data used to initialize aggregate autos

CrossCore Embedded Studio 1.0 1-329
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Therefore,

#pragma default_section(ALLDATA, params)

is equivalent to the sequence:

#pragma default_section(DATA, params)

#pragma default_section(CONSTDATA, params)

#pragma default_section(STRINGS, params)

#pragma default_section(AUTOINIT, params)

#pragma default_section(BSZ, params)

QUALIFIER can be one of the keywords in Table 1-35.

There may be any number of comma-separated section qualifiers within
such pragmas, but they must not conflict with one another. Qualifiers
must also be consistent across pragmas for identical section names, and
omission of qualifiers is not allowed, even if at least one such qualifier has
appeared in a previous pragma for the same section. If any qualifiers have
not been specified for a particular section by the end of the translation
unit, the compiler uses default qualifiers appropriate for the target
processor.

Table 1-35. QUALIFIER Keywords

Keyword Description

ZERO_INIT Section is zero-initialized at program startup

NO_INIT Section is not initialized at program startup

RUNTIME_INIT Section is user-initialized at program startup

DOUBLE32 Section may contain 32-bit but not 64-bit doubles

DOUBLE64 Section may contain 64-bit but not 32-bit doubles

DOUBLEANY Section may contain either 32-bit or 64-bit doubles

C/C++ Compiler Language Extensions

1-330 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The following specifies that f() should be placed in a section foo which is
DOUBLEANY qualified:

#pragma section("foo", DOUBLEANY)

void f() {}

The compiler always tries to honor the section pragma as its highest
priority, and the default_section pragma is always the lowest priority of
the two.

For example, the following code results in function f being placed in the
section foo:

#pragma default_section(CODE, "bar")

#pragma section("foo")

void f() {}

The following code results in x being placed in section zeromem:

#pragma default_section(BSZ, "zeromem")

int x;

 In cases where a C++ STL object is required to be placed in a
specific memory section, using #pragma section/default_section
does not work. Instead, a non-default heap must be used as
explained in Allocating C++ STL Objects to a Non-Default Heap.

#pragma file_attr(“name[=value]” [, “name[=value]” [...]])

The file_attr pragma directs the compiler to emit the specified attri-
butes when it compiles a file containing the pragma. Multiple #pragma
file_attr directives are allowed in one file.

If "=value" is omitted, the default value of "1" will be used.

CrossCore Embedded Studio 1.0 1-331
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

 The value of an attribute is all the characters after the '=' symbol
and before the closing '”' symbol, including spaces. A warning will
be emitted by the compiler if you have a preceding or trailing space
as an attribute value, as this is likely to be a mistake.

See File Attributes for more information on using attributes.

#pragma symbolic_ref

The symbolic_ref pragma may be used before a public global variable,
to indicate to the compiler that references to that variable should only be
through the variable’s symbolic name. Loading the address of a variable
into a pointer register can be an expensive operation, and the compiler
usually avoids this when possible. Consider the case where

int x;

int y;

int z;

void foo(void) { x = y + z; }

Given that the three variables are in the same data section, the compiler
can generate the following code:

_foo:

P0.L = .epcbss;

P0.H = .epcbss;

R0 = [P0+ 4];

R1 = [P0+ 8];

R0 = R1 + R0;

[P0+ 0] = R0;

RTS;

.section/ZERO_INIT bsz;

.align 4;

C/C++ Compiler Language Extensions

1-332 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

.epcbss:

.type .epcbss,STT_OBJECT;

.byte _x[4];

.global _x;

.type _x,STT_OBJECT;

.byte _y[4];

.global _y;

.type _y,STT_OBJECT;

.byte _z[4];

.global _z;

.type _z,STT_OBJECT;

.epcbss.end:

Having loaded a pointer to “x” (which shares the address of the start of the
.epcbss section), the compiler can use offsets from this pointer to access
“y” and “z”, avoiding the expense of loading addresses for those variables.
However, this forces the linker to ensure that the relative offsets between
x, y, z, and .epcbss do not change during the linking process.

There are cases when you might wish the compiler to reference a variable
only through its symbolic name, such as when you are using RESOLVE()
in the .ldf file to explicitly map the variable to a particular address.
The compiler automatically uses symbolic references for:

• Volatile variables

• Variables specified with #pragma weak_entry

• Variables greater than or equal to 16 bytes in size

If other cases arise, you can use #pragma symbolic_ref to explicitly
request this behavior. For example,

int x;

#pragma symbolic_ref

int y;

CrossCore Embedded Studio 1.0 1-333
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

int z;

void foo(void) { x = y + z; }

produces:

_foo:

P0.L = .epcbss;

I0.L = _y;

P0.H = .epcbss;

I0.H = _y;

MNOP || R0 = [P0+ 4] || R1 = [I0];

R0 = R0 + R1;

[P0+ 0] = R0;

RTS;

.section/ZERO_INIT bsz;

.align 4;

.epcbss:

.type .epcbss,STT_OBJECT;

.byte _x[4];

.global _x;

.type _x,STT_OBJECT;

.byte _z[4];

.global _z;

.type _z,STT_OBJECT;

.epcbss.end:

.align 4;

.global _y;

.type _y,STT_OBJECT;

.byte _y[4];

._y.end:

Note that variable y is referenced explicitly by name, rather than using the
common pointer to .epcbss, and it is declared outside the bounds of the

C/C++ Compiler Language Extensions

1-334 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

(.epcbss, .epcbss.end) pair. The (_y, ._y.end) form a separate pair that
can be moved by the linker, if necessary, without affecting the functional-
ity of the generated code.

The symbolic_ref pragma can only be used immediately before declara-
tions of global variables, and only applies to the immediately-following
declaration.

#pragma weak_entry

The weak_entry pragma may be used before a static variable or function
declaration or definition. It applies to the function/variable declaration or
definition that immediately follows the pragma. Use of this pragma causes
the compiler to generate the function or variable definition with weak
linkage.

The following are example uses of the #pragma weak_entry directive.

#pragma weak_entry

int w_var = 0;

#pragma weak_entry

void w_func(){}

 When a symbol definition is weak, it may be discarded by the
linker in favor of another definition of the same symbol. Therefore,
if any modules in the application use the weak_entry pragma,
interprocedural analysis is disabled because it would be unsafe for
the compiler to predict which definition will be selected by the
linker. For more information, see Interprocedural Analysis.

Function Side-Effect Pragmas

Function side-effect pragmas (alloc, pure, const, inline, misra_func,
no_vectorization, noreturn, regs_clobbered, regs_clobbered_call,
overlay, pgo_ignore and result_alignment) are used before a function
declaration to give the compiler additional information about the function

CrossCore Embedded Studio 1.0 1-335
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

to improve the code surrounding the function call. These pragmas should
be placed before a function declaration and should apply to that function.
For example,

#pragma pure

long dot(short*, short*, int);

#pragma alloc

The alloc pragma tells the compiler that the function behaves like the
library function “malloc”, returning a pointer to a newly allocated object.
An important property of these functions is that the pointer returned by
the function does not point at any other object in the context of the call.

In the following example, the compiler can reorder the iterations of the
loop because the #pragma alloc tells it that a and b cannot overlap out.

#pragma alloc

short *new_buf(void);

short *copy_buf(short *a) {

int i;

short * p = a;

short * q = new_buf();

for (i=0; i<100; i++)

*p++ = *q++;

return p;

}

The GNU attribute malloc is also supported with the same meaning.

#pragma const

The const pragma is a more restrictive form of the pure pragma
(on page 1-337). It tells the compiler that the function does not read from
global variables, does not write to them, or read or write volatile variables.

C/C++ Compiler Language Extensions

1-336 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The result is therefore a function of its parameters. If any parameters are
pointers, the function may not read the data they point at.

#pragma inline

The inline pragma is placed before a function prototype or definition.
It tells the compiler that this function is to be treated as inline.

#pragma misra_func(arg)

The misra_func pragma is placed before a function prototype. It is used to
support MISRA-C rules 20.4, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12.
The arg indicates the type of function with respect to the MISRA-C rule.
Functions following rule 20.4 would take arg heap, 20.7 arg jmp, 20.8
arg handler, 20.9 arg io, 20.10 arg string_conv, 20.11 arg system,
and 20.12 arg time.

#pragma no_vectorization

When specified on a function, the no_vectorization pragma turns off all
vectorization for all loops in the function.

This pragma may also be specified on a loop. For more information, see
#pragma no_vectorization.

#pragma noreturn

The noreturn pragma can be placed before a function prototype or defini-
tion. It tells the compiler that the function to which it applies will never
return to its caller. For example, a function such as the standard C func-
tion “exit” never returns.

The use of this pragma allows the compiler to treat all code following a
call to a function declared with the pragma as unreachable and hence
removable.

#pragma noreturn

void func() {

CrossCore Embedded Studio 1.0 1-337
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

while(1);

}

main() {

func();

/* any code here will be removed */

}

#pragma pgo_ignore

The pgo_ignore pragma tells the compiler that no profile should be gener-
ated for this function when using profile-guided optimization. This is
useful when the function is concerned with error checking or diagnostics.

For example,
extern const short *x, *y;

int dotprod(void) {

int i, sum = 0;

for (i = 0; i < 100; i++)

sum += x[i] * y[i];

return sum;

}

#pragma pgo_ignore

int check_dotprod(void) {

/* The compiler will not profile this comparison */

return dotprod() == 100;

}

#pragma pure

The pure pragma tells the compiler that the function does not write to any
global variables, and does not read or write any volatile variables. Its
result, therefore, is a function of its parameters or of global variables. If
any of the parameters are pointers, the function may read the data they
point at but may not write to the data.

C/C++ Compiler Language Extensions

1-338 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Since the function call has the same effect every time it is called (between
assignments to global variables), the compiler need not generate the code
for every call.

Therefore, in the following example, the compiler can replace the ten calls
to sdot with a single call made before the loop.

#pragma pure

long sdot(short *, short *, int);

long tendots(short *a, short *b, int n) {

int i;

long s = 0;

for (i = 1; i < 10; ++i)

s += sdot(a, b, n); // call can get hoisted out of loop

return s;}

#pragma regs_clobbered string

The regs_clobbered pragma may be used with a function declaration or
definition to specify which registers are modified (or clobbered) by that
function. The string contains a list of registers and is case-insensitive.

When used with an external function declaration, this pragma acts as an
assertion, telling the compiler something it would not be able to discover
for itself.

In the following example, the compiler knows that only registers r5, p5,
and i3 may be modified by the call to f, so it may keep local variables in
other registers across that call.

#pragma regs_clobbered "r5 p5 i3"

void f(void);

The regs_clobbered pragma may also be used with a function definition,
or a declaration preceding a definition (when it acts as a command to the

CrossCore Embedded Studio 1.0 1-339
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

compiler to generate register saves, and restores on entry and exit from the
function) to ensure it only modifies the registers in string.

For example,

#pragma regs_clobbered "r3 m4 p5"

int g(int a) {

return a+3;

}

 The regs_clobbered pragma may not be used in conjunction with
#pragma interrupt. If both pragmas are specified, a warning is
issued and the regs_clobbered pragma is ignored.

To obtain optimal results with the pragma, it is best to restrict the clob-
bered set to be a subset of the default scratch registers. When considering
when to apply the regs_clobbered pragma, it may be useful to look at the
output of the compiler to see how many scratch registers were used.
Restricting the volatile set to these registers will produce no impact on the
code produced for the function but may free up registers for the caller to
allocate across the call site.

 The regs_clobbered pragma cannot be used in any way with
pointers to functions. A function pointer cannot be declared to
have a customized clobber set, and it cannot take the address of a
function which has a customized clobber set. The compiler raises
an error if either of these actions are attempted.

String Syntax

A regs_clobbered string consists of a list of registers, register ranges,
or register sets that are clobbered. Items in the list are separated by spaces,
commas, or semicolons.

A register is a single register name—the same name may be used in an
assembly file.

C/C++ Compiler Language Extensions

1-340 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

A register range consists of start and end registers, which reside in the
same register class, separated by a hyphen. All registers between the two
(inclusive) are clobbered.

A register set is a name for a specific set of commonly-clobbered regis-
ters that is predefined by the compiler. Table 1-36 shows defined
clobbered register sets.

When the compiler detects an illegal string, a warning is issued and the
default volatile set is used instead. (See Scratch Registers.)

Unclobberable and Must-Clobber Registers

There are certain caveats as to what registers may or must be placed in the
clobbered set.

On Blackfin processors, the SP and FP registers may not be specified in the
clobbered set, as the correct operation of the function call requires their
values to be preserved. If the user specifies them in the clobbered set, a
warning is issued and they are removed from the specified clobbered set.

Registers from the following classes may be specified in the clobbered set,
and code is generated to save them as necessary.

Table 1-36. Clobbered Register Sets

Set Registers

Pscratch General addressing registers that are scratch by default

DAGscratch DAG addressing registers that are scratch by default

CCset ASTAT register

Dscratch General data registers that are scratch by default

DPscratch All addressing registers that are scratch by default

ALLscratch Entire default scratch register set

everything All registers, apart from those that are user-reserved or
unclobberable

CrossCore Embedded Studio 1.0 1-341
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

I, P, D, M, ASTAT, A0, A1, LC, LT, LB

The L registers are required to be zero on entry and exit from a function.
A user may specify that a function clobbers the L registers. If it is a com-
piler-generated function, then it leaves the L registers zero at the end of
the function. If it is an assembly function, it may clobber the L registers.
In that case, the L registers are re-zeroed after any call to that function.

The SEQSTAT, RETI, RETX, RETN, SYSCFG, CYCLES, and CYCLES2 registers are
never used by the compiler and are never preserved.

Register P1 is used by the linker to expand CALL instructions, so it may be
modified at the call site regardless of whether the regs_clobbered pragma
says it is clobbered. Therefore, the compiler never keeps P1 live across a
call. However, the compiler accepts the pragma when compiling a func-
tion in case the user wants to keep P1 live across a call that is not expanded
by the linker. It is your responsibility to make sure such calls are not
expanded by the linker.

User-Reserved Registers

User-reserved registers, indicated via the -reserve switch (on page 1-76),
are never preserved in the function wrappers, whether in the clobbered set
or not.

Function Parameters

Function calling conventions are visible to the caller and do not affect the
clobbered set that may be used on a function.

In the following example, the parameters a and b are passed in registers R0
and R1, respectively. No matter what happens in function f, after the call
returns, the values of R0 and R1 remain 2 and 3, respectively.

#pragma regs_clobbered "" // clobbers nothing

void f(int a, int b);

void g() {

C/C++ Compiler Language Extensions

1-342 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

f(2,3);

}

Function Results

The registers in which a function returns its result must always be clob-
bered by the callee and retain their new value in the caller. They may
appear in the clobbered set of the callee, but it does not matter to the gen-
erated code—the return register are not saved and restored. Only the
return register used by the particular function return type is special.
Return registers used by different return types are treated in the clobbered
list in the conventional way.

For example,

typedef struct { int x; int y; } Point;

typedef struct { int x[10]; } Big;

int f(); // Result in R0.

// R1, P0 may be preserved across call.

Point g(); // Result in R0 and R1.

// P0 may be preserved across call.

Big f(); // Result pointer in P0.

// R0, R1 may be preserved across call.

#pragma regs_clobbered_call string

The regs_clobbered_call pragma may be applied to a statement to indi-
cate that the call within the statement uses a modified volatile register set.
The pragma is closely related to #pragma regs_clobbered, but avoids
some of the restrictions that relate to that pragma.

These restrictions arise because the regs_clobbered pragma applies to a
function’s declaration—when the call is made, the clobber set is retrieved
from the declaration automatically. This is not possible when the

CrossCore Embedded Studio 1.0 1-343
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

declaration is not available, because the function being called is not
directly tied to a declaration of a specific function. This affects:

• Pointers to functions

• Class methods

• Pointers to class methods

• Virtual functions

In such cases, the regs_clobbered_call pragma can be used at the call site
to inform the compiler directly of the volatile register set to be used dur-
ing the call.

The pragma’s syntax is as follows:

#pragma regs_clobbered_call clobber_string
statement

where clobber_string follows the same format as for the regs_clobbered
pragma, and statement is the C statement containing the call expression.

There must be only a single call within the statement; otherwise, the state-
ment is ambiguous.

For example,

#pragma regs_clobbered "r0 r1 p1"

int func(int arg) { /* some code */ }

int (*fnptr)(int) = func;

int caller(int value) {

int r;

#pragma regs_clobbered_call "r0 r1”

r = (*fnptr)(value);

C/C++ Compiler Language Extensions

1-344 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

return r;

}

 When using the regs_clobbered_call pragma, ensure that the
called function does indeed only modify the registers listed in the
clobber set for the call—the compiler does not check this for you.
It is valid for the callee to clobber fewer registers than those listed
in the call’s clobber set. It is also valid for the callee to modify
registers outside of the call’s clobber set, as long as the callee saves
the values first and restores them before returning to the caller.

The following examples show this.

Example 1:

#pragma regs_clobbered "r0 r1"

void callee(void) { ... }

#pragma regs_clobbered_call "r0 r1"

callee(); // Okay - clobber sets match

Example 2:

#pragma regs_clobbered "r0"

void callee(void) { ... }

#pragma regs_clobbered_call "r0 r1"

callee(); // Okay - callee clobber set is a subset

// of call's set

Example 3:

#pragma regs_clobbered "r0 r1 r2"

void callee(void) { ... }

#pragma regs_clobbered_call "r0 r1"

CrossCore Embedded Studio 1.0 1-345
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

callee(); // Error - callee clobbers more than

// indicated by call.

Example 4:

void callee(void) { ... }

#pragma regs_clobbered_call "r0 r1"

callee(); // Error - callee uses default set larger

// than indicated by call.

Limitations

Pragma regs_clobbered_call may not be used on constructors or
destructors of C++ classes.

The pragma only applies to the call in the immediately-following state-
ment. If the immediately-following line contains more than one
statement, the pragma only applies to the first statement on the line:

#pragma regs_clobbered_call "r0 r1"

x = foo(); y = bar(); // only "x = foo();" is affected

// by the pragma.

Similarly, if the immediately-following line is a sequence of declarations
that use calls to initialize the variables, only the first declaration is
affected:

#pragma regs_clobbered_call "r0 r1"

int x = foo(), y = bar(); // only "x = foo()" is affected

// by the pragma.

Moreover, if the declaration with the call-based initializer is not the first
in the declaration list, the pragma will have no effect:

#pragma regs_clobbered_call "r0 r1"

int w = 4, x = foo(); y = bar(); // pragma has no effect

// on “w = 4”.

C/C++ Compiler Language Extensions

1-346 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The pragma has no effect on function calls that get inlined. Once a func-
tion call is inlined, the inlined code obeys the clobber set of the function
into which it has been inlined. It does not continue to obey the clobber set
that will be used if an out-of-line copy is required.

#pragma overlay

When compiling code that involves one function calling another in the
same source file, the compiler optimizer can propagate register informa-
tion between the functions. This means that it can record which scratch
registers are clobbered over the function call. This can cause problems
when compiling overlaid functions, as the compiler may assume that cer-
tain scratch registers are not clobbered over the function call, but they are
clobbered by the overlay manager. The #pragma overlay, when placed on
the definition of a function, will disable this propagation of register infor-
mation to the function’s callers.

For example,

#pragma overlay

int add(int a, int b)

{

// callers of function add() assume it clobbers

// all scratch registers

return a+b;

}

#pragma result_alignment (n)

The result_alignment pragma asserts that the pointer or integer returned
by the function has a value that is a multiple of n. The pragma is often
used in conjunction with the #pragma alloc of custom-allocation func-
tions that return pointers more strictly aligned than could be deduced
from their type.

CrossCore Embedded Studio 1.0 1-347
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Class Conversion Optimization Pragmas

The class conversion optimization pragmas (param_never_null and
suppress_null_check) allow the compiler to generate more efficient code
when converting class pointers from a pointer-to-derived-class to a
pointer-to-base-class, by asserting that the pointer to be converted will
never be a null pointer. This allows the compiler to omit the null check
during conversion.

#pragma param_never_null param_name [...]

The param_never_null pragma must immediately precede a function defi-
nition. It specifies a name or a list of space-separated names, which must
correspond to the parameter names declared in the function definition.
It checks that the named parameter is a class pointer type. Using this
information allows it to generate more efficient code for a conversion from
a pointer to a derived class to a pointer to a base class. It removes the need
to check for the null pointer during the conversion. For example,

#include <iostream>

using namespace std;

class A {

int a;

};

class B {

int b;

};

class C: public A, public B {

int c;

};

C obj;

B *bpart = &obj;

bool fail = false;

#pragma param_never_null pc

C/C++ Compiler Language Extensions

1-348 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

void func(C *pc)

{

B *pb;

pb = pc; /* without pragma the code generated has to

check for NULL */

if (pb != bpart)

fail = true;

}

int main(void)

{

func(&obj);

if (fail)

cout << "Test failed" << endl;

else

cout << "Test passed" << endl;

return 0;

}

#pragma suppress_null_check

The suppress_null_check pragma must immediately precede an assign-
ment of two pointers or a declaration list.

If the pragma precedes an assignment, it indicates that the second operand
pointer is not null and generates more efficient code for a conversion from
a pointer to a derived class to a pointer to a base class. It removes the need
to check for the null pointer before assignment.

On a declaration list, it marks all variables as not being the null pointer.
If the declaration contains an initialization expression, that expression is
not checked for null.

#include <iostream>

using namespace std;

class A {

CrossCore Embedded Studio 1.0 1-349
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

int a;

};

class B {

int b;

};

class C: public A, public B {

int c;

};

C obj;

B *bpart = &obj;

bool fail = false;

void func(C *pc)

{

B *pb;

#pragma suppress_null_check

pb = pc; /* without pragma the code generated has to

check for NULL */

if (pb != bpart)

fail = true;

}

void func2(C *pc)

{

#pragma suppress_null_check

B *pb = pc, *pb2 = pc; /* pragma means these initializations

need not check for NULL. It also marks pb and pb2

as never being NULL, so the compiler will not

generate NULL checks in class conversions using

these pointers. */

if (pb != bpart || pb2 != bpart)

fail = true;

}

C/C++ Compiler Language Extensions

1-350 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

int main(void)

{

func(&obj);

func2(&obj);

if (fail)

cout << "Test failed" << endl;

else

cout << "Test passed" << endl;

return 0;

}

Template Instantiation Pragmas

The template instantiation pragmas (instantiate, do_not_instantiate,
and can_instantiate) provide fine-grained control over where (that is, in
which object file) the individual instances of template functions, member
functions, and static members of template classes are created. The creation
of these instances from a template is known in “C++ speak” as
instantiation. As templates are a feature of C++, these pragmas are allowed
only in C++ mode.

Refer to Compiler C++ Template Support for more information on how
the compiler handles templates.

The instantiation pragmas take the name of an instance as a parameter,
as shown in Table 1-37.

Table 1-37. Instance Names

Name Parameter

Template class name A<int>

Template class declaration class A<int>

Member function name A<int>::f

Static data member name A<int>::I

CrossCore Embedded Studio 1.0 1-351
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

If the instantiation pragmas are not used, the compiler selects object files
where all required instances automatically instantiate during the prelink-
ing process.

#pragma instantiate instance

The instantiate pragma requests the compiler to instantiate instance in
the current compilation.

The following example causes all static members and member functions
for the int instance of a template class Stack to be instantiated, whether
they are required in this compilation or not.

#pragma instantiate class Stack<int>

The following example causes only the individual member function
Stack<int>::push(int) to be instantiated.

#pragma instantiate void Stack<int>::push(int)

#pragma do_not_instantiate instance

The do_not_instantiate pragma directs the compiler not to instantiate
instance in the current compilation.

The following example prevents the compiler from instantiating the static
data member Stack<float>::use_count in the current compilation.

#pragma do_not_instantiate int Stack<float>::use_count

Static data declaration int A<int>::I

Member function declaration void A<int>::f(int, char)

Template function declaration char* f(int, float)

Table 1-37. Instance Names (Cont’d)

Name Parameter

C/C++ Compiler Language Extensions

1-352 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

#pragma can_instantiate instance

The can_instantiate pragma tells the compiler that if instance is
required anywhere in the program, it should be instantiated in this
compilation.

 Currently, this pragma forces the instantiation, even if it is not
required anywhere in the program. Therefore, it has the same effect
as #pragma instantiate.

Header File Control Pragmas

The header file control pragmas (no_implicit_inclusion, once, and
system_header) help the compiler to handle header files.

#pragma no_implicit_inclusion

With the -c++ switch (on page 1-29), for each included header file (.h or
non-suffixed), the compiler attempts to include the corresponding .c or
.cpp file. This is called “implicit inclusion”.

If #pragma no_implicit_inclusion is placed in an .h (or non-suffixed)
file, the compiler does not implicitly include the corresponding .c or .cpp
file with the -c++ switch. This behavior only affects the .h (or non-suf-
fixed) file with #pragma no_implicit_inclusion within it and the
corresponding .c or .cpp files.

For example, if there are the following files,

t.c containing

#include "m.h"

and m.h and m.c are both empty, then

ccblkfn -c++ t.c -M

CrossCore Embedded Studio 1.0 1-353
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

shows the following dependencies for t.c:

t.doj: t.c

t.doj: m.h

t.doj: m.c

If the following line is added to m.h,

#pragma no_implicit_inclusion

running the compiler as before would not show m.c in the dependencies
list, such as:

t.doj: t.c

t.doj: m.h

#pragma once

The once pragma, which should appear at the beginning of a header file,
tells the compiler that the header is written in such a way that including it
several times has the same effect as including it once. For example,

#pragma once

#ifndef FILE_H

#define FILE_H

... contents of header file ...

#endif

 In this example, #pragma once is actually optional because the
compiler recognizes the #ifndef, #define, or #endif idioms and
does not reopen a header that uses it.

#pragma system_header

The system_header pragma identifies an include file as a file supplied with
CCES. The CCES compiler uses this information to help optimize uses of

C/C++ Compiler Language Extensions

1-354 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

the supplied library functions and inline functions that these files define.
Do not use this pragma in user application source.

Diagnostic Control Pragmas

The compiler supports #pragma diag, which allows selective modification
of the severity of compiler diagnostic messages.

The directive has three forms:

• Modify the severity of specific diagnostics

• Modify the behavior of an entire class of diagnostics

• Save or restore the current behavior of all diagnostics

Modifying the Severity of Specific Diagnostics

This form of the directive has the following syntax:

#pragma diag(ACTION: DIAG [, DIAG ...][: STRING])

The action: qualifier can be one of the keywords in Table 1-38.

If not in MISRA-C mode, the DIAG qualifier can be one or more
comma-separated compiler diagnostic message numbers without any

Table 1-38. Keywords for ACTION Qualifier

Keyword Action

suppress Suppresses all instances of the diagnostic

remark Changes the severity of the diagnostic to a remark

annotation Changes the severity of the diagnostic to an annotation

warning Changes the severity of the diagnostic to a warning

error Changes the severity of the diagnostic to an error

restore Restores the severity of the diagnostic to what it was originally at the start
of compilation after all command-line options were processed

CrossCore Embedded Studio 1.0 1-355
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

preceding “cc” or zeros. The choice of error numbers is limited to those
that may have their severity overridden (such as those that display “{D}”
in the error message).

In addition, some diagnostics are global (for example, diagnostics emitted
by the compiler back-end after lexical analysis and parsing, or before pars-
ing begins), and these global diagnostics cannot have their severity
overridden by the diagnostic control pragmas. To modify the severity of
global diagnostics, use the diagnostic control switches. For more informa-
tion, see -W{annotation|error|remark|suppress|warn} number[,
number...].

In MISRA-C mode, the DIAG qualifier is a list of MISRA-C rule numbers
in the form misra_rule_6_3 and misra_rule_19_4 for rules 6.3 and 19.4,
and so on. Rules 10.1 and 10.2 are a special case, in which both rules split
into four distinct rule checks. For example, 10.1(c) should be stated as
misra_rule_10_1_c. DIAG may also be the special token misra_rules_all,
which specifies that the pragma applies to all MISRA-C rules.

The third optional argument is a string-literal to insert a comment regard-
ing the use of the #pragma diag.

Modifying the Behavior of an Entire Class of Diagnostics

This form of the directive has the following syntax, which is not allowed
in MISRA-C mode:

#pragma diag(ACTION)

C/C++ Compiler Language Extensions

1-356 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The effects are as follows:

• #pragma diag(errors)

This pragma can be used to inhibit all subsequent warnings and
remarks (equivalent to the -w switch option).

• #pragma diag(remarks)

This pragma can be used to enable all subsequent remarks, annota-
tions and warnings (equivalent to the -Wremarks switch option)

• #pragma diag(annotations)

This pragma can be used to enable all subsequent annotations and
warnings (equivalent to the -Wannotations switch option)

• #pragma diag(warnings)

This pragma can be used to restore the default behavior when the
-w, -Wremarks and -Wannotations switches are not specified, which
is to display warnings but inhibit remarks and annotations.

Saving or Restoring the Current Behavior of All Diagnostics

This form has the following syntax:

#pragma diag(ACTION)

The effects are as follows:

• #pragma diag(push)

This pragma may be used to store the current state of the severity
of all diagnostic error messages.

• #pragma diag(pop)

This pragma restores all diagnostic error messages that were
previously saved with the most recent push.

All #pragma diag(push) directives must be matched with the same num-
ber of #pragma diag(pop) directives in the overall translation unit, but
need not be matched within individual source files, unless in MISRA-C

CrossCore Embedded Studio 1.0 1-357
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

mode. Note that the error threshold (set by the remarks, annotations,
warnings, or errors keywords) is also saved and restored with these
directives.

The duration of such modifications to diagnostic severity are from the
next line following the pragma to the end of the translation unit, the next
#pragma diag(pop) directive, or the next overriding #pragma diag()
directive with the same error number. These pragmas may be used any-
where and are not affected by normal scoping rules.

All command-line overrides to diagnostic severity are processed first, and
any subsequent #pragma diag() directives take precedence, with the
restore action changing the severity back to that at the start of compilation
after processing the command-line switch overrides.

 Directives to modify specific diagnostics are singular (for example,
“error”), and the directives to modify classes of diagnostics are
plural (for example, “errors”).

Run-Time Checking Pragmas

Run-time checking pragmas allow you to control the compiler’s
generation of additional checking code. This code can test at run-time for
common programming errors. The -rtcheck command-line switch
(on page 1-76) and its related switches control which common errors are
tested for. Use the command-line switches to enable run-time checking;
once run-time checking is enabled, the run-time checking pragmas can be
used to disable and re-enable checking, for specific functions.

This section describes the following pragmas:

• #pragma rtcheck(off)

• #pragma rtcheck(on)

C/C++ Compiler Language Extensions

1-358 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

 Run-time checking causing the compiler to generate additional
code to perform the checks. This code has space and performance
overheads. Use of run-time checking should be restricted to appli-
cation development, and should not be used on applications for
release.

#pragma rtcheck(off)

The rtcheck(off) pragma disables any run-time check code generation
that has been enabled via command-line switches such as -rtcheck
(on page 1-76). The pragma is only valid at file scope, and affects code
generation for function definitions that follow.

The pragma has no effect on checks of heap operations. This is because
such checks are provided by selecting alternative library support at
link-time, and so apply to the whole application.

#pragma rtcheck(on)

The rtcheck(on) pragma re-enables any run-time check code generation
that was enabled via command-line switches such as -rtcheck
(on page 1-76). The pragma is only valid at file scope, and affects code
generation for function definitions that follow. If no run-time checking
was enabled by command-line switches, the pragma has no effect.

Memory Bank Pragmas

The memory bank pragmas provide additional performance characteristics
for the memory areas used to hold code and data for the function.

By default, the compiler assumes that there are no external costs associated
with memory accesses. This strategy allows optimal performance when the
code and data are placed into high-performance internal memory. In cases
where the performance characteristics of memory are known in advance,
the compiler can exploit this knowledge to improve the scheduling of gen-
erated code.

CrossCore Embedded Studio 1.0 1-359
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

#pragma code_bank(bankname)

The code_bank pragma informs the compiler that the instructions for the
immediately-following function are placed in a memory bank called bank-
name. Without this pragma, the compiler assumes that instructions are
placed into the default bank, if one has been specified; see Memory Bank
Selection for details. When optimizing the function, the compiler is aware
of attributes of memory bank bankname, and determines how long it takes
to fetch each instruction from the memory bank.

If bankname is omitted, the instructions for the function are not consid-
ered to be placed into any particular bank.

In the following example, the add_slowly() function is placed into the
“slowmem” bank, which may have different performance characteristics
from the default code bank, into which add_quickly() is placed.

#pragma code_bank(slowmem)

int add_slowly (int x, int y) { return x + y; }

int add_quickly(int a, int b) { return a + b; }

#pragma data_bank(bankname)

The data_bank pragma informs the compiler that the immediately-follow-
ing function uses the memory bank bankname as the model for memory
accesses for non-local data that does not otherwise specify a memory bank;
see Memory Bank Selection for details. Without this pragma, the compiler
assumes that non-local data should use the default bank, if any has been
specified, for behavioral characteristics.

If bankname is omitted, the non-local data for the function is not consid-
ered to be placed into any specific bank.

In both green_func() and blue_func() of the following example, i is
associated with the memory bank “blue”, and the retrieval and update of i

C/C++ Compiler Language Extensions

1-360 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

are optimized to use the performance characteristics associated with
memory bank “blue”.

#pragma data_bank(green)

int green_func(void)

{

extern int arr1[32];

extern int bank("blue") i;

i &= 31;

return arr1[i++];

}

int blue_func(void)

{

extern int arr2[32];

extern int bank("blue") i;

i &= 31;

return arr2[i++];

}

The array arr1 does not have an explicit memory bank in its declaration.
Therefore, it is associated with the memory bank “green”, because
green_func() has a specific default data bank. In contrast, arr2 is
associated with the default data memory bank (if any), because
blue_func() does not have a #pragma data_bank preceding it.

#pragma stack_bank(bankname)

The stack_bank pragma informs the compiler that all locals for the
immediately-following function are to be associated with memory bank
bankname, unless they explicitly identify a different memory bank.
Without this pragma, all locals are assumed to be associated with the
default stack memory bank, if any; see Memory Bank Selection for details.

If bankname is omitted, locals for the function are not considered to be
placed into any particular bank.

CrossCore Embedded Studio 1.0 1-361
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

In the following example, the dotprod() function places the sum and i
values into memory bank “mystack”, while fib() places r, a, and b into
the default stack memory bank (if any), because there is no stack_bank
pragma. The count_ticks() function does not declare any local data, but
any compiler-generated local storage uses the “sysstack” memory bank’s
performance characteristics.

#pragma stack_bank(mystack)

short dotprod(int n, const short *x, const short *y)

{

int sum = 0;

int i = 0;

for (i = 0; i < n; i++)

sum += *x++ * *y++;

return sum;

}

int fib(int n)

{

int r;

if (n < 2) {

r = 1;

} else {

int a = fib(n-1);

int b = fib(n-2);

r = a + b;

}

return r;

}

#pragma stack_bank(sysstack)

void count_ticks(void)

{

extern int ticks;

ticks++;

}

C/C++ Compiler Language Extensions

1-362 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

#pragma default_code_bank(bankname)

The default_code_bank pragma informs the compiler that bankname
should be considered the default memory bank for the instructions gener-
ated for any following functions that do not explicitly use #pragma
code_bank.

If bankname is omitted, the pragma sets the compiler’s default back to not
specifying a particular bank for generated code.

For more information, see Memory Bank Selection.

#pragma default_data_bank(bankname)

The default_data_bank pragma informs the compiler that bankname
should be considered the default memory bank for non-local data accesses
in any following functions that do not explicitly use #pragma data_bank.

If bankname is omitted, the pragma sets the compiler’s default back to not
specifying a particular bank for non-local data.

For more information, see Memory Bank Selection.

#pragma default_stack_bank(bankname)

The default_stack_bank pragma informs the compiler that bankname
should be considered the default memory bank for local data in any fol-
lowing functions that do not explicitly use #pragma stack_bank.

If bankname is omitted, the pragma sets the compiler’s default back to not
specifying a particular bank for local data.

For more information, see Memory Bank Selection.

CrossCore Embedded Studio 1.0 1-363
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

#pragma bank_memory_kind(bankname, kind)

The bank_memory_kind pragma informs the compiler of what kind of
memory the memory bank bankname is. See Memory Bank Kinds for the
kinds supported by the compiler.

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition.

In the following example, the compiler knows that all accesses to the
data[] array are to the “blue” memory bank, and hence to internal,
in-core memory.

#pragma bank_memory_kind(blue, internal)

int sum_list(const int bank("blue") *data, int n)

{

int sum = 0;

while (n--)

sum += data[n];

return sum;

}

#pragma bank_read_cycles(bankname, cycles[, bits])

The bank_read_cycles pragma tells the compiler that each read operation
on the memory bank bankname requires cycles cycles before the resulting
data is available. This allows the compiler to generate more efficient code.

If the bits parameter is specified, it indicates that a read of bits bits will
take cycles cycles. If the bits parameter is omitted, the pragma indicates
that reads of all widths will require cycles cycles. bits may be one of 8, 16
or 32.

C/C++ Compiler Language Extensions

1-364 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

In the following example, the compiler assumes that a read from *x takes a
single cycle, as this is the default read time, but that a read from *y takes
twenty cycles, because of the pragma.

#pragma bank_read_cycles(slowmem, 20)

int dotprod(int n, const int *x, bank("slowmem") const int *y)

{

int i, sum;

for (i=sum=0; i < n; i++)

sum += *x++ * *y++;

return sum;

}

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition.

#pragma bank_write_cycles(bankname, cycles[, bits])

The bank_write_cycles pragma tells the compiler that each write opera-
tion on memory bank bankname requires cycles cycles before it completes.
This allows the compiler to generate more efficient code.

If the bits parameter is specified, it indicates that a write of bits bits will
take cycles cycles. If the bits parameter is omitted, the pragma indicates
that writes of all widths will require cycles cycles. bits may be one of 8,
16 or 32.

In the following example, the compiler knows that each write through ptr
to the “output” memory bank takes six cycles to complete.

#pragma bank_write_cycles(output, 6)

void write_buf(int n, const char *buf)

{

volatile bank("output") char *ptr = REG_ADDR;

while (n--)

*ptr = *buf++;

}

CrossCore Embedded Studio 1.0 1-365
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition. This is shown in
the preceding example.

#pragma bank_maximum_width(bankname, width)

The bank_maximum_width pragma informs the compiler that width is the
maximum number of bits to transfer to/from memory bank bankname in a
single access. On Blackfin processors, the width parameter may only be
32.

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition. This is shown in
the preceding example.

Exceptions Tables Pragma

#pragma generate_exceptions_tables

The generate_exceptions_tables pragma may be applied to a C function
definition to request the compiler to generate tables that enable C++
exceptions to be thrown through executions of this function.

This example consists of two source files. The first is a C file that contains
the pragma applied to the definition of function call_a_call_back.

#pragma generate_exceptions_tables

void call_a_call_back(void pfn(void)) {

pfn(); /* without pragma program terminates

when throw_an_int throws an exception */

}

The second source file contains C++ code. The function main calls
call_a_call_back, from the C file listed above, which in turn calls
throw_an_int. The exception thrown by throw_an_int will be caught by
the catch handler in main because use of the pragma ensured the compiler
generated an exceptions table for call_a_call_back.

C/C++ Compiler Language Extensions

1-366 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

#include <iostream>

extern "C" void call_a_call_back(void pfn());

static void throw_an_int() {

throw 3;

}

int main() {

try {

call_a_call_back(throw_an_int);

} catch (int i) {

if (i == 3) std::cout << "Test passed\n";

}

}

An alternative to using #pragma generate_exceptions_tables is to
compile C files with the -eh (enable exception handling) switch
(on page 1-39) which, for C files, is equivalent to using the pragma before
every function definition.

GCC Compatibility Extensions
The compiler provides compatibility with many features of the C dialect
accepted by version 3.4 of the GNU C compiler. Many of these features
are available in the ISO/IEC 9899:1999 C standard. A brief description of
the extensions is included in this section. For more information, refer to
the following Web address:

http://gcc.gnu.org/onlinedocs/gcc-3.4.6/gccc/C-Exten-

sions.html#C%20Extensions

 The GCC compatibility extensions are only available in C dialect
mode. They are not accepted in C++ dialect mode.

http://gcc.gnu.org/onlinedocs/gcc-3.4.6/gcc/C-Extensions.html#C%20Extensions
http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/C-Extensions.html#C%20Extensions
http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/C-Extensions.html#C%20Extensions

CrossCore Embedded Studio 1.0 1-367
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Statement Expressions

A statement expression is a compound statement enclosed in parentheses.
Because a compound statement itself is enclosed in braces as “{ }”, this
construct is enclosed in parentheses-brace pairs, as “({ })”.

The value computed by a statement expression is the value of the last
statement (which should be an expression statement). The statement
expression may be used where expressions of its result type may be used.
But they are not allowed in constant expressions.

Statement expressions are useful in the definition of macros as they allow
the declaration of variables local to the macro.

In the following example, the foo() and thing() statements get called
once each because they are assigned to the variables __x and __y, which are
local to the statement expression that min expands to. The min() can be
used freely within a larger expression because it expands to an expression.

#define min(a,b) ({ \

short __x=(a),__y=(b),__res; \

if (__x > __y) \

__res = __y; \

else \

__res = __x; \

__res; \

})

int use_min() {

return min(foo(), thing()) + 2;

}

Labels local to a statement expression can be declared with the __label__
keyword. For example,

#define checker(p) ({ \

__label__ exit; \

C/C++ Compiler Language Extensions

1-368 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

int i; \

for (i=0; p[i]; ++i) { \

int d = get(p[i]); \

if (!check(d)) goto exit; \

process(d); \

} \

exit: \

i; \

})

extern int g_p[100];

int checkit() {

int local_i = checker(g_p);

return local_i;

}

 Statement expressions are not supported in C++ mode. Statement
expressions are an extension to C originally implemented in the
GCC compiler. Analog Devices supports the extension primarily to
aid porting code written for that compiler. When writing new
code, consider using inline functions, which are compatible with
ANSI/ISO standard C++ and C99, and are as efficient as macros
when optimization is enabled.

Type Reference Support Keyword (typeof)

The typeof(expression) construct can be used as a name for the type of
expression without actually knowing what that type is. It is useful for
making source code that is interpreted more than once, such as macros or
include files, more generic. The typeof keyword may be used wherever a
typedef name is permitted such as in declarations and in casts.

CrossCore Embedded Studio 1.0 1-369
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

The following example shows typeof used in conjunction with a state-
ment expression to define a “generic” macro with a local variable
declaration.

#define abs(a) ({ \

typeof(a) __a = a; \

if (__a < 0) __a = - __a; \

__a; \

})

The argument to typeof may also be a type name. Because typeof itself is
a type name, it may be used in another typeof(type-name) construct.
This can be used to restructure the C-type declaration syntax.

The following example declares y to be an array of four pointers to char.

#define pointer(T) typeof(T *)

#define array(T, N) typeof(T [N])

array (pointer (char), 4) y;

 The typeof keyword is not supported in C++ mode.
The typeof keyword is an extension to C originally implemented
in the GCC compiler. It should be used with caution because it is
not compatible with other dialects of C/C++ and has not been
adopted by the more recent C99 standard.

C/C++ Compiler Language Extensions

1-370 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Generalized lvalues

Lvalues are expressions that may appear on the left-hand side of an assign-
ment. GCC provides several lvalue-related extensions to C, which are
supported by the compiler for GCC compatibility:

• A cast is an lvalue if its operand is an lvalue. This C-mode exten-
sion is not allowed in C++ mode.

• A comma operator is an lvalue if its right operand is an lvalue. This
C-mode extension is a standard feature of C++.

• A conditional operator is an lvalue if its last two operands are lval-
ues of the same type. This C-mode extension is a standard feature
of C++.

Conditional Expressions With Missing Operands

The middle operand of a conditional operator can be omitted. If the con-
dition is nonzero (true), the condition itself is the result of the expression.
This can be used for testing and substituting a different value when a
pointer is NULL. The condition is evaluated only once; therefore,
repeated side effects can be avoided.

The following example calls lookup() once, and substitutes the string “-”
if it returns NULL. This is an extension to C, provided for compatibility
with GCC. It is not allowed in C++ mode.

printf("name = %s\n", lookup(key)?:"-");

Zero-Length Arrays

Arrays may be declared with zero length. This anachronism is supported
to provide compatibility with GCC. Use variable-length array members
instead.

CrossCore Embedded Studio 1.0 1-371
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

GCC Variable Argument Macros

The final parameter in a macro declaration may be followed by dots (...)
to indicate the parameter stands for a variable number of arguments.

For example,

#define tracegcc(file,line,msg ...) \

 logmsg(file,line, ## msg)

can be used with differing numbers of arguments: the following
statements:

tracegcc("a.c", 999, "one", "two", "three");

tracegcc("a.c", 999, "one", "two");

tracegcc("a.c", 999, "one");

tracegcc("a.c", 999);

expand to the following code:

logmsg("a.c", 999,"one", "two", "three");

logmsg("a.c", 999,"one", "two");

logmsg("a.c", 999,"one");

logmsg("a.c", 999);

The ## operator has a special meaning when used in a macro definition
before the parameter that expands the variable number of arguments:
if the parameter expands to nothing, it removes the preceding comma.

 The variable argument macro syntax comes from GCC. The
compiler support both GCC and C99 variable argument macro
formats in C89, C99, and C++ modes. (See Variable Argument
Macros).

Line Breaks in String Literals

String literals may span many lines. The line breaks do not need to be
escaped in any way. They are replaced by the character \n in the generated

C/C++ Compiler Language Extensions

1-372 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

string. This extension is not supported in C++ mode. The extension is not
compatible with many dialects of C, including ISO IEC 9899:1990 and
ISO/IEC 9899:1999. However, it is useful in asm statements, which are
intrinsically non-portable.

This extension may be disabled via the -no-multiline switch
on page 1-59.

Arithmetic on Pointers to Void and Pointers to Functions

Addition and subtraction is allowed on pointers to void and pointers to
functions. The result is as if the operands had been cast to pointers to
char. The sizeof operator returns one for void and function types.

Cast to Union

A type cast can be used to create a value of a union type, by casting a value
of one of the union’s member types to the union type.

Ranges in Case Labels

A consecutive range of values can be specified in a single case by separating
the first and last values of the range with the three-period token “...”.

For example,

case 200 ... 300:

Escape Character Constant

The escape character “\e” may be used in character and string literals.
It maps to the ASCII Escape code, 27.

Alignment Inquiry Keyword (__alignof__)

The __alignof__ (type-name) construct evaluates to the alignment
required for an object of a type. The __alignof__ expression construct

CrossCore Embedded Studio 1.0 1-373
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

can also be used to give the alignment required for an object of the
expression type.

If expression is an lvalue (may appear on the left side of an assignment),
the returned alignment takes into account alignment requested by prag-
mas and the default variable allocation rules.

(asm) Keyword for Specifying Names in Generated
Assembler

The asm keyword can be used to direct the compiler to use a different
name for a global variable or function. (See also #pragma linkage_name
identifier.)

The following example instructs the compiler to use the label C11045 in
the assembly code it generates wherever it needs to access the source level
variable N. By default, the compiler would use the label _N.

int N asm("C11045");

The asm keyword can also be used in function declarations, but not in
function definitions. However, a definition preceded by a declaration has
the desired effect. For example,

extern int f(int, int) asm("func");

int f(int a, int b) {

. . .

}

C/C++ Compiler Language Extensions

1-374 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Function, Variable, and Type Attribute Keyword
(__attribute__)

The __attribute__ keyword can be used to specify attributes of functions,
variables, and types, as in the following examples:

void func(void) __attribute__ ((section("fred")));

int a __attribute__ ((aligned (8)));

typedef struct {int a[4];} __attribute__((aligned (4))) Q;

Support for the __attribute__ keyword means that fewer changes may be
required when porting GCC code. Table 1-39 lists the accepted keywords.

Table 1-39. Keywords for __attribute__

Attribute Keyword Behavior

alias("name") Accepted on functions declarations. Declares the function
to be an alias for name.

aligned(N) Accepted on variables, where it is equivalent to #pragma
align(N). Accepted (but ignored) on typedefs.

always_inline Accepted on function declarations. Equivalent to the
pragma of the same name.

const Accepted on function declarations. Equivalent to the
pragma of the same name.

constructor Accepted (but ignored) on function declarations.

deprecated Accepted on function, variable and type declarations.
Causes the compiler to emit a warning if the entity with the
attribute is referenced within the source code.

destructor Accepted (but ignored) on function declarations.

format(kind,str,args) Accepted on function declarations. Indicates that the func-
tion accepts a formatting argument string of type kind, e.g.
printf. str and args are integer values; the strth param-
eter of the function is the formatting string, while the
argsth parameter of the function is the first parameter pro-
cessed by the formatting string.

CrossCore Embedded Studio 1.0 1-375
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

format_arg(kind, str) Accepted on function declarations. Indicates that the func-
tion accepts and returns a formatting argument string of
type kind. str is an integer value; the strth parameter of
the function is the formatting string.

malloc Accepted on function declarations. Equivalent to using
#pragma alloc.

naked Accepted (but ignored) on function declarations.

no_instrument_function Accepted (but ignored) on function declarations.

nocommon Accepted on variable declaration. Ignored when
-decls-strong (on page 1-36) is in effect. Makes a decla-
ration strong when -decls-weak (on page 1-36) is in
effect.

noinline Accepted on function declarations. Equivalent to #pragma
never_inline.

nonnull Accepted on function declarations. Causes the compiler to
emit a warning if the function is invoked with any NULL
parameters.

noreturn Accepted on function declarations. Equivalent to using the
pragma of the same name.

nothrow Accepted (but ignored) on function declarations.

packed Accepted (but ignored) on typedefs. When used on variable
declarations, this is equivalent to using the pragma of the
same name.

pure Accepted on function declarations. Equivalent to using the
pragma of the same name.

section("name") Accepted on function declarations. Equivalent to using the
pragma of the same name.

sentinel Accepted on function declarations. Directs the compiler to
emit a warning for any calls to the function which do not
provide a null pointer literal as the last parameter. Accepts
an optional integer position P (default 0) to indicate that
the Pth parameter from the end is the sentinel instead.

Table 1-39. Keywords for __attribute__ (Cont’d)

Attribute Keyword Behavior

C/C++ Compiler Language Extensions

1-376 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Unnamed struct/union Fields Within struct/unions

The compiler allows you to define a structure or union that contains,
as fields, structures and unions without names. For example:

struct {

int field1;

union {

int field2;

int field3;

};

int field4;

} myvar;

transparent_union Accepted on union definitions. When the union type is
used for a function’s parameter, the parameter can accept
values which match any of the union’s types.

unused Accepted on declarations of functions, variables and types.
Indicates that the entity is known not to be used, so the
compiler should not emit diagnostics complaining that
there are no uses of the entity.

used Accepted on declarations of functions and variables. Indi-
cates that the compiler should emit the entity even when
the compiler cannot detect uses. Similar to #pragma
retain_name, but this attribute can be applied to static
entities that will not be visible outside the module. Con-
versely, this attribute will not prevent linker elimination
from deleting the entity.

warn_unused_result Accepted (but ignored) on function declarations.

weak Accepted on function and variable declarations. Equivalent
to using #pragma weak_entry

Table 1-39. Keywords for __attribute__ (Cont’d)

Attribute Keyword Behavior

CrossCore Embedded Studio 1.0 1-377
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

This allows you to access the members of the unnamed union as though
they were members of the enclosing struct or union, for example,
myvar.field2.

Preprocessor-Generated Warnings
The preprocessor directive #warning causes the preprocessor to generate a
warning and continue preprocessing. The text that follows the #warning
directive on the line is used as the warning message. For example,

#ifndef __ADSPBLACKFIN__

#warning This program is written for Blackfin processors

#endif

C/C++ Preprocessor Features
Several features of the C/C++ preprocessor are used by CCES to control
the programming environment. The ccblkfn compiler provides standard
preprocessor functionality, as described in any C text. The following
extensions to standard C are also supported:

• C++ Style Comments

• Preprocessor-Generated Warnings

• GCC Variable Argument Macros

 The compiler’s preprocessor is an integral part of the compiler; it is
not the preprocessor described in the Assembler and Preprocessor
Manual.

This section contains:

• Predefined Macros

• Writing Preprocessor Macros

C/C++ Preprocessor Features

1-378 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Predefined Macros
The ccblkfn compiler defines macros to provide information about the
compiler, source file, and options specified. These macros can be tested,
using #ifdef and related directives, to support your program’s needs.
Similar tailoring is done in the system header files.

 For the list of predefined assertions, see -A name (tokens).

Macros such as __DATE__ can be useful if incorporated into the text
strings. The # operator within a macro body is useful in converting such
symbols into text constructs.

Table 1-40 describes the predefined compiler macros.

Table 1-40. Predefined Compiler Macros

Macro Function

_ADI_FX_LIBIO Defined as 1 when compiling with the -fixed-point-io switch.

_ADI_COMPILER Defined as 1.

_ADI_THREADS Defined as 1 when compiling with the -threads switch.

__ADSPBF50x__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF504, ADSP-BF504F, or ADSP-BF506F
processor.

__ADSPBF51x__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF512, ADSP-BF514, ADSP-BF516, or
ADSP-BF518 processor.

__ADSPBF52x__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF522, ADSP-BF524, ADSP-BF526,
ADSP-BF523, ADSP-BF525, or ADSP-BF527 processor.

__ADSPBF52xLP__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF522, ADSP-BF524, or ADSP-BF526 pro-
cessor.

__ADSPBF53x__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF531, ADSP-BF532, ADSP-BF533,
ADSP-BF534, ADSP-BF536, ADSP-BF537, ADSP-BF538, or
ADSP-BF539 processor.

CrossCore Embedded Studio 1.0 1-379
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

__ADSPBF54x__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF542, ADSP-BF544, ADSP-BF547,
ADSP-BF548, or ADSP-BF549 processor.

__ADSPBF56x__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF561 processor.

__ADSPBF5xx__ Defined to 1 when building for any of the ADSP-BF5xx parts,

equivalent to:
(defined(__ADSPBF50x__) || defined(__ADSPBF51x__) ||
defined(__ADSPBF52x__) || defined(__ADSPBF53x__) ||
defined(__ADSPBF54x__) || defined(__ADSPBF56x__))

__ADSPBF60x__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF606, ADSP-BF607, ADSP-BF608 or
ADSP-BF609 processor.

__ADSPBF6xx__ Equivalent to __ADSPBF60x__.

__ADSPBLACKFIN__ Always defined as 1.

__ADSPLPBLACKFIN__ Always defined as 1.

__ADSPBF506F_FAMILY__ Equivalent to __ADSPBF50x__.

__ADSPBF518_FAMILY__ Equivalent to __ADSPBF51x__.

__ADSPBF526_FAMILY__ Equivalent to __ADSPBF52xLP__.

__ADSPBF527_FAMILY__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF523, ADSP-BF525, or ADSP-BF527 pro-
cessor.

__ADSPBF533_FAMILY__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF531, ADSP-BF532, or ADSP-BF533 pro-
cessor.

__ADSPBF537_FAMILY__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF534, ADSP-BF536 or ADSP-BF537 pro-
cessor.

__ADSPBF538_FAMILY__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF538 or ADSP-BF539 processor.

Table 1-40. Predefined Compiler Macros (Cont’d)

Macro Function

C/C++ Preprocessor Features

1-380 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

__ADSPBF548_FAMILY__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF542, ADSP-BF544, ADSP-BF547,
ADSP-BF548, or ADSP-BF549.

__ADSPBF548M_FAMILY__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF542M, ADSP-BF544M, ADSP-BF547M,
ADSP-BF548M, or ADSP-BF549M.

__ADSPBF609_FAMILY__ Equivalent to __ADSPBF60x__.

__ANALOG_EXTENSIONS__ Defined as 1 unless MISRA-C is enabled.

__BASE_FILE__ The preprocessor expands this macro to a string constant which is
the current source file being compiled as seen on the compiler
command-line.

__CCESVERSION__ The preprocessor defines this macro to be an eight-digit hexadeci-
mal representation of the CCES release, in the form 0xMMmmUUPP,
where:
– MM is the major release number
– mm is the minor release number
– UU is the update number
– PP is the patch release number
For example, CrossCore Embedded Studio 1.0.2.0 would define
__CCESVERSION__ as 0x01000200.

__cplusplus Defined as 199711L when you compile in C++ mode. It also gets
defined to 1 for LDF preprocessing.

__DATE__ The preprocessor expands this macro into the preprocessing date
as a string constant. The date string constant takes the form
mm dd yyyy (ANSI standard).

__DOUBLES_ARE_FLOATS__ Defined as 1 when the size of the double type is the same as the
single-precision float type. When the compiler -dou-
ble-size-64 switch is used (on page 1-37), the macro is not
defined.

__ECC__ Always defined as 1.

__EDG__ Always defined as 1. This definition signifies that an Edison
Design Group compiler front-end is being used.

__EDG_VERSION__ Always as an integral value representing the version of the com-
piler’s front-end.

Table 1-40. Predefined Compiler Macros (Cont’d)

Macro Function

CrossCore Embedded Studio 1.0 1-381
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

__EXCEPTIONS Defined as 1 when C++ exception handling is enabled (using the
-eh switch (on page 1-39).

__FILE__ The preprocessor expands this macro into the current input file
name as a string constant. The string matches the name of the file
specified on the command line or in a preprocessor #include
command (ANSI standard).

__FIXED_POINT_ALLOWED Defined as 1 unless MISRA-C is enabled. It is defined to indicate
that the native fixed-point types support may be used. For more
information, see Using Native Fixed-Point Types.

__HAS_L1_PARITY_CHECK__ Defined as 1 when building for the ADSP-BF60x family parts.

__HAS_SEC__ Defined as 1 when building for the ADSP-BF60x family parts.

_HEAP_DEBUG Defined as 1 when Heap Debugging support is enabled, other-
wise it is undefined. For more information, see Heap Debugging.

__IDENT__ The preprocessor expands __IDENT__ to a string normally set
using #ident.

_INSTRUMENTED_PROFILING Defined as 1 when instrumented profiling is enabled (using the
-p switch on page 1-70).

_LANGUAGE_C Always defined as 1.

__LINE__ The preprocessor expands this macro into the current input line
number as a decimal integer constant (ANSI standard).

_LONG_LONG Always defined as 1 when compiling C and C++ sources to indi-
cate that 64-bit double word integer types are supported.

_MISRA_RULES Defined as 1 when compiling in MISRA-C mode.

__NUM_CORES__ ccblkfn defines __NUM_CORES__ to the number of cores on the
target Blackfin part. This is always 1 or 2.

_PGO_HW Defined as 1 when you compile with both the -pguide and
-prof-hw command-line switches (on page 1-72 and
on page 1-74).

__RTTI Defined as 1 when C++ run-time type information is enabled
(using the -rtti switch on page 1-100).

Table 1-40. Predefined Compiler Macros (Cont’d)

Macro Function

C/C++ Preprocessor Features

1-382 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Writing Preprocessor Macros
A macro is a user-defined name or string for which the preprocessor
substitutes a user-defined block of text. Use the #define preprocessor
command to create a macro definition. When a macro definition has
arguments, the block of text the preprocessor substitutes can vary with
each new set of arguments.

__SIGNED_CHARS__ Defined as 1, unless you compile with the -unsigned-char
command-line switch (on page 1-87).

__SILICON_REVISION__ ccblkfn defines __SILICON_REVISION__ to a hexadecimal con-
stant corresponding to the target processor revision. For more
information, see Using the -si-revision Switch.

__STDC__ Always defined as 1.

__STDC_VERSION__ ccblkfn defines __STDC_VERSION__ as 199409L when compil-
ing in C89 mode, and as 199901L when compiling in C99 mode.

__TIME__ The preprocessor expands this macro into the preprocessing time
as a string constant. The date string constant takes the form
hh:mm:ss (ANSI standard).

__VERSION__ Defined as a string constant giving the version number of the
compiler used to compile this module.

__VERSIONNUM__ Defined as a numeric variant of __VERSION__ constructed from
the version number of the compiler. Eight bits are used for each
component in the version number, and the most significant byte
of the value represents the most significant version component.
For example, a compiler with version 7.1.0.0 defines
__VERSIONNUM__ as 0x07010000 and 7.1.1.10 would define
__VERSIONNUM__ to be 0x0701010A.

__WORKAROUNDS_ENABLED Defines this macro to be 1 if any hardware workarounds are
implemented by the compiler. This macro is set if the
-si-revision switch (on page 1-84) has a value other than
“none” or if any specific workaround is selected by means of the
-workaround switch (on page 1-91).

Table 1-40. Predefined Compiler Macros (Cont’d)

Macro Function

CrossCore Embedded Studio 1.0 1-383
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Compound Macros

Whenever possible, use inline functions rather than compound macros.
If compound macros are necessary, define such macros to allow invocation
like function calls. This makes your source code easier to read and main-
tain. If you want your macro to extend over more than one line, you must
escape the newlines with backslashes. If your macro contains a string
literal and you are using the -no-multiline switch (on page 1-59), escape
the newline twice, once for the macro and once for the string.

The following two code segments define two versions of the macro
SKIP_SPACES.

/* SKIP_SPACES, regular macro */

#define SKIP_SPACES (p, limit) { \

char *lim = (limit); \

while ((p) != lim) { \

if (*(p)++ != ' ') { \

(p)--; \

break; \

} \

} \

}

/* SKIP_SPACES, enclosed macro */

#define SKIP_SPACES (p, limit) \

do { \

char *lim = (limit); \

while ((p) != lim) { \

if (*(p)++ != ' ') { \

(p)--; \

break; \

} \

} \

} while (0)

C/C++ Preprocessor Features

1-384 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Enclosing the first definition within the do {…} while (0) pair changes
the macro from expanding to a compound statement to expanding to a
single statement. With the macro expanding to a compound statement,
you would sometimes need to omit the semicolon after the macro call in
order to have a legal program. This leads to a need to remember whether a
function or macro is being invoked for each call and whether the macro
needs a trailing semicolon or not. With the do {…} while (0) construct,
you can treat the macro as a function and put the semicolon after it.

For example,

 /* SKIP_SPACES, enclosed macro, ends without ‘;’ */
 if (*p != 0)
 SKIP_SPACES (p, lim);

 else …

This expands to:

 if (*p != 0)
 do {

 ...

 } while (0);

 else ...

Without the do {…} while (0) construct, the expansion would be:

if (*p != 0)

{

...

}; /* Probably not intended syntax */

else

CrossCore Embedded Studio 1.0 1-385
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

C/C++ Run-Time Model and
Environment

This section describes the Blackfin processor C/C++ run-time model and
run-time environment. The C/C++ run-time model, which applies to
compiler-generated code, includes descriptions of layout of the stack, data
access, and call/entry sequence. The C/C++ run-time environment
includes the conventions that C/C++ routines must follow to run on
Blackfin processors. Assembly routines linked to C/C++ routines must
follow these conventions.

 Analog Devices recommends that assembly programmers maintain
stack conventions.

The run-time environment issues include the following items:

• Registers

• Managing the Stack

• Function Call and Return

• Data Storage Formats

• Memory Section Usage

• Global Array Alignment

• Controlling System Heap Size and Placement

• Using Multiple Heaps

• Startup and Termination

C/C++ Run-Time Model and Environment

1-386 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Registers
The compiler makes use of the processor’s registers in a variety of ways, as
shown in Table 1-41. Some registers fulfil more than role, depending on
context.

This section contains:

• Dedicated Registers

• Preserved Registers

• Scratch Registers

• “Stack Registers”

• Event Stack Register

• Call-Expansion Register

• Parameter Registers

• Return Registers

• Aggregate Return Register

• Comparison Return Register

• Reservable Register

Table 1-41. Processor Register Categorization

Register Categorization

R0-R1 Scratch Register, Parameter Register, Return Registers

R2 Scratch Register, Parameter Register

R3 Scratch Register

R4-R7 Preserved Registers

P0 Scratch Register, Aggregate Return Register

CrossCore Embedded Studio 1.0 1-387
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Dedicated Registers

The C/C++ run-time environment specifies a set of registers whose con-
tents should not be changed except in specific defined circumstances.
If these registers are changed, their values must be saved and restored.
The dedicated register values must always be valid:

• On entry to any compiled function.

• On return to any compiled function.

• On exit from asm statements and interrupt handlers.

P1 Scratch Register, Call-expansion Register

P2 Scratch Register

P3-P5 Preserved Register

SP, FP Stack Registers, Dedicated Registers

USP Stack Register, Event Stack Register

ASTAT Scratch Register

CC, Scratch Register, Comparison Return Register

I0-I3, B0-B3, M0-M2 Scratch Register

M3 Scratch Register, Reservable Register

L0-L3 Dedicated Register

LT0-LT1, LB0-LB1 Scratch Register

LC0-LC1 Dedicated Register

A0-A1 Scratch Register

Table 1-41. Processor Register Categorization (Cont’d)

Register Categorization

C/C++ Run-Time Model and Environment

1-388 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The dedicated registers are SP, FP, L0-L3 and LC0-LC1.

• SP and FP are the stack pointer and the frame pointer registers,
respectively.

• The L0–L3 registers define the lengths of the DAG’s circular buf-
fers. The compiler uses the DAG registers, both in linear mode and
in circular buffering mode. The compiler assumes that the Length
registers are zero, both on entry to functions and on return from
functions, and ensures this is the case when it generates calls or
returns. Your application may modify the Length registers and use
the circular buffers, but you must ensure that the Length registers
are appropriately reset when calling compiled functions, or
returning to compiled functions. Interrupt handlers must save
and restore the Length registers, if using DAG registers.

• The LC0-LC1 registers are the hardware loop counters. They are
normally considered scratch registers, but when the
-zero-loop-counters switch (on page 1-92) is specified, the com-
piler ensure that these registers are reset to zero on return from
every compiled function, in case overlays or other code-movement
techniques are in use.

When generating code for a function marked as an event handler, the
compiler will emit code to save the current value of dedicated registers,
and to re-establish the expected values.

Preserved Registers

These registers are also known as callee-preserved registers, as it is the cal-
lee’s responsibility to ensure that these registers have the same value upon
function return as they did upon entry to the function, regardless of
whether the registers changed value in the meantime.

The C/C++ run-time environment specifies a set of registers whose con-
tents must be saved and restored. Your assembly function must save these

CrossCore Embedded Studio 1.0 1-389
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

registers during the function’s prologue and restore the registers as part of
the function’s epilogue. The call-preserved registers must be saved and
restored if they are modified within the assembly function; if a function
does not change a particular register, it does not need to save and restore
the register. Usually, the registers are:

• P3–P5

• R4–R7

 Functions may declare a non-standard partitioning of pre-
served/scratch registers through mechanisms such as #pragma
regs_clobbered string, which any calling function must respect.

Scratch Registers

Scratch registers are also known as caller-preserved registers, as it is the
caller’s responsibility to ensure that the value of these registers is preserved
across function calls, if required.

The C/C++ run-time environment specifies a set of registers whose
contents need not be saved and restored. Note that the contents of these
registers are not preserved across function calls.

Table 1-42 lists the scratch registers, supplying notes when appropriate.

Table 1-42. Scratch Registers

Scratch Register Notes

P0 Used as the aggregate return pointer

P1–P2 P1 is the Call-expansion Register

R0–R3 The first three words of the argument list are always passed in R0, R1, and
R2 if present (R3 is not used for parameters).

LB0–LB1

LC0–LC1 Unless -zero-loop-counters switch is in effect.

LT0–LT1

C/C++ Run-Time Model and Environment

1-390 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

 Functions may declare a non-standard partitioning of pre-
served/scratch registers through mechanisms such as #pragma
regs_clobbered string, which any calling function must respect.

Loop Counters, Overlays and DMA’d Code

The compiler does not ensure that the loop counter registers (LC0 and LC1)
are zero on entry or exit from a function. This does not normally cause a
problem because the exit point of a hardware loop is unique within the
program, and the compiler ensures that the only path to the exit is
through the corresponding loop setup instruction.

If overlays are being used, or if code is being DMA’d into faster memory
for execution, this may no longer be the case. It is possible for an overlay
or a DMA’d function to set up a loop that terminates at address A, and
then for a different overlay or DMA’d function to have different code
occupying address A at a later point in time. If a hardware loop is still
active—LC0 or LC1 is non-zero—at the point when the instruction at
address A is reached, then undefined behavior results as the hardware loop
“jumps” back to the start of the loop.

Therefore, in such cases, it is necessary for the overlay manager or the
DMA manager to reset loop counters to ensure no hardware loops remain
active that might relate to the address range covered by the variant code. A

ASTAT Including CC

A0–A1

I0–I3

B0–B3

M0–M3 Unless M3 is reserved

Table 1-42. Scratch Registers (Cont’d)

Scratch Register Notes

CrossCore Embedded Studio 1.0 1-391
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

convenient way to achieve this is to use the -zero-loop-counters switch
(on page 1-92).

Stack Registers

The C/C++ run-time environment reserves a set of registers that control
the run-time stack. These registers may be modified for stack management
in assembly functions, but must be saved and restored. Never modify the
stack registers within compiled functions.

The stack registers are:

• SP, the Stack Pointer.

• FP, the Frame Pointer.

• USP, the User Stack Pointer.

Event Stack Register

CCES applications execute in Supervisor Mode for performance reasons,
and therefore do not usually make use of USP, the User Stack Pointer.
However, USP is used during entry to, and exit from, Exception and NMI
events. As with any event, the handler function must save context, but if
CPLBs are enabled, a CPLB Data Miss event could occur during entry or
exit if the top of the stack is not covered by an active Data CPLB. With
interrupts, this is not a problem, but with Exception and NMI events, the
processor is already operating at too high a priority level, leading to a dou-
ble-exception fault.

To avoid this issue, the run-time libraries make use of USP as a temporary
register while setting SP to point to a dedicated storage. The previous
value of USP is not stored—it is always discarded.

C/C++ Run-Time Model and Environment

1-392 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Call-Expansion Register

The compiler issues function calls using call-relative instructions, for per-
formance reasons. When linking applications, the linker may need to
convert some of these instructions into call-via-pointer instructions, if the
call-relative instruction does not have sufficient capacity to express the off-
set between the call site and its destination. This expansion can be
controlled by the -jcs2l switch (on page 1-49) and the -no-jcs2l switch
(on page 1-59).

When performing this expansion, the linker will make use of the P1 regis-
ter to load the address for the called function.

Parameter Registers

When calling a function, the first three words of parameter data are passed
to the callee in registers R0-R2.

Return Registers

When a function returns a value back to its caller, if the returned value is
64 bits or smaller in size, the value is returned in the R0 register and, if
necessary, in the R1 register.

Aggregate Return Register

When a function returns a value back to its caller, if the returned value is
larger than 64 bits in size, the value is returned in space reserved on the
stack. This stack space is allocated by the caller, and a pointer to the start
of the space is passed to the callee by the caller in the P0 register.

Comparison Return Register

The compiler generates calls to internal support routines to perform float-
ing-point comparisons. For performance reasons, these internal routines

CrossCore Embedded Studio 1.0 1-393
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

return their result status in the CC bit of the ASTAT registers, rather than the
R0 register.

Reservable Register

The M3 register can be reserved using the -reserve switch (on page 1-76).
When this register is reserved, the compiler will generate no code that
makes use of the register.

Managing the Stack
The C/C++ run-time environment uses the run-time stack to store auto-
matic variables and return addresses. The stack is managed by a frame
pointer (FP) and a stack pointer (SP) and grows downward in memory,
moving from higher to lower addresses.

The stack pointer points to the address of the value on the top of the
stack, i.e. it points to the most-recently pushed value.

The stack and frame pointers must always contain 4-byte-aligned values.
A misaligned stack pointer will cause a Misaligned Data Access Exception
if an interrupt occurs.

Whenever storing data on the stack, you must always decrement the stack
pointer first, so that any data on the stack has an address that is equal to or
higher than the current stack pointer value. Otherwise, data may be cor-
rupted by interrupt handlers as they will save and restore context onto the
top of the stack.

A stack frame is a section of the stack used to hold information about the
current context of the C/C++ program. Information in the frame includes
local variables, compiler temporaries, and parameters for the next
function.

C/C++ Run-Time Model and Environment

1-394 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The frame pointer serves as a base for accessing memory in the stack
frame. Routines refer to locals, temporaries, and parameters by their offset
from the frame pointer.

Figure 1-2 shows an example section of a run-time stack.

In Figure 1-2, the currently executing routine, Current(), was called by
Previous(), and Current() in turn calls Next(). The state of the stack is
as if Current() has pushed all the arguments for Next() onto the stack and
is just about to call Next().

The compiler may omit using the frame pointer for “leaf” functions (func-
tions which do not call other functions) for performance reasons, when
optimizing.

Figure 1-2. Example Run-Time Stack

Incoming Arguments
arg n

...
arg 2
arg 1

Outgoing Arguments

Return Address RETS

Caller's (old) FP (OFP)

local var 1
local var 2

...
local var n

Register Save Area

Previous
Frame

Current
Frame

FP + 4

FP

SP

CrossCore Embedded Studio 1.0 1-395
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Function Call and Return
The transfer of control from a calling function to a called function, and
returning control back again, is the joint responsibility of the calling
function and the called function. The calling function has to pass the
appropriate parameters, in registers or upon the stack, and in some cases
has to provide space for the return value too. The called function has to
keep its own temporary workspace separate from that of its caller. Both are
required to ensure the integrity of some parts of the register set.

From the caller’s point of view, the sequence of actions looks like this:

• Ensure that the return register, RETS, has been saved, as it will be
clobbered by the call instruction. Normally, if a function is going
to be calling any other functions, it saves RETS early on in its own
prologue. In Figure 1-2, this is shown at FP+4.

• If the function being called clobbers registers that contain values
being used by the caller, the caller must save those values on the
stack prior to making the call. In Figure 1-2, this is the “Register
Save Area”.

• If the called function returns an aggregate value that is returned via
the stack, the caller must allocate stack space for this returned
value. See Return Values.

• If the called function takes parameters, the caller must set up those
parameters, either in registers or on the stack. In Figure 1-2, this is
the “Outgoing Arguments”.

• The caller can now call the function.

• After the function returns, the caller must reset the stack pointer,
to dispose of the “Outgoing Arguments” space, and restore any
needed registers that might have been clobbered by the called
function.

C/C++ Run-Time Model and Environment

1-396 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

From the callee’s point of view, the sequence of actions looks like this:

• Upon entry to the callee, the stack pointer will point to the top of
the “Incoming Arguments” area of Figure 1-2. Note that this figure
is viewed differently by caller and callee: the “Outgoing Argu-
ments” of the caller are the “Incoming Arguments” as far as the
callee is concerned.

• If the function will be calling any further functions, it will have to
save the Frame Pointer and RETS, the Return Register. If it needs
any space for temporaries, it must create the “local var” space on
the stack. These operations are all combined by the LINK
instruction.

• If the function needs to modify any registers that are not consid-
ered scratch registers, the function must save their current values
prior to changing them. In other words, the function must preserve
the value of any callee-preserved registers.

• The function may now perform its main task.

• Upon completion, the function may need to return a value to the
caller. To do this, it must either load the value into the Result Reg-
isters, or store it to the stack.

• Prior to returning, the function must restore the value of any cal-
lee-preserved registers it has modified.

• The function must pop the “local var” space from the stack, restore
the RETS value, restore the caller’s Frame Pointer value (if changed)
and restore the Stack Pointer to the value it had on entry to the
function. These operations are all combined by the UNLINK
instruction.

• Finally, the function can return control back to the caller.

CrossCore Embedded Studio 1.0 1-397
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Transferring Function Arguments and Return Value

The C/C++ run-time environment uses a set of registers and the run-time
stack to transfer function parameters to assembly routines. Your assembly
language functions must follow these conventions when they call (or when
called by) C/C++ functions.

Basic Argument Passing

The basic details for argument passing are as follows:

• 8- and 16-bit arithmetic types must be sign- or zero-extended to 32
bits by the caller.

• 40-bit fixed-point types must be sign- or zero-extended to 64 bits
by the caller.

• Parameters are pushed onto the stack in reverse order, with each
parameter beginning on a 32-bit boundary. Thus, for a function
that takes five int parameters a, b, c, d and e, the parameters’
respective stack positions would be SP, SP+4, SP+8, SP+12 and
SP+16.

• However, although stack space is allocated for all parameters, the
first twelve bytes are passed in the registers R0-R2. The first 32 bits
are passed in R0, the second 32 bits in R1 and the third 32 bits in
R2. Thus, given the same five int parameters, parameter a would be
passed in R0, parameter b would be passed in R1, and parameter c
would be passed in R2.

 When calling a C function, at least twelve bytes of stack space must
be allocated for the function’s arguments, corresponding to R0–R2.
This applies even for functions with fewer than 12 bytes of argu-
ment data, or that have fewer than three arguments. Note that the
called function is permitted to modify the contents of this stack
space.

C/C++ Run-Time Model and Environment

1-398 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Passing Parameters for Variable Argument Lists

The details of argument passing do not change for variable argument lists.

For example, a function declared as follows may receive one or more
arguments.

int varying(char *fmt, ...) { /* ... */ }

 As with other functions, the first argument, fmt, is passed in R0, and other
arguments are passed in R1, and then R2, and then on the stack, as
required.

Variable argument lists are processed using the macros defined in the
stdarg.h header file. The va_start() function obtains a pointer to the list
of arguments which may be passed to other functions, or which may be
walked by the va_arg() macro.

To support this, the compiler begins variable argument functions by
flushing R0, R1, and R2 to their reserved spaces on the stack:

_varying:

[SP+0] = R0;

[SP+4] = R1;

[SP+8] = R2;

The va_start() function can then take the address of the last non-varying
argument (fmt, in the example above, at [SP+0]), and va_arg() can walk
through the complete argument list on the stack.

Passing a C++ Class Instance

A C++ class instance function parameter is always passed by reference
when a copy constructor has been defined for the C++ class. If a copy con-
structor has not been defined for the C++ class then the C++ class instance
function parameter is passed by value.

CrossCore Embedded Studio 1.0 1-399
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Consider the following example.

class fr

{

public:

int v;

public:

fr () {}

fr (const fr& rc1) : v(rc1.v) {}

};

extern int fn(fr x);

fr Y;

int main() {

return fn (Y);

}

The function call fn (Y) in main will pass the C++ class instance Y by
reference because a copy constructor for that C++ class has been defined
by fr (const fr& rc1) : v(rc1.v) {}. If this copy constructor were
removed, then Y would be passed by value.

Return Values

Values are usually returned from a called function to the caller in register
R0, or in the register pair R0-R1, if necessary. The details are as follows:

• 8- and 16-bit arithmetic values are returned in R0, sign- or
zero-extended to 32 bits as required.

• 32-bit arithmetic values are returned in R0.

• 40-bit fixed-point types are sign- or zero-extended to 64 bits, and
returned in R0 and R1, with the least significant bits in R0.

C/C++ Run-Time Model and Environment

1-400 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• 64-bit arithmetic types are returned in R0 and R1, with the least sig-
nificant bits in R0.

• Pointer values are returned in R0.

• Aggregate types of 32 bits or less are returned in R0.

• Aggregate types larger than 32 bits but less than or equal to 64 bits
in size are returned in R0 and R1, with the lower-addressed bytes in
R0.

• Aggregate values larger than 64 bits in size are returned on the
stack. The caller must allocate sufficient space on the stack within
the caller’s own frame, and load the address of the lowest-addressed
part of this storage into register P0 before calling the function.

Parameter and Return Value Examples

Table 1-43 provides examples of passed parameters.

Table 1-43. Examples of Parameter Passing

Function Prototype Parameters Passed as Return Location

int test(int a, int b,
int c)

a in R0,
b in R1,
c in R2

in R0

char test(int a, char b,
char c)

a in R0,
b in R1,
c in R2

in R0

int test(int a) a in R0 in R0

int test(char a, char b,
char c, char d, char e)

a in R0,
b in R1,
c in R2,
d in [FP+20],
e in [FP+24]

in R0

int test(struct *a, int
b, int c)

a (addr) in R0,
b in R1,
c in R2

in R0

CrossCore Embedded Studio 1.0 1-401
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Calling Assembly Subroutines From C/C++ Programs

Before calling an assembly language subroutine from a C/C++ program,
create a prototype to define the arguments for the assembly language sub-
routine and the interface from the C/C++ program to the assembly
language subroutine. Even though it is legal to use a function without a
prototype in C/C++, prototypes are a strongly-recommended practice for

struct s2a {
char ta;
char ub;
int vc;}
int test(struct s2a x,
int b, int c)

x.ta and x.ub in R0,
x.vc in R1,
b in R2,
c in [FP+20]

in R0

struct foo *test(int a,
int b, int c)

a in R0,
b in R1,
c in R2

(address) in R0

void qsort(void *base,
int nel, int width, int
(*compare)(const void *,
const void *))

base(addr) in R0,
nel in R1,
width in R2,
compare(addr) in [FP+20]

struct s2 {
char t;
char u;
int v;
}
struct s2 test(int a,
int b, int c)

a in R0,
b in R1,
c in R2

in R0 (s.t and s.u) and
in R1 (s.v)

struct s3 {
char t;
char u;
int v;
int w;
}
struct s3 test(int a,
int b, int c)

a in R0,
b in R1,
c in R2

in *P0 (based on value
of P0 at the call, not
necessarily at the
return)

Table 1-43. Examples of Parameter Passing (Cont’d)

Function Prototype Parameters Passed as Return Location

C/C++ Run-Time Model and Environment

1-402 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

good software engineering. When the prototype is omitted, the compiler
cannot perform argument-type checking and assumes that the return value
is of type integer and uses K&R promotion rules instead of ANSI promo-
tion rules.

C, C++ and assembly code use different namespaces for symbols. Refer to
Symbol Names in C/C++ and Assembly for ways to specify an assembly
routine from C/C++.

The compiler will assume that the called assembly function will obey the
run-time model’s rules on register usage. Refer to Registers for details.

 Functions may declare a non-standard partitioning of pre-
served/scratch registers through mechanisms such as #pragma
regs_clobbered string, which any calling function must respect. If
the assembly function being called from C/C++ uses a non-stan-
dard clobber set, declare this in the prototype.

The compiler also assumes the machine state does not change during exe-
cution of the assembly language subroutine. If you change modes within
your assembly routine—for example, the rounding-mode bit RND_MOD—
ensure that you restore them to their previous value before returning.

Calling C/C++ Functions From Assembly Programs

C/C++ functions can be called from assembly code. The situation is simi-
lar to that described in Calling Assembly Subroutines From C/C++
Programs:

• The namespaces for C/C++ and assembly code are different; refer
to Symbol Names in C/C++ and Assembly for details on how to
specify a C/C++ function that can be referenced from assembly.

CrossCore Embedded Studio 1.0 1-403
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

• The C/C++ function will obey the run-time model’s rules
described in Registers, so your calling assembly code must respect
this, by not expecting caller-preserved registers to maintain their
values over the call.

• If your assembly code is passing parameters to the C/C++ function
or receiving a return value from it, you must follow the rules
described in Transferring Function Arguments and Return Value.

There are additional requirements you must fulfil when calling C/C++
code from assembly code, however:

• You must ensure that the system stack is valid and appropriately
aligned, as described in Managing the Stack.

• You must ensure that Dedicated Registers have their correct values.

• You must ensure that a system heap is set up. This is done for you
if you are using the default or generated startup code and .ldf files.
For more information, see Startup and Termination.

Symbol Names in C/C++ and Assembly

You can use C/C++ symbols (function or variable names) in assembly
routines and use assembly symbols in C/C++ code. This section describes
how to name and use C/C++ and assembly symbols.

Only global C/C++ symbols can be referenced from assembly source.

To use a C/C++ function or variable in an assembly routine, declare it as
global in the C program. Import the symbol into the assembly routine by
declaring the symbol with the .EXTERN assembler directive.

To use an assembly function or variable in your C/C++ program, declare
the symbol with the .GLOBAL assembler directive in the assembly routine
and import the symbol by declaring the symbol as extern in the C
program.

C/C++ Run-Time Model and Environment

1-404 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Table 1-44 shows several examples of the C/C++ and assembly interface
naming conventions.

C/C++ and Assembly: Extern Linkage

The compiler supports the use of extern to declare symbol names in the
different C, C++ and assembly namespaces. For example:

extern int def_fn(void); // “_def_fn” or “__Z6def_fnv”

extern “asm” int asm_fn(void); // “asm_name” in assembly

extern “C” int c_fn(void); // “_c_name” in assembly

When compiling your source in C or C++ mode, you can use extern
“asm” or extern “C” to specify which namespace you want your external
symbols to use. Without the external linkage specifier, your symbol will
use C namespace when compiling in C mode, and C++ namespace (man-
gled) when compiling in C++ mode.

C and Assembly: Underscore Prefix

As can be seen in C/C++ and Assembly: Extern Linkage, when the com-
piler generates the assembly version of a C-namespace symbol, it prepends

Table 1-44. C/C++ Naming Conventions for Symbols

In the C/C++ Program In the Assembly Subroutine

int c_var; /*declared global*/ .extern _c_var;
.type _c_var,STT_OBJECT;

void c_func(void); .global _c_func;
.type _c_func,STT_FUNC;

extern int asm_var; .global _asm_var;
.type _asm_var,STT_OBJECT;
.byte = 0x00,0x00,0x00,0x00

extern void asm_func(void); .global _asm_func;
.type _asm_func,STT_FUNC;
_asm_func:

CrossCore Embedded Studio 1.0 1-405
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

an underscore. You can take advantage of this in your assembly source
when referring to C-mode symbols, by adding the underscore yourself.

Other Approaches

In addition to the external linkage feature described in C/C++ and Assem-
bly: Extern Linkage, you can also use the following approaches in your
C/C++ source:

• When declaring functions, you can provide an alternative linkage
name, using #pragma linkage_name identifier.

• When declaring variables in C, you can provide an alternative link-
age name, using (asm) Keyword for Specifying Names in
Generated Assembler.

• When declaring functions in C, you can use Function, Variable,
and Type Attribute Keyword (__attribute__) to specify aliases of
functions.

Exceptions Tables in Assembly Routines

C++ functions can throw C++ exceptions, which must be caught by
another function earlier in the call-stack. Part of this catching process
involves unwinding the stack of intervening, still-active function calls.
The C++ exception support library uses additional function details to per-
form this unwinding. The exception support gets this information from
different places:

• When C++ modules are compiled with exceptions enabled by the
-eh switch (on page 1-39), the compiler generates the necessary
unwinding tables.

• When C modules are compiled, exceptions information is not usu-
ally necessary, but the compiler will generate unwinding
information if the -eh switch is specified.

C/C++ Run-Time Model and Environment

1-406 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• Assembly modules are not compiled, so unwinding information
must be supplied manually, if necessary.

Assembly functions rarely need to provide exception-unwinding informa-
tion. It is only necessary when all of the following conditions apply:

• The assembly routine may be called by a C or C++ function.

• The assembly routine calls a C++ function (or a C function that
may lead to a C++ function being called, while the assembly rou-
tine is still active).

• The called C++ function may throw an exception.

The assembly routine must allocate a stack frame using FP and SP as
described in Managing the Stack. On entry to the assembly routine,
call-preserved registers (on page 1-388) that are modified in the routine
should be saved into a contiguous region within the stack frame, called the
save area. Registers are saved at ascending addresses in the save area in the
order given in Table 1-46.

A word in the .gdt section must be initialized with the address of the
function exceptions table. This word must be marked with the
.RETAIN_NAME directive to prevent it being removed by linker data
elimination. The function exceptions table itself must be initialized as
illustrated in Table 1-45.

Table 1-45. Function Exceptions Table

Offset Size in bytes Meaning

0 4 Start address of the routine

4 4 First address after end of routine

8 4 Signed offset from FP of register save area

12 8 Bit set indicating which registers are saved

20 4 Always zero. Indicates this is not C++ code

CrossCore Embedded Studio 1.0 1-407
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

The bit set field of the function exceptions table contains a bit for each
register. The bits corresponding to registers saved in the save area must be
set to one and the other bits set to zero. The bit numbers corresponding to
each register are given in Table 1-46, where bit 0 is the least significant bit
of the lowest addressed word, bit 31 is the most significant bit of that
word, bit 32 is the least significant bit of the second lowest addressed
word, and so on.

Bit numbering may best be explained by the C code to test bit number.

int wrd = r/32;

int bit = lu << (r%32);

if (bitset[wrd] & bit)

/* register r was saved */

Table 1-46. Function Exception Table Register Numbers

Register Bit Number Bytes Taken in Save Area if Saved

LB1 0 4

LB0 1 4

LT1 2 4

LT0 3 4

LC1 4 4

LC0 5 4

M3 6 4

M2 7 4

M1 8 4

M0 9 4

B3 10 4

B2 11 4

B1 12 4

B0 13 4

I3 14 4

I2 15 4

I1 16 4

C/C++ Run-Time Model and Environment

1-408 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

I0 17 4

L3 18 4

L2 19 4

L1 20 4

L0 21 4

A1X 22 4

A1W 23 4

A0X 24 4

A0W 25 4

P5 26 4

P4 27 4

P3 28 4

P2 29 4

P1 30 4

P0 31 4

R7 32 4

R6 33 4

R5 34 4

R4 35 4

R3 36 4

R2 37 4

R1 38 4

R0 39 4

ASTAT 40 4

Table 1-46. Function Exception Table Register Numbers (Cont’d)

Register Bit Number Bytes Taken in Save Area if Saved

CrossCore Embedded Studio 1.0 1-409
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

This example shows an assembly routine with function exceptions table,

.section program;

_asmfunc:

.LN._asmfunc:

LINK 0; /* setup FP */

[--SP] = (R7:5, P5:4); /* save R5,R6,R7,P4,P5 at FP-20 */

/* use R5,R6,R7,P4,P5 call a C++ function */

(R7:5, P5:4) = [SP++]; /* restore registers */

UNLINK;

RTS;

.LN._asmfunc.end:

._asmfunc.end:

.global _asmfunc;

.type _asmfunc, STT_FUNC;

.section .edt; /* conventionally function exceptions

tables go in .edt */

.align 4;

.byte4 .function_exceptions_table[6] =

.LN._asmfunc, /* first address of _asmfunc */

.LN._asmfunc.end, /* first address after _asmfunc */

-20, /* offset of save area from FP */

0x0c000000, 0x00000007, /* bit set, bits 26=P5,

27=P4,32=R7,33=R6,34=R5 */

0; /* always zero for non-c++ */

.section .gdt;

.align 4;

.fet_index:

.byte4 = .function_exceptions_table;

/* address of table in .gdt */

.retain_name .fet_index;

C/C++ Run-Time Model and Environment

1-410 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Data Storage Formats
The sizes of intrinsic C/C++ data types are selected by Analog Devices so
that normal C/C++ programs execute with hardware-native data types,
and, therefore, at high speed. The C/C++ run-time environment uses the
intrinsic C/C++ data types and data formats that appear in Table 1-47 and
are shown in Figure 1-3 and Figure 1-4.

Table 1-47. Data Storage Formats and Data Type Sizes

Type Bit Size Number Representation sizeof
returns

bool 8 bits signed 8-bit two’s complement 1

char 8 bits signed 8-bit two’s complement 1

unsigned char 8 bits unsigned 8-bit unsigned magnitude 1

short 16 bits signed 16-bit two’s complement 2

unsigned short 16 bits unsigned 16-bit unsigned magnitude 2

int 32 bits signed 32-bit two’s complement 4

unsigned int 32 bits unsigned 32-bit unsigned magnitude 4

long 32 bits signed 32-bit two’s complement 4

unsigned long 32 bits unsigned 32-bit unsigned magnitude 4

long long 64 bits signed 64-bit two’s complement 8

unsigned long long 64 bits unsigned 64-bit unsigned magnitude 8

pointer 32 bits 32-bit two’s complement 4

function pointer 32 bits 32-bit two’s complement 4

double 32 bits 32-bit IEEE single-precision 4

float 32 bits 32-bit IEEE single-precision 4

double 64 bits 64-bit IEEE double-precision 8

long double 64 bits 64-bit IEEE 8

short fract 16 bits signed s1.15 fract 2

fract 16 bits signed s1.15 fract 2

CrossCore Embedded Studio 1.0 1-411
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

 The floating-point and 64-bit data types are implemented using
software emulation, and are expected to run more slowly than
hardware-supported native data types. The emulated data types are
float, double, long double, long long, and unsigned long long.

 The native fixed-point types fract and accum are available only
when the stdfix.h header file is included.

 The fract16 and fract32 are not actually intrinsic data types—
they are typedefs to short and long, respectively. You need to use
built-in functions to do basic arithmetic on these types.
(See Fractional Value Built-In Functions). You cannot do
fract16*fract16 and get the right result. The native fixed-point
types fract and accum provide a more natural alternative to
fract16 and fract32.

long fract 32 bits signed s1.31 fract 4

unsigned short fract 16 bits unsigned 0.16 fract 2

unsigned fract 16 bits unsigned 0.16 fract 2

unsigned long fract 32 bits unsigned 0.32 fract 4

short accum 40 bits signed s9.31 fixed-point 8

accum 40 bits signed s9.31 fixed-point 8

long accum 40 bits signed s9.31 fixed-point 8

unsigned short accum 40 bits unsigned 8.32 fixed-point 8

unsigned accum 40 bits unsigned 8.32 fixed-point 8

unsigned long accum 40 bits unsigned 8.32 fixed-point 8

fract16 16 bits signed 1.15 fract 2

fract32 32 bits signed 1.31 fract 4

Table 1-47. Data Storage Formats and Data Type Sizes (Cont’d)

Type Bit Size Number Representation sizeof
returns

C/C++ Run-Time Model and Environment

1-412 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Floating-Point Data Size

On Blackfin processors, the float data type is 32 bits, and the double data
type default size is 32 bits. This size is chosen because it is the most effi-
cient. The 64-bit long double data type is available if more precision is
needed, although this is more costly because the type exceeds the data sizes
supported natively by hardware.

In the C language, floating-point literal constants default to the double
data type. When operations involve both float and double, the float
operands are promoted to double and the operation is done at double size.
By having double default to a 32-bit data type, the Blackfin compiler
usually avoids additional expense during these promotions. This does not,
however, fully conform to the ISO/IEC 9899:1990 C standard, the
ISO/IEC 9899:1999 C standard, and the ISO/IEC 14882:2003 C++ stan-
dard, all of which require that the double type supports at least 10 digits
of precision.

The -double-size-64 switch (on page 1-37) sets the size of the double
type to 64 bits if additional precision, or full standard conformance, is
required.

The -double-size-64 switch causes the compiler to treat the double data
type as a 64-bit data type, instead of a 32-bit data type. This means that
all values are promoted to 64 bits, and consequently incur more storage
and cycles during computation. The switch does not affect the size of the
float data type, which remains at 32 bits.

Consider the following case.

float add_two(float x) { return x + 2.0; } // has promotion

When compiling this function, the compiler promotes the float value x
to double, to match the literal constant 2.0. The addition becomes a
double operation, and the result is truncated back to a float before being
returned.

CrossCore Embedded Studio 1.0 1-413
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

By default, or with the -double-size-32 switch (on page 1-37), the pro-
motion and truncation operations are empty operations—they require no
work because the float and double types default to the same size. Thus,
there is no cost.

With the -double-size-64 switch, the promotion and truncation opera-
tions require work because the double constant 2.0 is a 64-bit value. The x
value is promoted to 64 bits, a 64-bit addition is performed, and the result
is truncated to 32 bits before being returned.

In contrast, since the literal constant 2.0f in the following example has an
“f” suffix, it is a float-type constant, not a double-type constant.

float add_two(float x) { return x + 2.0f; } // no promotion

Thus, both operands to the addition are of type float, and no promotion
or truncation is necessary. This version of the function does not produce
any performance degradation when the -double-size-64 switch is used.

You must be consistent in your use of the -double-size-{32|64} switch.

Consider the two files, such as:

file x.c:

double add_nums(double x, double y) { return x + y; }

file y.c:

extern double add_nums(double, double);

double times_two(double val) { return add_nums(val, val); }

Both files must be compiled with the same usage of -double-size{32|64}.
Otherwise, times_two() and add_nums() will be exchanging data in mis-
matched formats, and incorrect behavior will occur. Table 1-48 shows the
results for the various permutations.

C/C++ Run-Time Model and Environment

1-414 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

If a file does not make use of any double-typed data, it may be compiled
with the -double-size-any switch (on page 1-37), to indicate this fact.
Files compiled in this way may be linked with files compiled with
-double-size-32 or with -double-size-64, without conflict.

Conflicts are detected by the linker and result in linker error li1151,
“Input sections have inconsistent qualifiers”.

Floating-Point Binary Formats

The Blackfin compiler supports IEEE floating-point format.

IEEE Floating-Point Format

By default, the Blackfin compiler provides floating-point emulation using
IEEE single- and double-precision formats. Single-precision IEEE format
(Figure 1-3) provides a 32-bit value, with 23 bits for the mantissa, 8 bits
for the exponent, and 1 bit for the sign. This format is used for the float
data type, and for the double data type by default and when the
-double-size-32 switch is used. The 32-bit double data type violates the
ISO/IEC 9899:1990 C standard, the ISO/IEC 9899:1999 C standard,
and the ISO/IEC 14882:2003 C++ standard.

Table 1-48. Use of the -double-size-{32|64} Switch

x.c y.c Result

default default Okay

default -double-size-32 Okay

-double-size-32 default Okay

-double-size-32 -double-size-32 Okay

-double-size-64 -double-size-64 Okay

-double-size-32 -double-size-64 Error

-double-size-64 -double-size-32 Error

CrossCore Embedded Studio 1.0 1-415
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

In Figure 1-3, the single word (32-bit) data storage format equates to:

where:

• Sign – Comes from the sign bit.

• Mantissa – Represents the fractional part of the mantissa, 23 bits.
(The “1.” is assumed in this format.)

• Exponent – Represents the 8-bit exponent.

Double-precision IEEE format (Figure 1-4) provides a 64-bit value, with
52 bits for the mantissa, 11 bits for the exponent, and 1 bit for the sign.
This format is used for the long double data type, and for the double data
type when the -double-size-64 switch is used. A 64-bit value for the dou-
ble data type is compliant to with the ISO/IEC 9899:1990 C standard,
the ISO/IEC 9899:1999 C standard, and the ISO/IEC 14882:2003 C++
standard. (See Language Standards Compliance.)

Figure 1-3. Data Storage Format for Float and Double Types

Single Word (32 bits)

Sign Bit

2223 031

8-Bit Exponent
Biased by +127

Mantissa

1Sign 1.Mantissa 2 Exponent 127– –

C/C++ Run-Time Model and Environment

1-416 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

In Figure 1-4, the two-word (64-bit) data storage format equates to:

where:

• Sign – Comes from the sign bit.

• Mantissa – Represents the fractional part of the mantissa, 52 bits.
(The “1.” is assumed in this format.)

• Exponent – Represents the 11-bit exponent.

IEEE Floating-Point Implementation

The Blackfin compiler supports a high-performance implementation of
IEEE floating-point, which relaxes some of the IEEE rules in the interest
of performance:

• The Round-To-Nearest-Even mode is the only supported rounding
mode.

• Exception flags are not supported.

Figure 1-4. Double-Precision IEEE Format

Most Significant Word (32 bits)
at Memory Address N

Sign Bit

52 062

11-Bit Exponent
Biased by +1023

Mantissa

5163

Least Significant Word (32 bits)
at Memory Address N+1

31

1Sign 1.Mantissa 2 Exponent 1023– –

CrossCore Embedded Studio 1.0 1-417
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

• There is no distinction between signaling NaN and a quiet NaN;
all NaNs are handled as quiet NaNs.

• In general, denormalized numbers are flushed to zero before being
used in arithmetic.

• The emulation routines do not stringently observe all of the rules
of the IEEE standard with respect to the handling of Infinity or
NaN; for example, a division by Infinity always returns a NaN,
even when the numerator is not zero.

• When a floating-point operation generates a result of zero, the
emulation routines do not always ensure that it has the correct
sign. For example, when a double precision value that is less than
FLT_MIN in magnitude is converted to single precision, the sign of
the result will always be +0.0 irrespective of the sign of the double
precision value.

• Double precision arithmetic may occasionally not round correctly
and lose one bit of precision.

fract and accum Data Representation

The fract and accum types are native fixed-point types that can be used to
write code using saturating, fixed-point arithmetic. They should not be
confused with the fract16 and fract32 typedefs which may be used to
write fixed-point arithmetic via built-in functions only. The native
fixed-point types are discussed in Using Native Fixed-Point Types.

The short fract and fract types represent a single 16-bit signed
fractional value, while the long fract type represents a 32-bit signed
fractional value. Both types have the same range, [-1.0,+1.0). However,
long fract has twice the precision.

C/C++ Run-Time Model and Environment

1-418 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The short fract, fract, and long fract data representations are shown
in Figure 1-5.

Therefore, to represent 0.25 in fract, the HEX representation would be
0x2000 (2-2). For -0.25 in long fract, the HEX representation is 0xe000
0000 (-1+2-1+2-2). For -1, the HEX representation in fract is 0x8000.
short fract, fract, and long fract cannot represent +1 exactly, but they
get quite close with 0x7fff for short fract and fract, or 0x7fff ffff for
long fract.

The unsigned short fract and unsigned fract types represent a single
16-bit unsigned fractional value, while the unsigned long fract type rep-
resents a 32-bit unsigned fractional value. Both types have the same range,
[0.0,+1.0). However, unsigned long fract has twice the precision.

Figure 1-5. Data Storage Format for short fract, fract, and long fract

Short fract, fract (1.15)

Bit 15 14 13 2 1 0

Long fract (1.31)

Bit

Weight

Weight

31 30 29 2 1 0

2-29 2-30 2-31

(-1) 2-1 2-2 2-13 2-14 2-15

(-1) 2-1 2-2

CrossCore Embedded Studio 1.0 1-419
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

The unsigned short fract, unsigned fract and unsigned long fract
data representations are shown in Figure 1-6.

Therefore, to represent 0.25 in unsigned fract, the HEX representation
would be 0x4000 (2-2). For 0.125 in unsigned long fract, the HEX is
0x2000 0000 (2-3). unsigned short fract, unsigned fract and unsigned
long fract cannot represent +1 exactly, but they get quite close with
0xffff for unsigned short fract and unsigned fract, or 0xffff ffff
for unsigned long fract.

The short accum, accum, and long accum types represent a single 40-bit
signed fixed-point value. The three types have the same range,
[-256.0,+256.0). They should not be confused with the acc40 type, which
is a container for a value held in the accumulator register.

Figure 1-6. Data Storage Format for unsigned short fract, unsigned
fract, and unsigned long fract

Unsigned short fract, unsigned fract (0.16)

Bit 15 14 13 2 1 0

Unsigned long fract, unsigned fract (0.32)

Bit

Weight

Weight

31 30 29 2 1 0

2-1 2-2 2-3 2-30 2-31 2-32

2-1 2-2 2-3 2-14 2-15 2-16

C/C++ Run-Time Model and Environment

1-420 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The short accum, accum, and long accum data representations are shown
in Figure 1-7.

Therefore, to represent 12.25 in any of the signed accum types, the HEX
representation would be 0x06 2000 0000 (23+22+2-2). For -256.0, the
HEX representation in the signed accum types is 0x80 0000 0000. short
accum, accum, and long accum cannot represent +256.0 exactly, but they
get quite close with 0x7f ffff ffff.

The unsigned short accum and unsigned accum types represent a single
40-bit unsigned fixed-point value. The three types have the same range,
[0.0,+256.0).

The unsigned short accum, unsigned accum, and unsigned long accum
data representations are shown in Figure 1-8.

Figure 1-7. Data Storage Format for short accum, accum, and long accum

Figure 1-8. Data Storage Format for unsigned short accum, unsigned
accum, and unsigned long accum

short accum, accum, long accum (9.31)

Bit

Weight

39 38 37 2 1 0

(-28) 27 26 2-29 2-30 2-31

Sign Bit

Unsigned short accum, unsigned accum, unsigned long accum (8.32)

Bit

Weight

39 38 37 2 1 0

27 26 25 2-30 2-31 2-32

CrossCore Embedded Studio 1.0 1-421
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Therefore, to represent 12.25 in any of the unsigned accum types, the
HEX representation would be 0x0c 4000 0000 (23+22+2-2). unsigned
short accum, unsigned accum, and unsigned long accum cannot represent
+256.0 exactly, but they get quite close with 0xff ffff ffff.

fract16 and fract32 Data Representation

The fract16 type represents a single 16-bit signed fractional value, and
the fract32 type represents a 32-bit signed fractional value. Both types
have the same range, [-1.0,+1.0). However, fract32 has twice the
precision. They are not intrinsic data storage formats, they are simply
typedefs. They should therefore not be confused with the native
fixed-point types, fract and accum, defined in the stdfix.h header file.

typedef short fract16;

typedef long fract32;

The fract data representation is shown in Figure 1-9.

Therefore, to represent 0.25 in fract16, the HEX representation would be
0x2000 (2-2). For -0.25 in fract32, the HEX would be 0xe000 0000
(-1+2-1+2-2). For -1, the HEX representation in fract16 would be 0x8000

Figure 1-9. Data Storage Format for fract16 and fract32

Signed Fractional (1.15)

Signed Fractional (1.31)

Bit

Weight

Sign Bit

Sign Bit

Bit

Weight

15 14 13 2 1 0

2 1 0

(-1) 2
-1

 2
-2

(-1) 2
-1

 2
-2

2
-14

 2
-14

 2
-15

2
-29

 2
-30

 2
-31

31 30 29

C/C++ Run-Time Model and Environment

1-422 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

(-1). fract16 and fract32 cannot represent +1 exactly, but they get quite
close with 0x7fff for fract16, or 0x7fff ffff for fract32. There is also a
fract2x16 data type, which is two fract16s packed into 32 bits. The first
two bytes belong to one fract16, and the second two bytes belong to the
other. There are also built-in functions that work with fract2x16
parameters.

Memory Section Usage
The C/C++ run-time environment requires that a specific set of memory
section names are used to place code in memory. In assembly language
files, these names are used as labels for the .SECTION directive. In the .ldf
file, these names are used as labels for the output section names within the
SECTIONS{} command. For information on .ldf file syntax and other
information on the linker, see the Linker and Utilities Manual.

Code Storage

The code section, program, is where the compiler puts all the program
instructions that it generates when compiling the program. The cplb_code
section exists so that memory protection management routines can be
placed into sections of memory that are always configured as being
available. A noncache_code section is mapped to memory that cannot be
configured as cache. The noncache_code section is used by the run-time
library (RTL).

Data Storage

The data section, data1, is where the compiler puts global and static data
in memory. The data section, constdata, is where the compiler puts data
that has been declared as const. By default, the compiler places global
zero-initialized data into a “BSS-style” section, called bsz, unless the com-
piler is invoked with the -no-bss option (on page 1-54). The cplb_data
section exists so that configuration tables used to manage memory protec-
tion can be placed in memory areas that are always flagged as accessible.

CrossCore Embedded Studio 1.0 1-423
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Run-Time Stack

The run-time stack is positioned in memory section stack and is required
for the run-time environment to function. The section must be mapped in
the .ldf file.

The run-time stack is a 32-bit-wide structure, growing from high memory
to low memory. The compiler uses the run-time stack as the storage area
for local variables and return addresses. See Managing the Stack for more
information.

Run-Time Heap Storage

The run-time heap section, heap, is where the compiler puts the run-time
heap in memory. When linking, use your .ldf file to map the heap sec-
tion. To dynamically allocate and deallocate memory at run-time, the
standard C run-time library includes four functions:

malloc() calloc() realloc() free()

Additionally, the C++ new and delete operators are available to allocate
and free memory from the run-time heap. By default, all heap allocations
are from the heap section of memory. The .ldf file must define symbolic
constants ldf_heap_space, ldf_heap_end, and ldf_heap_length to allow
the heap management routines to function.

Heap allocations may also be served from other memory regions. For more
information, see Using Multiple Heaps.

Global Array Alignment
Global arrays must be aligned on a 32-bit word boundary or greater; the
compiler will normally use this knowledge when optimizing accesses. If
you declare arrays in assembly files that will be accessed from C/C++, use
the .ALIGN directive to ensure the array’s starting address has an alignment
of 4 or greater.

C/C++ Run-Time Model and Environment

1-424 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Controlling System Heap Size and Placement
The system heap is the default heap used by calls to allocation functions
like malloc() in C and the new operator in C++. System heap placement
and size are specified in the application’s .ldf file.

For details on adding and managing additional heaps besides the system
heap, see Using Multiple Heaps.

Managing the System Heap in the IDE

The.ldf files created by the Project Wizard, with Startup Code/LDF
option accepted, can be controlled using selections in the System Config-
uration Overview dialog box.

1. Expand your new project in a project navigation view such as Proj-
ect Explorer.

2. Double-click system.svc. The Startup Code/LDF component
appears in the System Configuration Overview dialog box.

3. Click the Startup Code/LDF tab at the bottom of the dialog box.

4. Click the LDF tab that appears at the left of the dialog box. The
LDF Configuration page appears.

5. In the System heap area, check the Customize the system heap
checkbox.

6. You can now modify the size of the system heap, and choose into
which memory it is placed.

7. When you have modified the settings as required, save the changes,
via Ctrl+S, using File > Save, or by clicking on the floppy disk icon
in the toolbar; this will cause the IDE to generate an updated LDF
and related startup-code files, which will configure your heaps dur-
ing the application’s startup.

CrossCore Embedded Studio 1.0 1-425
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Managing the System Heap in the .ldf File

If an .ldf file has not been added to the project either by using the Proj-
ect Wizard or by using a custom file, a default .ldf file from the
<install_path>\Blackfin\ldf directory is used.

By default, the compiler uses the file arch.ldf, where arch is specified
via the -proc arch switch. For example, if -proc ADSP-BF537 is used,
the compiler defaults to using adsp-BF537.ldf. The entry controlling
the heap has a format similar to the following (which is simplified for
clarity):

// macro that defines minimum system heap size

#define HEAP_SIZE 7K

L1_DATA

{

INPUT_SECTION_ALIGN(4)

// allocate minimum of HEAP_SIZE to system heap

RESERVE(sys_heap, sys_heap_length = HEAP_SIZE, 4)

} > MEM_L1_DATA_A

// all other uses of MEM_L1_DATA_A

sys_heap

{

INPUT_SECTION_ALIGN(4)

// if any of MEM_L1_DATA_A is unused, add to system heap

RESERVE_EXPAND(sys_heap, sys_heap_length, 0, 4)

// define symbols to configure the heap for runtime support

ldf_heap_space = sys_heap;

ldf_heap_end = ldf_heap_space + sys_heap_length;

ldf_heap_length = ldf_heap_end - ldf_heap_space;

} > MEM_L1_DATA_A

C/C++ Run-Time Model and Environment

1-426 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

In this example, the minimal size of the heap can be modified by changing
the definition of the HEAP_SIZE macro. If this value is larger than the
memory output section being used, the linker issues error li2040.

The following macros can be used to configure the sizes of the system heap
and stack, when using the default .ldf files. When using these macros, all
three must be defined, for any of the definitions to take effect.

• HEAP_SIZE – Defines the size of the system heap. A typical value
would be “7K”.

• STACK_SIZE – Defines the size of the system stack. A typical value
would be “8K”.

• STACKHEAP_SIZE – Defines the size of the combined area used for
system heap and system stack. A typical value would be “15K”.
Must be defined to be the sum of HEAP_SIZE and STACK_SIZE.

The default .ldf files support the placement of heaps in scratchpad
(where available), L1, L2 (where available), or SDRAM. By default, L1
is used. To select alternate heap placement, the following macros can be
defined when linking:

• USE_SCRATCHPAD_HEAP – Causes scratchpad memory to be used for
the system heap. Limited to 4K capacity, but provides fast access
and uses memory that might otherwise be unused.

• USE_L1DATA_HEAP – (default) Places the heap in L1 data bank A

• USE_L2_HEAP – Causes L2 memory to be used for the system heap

• USE_SDRAM_HEAP – Causes SDRAM memory to be used for the sys-
tem heap. It provides large capacity but is slow to access. Enabling
data cache for the memory used reduces the performance impact.

Besides the default system heap, you can also define other heaps. See
Using Multiple Heaps for more information.

CrossCore Embedded Studio 1.0 1-427
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Standard Heap Interface

The standard functions, calloc and malloc, allocate a new object from
the default heap. If realloc is called with a null pointer, it too allocates a
new object from the default heap.

Previously allocated objects can be deallocated with the free or realloc
functions. When a previously allocated object is resized with realloc, the
returned object is in the same heap as the original object.

The space_unused function returns the number of bytes unallocated in
the heap with index 0. Note that you may not be able to allocate all of this
space due to heap fragmentation and the overhead that each allocated
block needs.

Using Multiple Heaps
The Blackfin C/C++ run-time library supports the standard heap manage-
ment functions calloc, free, malloc, and realloc. By default, a single
heap, called the default heap, serves all allocation requests that do not
explicitly specify an alternative heap. The default heap is defined in the
standard linker description file and the run-time header.

Any number of additional heaps can be defined. These heaps serve alloca-
tion requests that are explicitly directed to them. These additional heaps
can be accessed via the extension routines heap_calloc, heap_free,
heap_malloc, and heap_realloc. For more information, see Using the
Alternate Heap Interface.

Multiple heaps allow the programmer to serve allocations using
fast-but-scarce memory or slower-but-plentiful memory as appropriate.

The following sections describe how to define a heap, work with heaps,
use the heap interface, and free space in the heap.

C/C++ Run-Time Model and Environment

1-428 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Defining a Heap

Heaps can be defined in the IDE or at runtime. In both cases, a heap has
three attributes:

• Start (base) address (the lowest usable address in the heap)

• Length (in bytes)

• User identifier (userid, a number >= 1)

The default system heap, defined at link-time, always has userid 0.
In addition, heaps have indices. This is like the userid, except that the
index is assigned by the system. All the allocation and deallocation
routines use heap indices, not heap user IDs. A userid can be converted
to its index using heap_lookup(). Be sure to pass the correct identifier to
each function.

Defining Additional Heaps in the IDE

The Startup Code/LDF add-in allows you to configure and extend your
heaps through a convenient graphical interface:

• Modify the size of your heaps.

• Change whether they are in internal or external memory (where
available).

• Add additional heaps, or remove them.

To add a new heap:

1. Expand your new project in a project navigation view such as Proj-
ect Explorer.

2. Double-click system.svc. The Startup Code/LDF component
appears in the System Configuration Overview dialog box.

3. Click the Startup Code/LDF tab at the bottom of the dialog box.

CrossCore Embedded Studio 1.0 1-429
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

4. Click the LDF tab that appears at the left of the dialog box. The
LDF Configuration page appears.

5. In the Stack and Heaps area, click on System heap.

6. Click Add.... The Add User Heap dialog box appears, and you can
fill in the details of your new heap. Click OK when finished.

7. When you have modified the settings as required, save the changes,
via Ctrl+S, using File > Save, or by clicking on the floppy disk icon
in the toolbar; this will cause the IDE to generate an updated LDF
and related startup-code files, which will configure your heaps dur-
ing the application’s startup.

The same interface allows you to edit additional heaps or remove them,
via the Edit... and Remove... buttons, respectively.

Defining Heaps at Runtime

Heaps may also be defined and installed at runtime, using the
heap_install() function:

int heap_install(void *base, size_t length, int userid);

This function can take any section of memory and start using it as a heap.
It returns the heap index allocated for the newly installed heap, or a nega-
tive value if there was some problem. (See Tips for Working With Heaps.)

Reasons why heap_install() may return an error status include, but are
not limited to:

• A heap using the specified userid already exists

• A new heap appears too small to be usable (length too small)

A heap is automatically initialized during installation. If necessary, a heap
can be re-initialized later on. For more information, see Freeing Space.

C/C++ Run-Time Model and Environment

1-430 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Tips for Working With Heaps

Heaps may not start at address zero (0x0000 0000). This address is
reserved and means “no memory could be allocated”. It is the null pointer
on the Blackfin platform.

Not all memory in a heap is available to users. 32 bytes per heap and
12 bytes per allocation (rounded to ensure the allocation is 8-byte aligned)
are used for housekeeping. Thus, a heap of 256 bytes is unable to serve
four blocks of 64 bytes.

Memory reserved for housekeeping precedes the allocated blocks. Thus,
if a heap begins at 0x0800 0000, this particular address is never returned to
the user program as the result of an allocation request; the first request
returns an address some way into the heap.

The base address of a heap must be appropriately aligned for an 8-byte
memory access. This means that allocations can then be used for vector
operations.

For C++ compliance, calls to malloc and calloc with a size of 0 will allo-
cate a block of size 1.

Allocating C++ STL Objects to a Non-Default Heap

C++ STL objects can be placed in a non-default heap through use of a
custom allocator. To do this, you must first create your custom allocator.
Below is an example custom allocator that you can use as a basis for your
own. The most important part of customalloc.h in most cases is the
allocate function, where memory is allocated to the STL object. Cur-
rently, the pertinent line of code assigns to the default heap (0):

Ty* ty = (Ty*) heap_malloc(0, n * sizeof(Ty));

CrossCore Embedded Studio 1.0 1-431
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Simply by changing the first parameter of heap_malloc(), you can allocate
to a different heap:

• 0 is the default heap

• 1 is the first user heap

• 2 is the second user heap

• And so on

Once you have created your custom allocator, you must inform your STL
object to use it. Note that the standard definition for “list”:

list<int> a;

is the same as writing:

list<int, allocator<int> > a;

where “allocator” is the default allocator. Therefore, we can tell list “a” to
use our custom allocator as follows:

list<int, customallocator<int> > a;

Once created, the list “a” can be used as normal. Also, example.cpp
(below) is a simple example that shows the custom allocator being used.

customalloc.h

template <class Ty>

class customallocator {

public:

typedef Ty value_type;

typedef Ty* pointer;

typedef Ty& reference;

typedef const Ty* const_pointer;

typedef const Ty& const_reference;

C/C++ Run-Time Model and Environment

1-432 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

typedef size_t size_type;

typedef ptrdiff_t difference_type;

template <class Other>

struct rebind { typedef customallocator<Other> other; };

pointer address(reference val) const { return &val; }

const_pointer address(const_reference val)

const { return &val; }

customallocator(){}

customallocator(const customallocator<Ty>&){}

template <class Other>

customallocator(const customallocator<Other>&) {}

template <class Other>

customallocator<Ty>& operator=(const customallocator&)

{ return (*this); }

pointer allocate(size_type n, const void * = 0) {

Ty* ty = (Ty*) heap_malloc(0, n * sizeof(Ty));

cout << "Allocating 0x" << ty << endl;

return ty;

}

void deallocate(void* p, size_type) {

cout << "Deallocating 0x" << p << endl;

if (p) free(p);

}

void construct(pointer p, const Ty& val)

{ new((void*)p)Ty(val); }

void destroy(pointer p) { p->~Ty(); }

size_type max_size() const { return size_t(-1); } };

CrossCore Embedded Studio 1.0 1-433
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

example.cpp

#include <iostream>

#include <list>

#include <customalloc.h> // include your custom allocator

using namespace std;

main(){

cout << "creating list" << endl;

list <int, customallocator<int> > a;

 // create list with custom allocator

cout.setf(ios_base::hex,ios_base::basefield);

cout << "pushing some items on the back" << endl;

a.push_back(0xaaaaaaaa); // push items as usual

a.push_back(0xbbbbbbbb);

while(!a.empty()){

cout << "popping:0x" << a.front() << endl;

//read item as usual

a.pop_front(); //pop items as usual

}

cout << "finished." << endl;

}

Using the Alternate Heap Interface

The C run-time library provides the alternate heap interface functions
heap_calloc, heap_free, heap_malloc, and heap_realloc. These routines
work in exactly the same way as the corresponding standard functions
without the heap_ prefix, except that they take an additional argument
that specifies the heap index.

For example,

int heap_install(void base, size_t length, int userid);

int heap_init(int idx);

void *heap_calloc(int idx, size_t nelem, size_t elsize)

void *heap_free(int idx, void *)

C/C++ Run-Time Model and Environment

1-434 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

void *heap_malloc(int idx, size_t length)

void *heap_realloc(int idx, void *, size_t length)

int heap_space_unused(int idx);

The actual entry point names for the alternate heap interface routines have
an initial underscore. The stdlib.h standard header file defines macro
equivalents without the leading underscores.

Note that for

heap_realloc(idx, NULL, length)

the operation is equivalent to

heap_malloc(idx, length)

However, for

heap_realloc(idx, ptr, length)

where ptr != NULL, the supplied idx parameter is ignored; the reallocation
is always done from the heap that ptr was allocated from, even if a memcpy
function is required within the heap.

Similarly,

heap_free(idx, ptr)

ignores the supplied index parameter, which is specified only for consis-
tency—the space indicated by ptr is always returned to the heap from
which it was allocated.

The heap_space_unused(int idx) function returns the number of bytes
unallocated in the heap with index idx. The function returns -1 if there is
no heap with the requested heap index.

CrossCore Embedded Studio 1.0 1-435
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

C++ Run-Time Support for the Alternate Heap Interface

The C++ run-time library provides support for allocation and release of
memory from an alternative heap via the new and delete operators.

Heaps should be initialized with the C run-time functions as described.
These heaps can then be used via the new and delete mechanism by
simply passing the heap ID to the new operator. There is no need to pass
the heap ID to the delete operator as the information is not required
when the memory is released.

The routines are used as in the example below.

#include <heapnew>

char *alloc_string(int size, int heapID)

{

char *retVal = new(heapID) char[size];

return retVal;

}

void free_string(char *aString)

{

delete aString;

}

Freeing Space

When space is “freed”, it is not returned to the “system”. Instead, freed
blocks are maintained on a free list within the heap in question. The
blocks are coalesced where possible.

It is possible to re-initialize a heap, emptying the free list and returning all
the space to the heap itself, using the heap_init function:

int heap_init(int index)

C/C++ Run-Time Model and Environment

1-436 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

This returns zero for success, and nonzero for failure. Note, however, that
this discards all records within the heap, so it may not be used if there are
any live allocations on the heap still outstanding.

Startup and Termination
When the processor starts running, it somehow has to transfer control to
the application’s main() function, and it has to ensure that, before doing
so, all the expected parts of the C/C++ run-time environment have been
set up, including:

• Registers, which must be configured according to the rules in
Registers.

• Heap and stack, which must be set up according to Controlling
System Heap Size and Placement and Managing the Stack.

• Global variables must have been initialized to their starting values.

• Constructors of any static global instances must have been run.

• The arguments to main(), argc and argv, must have been set up.

This is the job of the startup code (or “C Run-Time Header”, or “CRT”).
The startup code is described in the System Run-Time Documentation, but
some additional information is provided in the following sections:

• Memory Initialization

• Global Constructors

• Support for argv/argc

CrossCore Embedded Studio 1.0 1-437
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Memory Initialization

When control flow reaches the start of main(), global and static variables
must have been initialized to their default values. When you build your
application, the toolchain arranges for the executable image to contain
sections of memory that are either zero- or value-filled, depending on how
your data is declared. The image also contains sections that are filled with
executable code. Further details are in Memory Section Usage.

During development, when you load your application into your processor
using the IDE, the IDE copies the contents of those sections from your
executable image into the processor’s memory.

Once your application is complete, you have to change your application so
that you no longer rely on using the IDE to load it into memory. In most
cases, this can be done using the loader to create a bootable image that can
be stored in non-volatile memory, such as a SPI flash, and loaded into
memory at power-up by the Boot Code. In this model, the Boot Code
arranges for all of your application’s code and data sections to be copied
into the final volatile memory space before control is transferred to your
application. For details on this process, refer to the Loader and Utilities
Manual, and to your processor’s programming reference manual.

You can also make use of the memory initializer, a linker utility that can
be enabled using the -mem switch (on page 1-52). The memory initializer
processes your executable image so that output sections marked as
RUNTIME_INIT have their contents converted into an initialization stream
stored in the .meminit section. This section, along with your application’s
startup code, is usually mapped to non-volatile memory.

In this model, when the Boot Code transfers control to your application,
your application’s code and data have not yet all been transferred to their
final locations in volatile memory. Instead, the startup code (which is in
non-volatile memory) invokes the mi_initialize() run-time library
function, which processes the initialization stream. This performs the task
of transferring your application’s code and data to volatile memory.

C/C++ Run-Time Model and Environment

1-438 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

For more details, refer to the System Run-Time Documentation and the
Linker and Utilities Manual.

Global Constructors

Constructors and Destructors of Global Class Instances

Constructors for global class instances are invoked by the C/C++ run-time
header during start-up. Several components allow this to happen:

• The associated data space for the instance

• The associated constructor (and destructor, if one exists) for the
class

• A compiler-generated “start” routine

• A compiler-generated table of such “start” routines

• A compiler-constructed linked-list of destructor routines

• The run-time header itself

The interaction of these components is as follows.

The compiler generates a “start” routine for each module that contains
globally-scoped class instances that need constructing or destructing.
There is at most one “start” routine per module; it handles all the
globally-scoped class instances in the module:

• For each such instance, it invokes the instance’s constructor. This
may be a direct call, or it may be inlined by the compiler optimizer.

• If the instance requires destruction, the “start” routine registers this
fact for later, by including pointers to the instance and its destruc-
tor into a linked list.

The start routine is named after the first such instance encountered,
though the classes are not guaranteed to be constructed or destructed in

CrossCore Embedded Studio 1.0 1-439
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

any particular order (with the exception that destructors are called in the
reverse order of the constructors). Such instances should not have any
dependency on construction order; the -check-init-order switch
(on page 1-97) is useful for verifying this during system development, as it
plants additional code to detect uses of unconstructed objects during
initialization.

A pointer to the “start” routine is placed into the ctor section of the
generated object file. When the application is linked, all ctor sections are
mapped into the same ctor output section, forming a table of pointers to
the “start” routines. An additional ctorl object is appended to the end of
the table; this contains a terminating NULL pointer.

When the run-time header is invoked, it calls _ctor_loop(), which walks
the table of ctor sections, calling each pointed-to “start” function until it
reaches the NULL pointer from ctorl. In this manner, the run-time
header calls each global class instance’s constructor, indirectly through the
pointers to “start” functions.

When the program reaches exit(), either by calling it directly or by
returning from main(), the exit() routine follows the normal process of
invoking the list of functions registered through the atexit() interface.
One of these is a function that walks the list of destructors, invoking each
in turn (in reverse order from the constructors).

This function is registered with atexit() via _mark_dtors(); the compiler
plants a call to this function at the start of every main() that is compiled in
C++ mode.

 Functions registered with atexit() may not reference global class
instances, as the destructor for the instance may be invoked before
the reference is used.

Constructors, Destructors, and Memory Placement

By default, the compiler places the code for constructors and destructors
into the same section as any other function’s code. This can be changed

C/C++ Run-Time Model and Environment

1-440 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

either by specifying the section specifically for the constructor or destruc-
tor (see #pragma section/#pragma default_section and Placement Support
Keyword (section)), or by altering the default destination section for gen-
erated code (see #pragma section/#pragma default_section and -section
id=section_name[,id=section_name...]). If a constructor is inlined into the
“start” routine by the optimizer, such placement will have no effect. For
more information, see Inlining and Sections.

While normal compiler-generated code is placed into the CODE area, the
“start” routine is placed into the STI area. Both CODE and STI default to
the same section, but may be changed separately using #pragma
default_section or the -section switch (since the “start” function is an
internal function generated by the compiler, its placement cannot be
affected by #pragma section).

The pointer to the “start” routine is placed into the ctor section. This is
not configurable, as the invocation process relies on all of the “start”
routine pointers being in the same section during linking, so that they
form a table. It is essential that all relevant ctor sections are mapped
during linking; if a ctor section is omitted, the associated constructor will
not be invoked during start-up, and run-time behavior will be incorrect.

If destructors are required, the compiler generates data structures pointing
to the class instance and destructor. These structures are placed into the
default variable-data section (the DATA area).

Support for argv/argc

By default, the facility to specify arguments that are passed to your main()
(argv/argc) at run-time is enabled. However, to correctly set up argc and

CrossCore Embedded Studio 1.0 1-441
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

argv requires additional configuration by the user. Modify your applica-
tion as follows:

• Define your command-line arguments in C by defining a variable
called “__argv_string”. When linked, your new definition over-
rides the default zero definition otherwise found in the C run-time
library.

 For example,

extern const char __argv_string[] =

"prog_name -in x.gif -out y.jpeg";

Compiler C++ Template Support
The compiler provides template support C++ templates as defined in the
ISO/IEC 14882:2003 C++ standard.

Template Instantiation
Templates are instantiated automatically by the prelinker during compila-
tion (see Compiler Components). This involves compiling files,
determining any required template instantiations, and then recompiling
those files making the appropriate instantiations. The process repeats until
all required instantiations have been made. Multiple recompilations may
be required in the case when a template instantiation is made that requires
another template instantiation to be made.

Compiler C++ Template Support

1-442 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Exported Templates

The compiler supports the export keyword. An exported template does
not need to be present in a translation unit that uses the template. For
example, the following is a valid C++ program consisting of two transla-
tion units:

// File 1

#include <iostream>

static void print(void) { std::cout << "File 1" << std::endl;}

export template <class T> T const &maxii(T const &a, T const &b);

int main()

{

print();

return maxii(7,8);

}

// File 2

#include <iostream>

static void print(void) { std::cout << "File 2" << std::endl;}

export template <class T> T const &maxii(T const &a, T const &b)

{

print();

return (a>b) ? a : b;

}

The first file makes use of the maxii() function exported by the second.
Unrelated to this, both files declare their own, private copy of the print()
function.

The two files are separate translation units; one is not included in the
other, so no linking errors arise due to the individual definitions of the
print() functions.

CrossCore Embedded Studio 1.0 1-443
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

If file1.c obtained file2.c’s definition of maxii() by including file2.c
into file1.c (whether explicitly or implicitly—see Implicit Instantiation),
file1.c would also include file2.c’s definition of the print() function,
leading to a linkage error.

When a file containing a definition of an exported template is compiled, a
file with a “.et” suffix is created and some extra information is included in
the associated “.ti” file. The “.et” files are used by the compiler to find
the translation units that define a given exported template.

Implicit Instantiation

As an alternative to Exported Templates, the compiler can use a method
called implicit instantiation, which is common practice. It results in having
both the specification and definition available at the point of
instantiation.

 Implicit instantiation does not conform to the ISO/IEC
14882:2003 C++ standard, and does not work with exported
templates. Implicit instantiation is disabled by default. It can be
enabled via the -implicit-inclusion switch on page 1-98.

Implicit instantiation involves placing template specifications in a header
(for example, “.h”) file and the definitions in a source (for example,
“.cpp”) file. Any file being compiled that includes a header file containing
template specifications will instruct the compiler to implicitly include the
corresponding “.cpp” file containing the definitions of the compiler.

For example, you may have the header file “tp.h”

template <typename A> void func(A var);

and source file “tp.cpp”

template <typename A> void func(A var)

{

Compiler C++ Template Support

1-444 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

...code...

}

Two files file1.cpp and file2.cpp that include tp.h will have file tp.cpp
included implicitly to make the template definitions available to the
compilation.

 Because the whole of the file is included, other definitions in the
.cpp file will also be visible, which can lead to problems if the .cpp
file contains definitions unrelated to the templates being instanti-
ated. Exported Templates avoids this problem.

When generating dependencies, the compiler will only parse each implic-
itly included .cpp file once. This parsing avoids excessive compilation
times in situations where a header file that implicitly includes a source file
is included several times. If the .cpp file should be included implicitly
more than once, the -full-dependency-inclusion switch (on page 1-98)
can be used. (For example, the file may contain macro guarded sections of
code.) This may result in more time required to generate dependencies.

Generated Template Files

Regardless of whether implicit instantiation is used, the compilation
process involves compiling one or more source files and generating a “.ti”
file corresponding to the source files being compiled. These “.ti” files are
then used by the prelinker to determine the templates to be instantiated.
The prelinker creates a “.ii” file and recompiles one or more of the files
instantiating the required templates.

The prelinker ensures that only one instantiation of a particular template
is generated across all objects. For example, the prelinker ensures that if
both “file1.cpp” and “file2.cpp” invoked the template function with an
int, the resulting instantiation would be generated in just one of the
objects.

CrossCore Embedded Studio 1.0 1-445
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Identifying Un-Instantiated Templates

If for some reason the prelinker is unable to instantiate all the templates
that are required for a particular link, then a link error will occur. For
example:

[Error li1021] The following symbols referenced in processor 'P0'

could not be resolved:

'Complex<T1> Complex<T1>::_conjugate() const [with T1=short]

[_conjugate__16Complex__tm__2_sCFv_18Complex__tm__4_Z1Z]' refer-

enced from '.\Debug\main.doj'

'T1 *Buffer<T1>::_getAddress() const [with T1=Complex<short>]

[_getAddress__33Buffer__tm__19_16Complex__tm__2_sCFv_PZ1Z]'

referenced from '.\Debug\main.doj'

'T1 Complex<T1>::_getReal() const [with T1=short]

[_getReal__16Complex__tm__2_sCFv_Z1Z]' referenced from

'.\Debug\main.doj'

Linker finished with 1 error

Careful examination of the linker errors reveals which instantiations have
not been made. Below are some examples.

Missing instantiation:

Complex<short> Complex<short>::conjugate()

Linker Text:

'Complex<T1> Complex<T1>::_conjugate() const [with T1=short]

[_conjugate__16Complex__tm__2_sCFv_18Complex__tm__4_Z1Z]'

referenced from '.\Debug\main.doj'

Missing instantiation:

Complex<short> *Buffer<Complex<short>>::getAddress()

Linker Text:

'T1 *Buffer<T1>::_getAddress() const [with T1=Complex<short>]

[_getAddress__33Buffer__tm__19_16Complex__tm__2_sCFv_PZ1Z]'

referenced from '.\Debug\main.doj'

File Attributes

1-446 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Missing instantiation:

Short Complex<short>::getReal()

Linker Text:

'T1 Complex<T1>::_getReal() const [with T1=short]

[_getReal__16Complex__tm__2_sCFv_Z1Z]' referenced from

'.\Debug\main.doj'

There could be many reasons for the prelinker being unable to instantiate
these templates, but the most common is that the .ti and .ii files
associated with an object file have been removed. Only source files that
can contain instantiated templates will have associated .ti and .ii files,
and without this information, the prelinker may not be able to complete
its task. Removing the object file and recompiling will normally fix this
problem.

Another possible reason for un-instantiated templates at link time is when
implicit inclusion (described above) is disabled but the source code has
been written to require it. Explicitly compiling the .cpp files that would
normally have been implicitly included and adding them to the final link
is normally all that is needed to fix this.

Another likely reason for seeing the linker errors above is invoking the
linker directly. It is the compiler’s responsibility to instantiate C++
templates, and this is done automatically if the final link is performed via
the compiler driver. The linker itself contains no support for instantiating
templates.

File Attributes
A file attribute is a name-value pair that is associated with a binary object,
whether in an object file (.doj) or in a library file (.dlb). One attribute
name can have multiple values associated with it. Attribute names and

CrossCore Embedded Studio 1.0 1-447
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

values are strings. A valid attribute name consists of one or more
characters matching the following pattern:

[a-zA-Z_][a-zA-Z_0-9]*

An attribute value is a non-empty character sequence containing any
characters apart from NUL.

Attributes help with the placement of run-time library functions. All of
the run-time library objects contain attributes that allow you to place
time-critical library objects into internal (fast) memory. Using attribute
filters in the .ldf file, you can place run-time library objects into internal
or external (slow) memory, either individually or in groups.

This section describes:

• Automatically-Applied Attributes

• Default LDF Placement

• Sections Versus Attributes

• Using Attributes

For more information, see Library Attributes.

Automatically-Applied Attributes
By default, the compiler applies a number of attributes automatically
when compiling a C/C++ file. For example, it applies the Content and
FuncName attributes. These automatically-applied attributes can be
disabled using the -no-auto-attrs switch (on page 1-54).

File Attributes

1-448 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The Content attribute can be used to map binary objects according to
their kind of content, as show by Table 1-49. Figure 1-10 shows a Content
attribute tree.

Figure 1-10. Content Attributes

Table 1-49. Interpreting Values of the Content Attribute

CodeData This is the most general value, indicating that the binary object contains a mix of
content types.

Code The binary object does not contain any global data, only executable code. This can
be used to map binary objects into program memory, or into ROM.

Data The binary object does not contain any executable code. The binary object may
not be mapped into dedicated program memory. The kinds of data used in the
binary object vary.

ZeroData The binary object contains only zero-initialized data. Its contents must be mapped
into a memory section with the ZERO_INIT qualifier, to ensure correct initializa-
tion.

InitData The binary object contains only initialized global data. The contents may not be
mapped into a memory section that has the ZERO_INIT qualifier.

VarData The binary object contains initialized variable data. It must be mapped into
read-write memory, and may not be mapped into a memory section with the
ZERO_INIT qualifier.

Code

ConstData

InitData

CodeData

Data

ZeroData

Empty

VarData

CrossCore Embedded Studio 1.0 1-449
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Default LDF Placement
The default .ldf file is written in such manner that the order of prefer-
ence for putting an object in section data1 or program depends on the
value of the prefersMem attribute. Precedence is given in the following
order:

1. Highest priority is given to binary objects that have a prefersMem
attribute with a value of internal.

2. Next priority is given to binary objects that have no prefersMem
attribute, or a prefersMem attribute with a value that is neither
internal nor external.

3. Lowest priority is given to binary objects with a prefersMem attri-
bute with the value external.

Although the default .ldf files only reference the values internal and
external, prefersMem may have other values. For example, an object using
a value such as L2 will be given second priority, as the value is neither
internal nor external. You may modify your .ldf file to assign
appropriate priority to any value you choose, by mapping objects with
higher-priority values before objects with lower-priority values.

The prefersMemNum attribute is similar to the prefersMem attribute, but is
given numerical values instead of textual values. This makes it easier to
assign priority when there are many different levels, because you can use
relational comparisons in the .ldf file instead of just equalities and
inequalities. Table 1-50 shows the numerical values used by the run-time

ConstData The binary object contains only constant data (data declared with the C const
qualifier). The data may be mapped into read-only memory (but see also the
-const-read-write switch (on page 1-34) and its effects).

Empty The binary object contains neither functions nor global data.

Table 1-49. Interpreting Values of the Content Attribute (Cont’d)

File Attributes

1-450 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

library for each corresponding prefersMem attribute value.

Sections Versus Attributes
File attributes and section qualifiers (on page 1-215) can be thought of as
being somewhat similar, since both affect how the application is linked.
There are important differences, however, that affect whether you choose
to use sections or file attributes to control the placement of code and data.

Granularity

Individual components—global variables and functions—in a binary
object can be assigned different sections, and then those section
assignments can be used to map each component of the binary object dif-
ferently. In contrast, an attribute applies to the whole binary object. This
means you do not have as fine control over individual components using
attributes as when using sections.

Hard Mapping Versus Soft Mapping

A section qualifier is a “hard” constraint. When the linker maps the object
file into memory, it must obey all the section qualifiers in the object file,
according to instructions in the .ldf file. If this cannot be done, or if the
.ldf file does not give sufficient information to map a section from the
object file, the linker reports an error.

In contrast, with attributes, the mapping is “soft”. The default .ldf files
use the prefersMem attribute as a guide to give a better mapping in

Table 1-50. Values for prefersMemNum Attribute

prefersMem Attribute Value prefersMemNum Attribute Value

internal 30

any 50

external 70

CrossCore Embedded Studio 1.0 1-451
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

memory, but if this cannot be done, the linker will not report an error.
For example, if there are more objects with prefersMem=internal than
will fit into internal memory, the remaining objects will spill over into
external memory. Likewise, if there are fewer objects with the attribute
prefersMem!=external than are needed to fill internal memory, some
objects with the attribute prefersMem=external may be mapped to
internal memory.

Section qualifiers are rules that must be obeyed. Attributes are guidelines,
defined by convention, that can be used if convenient and ignored if not.
The Content attribute is an example of this: you can use the Content attri-
bute to map Code and ConstData binary objects into read-only memory, if
this is a convenient partitioning of your application, but you need not do
so if you choose to map your application differently.

Number of Values

Any given element of an object file is assigned exactly one section quali-
fier, to determine into which section it should be mapped. In contrast, an
object file may have many attributes (or even none), and each attribute
may have many different values. Since attributes are optional and act as
guidelines, you need only pay attention to the attributes that are relevant
to your application.

Using Attributes
You can add attributes to a file in two ways:

• Use #pragma file_attr (on page 1-330)

• Use the -file-attr switch (on page 1-41)

The run-time libraries have attributes associated with the objects in them.
For more information, see Library Attributes.

File Attributes

1-452 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example 1

This example uses attributes to encourage the placement of library
functions in internal memory.

Suppose the file “test.c” exists, as shown below:

#define MANY_ITERATIONS 500

void main(void) {

int i;

for (i = 0; i < MANY_ITERATIONS; i++) {

fft_lib_function();

frequently_called_lib_function();

}

rarely_called_lib_function();

}

Also suppose:

• The objects containing frequently_called_lib_function and
rarely_called_lib_function are both in the standard library, and
have the attribute prefersMem=any.

• There is only enough internal memory to map fft_lib_function
(which has prefersMem=internal) and one other library function
into internal memory.

• The linker chooses to map rarely_called_lib_function to
internal memory.

In this example, for optimal performance,
frequently_called_lib_function should be mapped to the internal
memory in preference to rarely_called_lib_function.

CrossCore Embedded Studio 1.0 1-453
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

The .ldf file defines a macro $OBJS_LIBS_INTERNAL to store all the objects
that the linker should try to map to internal memory, as follows:

$OBJS_LIBS_INTERNAL =

$OBJECTS{prefersMem("internal")},

$LIBRARIES{prefersMem("internal")};

If all the objects do not fit in internal memory, the remainder is placed in
external memory and no linker error will occur. To add the object that
contains frequently_called_lib_function to this macro, extend the
definition to read:

$OBJS_LIBS_INTERNAL =

$OBJECTS{prefersMem("internal")},

$LIBRARIES{prefersMem("internal")},

$LIBRARIES{ libFunc("frequently_called_lib_function") };

This ensures that the binary object that defines
frequently_called_lib_function is among those to which the linker
gives highest priority when mapping binary objects to internal memory.

Note that it is not necessary to know which binary object (or even which
library) defines frequently_called_lib_function. All the binary objects
in the run-time libraries define the libFunc attribute so that you can select
the binary objects for particular functions without needing to know
exactly where in the libraries a function is defined. The modified line uses
this attribute to select the binary object (or objects) for
frequently_called_lib_function and append it (or them) to the
$OBJS_LIBS_INTERNAL macro. The .ldf file maps objects in
$OBJS_LIBS_INTERNAL to internal memory in preference to other objects,
so frequently_called_lib_function is mapped to L1.

For more information, see Library Attributes.

Implementation Defined Behavior

1-454 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example 2

Suppose you want the contents of test.c to be mapped to external
memory by preference. You can do this by adding the following pragma to
the top of test.c:

#pragma file_attr("prefersMem=external")

or use the -file-attr switch:

ccblkfn -file-attr prefersMem=external test.c

Both methods will cause the resulting object file to have the attribute
prefersMem=external. The .ldf files give objects with this attribute the
lowest priority when mapping objects into internal memory, so the object
is less likely to consume valuable internal memory space, which could be
more usefully allocated to another function.

 Since file attributes are used as guidelines rather than rules, if space
is available in internal memory after higher-priority objects have
been mapped, it is permissible for objects with
prefersMem=external to be mapped into internal memory.

Implementation Defined Behavior
Each of the language standards supported by the compiler have implemen-
tation defined behavior for a list of areas. The implementation used by the
CCES compilers is detailed in this section.

Enumeration Type Implementation Details
The CCES compiler by default implements the underlying type for enu-
merations as the first type from the following list that can be used to
represent all the values in the specified enumeration : int, unsigned int,
long, unsigned long, long long, unsigned long long. If int, long or

CrossCore Embedded Studio 1.0 1-455
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

long long are suitable and there are no negative enumerations constant
values the unsigned type for the same size is selected (i.e. unsigned int
rather than int). Enumeration constant values can be any integral type
including long long and unsigned long long.

Enumerations types being implemented as long long or unsigned long
long types is an Analog Devices extension to ANSI C89 standard
(ISO/IEC 9899:1990). Allowing enumerations constants to be integral
types other than int is an Analog Devices extension to the ANSI C89 and
ANSI C99 (ISO/IEC 9899:1999) standards. These extensions can be dis-
abled by using the -enum-is-int switch. For more information, see
-enum-is-int.

When -enum-is-int is used the compiler issues error cc0066 "enumera-
tion value is out of "int" range" when it encounters enumeration constant
values that cannot be held using an int type. Warning cc1661 "enumera-
tion value is greater than int type" is issued when larger than int type
enumeration values are used and not compiling with the -enum-is-int
switch.

The different underlying types used by the compiler to implement enu-
merations can give rise to other compiler warnings. For example in the
following enumeration the underlying type will be unsigned int which will
result in warning cc0186 "pointless comparison of unsigned integer with
zero".

typedef enum { v1, v2 } e1;

void check (e1 v) {

if (v < 0) /* pointless comparison if e1 is unsigned */
 printf(“out of range”);

}

If a negative enumeration constant was added to the definition of e1 or if
the example was compiled with the -enum-is-int switch the underlying
type used will be signed int and there would be no warning issued for the
comparison.

Implementation Defined Behavior

1-456 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

ISO/IEC 9899:1990 C Standard (C89 Mode)
The contents of this section refer to Annex G of the ISO/IEC 9899:1990
C Standard; subsection numbers such as 5.1.1.3 refer to the relevant sec-
tion of that Standard, which has some implementation-defined aspect.

G3.1 Translation

5.1.1.3 How a diagnostic is identified

The compiler will emit descriptive diagnostics via the standard error
stream at compile time (e.g. “cc0223: function declared implicitly”) or as
annotations in generated assembly files.

G3.2 Environment

5.1.2.2.1 The semantics of the arguments to main

By default, argv[0] is a NULL pointer.

The values given to the strings pointed to be the argv argument can be
defined by the user. For more information, see Support for argv/argc.

5.1.2.3 What constitutes an interactive device

An interactive device is considered a paired display screen and keyboard.

G3.3 Identifiers

6.1.2 The number of significant initial characters (beyond 31) in an
identifier without external linkage

The number of significant initial characters in an identifier without exter-
nal linkage is 15,000.

CrossCore Embedded Studio 1.0 1-457
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

6.1.2 The number of significant initial characters (beyond 6) in an iden-
tifier with external linkage

Identifiers with external linkage are treated in the same way as identifiers
without.

6.1.2 Whether case distinctions are significant in an identifier with
external linkage

Case distinctions are significant.

G3.4 Characters

5.2.1 The members of the source and execution character sets, except as
explicitly specified in this International Standard

The compiler supports the non-standard characters "$" and "`" (ASCII
39).

5.2.1.2 The shift states used for the encoding of multi-byte characters

No shift states are used for the encoding of multi-byte characters.

5.2.4.2.1 The number of bits in a character in the execution character
set

8 Bits.

6.1.3.4 The mapping of members of the source character set (in charac-
ter constants and string literals) to members of the execution character
set

Characters in the source file are interpreted as ASCII values, which are
also used in the execution environment.

Implementation Defined Behavior

1-458 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

6.1.3.4 The value of an integer character constant that contains a char-
acter or escape sequence not represented in the basic execution set or the
extended character set for a wide character constant

An unrecognized escape sequence will have the escape character dropped.
i.e. '\k' becomes 'k'.

6.1.3.4 The value of an integer character constant that contains more
than one character or a wide character constant that contains more than
one multi-byte character

An integer character constant may contain up to 4 characters. If the con-
stant contains between 2 and 4 characters, warning cc1994 will be issued.
Using more than 4 characters will result in warning cc2226 being issued
and all but the last 4 characters being discarded.

Where a wide character contains more than one multi-byte character, only
the first character is retained and warning cc0026 will be issued. Subse-
quent characters are discarded.

6.1.3.4 The current locale used to convert multi-byte characters into
corresponding wide characters (codes) for a wide character constant

Only the "C" locale is supported in Analog Devices’ toolchain and
processors.

6.2.1.1 Whether a "plain" char has the same range of values as signed
char or unsigned char

A "plain" char has the same range and value as a signed char; except on
Blackfin, when the -unsigned-char switch is used (on page 1-87).

CrossCore Embedded Studio 1.0 1-459
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

G3.5 Integers

6.1.2.5 The representations and sets of values of the various types of
integers

The representation is shown in Table 1-51.

6.2.1.2 The result of converting an integer to a shorter signed integer, or
the result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented

When converting an unsigned integer to a signed integer of equal length,
the exact value of the unsigned integer will be copied to the signed integer.
If the sign bit is set, this will result in a negative number.

When converting a signed integer to a smaller signed integer, the lower
bits of the signed integer (of the size of the smaller signed integer) are
copied to the smaller signed integer. If the top-most copied bit is set, this
will result in a negative number.

Table 1-51. Representations of Integer Types

Type Width Minimum Value Maximum Value

(signed) char 8 bits -128 127

unsigned char 8 bits 0 255

(signed) short 16 bits -32768 32767

unsigned short 16 bits 0 65535

(signed) int 32 bits -2147483648 2147483647

unsigned int 32 bits 0 4294967295

(signed) long 32 bits -2147483648 2147483647

unsigned long 32 bits 0 4294967295

(signed) long long 64 bits -9223372036854775808 9223372036854775807

unsigned long long 64 bits 0 18446744073709551615

Implementation Defined Behavior

1-460 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

6.3 The results of bitwise operations on signed integers

The results of the operations are shown in Table 1-52.

6.3.5 The sign of the remainder on integer division

The sign of the remainder on integer division will be the same as the sign
of the first operand of the remainder operation.

6.3.7 The result of a right shift of a negative-valued signed integral type

Right shifts will retain the sign bit on a signed integer. All other bitwise
operations treat signed integers as unsigned.

G3.6 Floating-Point

6.1.2.5 The representations and sets of values of the various types of
floating-point numbers

The representations and value ranges are:

• float

• 32 bits (1 sign bit, 8 exponent bits, 32 mantissa bits)

-3.4028234663852886E+38 to 3.4028234663852886E+38

Table 1-52. Bitwise Operations on Signed Integers

~ Same as unsigned integer

<< Same as unsigned integer

>> Will fill upper bits with ones if sign bit was originally set

& Same as unsigned integer

^ Same as unsigned integer

| Same as unsigned integer

CrossCore Embedded Studio 1.0 1-461
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

• double (default setting)

• 32 bits (1 sign bit, 8 exponent bits, 32 mantissa bits)

-3.4028234663852886E+38 to 3.4028234663852886E+38

• double (when compiling with “-double-size-64”)

• 64 bits (1 sign bit, 11 exponent bits, 52 mantissa bits)

-1.797693134862315708e+308 to
1.797693134862315708e+308

• long double

• 64 bits (1 sign bit, 11 exponent bits, 52 mantissa bits)

-1.797693134862315708e+308 to
1.797693134862315708e+308

6.2.1.3 The direction of truncation when an integral number is con-
verted to a floating-point number that cannot exactly represent the
original value

 Round to nearest, ties to even.

6.2.1.4 The direction of truncation or rounding when a floating-point
number is converted to a narrower floating-point number

Round to nearest, ties to even.

G3.7 Arrays and Pointers

6.3.3.4, 7.1.1 The type of integer required to hold the maximum size of
an array—that is, the type of the sizeof operator, size_t

long unsigned int.

Implementation Defined Behavior

1-462 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

6.3.4 The result of casting a pointer to an integer or vice-versa

A cast from pointer to integer results in the most-significant bits being
discarded if the size of the pointer is larger than the integer. If the pointer
is smaller than the integer type being cast to, the integer will be zero
extended.

A cast from integer to pointer results in the most-significant bits being
discarded if the size of the integer is larger that the pointer. If the integer
is smaller than the pointer type being cast to, the pointer will be
sign-extended.

6.3.6, 7.1.1 The type of integer required to hold the difference between
two pointers to elements of the same array, ptrdiff_t

long int.

G3.8 Registers

6.5.1 The extent to which objects can actually be placed in registers by
use of the register storage-class specifier

The register storage class specifier is ignored.

G3.9 Structures, Unions, Enumerations and Bit-Fields

6.3.2.3 A member of a union object is accessed using a member of a dif-
ferent type

The data stored in the appropriate location is interpreted as the type of the
member accessed.

CrossCore Embedded Studio 1.0 1-463
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

6.5.2.1 The padding and alignment of members of structures. This
should present no problem unless binary data written by one implemen-
tation are read by another.

Within a structure, members of the fundamental types are aligned on a
multiple of their size. Structures are aligned on the strictest alignment of
any of their members, but are always aligned to at least 32 bits.

6.5.2.1 Whether a "plain" int bit-field is treated as a signed int bit-field
or as an unsigned int bit-field

A "plain" int bit-field is treated as a signed int bit-field (including
bit-fields of size 1).

6.5.2.1 The order of allocation of bit-fields within a unit

Low to High Order.

6.5.2.1 Whether a bit-field can straddle a storage-unit boundary

A bit-field will be placed in an adjacent storage unit instead of
overlapping.

6.5.2.2 The integer type chosen to represent the values of an enumera-
tion type

By default, the compiler defines enumeration types with integral types
larger than int, if int is insufficient to represent all the values in the enu-
meration. The compiler can be forced to use only int through the use of
the -enum-is-int switch (on page 1-40).

G3.10 Qualifiers

6.5.3 What constitutes an access to an object that has volatile-qualified
type

Any reference to a volatile-qualified object is considered to constitute an
access.

Implementation Defined Behavior

1-464 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

G3.11 Declarators

6.5.4 The maximum number of declarators that may modify an arithme-
tic, structure, or union type

No maximum limit is enforced.

G3.12 Statements

6.6.4.2 The maximum number of case values in a switch statement

There is no hard-coded maximum number of case values in a switch
statement.

G3.13 Preprocessing Directives

6.8.1 Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion matches the
value of the same character constant in the execution character set;
whether such a character constant may have a negative value

The character set used is the same.

Negative values are allowed.

6.8.2 The method for locating includable source files

Include files, whose names are not absolute path names and that are
enclosed in "..." when included, are searched for in the following directo-
ries in this order:

1. The directory containing the current input file (the primary source
file or the file containing the #include)

2. Any directories specified with the -I switch (on page 1-47) in the
order they are listed on the command line

3. Any directories on the standard list: <install_path>\...\include

CrossCore Embedded Studio 1.0 1-465
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Note: If a file is included using the <...> form, this file is only searched
for by using directories defined in items 2 and 3 above.

6.8.2 The support of quoted names for includable source files

Quoted file names are supported.

6.8.2 The mapping of source file character sequences

The source file character sequence is mapped to its corresponding ASCII
character sequence.

6.8.6 The behavior on each recognized #pragma directive

For more information, see Pragmas.

6.8.8 The definitions for __DATE__ and __TIME__ when respectively,
the data and time of translation are not available

The macros __DATE__ and __TIME__ will be defined as "[date unknown]"
and "[time unknown]" respectively.

G3.14 Library Functions

7.1.6 The null pointer constant to which the macro NULL expands

NULL expands to 0.

7.2 The diagnostic printed by and the termination behavior of the assert
function

{file name}:{line number} {failed assertion expression} -- Runtime
Assertion.

Implementation Defined Behavior

1-466 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

7.3.1 The sets of characters tested for by the isalnum, isalpha, iscntrl,
islower, isprint, and isupper functions

The following characters are tested:

• isalnum – 0-9, a-z or A-Z

• isalpha – a-z or A-Z

• iscntrl – 0x00-0x1F or 0x7F

• islower – a-z

• isprint – 0x20-0x7E

• isupper – A-Z

7.5.1 The values returned by the mathematics functions on domain
errors

The values are:

• acos: 0

• asin: 0

• atan2: 0

• log: -HUGE_VAL

• log10: -HUGE_VAL

• pow: when the first parameter is 0 and the second is not an integral
value, it returns 0. when the first parameter is zero and the second
is less than zero, it returns HUGE_VAL.

• sqrt: 0

• fmod: 0

CrossCore Embedded Studio 1.0 1-467
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

7.5.1 Whether the mathematics functions set the integer expression
errno to the value of the macro ERANGE on underflow range errors

The state of errno should not be relied upon unless stated explicitly in the
documentation.

7.5.6.4 Whether a domain error occurs or zero is returned when the
fmod function has a second argument of zero

Zero is returned.

7.7.1.1 The set of signals for the signal function

The following signals are supported:

• SIGTERM

• SIGABRT

• SIGFPE

• SIGILL

• SIGINT

• SIGSEGV

7.7.1.1 The semantics for each signal recognized by the signal function

After the handler is invoked, the disposition of the signal is not reset to
SIG_DFL.

7.7.1.1 The default handling and the handling at program startup for
each signal recognized by the signal function

By default, SIGABRT will cause the program to terminate. All other signals
are ignored by default.

Implementation Defined Behavior

1-468 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

7.7.1.1 If the equivalent of signal(sig, SIG_DFL); is not executed prior
to the call of a signal handler, the blocking of the signal that is
performed

Blocking of signals is not performed prior to the call of the signal handler.

7.7.1.1 Whether the default handling is reset if the SIGILL signal is
received by a handler specified to the signal function

If the SIGILL signal is received, the reset to SIG_DFL is not performed.

7.9.2 Whether the last line of a text stream requires a terminating
new-line character

The last line should have a terminating new-line character.

7.9.2 Whether space characters that are written out to a text stream
immediately before a new-line character appear when read in

The space characters will appear.

7.9.2 The number of null characters that may be appended to data writ-
ten to a binary stream

Any number of null characters may be appended.

7.9.3 Whether the file position indicator of an append mode stream is
initially positioned at the beginning or end of the file

End of the file.

7.9.3 Whether a write on a text stream causes the associated file to be
truncated beyond that point

The file will become truncated.

7.9.3 The characteristics of file buffering

stderr is unbuffered, stdio is line-buffered, and other streams are fully
buffered.

CrossCore Embedded Studio 1.0 1-469
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

7.9.3 Whether a zero-length file actually exists

A zero-length file does exist.

7.9.3 The rule for composing valid file names

Any basic ASCII character that isn’t reserved by the file system is valid.

7.9.3 Whether the same file can be open multiple times

A file can be opened multiple times.

7.9.4.1 The effect of the remove function on an open file

There will be no effect on the file and the function will return -1.

7.9.4.2 The effect if a file with the new name exists prior to a call to the
rename function

There will be no effect on the files and the function will return -1.

7.9.6.1 The output for %p conversion in the fprintf function

The pointer address will be printed as an 8-character hexadecimal value.
e.g. 00004010.

7.9.6.2 The input for %p conversion in the fscanf function

All valid values that can be interpreted as a hexadecimal value will be read
until an invalid value or line break is reached, at which point no further
characters are read. if the value is larger than can be stored in an 8-charac-
ter hexadecimal, then the value will saturate.

7.9.6.2 The interpretation of a - character that is neither the first nor the
last character in the scanlist for %[conversion in the fscanf function

A hyphen does not infer an inclusive range of values. e.g. %[0-9] will look
for a sequence of '0', '-' and '5' chars.

Implementation Defined Behavior

1-470 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

7.9.9.1, 7.9.9.4 The value to which the macro errno is set by the fgetpos
or ftell function on failure

errno should never be relied upon.

7.9.10.4 The messages generated by the perror function

errno should never be relied upon, so the error messages returned by this
function should not be relied upon.

7.10.3 The behavior of the calloc, malloc, or realloc function if the size
requested is zero

This is equivalent to a size request of 1.

7.10.4.1 The behavior of the abort function with regard to open and
temporary files

abort will cause execution to jump to exit as if the program had run to
the end of main.

7.10.4.3 The status returned by the exit function if the value of the
argument is other than zero, EXIT_SUCCESS, or EXIT_FAILURE

The exit function never returns.

7.10.4.4 The set of environment names and the method for altering the
environment list used by the getenv function

The getenv function always returns NULL.

7.10.4.5 The contents and mode of execution of the string by the system
function

The system function always returns 0 and has no effect.

7.11.6.2 The contents of the error message strings returned by the strer-
ror function

"error #" followed by the number passed in.

CrossCore Embedded Studio 1.0 1-471
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

7.12.1 The local time zone and Daylight Saving Time

This implementation of time.h does not support either daylight saving or
time zones and hence this function will interpret the argument as Coordi-
nated Universal Time (UTC).

7.12.2.1 The era for the clock function

The era for the clock is the number of clock ticks since the start of pro-
gram execution.

ISO/IEC 9899:1999 C Standard (C99 Mode)
The contents of this section refer to Annex J of the ISO/IEC 9899:1999 C
Standard; the subsection numbers refer to parts of that Standard which
have implementation-defined aspects.

J3.1 Translation

3.10, 5.1.1.3 How a diagnostic is identified

The compiler will emit descriptive diagnostics via the standard error
stream at compile time (e.g. “cc0223: function declared implicitly”) or as
annotations in generated assembly files.

5.1.1.2 Whether each non-empty sequence of white-space characters
other than new-line is retained or replaced by one space character in
translation phase 3

Non-empty sequences of white-space characters are retained in translation
phase 3.

Implementation Defined Behavior

1-472 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

J3.2 Environment

5.1.1.2 The mapping between physical source file multi-byte characters
and the source character set in translation phase 1

When a multi-byte character is encountered, the compiler will interpret
the constituent bytes as ASCII characters irrespective of what was
intended by the author.

5.1.2.1 The name and type of the function called at program startup in a
freestanding environment

The name of the function called at program startup is:

int main();

or, alternatively:

int main(int argc, char *argv[]);

5.1.2.1 The effect of program termination in a freestanding
environment

On program termination, functions registered by the atexit function are
called in reverse order of registration and then the processor is placed in an
IDLE state.

5.1.2.2.1 An alternative manner in which the main function may be
defined

The default startup code source, which calls 'main', is provided and can be
configured by the user.

Alternatively, startup code can be generated in the project settings within
the IDE.

CrossCore Embedded Studio 1.0 1-473
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

5.1.2.2.1 The values given to the strings pointed to by the argv argu-
ment to main

By default, argv[0] is a NULL pointer.

The values given to the strings pointed to by the argv argument can be
defined by the user. For more information, see Support for argv/argc.

5.1.2.3 What constitutes an interactive device

An interactive device is considered a paired display screen and keyboard.

7.14 The set of signals, their semantics, and their default handling

The following signals are supported:

• SIGTERM

• SIGABRT

• SIGFPE

• SIGILL

• SIGINT

• SIGSEGV

7.14 After the handler is invoked, the disposition of the signal is not
reset to SIG_DFL

By default, these signals are ignored.

7.14.1.1 Signal values other than SIGFPE, SIGILL, and SIGSEGV that
correspond to a computational exception

There are no other signal values that correspond to a computational
exception.

Implementation Defined Behavior

1-474 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

7.14.1.1 Signals for which the equivalent of signal(sig, SIG_IGN); is
executed at program startup

• SIGTERM

• SIGABRT

• SIGFPE

• SIGILL

• SIGINT

• SIGSEGV

7.20.4.5 The set of environment names and the method for altering the
environment list used by the getenv function

There is no default operating system and getenv will always return NULL.

7.20.4.6 The manner of execution of the string by the system function

The system function always returns 0.

J3.3 Identifiers

6.4.2 Which additional multi-byte characters may appear in identifiers
and their correspondence to universal character names

Multi-byte characters may not be used in identifiers.

5.2.4.1, 6.4.2 The number of significant initial characters in an
identifier

The maximum number of significant initial characters in an identifier is
15,000.

CrossCore Embedded Studio 1.0 1-475
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

J3.4 Characters

The number of bits in a byte

8 bits.

5.2.1 The values of the members of the execution character set

The values of the execution character set are shown in Table 1-53 (with
unprintable characters left blank).

5.2.2 The unique value of the member of the execution character set
produced for each of the standard alphabetic escape sequences

These values are shown in Table 1-54.

Table 1-53. The Execution Character Set

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

0x0

0x1

0x2 (space) ! “ # $ % & ‘ () * + , - . /

0x3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

0x4 @ A B C D E F G H I J K L M N O

0x5 P Q R S T U V W X Y Z [\] ^ _

0x6 ‘ a b c d e f g h i j k l m n o

0x7 p q r s t u v w x y z { | } ~ (DEL)

Table 1-54. Escape Sequences in the Execution Character Set

Escape Value

\a 0x7

\b 0x8

\f 0xC

\n 0xA

Implementation Defined Behavior

1-476 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

6.2.5 The value of a char object into which has been stored any character
other than a member of the basic execution character set

The resulting value is an integer which is derived from promoting an 8-bit
character to type int. This value is always positive if the -unsigned-char
switch (on page 1-87) is used, but may be negative otherwise.

6.2.5, 6.3.1.1 Which of signed char or unsigned char has the same
range, representation and behavior as "plain" char

A "plain" char has the same range and value as a signed char, except
when the -unsigned-char switch (on page 1-87) is used.

6.4.4.4, 5.1.1.2 The mapping of members of the source character set (in
character constants and string literals) to members of the execution char-
acter set

Characters in the source file are interpreted as ASCII values, which are the
same values used in the execution environment.

6.4.4.4 The value of an integer character constant containing more than
one character or containing a character or escape sequence that does not
map to a single-byte execution character

An integer character constant may contain up to 4 characters. If the con-
stant contains between 2 and 4 characters, warning cc1994 will be issued.
Using more than 4 characters will result in warning cc2226 being issued
and all but the last 4 characters being discarded. No escape characters
other than those specified in the C99 standard are supported, and these all
map to a single byte in the execution environment.

\r 0xD

\t 0x9

\v 0xB

Table 1-54. Escape Sequences in the Execution Character Set (Cont’d)

Escape Value

CrossCore Embedded Studio 1.0 1-477
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

6.4.4.4 The value of a wide character constant containing more than one
multi-byte character, or containing a multi-byte character or escape
sequence not represented in the extended execution character set

Where a wide character contains more than one multi-byte character, only
the first character is retained and warning cc0026 will be issued. Subse-
quent characters are discarded. No escape characters other than those
specified in the C99 standard are supported, and these all map to a single
byte in the execution environment.

6.4.4.4 The current locale used to convert a wide character constant con-
sisting of a single multi-byte character that maps to a member of the
extended execution character set into a corresponding wide character
code

Only the "C" locale is supported in Analog Devices’ toolchain and
processors.

6.4.5 The current locale used to convert a wide string literal into corre-
sponding wide character codes

Only the "C" locale is supported in Analog Devices’ toolchain and
processors.

6.4.5 The value of a string literal containing a multi-byte character or
escape sequence not represented in the execution character set

There are no escape sequences outside the basic or extended character sets.

J3.5 Integers

6.2.5 Any extended integer types that exist in the implementation

None.

Implementation Defined Behavior

1-478 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

6.2.6.2 Whether signed integer types are represented using sign and
magnitude, two’s complement, or one’s complement, and whether the
extraordinary value is a trap representation or an ordinary value

Two’s Complement:

• The sign bit being 1 and all value bits being zero is considered a
normal number.

6.3.1.1 The rank of any extended integer type relative to another
extended integer type with the same precision

N/A.

6.3.1.3 The result of, or the signal raised by, converting an integer to a
signed integer type when the value cannot be represented in an object of
that type

The hexadecimal value is copied and then interpreted as signed. e.g.
MAX_UINT becomes -1.

6.5 The results of some bitwise operations on signed integers

Right shifts will retain the sign bit on a signed integer. All other bitwise
operations treat signed integers as unsigned.

J3.6 Floating-Point

5.2.4.2.2 The accuracy of the floating-point operations and of the
library functions in the <math.h> and <complex.h> that return float-
ing-point results

This is a conforming freestanding implementation of C99. The accuracy
of the library functions in these headers are therefore undocumented.

5.2.4.2.2 The rounding behaviors characterized by non-standard values
of FLT_ROUNDS

FLT_ROUNDS is a standard value.

CrossCore Embedded Studio 1.0 1-479
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

5.2.4.2.2 The evaluation methods characterized by non-standard nega-
tive values of FLT_EVAL_METHOD

FLT_EVAL_METHOD is undefined.

6.3.1.4 The direction of rounding when an integer is converted to a
floating-point number that cannot exactly represent the original value

Round to nearest, ties to even.

6.3.1.5 The direction of rounding when a floating-point number is con-
verted to a narrower floating-point number

Round to nearest, ties to even.

6.4.4.2 How the nearest representable value or the larger or smaller rep-
resentable value immediately adjacent to the nearest representable value
is chosen for certain floating constants

FLT_RADIX is defined as 2 in <float.h>, so floating-point constants are
represented using standards-conforming rounding.

6.5 Whether and how floating expressions are contracted when not dis-
allowed by the FP_CONTRACT pragma

This is a conforming freestanding implementation of C99. The
FP_CONTRACT pragma is therefore not supported.

7.6.1 The default the state for the FENV_ACCESS pragma

This is a conforming freestanding implementation of C99, and the
FENV_ACCESS pragma is only used for accessing the floating-point environ-
ment fenv.h - a header not required for such an implementation. As such
this pragma is not supported.

Implementation Defined Behavior

1-480 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

7.6, 7.12 Additional floating-point exceptions, rounding modes, envi-
ronments and classification, and their macro names

There are no additional floating-point exceptions, rounding modes, envi-
ronments or classifications.

7.12.2 The default state for the FP_CONTRACT pragma

This is a conforming freestanding implementation of C99. The
FP_CONTRACT pragma is therefore not supported.

F.9 Whether the "inexact" floating-point exception can be raised when
the rounded result actually does equal the mathematical result in an IEC
60559 conformant implementation

The "inexact" floating-point exception is not supported for Blackfin
processors.

 F.9 Whether the "underflow" (and "inexact") floating-point exception
can be raised when a result is tiny but not inexact in an IEC 60559 con-
formant implementation

Floating-point exceptions are not supported on Blackfin processors.

ISO/IEC 14822:2003 C++ Standard (C++ Mode)
The subsection of this section refer to parts of the ISO/IEC 14822:2003
C++ Standard which have implementation-defined aspects.

1.7 The C++ Memory Model

The fundamental storage unit in the C + + memory model is the byte. A
byte is at least large enough to contain any member of the basic execu-
tion character set and is composed of a contiguous sequence of bits, the
number of which is implementation-defined.

8 bits.

CrossCore Embedded Studio 1.0 1-481
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

1.9 Program Execution

What constitutes an interactive device is implementation-defined.

An interactive device is considered a paired display screen and keyboard.

2.1 Phases of Translation

Physical source file characters are mapped, in an implementa-
tion-defined manner, to the basic source character set (introducing
new-line characters for end-of-line indicators) if necessary.

Characters in the source file are interpreted as ASCII values, which are
also used in the execution environment.

Whether each non-empty sequence of white-space characters other than
new-line is retained or replaced by one space character is
implementation-defined.

Non-empty sequences of white-space characters are retained.

It is implementation-defined whether the source of the translation units
containing these definitions is required to be available.

The source of the translation units containing these definitions must be
available.

2.2 Character Sets

The values of the members of the execution character sets are implemen-
tation-defined, and any additional members are locale-specific.

The values of the execution character set are shown in Table 1-55 (with
unprintable characters left blank).

Implementation Defined Behavior

1-482 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

2.13.2 Character Literals

A multi-character literal has type int and implementation-defined value.

An integer character constant may contain up to 4 characters. If the con-
stant contains between 2 and 4 characters, warning cc1994 will be issued.
Using more than 4 characters will result in error cc0026 being issued.

The value of a wide-character literal containing multiple c-chars is
implementation-defined.

Where a wide character contains more than one multi-byte character, only
the first character is retained and warning cc0026 will be issued. Subse-
quent characters are discarded.

The value of a character literal is implementation-defined if it falls out-
side of the implementation-defined range defined for char (for ordinary
literals) or wchar_t (for wide literals).

The least significant 8 bits are retained; all other bits are discarded.

Table 1-55. The Execution Character Set for C++ Mode

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

0x0

0x1

0x2 (space) ! “ # $ % & ‘ () * + , - . /

0x3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

0x4 @ A B C D E F G H I J K L M N O

0x5 P Q R S T U V W X Y Z [\] ^ _

0x6 ‘ a b c d e f g h i j k l m n o

0x7 p q r s t u v w x y z { | } ~ (DEL)

CrossCore Embedded Studio 1.0 1-483
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

2.13.4 String Literals

Whether all string literals are distinct (that is, are stored in non-overlap-
ping objects) is implementation-defined.

Identical string literals within the same object file will not be distinct.
That is, only one copy of the string will exist.

3.6.1 Main Function

An implementation shall not predefine the main function. This function
shall not be overloaded. It shall have a return type of type int, but other-
wise its type is implementation-defined.

The name of the function called at program startup is:

int main();

or, alternatively:

int main(int argc, char *argv[]);

The linkage (3.5) of main is implementation-defined.

main has external "C" linkage.

3.6.2 Initialization of Non-Local Objects

It is implementation-defined whether or not the dynamic initialization
(8.5, 9.4, 12.1, 12.6.1) of an object of namespace scope is done before
the first statement of main.

Dynamic initialization of an object of namespace scope is done before the
first statement of main.

Implementation Defined Behavior

1-484 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

3.9 Types

For POD types, the value representation is a set of bits in the object rep-
resentation that determines a value, which is one discrete element of an
implementation-defined set of values.

All POD types are represented in the same format as in C.

The alignment of a complete object type is an implementation-defined
integer value representing a number of bytes; an object is allocated at an
address that meets the alignment requirements of its object type.

Compound types (structs, classes) are aligned on the boundary that
matches the alignment of the most strictly-aligned member of the type.

Top-level arrays are always aligned on a word boundary, regardless of the
underlying type. Arrays within structures are not aligned beyond the
required alignment for their type.

3.9.1 Fundamental Types

It is implementation-defined whether a char object can hold negative
values.

A char can hold negative values.

The value representation of floating-point types is
implementation-defined.

The representations of the floating-point types are as follows:

• float

• 32 bits (1 sign bit, 8 exponent bits, 32 mantissa bits)

-3.4028234663852886E+38 to 3.4028234663852886E+38

CrossCore Embedded Studio 1.0 1-485
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

• double (default setting)

• 32 bits (1 sign bit, 8 exponent bits, 32 mantissa bits)

-3.4028234663852886E+38 to 3.4028234663852886E+38

• double (when compiling with “-double-size-64”)

• 64 bits (1 sign bit, 11 exponent bits, 52 mantissa bits)

-1.797693134862315708e+308 to
1.797693134862315708e+308

• long double

• 64 bits (1 sign bit, 11 exponent bits, 52 mantissa bits)

-1.797693134862315708e+308 to
1.797693134862315708e+308

3.9.2 Compound Types

The value representation of pointer types is implementation-defined.

Pointer types are represented as 32-bit unsigned integers.

4.7 Integral Conversions

If the destination type is signed, the value is unchanged if it can be rep-
resented in the destination type (and bit-field width); otherwise, the
value is implementation-defined.

When converting a signed integer to a smaller signed integer, the lower
bits of the signed integer (of the size of the smaller signed integer) are cop-
ied to the smaller signed integer. If the topmost copied bit is set, this will
result in a negative number.

Implementation Defined Behavior

1-486 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

4.8 Floating-Point Conversions

If the source value is between two adjacent destination values, the result
of the conversion is an implementation-defined choice of either of those
values.

Round to nearest, ties to even.

4.9 Floating-Integral Conversions

An rvalue of an integer type or of an enumeration type can be converted
to an rvalue of a floating-point type. The result is exact if possible. Oth-
erwise, it is an implementation-defined choice of either the next lower
or higher representable value.

Round to nearest, ties to even.

5.2.8 Type Identification

The result of a typeid expression is an lvalue of static type const
std::type_info (18.5.1) and dynamic type const std::type_info or const
name where name is an implementation-defined class derived from
std::type_info which preserves the behavior described in 18.5.1.

The result of a typeid expression is an lvalue of static type const
std::type_info and dynamic type const std::type_info.

5.2.10 Reinterpret Cast

The mapping performed by reinterpret_cast is implementation-defined.

For an expression "reinterpret_cast<T>(v)", the bits in the object repre-
sentation of "v" will be treated as type as an object of type "T".

CrossCore Embedded Studio 1.0 1-487
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

A pointer can be explicitly converted to any integral type large enough
to hold it. The mapping function is implementation-defined.

The bit pattern of the pointer is interpreted as the integral type. No sign
extension is performed if the integral type is larger than the pointer.

A value of integral type or enumeration type can be explicitly converted
to a pointer. A pointer converted to an integer of sufficient size (if any
such exists on the implementation) and back to the same pointer type
will have its original value; mappings between pointers and integers are
otherwise implementation-defined.

A cast from pointer to integer results in the most-significant bits being
discarded if the size of the pointer is larger than the integer. If the pointer
is smaller than the integer type being cast to, the integer will be
zero-extended.

A cast from integer to pointer results in the most-significant bits being
discarded if the size of the integer is larger than the pointer. If the integer
is smaller than the pointer type being cast to, the pointer will be
sign-extended.

5.3.3 Sizeof

sizeof(char), sizeof(signed char) and sizeof(unsigned char) are 1; the
result of sizeof applied to any other fundamental type (3.9.1) is imple-
mentation-defined. [Note: in particular, sizeof(bool) and sizeof(wchar_t)
are implementation-defined.]

Sizes are as shown in Table 1-56.

Implementation Defined Behavior

1-488 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

5.6 Multiplicative Operators

The binary / operator yields the quotient, and the binary % operator
yields the remainder from the division of the first expression by the sec-
ond. If the second operand of / or % is zero the behavior is undefined;
otherwise (a/b)*b + a%b is equal to a. If both operands are nonnegative
then the remainder is nonnegative; if not, the sign of the remainder is
implementation-defined.

If the first operand is negative, the sign of the remainder will be negative,
otherwise the sign of the remainder is nonnegative.

Table 1-56. Sizes of C++ Standard Types

char (signed, unsigned) 1

short (signed, unsigned) 2

int (signed, unsigned) 4

long (signed, unsigned) 4

long long (signed, unsigned) 8

float 4

double (default) 4

double (-double-size-64) 8

long double 8

bool 1

wchar_t 4

CrossCore Embedded Studio 1.0 1-489
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

5.7 Additive Operators

When two pointers to elements of the same array object are subtracted,
the result is the difference of the subscripts of the two array elements.
The type of the result is an implementation-defined signed integral type;
this type shall be the same type that is defined as ptrdiff_t in the <cstd-
def> header (18.1).

The type of the result is long int.

5.8 Shift Operators

The value of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an
unsigned type or if E1 has a signed type and a nonnegative value, the
value of the result is the integral part of the quotient of E1 divided by
the quantity 2 raised to the power E2. If E1 has a signed type and a neg-
ative value, the resulting value is implementation-defined.

Right shifts will retain the sign bit on a signed integer.

7.1.5.2 Simply Type Specifiers

It is implementation-defined whether bit-fields and objects of char type
are represented as signed or unsigned quantities.

By default, bit-fields and objects of char type are represented as signed
quantities.

Bit-fields can represented as unsigned quantities by using the compiler
switch -unsigned-bitfield (on page 1-86).

chars can represented as unsigned quantities by using the compiler switch
-unsigned-char (on page 1-87).

Implementation Defined Behavior

1-490 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

7.2 Enumeration Declarations

It is implementation-defined which integral type is used as the underly-
ing type for an enumeration except that the underlying type shall not be
larger than int unless the value of an enumerator cannot fit in an int or
unsigned int.

The underlying type for an enumeration shall be int.

7.4 The asm Declaration

The meaning of an asm declaration is implementation-defined.

For more information, see Inline Assembly Language Support Keyword
(asm).

7.5 Linkage Specifications

The string-literal indicates the required language linkage. The meaning
of the string-literal is implementation-defined.

Three string-literals are supported:

• "C"– the function name in the source file is prefixed with an under-
score ("_") in the object file.

• "C++" – the function name is mangled according to the compiler's
name mangling rules.

• "asm" – the function name in the source file is used in the object
file without a prefix or name-mangling.

CrossCore Embedded Studio 1.0 1-491
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

Linkage from C++ to objects defined in other languages and to objects
defined in C++ from other languages is implementation-defined and
language-dependent.

Three string-literals are supported:

• "C" – the function name in the source file is prefixed with an
underscore ("_") in the object file.

• "C++" – the function name is mangled according to the compiler's
name mangling rules.

• "asm" – the function name in the source file is used in the object
file without a prefix or name-mangling.

9.6 Bit-Fields

Allocation of bit-fields within a class object is implementation-defined.
Alignment of bit-fields is implementation-defined.

Bit-fields are stored using a little-endian representation.

Bit-fields are aligned such that they do not cross a 32-bit word boundary
(for bit-fields of type char, short, int or long) or a 64-bit boundary (for
bit-fields of type long long). For example, a 24-bit bit-field can be placed
immediately after an 8-bit bit-field, but a 25-bit bitfield member will be
aligned on the next 32-bit boundary.

It is implementation-defined whether a plain (neither explicitly signed
nor unsigned) char, short, int or long bit-field is signed or unsigned.

Plain bit-fields are signed.

Implementation Defined Behavior

1-492 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

14 Templates

A template name has linkage (3.5). A non-member function template
can have internal linkage; any other template name shall have external
linkage. Entities generated from a template with internal linkage are dis-
tinct from all entities generated in other translation units. A template, a
template explicit specialization (14.7.3), or a class template partial spe-
cialization shall not have C linkage. If the linkage of one of these is
something other than C or C++, the behavior is
implementation-defined.

Only C++ linkage is supported for templates.

14.7.1 Implicit Instantiation

There is an implementation-defined quantity that specifies the limit on
the total depth of recursive instantiations, which could involve more
than one template.

The limit on the total depth of recursive instantiations is 64.

15.5.1 The terminate() Function

In the situation where no matching handler is found, it is implementa-
tion-defined whether or not the stack is unwound before terminate() is
called.

The stack is not unwound before the call to terminate().

CrossCore Embedded Studio 1.0 1-493
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

15.5.2 The unexpected() Function

If the exception-specification does not include the class
std::bad_exception (18.6.2.1) then the function terminate() is called,
otherwise the thrown exception is replaced by an implementa-
tion-defined object of the type std::bad_exception and the search for
another handler will continue at the call of the function whose excep-
tion-specification was violated.

The object of the type std::bad_exception will contain the string "bad
exception".

16.1 Conditional Inclusion

Whether the numeric value for these character literals matches the value
obtained when an identical character literal occurs in an expression
(other than within a #if or #elif directive) is implementation-defined.

The numeric value for these character literals matches the value obtained
when an identical character literal occurs in an expression.

Also, whether a single-character character literal may have a negative
value is implementation-defined.

A single-character may have a negative value.

Implementation Defined Behavior

1-494 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

16.2 Source File Inclusion

Searches a sequence of implementation-defined places for a header iden-
tified uniquely by the specified sequence between the < and > delimiters,
and causes the replacement of that directive by the entire contents of the
header. How the places are specified or the header identified is
implementation-defined.

Include files, whose names are not absolute path names and that are
enclosed in "..." when included, are searched for in the following directo-
ries in this order:

• The directory containing the current input file (the primary source
file or the file containing the #include).

• Any directories specified with the -I switch (on page 1-47) in the
order they are listed on the command line.

• Any directories on the standard list: <install_path>\...\include.

The mapping between the delimited sequence and the external source
file name is implementation-defined.

The source file character sequence is mapped to its corresponding ASCII
character sequence.

A #include preprocessing directive may appear in a source file that has
been read because of a #include directive in another file, up to an imple-
mentation-defined nesting limit.

The compiler does not define a nesting limit for #include directives.

16.6 Pragma Directive

A preprocessing directive #pragma causes the implementation to behave
in an implementation-defined manner.

For more information, see Pragmas.

CrossCore Embedded Studio 1.0 1-495
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

16.8 Predefined Macro Names

If the date of translation is not available, an implementation-defined
valid date is supplied.

The macro __DATE__ will be defined as "[date unknown]".

If the time of translation is not available, an implementation-defined
valid time is supplied.

The macros __TIME__ will be defined as "[time unknown]".

Whether __STDC__ is predefined and if so, what its value is, are
implementation-defined.

__STDC__ is predefined with the value 1.

17.4.4.5 Reentrancy

Which of the functions in the C++ Standard Library are not reentrant
subroutines is implementation-defined.

The following functions are not reentrant in the C++ Standard library, as
implemented in CCES:

• Functions that use streams.

• Dynamic memory allocation functions (new, delete, etc.).

• The exceptions handling support routines.

Although these functions are not reentrant, thread-safe versions of them
are implemented in the multi-threaded C++ library. For more informa-
tion, see Library Function Re-Entrancy and Thread Safety.

Implementation Defined Behavior

1-496 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

17.4.4.8 Restrictions on Exception Handling

Any other functions defined in the C++ Standard Library that do not
have an exception-specification may throw implementation-defined
exceptions unless otherwise specified.

Table 1-57 shows which functions may throw the following exceptions, if
the application is built with exceptions enabled.

18.3 Start and Termination

Exit() – Finally, control is returned to the host environment. If status is
zero or EXIT_SUCCESS, an implementation-defined form of the status
successful termination is returned. If status is EXIT_FAILURE, an
implementation-defined form of the status unsuccessful termination is
returned. Otherwise the status returned is implementation-defined.

The status is written to the variable _exit_value and the program will idle
at the label __lib_prog_term. R0 (the return register) will always be set
zero.

Table 1-57. Functions Which Throw Exceptions

Function Exception Type

ios_base::clear failure

locale::locale runtime_error

_Locinfo::_Addcats runtime_error

_String_base::_Xlen length_error

_String_base::_Xran out_of_range

array new and delete operators bad_alloc

CrossCore Embedded Studio 1.0 1-497
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

18.4.2.1 Class bad_alloc

The result of calling what() on the newly constructed object is
implementation-defined.

what() will return the string "bad allocation".

virtual const char* what() const throw(); Returns: An implementa-
tion-defined NTBS

what() will return the string "bad allocation".

18.5.1 Class type_info

const char* name() const; Returns: an implementation-defined NTBS

Table 1-58 shows the string returned by the name() function for the basic
types.

Table 1-58. Strings Returned by Name()

Type String

bool b

char c

signed char a

unsigned char h

(signed) short s

unsigned short t

(signed) int i

unsigned int j

(signed) long l

unsigned long m

(signed) long long x

unsigned long long y

Implementation Defined Behavior

1-498 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

18.5.2 Class bad_cast

virtual const char* what() const throw(); Returns: An implementa-
tion-defined NTBS

Calling what() will return the string "bad cast".

18.5.3 Class bad_typeid

bad_typeid() throw(); Notes: The result of calling what() on the newly
constructed object is implementation-defined.

Calling what() will return the string "bad typeid".

virtual const char* what() const throw(); Returns: An implementa-
tion-defined NTBS

Calling what() will return the string "bad typeid".

18.6.1 Class Exception

exception& operator=(const exception&) throw(); Notes: The effects of
calling what() after assignment are implementation-defined.

Calling what() will return the string "unknown".

float f

double d

long double e

wchar_t w

Table 1-58. Strings Returned by Name() (Cont’d)

Type String

CrossCore Embedded Studio 1.0 1-499
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

virtual const char* what() const throw(); Returns: An implementa-
tion-defined NTBS

Calling what() will return the string "unknown".

18.6.2.1 Class bad_exception

bad_exception() throw(); Notes: The result of calling what()on the
newly constructed object is implementation-defined.

Calling what() will return the string "bad exception".

virtual const char* what() const throw(); Returns: An implementa-
tion-defined NTBS

Calling what() will return the string "bad exception".

21 Strings Library

The type streampos is an implementation-defined type that satisfies the
requirements for POS_T in 21.1.2.

streampos is a typedef of the fpos class.

The type streamoff is an implementation-defined type that satisfies the
requirements for OFF_T in 21.1.2.

streamoff is a typedef of the long type.

The type mbstate_t is defined in <cwchar> and can represent any of the
conversion states possible to occur in an implementation-defined set of
supported multi-byte character encoding rules.

Multi-byte characters are not supported in Analog Devices’ Compiler, so
no multi-byte characters may be used in identifiers.

Implementation Defined Behavior

1-500 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

21.1.3.2 struct char_traits<wchar_t>

The type wstreampos is an implementation-defined type that satisfies
the requirements for POS_T in 21.1.2.

The type wstreampos not supported in Analog Devices’ toolset.

The type mbstate_t is defined in <cwchar> and can represent any of the
conversion states possible to occur in an implementation-defined set of
supported multi-byte character encoding rules.

Multi-byte characters are not supported in Analog Devices’ Compiler, so
no multi-byte characters may be used in identifiers.

22.1.1.3 Locale Members

basic_string<char> name() const; Returns: The name of *this, if it has
one; otherwise, the string "*". If *this has a name, then
locale(name().c_str()) is equivalent to *this. Details of the contents of
the resulting string are otherwise implementation-defined.

name returns the name of *this, if it has one; otherwise, the string "*".

22.2.1.3 ctype Specializations

The implementation-defined value of member table_size is at least 256.

The value of member table_size is 256.

22.2.1.3.2 ctype<char> Members

In the following member descriptions, for unsigned char values v where
(v >= table_size), table()[v] is assumed to have an implementa-
tion-defined value (possibly different for each such value v) without
performing the array lookup.

As table_size has the value 256, it is not possible for v to be greater than
or equal to table_size.

CrossCore Embedded Studio 1.0 1-501
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

22.2.5.1.2 time_get Virtual Functions

iter_type do_get_year(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const; Effects: Reads characters starting at
s until it has extracted an unambiguous year identifier. It is implementa-
tion-defined whether two-digit year numbers are accepted, and (if so)
what century they are assumed to lie in. Sets the t->tm_yearmember
accordingly.

If the two-digit year is less than '69', it is assumed that the year is in the
21st century (i.e. 2000 -> 2068); otherwise, it is assumed that the year is
in the 20th century.

22.2.5.3.2 time_put Virtual Functions

Effects: Formats the contents of the parameter t into characters placed
on the output sequences. Formatting is controlled by the parameters for-
mat and modifier, interpreted identically as the format specifiers in the
string argument to the standard library function strftime(). except that
the sequence of characters produced for those specifiers that are
described as depending on the C locale are instead
implementation-defined.

Table 1-59 shows the character sequences produced for each specifier that
depends on the C locale.

Table 1-59. Outputs for time_put Specifiers

Specifier Characters

%a “Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”, “Sun”

%A “Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”,
“Saturday”, “Sunday”

%b “Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”, “Jul”, “Aug”,
“Sep”, “Oct”, “Nov”, “Dec”

Implementation Defined Behavior

1-502 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

22.2.7.1.2 Messages Virtual Functions

catalog do_open(const basic_string<char>& name, const locale& loc)
const; Returns: A value that may be passed to get()to retrieve a message,
from the message catalog identified by the string name according to an
implementation-defined mapping. The result can be used until it is
passed to close().

This function has no effect.

string_type do_get(catalog cat, int set, int msgid, const string_type&
dfault) const; Returns: A message identified by arguments set, msgid,
and dfault, according to an implementation-defined mapping

The function do_get always returns the string pointed to by dfault.

void do_close(catalog cat) const; Notes: The limit on such resources, if
any, is implementation-defined.

This function has no effect.

%B “January”, “February”, “March”, “April”, “May”, “June”,
“July”, “August”, “September”, “October”, “November”,
“December”

%c Date and time in the format:
DDD MMM DD HH:MM:SS YYYY
For example, “Sat Jan 31 23:59:59 2011”.

%p “AM”, “PM”

%x Date in the format:
MM/DD/YY
For example, “12/31/12”.

%X Time in the format:
HH:MM:SS
For example, “23:59:59”.

Table 1-59. Outputs for time_put Specifiers (Cont’d)

Specifier Characters

CrossCore Embedded Studio 1.0 1-503
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

26.2.8 Complex Transcendentals

The value returned for pow(0,0) is implementation-defined.

This is a conforming freestanding implementation of C++. Complex tran-
scendentals are not supported.

27.1.2 Positioning Type Limitations

The classes of clause 27 with template arguments charT and traits
behave as described if traits::pos_type and traits::off_type are streampos
and streamoff respectively. Except as noted explicitly below, their behav-
ior when traits::pos_type and traits::off_type are other types is
implementation-defined.

traits::pos_type and traits::off_type are streampos and streamoff
respectively.

27.4.1 Types

The type streamoff is an implementation-defined type that satisfies the
requirements of 27.4.3.2.

streamoff is of type long.

27.4.2.4 ios_base Static Members

bool sync_with_stdio(bool sync = true); Effects: If any input or output
operation has occurred using the standard streams prior to the call, the
effect is implementation-defined.

iostream objects are always synchronised with the standard streams. This
function has no effect.

Implementation Defined Behavior

1-504 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

27.4.4.3 basic_ios iostate Flags Functions

If (rdstate() & exceptions()) == 0, returns. Otherwise, the function
throws an object fail of class basic_ios::failure (27.4.2.1.1), constructed
with implementation-defined argument values.

If 'ios_base::badbit' is set, the exception will be created with the string
"ios_base::badbit set".

If 'ios_base::failbit' is set, the exception will be created with the string
"ios_base::failbit set".

27.7.1.3 Overridden Virtual Functions

basic_streambuf<charT,traits>* setbuf(charT* s, streamsize n); Effects:
implementation-defined, except that setbuf(0,0)has no effect

streambuf() has no effect.

27.8.1.4 Overridden Virtual Functions

basic_streambuf* setbuf(char_type* s, streamsize n); Effects: If set-
buf(0,0) is called on a stream before any I/O has occurred on that
stream, the stream becomes unbuffered. Otherwise the results are
implementation-defined.

If setbuf(s, n) is called before any I/O has occurred, the buffer 's', of
size 'n', is used by the I/O routines. Calls to setbuf() on a stream after
I/O has occurred are ignored.

int sync(); Effects: If a put area exists, calls filebuf::overflow to write the
characters to the file. If a get area exists, the effect is
implementation-defined.

The sync() function has no effect on the get area.

CrossCore Embedded Studio 1.0 1-505
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler

C.2.2.3 Macro NULL

The macro NULL, defined in any of <clocale>, <cstddef>, <cstdio>,
<cstdlib>, <cstring>, <ctime>, or <cwchar>, is an implementa-
tion-defined C++ null pointer constant in this International Standard
(18.1).

The macro NULL is defined as 0.

D.6 Old iostreams Members

The type streamoff is an implementation-defined type that satisfies the
requirements of type OFF_T (27.4.1).

streamoff is a typedef of the 'long' type.

The type streampos is an implementation-defined type that satisfies the
requirements of type POS_T (27.2).

streampos is a typedef of the fpos class.

Implementation Defined Behavior

1-506 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

CrossCore Embedded Studio 1.0 2-1
C/C++ Compiler and Library Manual for Blackfin Processors

2 ACHIEVING OPTIMAL
PERFORMANCE FROM
C/C++ SOURCE CODE

This chapter provides guidance on tuning your application to achieve the
best possible code from the compiler. Since implementation choices are
available when coding an algorithm, understanding their impact is crucial
to attaining optimal performance.

This chapter contains:

• General Guidelines
provides a four-step basic strategy for designing applications. It also
describes topics such as data types, memory usage, and indexed
arrays versus pointers.

• Improving Conditional Code
describes the expected_true and expected_false built-in func-
tions, which control the compiler’s optimization of conditional
branches.

• Loop Guidelines
describes how to help the compiler produce the most efficient loop
code, including keeping loops short, and avoiding unrolling loops
and loop-carried dependencies.

• Manipulating Fixed-Point and Fractional Data
discusses ways to manipulate fixed-point and fractional data.

• Using Built-In Functions in Code Optimization
describes how to use built-in functions to efficiently use low-level
features of the processor hardware while programming in C.

2-2 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• Smaller Applications: Optimizing for Code Size
provides tips and techniques for optimizing the application to
achieve good performance while meeting code space constraints.

• Using Pragmas for Optimization
describes how to use pragmas to finely tune source code.

• Useful Optimization Switches
lists compiler switches useful during the optimization process.

• How Loop Optimization Works
introduces concepts used in loop optimization.

• Assembly Optimizer Annotations
describes annotations, which indicate how close to optimal a
program is, and suggest what else can be done to improve the
generated code.

• Analyzing Your Application
describes various techniques that can be used to analyze and debug
a program. Instrumented profiling, code coverage and stack and
heap tracing are discussed.

This chapter helps you get maximal code performance from the compiler.
Most of these guidelines also apply when optimizing for minimum code
size, although some techniques specific to that goal are also discussed.

The first section looks at some general principles, and explains how the
compiler can help your optimization effort. Optimal coding styles are
then considered in detail. Special features such as compiler switches,
built-in functions, and pragmas are also discussed. The chapter includes a
short example to demonstrate how the optimizer works.

Small examples are included throughout this chapter to demonstrate
points being made. Some show recommended coding styles, while others
identify styles to be avoided or code that it may be possible to improve.
These are commented in the code as “GOOD” and “BAD”, respectively.

CrossCore Embedded Studio 1.0 2-3
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

General Guidelines
This section contains:

• How the Compiler Can Help

• Data Types

• Getting the Most From IPA

• Indexed Arrays Versus Pointers

• Using Function Inlining

• Using Inline asm Statements

• Memory Usage

Remember the following strategy when writing an application:

1. Choose the language as appropriate.
Your first decision is whether to implement your application in C
or C++. Performance considerations may influence this decision.
C++ code using only C features has very similar performance to
pure C code. Many higher level C++ features (for example, those
resolved at compilation, such as namespaces, overloaded functions
and also inheritance) have no performance cost.

However, use of some other features may degrade performance.
Carefully weigh performance loss against the richness of expression
available in C++ (such as virtual functions or classes used to imple-
ment basic data types).

2. Choose an algorithm suited to the architecture being targeted. For
example, the target architecture will influence any trade-off
between memory usage and algorithm complexity.

General Guidelines

2-4 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

3. Code the algorithm in a simple, high-level generic form. Keep the
target in mind, especially when choosing data types.

4. Tune critical code sections. After your application is complete,
identify the most critical sections. Carefully consider the strengths
of the target processor and make non-portable changes where nec-
essary to improve performance.

How the Compiler Can Help
The compiler provides many facilities to help the programmer to achieve
optimal performance, including the compiler optimizer, statistical pro-
filer, profile-guided optimizer (PGO), and interprocedural optimizers.

This section contains:

• Using the Compiler Optimizer

• Using Compiler Diagnostics

• Using Profile-Guided Optimization

• Using Interprocedural Optimization

Using the Compiler Optimizer

There is a vast difference in performance between code compiled opti-
mized and code compiled non-optimized. In some cases, optimized code
can run ten or twenty times faster. Always use optimization when measur-
ing performance or shipping code as product.

The optimizer in the C/C++ compiler is designed to generate efficient
code from source that has been written in a straightforward manner. The
basic strategy for tuning a program is to present the algorithm in a way
that gives the optimizer the best possible visibility of the operations and
data, and hence the greatest freedom to safely manipulate the code. Future
releases of the compiler will continue to enhance the optimizer.

CrossCore Embedded Studio 1.0 2-5
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Expressing algorithms simply will provide the best chance of benefiting
from such enhancements.

The default setting (“Debug” configuration within the IDE) is for
non-optimized compilation in order to assist programmers in diagnosing
problems with their initial coding. The optimizer is enabled in the IDE by
selecting Project > Properties > C/C++ Build > Settings > Tool Settings >
Compiler > General > Enable optimization, or by using the -O switch
(on page 2-77). A “release” build from within CCES automatically
enables optimization.

Using Compiler Diagnostics

There are many features of the C and C++ languages that, while legal,
often indicate programming errors. There are also aspects that are valid
but may be relatively expensive for an embedded environment. The com-
piler can provide diagnostics which save time and effort in characterizing
source-related problems.

These diagnostics are particularly important for obtaining high-perfor-
mance code, since the optimizer aggressively transforms the application to
yield the best performance, discarding unused or redundant code. If this
code is redundant because of a programming error (such as omitting an
essential volatile qualifier (on page 2-20) from a declaration), then the
code will behave differently from a non-optimized version. Using the
compiler’s diagnostics may help you identify such situations before they
become problems.

The diagnostic facilities are described in the following sections:

• Warnings, Annotations and Remarks

• Run-Time Diagnostics

• Steps for Developing Your Application

General Guidelines

2-6 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Warnings, Annotations and Remarks

By default, the compiler emits warnings to the standard error stream at
compile-time when it detects a problem with the source code. Warnings
can be disabled individually, with the -Wsuppress switch (on page 1-88)
or as a class, with the -w switch (on page 1-90), disabling all warnings and
remarks. However, disabling warnings is inadvisable until each instance
has been investigated for problems.

A typical warning would be: a variable being used before its value has been
set.

Remarks are diagnostics that are less severe than warnings. Like warnings,
they are produced at compile-time to the standard error stream, but unlike
warnings, remarks are suppressed by default. Remarks are typically for sit-
uations that are probably correct, but less than ideal. Remarks may be
enabled as a class with the -Wremarks switch (on page 1-89), or by choos-
ing Project > Properties > C/C++ Build > Settings > Tool Settings >
Compiler > Warning > Warning/annotation/remark control to Errors,
Warnings, Annotations and Remarks in the IDE.

A typical remark would be: a variable being declared, but never used.

A remark may be promoted to a warning through the -Wwarn switch
(on page 1-88). Remarks and warnings may be promoted to errors
through the -Werror switch (on page 1-88).

Annotations are diagnostics that are between warnings and remarks in
severity. Like remarks, annotations are usually suppressed. Where remarks
comment on the input source file, annotations provide information about
the code the compiler has generated from the source file.

A typical annotation would be: using a volatile variable within a loop lim-
its optimization.

Both annotations and remarks can be viewed in the IDE; they are listed as
“infos” in the Problems view, and an “information” icon appears in the

CrossCore Embedded Studio 1.0 2-7
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

gutter of the source file’s view, adjacent to the associated line. Hovering
over the gutter icon displays the annotations and remarks for the line.

Annotations are also emitted to the generated assembly file, as comments.
For more information, see Assembly Optimizer Annotations.

Run-Time Diagnostics

Although the compiler can identify many potential problems through its
static analysis, some problems only become apparent at run-time. The
compiler and libraries provide a number of facilities for assisting in identi-
fying such problems. These facilities are:

• Run-time diagnostics, where the compiler plants additional code to
check for common programming errors. For more information, see
Run-Time Checking.

• Stack overflow detection, where the compiler ensures that the stack
does not run out of space. For more information, see Stack Over-
flow Detection.

• Heap debugging, where the compiler links the application with an
enhanced version of the heap library, to detect memory leaks and
other common dynamic-memory issues. For more information, see
Heap Debugging.

Steps for Developing Your Application

To improve overall code quality:

1. Enable remarks and build the application. Gather all warnings and
remarks generated.

2. Examine the generated diagnostics and choose those message types
that you consider most important. For example, you might select
just cc0223, a remark that identifies implicitly-declared functions.

General Guidelines

2-8 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

3. Promote those remarks and warnings to errors, using the -Werror
switch (for example, “-Werror 0223”), and rebuild the application.
The compiler will now fault such cases as errors, so you will have to
fix the source to address the issues before your application will
build.

4. Once your application rebuilds, repeat the process for the next
most important diagnostics.

5. When you have dealt with the diagnostics you consider significant,
rebuild your application with run-time diagnostics enabled, and
run your regression tests, to see whether any problems lurk. (Given
the overheads of run-time diagnostics, you will probably find it
better to only enable one form at a time.)

6. Once your application runs successfully with each form of
run-time diagnostic, disable run-time diagnostics and rebuild your
application for release.

Diagnostics you might typically consider first include:

• cc0223: function declared implicitly

• cc0549: variable used before its value is set

• cc1665: variable is possibly used before its value is set, in a loop

• cc0187: use of “=” where “==” may have been intended

• cc1045: missing return statement at the end of non-void function

• cc0111: statement is unreachable

If you have particular cases that are correct for your application, do not let
them prevent your application from building because you have raised the
diagnostic to an error. For such cases, temporarily lower the severity again
within the source file in question by using #pragma diag (on page 1-354).

CrossCore Embedded Studio 1.0 2-9
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Using Profile-Guided Optimization

Profile-guided optimization (PGO) is an excellent way to tune the com-
piler’s optimization strategy for the typical run-time behavior of a
program. There are many program characteristics that cannot be known
statically at compile-time but can be provided through PGO. The com-
piler can use this knowledge to improve its code generation. The benefits
include more accurate branch prediction, improved loop transformations,
and reduced code size. The technique is most relevant where the behavior
of the application over different data sets is expected to be very similar.

 The data gathered during the profile-guided optimization process
can also be used to generate a code coverage report. For more infor-
mation, see Profile-Guided Optimization and Code Coverage.

Profile-guided optimization can be performed on applications running on
both hardware and simulators. The functionality supported and the steps
required are different in each case. A summary of these differences is listed
in Table 2-1.

Profile-guided optimization using the simulator is a non-intrusive process:
the application code is not modified to gather the profiling data.
Multi-threaded applications cannot be profiled using the simulator-based
method of profile gathering.

Table 2-1. Differences Between Profile-Guided Optimization for
Simulators and Hardware

Profile-Guided Optimization for Simulators Profile-Guided Optimization for Hardware

Is non-intrusive to the application. No code or
data space needs to be reserved for the profil-
ing.

Is intrusive. Profiling requires both code and
data space to be reserved in the application.

Does not impact performance. Profiling is per-
formed in the background by the simulator.

Impacts performance. Profiling is performed on
the processor as part of the application.

Does not support multi-threaded applications. Supports multi-threaded applications.

Can only profile application where peripherals
are simulated by the simulator.

Run on hardware allowing the profiling of appli-
cations that use custom hardware.

General Guidelines

2-10 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Profile-guided optimization for applications running on hardware offers
support for multi-threaded applications and applications that cannot be
run on the simulator (for example, due to custom hardware or requiring
input from peripherals not supported by the simulator). However, the
hardware-based profiling method is more intrusive to the application, as it
requires instruction and data memory.

Using Profile-Guided Optimization With a Simulator

The PGO process when using a simulator for execution is illustrated in
Figure 2-1.

1. Compile the application with the -pguide switch (on page 1-72) or
choose Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Profile-guided Optimization >
Prepare application to create new profile. This creates an execut-
able file containing the necessary instrumentation for gathering
profile data. For best results, click General (under Compiler) in
the tree control and select Enable optimization /-O switch
(on page 1-65) or Interprocedural optimization /-ipa

Figure 2-1. PGO Process When Targeting a Simulator

Source Files

Data

Profile with
Simulator

Compile with
.pgo

Compile with
-O -pguide

.dxe .pgo .dxe

CrossCore Embedded Studio 1.0 2-11
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

(on page 1-49) switch.

2. Gather the profile. Run the executable under the simulator, with
one or more training data sets.

a. Load the application into the simulator.

b. Enable profiling, via Target > PGO > Simulator > Start.

c. Run the application, with the desired training set.

d. Save the profile, via Target > PGO > Simulator > Stop and
save.

e. Repeat the process with the next training set.

The training data sets should be representative of the data that you
expect the application to process in the field. Note that unrepresen-
tative training data sets can cause performance degradations when
the application is used on real data. The profile is stored in a file
with the extension .pgo.

3. Recompile the application using this gathered profile data:

a. Turn off the -pguide switch (on page 1-72) or choose Proj-
ect > Properties > C/C++ Build > Settings > Tool Settings
> Compiler > Profile-guided Optimization > Prepare
application to create new profile.

b. Place the .pgo file on the command line or include it in the
list of profiles under Optimize using existing profiles.

General Guidelines

2-12 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

c. Ensure optimization is enabled:

Click General (under Compiler) in the tree control and
select Enable optimization /-O switch (on page 1-65)
and/or Interprocedural optimization /-ipa (on page 1-49)
switch.

 When C/C++ source files are specified in a compiler command
line, any specified .pgo files will be used to guide compilation.
However, any recompilation due to .doj files provided on the
command line will reread the same .pgo file as when the source was
previously compiled. For example, prof2.pgo is ignored in the fol-
lowing commands:

ccblkfn -O f2.c -o f2.doj prof1.pgo

ccblkfn -o prog.dxe f1.asm f2.doj prof2.pgo

For an example application that demonstrates how to use PGO, refer to
Using PGO in Function Profiling.

Using Profile-Guided Optimization With Hardware

The process for using PGO with hardware is illustrated in Figure 2-2.

1. Compile the application with the -pguide switch (on page 1-72),
which is equivalent to Project > Properties > C/C++ Build > Set-
tings > Tool Settings > Compiler > Profile-guided Optimization >
Prepare application to create new profile, and the -prof-hw switch
(on page 1-74), which is equivalent to the Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Profile-guided Optimization > Gather profile using hardware
option. This creates an executable file containing the necessary
instrumentation for gathering profile data when run on hardware.

CrossCore Embedded Studio 1.0 2-13
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

2. For best results, click General (under Compiler) in the tree control
and select Enable optimization /-O switch (on page 1-65) and/or
Interprocedural optimization /-ipa (on page 1-49) switch.

3. Gather the profile. Run the executable on the hardware with one or
more training data sets. These training data sets should be repre-
sentative of the data that you expect the application to process in
the field. Note that unrepresentative training data sets can cause
performance degradations when the application is used on real
data. The profile is stored in files with the extension .pgo and .pgt.

4. Recompile the application using this gathered profile data:

a. Turn off the -prof-hw switch (on page 1-74) or choose
Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Profile-guided Optimization >
Gather profile using hardware.

b. Turn off the -pguide switch (on page 1-72) or choose Pre-
pare application to create new profile.

c. Place the .pgo file on the command line, or include it in the
list of profiles under Optimize using existing profiles. The
.pgo file contains a reference to the .pgt file, so this auto-
matically includes the .pgt file.

5. Ensure optimization is enabled:

Click General (under Compiler) in the tree control and select
Enable optimization /-O switch (on page 1-65) and/or
Interprocedural optimization /-ipa (on page 1-49) switch.

General Guidelines

2-14 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

 PGO for hardware works by planting function calls into your
application which record the execution count (and in
multi-threaded cases, the thread identifier) at certain points.
Applications built with PGO for hardware should be used for
development and should not be released.

 PGO for hardware requires that an I/O device is available in the
application to produce its profiling data. The default I/O device
will be used to perform I/O operations for PGO.

 PGO for hardware flushes any remaining profile data still pending
when exit() is invoked. Multi-threaded applications may need to
flush data explicitly.

 When C/C++ source files are specified in a compiler command
line, any specified .pgo files will be used to guide compilation.
However, any recompilation due to .doj files provided on the
command line will reread the same .pgo file as when the source was
previously compiled.

Figure 2-2. PGO Process on Hardware

Source Files

Data

Profile with
Hardware

Compile with
.pgo

Compile with
-O -pguide -prof-hw

.dxe .pgo .dxe

CrossCore Embedded Studio 1.0 2-15
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

For example, prof2.pgo is ignored in the following commands:

ccblkfn -O f2.c -o f2.doj prof1.pgo

ccblkfn -o prog.dxe f1.asm f2.doj prof2.pgo

Flushing PGO Data in Multi-Threaded and Non-Terminating
Applications

Applications that are optimized with profile-guided optimization for
hardware must ensure that the profiling information is flushed to the host
machine. Flushing occurs when any of the following conditions are met:

• In an application linked with the single-threaded run-time librar-
ies, data is flushed when the profile-guided optimization data
buffer is full.

• In an application linked with the threadsafe run-time libraries,
once the profile-guided optimization data buffer is 75% full, data
will be flushed at the next available opportunity.

• When the profile-guided optimization maximum flush interval has
been exceeded. By default, the maximum flush interval is 10
minutes.

• When the application explicitly requests a flush of the pro-
file-guided optimization data.

Applications which do not terminate (and multi-threaded applications)
must be modified to flush the data at an appropriate time. To request a
flush of the data, add a call to the function pgo_hw_request_flush(). The
example code in Listing 2-1 shows a function that has been modified to
flush the profile-guided data. The required changes are conditionally
included when the preprocessor macro _PGO_HW is defined. The _PGO_HW
macro is only defined when the application is compiled with the -pguide
and -prof-hw compiler switches. Flushing the data to the host is a
cycle-intensive operation, so you should consider carefully where to place

General Guidelines

2-16 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

the call to flush within your application. In Listing 2-1, the flush request
has been placed in function do_pgo_flush(), which is called after the crit-
ical data loop in an attempt to reduce the impact of the profiling on the
application’s behavior. do_pgo_flush() is marked by #pragma
pgo_ignore, so that no profile information is generated for the function.
Isolating the flushing action in this manner is important because the veri-
fies that a gathered profile matches the function’s structure, before using
the profile in optimization; if pgo_hw_request_flush() was conditionally
called directly from main_loop(), when the application was recompiled
with the gathered profile, but without the -prof-hw switch, the compiler
would see that the call was now absent, making the profile invalid, and
causing the optimizer to disregard the profile.

Listing 2-1. Flushing Profile-Guided Optimization Data from an
Application

#if defined(_PGO_HW)

#include <pgo_hw.h>

#endif

extern int get_task(void);

#pragma pgo_ignore

static void do_pgo_flush(void) {

#if defined(_PGO_HW)

 pgo_hw_request_flush();

#endif

}

void main_loop(void) {

while (1) {

int task = get_task();

if (task == 1) {

// perform critical data loop

CrossCore Embedded Studio 1.0 2-17
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

do_pgo_flush();

} else {

// other tasks

}

}

}

Restrictions on Profile Guided Optimization for Hardware

Profile-guided optimization for hardware is not supported in applications
that use the five-project run-time model for dual-core processors.

Profile-Guided Optimization and Multiple Source Uses

In some applications, it is convenient to build the same source file in more
than one way within the same application. For example, a source file
might be conditionally compiled with different macro settings. Alterna-
tively, the same file might be compiled once, but linked more than once
into the same application in a multi-core or multiprocessor environment.
In such circumstances, the typical behaviors of each instance in the appli-
cation might differ. Identify and build the instances separately so that they
can be profiled individually and optimized according to their typical use.

The -pgo-session switch (on page 1-71) (or PGO session name option)
is used to separate profiles in such cases. It is used during both stage 1,
where the compiler instruments the generated code for profiling, and dur-
ing stage 3, where the compiler uses gathered profiles to guide the
optimization.

During stage 1, when the compiler instruments the generated code, if the
-pgo-session switch is used, then the compiler marks the instrumentation
as belonging to the session’s session-id.

During stage 3, when the compiler reads gathered profiles, if the
-pgo-session switch is used, then the compiler ignores all profile data not
generated from code that was marked with the same session-id.

General Guidelines

2-18 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Therefore, the compiler can optimize each variant of the source’s build
according to how the variant is used, rather than according to an average
of all uses.

Profile-Guided Optimization and the -Ov num Switch

When a .pgo file is placed on the command line, the optimization (-O)
switch, by default, tries to balance between code performance and
code-size considerations. It is equivalent to using the -Ov 50 switch.
To optimize solely for performance while using PGO, use the -Ov 100
switch. The -Ov num switch (on page 1-66) is discussed further along with
optimization for space in Smaller Applications: Optimizing for Code Size.

Profile-Guided Optimization and Multiple PGO Data Sets

When using profile-guided optimization with an executable constructed
from multiple source files, the use of multiple PGO data sets will result in
the creation of a temporary PGO information file (.pgi). This file is used
by the compiler and prelinker to ensure that temporary PGO files can be
recreated and to identify cases where objects and PGO data sets are
invalid.

The compiler reports an error if any of the PGO data files have been mod-
ified between the initial compilation of an object and any recompilation
that occurs at the final link stage. To avoid this error, perform a full
recompilation after running the application to generate .pgo data files.

When to Use Profile-Guided Optimization

PGO should be performed as the last optimization step. If the application
source code is changed after gathering profile data, this profile data
becomes invalid. The compiler does not use profile data when it can detect
that it is inaccurate. However, it is possible to change source code in a way
that is not detectable to the compiler (for example, by changing
constants). You should ensure that the profile data used for optimization
remains accurate.

CrossCore Embedded Studio 1.0 2-19
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

For more details on PGO, refer to Optimization Control.

An example application demonstrates how to use PGO in Example of
Using Profile-Guided Optimization.

Using Interprocedural Optimization

To obtain the best performance, the optimizer often requires information
that can only be determined by looking outside the function on which it is
working. For example, it helps to know what data can be referenced by
pointer parameters or whether a variable actually has a constant value. The
-ipa compiler switch (on page 1-49) enables interprocedural analysis
(IPA), which can make this information available. When this switch is
used, the compiler is called again from the link phase to recompile the
program, using additional information obtained during previous
compilations.

This gathered information is stored within the object file generated during
initial compilation. IPA retrieves the gathered information from the object
file during linking and uses it to recompile available source files where
beneficial. Because recompilation is necessary, IPA-built modules in
libraries can contribute to the optimization of application sources, but do
not themselves benefit from IPA, as their source is not available for
recompilation.

Because it operates only at link-time, the effects of IPA are not seen if you
compile with the -S switch (on page 1-80). To see the assembly file when
IPA is enabled, use the -save-temps switch (on page 1-81) and look at the
.s file produced after your program has been built.

As an alternative to IPA, you can achieve many of the same benefits by
adding pragma directives and other declarations such as aligned() to
provide information to the compiler about how each function interacts
with the rest of the program.

General Guidelines

2-20 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

These directives are further described in Using the aligned() built-in and
Using Pragmas for Optimization.

The volatile Type Qualifier
The volatile type qualifier is used to inform the compiler that it may not
make any assumptions about a variable or memory location (or a series of
them), and that such variables must be read from or written to as specified
and in the same order as in the source code.

Failure to use volatile when necessary is a common programming error
that can cause an application to fail when built in Release configuration
with compiler optimizations enabled. This is because the compiler
assumes that all non-volatile memory is modified explicitly and does not
change in a way the compiler cannot see. This assumption is used exten-
sively during optimization, where values held in memory may not be
reloaded if they do not appear to have changed. Since the cases listed
below do not adhere to the compiler’s assumptions, the compiler must be
informed of these situations through the use of the volatile type
qualifier.

It is essential to make the following types of objects volatile-qualified in
your application source:

• An object that is a memory-mapped register (MMR) or a mem-
ory-mapped device.

• An object that is shared between multiple concurrent threads of
execution. This includes data that is shared between processors or
data written by DMA.

CrossCore Embedded Studio 1.0 2-21
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

• An object that is modified by an asynchronous event handler
(for example, a global variable modified by an interrupt handler).

• An automatic storage duration object (i.e. a local variable declared
on the stack) declared in a function that calls setjmp() and whose
value is changed between the call to setjmp() and a corresponding
call to longjmp().

Data Types
Table 2-2 shows compiler-supported scalar data types.

Table 2-2. Scalar Data Types

Data Type Description

Single-Word Integer Data Types: Native Arithmetic

char 8-bit signed integer

unsigned char 8-bit unsigned integer

short 16-bit signed integer

unsigned short 16-bit unsigned integer

int 32-bit signed integer

unsigned int 32-bit unsigned integer

long 32-bit signed integer

unsigned long 32-bit unsigned integer

Fixed-Point Data Types: Native and Emulated Arithmetic

short fract 16-bit signed fractional

fract 16-bit signed fractional

long fract 32-bit signed fractional

unsigned short fract 16-bit unsigned fractional

unsigned fract 16-bit unsigned fractional

unsigned long fract 32-bit unsigned fractional

short accum 40-bit signed fixed-point

General Guidelines

2-22 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The fixed-point data types fract and accum may be used by including the
stdfix.h header file. Alternatively, the fractional data types fract16 and
fract32 can be used, which are typedefs to integer types. Manipulation of
the fract16 and fract32 data types is best done by using the built-in
functions, described in Using System Support Built-In Functions.

accum 40-bit signed fixed-point

long accum 40-bit signed fixed-point

short unsigned accum 40-bit unsigned fixed-point

unsigned accum 40-bit unsigned fixed-point

long unsigned accum 40-bit unsigned fixed-point

Double-Word Integer Data Types: Emulated Arithmetic

long long 64-bit signed integer

unsigned long long 64-bit unsigned integer

Floating-Point Data Types: Emulated Arithmetic

float 32-bit float

double The size of the double type differs depending on the
options used. If the Double size option or the -dou-
ble-size-64 switch is used, double is a 64-bit float-
ing-point type; otherwise, it is a 32-bit floating-point
type.

long double 64-bit floating-point

Table 2-2. Scalar Data Types (Cont’d)

Data Type Description

CrossCore Embedded Studio 1.0 2-23
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Optimizing a struct

Memory can be saved if a struct is declared with the members ordered by
size. The following example occupies 8 bytes of memory.

struct optimal_struct {

char element1,element2;

short element3;

int element4;

};

However, the following example occupies 12 bytes of memory.

struct non_optimal_struct {

char element1; /* 3 bytes of padding */

int element2;

short element3;

char element4; /* 1 byte of padding */

};

When the compiler generates a memory access, the access will be to a 1-,
2-, or 4-byte unit. Such accesses must be naturally aligned, meaning that
2-byte accesses must be to even addresses, and 4-byte accesses must be to
addresses on a 4-byte boundary. Failure to align addresses results in a mis-
aligned memory access exception.

The compiler is required to retain the order of members of a struct, and
must ensure these alignment constraints are met. Therefore, by default,
the compiler inserts any necessary padding to ensure that elements are
aligned on their required boundaries. Padding is also inserted after the last
member of a struct if required, to ensure that the struct’s size is a multi-
ple of the struct’s strictest member alignment.

General Guidelines

2-24 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Be aware of the following additional rules of padding:

• If any member has a 4-byte alignment, the struct is a multiple of
4 bytes in size.

• Otherwise, if any member has a two-byte alignment, the struct is
a multiple of two bytes in size.

• Otherwise, no end-of-struct padding is required.

Therefore, for a concrete example, if you have

struct non_optimal_struct test[2];

and if the compiler did not insert padding into the struct
non_optimal_struct, the size of struct non_optimal_struct would be
8 bytes, and test[] array would be 16 bytes in size. Then, if

int x = test[1].element2;

this would be attempting to read an int (4 bytes) from a misaligned
address (address of test+9), and thus a hardware exception (misaligned
access) would occur.

Because the compiler adds appropriate padding in the struct
non_optimal_struct, the int read will read a 4-byte aligned address
(address of test+16), and the access will succeed.

As a rule of thumb, to get the smallest possible struct, place elements in
the struct in the following order:

typedef struct efficient_struct{

size_1_elements a,...;

size_2_elements b,...;

size_4_or_greater_elements c,...;

}

The compiler supports greater density of structs through the use of the
#pragma pack(n) directive. This allows you to reduce the necessary

CrossCore Embedded Studio 1.0 2-25
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

padding required in structs without reordering the struct’s members.
There is a trade-off implied, because the compiler must still observe the
architecture’s address-alignment constraints. When #pragma pack(n) is
used, it means that a struct member is being accessed across the required
alignment boundary, and the compiler must decompose the member into
smaller, appropriately-aligned components and issue multiple accesses.

See #pragma pad (alignopt) for more details.

Bit-Fields

The use of bit-fields in code can reduce the amount of data storage
required by an application, but will normally increase the amount of code
for an application (and thus make the application slower). This is because
more code is needed to access a bit-field than to access an intrinsic type
(char, int, and so on). Also, bit-fields may prevent the compiler from per-
forming optimizations that it could do on intrinsic types. However,
depending on the use of bit-fields, the total data bytes plus total code
bytes may be less when using bit-fields instead of intrinsic types.

The struct in the following example packs a 5-bit item, a 3-bit item,
an 8-bit item, and a 16-bit item into 4 bytes.

struct bitf {

int item1:5;

int item2:3;

char item3;

short item4;

};

The array struct bitf arr[1000] would save a significant amount of data
space over a non-bit-field version. However, compared to not using a
bit-field, more code would be generated to access the bit-field members of
the struct, and that code would be slower.

General Guidelines

2-26 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Avoiding Emulated Arithmetic

Arithmetic operations for some data types are implemented by library
functions because the processor hardware does not directly support these
types. Consequently, operations for these data types are far slower than
native operations—sometimes by a factor of a hundred—and also produce
larger code. These types are marked as “Emulated Arithmetic” in Data
Types.

The hardware does not provide direct support for division, so division and
modulus operations are almost always multi-cycle operations, even on
integral type inputs. If the compiler has to issue a full-division operation,
it usually needs to generate a call to a library function. One instance in
which a library call is avoided is for integer division when the divisor is a
compile-time constant and is a power of two. In this case, the compiler
generates a shift instruction. Even then, a few fix-up instructions are
needed after the shift if the types are signed. If you have a signed division
by a power of two, consider whether you can change it to unsigned to
obtain a single-instruction operation.

When the compiler has to generate a call to a library function for an arith-
metic operator not supported by the hardware, performance would suffer
not only because the operation takes multiple cycles, but also because the
effectiveness of the compiler optimizer is reduced.

Avoid emulated arithmetic operators where possible, especially in loops,
where their use can inhibit more advanced optimization techniques, such
as vectorization.

Getting the Most From IPA
Interprocedural analysis (IPA) is designed to try to propagate information
about the program to parts of the optimizer that can use it. This section
looks at what information is useful, and how to structure your code to
make this information easily accessible for analysis.

CrossCore Embedded Studio 1.0 2-27
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The performance features are:

• Initializing Constants Statically

• Word-Aligning Your Data

• Using the aligned() built-in

• Avoiding Aliases

Initializing Constants Statically

IPA identifies variables that have only one value and replaces them with
constants, resulting in a host of benefits for the optimizer’s analysis.
For this to happen, a variable must have a single value throughout the pro-
gram. If the variable is statically initialized to zero (as are all global
variables, by default) and is subsequently assigned some other value at
another point in the program, then the analysis sees two values and does
not consider the variable to have a constant value.

For example,

// BAD: IPA cannot see that val is a constant.

#include <stdio.h>

int val; // initialized to zero

void init() {

val = 3; // re-assigned

}

void func() {

printf("val %d",val);

}

int main() {

init();

func();

}

General Guidelines

2-28 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The code is better written as:

//GOOD: IPA knows val is 3.

#include <stdio.h>

const int val = 3; // initialized once

void init() {

}

void func() {

printf("val %d",val);

}

int main() {

init();

func();

}

Word-Aligning Your Data

To make most efficient use of the hardware, it must be continually fed
with data. In many algorithms, the balance of data accesses to computa-
tions is such that, to keep the hardware fully utilized, data must be fetched
with loads wider than 8 or 16 bits.

The hardware requires that references to memory be naturally aligned.
Thus, 16-bit references must be at even address locations, and 32-bit ref-
erences be at word-aligned addresses. Therefore, to generate the most
efficient code, ensure that data buffers are word-aligned.

The compiler helps to establish the alignment of array data. Top-level
arrays are allocated at word-aligned addresses, regardless of their data
types. In order to do this for local arrays, the compiler also ensures that
stack frames are kept word-aligned. However, arrays within structures are
not aligned beyond the required alignment for their type. Consider using
the #pragma align 4 directive to force the alignment of arrays in this case.

CrossCore Embedded Studio 1.0 2-29
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

If you write programs that pass only the address of the first element of an
array as a parameter, and loops that process these input arrays an element
at a time, starting at element zero, then IPA should be able to establish
that the alignment is suitable for full-width accesses.

Where an inner loop processes a single row of a multi-dimensional array,
try to ensure that each row begins on a word boundary. In particular,
two-dimensional arrays should be defined in a single block of memory
rather than as an array of pointers to rows all separately allocated with
malloc. It is difficult for the compiler to keep track of the alignment of the
pointers in the latter case. It may also be necessary to insert dummy data
at the end of each row to make the row length a multiple of four bytes.

Using the aligned() built-in

To avoid the need to use IPA to propagate alignment, and for situations
when IPA cannot guarantee the alignment (but you can), use the
aligned() built-in function to assert the alignment of important pointers,
meaning that the pointer points to data that is aligned.

 When adding this declaration, you are responsible for ensuring that
it is valid. If the assertion is not true, the code produced by the
compiler is likely to malfunction.

The assertion is particularly useful for function parameters, although you
may assert that any pointer is aligned.

When compiling the following function, for example, the compiler does
not know the alignment of pointers a and b if IPA is not being used.

// BAD: Without IPA, the compiler does not know the alignment

// of a and b.

void copy(char *a, char *b) {

int i;

for (i=0; i<100; i++)

General Guidelines

2-30 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

a[i] = b[i];

}

However, by modifying the function as follows, the compiler is told that
the pointers are aligned on word boundaries.

// GOOD: Both pointer parameters are known to be aligned.

#include <builtins.h>

void copy(char *a, char *b) {

int i;

aligned(a, 4);

aligned(b, 4);

for (i=0; i<100; i++)

a[i] = b[i];

}

To assert instead that both pointers are always aligned one char before a
word boundary, use the following:

// GOOD: Both pointer parameters are known to be misaligned.

#include <builtins.h>

void copy(char *a, char *b) {

int i;

aligned(a+1, 4);

aligned(b+1, 4);

for (i=0; i<100; i++)

a[i] = b[i];

}

The expression used as the first parameter to the built-in function obeys
the usual C rules for pointer arithmetic. The second parameter should give
the alignment in bytes as a literal constant.

CrossCore Embedded Studio 1.0 2-31
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Avoiding Aliases

It may seem that the iterations can be performed in any order in the fol-
lowing loop:

// BAD: a and b may alias each other.

void fn(char a[], char b[], int n) {

int i;

for (i = 0; i < n; ++i)

a[i] = b[i];

}

But a and b are both parameters, and, although they are declared with [],
they are pointers that may point to the same array. When the same data
may be reachable through two pointers, they are said to alias each other.

If IPA is enabled, the compiler looks at the call sites of fn and tries to
determine whether a and b can ever point to the same array.

Even with IPA, it is easy to create what appears to the compiler as an alias.
The analysis works by associating pointers with sets of variables that they
may refer to at some point in the program. If the sets for two pointers
intersect, then both pointers are assumed to point to the union of the two
sets.

If fn above were called only in two places, with global arrays as arguments,
then IPA would have the results shown below:

// GOOD: sets for a and b do not intersect:

// a and b are not aliases.

fn(glob1, glob2, N);

fn(glob1, glob2, N);

// GOOD: sets for a and b do not intersect:

// a and b are not aliases.

fn(glob1, glob2, N);

fn(glob3, glob4, N);

General Guidelines

2-32 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

// BAD: sets intersect - both a and b may access glob1;

// a and b may be aliases.

fn(glob1, glob2, N);

fn(glob3, glob1, N);

The third case arises because IPA considers the union of all calls at once,
rather than considering each call individually, when determining whether
there is a risk of aliasing. If each call were considered individually, IPA
would have to take flow control into account and the number of permuta-
tions would significantly lengthen compilation time.

The lack of control flow analysis can also create problems when a single
pointer is used in multiple contexts. For example, it is better to write

// GOOD: p and q do not alias.

int *p = a;

int *q = b;

// some use of p

// some use of q

than

// BAD: Uses of p in different contexts may alias.

int *p = a;

// some use of p

p = b;

// some use of p

because the latter may cause extra apparent aliases between the two uses.

CrossCore Embedded Studio 1.0 2-33
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Indexed Arrays Versus Pointers
The C language allows a program to access data from an array in two ways:
either by indexing from an invariant base pointer, or by incrementing a
pointer. The following two versions of vector addition illustrate the two
styles.

Style 1: Using indexed arrays (indexing from a base pointer)

void va_ind(const short a[], const short b[], short out[], int n)

{

int i;

for (i = 0; i < n; ++i)

out[i] = a[i] + b[i];

}

Style 2: Incrementing a pointer

void va_ptr(const short a[], const short b[], short out[], int n)

{

int i;

short *pout = out;

const short *pa = a, *pb = b;

for (i = 0; i < n; ++i)

*pout++ = *pa++ + *pb++;

}

Trying Pointer and Indexed Styles

One might hope that the chosen style would not matter to the generated
code, but this is not always the case. Sometimes, one version of an algo-
rithm generates better optimized code than the other, but it is not always
the same style that is better.

 Try both pointer and indexed styles.

General Guidelines

2-34 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The pointer style introduces additional variables that compete with the
surrounding code for resources during the compiler optimizer’s analysis.
Array accesses, on the other hand, must be transformed to pointers by the
compiler, and sometimes this is accomplished better by hand.

The best strategy is to start with array notation. If the generated code
looks unsatisfactory, try using pointers. Outside the critical loops, use the
indexed style, since it is easier to understand.

Using Function Inlining
Function inlining may be used in two ways:

• By annotating functions in the source code with the inline key-
word. In this case, function inlining is performed only when
optimization is enabled.

• By turning on automatic inlining with the -Oa switch
(on page 1-66) or the Project > Properties > C/C++ Build > Set-
tings > Tool Settings > Compiler > General > Inlining option to
Automatic, automatically enabling optimization.

 Inlining small frequently executed functions should improve appli-
cation performance as it avoids call overheads and allows the
compiler to optimize the code more effectively.

You can use the compiler’s inline keyword to indicate that functions
should have code generated inline at the point of call. Doing this avoids
various costs such as program flow latencies, function entry and exit
instructions, and parameter passing overheads.

Using an inline function also has the advantage that the compiler can
optimize through the inline code and does not have to assume that scratch
registers and condition states are modified by the call. Prime candidates
for inlining are small, frequently-used functions because they cause the
least code-size increase while giving most performance benefit.

CrossCore Embedded Studio 1.0 2-35
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

As an example of the usage of the inline keyword, the function below
sums two input parameters and returns the result.

// GOOD: use of the inline keyword.

inline int add(int a, int b) {

return (a+b);

}

Inlining has a code size-to-performance trade-off that should be consid-
ered. With -Oa, the compiler automatically inlines small functions where
possible. If the application has a tight upper code-size limit, the resulting
code-size expansion may be too great. Consider using automatic inlining
in conjunction with the -Ov num switch (on page 1-66) or the Optimize
for code speed/size slider to restrict inlining (and other optimizations
with a code-size cost) to parts of the application that are performance-crit-
ical. It is discussed in more detail later in this chapter.

For more information, see Function Inlining.

Using Inline asm Statements
The compiler allows use of inline asm statements to insert small sections of
assembly into C code.

 Avoid use of inline asm statements where built-in functions may be
used instead.

The compiler does not intensively optimize code that contains
inline asm statements because it has little understanding about what
the code in the statement does. In particular, use of an asm state-
ment in a loop may inhibit useful transformations.

General Guidelines

2-36 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The compiler offers many built-in functions that generate specific hard-
ware instructions. These are designed to allow the programmer to more
finely tune the code produced by the compiler, or to allow access to
system support functions. A complete list of compiler’s built-in functions
is given in Compiler Built-In Functions.

Use of these built-in functions is much preferred to using inline asm state-
ments. Since the compiler knows what each built-in does, it can easily
optimize around them. Conversely, since the compiler does not parse asm
statements, it does not know what they do, and so is hindered in optimiz-
ing code that uses them. Note also that errors in the text string of an asm
statement are caught by the assembler and not by the compiler.

Examples of efficient use of built-in functions are given in Using System
Support Built-In Functions.

For more information, see Inline Assembly Language Support Keyword
(asm).

Memory Usage
The compiler, in conjunction with the use of the linker description file
(.ldf), allows the programmer control over data placement in memory.
This section describes how to best lay out data for maximum performance.

 Try to put arrays into different memory sections to support effi-
cient memory operations.

The processor hardware can support two memory operations on a single
instruction line, combined with a compute instruction. Two memory
operations will only complete in one cycle if the two addresses are situated
in different memory blocks. If both access the same block, the processor
stalls.

CrossCore Embedded Studio 1.0 2-37
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Consider the dot product loop below. Because data is loaded from both
array a and array b in every iteration of the loop, it may be useful to ensure
that these arrays are located in different blocks.

Therefore,

// BAD: compiler assumes that two memory accesses together

// may give a stall.

for (i=0; i<100; i++)

sum += a[i] * b[i];

You could define two memory banks in the MEMORY portion of the .ldf
file.

Example: MEMORY portion of the .ldf file modified to define memory
banks.

MEMORY {

BANK_A1 {

TYPE(RAM) WIDTH(8)

START(start_address_1) END(end_address_1)

}

BANK_A2 {

TYPE(RAM) WIDTH(8)

START(start_address_2) END(end_address_2)

}

}

Then, you could configure the SECTIONS portion to tell the linker to place
data sections in specific memory banks.

Example: SECTIONS portion of the .ldf file modified to define memory
banks.

SECTIONS {

bank_a1 {

INPUT_SECTION_ALIGN(4)

General Guidelines

2-38 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

INPUT_SECTIONS($OBJECTS(bank_a1))

} >BANK_A1

bank_a2 {

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(bank_a2))

} >BANK_A2

}

In the C source code, you can declare arrays with the sec-
tion("section_name") pragma preceding a buffer declaration; in this case,

#pragma section("bank_a1")

short a[100];

#pragma section("bank_a2")

short b[100];

This ensures that the two array accesses in the dot product loop may occur
simultaneously without incurring a stall.

The default .ldf files and those generated by the IDE provide a number
of subdivisions within each physical memory area, so it is not usually nec-
essary to modify your .ldf file directly. When possible, use the existing
partitioning, so that you do not have to re-apply your changes when
upgrading to a future version of the product.

Using the Bank Qualifier

The bank qualifier can be used to write functions that use the fact that
buffers are placed in separate memory blocks.

For example, it might be useful to create a function if you would like to
call func in different places, but always with pointers to buffers in differ-
ent sections of memory.

// GOOD: uses bank qualifier to allow simultaneous access

// to p and q.

void func(int bank("red") *p, int bank("blue") *q) {

CrossCore Embedded Studio 1.0 2-39
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

// some code

}

The bank qualifier tells the compiler that the buffers are in different sec-
tions without requiring that the sections themselves be specified.

Therefore, func may be called with the first parameter pointing to mem-
ory in section("bank_a1") and the second pointing to data in
section("bank_a2") or vice versa. You must still explicitly place the data
buffers in the memory sections. The bank qualifier merely informs the
compiler that it may assume this has been done to generate more efficient
code. Refer to Memory Banks for more information.

Improving Conditional Code
When compiling conditional statements, the compiler attempts to deter-
mine whether the condition will usually evaluate to true or to false, and
will arrange for the most efficient path of execution to be that which is
expected to be most commonly executed. The compiler makes these deci-
sions based on the information in the following order:

1. If you have generated an execution profile of the function using
profile-guided optimization (PGO), the compiler will compare the
relative counts of the true/false paths for the branch, and will mark
the path with the highest execution count as the predicted path.

2. Otherwise, if you have used one of the compiler built-in functions
for explicit branch prediction (Compiler Performance Built-In
Functions) the compiler will make the prediction as directed.

3. In the absence of all other information, the compiler will attempt
to predict the branch based on heuristics and information within
the source code.

Improving Conditional Code

2-40 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

This section describes:

• Using Compiler Performance Built-In Functions

• Using PGO in Function Profiling

Using Compiler Performance Built-In Functions
You can use the expected_true and expected_false built-in functions to
control the compiler’s optimization of conditional branches. By using
these functions, you can tell the compiler which way a condition is most
likely to evaluate. This influences the default flow of execution.

The following example shows two nested conditional statements.

if (buffer_valid(data_buffer))

if (send_msg(data_buffer))

system_failure();

If it was known that, for this example, buffer_valid() would usually
return true, but that send_msg() would rarely do so, the code could be
written as:

if (expected_true(buffer_valid(data_buffer)))

if (expected_false(send_msg(data_buffer)))

system_failure();

Example of Compiler Performance Built-in Functions

The following example project demonstrates the use of these compiler per-
formance built-in functions:

Blackfin\Examples\No_HW_Required\ADSP-BF533\Branch_Prediction

CrossCore Embedded Studio 1.0 2-41
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The project loops through a section of character data, counting the differ-
ent types of characters it finds. It produces three overall counts: lowercase
letters, uppercase letters, and non-alphabetic characters. The effective test
is as follows:

if (isupper(c))

nAZ++; // count one more uppercase letter

else if (islower(c))

naz++; // count one more lowercase letter

else

nx++; // count one more non-alphabetic character

The performance of the application is determined by the compiler’s ability
to correctly predict which of these two tests is going to evaluate as true
most frequently.

In the source code for this example, the two tests are enclosed in two
macros, EXPRA(c) and EXPRB(c):

if (EXPRA(isupper(c)))

nAZ++; // count one more uppercase letter

else if (EXPRB(islower(c)))

naz++; // count one more lowercase letter

else

nx++; // count one more non-alphabetic character

The macros are conditionally defined according to the macro EXPRS, at
compile-time, as shown by Table 2-3. By setting EXPRS to different values,
you can see the effect the compiler performance built-in functions have on
the application’s overall performance. By leaving the EXPRS macro unde-
fined, you can see how the compiler’s default heuristics compare.

Improving Conditional Code

2-42 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

To use the example, do the following:

1. Import the Branch_Prediction project into your workspace:

a. Select File > Import.

b. Choose General > Existing Projects into Workspace.

c. Ensure Select root directory is checked.

d. Browse to the Blackfin\Examples\
No_HW_Required\ADSP-BF533\Branch_Prediction directory.
Click OK.

e. Check the Branch_Prediction project.

f. Ensure Copy projects into workspace is checked.

g. Click Finish.

2. Build the project.

3. Create a launch configuration for the ADSP-BF533 Blackfin pro-
cessor, for the executable you have just built.

4. Launch the configuration, and run the executable to completion.
You will see some output on the console as the project reports the
number of characters of each type found in the string. The applica-
tion will also report the number of cycles used.

Table 2-3. How Macro EXPRS Affects Macros EXPRA and EXPRB

Value of EXPRS EXPRA expected to be EXPRB expected to be

Undefined No prediction No prediction

1 True True

2 False True

3 True False

4 False False

CrossCore Embedded Studio 1.0 2-43
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

5. Open Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Preprocessor.

6. In the Defines field, add EXPRS=1. Click OK.

7. Re-build and re-run the application. You will receive the same
counts from the application, but the cycle counts will be different.

8. Try using values 2, 3, or 4 for EXPRS instead, and determine which
combination of expected_true() and expected_false() built-in
functions produces the best performance.

See Compiler Performance Built-In Functions for more information.

Using PGO in Function Profiling
The compiler can also determine the most commonly-executed branches
automatically, using profile-guided optimization (PGO). See Optimiza-
tion Control for more details.

Example of Using Profile-Guided Optimization

Continuing with the same example (on page 2-40), PGO can determine
the best settings for the branches in EXPRA(c) and EXPRB(c) (and all other
parts of the source code) using profiling.

 Normally, when using PGO, you would configure one or more
input files as part of your data set. The application would read its
inputs from these files, via the peripherals the application uses, and
the data would influence the gathered profile. For this example, all
the input data is embedded in the application source.

Improving Conditional Code

2-44 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Opening the Project

To use the example, do the following:

1. Import the Branch_Prediction project into your workspace:

a. Select File > Import.

b. Choose General > Existing Projects into Workspace.

c. Ensure Select root directory is checked.

d. Browse to the Blackfin\Examples\
No_HW_Required\ADSP-BF533\Branch_Prediction directory.
Click OK.

e. Check the Branch_Prediction project.

f. Ensure Copy projects into workspace is checked.

g. Click Finish.

2. Ensure that the Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Preprocessor > Defines field does not
contain a definition for EXPRS.

3. Build the project.

4. Create a launch configuration for the ADSP-BF533 Blackfin pro-
cessor, for the executable you have just built.

5. Launch the configuration, and run the executable to completion.
You will see some output on the console as the project reports the
number of characters of each type found in the string. The applica-
tion will also report the number of cycles used.

CrossCore Embedded Studio 1.0 2-45
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Gathering the Profile

To gather the profile on a simulator launch configuration:

1. Select Project > Properties > C/C++ Build > Settings
>Tool Settings > Compiler > Profile-guided Optimization >
Prepare application to create new profile.

2. In your launch configuration, go to the Automatic Breakpoints
tab, and add a new software breakpoint on the label start.

3. Build the application, and launch it.

4. When the start breakpoint is reached, select Target > PGO >
Simulator > Start.

5. Continue running the application, until it reaches the
__lib_prog_term label.

6. Select Target > PGO > Simulator > Stop and Save.

Because the application is running on a simulator, the simulator does the
work of gathering the profile, so the cycle-count will be the same as
before.

To gather the profile on a hardware launch configuration:

1. Select Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Profile-guided Optimization >
Gather profile using hardware.

2. Select Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Profile-guided Optimization >
Prepare application to create new profile.

3. Build the application, and launch it.

4. Continue running the application, until it reaches the
__lib_prog_term label.

Improving Conditional Code

2-46 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Because the application is running on hardware, the compiler has planted
additional code to gather the profile, so the cycle-count reported will be
considerably higher than before. This is not a concern.

Rebuilding With the Profile

The profile will have been gathered into the file
Debug\Branch_Prediction.pgo, within your project’s directory. You now
need to rebuild the application using this profile, telling the compiler to
optimize the application according to execution counts for each path in
the program. To do this:

1. Choose Project > Properties > C/C++ Build > Settings >
Tool Settings > Compiler > Profile-guided Optimization.

a. Ensure Gather profile using hardware is not selected.

b. Ensure Prepare application to create new profile is not
selected.

c. Select Optimize using existing profiles.

d. Add Debug\Branch_Prediction.pgo to the list of profiles.

2. Click the General (under Compiler) page. Ensure Enable Optimi-
zation is selected.

3. Rebuild the application.

Now relaunch and run your rebuilt application. You will see a lower cycle
count than first reported, as the compiler has rearranged the generated
code so that the most commonly-executed paths are the defaults.

CrossCore Embedded Studio 1.0 2-47
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Loop Guidelines
Loops are where an application ordinarily spends the majority of its time.
It is therefore useful to look in detail at how to help the compiler to pro-
duce the most efficient loop code.

This section describes:

• Keeping Loops Short

• Avoiding Unrolling Loops

• Avoiding Loop-Carried Dependencies

• Avoiding Loop Rotation by Hand

• Avoiding Complex Array Indexing

• Inner Loops Versus Outer Loops

• Avoiding Conditional Code in Loops

• Avoiding Placing Function Calls in Loops

• Avoiding Non-Unit Strides

• Using 16-Bit Data Types and Vector Instructions

• Loop Control

• Using the Restrict Qualifier

Keeping Loops Short
For best code efficiency, loops should be short. Large loop bodies are usu-
ally more complex and difficult to optimize. Large loops may also require
register data to be stored in memory, which decreases code density and
execution performance.

Loop Guidelines

2-48 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Avoiding Unrolling Loops

 Do not unroll loops yourself.

Not only does loop unrolling make the program harder to read, but also
prevents optimization by complicating the code for the compiler.

// GOOD: the compiler unrolls if it helps.

void va1(const short a[], const short b[], short c[], int n) {

int i;

for (i = 0; i < n; ++i) {

c[i] = b[i] + a[i];

}

}

// BAD: harder for the compiler to optimize.

void va2(const short a[], const short b[], short c[], int n) {

short xa, xb, xc, ya, yb, yc;

int i;

for (i = 0; i < n; i+=2) {

xb = b[i]; yb = b[i+1];

xa = a[i]; ya = a[i+1];

xc = xa + xb; yc = ya + yb;

c[i] = xc; c[i+1] = yc;

}

}

Avoiding Loop-Carried Dependencies
A loop-carried dependency exists when a computation in a given iteration
of a loop cannot be completed without knowledge of values calculated in
earlier iterations. When a loop has such dependencies, the compiler can-
not overlap loop iterations. Some dependencies are caused by scalar
variables that are used before they are defined in a single iteration.

CrossCore Embedded Studio 1.0 2-49
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

However, if the loop-carried dependency is part of a reduction computa-
tion, the optimizer can reorder iterations. Reductions are loop
computations that reduce a vector of values to a scalar value using an asso-
ciative and commutative operator. A multiply and accumulate in a loop is
a common example of a reduction.

// BAD: loop-carried dependence in variable x.

for (i = 0; i < n; ++i)

x = a[i] - x;

// GOOD: loop-carried dependence is a reduction.

for (i = 0; i < n; ++i)

x += a[i] * b[i];

In the first case, the scalar dependency is the subtraction operation. The
variable x is modified in a manner that would give different results if the
iterations were performed out of order. In contrast, in the second case,
because the addition operator is associative and commutative, the com-
piler can perform the iterations in any order and still get the same result.
Other examples of reductions are bitwise and/or and min/max operators.
The existence of loop-carried dependencies that are not reductions pre-
vents the compiler from vectorizing a loop—that is, executing more than
one iteration concurrently.

Avoiding Loop Rotation by Hand

 Do not rotate loops by hand.

Programmers are often tempted to “rotate” loops in DSP code by hand,
attempting to execute loads and stores from earlier or future iterations at
the same time as computation from the current iteration. This technique
introduces loop-carried dependencies that prevent the compiler from rear-
ranging the code effectively. It is better to give the compiler a simpler
version, and leave the rotation to the compiler.

Loop Guidelines

2-50 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

For example,

// GOOD: is rotated by the compiler.

int ss(short *a, short *b, int n) {

int sum = 0;

int i;

for (i = 0; i < n; i++) {

sum += a[i] + b[i];

}

return sum;

}

// BAD: rotated by hand: hard for the compiler to optimize.

int ss(short *a, short *b, int n) {

short ta, tb;

int sum = 0;

int i = 0;

ta = a[i]; tb = b[i];

for (i = 1; i < n; i++) {

sum += ta + tb;

ta = a[i]; tb = b[i];

}

sum += ta + tb;

return sum;

}

Rotating the loop required adding the scalar variables ta and tb and
introducing loop-carried dependencies.

CrossCore Embedded Studio 1.0 2-51
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Avoiding Complex Array Indexing
Other dependencies can be caused by writes to array elements. In the fol-
lowing loop, the optimizer cannot determine whether the load from a
reads a value defined on a previous iteration or one that will be overwrit-
ten in a subsequent iteration.

// BAD: has array dependency.

for (i = 0; i < n; ++i)

a[i] = b[i] * a[c[i]];

The optimizer can resolve access patterns where the addresses are expres-
sions that vary by a fixed amount on each iteration. These are known as
“induction variables”.

// GOOD: uses induction variables.

for (i = 0; i < n; ++i)

a[i+4] = b[i] * a[i];

Inner Loops Versus Outer Loops

 Inner loops should iterate more than outer loops.

The optimizer focuses on improving the performance of inner loops
because this is where most programs spend the majority of their time. It is
considered a good trade-off for an optimization to slow down the code
before and after a loop to make the loop body run faster. Therefore, try to
make sure that your algorithm also spends most of its time in the inner
loop; otherwise it may actually run slower after optimization. If you have
nested loops where the outer loop runs many times and the inner loop
runs a small number of times, try to rewrite the loops so that the outer
loop has fewer iterations.

Loop Guidelines

2-52 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Avoiding Conditional Code in Loops
If a loop contains conditional code, control-flow latencies may incur large
penalties if the compiler has to generate conditional jumps within the
loop. In some cases, the compiler is able to convert if-then-else and ?:
constructs into conditional instructions. In other cases, it can evaluate the
expression entirely outside of the loop. However, for important loops, lin-
ear code should be written where possible.

There are several techniques for removing conditional code. For example,
there is hardware support for min and max. The compiler usually succeeds
in transforming conditional code equivalent to min or max into the single
instruction. With particularly convoluted code the transformation may be
missed, in which case it is better to use min or max in the source code.

The compiler can sometimes perform the loop transformation that inter-
changes conditional code and loop structures. Nevertheless, instead of
writing

// BAD: loop contains conditional code.

for (i=0; i<100; i++) {

if (mult_by_b)

sum1 += a[i] * b[i];

else

sum1 += a[i] * c[i];

}

it is better to write the following if this is an important loop.

// GOOD: two simple loops can be optimized well.

if (mult_by_b) {

for (i=0; i<100; i++)

sum1 += a[i] * b[i];

} else {

for (i=0; i<100; i++)

CrossCore Embedded Studio 1.0 2-53
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

sum1 += a[i] * c[i];

}

Avoiding Placing Function Calls in Loops
The compiler usually is unable to generate a hardware loop if the loop
contains a function call due to the expense of saving and restoring the
context of a hardware loop. In addition, operations such as division, mod-
ulus, and some type coercions may implicitly call library functions. These
are expensive operations which you should try to avoid in inner loops. For
more details, see Data Types.

Avoiding Non-Unit Strides
If you write a loop, such as

// BAD: non-unit stride means division may be required.

for (i=0; i<n; i+=3) {

// some code

}

then for the compiler to turn this into a hardware loop, it needs to work
out the loop trip count. To do so, it must divide n by 3. The compiler may
decide that this is worthwhile as it speeds up the loop, but division is an
expensive operation. Try to avoid creating loop control variables with
strides other than 1 or -1.

In addition, try to keep memory accesses in consecutive iterations of an
inner loop contiguous. This is particularly applicable to multi-dimen-
sional arrays. Therefore,

// GOOD: memory accesses contiguous in inner loop.

for (i=0; i<100; i++)

for (j=0; j<100; j++)

sum += a[i][j];

Loop Guidelines

2-54 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

is likely to be better than

// BAD: loop cannot be unrolled to use wide loads.

for (i=0; i<100; i++)

for (j=0; j<100; j++)

sum += a[j][i];

as the former is more amenable to vectorization.

Using 16-Bit Data Types and Vector Instructions
If a 16-bit, rather than 32-bit, native data type is used within a critical
processing loop, the opportunities for parallel execution are increased.
This is because the compiler can potentially use vector instructions, which
perform simultaneous operations on multiple 16-bit values. For example,
consider the simple function:

int func(int *a, int *b, int size) {

int i;

int x = 0;

for (i= 0; i < size; i++) {

x += a[i] + b[i];

}

return x;

}

When compiled to assembly with optimizations enabled, the compiler
generates code that can potentially execute one iteration of the loop in two
cycles. The equivalent function that uses the short data type is as follows:

short func(short *a, short *b, int size) {

int i;

short x = 0;

for (i= 0; i < size; i++) {

CrossCore Embedded Studio 1.0 2-55
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

x += a[i] + b[i];

}

return x;

}

Here the compiler generates code that executes two iterations of the loop
in two cycles with use of a vector addition. In this example, using a short
data type doubles the performance of the loop.

Fractional arithmetic can also use vector instructions, and code generated
from fract16 built-in functions also uses these instructions as much as
possible.

For more information, see Effect of Data Type Size on Code Size.

Loop Control

 Use int types for loop control variables and array indices.
Use automatic variables for loop control and loop exit test.

For loop control variables and array indices, use signed ints rather than
other integral types. For other integral types, the C standard requires vari-
ous type promotions and standard conversions that complicate the code
for the compiler optimizer. Frequently, the compiler is still able to deal
with such code and create hardware loops and pointer induction variables;
however, it is more difficult for the compiler to optimize and may result in
under-optimized code.

The same advice goes for using automatic (local) variables for loop con-
trol. It is easy for a compiler to see that an automatic scalar whose address
is not taken may be held in a register during a loop. But it is not as easy
when the variable is a global or a function static.

Therefore, the following code may not create a hardware loop if the com-
piler cannot be sure that the write into the array a does not change the

Loop Guidelines

2-56 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

value of the global variable. The globvar variable must be reloaded each
time around the loop before performing the exit test.

// BAD: may need to reload globvar on every iteration.

for (i=0; i<globvar; i++)

a[i] = a[i] + 1;

In this circumstance, the programmer can make the compiler’s job easier
by writing:

// GOOD: easily becomes a hardware loop.

int upper_bound = globvar;

for (i=0; i<upper_bound; i++)

a[i] = a[i] + 1;

Using the Restrict Qualifier
The restrict qualifier provides one way to help the compiler resolve
pointer aliasing ambiguities. Accesses from distinct restricted pointers do
not interfere with each other.

The loads and stores in the following loop

// BAD: possible alias of arrays a and b

void copy(short *a, short *b) {

int i;

for (i=0; i<100; i++)

a[i] = b[i];

}

may be disambiguated by writing

// GOOD: restrict qualifier tells compiler that memory

// accesses do not alias

void copy(short * restrict a, short * restrict b) {

int i;

CrossCore Embedded Studio 1.0 2-57
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

for (i=0; i<100; i++)

a[i] = b[i];

}

Although the restrict keyword is particularly useful on function parame-
ters, it can be used on any variable declaration. For example, the copy
function may also be written as:

void copy(short *a, short *b) {

int i;

short * restrict p = a;

short * restrict q = b;

for (i=0; i<100; i++)

*p++ = *q++;

}

Manipulating Fixed-Point and Fractional
Data

Fractional data can be manipulated in different ways. This section
discusses the different approaches and their advantages and limitations. In
general, the styles using native fixed-point types or built-in functions are
recommended, as they give you the most control over your data.

The approaches are:

• Using Integer Arithmetic to Encode Fractional Semantics

• Using the Native Fixed-Point Types fract and accum

• Using Built-In Functions to Perform Fixed-Point Arithmetic

Manipulating Fixed-Point and Fractional Data

2-58 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Using Integer Arithmetic to Encode Fractional
Semantics

One way to manipulate fractional data involves the use of long promoted
shifts and multiply constructs. Consider the fractional dot product
algorithm. This may be written as:

// BAD: uses shifts to implement fractional multiplication.

long dot_product (short *a, short *b) {

int i;

long sum=0;

for (i=0; i<100; i++) {

/* this line is performance critical */

sum += (((long)a[i]*b[i]) << 1);

}

return sum;

}

This presents problems to the optimizer. Normally, the generated code
would be a multiply, followed by a shift, and then an accumulation.
However, the processor hardware has a fractional multiply/accumulate
instruction that performs all these tasks in one cycle.

In the example code, the compiler recognizes this idiom and replaces the
multiply followed by shift with a fractional multiply. In more complicated
cases, where perhaps the multiply is further separated from the shift, the
compiler may not detect the possibility of using a fractional multiply.

Moreover, the transformation may in fact be invalid since it turns non-sat-
urating integer operations into saturating fractional ones. Therefore, the
results may change if the summation overflows. The transformation is
enabled by default since it usually is what the programmer intended.

CrossCore Embedded Studio 1.0 2-59
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Using the Native Fixed-Point Types fract and
accum

A good way to write fixed-point arithmetic is to use the native fixed-point
types fract and accum. Fixed-point arithmetic is provided on these types
using the standard C operators +, -, *, and /. This means that the
semantics of the arithmetic are well-defined and clear to the compiler and
programmer. Moreover, there is useful run-time library support to provide
further manipulations on these types. For more information, see Using
Native Fixed-Point Types.

There is an important restrictions on using these types: they are not com-
pliant with MISRA-C, and so are not available when compiling with the
-misra switch.

You could write a dot product that operates on fractional data as follows:

// GOOD: uses native fixed-point types to implement fractional

multiplication

#include <stdfix.h>

long fract dot_product(fract *a, fract *b) {

int i;

accum sum=0.0k;

for (i=0; i<100; i++) {

/* this line is performance critical */

sum += a[i] * b[i];

}

return (long fract)sum;

}

Manipulating Fixed-Point and Fractional Data

2-60 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Using Built-In Functions to Perform Fixed-Point
Arithmetic

Another way to write fractional arithmetic is to use built-in functions.
This way makes the semantics of the operations clear to the compiler and
encourages writing code that maps well to the Blackfin processor, since
the built-in functions generally represent specific machine instructions. It
also has the advantage that it may be used in MISRA-C mode, but at the
expense of being less intuitive than using the native fixed-point types.

Built-in functions exist to manipulate 16- and 32-bit fractional data, as
well as 40-bit values held in the accumulator registers. For more informa-
tion, see Fractional Value Built-In Functions and Full-Precision
Accumulator Built-In Functions.

In the following example, a built-in function is used to multiply fractional
16-bit data.

// GOOD: uses built-ins to implement fractional multiplication

#include <math.h>

fract32 dot_product(fract16 *a, fract16 *b) {

int i;

fract32 sum=0;

for (i=0; i<100; i++) {

/* this line is performance critical */

sum += mult_fr1x32(a[i],b[i]);

}

return sum;

}

Note that the fract16 and fract32 types used in the example above are
merely typedefs to C integer types used by convention in standard
include files. The compiler does not have any in-built knowledge of these
types and treats them exactly as the integer types to which they are
typedef’ed.

CrossCore Embedded Studio 1.0 2-61
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Using Built-In Functions in Code
Optimization

Built-in functions, also known as compiler intrinsics, enable you to
efficiently use low-level features of the processor hardware while program-
ming in C. Although this section does not cover all the built-in functions
available, it presents some code examples where implementation choices
are available to the programmer. For more information, refer to Compiler
Built-In Functions.

Fractional Data
Built-in functions provide one way to perform arithmetic on fixed-point
data. The different approaches that can be used to work with fixed-point
data, including the use of built-in functions, are discussed in Manipulat-
ing Fixed-Point and Fractional Data.

Using System Support Built-In Functions
Numerous built-in functions are provided to perform low-level system
management, such as system register manipulation. Built-in functions are
recommended instead of inline asm statements.

The built-in functions cause the compiler to generate efficient inline
instructions and often result in better optimization of the surrounding
code at the point where they are used. Using built-in functions also results
in improved code readability. For more information on supported built-in
functions, refer to Compiler Built-In Functions.

Examples of the two styles are:

// BAD: uses inline asm statement.

unsigned int get_cycles(void) {

unsigned int ret_val;

Using Built-In Functions in Code Optimization

2-62 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

asm("%0 = CYCLES;" : "=d" (ret_val) : :);

return ret_val;

}

// GOOD: uses sysreg.h.

#include <ccblkfn.h>

#include <sysreg.h>

unsigned int get_cycles(void) {

return sysreg_read(reg_CYCLES);

}

This example reads and returns the CYCLES register.

Using Circular Buffers
Circular buffers are useful in DSP-style code. They can be used in several
ways. Consider the C code:

// GOOD: the compiler knows that b is accessed

// as a circular buffer.

for (i=0; i<1000; i++) {

sum += a[i] * b[i%20];

}

The access to array b is a circular buffer. When optimization is enabled,
the compiler produces a hardware circular buffer instruction for this
access.

Consider this more complex example.

// BAD: may not be able to use circular buffer to access b.

for (i=0; i<1000; i+=n) {

sum += a[i] * b[i%20];

}

CrossCore Embedded Studio 1.0 2-63
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

In this case, the compiler does not know if n is positive and less than 20.
If it is, the access may be correctly implemented as a hardware circular
buffer. If it is greater than 20, a circular buffer increment may not yield
the same results as the C code.

The programmer has two options here.

The first option is to compile with the -force-circbuf switch
(on page 1-43). This tells the compiler that any access of the form a[i%n]
is to be considered as a circular buffer. Before using this switch, check that
this assumption is valid for your application.

1. The value of i must be positive.

2. The value of n must be constant across the loop, and greater than
zero (as the length of the buffer).

3. The value of a must be a constant across the loop (as the base
address of the circular buffer).

4. The initial value of i must be such that a[i] refers a valid position
within the circular buffer. This is because the circular buffer opera-
tions will take effect when advancing from position a[i] to either
a[i+m] or a[i-m], by addition or subtraction, respectively. If a[i]
is not initially valid, access before the first advancement will not
access the buffer, and a[i+m] and a[i-m] will not be guaranteed to
reference the buffer after advancement.

 Circular buffer operations (which add or subtract the buffer length
to a pointer) are semantically different from a[i%n] (which per-
forms a modulo operation on an index, and then adds the result to
a base pointer). If you use the -force-circbuf switch when the
above conditions are not true, the compiler generates code that
does not have the intended effect.

Smaller Applications: Optimizing for Code Size

2-64 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The second (preferred) option is to use either of two built-in functions
(circindex or circptr, declared in ccblkfn.h) to perform the circular
buffering.

To inform the compiler that a circular buffer is to be used, you may write
either:

// GOOD: explicit use of circular buffer via circindex

 #include <builtins.h>

for (i=0, j=0; i<1000; i+=n) {

sum += a[i] * b[j];

j = circindex(j, n, 20);

}

or

// GOOD: explicit use of circular buffer via circptr

 #include <builtins.h>

int *p = b;

for (i=0, j=0; i<1000; i+=n) {

sum += a[i] * (*p);

p = circptr(p, 4*n, b, 80);

}

For more information, refer to Circular Buffer Built-In Functions.

Smaller Applications: Optimizing for
Code Size

The same philosophy for producing fast code also applies to producing
small code. Present the algorithm in a way that gives the optimizer clear
visibility of the operations and data, hence granting it the greatest freedom
to safely manipulate the code to produce small applications.

CrossCore Embedded Studio 1.0 2-65
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Once the program is presented in this way, the optimization strategy
depends on the code size constraint that the program must obey. The first
step is to optimize the application for full performance, using -O or -ipa
switches. If this obeys the code size constraints, no more need be done.

The “optimize for space” switch -Os (on page 1-66), which may be used in
conjunction with IPA, performs every performance-enhancing transfor-
mation except those that increase code size. In addition, the -e linker
switch (-flags-link -e if used from the compiler command line) may be
helpful (on page 1-42). This operation performs section elimination in the
linker to remove unneeded data and code. If the code produced with the
-Os and -flags-link -e switches does not meet the code size constraint,
some analysis of the source code is required to try to further reduce the
code size.

Note that loop transformations such as unrolling and software pipelining
increase code size. But these loop transformations also give the greatest
performance benefit. Therefore, in many cases compiling for minimum
code size produces significantly slower code than optimizing for speed.

The compiler provides a way to balance between the two extremes of -O
and -Os. This is the sliding-scale -Ov num switch described on page 1-66.
The num parameter may be a value between 0 and 100, where the lower
value corresponds to minimum code size and the upper to maximum per-
formance. An in-between value optimizes frequently-executed regions of
code for maximum performance, while keeping the infrequently-executed
parts as small as possible.

The -Ov num switch is most reliable when using profile-guided optimiza-
tion (PGO), since the execution counts of the various code regions have
been measured experimentally. (See Optimization Control.) Without
PGO, the execution counts are estimated, based on the depth of loop
nesting.

Smaller Applications: Optimizing for Code Size

2-66 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

 Avoid using the inline keyword to inline code for functions that
are used multiple times, especially if they not very small. The -Os
switch has no effect on the use of the inline keyword. It does,
however, prevent automatic inlining (using the -Oa switch) from
increasing the code size. Macro functions can also cause code
expansion and should be used with care.

See Bit-Fields for information on how bit-fields affect code size.

Effect of Data Type Size on Code Size
For optimal performance and code size, the Blackfin architecture favors
the use of 32-bit data types in control code and 16-bit data types within
processing loops (on page 2-52), which improves the chance of vector
instructions being used.

Consequently, using non-int-sized data in control code can often result in
increased code size.

Listing 2-2. Short Versus Int in Control Code

short generate_short();

int generate_int();

void do_something();

// BAD: using short data type in control code gives

// larger code size.

void shortfunc(){

short x;

x=generate_short();

x++;

if (x==3)

do_something();

}

CrossCore Embedded Studio 1.0 2-67
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

// GOOD: using int data type in control code gives

// smaller code size.

void intfunc(){

int x;

x=generate_int();

x++;

if (x==3)

do_something();

}

When Listing 2-2 is compiled and optimized, shortfunc() is slightly
larger (and slower) than intfunc(). This is because there is no 16-bit com-
pare instruction in the Blackfin architecture, and so x has to be
sign-extended to fill a whole register before the comparison.

Using Pragmas for Optimization
Pragmas can assist optimization by allowing the programmer to make
assertions or suggestions to the compiler. This section shows how they can
be used to finely tune source code. Refer to Pragmas for full details about
each pragma. The emphasis of this section is to consider under what cir-
cumstances they are useful during the optimization process.

In most cases, the pragmas serve to give the compiler information that it is
unable to deduce for itself. The programmer is responsible for making
sure that the information given by the pragma is valid in the context in
which it is used. Using a pragma to assert that a function or loop has a
quality that it does not in fact have may result in incorrect code and may
cause the application to malfunction.

Pragmas are advantageous because they allow code to remain portable,
since pragmas are normally ignored by a compiler that does not recognize
them.

Using Pragmas for Optimization

2-68 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The following section describes Function Pragmas while Loop Optimiza-
tion Pragmas are described on page 2-72.

Function Pragmas
Function pragmas include #pragma alloc, #pragma const, #pragma pure,
#pragma result_alignment, #pragma regs_clobbered, and #pragma
optimize_{off|for_speed|for_space|as_cmd_line}.

#pragma alloc

The alloc pragma asserts that the function behaves like the malloc library
function. In particular, it returns a pointer to new memory that cannot
alias any pre-existing buffers. In the following code, the alloc pragma
allows the compiler to be sure that the write into buffer out does not mod-
ify either of the two input buffer a. Therefore, the iterations of the loop
may be reordered.

#pragma alloc

short *new_buf(void);

short *copy_buf(short *a) {

int i;

short * p = a;

short * q = new_buf();

for (i=0; i<100; i++)

*p++ = *q++;

return p;

}

#pragma const

The const pragma asserts to the compiler that a function does not have
any side effects (such as modifying global variables or data buffers), and
the result returned is only a function of the parameter values. The const

CrossCore Embedded Studio 1.0 2-69
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

pragma may be applied to a function prototype or definition. It helps the
compiler, since two calls to the function with identical parameters always
yield the same result. In this way calls to #pragma const functions may be
hoisted out of loops if their parameters are loop independent.

#pragma pure

Like #pragma const, the pure pragma asserts to the compiler that a func-
tion does not have any side effects (such as modifying global variables or
data buffers). However, the result returned may be a function of both the
parameter values and any global variables. The pure pragma may be
applied to a function prototype or definition. Two calls to the function
with identical parameters yield the same result, provided that no global
variables have been modified between the calls. Hence, calls to #pragma
pure functions may be hoisted out of loops if their parameters are loop
independent and no global variables are modified in the loop.

#pragma result_alignment

The result_alignment pragma may be used on functions that have
pointer or integer results. When a function returns a pointer, the
result_alignment pragma is used to assert that the return result always
has some specified alignment. In the following example, the pragma is
applied to new_buf to indicate that the new_buf function always returns
buffers that are aligned on a word boundary.

// GOOD: uses pragma result_alignment to specify that out has

// strict alignment.

#pragma alloc

#pragma result_alignment (4)

int *new_buf(void);

int *vmul(int *a, int *b) {

int i;

int *out = new_buf();

Using Pragmas for Optimization

2-70 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

for (i=0; i<100; i++)

out[i] = a[i] * b[i];

return out;

}

Further details on this pragma are in #pragma result_alignment (n).
Another, more laborious, way to achieve the same effect is to use
aligned() at every call site to assert the alignment of the returned result.

#pragma regs_clobbered

The regs_clobbered pragma is a useful way to improve the performance
of code that makes function calls. The best use of the regs_clobbered
pragma is to increase the number of call-preserved registers available across
a function call. There are two complementary ways in which this may be
done.

First, suppose you have a function written in assembly that you wish to
call from C source code. The regs_clobbered pragma may be applied to
the function prototype to specify which registers are “clobbered” by the
assembly function, that is, which registers may have different values before
and after the function call.

The following simple assembly function adds two integers, and then
masks the result to fit into 8 bits.

_add_mask:

R0 = R0 + R1;

R0 = R0.B (z);

RTS;

._add_mask.end

The function does not modify the majority of the available scratch
registers; thus, these may instead be used as call-preserved registers. In this
way, fewer spills to the stack are needed in the caller function.

CrossCore Embedded Studio 1.0 2-71
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Using the following prototype, the compiler is told which registers are
modified by a call to the add_mask function. Registers not specified by the
pragma are assumed to preserve their values across such a call, and the
compiler may use these spare registers to its advantage when optimizing
the call sites.

// GOOD: uses regs_clobbered to increase call-preserved

// register set.

#pragma regs_clobbered "R0, ASTAT"

int add_mask(int, int);

The pragma is also powerful when all of the source code is written in C.
In the above example, a C implementation might be:

// BAD: function thought to clobber entire volatile register set.

int add_mask(int a, int b) {

return ((a+b)&255);

}

Since this function does not need many registers when compiled, it can be
defined using the following code to ensure that any other registers aside
from R0 and the condition codes are not modified by the function.

// GOOD: function compiled to preserve most registers.

#pragma regs_clobbered "R0, CCset"

int add_mask(int a, int b) {

return ((a+b)&255);

}

If other registers are used in the compilation of the function, they are
saved and restored during the function prologue and epilogue.

In general, it is not helpful to specify any of the condition codes as
call-preserved, as they are difficult to save and restore and are usually clob-
bered by any function. Moreover, it is usually of limited benefit to keep

Using Pragmas for Optimization

2-72 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

them live across a function call. Therefore, it is better to use CCset (all
condition codes) rather than ASTAT in the clobbered set above.

For more information, refer to #pragma regs_clobbered string.

#pragma optimize_{off|for_speed|for_space|as_cmd_line}

The optimize pragmas may be used to change the optimization setting on
a function-by-function basis. In particular, it may be useful to optimize
functions that are rarely called (for example, error handling code) for
space (#pragma optimize_for_space), whereas functions critical to perfor-
mance should be compiled for maximum speed (using #pragma
optimize_for_speed). The #pragma optimize_off is useful for debugging
specific functions without increasing the size or decreasing the perfor-
mance of the overall application unnecessarily.

#pragma optimize_as_cmd_line resets the optimization settings to those
specified on the ccblkfn command line when the compiler was invoked.
Refer to General Optimization Pragmas for more information.

Loop Optimization Pragmas
Many pragmas are targeted towards helping to produce optimal code for
inner loops. These are the loop_count, no_vectorization, vector_for,
all_aligned, different_banks, and no_alias pragmas.

#pragma loop_count

The loop_count pragma enables the programmer to inform the compiler
about a loop’s iteration count. The compiler is able to make more reliable
decisions about the optimization strategy for a loop when it knows the
iteration count range. If you know that the loop count is always a multiple
of a constant, this can also be useful, as it allows a loop to be partially
unrolled or vectorized without the need for conditionally-executed itera-
tions. Knowledge of the minimum trip count may allow the compiler to

CrossCore Embedded Studio 1.0 2-73
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

omit the guards that are usually required after software pipelining.
(A “guard” is code generated by the compiler to test a condition at run-
time rather than at compile-time.) Any of the unknown parameters of the
pragma may be left blank.

The following is an example of the loop_count pragma:

// GOOD: the loop_count pragma gives the compiler helpful

// information to assist optimization.

#pragma loop_count(/*minimum*/ 40, /*maximum*/ 100, /*modulo*/ 4)

for (i=0; i<n; i++)

a[i] = b[i];

For more information, refer to #pragma loop_count(min, max, modulo).

#pragma no_vectorization

Vectorization (executing more than one iteration of a loop in parallel) can
slow down loops with small iteration counts, since a loop prologue and
epilogue are required. The no_vectorization pragma can be used directly
above a for or do loop to instruct the compiler not to vectorize the loop,
or directly before a function to disable vectorization for all loops in the
function.

#pragma vector_for

The vector_for pragma is used to help the compiler resolve dependencies
that prevent it from vectorizing a loop. It tells the compiler that all itera-
tions of the loop may be run in parallel with each other, subject to
rearrangement of reduction expressions in the loop. In other words, there
are no loop-carried dependencies except reductions. An optional
parameter, n, may be given in parentheses to indicate that only n iterations
of the loop may be run in parallel. The parameter must be a literal value.

Using Pragmas for Optimization

2-74 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

For example, the following cannot be vectorized if the compiler cannot
tell that array b does not alias array a.

// BAD: cannot be vectorized due to possible alias between

// a and b.

for (i=0; i<100; i++)

a[i] = b[i] + a[i-4];

But the vector_for pragma may be added to tell the compiler that in this
case four iterations may be executed concurrently, as follows:

// GOOD: pragma vector_for disambiguates alias.

#pragma vector_for (4)

for (i=0; i<100; i++)

a[i] = b[i] + a[i-4];

Note that this pragma does not force the compiler to vectorize the loop.
The optimizer checks various properties of the loop and does not vectorize
it if it believes that it is unsafe or cannot deduce information necessary to
carry out the vectorization transformation. The pragma assures the com-
piler that there are no loop-carried dependencies, but other properties of
the loop may prevent vectorization.

In cases where vectorization is impossible, the information given in the
assertion made by vector_for may still aid other optimizations.

For more information, refer to #pragma vector_for.

CrossCore Embedded Studio 1.0 2-75
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

#pragma all_aligned

The all_aligned pragma is used as shorthand for multiple aligned()
assertions. Prefixing a for loop with this pragma asserts that every pointer
variable in the loop is aligned on a word boundary at the beginning of the
first iteration. Thus, adding the pragma to the following loop

// GOOD: uses all_aligned to inform compiler of alignment of

// a and b.

#pragma all_aligned

for (i=0; i<100; i++)

a[i] = b[i];

is equivalent to writing

// GOOD: uses aligned() to give alignment of a and b.

#include <builtins.h>

aligned(a, 4);

aligned(b, 4);

for (i=0; i<100; i++)

a[i] = b[i];

In addition, the all_aligned pragma may take an optional literal integer
argument, n, in parentheses. This tells the compiler that all pointer vari-
ables are aligned on a word boundary at the beginning of the nth iteration.
Note that the iteration count begins at zero.

Therefore,

// GOOD: uses all_aligned to inform compiler of alignment

// of a and b.

#pragma all_aligned (3)

for (i=99; i>=0; i--)

a[i] = b[i];

Using Pragmas for Optimization

2-76 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

is equivalent to

// GOOD: uses aligned() to give alignment of a and b.

#include <builtins.h>

aligned(a+96, 4);

aligned(b+96, 4);

for (i=99; i>=0; i--)

a[i] = b[i];

For more information, refer to #pragma all_aligned and Using the
aligned() built-in.

#pragma different_banks

The different_banks pragma is used as shorthand for declaring multiple
pointer types with different bank qualifiers. It asserts that any two inde-
pendent memory accesses in the loop may be issued together without
incurring a stall.

Therefore, writing the following allows a single instruction loop to be cre-
ated if it is known that a and b do not alias each other.

// GOOD: uses different banks to allow simultaneous accesses

// to a and b.

#pragma different_banks

for (i=0; i<100; i++)

a[i] = b[i];

See #pragma different_banks for more information.

#pragma no_alias

When immediately preceding a loop, the no_alias pragma asserts that
no load or store in the loop accesses the same memory. This helps
to produce shorter loop kernels because it permits instructions in the loop
to be rearranged more freely. See #pragma no_alias for more information.

CrossCore Embedded Studio 1.0 2-77
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Useful Optimization Switches
Table 2-4 lists compiler switches useful during the optimization process.

How Loop Optimization Works
Loop optimization is important to overall application performance,
because any performance gain achieved within the body of a loop reaps a
benefit for every iteration of that loop. This section provides an introduc-
tion to some of the concepts used in loop optimization, helping you to use
the compiler features in this chapter.

Table 2-4. C/C++ Compiler Optimization Switches

Switch Name Description

-const-read-write
on page 1-34

Specifies that data accessed via a pointer to const data may be modi-
fied elsewhere

-flags-link -e
on page 1-42

Specifies linker section elimination

-force-circbuf
on page 1-43

Treats array references of the form array[i%n] as circular buffer
operations

-ipa
on page 1-49

Turns on inter-procedural optimization. Implies use of -O.
May be used in conjunction with -Os or -Ov.

-no-fp-associative
on page 1-57

Does not treat floating-point multiply and addition as an associative

-O
on page 1-65

Enables code optimizations and optimizes the file for speed

-Os
on page 1-66

Optimizes the file for size

-Ov num
on page 1-66

Controls speed vs. size optimizations (sliding scale)

-save-temps
on page 1-81

Saves intermediate files (for example, .s)

How Loop Optimization Works

2-78 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

This section contains:

• Terminology

• Loop Optimization Concepts

• A Worked Example

Terminology
This section describes terms that have particular meanings for compiler
behavior.

Clobbered

A register is “clobbered” if its value is changed so that the compiler cannot
usefully make assumptions about register’s new contents.

For example, when the compiler generates a call to an external function,
the compiler considers all caller-preserved registers to be clobbered by the
called function. Once the called function returns, the compiler cannot
make any assumptions about the values of those registers. This is why they
are called “caller-preserved.” If the caller needs the values in those registers,
the caller must preserve them itself.

The set of registers clobbered by a function can be changed using #pragma
regs_clobbered, and the set of registers changed by a gnu asm statement is
determined by the clobber part of the asm statement.

Live

A register is “live” if it contains a value needed by the compiler, and thus
cannot be overwritten by a new assignment to that register. For example,
to do “A = B + C”, the compiler might produce:

reg1 = load B // reg1 becomes live

reg2 = load C // reg2 becomes live

CrossCore Embedded Studio 1.0 2-79
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

reg1 = reg1 + reg2 // reg2 ceases to be live;

// reg1 still live, but with a different

// value

store reg1 to A // reg1 ceases to be live

Liveness determines which registers the compiler may use. In this exam-
ple, since reg1 is used to load B, and that register must maintain its value
until the addition, reg1 cannot also be used to load the value of C, unless
the value in reg1 is first stored elsewhere.

Spill

When a compiler needs to store a value in a register, and all usable regis-
ters are already live, the compiler must store the value of one of the
registers to temporary storage (the stack). This “spilling” process prevents
the loss of a necessary value.

Scheduling

“Scheduling” is the process of re-ordering the program instructions to
increase the efficiency of the generated code but without changing the
program’s behavior. The compiler attempts to produce the most efficient
schedule.

Loop Kernel

The “loop kernel” is the body of code that is executed once per iteration of
the loop. It excludes any code required to set up the loop or to finalize it
after completion.

Loop Prolog

A “loop prolog” is a sequence of code required to set the machine into a
state whereby the loop kernel can execute. For example, the prolog may
pre-load some values into registers ready for use in the loop kernel. Not all
loops need a prolog.

How Loop Optimization Works

2-80 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Loop Epilog

A “loop epilog” is a sequence of code responsible for finalizing the execu-
tion of a loop. After each iteration of the loop kernel, the machine will be
in a state where the next iteration can begin efficiently. The epilog moves
values from the final iteration to where they need to be for the rest of the
function to execute. For example, the epilog might save values to memory.
Not all loops need an epilog.

Loop Invariant

A “loop invariant” is an expression that has the same value for all iterations
of a loop. For example:

int i, n = 10;

for (i = 0; i < n; i++) {

val += i;

}

The variable n is a loop invariant. Its value is not changed during the body
of the loop, so n will have the value 10 for every iteration of the loop.

Hoisting

When the optimizer determines that some part of a loop is computing a
value that is actually a loop invariant, it may move that computation to
before the loop. This “hoisting” prevents the same value from being
re-computed for every iteration.

Sinking

When the optimizer determines that some part of a loop is computing a
value that is not used until the loop terminates, the compiler may move
that computation to after the loop. This “sinking” process ensures the
value is only computed using the values from the final iteration.

CrossCore Embedded Studio 1.0 2-81
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Loop Optimization Concepts
The compiler optimizer focuses considerable attention on program loops,
as any gain in the loop’s performance reaps the benefits on every iteration
of the loop. The applied transformations can produce code that appears to
be substantially different from the structure of the original source code.
This section provides an introduction to the compiler’s loop optimization,
to help you understand why the code might be different.

The following examples are presented in terms of a hypothetical machine.
This machine is capable of issuing up to two instructions in parallel, pro-
vided one instruction is an arithmetic instruction, and the other is a load
or a store. Two arithmetic instructions may not be issued at once, nor may
two memory accesses:

t0 = t0 + t1; // valid: single arithmetic

t2 = [p0]; // valid: single memory access

[p1] = t2; // valid: single memory access

t2 = t1 + 4, t1 = [p0]; // valid: arithmetic and memory

t5 += 1, t6 -= 1; // invalid: two arithmetic

[p3] = t2, t4 = [p5]; // invalid: two memory

The machine can use the old value of a register and assign a new value to it
in the same cycle, for example:

t2 = t1 + 4, t1 = [p0]; // valid: arithmetic and memory

The value of t1 on entry to the instruction is the value used in the addi-
tion. On completion of the instruction, t1 contains the value loaded via
the p0 register.

The examples will show “START LOOP N” and “END LOOP”, to indicate the
boundaries of a loop that iterates N times. (The mechanisms of the loop
entry and exit are not relevant).

How Loop Optimization Works

2-82 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Software Pipelining

“Software pipelining” is analogous to hardware pipelining used in some
processors. Whereas hardware pipelining allows a processor to start pro-
cessing one instruction before the preceding instruction has completed,
software pipelining allows the generated code to begin processing the next
iteration of the original source-code loop before the preceding iteration is
complete.

Software pipelining makes use of a processor's ability to multi-issue
instructions. Regarding known delays between instructions, it also sched-
ules instructions from later iterations where there is spare capacity.

Loop Rotation

“Loop rotation” is a common technique of achieving software pipelining.
It changes the logical start and end positions of the loop within the overall
instruction sequence, to allow a better schedule within the loop itself.
For example, this loop:

START LOOP N

A

B

C

D

E

END LOOP

could be rotated to produce the following loop:

A

B

C

START LOOP N-1

D

E

CrossCore Embedded Studio 1.0 2-83
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

A

B

C

END LOOP

D

E

The order of instructions in the loop kernel is now different. It still circles
from instruction E back to instruction A, but now it starts at D, rather than
A. The loop also has a prolog and epilog added, to preserve the intended
order of instructions. Since the combined prolog and epilog make up a
complete iteration of the loop, the kernel is now executing N-1 iterations,
instead of N.

Another example—consider the following loop:

START LOOP N

t0 += 1

[p0++] = t0

END LOOP

This loop has a two-cycle kernel. While the machine could execute the
two instructions in a single cycle—an arithmetic instruction and a mem-
ory access instruction—to do so would be invalid, because the second
instruction depends upon the value computed in the first instruction.
However, if the loop is rotated, we get:

t0 += 1

START LOOP N-1

[p0++] = t0

t0 += 1

END LOOP

[p0++] = t0

How Loop Optimization Works

2-84 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The value being stored is computed in the previous iteration (or before the
loop starts, in the prolog). This allows the two instructions to be executed
in a single cycle:

t0 += 1

START LOOP N-1

[p0++] = t0, t0 += 1

END LOOP

[p0++] = t0

Rotating the loop has presented an opportunity by which the kth iteration
of the original loop is starting (t0 += 1) while the (k-1)th iteration is
completing ([p0++] = t0). As a result, rotation has achieved software
pipelining, and the performance of the loop is doubled.

Notice that this process has changed the structure of the program slightly.
Suppose that the loop construct always executes the loop at least once;
that is, it is a 1..N count. Then if N==1, changing the loop to be N-1 would
be problematic. In this example, the compiler inserts a conditional jump
around the loop construct for the circumstances where the compiler can-
not guarantee that N > 1:

t0 += 1

IF N == 1 JUMP L1;

START LOOP N-1

[p0++] = t0, t0 += 1

END LOOP

L1:

[p0++] = t0

CrossCore Embedded Studio 1.0 2-85
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Loop Vectorization

“Loop vectorization” is another transformation that allows the generated
code to execute more than one iteration in parallel. However, vectoriza-
tion is different from software pipelining. Where software pipelining uses
a different ordering of instructions to get better performance,
vectorization uses a different set of instructions. These vector instructions
act on multiple data elements concurrently to replace multiple executions
of each original instruction.

For example, consider the following dot product loop:

int i, sum = 0;

for (i = 0; i < n; i++) {

sum += x[i] * y[i];

}

This loop walks two arrays, reading consecutive values from each, multi-
plying them and adding the result to the on-going sum. This loop has
these important characteristics:

• Successive iterations of the loop read from adjacent locations in the
arrays.

• The dependency between successive iterations is the summation, a
commutative operation.

• Operations such as load, multiply and add are often available in
parallel versions on embedded processors.

These characteristics allow the optimizer to vectorize the loop so that two
elements are read from each array per load, two multiplies are done, and
two totals maintained. The vectorized loop would be:

t0 = t1 = 0

START LOOP N/2

t2 = [p0++] (Wide) // load x[i] and x[i+1]

t3 = [p1++] (Wide) // load y[i] and y[i+1]

How Loop Optimization Works

2-86 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

t0 += t2 * t3 (Low), t1 += t2 * t3 (High) // vector mulacc

END LOOP

t0 = t0 + t1 // combine totals for low and high

Vectorization is most efficient when all the operations in the loop can be
expressed in terms of parallel operations. Loops with conditional
constructs in them are rarely vectorizable, because the compiler cannot
guarantee that the condition will evaluate in the same way for all the itera-
tions being executed in parallel.

Vectorization is also affected by data alignment constraints and data access
patterns. Data alignment affects vectorization because processors often
constrain loads and stores to be aligned on certain boundaries. While the
unvectorized version will guarantee this, the vectorized version imposes a
greater constraint that may not be guaranteed. Data access patterns affect
vectorization because memory accesses must be contiguous. If a loop
accessed every tenth element, for example, then the compiler would not be
able to combine the two loads for successive iterations into a single access.

Vectorization divides the generated iteration count by the number of iter-
ations being processed in parallel. If the trip count of the original loop is
unknown, the compiler will have to conditionally execute some iterations
of the loop.

If the compiler cannot determine whether the loop is “vectorizable” at
compile-time and the speed/space optimization settings allow it, the com-
piler will generate vectorized and non-vectorized versions of the loop. It
will select between the two at run-time. This allows for considerable per-
formance improvements, at the expense of code-size and an initial set-up
cost.

 Vectorization and software pipelining are not mutually exclusive:
the compiler may vectorize a loop and then use software pipelining
to obtain better performance.

CrossCore Embedded Studio 1.0 2-87
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Modulo Scheduling

Loop rotation, as described earlier, is a simple software-pipelining method
that can often improve loop performance, but more complex examples
require a more advanced approach. The compiler uses a popular technique
known as “modulo scheduling” which can produce more efficient schedules
for loops than simple loop rotation.

See also Modulo Scheduling Information.

Modulo scheduling is used to schedule innermost loops without control
flow. A modulo-scheduled loop is described using the following
parameters:

• Initiation interval (II): the number of cycles between initiating two
successive iterations of the original loop.

• Minimum initiation interval due to resources (res MII): a lower
limit for the initiation interval (II); an II lower than this would
mean at least one of the resources being used at greater capacity
than the machine allows.

• Minimum initiation interval due to recurrences (rec MII): an
instruction cannot be executed until earlier instructions on which
it depends have also been executed. These earlier instructions may
belong to a previous loop iteration. A cycle of such dependencies (a
recurrence) imposes a minimum number of cycles for the loop.

• Stage count (SC): the number of initiation intervals until the first
iteration of the loop has completed. This is also the number of iter-
ations in progress at any time within the kernel.

• Modulo variable expansion unroll factor (MVE unroll): the num-
ber of times the loop has to be unrolled to generate the schedule
without overlapping register lifetimes.

• Trip count: the number of times the loop kernel iterates.

How Loop Optimization Works

2-88 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• Trip modulo: a number that is known to divide the trip count.

• Trip maximum: an upper limit for the trip count.

• Trip minimum: a lower limit for the trip count.

Understanding these parameters will allow you to interpret the generated
code more easily. The compiler’s assembly annotations use these terms, so
you can examine the source code and the generated instructions, to see
how the scheduling relates to the original source. See Assembly Optimizer
Annotations for more information.

Modulo scheduling performs software pipelining by:

• Ordering the original instructions in a sequence (for simplicity
referred to as the “base schedule”) that can be repeated after an
interval known as the “initiation interval” (“II”);

• Issuing parts of the base schedule belonging to successive iterations
of the original loop, in parallel.

For the purposes of this discussion, all instructions will be assumed to
require only a single cycle to execute; on a real processor, stalls affect the
initiation interval, so a loop that executes in II cycles may have fewer than
II instructions.

Initiation Interval (II) and the Kernel

Consider the loop
START LOOP N

A

B

C

D

E

F

CrossCore Embedded Studio 1.0 2-89
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

G

H

END LOOP

Now consider that the compiler finds a new order for A,B,C,D,E,F,G,H
grouping; some of them on the same cycle so that a new instance of the
sequence can be started every two cycles. Say this base schedule is given in
Table 2-5 where I1,I2,...,I8 are A,B,...,H reordered. Albeit a valid
schedule for the original loop, the base schedule is not the final modulo
schedule; it may not even be the shortest schedule of the original loop.
However the base schedule is used to obtain the modulo schedule, by
being able to initiate it every II=2 cycles, as seen in Table 2-6.

Table 2-5. Base Schedule

Cycle Instructions

1 I1

2 I2, I3

3 I4, I5

4 I6

5 I7

6 I8

How Loop Optimization Works

2-90 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Starting at cycle 5, the pattern in Table 2-7 repeats every 2 cycles. This
repeating pattern, the kernel, represents the modulo-scheduled loop.

The initiation interval has the value II=2, because iteration i+1 can start
two cycles after the cycle on which iteration i starts. This way, one itera-
tion of the original loop is initiated every II cycles, running in parallel
with previous, unfinished iterations.

Table 2-6. Obtaining the Modulo Schedule by Repeating the Base
Schedule Every II=2 Cycles (assuming a maximum of 4 instructions
executed in parallel per cycle)

Cycle Iteration 1 Iteration 2 Iteration 3 Iteration 4

1 I1

2 I2, I3

3 I4, I5 I1

4 I6 I2, I3

5 I7 I4, I5 I1

6 I8 I6 I2, I3

7 I7 I4, I5 I1

8 I8 I6 I2, I3

9 I7 I4, I5

10 I8 I6

Table 2-7. Loop kernel, N>=3

Cycle Iteration N-2
(last stage)

Iteration N-1
(2nd stage)

Iteration N
(1st stage)

II*N-1 I7 I4, I5 I1

II*N I8 I6 I2, I3

CrossCore Embedded Studio 1.0 2-91
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The initiation interval of the loop indicates several important characteris-
tics of the schedule for the loop:

• The loop kernel will be II cycles in length.

• A new iteration of the original loop will start every II cycles.
An iteration of the original loop will end every II cycles.

• The same instruction will execute on cycle c and on cycle c+II
(hence the name modulo schedule).

Finding a modulo schedule implies finding a base schedule and an II such
that the base schedule can be initiated every II cycles.

If the compiler can reduce the value for II, it can start the next iteration
sooner, and thus increase the performance of the loop: The lower the II,
the more efficient the schedule. However, the II is limited by a number of
factors, including:

• The machine resources required by the instructions in the loop.

• The data dependencies and stalls between instructions.

These limiting factors are examined in:

• Minimum Initiation Interval Due to Resources (Res MII)

• Minimum Initiation Interval Due to Recurrences (Rec MII)

• Stage Count (SC)

• Variable Expansion and MVE Unroll

• Trip Count

Minimum Initiation Interval Due to Resources (Res MII)

The first factor that limits II is machine resource usage. Let’s start with the
simple observation that the kernel of a modulo-scheduled loop contains
the same set of instructions as the original loop.

How Loop Optimization Works

2-92 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Assume a machine that can execute up to four instructions in parallel. If
the loop has 8 instructions, then it requires a minimum of two lines in the
kernel, since there can be at most 4 instructions on a line. This implies II
has to be at least 2, and we can tell this without having found a base
schedule for the loop, or even knowing what the specific instructions are.

Consider another example where the original loop contains 3 memory
accesses to be scheduled on a machine that supports at most 2 memory
accesses per cycle. This implies at least 2 cycles in the kernel, regardless of
the rest of the instructions.

Given a set of instructions in a loop, we can determine a lower bound for
the II of any modulo schedule for that loop based on resources required.
This lower bound is called the “Resource-based Minimum Initiation
Interval” (Res MII).

Minimum Initiation Interval Due to Recurrences (Rec MII)

A less obvious limitation for finding a low II are cycles in the data depen-
dencies between instructions.

Assume that the loop to be scheduled contains (among others) the
instructions:

i3: t3=t1+t5; // t5 carried from the previous iteration

i5: t5=t1+t3;

Assume each line of instructions takes 1 cycle. If i3 is executed at cycle c,
then t3 is available at cycle c+1 and t5 cannot be computed earlier than
c+1 (because it depends on t3), and similarly the next time we compute t3
cannot be earlier than c+2. Thus, if we execute i3 at cycle c, the next time
we can execute i3 again cannot be earlier than c+2. But for any modulo
schedule, if an instruction is executed at cycle c, the next iteration will
execute the same instruction at cycle c+II. Therefore, II has to be at least
2 due to the circular data dependency path t3->t5->t3.

CrossCore Embedded Studio 1.0 2-93
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

This lower bound for II, given by circular data dependencies (recurrences)
is called the “Minimum Initiation Interval Due to Recurrences” (Rec
MII), and the data dependency path is called “loop carry path”. There can
be any number of loop carry paths in a loop, including none, and they are
not necessarily disjoint.

Stage Count (SC)

The kernel in Table 2-7 is formed of instructions which belong to three
distinct iterations of the original loop: {I7,I8} end the “oldest” itera-
tion—in other words they belong to the iteration started the longest time
before the current cycle; {I4,I5,I6} belong to the next oldest initiated
iteration, and so on. {I1,I2,I3} are the beginning of the youngest
iteration.

The number of iterations of the original loop in progress at any time
within the kernel is called the “Stage Count” (SC). This is also the
number of initiation intervals until the first iteration of the loop com-
pletes. In our example, SC=3.

The final schedule requires peeling a few instructions (the prolog) from
the beginning of the first iteration and a few instructions (the epilog) from
the end of the last iteration in order to preserve the structure of the kernel.
This reduces the trip count from N to N-(SC-1):

I1; // prolog

I2,I3; // prolog

I4,I5, I1; // prolog

I6, I2,I3; // prolog

LOOP N-2 // i.e. N-(SC-1), where SC=3

I7, I4,I5, I1; // kernel

I8, I6, I2,I3; // kernel

END LOOP

I7, I4, I5; // epilog

I8, I6; // epilog

How Loop Optimization Works

2-94 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

I7; // epilog

I8; // epilog

Another way of viewing the modulo schedule is to group instructions into
stages as in Table 2-8, where each stage is viewed as a vector of height II=2
of instruction lists (that represent parts of instruction lines).

Now the schedule can be viewed as:

SC0 // prolog

SC1 SC0 // prolog

LOOP (N-2) // That is N-(SC-1), where SC=3

SC2 SC1 SC0 // kernel

END LOOP

SC2 SC1 // epilog

SC2 // epilog

where, for example, SC2 SC1 is the 2-line vector obtained from concate-
nating the lists in SC2 and SC1.

Table 2-8. Instructions Grouped into Stages

Stage Count Instructions

SC0 I1,
I2, I3

SC1 I4, I5,
I6

SC2 I7,
I8

CrossCore Embedded Studio 1.0 2-95
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Variable Expansion and MVE Unroll

There is one more issue to address for modulo schedule correctness.

Consider the sequence of instructions in Table 2-9. Table 2-10 shows the
base schedule that is an instance of the one in Table 2-5, and Table 2-11
shows the corresponding modulo schedule with II=2.

Table 2-9. Problematic Instance

Generic
instruction

Specific instance

I1 t1=[p1++]

I2 t2=[p2++]

I3 t3=t1+t5

I4 t4=t2+1

I5 t5=t1+t3

I6 t6=t4*t5

I7 t7=t6*t3

I8 [p8++]=t7

Table 2-10. Base Schedule from Table 2-5 Applied to Instances in
Table 2-9

1 t1=[p1++]

2 t2=[p2++],t3=t1+t5

3 t4=t2+1,t5=t1+t3

4 t6=t4*t5

5 t7=t6*t3

6 [p8++]=t7

How Loop Optimization Works

2-96 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

There is a problem with the schedule in Table 2-11: t3 defined in the
fourth cycle (second column in the table) is used on the fifth cycle (first
column); however, the intended use was of the value defined on the sec-
ond cycle (first column). In general, the value of t3 used by t7=t6*t3 in
the kernel will be the one defined in the previous cycle, instead of the one
defined 3 cycles earlier, as intended. Thus, if the compiler were to use this
schedule as-is, it would be clobbering the live value in t3.

The lifetime of each value loaded into t3 is 3 cycles, but the loop’s initia-
tion interval is only 2, so the lifetimes of t3 from different iterations
overlap.

The compiler fixes this by duplicating the kernel as many times as needed
to exceed the longest lifetime in the base schedule, then renaming the vari-
ables that clash—in this case, just t3.

In Table 2-12 we see that the length of the new loop body is 4, greater
than the lifetimes of the values in the loop.

Table 2-11. Modulo Schedule Broken by Overlapping Lifetimes of t3

Iteration 1 Iteration 2 Iteration 3 ...

1 t1=[p1++]

2 t2=[p2++],t3=t1+t5

3 t4=t2+1,t5=t1+t3 t1=[p1++]

4 t6=t4*t5 t2=[p2++],t3=t1+t5

5 t7=t6*t3 t4=t2+1,t5=t1+t3 t1=[p1++]

6 [p8++]=t7 t6=t4*t5 t2=[p2++],t3=t1+t5

7 t7=t6*t3 t4=t2+1,t5=t1+t3

8 [p8++]=t7 t6=t4*t5

9 t7=t6*t3

10 [p8++]=t7

CrossCore Embedded Studio 1.0 2-97
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

So the loop becomes:

t1=[p1++];

t2=[p2++],t3=t1+t5;

t4=t2+1,t5=t1+t3, t1=[p1++];

t6=t4*t5, t2=[p2++],t3_2=t1+t5;

LOOP (N-2)/2

t7=t6*t3, t4=t2+1,t5=t1+t3_2, t1=[p1++];

[p8++]=t7, t6=t4*t5, t2=[p2++],t3=t1+t5;

t7=t6*t3_2, t4=t2+1,t5=t1+t3,t1=[p1+

+];

[p8++]=t7, t6=t4*t5, t2=[p2++],t3_2

=t1+t5;

END LOOP

t7=t6*t3, t4=t2+1,t5=t1+t3_2;

[p8++]=t7, t6=t

4*t5;

t7=t

6*t3_2;

[p8

++]=t7;

How Loop Optimization Works

2-98 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

This process of duplicating the kernel and renaming colliding variables is
called variable expansion, and the number of times the compiler dupli-
cates the kernel is referred to as the modulo variable expansion factor
(MVE). Conceptually we use different set of names, “register sets”, for suc-
cessive iterations of the original loop in progress in the unrolled kernel (in
practice we rename just the conflicting variables, see Table 2-13). In terms
of reading the code, this means that a single iteration of the loop generated
by the compiler will be processing more than one iteration of the original
loop. Also, the compiler will be using more registers to allow the iterations
of the original loop to overlap without clobbering the live values.

Table 2-12. Modulo Schedule Corrected by Variable Expansion: t3 and
t3_2

Iteration 1 Iteration 2 Iteration 3 Iteration 4 ...

1 t1=[p1++]

2 t2=[p2++],t3=t1+t5

3 t4=t2+1,t5=t1+t3 t1=[p1++]

4 t6=t4*t5 t2=[p2++],t3_2=t1+t
5

5 t7=t6*t3 t4=t2+1,t5=t1+t3_2 t1=[p1++]

6 [p8++]=t7 t6=t4*t5 t2=[p2++],t3=t1+t5

7 t7=t6*t3_2 t4=t2+1,t5=t1+t3 t1=[p1++]

8 [p8++]=t7 t6=t4*t5 t2=[p2++],t3_2=t1+t
5

9 t7=t6*t3 t4=t2+1,t5=t1+t3_2

10 [p8++]=t7 t6=t4*t5

11 t7=t6*t3_2

12 [p8++]=t7

CrossCore Embedded Studio 1.0 2-99
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

In terms of stages:

SC0 // prolog

SC1 SC0_2 // prolog

LOOP (N-2)/2 // That is N-(SC-1)/MVE, where

SC=3, MVE=2

SC2 SC1_2 SC0 // kernel

SC2_2 SC1 SC0_2 // kernel

END LOOP

SC2 SC1_2 // epilog

SC2_2 // epilog

where SCN_2 is SCN subject to renaming; in our case, only occurrences
of t3 are renamed as t3_2 in SCN_2.

In terms of instructions:

I1; // prolog

I2,I3; // prolog

I4,I5, I1_2; // prolog

I6, I2_2,I3_2; // prolog

LOOP(N-2)/2 // That is N-(SC-1) /MVE, where SC=3, MVE=2

I7, I4_2,I5_2, I1; // kernel

I8, I6_2, I2,I3; // kernel

I7_2, I4,I5, I1_2; // kernel

I8_2, I6, I2_2,I3_2; // kernel

END LOOP

I7, I4_2,I5_2; // epilog

I8, I6_2; // epilog

I7_2; // epilog

I8_2; // epilog

where IN_2 is IN subject to renaming; in our case, only occurrences of t3
are renamed as t3_2 in all IN_2, as seen in Table 2-13.

How Loop Optimization Works

2-100 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Trip Count

Notice that as the modulo scheduler expands the loop kernel to add in the
extra variable sets, the iteration count of the generated loop changes from
(N-SC) to (N-SC)/MVE. This is because each iteration of the generated loop
is now doing more than one iteration of the original loop, so fewer gener-
ated iterations are required.

However, this also relies on the compiler knowing that it can divide the
loop count in this manner. For example, if the compiler produces a loop
with MVE=2 so that the count should be (N-SC)/2, an odd value of
(N-SC) causes problems. In these cases, the compiler generates additional
“peeled” iterations of the original loop to handle the remaining iteration.
As with rotation, if the compiler cannot determine the value of N, it will
make parts of the loop–the kernel or peeled iterations—conditional so
that they are executed only for the appropriate values of N.

Table 2-13. Instructions After Modulo Variable Expansion

Generic
instruction

Specific instance

I1 and I1_2 t1=[p1++]

I2 and I2_2 t2=[p2++]

I3 t3=t1+t5

I3_2 t3_2=t1+t5

I4 and I4_2 t4=t2+1

I5 t5=t1+t3

I5_2 t5=t1+t3_2

I6 and I6_2 t6=t4*t5

I7 t7=t6*t3

I7_2 t7=t6*t3_2

I8 and I8_2 [p8++]=t7

CrossCore Embedded Studio 1.0 2-101
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The number of times the generated loop iterates is called the “trip count”.
As explained above, sometimes knowing the trip count is important for
efficient scheduling. However, the trip count is not always available.

Lacking it, additional information may be inferred, or passed to the com-
piler through the loop_count pragma, specifying:

• “Trip modulo”: A number known to divide the trip count

• “Trip minimum”: A lower bound for the trip count

• “Trip maximum”: An upper bound for the trip count

A Worked Example
The following fractional scalar product loop is used to show how the
optimizer works. To see the described behavior, compile the example:

• With the optimizer enabled. For more information, see Optimiza-
tion Control.

• With the -sat-associative command-line switch (on page 1-81).
This switch is required because the example uses fractional opera-
tions, which saturate. The compiler does not treat saturating
operations as associative, by default, which means they normally
prevent vectorization.

Example: C source code for fixed-point scalar product

#include <stdfix.h>

#include <builtins.h>

long fract sp(fract *a, fract *b) {

int i;

accum sum=0.Ok;

aligned(a, 4);

aligned(b, 4);

for (i=0; i<100; i++) {

How Loop Optimization Works

2-102 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

sum += a[i] * b[i];

}

return (long fract)sum;

}

After code generation and conventional scalar optimizations are done,
the compiler generates a loop that looks something like the following
example:

Example: Initial Code Generated for Fixed-Point Scalar Product

 P2 = 100;

 LOOP .P1L3 LC0 = P2;

.P1L3:

LOOP_BEGIN P1L3;

R0 = W[P0++] (X);

R2 = W[P1++] (X);

A0 += R0.L * R2.L;

LOOP_END .P1L3;

.P1L4:

R0 = A0;

The loop exit test has been moved to the bottom and the loop counter
rewritten to count down to zero, allowing a zero-overhead loop to be gen-
erated. The sum is being accumulated in A0. P0 and P1 are initialized with
the parameters a and b, respectively, and are incremented on each
iteration.

To use 32-bit memory accesses, the optimizer unrolls the loop to run two
iterations in parallel. The sum is now being accumulated in A0 and A1,
which must be added together after the loop to produce the final result.
To use word loads, the compiler has to know that P0 and P1 have initial
values that are multiples of four bytes.

This is done in the example by use of aligned(), although it could also
have been propagated with IPA.

CrossCore Embedded Studio 1.0 2-103
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

 Unless the compiler knows that the original loop was executed an
even number of times, a conditionally-executed odd iteration must
be inserted outside the loop.

 Vectorization is only possible in this example because the
-sat-associative switch enables re-ordering of saturating addi-
tion and multiplication through associativity. If the example
performs an integer scalar product instead of a fractional scalar
product, the associativity would be enabled by default.

Example: Code Generated for Fixed-Point Scalar Product After
Vectorization Transformation

P2 = 50;

A1 = A0 = 0;

LOOP .P1L3 LC0 = P2;

.P1L3:

LOOP_BEGIN .P1L3;

R0 = [P0++];

R2 = [P1++];

A1+=R0.H*R2.H, A0+=R0.L*R2.L;

LOOP_END .P1L3;

.P1L4:

A0 += A1;

R0 = A0;

Finally, the optimizer rotates the loop, unrolling and overlapping itera-
tions to obtain the highest possible use of functional units. Code similar
to the following is generated.

Example: Code Generated for Fixed-Point Scalar Product After Software
Pipelining

A1=A0=0 || R0 = [P0++] || NOP;

R2 = [I1++];

P2 = 49;

LOOP .P1L3 LC0 = P2;

Assembly Optimizer Annotations

2-104 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

.P1L3:

LOOP_BEGIN .P1L3;

A1+=R0.H*R2.H, A0+=R0.L*R2.L

|| R0 = [P0++]

|| R2 = [I1++];

LOOP_END .P1L3;

.P1L4:

A1+=R0.H*R2.H, A0+=R0.L*R2.L;

A0 += A1;

R0 = A0;

Assembly Optimizer Annotations
When the compiler optimizations are enabled, the compiler can perform a
large number of optimizations to generate the resultant assembly code.
The decisions taken by the compiler as to whether certain optimizations
are safe or worthwhile are generally invisible to a programmer. However,
it can be beneficial to get feedback from the compiler regarding the deci-
sions made during optimization. The intention of the information
provided is to give a programmer an understanding of how close to opti-
mal a program is and what more could possibly be done to improve the
generated code.

The feedback from the compiler optimizer is provided by means of anno-
tations made to the assembly file generated by the compiler. The assembly
file generated by the compiler can be saved by specifying the -S switch
(on page 1-80), the -save-temps switch (on page 1-81), or by checking
the Project > Properties > C/C++ Build > Settings > Tool Settings >
Compiler > General > Save temporary files option in the IDE.

CrossCore Embedded Studio 1.0 2-105
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The assembly code generated by the compiler optimizer is annotated with
the following information:

• Global Information

• Procedure Statistics

• Instruction Annotations

• Loop Identification

• Vectorization

• Modulo Scheduling Information

• Warnings, Failure Messages, and Advice

The assembly annotations provide information in several areas that you
can use to assist the compiler’s evaluation of your source code. In turn,
this improves the generated code. For example, annotations could provide
indications of resource usage or the absence of a particular optimization
from the resultant code. Annotations which note the absence of optimiza-
tion can often be more important than those noting its presence. Assembly
code annotations give the programmer insight into why the compiler
enables and disables certain optimizations for a specific code sequence.

Annotation Examples
Your installation directory contains a number of examples which demon-
strate the optimizer’s annotation output. You can find these examples in
the following directory tree:

<installation>Blackfin\Examples\No_HW_Required\proc\annotations

Assembly Optimizer Annotations

2-106 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

where proc is one of:

• ADSP-BF533 – contains IDE projects pre-configured for the
ADSP-BF533 processor.

• ADSP-BF609 – contains IDE projects pre-configured for the
ADSP-BF609 processor.

The examples in this directory tree are not intended to be functional;
although they can be built in the IDE and loaded into a processor, they do
not do anything of significance. Instead, their purpose is to show the kind
of annotations generated by the compiler, for a given kind of input source
code. In each case, you can import and build the example, as described in
Importing Annotation Examples, then examine the resulting assembly file.
Depending on the example, you may also see annotations when viewing
the C source file in the IDE. Details on how to view the generated annota-
tions is given in:

• Viewing Annotation Examples in the IDE

• Viewing Annotation Examples in Generated Assembly

Importing Annotation Examples

To import an example into the IDE:

1. Do File > Import > General.

2. Select Existing Projects Into Workspace.

3. Choose Select root directory, and click on Browse.

4. Navigate to the
Blackfin\Examples\No_HW_Required\proc\annotations directory
in your installation, for your preferred processor, and click OK.

5. The IDE will list the available annotations example projects. Check
the examples you want to import.

CrossCore Embedded Studio 1.0 2-107
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

6. Check Copy projects into Workspace. This will give you your own
working copy of the examples, so that you can build them.

7. Click Finish.

 There is a Core1 project which can be imported and built for the
second core when using the ADSP-BF609 processor examples. This
project does not do anything interesting either; it just provides an
empty main() function pre-configured for loading into Core 1.

Once you have your annotations projects loaded into your IDE, you need
to build them. This will produce an executable file. It will also produce
generated assembly source files.

 A lot of diagnostics will appear in the Console view when you
build any of the annotations examples. This is normal, as annota-
tions are a form of diagnostic, and are emitted to the standard error
output as well as to the assembly file.

Viewing Annotation Examples in the IDE

To view the annotations in the IDE:

1. Create a launch configuration for your selected processor, and
ensure that the launch configuration loads the executable you built
in Importing Annotation Examples. If using the ADSP-BF609 pro-
cessor, ensure that the configuration loads the executable from the
Core1 project into Core 1.

2. Launch the configuration, and let the example run to main().

3. Step into the first function called by main(). main() itself doesn’t
do anything interesting.

Assembly Optimizer Annotations

2-108 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

4. You will see “i” information icons in the left-hand gutter of the
source file view. Hover your mouse pointer over these icons to see
the annotations that have been associated with the source lines.

5. Alternatively, open the Problems view; annotations are a low-sever-
ity form of diagnostic, so are gathered by the Problems view when
the application is built.

The annotations examples produce these “i” information icons because
they enable annotations diagnostics: if you examine the projects, you will
see that they all set Project > Properties > C/C++ Build > Settings > Tool
Settings > Compiler > Warning > Warning/annotation/remark control to
Errors, warnings and annotations.

Viewing Annotation Examples in Generated Assembly

To view annotations in the generated assembly file:

1. Open the annotations project and build it, if you have not already
done so.

2. In the Project Explorer view, browse to the Debugsrc directory if
you built the project using the Debug configuration, or to the
Release\src directory if you built the project using the Release
configuration. You will find several assembly files there (with .s
suffix).

3. Double-click on the assembly file that corresponds to the example.
For example, in the file_position example, select
file_example.s.

4. The IDE will open the assembly file in a source view. You can see
the annotations as comments within that generated assembly file.

You can see the generated assembly files because the annotations projects
have been configured to have Project > Properties > C/C++ Build >
Settings > Tool Settings > Compiler > General > Save temporary files

CrossCore Embedded Studio 1.0 2-109
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

checked. Normally, this setting is off, and the compiler deletes the gener-
ated assembly file after it has been converted into an object file.

Global Information
For each compilation unit, the assembly output is annotated with:

• The time of the compilation

• The options used during that compilation.

• The architecture for which the file was compiled.

• The silicon revision used during the compilation

• A summary of the workarounds associated with the specified archi-
tecture and silicon revision. These workarounds are divided into:

• Disabled: these are the workarounds that were not applied

• Enabled: these are the workarounds that were applied dur-
ing the compilation.

• Always on: these are workarounds that are always applied
and that cannot be disabled, not even by using the
-si-revision none compiler switch.

• Never on: these are workarounds that are never applied and
that cannot be enabled.

The global_information project is an example of this information. Build
the project, then open the hello.s assembly file. You will see this infor-
mation at the start of the file.

Assembly Optimizer Annotations

2-110 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Procedure Statistics
For each function, the following is reported:

• Frame size – The size of stack frame.

• Registers used – Since function calls tend to implicitly clobber reg-
isters, there are several sets:

1. The first set is composed of the scratch registers changed by the
current function. This does not count the registers that are implic-
itly clobbered by the functions called from the current function.

2. The second set are the call-preserved registers changed by the cur-
rent function. This does not count the registers that are implicitly
clobbered by the functions called from the current function.

3. The third set are the registers clobbered by the inner function calls.

• Inlined Functions – If inlining happens, then the header of the
caller function reports which functions were inlined inside it and
where. Each inlined function is reported using the position of the
inlined call. All the functions inlined inside the inlined function
are reported as well, generating a tree of inlined calls. Each node,
except the root, has this form:

file_name:line:column'function_name

where:

function_name = name of the function inlined.

line = line number of the call to function_name, in the source file.

column = column number of the call to function_name, in the
source file.

file_name = name of the source file calling function_name.

CrossCore Embedded Studio 1.0 2-111
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The procedure_statistics annotation example illustrates this. You can
view the annotations in the IDE either via the C source view or the gener-
ated assembly.

• In a C source view, the procedure information for each function
can be viewed by hovering the mouse pointer over the “i” informa-
tion icon in the gutter beside the first line of each function
declaration—for example, beside “int foo(int in)”, in
procedure_statistics.c.

• In an assembly source view, the procedure information can be
viewed by scrolling down to the label that marks the start of each
function—for example, just after the label “_foo:” in
procedure_statistics.s.

The procedure_statistics_inlining demonstrates the annotations pro-
duced when a function inlines the contents of another function. Build the
project in the Release configuration, and open
Release\src\procedure_statistics_inlining.s. Observe how calls to
functions f2() and f3() have been inlined into function f1(), and how
the annotations at label “_f1:” report this.

Note that, if you build using the Debug configuration, you do not see the
same annotations, as the optimizer is not enabled, so inlining does not
happen.

Instruction Annotations
Sometimes the compiler annotates certain assembly instructions. It does
so in order to point to possible inefficiencies in the original source code,
or when the -annotate-loop-instr switch (on page 1-33) is used to anno-
tate the instructions related to modulo-scheduled loops.

The format of an assembly line containing several instructions is changed.
Instructions issued in parallel are no longer shown all on the same
assembly line; each is shown on a separate assembly line, so that the

Assembly Optimizer Annotations

2-112 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

instruction annotations can be placed after the corresponding instruc-
tions. For example,

instruction_1 || instruction_2 || instruction_3;

is displayed as:

instruction_1 || // {annotations for instruction_1}

instruction_2 || // {annotations for instruction_2}

instruction_3; // {annotations for instruction_3}

Example instruction_annotations demonstrates both these kinds of
annotation. Build the example using the Release mode.

• When viewing instruction_annotations.c in the C source view,
you can see that there is an annotation in the bad_mod() function
to indicate that the division operation is emulated in software. You
can also see that the optimizer modulo-scheduled the loop in the
dotprod() function, but the individual instruction annotations are
not available.

• When viewing instruction_annotations.s in the assembly source
view, you can see the same annotations as for the C source view,
but you can also see the additional information for each instruction
within the loop in the dotprod() function.

Loop Identification
One useful annotation is loop identification—that is, showing the rela-
tionship between the source program loops and the generated assembly
code. This is not easy due to the various loop optimizations. Some of the
original loops may not be present, because they are unrolled. Other loops
get merged, making it difficult to describe what has happened to them.

CrossCore Embedded Studio 1.0 2-113
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The assembly code generated by the compiler optimizer is annotated with
the following loop information:

• Loop Identification Annotations

• Resource Definitions

• File Position

• Infinite Hardware Loop Wrappers

Finally, the assembly code may contain compiler-generated loops that do
not correspond to any loop in the user program, but rather represent con-
structs such as structure assignment or calls to memcpy.

Loop Identification Annotations

Loop identification annotation rules are:

• Annotate only the loops that originate from the C looping con-
structs do, while, and for. Therefore, any goto defined loop is not
accounted for.

• A loop is identified by the position of the corresponding keyword
(do, while, for) in the source file.

• Account for all such loops in the original user program.

• Generally, loop bodies are delimited between the Lx: Loop at <file
position> and End Loop Lx assembly annotation. The former
annotation follows the label of the first block in the loop. The later
annotation follows the jump back to the beginning of the loop.
However, there are cases in which the code corresponding to a user
loop cannot be entirely represented between two markers. In such
cases the assembly code contains blocks that belong to a loop, but
are not contained between that loop’s end markers. Such blocks are
annotated with a comment identifying the innermost loop they
belong to, Part of Loop Lx.

Assembly Optimizer Annotations

2-114 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• Sometimes a loop in the original program does not show up in the
assembly file because it was either transformed or deleted. In either
case, a short description of what happened to the loop is given at
the beginning of the function.

In cases where a loop has been totally deleted (because a
source-level loop is never entered), the compiler will issue the
following remark (see Warnings, Annotations and Remarks):

cc1973: loop never entered - eliminated

In cases where a loop control code surrounding a loop body has
been removed (because the loop always iterates only once), the
compiler will issue the following remark (see Warnings, Annota-
tions and Remarks):

cc1974: loop always iterates once - loop converted to lin-

ear code

• A program’s innermost loops are those loops that do not contain
other loops. In addition to regular loop information, the innermost
loops with no control flow and no function calls are annotated with
additional information such as:

• Cycle count. The number of cycles needed to execute one
iteration of the loop, including the stalls.

• Resource usage. The resources used during one iteration of
the loop. For each resource, the compiler shows how many
of that resource are used, how many are available and the
percentage of utilization during the entire loop. Resources
are shown in decreasing order of utilization. Note that
100% utilization means that the corresponding resource is
used at its full capacity and represents a bottleneck for the
loop.

CrossCore Embedded Studio 1.0 2-115
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

• Register usage. If the -annotate-loop-instr compiler
switch is used, then the register usage table is shown. This
table has one column for every register that is defined or
used inside the loop. The header of the table shows the
names of the registers, written on the vertical, top down.
The registers that are not accessed do not show up. The col-
umns are grouped on data registers, pointer registers and all
other registers. For every cycle in a loop (including stalls)
there is a row in the array. The entry for a register has a '*'
on that row if the register is either live or being defined at
that cycle.

• Optimizations. Some loops are subject to optimizations
such as vectorization. These loops receive additional annota-
tions as described in the vectorization section.

• Sometimes the compiler generates additional loops that may or
may not be directly associated with the loops in the user program.
Whenever possible, the compiler annotations try to show the rela-
tion between such compiler-generated loops and the original source
code. For instance, for certain source level loops, the compiler gen-
erates two nested loops, with the outer loop behaving as an infinite
loop wrapper for the inner loop, and the outer loop is annotated as
an infinite wrapper.

Resource Definitions

For each cycle, a Blackfin processor may execute a single 16- or 32-bit
instruction, or it may execute a 64-bit multi-issued instruction consisting
of a 32-bit instruction and two 16-bit instructions. In either case, at most
one store instruction may be executed. Not all 16-bit instructions are valid
for the multi-issue slots, and not all of those may be placed into either
slot. Consequently, the resources are divided into group 1 (use of the first
16-bit multi-issue slot) and group 1 or 2 (use of either 16-bit multi-issue
slot).

Assembly Optimizer Annotations

2-116 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The resource usage is described in terms of missed opportunities by the
compiler; in other words, slots where the compiler has had to issue a NOP
or MNOP instruction.

An instruction of the form:

R0 = R0 + R1 (NS) || R1 = [P0++] || NOP;

has managed to use both the 32-bit ALU slot and one of the 16-bit mem-
ory access slots, but has not managed to use the second 16-bit memory
access slot. Therefore, this counts as:

• 1 out of 1 possible 32-bit ALU/MAC instructions

• 1 out of 1 possible group 1 instructions

• 1 out of 2 possible group 1 or 2 instructions

• 0 out of 1 possible stores

A single-issued instruction is seen as occupying all issue-slots at once,
because the processor cannot issue other instructions in parallel.
Consequently, there are no opportunities missed by the compiler. Thus,
a single-issue instruction such as:

R2 = R0 + R1 ;

is counted as:

• 1 out of 1 possible 32-bit ALU/MAC instructions

• 1 out of 1 possible group 1 instructions

• 2 out of 2 possible group 1 or 2 instructions

• 1 out of 1 possible stores

This is because the compiler has not had to issue NOP instructions or MNOP
instructions, and so no resources have been unutilized.

CrossCore Embedded Studio 1.0 2-117
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The loop_identification annotation example shows some of these anno-
tations. Build the example using the Release configuration. The function
bar() in file loop_identification.c contains two loops, written in such a
way that the second loop will not be entered: when the first loop com-
pletes, the conditions of entry to the second loop are false. When the
optimizer is enabled, the compiler can detect this through a process called
“constant propagation”, and can delete the second loop entirely.

• When viewing loop_identification.c in a C source view, “i”
information icons appear in the gutter next to the lines containing
the for and while keywords that introduce loops. For the first
loop, trip count, estimated cycle count and resource usage is given,
while for the second loop, the annotation reports that the loop is
removed due to constant propagation.

• When viewing loop_identification.s in an assembly source view,
an annotation appears following the “_bar:” label, reporting the
removed loop. At other points in the function, annotations appear
showing that the following code is part of the first loop, or part of
the top level of the function (i.e. not in any loop).

File Position

When the compiler refers to a file position in an annotation, it does so
using the file name, line number, and the column number in that file:

"ExampleC.c" line 4 col 6.

This scheme uniquely identifies a source code position, unless inlining is
involved. In the presence of inlining, a piece of code from a certain file
position can be inlined at several places, which in turn can be inlined at
other places. Since inlining can happen an unspecified number of times, a
recursive scheme is used to describe a general file position.

Therefore, a <general file position> is <file position> inlined from
<general file position>.

Assembly Optimizer Annotations

2-118 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Annotations example file_position demonstrates this. When built using
the Release configuration, two levels of inlining occur in file
file_position.c:

• When viewing file_position.c in a C source view, the loop at the
start of function f3() has an “i” information indicating that the
loop has been inlined into function f2() twice, and that each of
those instances have in turn been inlined into function f1().

• When viewing file_position.s in an assembly source view, anno-
tations appear in the generated file immediately before the code for
the loop. The annotations in function f2() indicate that the fol-
lowing code was inlined from function f3(), and the annotations
in function f1() indicate that the following code was inlined from
function f2(), which in turn was inlined from function f3().
There are also annotations at the start of functions f2() and f1()
reporting which functions have been inlined into them, as
described in Procedure Statistics.

Infinite Hardware Loop Wrappers

The compiler tries to generate hardware loops whenever possible to avoid
the delays involved with jump instructions. But hardware loops require a
trip count, and that is not always available. For instance, consider this
loop whose exit condition is not given by a trip count:

do {

body

} while (condition);

The compiler could generate code like this:

L_start:

body;

CC = condition;

IF CC JUMP L_start (bp);

CrossCore Embedded Studio 1.0 2-119
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

This way the conditional jump takes at least 5 cycles during each iteration.
However, if we had a hardware loop that could run forever, then the fol-
lowing alternative would be better:

LOOP L_start LC0 = infinite;

LOOP_BEGIN L_start;

body;

CC = condition;

IF !CC JUMP L_out;

LOOP_END L_start;

L_out:

This is 4 cycles better as the conditional jump takes only one cycle if it is
not taken. However, the hardware does not have infinite hardware loops,
so the compiler emulates them by using the highest possible trip count for
the hardware loop, and wrapping the loop in an infinite loop:

L_infinite_wrapper:

P0 = -1;

LOOP L_start LC0 = P0;

LOOP_BEGIN L_start;

body;

CC = condition;

IF !CC JUMP L_out;

LOOP_END L_start;

JUMP L_infinite_wrapper;

// end loop infinite_wrapper

L_out:

The two loops behave as a single infinite loop, with a minor overhead,
even though the hardware loop has to terminate. If the condition is never
satisfied, the outer loop is executed forever.

The compiler annotations annotate the outer loop as the infinite hardware
loop wrapper for the inner loop.

Assembly Optimizer Annotations

2-120 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The hardware_loop_wrappers annotation example demonstrates this. The
function pseudo_mod() in file hardware_loop_wrappers.c contains a loop
of indeterminate count. When built using the Release configuration, the
compiler will generate a hardware loop with an outer wrapper.

• When viewing hardware_loop_wrappers.c in a C source view,
there is an “i” information icon next to the loop in function
pseudo_mod(). The corresponding annotations include one which
reports it is an infinite hardware loop wrapper.

• When viewing hardware_loop_wrappers.s in an assembly source
view, there are several annotations for the loop in function
pseudo_mod(). The first one indicates that it is the infinite hard-
ware loop wrapper.

Vectorization
The trip count of a loop is the number of times the loop body gets
executed.

Under certain conditions, the compiler can take two operations from con-
secutive iterations of a loop and execute them in a single, more powerful
instruction. This gives a loop a smaller trip count. The transformation in
which operations from two subsequent iterations are executed in one more
powerful single operation is called “vectorization”.

For instance, the original loop may start with a trip count of 1000.

for(i=0; i < 1000; ++i)

a[i] = b[i] + c[i];

After the optimization, the vectorized loop has a final trip count of 500.
The vectorization factor is the number of operations in the original loop
that are executed at once in the transformed loop. It is illustrated using
some pseudo code below.

CrossCore Embedded Studio 1.0 2-121
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

for(i=0; i < 1000; i+=2)

(a[i], a[i+1]) = (b[i],b[i+1]) .plus2. (c[i], c[i+1])

In the above example, the vectorization factor is 2. A loop may be vector-
ized more than once.

If the trip count is not a multiple of the vectorization factor, some itera-
tions need to be peeled off and executed unvectorized. If in the previous
example, the trip count of the original loop was 1001, then the vectorized
code would be:

for(i=0; i < 1000; i+=2)

(a[i], a[i+1]) = (b[i],b[i+1]) .plus2. (c[i], c[i+1]);

a[1000] = b[1000] + c[1000];

// This is one iteration peeled from

// the back of the loop.

In the above examples, the trip count is known and the amount of peeling
is also known. If the trip count (a variable) is not known, the number of
peeled iterations depends on the trip count. In such cases, the optimized
code contains peeled iterations that are executed conditionally.

Unroll and Jam

A vectorization-related transformation is unroll and jam. Where the source
file has two nested loops, sometimes the compiler can unroll the outer
loop, to create two copies of the inner loop each operate on different iter-
ations of the loop. It can then “jam” these two loops together, interleaving
their operations, giving a sequence of operations that is more amenable to
vectorization. The compiler issues annotations when this transformation
has happened.

Assembly Optimizer Annotations

2-122 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The unroll_and_jam annotation example demonstrates this. The example
contains three source files:

• unroll_and_jam_original.c – the “real” example. This file con-
tains a function which the compiler is able to optimize using the
unroll-and-jam transformation.

• unroll_and_jam_unrolled.c – this file is illustrative of how the
compiler’s internal representation would be, part-way through the
unroll-and-jam transformation. This is not an example of how you
should write your code. In this representation, the compiler has
unrolled the outer loop once, so that there are two complete, sepa-
rate copies of the inner loop. The first copy works on even
iterations, while the second works on odd iterations.

• unroll_and_jam_jammed.c – another illustrative representation of
the function, after the transformation is complete. The compiler
has taken the two copies of the loop and overlapped them, then
vectorized the operations so that the 16-bit loads and stores are
now 32-bit loads and stores that access two adjacent locations in
parallel, and the accumulation operations do two separate 16-bit
additions in the same cycle.

 You should always write your code in the cleanest manner possible,
to most clearly express your intention to the compiler. You should
not attempt to apply transformations such as unroll-and-jam
explicitly within your code, as that will obscure your intent and
inhibit the optimizer. The unrolled and jammed files are only pre-
sented here to illustrate the behavior of the transformation.

CrossCore Embedded Studio 1.0 2-123
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The unroll_and_jam annotation example makes use of the
unroll_and_jam_original.c file to demonstrate the annotation produced
during this transformation. Build the example using the Release
configuration.

• When viewing the unroll_and_jam_original.c file in a C source
view, there is an “i” information icon next to the outer loop,
reporting that the loop has been unrolled and jammed.

• When viewing the unroll_and_jam_original.s file in an assembly
source view, there is an annotation preceding the generated code
for the outer loop, reporting that the loop has been unrolled and
jammed.

Loop Flattening

Another transformation, related to vectorization, is “loop flattening”.
Loop flattening takes two nested loops that run N1 and N2 times respec-
tively, and transforms them into a single loop that runs N1*N2 times.

The loop_flattening annotation example demonstrates this. It contains
two files to illustrate the transformation:

• loop_flattening_original.c –This file contains two nested loops,
iterating 30 times and 100 times, respectively.

• loop_flattening_flattened.c – This file contains a single loop,
iterating 3000 times. This file is not an example of how you should
write your code—it is merely an illustration of the transformation
applied by the compiler optimizer.

Assembly Optimizer Annotations

2-124 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The loop_flattening annotation example uses
loop_flattening_original.c to demonstrate the annotations produced.
Build the example using the Release configuration.

• When viewing loop_flattening_original.c in a C source view,
there is an annotation on the outer loop, indicating that the two
loops were flattened into one.

• When viewing loop_flattening_original.s in an assembly source
view, there is an annotation at the beginning of the function, indi-
cating that the two loops were flattened into one; the annotation
appears at the start of the function because a loop was “lost” (the
loop’s structure was removed), and lost loops are reported at the
start of each function.

Vectorization Annotations

For every loop that is vectorized, the following information is provided:

• The vectorization factor

• The number of peeled iterations

• The position of the peeled iterations (front or back of the loop)

• Information about whether peeled iterations are conditionally or
unconditionally executed

For every loop pair subject to unroll and jam, the following information is
provided:

• The number of times the unrolled outer loop was unrolled

• The number of times the inner loop was jammed

CrossCore Embedded Studio 1.0 2-125
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

For every loop pair subject to loop flattening, the following information is
provided:

• The loop that is lost

• The remaining loop that it was merged with

The vectorization annotation example demonstrates some of this. File
vectorization.c contains a function copy() which the compiler can con-
ditionally vectorize, when optimizing. Build the example using the Release
configuration.

• When viewing vectorization.c in a C source view, there are “i”
information icons next to the loop constructs in the copy() func-
tion. These annotations report that there are multiple versions of
the loop, one of which is unvectorized; that a loop was vectorized
by a factor of two; the trip counts for the loops; and so on.

• When viewing vectorization.s in an assembly source view, there
are multiple versions of the loop in the function. One has annota-
tions to indicate it has been vectorized, while the other has an
annotation to indicate that it is the unvectorized version of the
same loop.

Modulo Scheduling Information
For every modulo-scheduled loop (see also Modulo Scheduling), in addi-
tion to regular loop annotations, the following information is provided:

• The initiation interval (II)

• The final trip count if it is known: the trip count of the loop as it
ends up in the assembly code

• A cycle count representing the time to run one iteration of the
pipelined loop

Assembly Optimizer Annotations

2-126 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• The minimum trip count, if it is known and the trip count is
unknown

• The maximum trip count, if it is known and the trip count is
unknown

• The trip modulo, if it is known and the trip count is unknown

• The stage count (iterations in parallel)

• The MVE unroll factor

• The resource usage

• The minimum initiation interval due to resources (res MII)

• The minimum initiation interval due to dependency cycles
(rec MII)

Annotations for Modulo-Scheduled Instructions

The -annotate-loop-instr switch (on page 1-33) can be used to produce
additional annotation information for the instructions that belong to the
prolog, kernel, or epilog of the modulo-scheduled loop.

Consider the example whose schedule is in Table 2-12. Remember that
this example does not use a real DSP architecture, but rather a theoretical
one able to schedule four instructions on a line, and each line takes one
cycle to execute. We can view the instructions involved in modulo sched-
uling as in Table 2-14.

Due to variable expansion, the body of the modulo-scheduled loop con-
tains MVE=2 unrolled instances of the kernel, and the loop body contains
instructions from 4 iterations of the original loop. The iterations in prog-
ress in the kernel are shown in the table heading, starting with Iteration
0 which is the oldest iteration in progress (in its final stage). This example
uses two register sets, shown in the table heading.

CrossCore Embedded Studio 1.0 2-127
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The instruction annotations contain the following information:

• The part of the modulo-scheduled loop (prolog, kernel, or epilog)

• The loop label: This is required since prolog and epilog instruc-
tions appear outside of the loop body and are subject to being
scheduled with other instructions.

• ID: A unique number associated with the original instruction in
the unscheduled loop that generates the current instruction. It is
useful because a single instruction in the original loop can expand
into multiple instructions in a modulo-scheduled loop.

Table 2-14. Modulo-Scheduled Instructions

Part Iteration 0 Iteration 1 Iteration 2 Iteration 3 ...

Register Set 0 Register Set 1 Register Set 0 Register Set 1

1 prolog I1

2 prolog I2, I3

3 prolog I4, I5 I1_2

4 prolog I6 I2_2, I3_2

5 L: Loop ...

6 kernel I7 I4_2, I5_2 I1

7 kernel I8 I6_2 I2, I3

8 kernel I7_2 I4, I5 I1_2

9 kernel I8_2 I6 I2_2, I3_2

10 END Loop

11 epilog I7 I4_2, I5_2

12 epilog I8 I6_2

13 epilog I7_2

14 epilog I8_2

Assembly Optimizer Annotations

2-128 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

In our example, the annotations for all instances of I1 and I1_2
have the same ID, meaning they all originate from the same
instruction (I1) in the unscheduled loop.

The IDs are assigned in the order the instructions appear in the
kernel and they might repeat for MVE unroll > 1.

• Loop-carry path, if any: If an instruction belongs to the loop-carry
path, its annotation will contain a ‘*’. If several such paths exist,
‘*2’ is used for the second one, ‘*3’ for the third one, and so on.

• sn: The stage count to which the instruction belongs

• rs: The register set used for the current instruction (useful when
MVE unroll > 1, in which case rs can be 0, 1, ..., mve-1). If the
loop has an MVE of 1, the instruction’s rs is not shown.

• Additionally, the instructions in the kernel are annotated with:

• Iteration. Iter: specifies the iteration of the original loop an
instruction is on in the schedule.

• In a modulo-scheduled kernel, there are instructions from
(SC+MVE-1) iterations of the original loop. Iter=0 denotes
instructions from the earliest iteration of the original loop,
with higher numbers denoting later iterations.

Thus, the instructions corresponding to the schedule in Table 2-14 for a
hypothetical machine are annotated as follows:

1 : I1; // {L10 prolog:id=1,sn=0,rs=0}

2 : I2, // {L10 prolog:id=2,sn=0,rs=0}

3 : I3; // {L10 prolog:id=3,sn=0,rs=0}

4 : I4, // {L10 prolog:id=4,sn=1,rs=0}

5 : I5, // {L10 prolog:id=5,sn=1,rs=0}

6 : I1_2; // {L10 prolog:id=1,sn=0,rs=1}

7 : I6, // {L10 prolog:id=6,sn=1,rs=0}

CrossCore Embedded Studio 1.0 2-129
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

8 : I2_2, // {L10 prolog:id=2,sn=0,rs=1}

9 : I3_2; // {L10 prolog:id=3,sn=0,rs=1}

10://--

11:// Loop at ...

12://--

13:// This loop executes 2 iterations of the original loop

// in estimated 4 cycles.

14://--

15:// Unknown Trip Count

16:// Successfully found modulo schedule with:

17:// Initiation Interval (II) = 2

18:// Stage Count (SC) = 3

19:// MVE Unroll Factor = 2

20:// Minimum initiation interval due to recurrences

// (rec MII) = 2

21:// Minimum initiation interval due to resources

// (res MII) = 2.00

22://---

23:L10:

23:LOOP (N-2)/2;

25: I7, // {kernel:id=7,sn=2,rs=0,iter=0}

26: I4_2, // {kernel:id=4,sn=1,rs=1,iter=1}

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}

28: I1; // {kernel:id=1,sn=0,rs=0,iter=2}

29: I8, // {kernel:id=8,sn=2,rs=0,iter=0}

30: I6_2, // {kernel:id=6,sn=1,rs=1,iter=1}

31: I2, // {kernel:id=2,sn=0,rs=0,iter=2}

32: I3; // {kernel:id=3,sn=0,rs=0,iter=2,*}

33: I7_2, // {kernel:id=7,sn=2,rs=1,iter=1}

34: I4, // {kernel:id=4,sn=1,rs=0,iter=2}

35: I5, // {kernel:id=5,sn=1,rs=0,iter=2,*}

36: I1_2; // {kernel:id=1,sn=0,rs=1,iter=3}

37: I8_2, // {kernel:id=8,sn=2,rs=1,iter=1}

38: I6, // {kernel:id=6,sn=1,rs=0,iter=2}

Assembly Optimizer Annotations

2-130 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

39: I2_2, // {kernel:id=2,sn=0,rs=1,iter=3}

40: I3_2; // {kernel:id=3,sn=0,rs=1,iter=3,*}

41:END LOOP

42:

43: I7, // {L10 epilog:id=7,sn=2,rs=0}

44: I4_2, // {L10 epilog:id=4,sn=1,rs=1}

45: I5_2; // {L10 epilog:id=5,sn=1,rs=1}

46: I8, // {L10 epilog:id=8,sn=2,rs=0}

47: I6_2; // {L10 epilog:id=6,sn=1,rs=1}

48: I7_2; // {L10 epilog:id=7,sn=2,rs=1}

49: I8_2; // {L10 epilog:id=8,sn=2,rs=1}

Lines 10-22 define the kernel information: loop name and modulo-sched-
ule parameters: II, stage count, etc.

Lines 25-40 show the kernel.

Each instruction in the kernel has an annotation between {}, inside a
comment following the instruction. If several instructions are executed in
parallel, each gets its own annotation.

For instance, line 27 looks like:

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}

This annotation describes:

• That this instruction belongs to the kernel of the loop starting at
L10.

• That this and the other three instructions that have ID=5 originate
from the same original instruction in the unscheduled loop:

5: I5, // {L10 prolog:id=5,sn=1,rs=0}

...

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}

...

CrossCore Embedded Studio 1.0 2-131
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

35: I5, // {kernel:id=5,sn=1,rs=0,iter=2,*}

...

45: I5_2; // {L10 epilog:id=5,sn=1,rs=1}

• sn=1 shows that this instruction belongs to stage count 1.

• rs=1 shows that this instruction uses register set 1.

• Iter=1 specifies that this instruction belongs to the second itera-
tion of the original loop (Iter numbers are zero-based).

• The ‘*’ indicates that this is part of a loop carry path for the loop.
In the original, unscheduled loop, that path is I5 -> I3 -> I5. Due
to unrolling, in the scheduled loop the “unrolled” path is I5_2->
I3->I5->I3_2->I5_2.

The prolog and epilog are not clearly delimited in blocks by themselves,
but their corresponding instructions are annotated like the ones in the
kernel except that they do not have an Iter field and that they are
preceded by a tag specifying which prolog or epilog they belong to:

5 : I5, // {L10 prolog:id=5,sn=1,rs=0}

...

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}

...

35: I5, // {kernel:id=5,sn=1,rs=0,iter=2,*}

...

45: I5_2; // {L10 epilog:id=5,sn=1,rs=1}

Note that the prolog/epilog instructions may mix with other instructions
on the same line.

This situation does not occur in this example; however, in a different
example it might have:

I5_2, // {L10 epilog:id=5,sn=1,rs=1}

I20;

Assembly Optimizer Annotations

2-132 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

This shows a line with two instructions. The second instruction I20 is
unrelated to modulo scheduling, and therefore it has no annotation.

Warnings, Failure Messages, and Advice
There are innocuous programming constructs that have a negative effect
on performance. Since you may not be aware of the hidden problems, the
compiler annotations try to give warnings when such situations occur.
Also, if a program construct keeps the compiler from performing a certain
optimization, the compiler gives the reason why that optimization was
precluded.

In some cases, the compiler assumes it could do a better job if you
changed your code in certain ways. In these cases, the compiler offers
advice on the potentially beneficial code changes. However, take this cau-
tiously. While it is likely that making the suggested change will improve
the performance, there is no guarantee that it will actually do so.

Some of the messages are:

• This loop was not modulo scheduled because it was optimized for
space
When a loop is modulo-scheduled, it often produces code that has
to precede the scheduled loop (the prolog) and follow the sched-
uled loop (the epilog). This almost always increases the size of the
code. That is why, if you specify an optimization that minimizes
the space requirements, the compiler doesn't attempt modulo
scheduling of a loop.

• This loop was not modulo scheduled because it contains calls or
volatile operations
Due to the restrictions imposed by calls and volatile memory
accesses, the compiler does not try to modulo-schedule loops con-
taining such instructions.

CrossCore Embedded Studio 1.0 2-133
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

• This loop was not modulo scheduled because it contains too
many instructions
The compiler does not try to modulo-schedule loops that contain
many instructions, because the potential for gain is not worth the
increased compilation time.

• This loop was not modulo scheduled because it contains jump
instructions
Only single block loops are modulo-scheduled. You can attempt to
restructure your code and use single block loops.

• This loop would vectorize more if alignment were known
The loop was vectorized, but it could be vectorized even more if
the compiler could deduce a stronger alignment of some memory
locations used in the loop.

• This loop would vectorize if alignment were known
The loop was not vectorized because of unknown pointer
alignment.

• Consider using pragma loop_count to specify the trip count or
trip modulo
This information may help vectorization.

• Consider using pragma loop_count to specify the trip count or
trip modulo, in order to prevent peeling
When a loop is vectorized, but the trip count is not known, some
iterations are peeled from the loop and executed conditionally
(based on the run-time value of the trip count). This can be
avoided if the trip count is known to be divisible by the number of
iterations executed in parallel as a result of vectorization.

Assembly Optimizer Annotations

2-134 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• operation of this size is implemented as a library call
This message is issued when source code operator operation results
in a library call, due to lack of hardware support for performing
that operation on operands of that size.

In this case the compiler will also issue the following remark (see
Warnings, Annotations and Remarks):

cc2261: operation implemented as a library call

• operation is implemented as a library call
This message is issued when source code operator operation results
in a library call, due to lack of direct hardware support. For
instance, an integer division results in a library call. In this case the
compiler will also issue the following remark (see Warnings, Anno-
tations and Remarks):

cc2261: operation implemented as a library call

• MIN operation could not be generated because of unsigned oper-
ands
This message is issued when the compiler detects a MIN operation
performed between unsigned values. Such an operation cannot be
implemented using the hardware MIN instruction, which requires
signed values.

• MAX operation could not be generated because of unsigned oper-
ands
This message is issued when the compiler detects a MAX operation
performed between unsigned values. Such an operation cannot be
implemented using the hardware MAX instruction, which requires
signed values.

• Use of volatile in loops precludes optimizations
In general, volatile variables hinder optimizations. They cannot be
promoted to registers, because each access to a volatile variable

CrossCore Embedded Studio 1.0 2-135
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

requires accessing the corresponding memory location. The
negative effect on performance is amplified if volatile variables are
used inside loops. However, there are legitimate cases when you
have to use a volatile variable exactly because of this special treat-
ment by the optimizer. One example would be a loop polling if a
certain asynchronous condition occurs. This message does not dis-
courage the use of volatile variables, it just stresses the implications
of such a decision.

• Jumps out of this loop prevent efficient hardware loop generation
Due to the presence of jumps out of a loop, the compiler either
cannot generate a hardware loop, or was forced to generate one that
has a conditional exit.

• Consider using a 4-byte integral type for the variable name, for
more efficient hardware loop generation
Using short-typed variables as loop control variables limits optimi-
zation because the short variables may wrap. For instance, in the
following example,

unsigned short i;

for (i = 0; i < c; i++)

....

if c > 65536, then the loop will run forever because i wraps from
65535 back to 0. The compiler recommends using an int variable
instead (int or unsigned int) unless the smaller size is critical to
your program’s behavior.

• There are N more instructions related to this call
Certain operations are implemented as library calls. In those cases
the call instruction in the assembly code is annotated explaining
that the user operation was implemented as a call. However the
cost of the operation may be slightly larger than the cost of the call
itself, due to additional overhead required to pass the parameters

Analyzing Your Application

2-136 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

and to obtain the result. This message gives an estimate of the
number of instructions in such an overhead associated with a
library call.

• This function calls the “alloca” function which may increase the
frame size
The assembly annotations try to estimate the frame size for a given
function. However, if the function makes explicit use of alloca
then this increases the frame size beyond the original reported
estimate.

Analyzing Your Application
The compiler and run-time libraries provide several features for analyzing
the run-time behavior of your application. These features allow you to
better debug errors and fine-tune the program. Features discussed in this
chapter are:

• Application Analysis Configuration discusses general control of the
analysis features.

• Profiling With Instrumented Code discusses how to profile the
application, measuring the time spent in individual functions in an
application.

• Profile-Guided Optimization and Code Coverage discusses how to
improve application performance using profile guided optimization
(PGO). Producing code coverage reports using profile guided opti-
mization data is also discussed.

CrossCore Embedded Studio 1.0 2-137
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

• Heap Debugging details how to use the run-time library heap
debugging feature to identify heap-allocated memory leaks and
heap-allocated memory corruption within an application.

• Stack Overflow Detection details how to use the stack overflow fea-
ture to determine when an application has exceeded its maximum
stack size.

Application Analysis Configuration
The analysis features described in this section can be configured through
some global settings which are used by an underlying profiling layer. This
layer is exposed by the <sys\adi_prof.h> header file. The following
aspects can be controlled through this layer:

• Application Analysis and File Naming

• Device for Profiling Output

• Frequency of Flushing Profile Data

Application Analysis and File Naming

The analysis features described in this section each rely on files created by
the application while it is running. In order for the analysis tools to be
able to locate such files, the application and the tools must agree on the
files’ names. This is achieved through the use of the linker’s
EXECUTABLE_NAME directive, which allows an application to discover the
name of its own executable image. The run-time library can then use this
name as the basis of the generated files, thereby tying the generated file to
the executable that created it. This allows the Reporter Tool to produce
useful reports based on the application and its generated log files.

Analyzing Your Application

2-138 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The features that make use of this functionality are:

• Profile-guided optimization (PGO) for hardware (on page 2-9).

• Instrumented profiling (on page 2-139).

• Heap debugging (on page 2-150).

The EXECUTABLE_NAME directive takes an assembler symbol name as a
parameter. For the features in this chapter, the symbol name must be
__executable_name.

 You do not need to add the __executable_name symbol to your
application. The linker will automatically create an object file
containing the declaration of the symbol when it encounters the
EXECUTABLE_NAME directive in the .ldf file.

The __executable_name assembler symbol declared in the .ldf file can be
referenced in C/C++ applications. The data is stored in a NUL-terminated
C string.

As an alternative to using the EXECUTABLE_NAME directive, you can provide
a declaration of the symbol within your application, for example, in C:

char _executable_name[] = “my_executable.dxe”;

 If no EXECUTABLE_NAME directive is provided in the .ldf file, the
application will revert to using the default definition of
__executable_name. This contains the string “unknown.dxe”.

Device for Profiling Output

The profiling features require an underlying I/O device driver to produce
output to either stderr or the appropriate log file. The features will use
the device driver specified by the integer adi_prof_io_device. If
adi_prof_io_device is -1, the profilers will use the default device driver.
adi_prof_io_device defaults to -1, but this definition can be overridden
with a value representing the required device driver.

CrossCore Embedded Studio 1.0 2-139
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Frequency of Flushing Profile Data

To reduce the impact of I/O operations, the profilers buffer data inter-
nally, and write the data to the log files in bursts. The intervals can be
controlled through the following global variables:

• adi_prof_min_flush_interval determines the minimum time that
must pass between buffer flushes.

• adi_prof_max_flush_interval determines the maximum time that
may pass between buffer flushes. This value is used to determine
whether to flush data to the log file before the buffer fills.

The library provides default values for each of these variables, but you can
override the defaults just by defining your own versions, for example:

uint32_t adi_prof_max_flush_interval

= ADI_MSEC_FLUSH_INTERVAL(10000); // 10 seconds

 The ADI_MSEC_FLUSH_INTERVAL macro is based upon the
__PROCESSOR_SPEED__ macro.

Profiling With Instrumented Code
Instrumented profiling is an application profiling tool that provides a
summary of cycle counts for functions within an application. To produce
an instrumented profiling summary:

1. Compile your application with the -p switch, or with Project >
Properties > C/C++ Build > Settings > Tool Settings > Compiler
> Processor > Enable compiler instrumented profiling selected.
For best results, use the optimization switches that will be enabled
in the released version of the application.

Analyzing Your Application

2-140 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

2. Gather the profile. Run the executable with a training data set. The
training data set should be representative of the data that you
expect the application to process in the field. The profile is stored
in a file with the extension .prf.

3. Generate the profiling report. Two options for creating reports are
available:

a. Using the IDE; this will produce an HTML format report.

b. Using the command-line tools; this will produce a plain-text
report.

4. Based on the profiling report, modify the application to improve
performance in critical sections of code.

 Instrumented profiling works by planting function calls into your
application which record the cycle count (and in multi-threaded
cases, the thread identifier) at certain points. Applications built
with instrumented profiling should be used for development and
should not be released.

 Instrumented profiling requires that an I/O device is available in
the application to produce its profiling data. The default I/O
device will be used to perform I/O operations for instrumented
profiling.

 Instrumented profiling flushes any remaining profile data still
pending when exit() is invoked. Multi-threaded applications may
need to flush data explicitly.

Generating an Application With Instrumented Profiling

The -p compiler switch (on page 1-70) enables instrumented profiling in
the compiler when compiling C/C++ source into assembly. The compiler
cannot instrument assembly files or files that have already been compiled
into object files.

CrossCore Embedded Studio 1.0 2-141
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

You can enable the -p switch in an IDE project via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Processor > Enable
compiler instrumented profiling.

 When compiling with the -p switch, the compiler and linker will
define the preprocessor macro _INSTRUMENTED_PROFILING with a
value of 1.

Running the Executable

To produce a profiling report, run the application in either the simulator
or on hardware. The application will produce a profiling file which is used
to create the profiling report. The profiling file will be located in the same
directory as the executable, and named as per the executable with a .prf
suffix.

 If the application’s .ldf file does not use the EXECUTABLE_NAME
directive, the profiling file will revert to the legacy name of
unknown.prf. For more information, see Application Analysis and
File Naming.

The profiling output file needs to be converted into a readable report.
This can be achieved using one of two tools: the IDE Reporter Tool or the
command-line instrprof.exe tool. See Invoking the Reporter Tool and
Invoking the instrprof.exe Command-Line Reporter for information on
how to produce a report from the .prf profile data file.

Invoking the Reporter Tool

The Reporter Tool produces an HTML-formatted report. To produce the
HTML file:

1. Select File > New > Code Analysis Report.

2. Select Instrumented profiling.

Analyzing Your Application

2-142 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

3. Enter the name of the application executable in the DXE that pro-
duced the data field.

4. If the application .ldf file does not contain an EXECUTABLE _NAME
directive, the Data file field will not have been automatically
updated. Enter the name of the .prf profiling data file into the
field.

5. Enter the filename for the HTML report that will be generated.

6. Click Finish.

Invoking the instrprof.exe Command-Line Reporter

The instrprof.exe command-line tool produces a plain-text report
printed to the command-line console. To produce a report, invoke the
instrprof.exe tool, providing the application executable and the .prf
profiling data file as parameters. For example:

instrprof.exe test.dxe test.prf

The report is displayed via standard output, typically to the console or
command line.

Contents of the Profiling Report

The profiling report lists each profiled function called in the application,
how many times it was called, and cycle counts for that function. In
multi-threaded applications, the thread identifier is also displayed. The
Reporter Tool and instrprof command-line program present the same
information, but in different formats according to their output media.
The respective formats are described in Reporter Tool Report Format and
instrprof Command-Line Tool Report Format.

CrossCore Embedded Studio 1.0 2-143
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Listing 2-3. Example Program for Instrumented Profiling

int apples, bananas;

void apple(void) {

apples++; // 10 cycles

}

void banana(void) {

bananas++; // 10 cycles

apple(); // 10 cycles

} // 20 cycles

int main(void) {

apple(); // 10 cycles

apple(); // 10 cycles

banana(); // 20 cycles

return 0; // 40 inclusive cycles total

} // + exclusive cycles for main itself

For example, in the program shown as Listing 2-3, assume that apple()
takes 10 cycles per call and assume that banana() takes 20 cycles per call,
of which 10 are accounted for by its call to apple(). The program, when
run, calls apple() three times: twice directly and once indirectly through
banana(). The apple() function clocks up 30 cycles of execution, and this
is reported for both its inclusive and exclusive times, since apple() does
not call other functions. The banana() function is called only once. It
reports 10 cycles for its exclusive time, and 20 cycles for its inclusive time.
The exclusive cycles are for the time when banana() is incrementing
bananas and is not “waiting” for another function to return, and so it
reports 10 cycles. The inclusive cycles include these 10 exclusive cycles
and also include the 10 cycles apple() used when called from banana(),
giving a total of 20 inclusive cycles.

Analyzing Your Application

2-144 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The main() function is called only once, and calls three other functions
(apple() twice, banana() once). Between them, apple() and banana() use
up to 40 cycles, which appear in the main() function’s inclusive cycles.
The main() function’s exclusive cycles are for the time when main() is
running, but is not in the middle of a call to either apple() or banana().

 Time spent in unprofiled functions will be added to the exclusive
cycle count for the innermost profiled function, if one is active.
(An active profiled function is a profiled function which has an
entry in the call stack, that is, it has begun execution but has not
yet returned.) For example, if apple() called the system function
malloc(), the time spent in malloc() (which is uninstrumented)
will be added to the time for apple().

Reporter Tool Report Format

The HTML-formatted instrumented profiling report, produced by the
IDE’s Reporter Tool, contains a summary of information for the applica-
tion. Each profiled function called during execution is listed with the
following information:

• The function’s name.

• The pathname of the source file containing the function.

• The number of times this function was called.

• “Number of cycles without calls”: the total number of cycles spent
executing the code of this function; if the function calls other pro-
filed functions, the cycles spent in those functions is not included
in this figure. Note that if the function calls other non-profiled
functions, this figure will include the cycles spent in those
functions.

CrossCore Embedded Studio 1.0 2-145
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

• “Number of cycles with calls”: the total number of cycles spent exe-
cuting this function, or any function it calls. In other words, this
figure gives the sum of cycle counts between this function being
called, and it returning.

• The percentage of time spent in this function. This percentage is
based on the “number of cycles without calls.”

• The thread identifier, for a multi-threaded application.

instrprof Command-Line Tool Report Format

The instrprof.exe tool emits a report to standard output. The following
is an example of the instrprof output:

Summary for thread 1

Function Name ExecCount Fn Only Fn+nested

_main 1 40 80

_apple 3 30 30

_banana 1 10 20

Functional Summary:

Function Name ExecCount Fn Only Fn+nested

_main 1 40 80

_apple 3 30 30

_banana 1 10 20

This report includes the following information, for each profiled function:

• The function’s name.

• “ExecCount”: the number of times this function was called.

• “Fn Only”: this is the same value as “Number of cycles without
calls”, as described in Reporter Tool Report Format.

Analyzing Your Application

2-146 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• “Fn+nested”: this is the same value as “Number of cycles with
calls”, as described in Reporter Tool Report Format.

The report gives a breakdown for each thread in the application, plus an
overall combined report for all threads. In this single-threaded example,
there is only one thread, so both portions of the report contain the same
information.

Profiling Data Storage

The profiling information is stored at runtime in memory allocated from
the system heap. If the profiling run-time support cannot allocate from
the heap (usually because the heap is exhausted), the profiling runtime
will call adi_fatal_error() (on page 3-81) and stop execution. The pro-
filing data available when this happens will be incomplete and probably
not very useful. To avoid this problem, increase the size of the system heap
until the error is no longer seen when running. For more information, see
Controlling System Heap Size and Placement.

 Although instrumented profiling uses the default heap for some of
its internal storage, none of these allocations will appear in a heap
usage report.

Computing Cycle Counts

When profiling is enabled, the compiler instruments the generated code
by inserting calls to a profiling library at the start of and end of each com-
piled function. The profiling library samples the processor’s cycle counter
and records this figure against the function just started or just completed.
The profiling library itself consumes some cycles, and these overheads are
not included in the figures reported for each function, so the total cycles
reported for the application by the profiler will be less than the cycles con-
sumed during the life of the application. In addition to this overhead,
there is some approximation involved in sampling the cycle counter,
because the profiler cannot guarantee how many cycles will pass between a
function’s first instruction and the sample. This is affected by the

CrossCore Embedded Studio 1.0 2-147
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

optimization levels, the state preserved by the function, and the contents
of the processor’s pipeline. The profiling library knows how long the call
entry and exit takes “on average”, and adjusts its counts accordingly.
Because of this adjustment, profiling using instrumented code provides an
approximate figure, with a small margin for error. This margin is more
significant for functions with a small number of instructions than for
functions with a large number of instructions.

Multi-Threaded and Non-Terminating Applications

When an instrumented application is executed, it records data in the
application, occasionally flushing this data to the host computer. In
multi-threaded applications and non-terminating single-threaded
applications, a request to flush data is required to ensure that all the
profiling data is flushed from the application.

 In multi-threaded projects, the default thread stack size may not be
sufficient for profiling some applications, and may result in unex-
pected run-time behavior. Refer to your RTOS documentation for
instructions on increasing your thread stack size.

Flushing Profile Data

To flush profiling data, the application must include the header file
instrprof.h and call the function instrprof_request_flush(). Any
changes to the code for instrumented profiling can be guarded by the
preprocessor macro _INSTRUMENTED_PROFILING. For example:

#if defined(_INSTRUMENTED_PROFILING)

#include <instrprof.h>

#endif

void myfunc_noreturn(int x) {

while (1) {

// Perform operations

#if defined(_INSTRUMENTED_PROFILING)

instrprof_request_flush();

Analyzing Your Application

2-148 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

#endif

}

}

The flush will occur when the call to instrprof_request_flush() is
made. Flushing cannot occur when the scheduler is disabled or from
within interrupt handlers.

Profiling of Interrupts and Kernel Time

A single-threaded application (that is, not built with the –threads
compiler switch) will add any time spent in interrupts to the time of the
innermost, active profiled function that was interrupted. Time spent in
the interrupt handler will not be visible in the profiling report produced.
The compiler does not instrument functions declared as event handlers.

In a multi-threaded application using a real-time operating system
(RTOS), only the time spent in the objects compiled with instrumenta-
tion is measured. Time spent in the scheduler/kernel and interrupt
handlers is not reported. In the HTML-formatted report produced by the
Reporter Tool, the “percentage of time” field is a percentage of the pro-
filed time, not the absolute time that the application was running.

Behavior That Interferes With Instrumented Profiling

Several features of the C and C++ programming languages can have an
impact on profiling results. The following features can result in unex-
pected results from profiling:

• Unexpected termination of application. If the application termi-
nates unexpectedly, a complete set of profiling information may
not be available. To ensure the profiling information is complete,
all threads of execution should terminate by unwinding their stack
(returning from main() or their thread creation function), or by
calling exit(). RTOS-based systems may use a different imple-
mentation of exit(), so may require that data be flushed explicitly.

CrossCore Embedded Studio 1.0 2-149
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

• Unexpected flow control. Functions that perform unexpected flow
control, such as C setjmp/longjmp, C++ exceptions or calling other
instrumented functions via asm() statements, may result in inaccu-
rate profiling information. Instrumented profiling relies on the
typical C/C++ behavior of call/return to be able to measure cycle
counts in functions. When features such as setjmp or C++ excep-
tions return through multiple stack frames, instrumented profiling
will attempt to complete the profiling information for any stack
frames unwound, but this may be inaccurate.

Profile-Guided Optimization and Code Coverage
The data recorded when running an application built with profile-guided
optimization (see Using Profile-Guided Optimization) can also be used to
generate a code coverage report using the IDE’s Reporter Tool. A code
coverage report provides a listing of your application’s C/C++ source with
execution counts for individual lines of code. To produce a code coverage
report:

1. Compile the application for profile-guided optimization for either
simulators (See Using Profile-Guided Optimization With a Simu-
lator) or hardware (See Using Profile-Guided Optimization With
Hardware).

2. Run the application to produce a .pgo file.

3. Select File > New > Code Analysis Report.

4. Ensure that Code coverage is selected.

5. Enter the name of the application executable in the DXE that pro-
duced the data field.

Analyzing Your Application

2-150 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

6. If the application .ldf file does not contain an EXECUTABLE _NAME
directive, the Data file field will not have been automatically
updated. Enter the name of the .pgo profiling data file into the
field.

7. Enter the filename for the HTML report that will be generated.

8. Click Finish.

Code Coverage Report

The code coverage report contains a function-by-function summary of the
application. For each C and C++ source file compiled with profile-guided
optimization, a line count will be displayed, indicating how many times
that line was executed.

Unexpected Line Counts in a Code Coverage Report

Several compiler features may impact the accuracy of a code coverage
report. Compiler optimizations may rearrange code for better efficiency,
and in some cases remove sections of code. This may result in unexpected
line count information being displayed in the code coverage report.

If the application was compiled for profile-guided optimization on
hardware, no line count information will be reported for any function
declared with an interrupt handler pragma.

If the .pgo file already exists when you run your application to gather a
profile, the new profile data will accumulate into the same existing .pgo
file rather than replacing it. This allows you to run your application under
a number of different conditions and gather an overall coverage report.

Heap Debugging
The support for heaps provides convenient access to dynamic memory
within an application. While this is an easy and efficient way to use

CrossCore Embedded Studio 1.0 2-151
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

dynamic memory, the lack of bounds checking associated with pointer
accesses means that mistakes are easy to make, and may have unpredict-
able side effects which can be hard to identify and debug. CCES provides
a heap debugging library which can be used to detect errors in the use of
the heap, helping identify issues which may be causing unintended
behavior.

The heap debugging library constrains debug versions of the heap
manipulation functions (such as malloc, free, new, delete) provided by
the C and C++ run-time libraries, which record the heap activity and
attempt to identify any potential issues with the usage of the heap, such as
writing beyond the bounds of a buffer or failing to free memory.

The heap debugging library maintains a record of allocated blocks within
the heap to track the current state of the heap. This recorded information
is used as a reference to ensure that any heap allocations are valid; for
example, checking that the block that is being freed has been allocated by
calloc, malloc, realloc, new or any derivatives and has not been freed
previously. A guard region of 12 bytes, filled with a known bit pattern, is
written before and after each block allocated from the heap and is checked
at de-allocation to detect any overwriting of the bounds of the block.
These bit patterns can be changed at build-time or runtime to avoid the
bit patterns corresponding to any application data that may be written
into them, causing the bounds overflow to go undetected.

A cleanup function, adi_heap_debug_end, detects any potential memory
leaks (memory that has been allocated but not de-allocated) and heap
corruption. This function is registered via atexit, and is invoked if an
application calls exit or returns from main.

The heap debugging library has the ability to generate a report detailing
heap usage and errors via the Reporter Tool, to provide diagnostics via
stderr at runtime, to check heap(s) for corruption, and to generate a cur-
rent heap state snapshot of the heap(s).

Analyzing Your Application

2-152 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The heap debugging library can be used simply by being linked in with
your application, meaning that source code does not need to be re-built.
The heap debugging library also contains additional functions to allow the
behavior of the heap debugging to be modified or for additional diagnos-
tic tests to be carried out at runtime. These additional functions can be
used by including the header heap_debug.h, and will require your code to
be re-built.

The heap debugging library can enabled in the IDE by selecting Project >
Properties > C/C++ Build > Settings > Tool Settings > Compiler >
Run-time Checks > Link against heap debugging libraries.

For a comprehensive list of errors detected by the heap debugging library,
refer to Detected Errors.

The heap debugging library will require additional memory for code and
data, so an application may fail to link for projects which do not have suf-
ficient additional memory available. Heap and stack usage is also increased
so run-time errors may occur if insufficient stack or heap is available
within your application.

The heap debugging library requires an underlying I/O device driver to
produce output to either stderr or the .hpl file, as described in Device for
Profiling Output.

Calls to heap allocation and de-allocation functions will also take longer
when heap debugging is enabled than if it is disabled, especially if report
generation is enabled.

Getting Started With Heap Debugging

To use heap debugging, you first need to link your application against the
heap debugging library instead of the normal heap library. You may also
need to modify your application to perform some initial configuration,

CrossCore Embedded Studio 1.0 2-153
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

depending on whether your application is single- or multi-threaded, and
levels of logging and diagnostics you require. This section contains:

• Linking With the Heap Debugging Library,
which covers how to activate the heap debugging library

• Heap Debugging Macro,
which explains how you can conditionally include configuration
code in your application

• Default Behavior,
which describes how the out-of-the-box configurations for the heap
debugging library

• Additional Heap Overheads,
which gives a brief summary of the extra data requirements of heap
debugging

• The Heap Debugging Report,
which identifies the file produced by the heap debugging library

Linking With the Heap Debugging Library

You can enable the heap debugging library:

• In the IDE by selecting Project > Properties > C/C++ Build >
Settings > Tool Settings > Compiler > Run-time Checks > Link
against heap debugging libraries.

• On the command-line, via the -rtcheck-heap switch
(on page 1-78).

Heap Debugging Macro

When Project > Properties > C/C++ Build > Settings > Tool Settings >
Compiler > Run-time Checks > Link against heap debugging libraries
has been selected, the macro _HEAP_DEBUG is defined in the compiler,
assembler, and linker.

Analyzing Your Application

2-154 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

This macro is used in the header file heap_debug.h to define either
prototype functions when enabled, or to use macros to replace any heap
debugging-specific function calls with statements mimicking a successful
return from that function. This allows code to work independently of the
heap debugging library being linked, with minimal performance overhead
when the heap debugging library is not used.

The _HEAP_DEBUG macro is also used to control the linking of the heap
debugging library in the default .ldf files.

Default Behavior

The behavior of the heap debugging libraries can be configured either at
build-time or at runtime. Table 2-15 shows the default configuration.

The choice of configuration will affect the run-time performance of the
application. For example, an application configured to log all heap activity
to a file will make far more calls to the I/O library than an application
configured only to emit an error diagnostic when a problem is encoun-
tered. However, the choice of configuration does not affect the additional
code/data requirements imposed, as the heap debugging library has to
record the same information in order to detect errors, regardless of
whether that information is also being written to an activity log.

By default, applications generate an .hpl file of the heap activity; see The
Heap Debugging Report. The file can be converted into an HTML report
for later analysis.

Table 2-15. Default Configuration for Heap Debugging

Generate .hpl log file Enabled

Generate diagnostics to stderr Disabled

CrossCore Embedded Studio 1.0 2-155
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

By default, no diagnostics regarding heap usage will be written to stderr.
You can enable stderr diagnostics by calling:

adi_heap_debug_enable(_HEAP_STDERR_DIAG);

If your application does not terminate via exit or by returning from main,
the heap debugging cannot track memory leaks or some cases of heap
corruption. You will need to call adi_heap_debug_end at a suitable point
in the application. Calling adi_heap_debug_end will instruct the heap
debugging library to check for any memory leaks and corruption before
cleaning up any internal data used.

If adi_heap_debug_end is not called either manually or via exit, memory
leaks can be identified in the report by the presence of a memory
allocation without a corresponding de-allocation. Heap corruption can be
detected by calling adi_verify_all_heaps from anywhere within your
application.

Additional Heap Overheads

In addition to the over-allocation of each memory block by 24-bytes to
use as a guard region around the block, the heap debugging library uses
the system heap to allocate memory used for internal data. Approximately
24-bytes of memory is allocated from the system heap per allocation made
from any heap, and 24-bytes of memory is allocated from the system heap
to record information about each heap in the system.

The Heap Debugging Report

The heap debugging library uses the symbol __executable_name, provided
by the EXECUTABLE_NAME() LDF directive to determine the name of the
.hpl file used to generate the heap debugging report. If the
__executable_name symbol is not present, the file unknown.hpl will be
used. For more information, see Application Analysis and File Naming.

Analyzing Your Application

2-156 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Using the Heap Debugging Library

The following sections describe the use of the heap debugging library.
They detail the type of issues detected by the heap debugging library,
explain how to view the library’s diagnostics, and how refine the
diagnostics according to your needs. Topics include:

• Detected Errors
lists the issues that the heap debugging library can detect.

• Viewing Reports
explains how to convert the generated .hpl log file into report in
HTML format.

• stderr Diagnostics
covers how to control diagnostics emitted to the standard error
stream.

• Call Stack
discusses the call stack recorded with each heap operation, and how
to configure this.

• Setting the Severity of Error Messages
explains how to change the severity of each encountered issue.

• Default Diagnostic Severities
lists the severity levels used by default.

• Guard Regions
discusses the memory spaces allocated before and after each heap
block, to detect writes beyond the block boundaries.

• Enabling and Disabling Features
explains how to configure the library at build-time and at runtime.

• Buffering
covers setting up a buffer to capture heap information while I/O is
not possible.

CrossCore Embedded Studio 1.0 2-157
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

• Pausing Heap Debugging
explains how the tracing may be temporarily suspended.

• Finishing Heap Debugging
gives advice on ensuring that all your heap tracing information is
flushed to the log file.

• Verifying Heaps
describes how you can programmatically ensure that your heaps are
consistent.

• Behavior of Heap Debugging Library
notes that using the heap debugging library will have an impact on
the characteristics of your application.

• Unfreed File I/O Buffers
explains a side-effect of the inter-dependence between the heap
library and I/O library.

• Memory Used by Operating Systems
indicates how any heap usage by the RTOS may lead to additional
entries in the heap log.

Detected Errors

The following errors will be detected by the heap debugging library:

• Allocation of length zero

• Allocations that are bigger than the heap

• De-allocation of a previously de-allocated memory

• De-allocation of a pointer not returned by an allocation function

• delete[] of memory allocated by new

• delete[] of memory allocated by C functions (calloc, malloc,
realloc)

Analyzing Your Application

2-158 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• delete of memory allocated by C functions (calloc, malloc,
realloc))

• delete of memory allocated by new[]

• free of memory allocated by C++ allocator operations

• free of null pointer

• free from incorrect heap

• Memory leaks (memory that has not been de-allocated)

• realloc of memory allocated by C++ allocator operations

• realloc of pointer not returned by allocation function

• realloc from incorrect heap

• Using heap functions from within an interrupt

• Writing beyond the scope of allocated memory block (up to 12
bytes before and after allocated memory)

• Writing to memory that has been de-allocated

Using the known bit patterns written in and around blocks by the heap
debugging library can help to identify erroneous reads by the presence of
these bit patterns in live data. These erroneous reads may be from:

• Memory that has been allocated from the heap but is uninitialized

• Memory that has been de-allocated

• Memory that is beyond the scope of the allocation (up to 12 bytes
before or after allocated memory)

See Guard Regions for more information on these bit patterns.

CrossCore Embedded Studio 1.0 2-159
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Viewing Reports

To create an HTML report for your application’s heap activity:

1. Build the application with Project > Properties > C/C++ Build >
Settings > Tool Settings > Compiler > Run-time Checks > Link
against heap debugging libraries, or with -rtcheck-heap
(on page 1-78).

2. Run the application to produce a .hpl file.

3. Select File > New >Code Analysis Report.

4. Ensure that Heap debugging is selected.

5. Enter the name of the application executable in the DXE that pro-
duced the data field.

6. If the application .ldf file does not contain an EXECUTABLE _NAME
directive, the Data file field will not have been automatically
updated. Enter the name of the .hpl profiling data file into the
field.

7. Enter the filename for the HTML report that will be generated.

8. Click Finish.

stderr Diagnostics

The heap debugging library can provide console diagnostic reporting for
any issues detected with the heap usage, writing diagnostic messages to
stderr as they are detected.

To enable stderr diagnostic reporting at runtime, call:

#include <heap_debug.h>

adi_heap_debug_enable(_HEAP_STDERR_DIAG);

Analyzing Your Application

2-160 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

To enable stderr diagnostics at build-time, define the following C
variable in your application source:

bool adi_heap_debug_stderr_diag = true;

stderr diagnostics can have one of three severities: error, warning, or
ignored.

Errors will print a diagnostic message and then call adi_fatal_error.
For more information, see Fatal Error Handling.

Warnings will print a diagnostic message and then continue the applica-
tion as normal. Ignored errors will not produce any diagnostic messages
and will not terminate the application.

The severity of errors will not have any impact on the content of the gen-
erated heap debugging output file (.hpl) or the heap debugging report
generated from it; all errors will be included.

Generated diagnostics will be in the form:

Heap [severity] in block [address]: [message]

when a memory address is relevant, or in the form:

Heap [severity]: [message]

when no memory address is relevant. Both will be followed by a call stack
where one is known and relevant. severity will be either “error” or
“warning”, address represents the address of the memory block con-
cerned, as returned by the allocation function. message will be a short
description of the issue which has been detected.

The call stack reported will be the call stack of the function that identified
the issue. This may not be the same function as the source of the error in
some cases, such as detecting heap corruption and memory leaks.

Some examples of diagnostic messages are shown below.

CrossCore Embedded Studio 1.0 2-161
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Warning About Attempting to Free a Block That is Already Free

Heap warning in block 0xFF80647C: free of free block

Call stack: 0xFFA098AC 0xFFA080F6

Indicating that the memory block at address 0xFF80647C has been de-allo-
cated twice.

Warning About Calling malloc With Zero Size

Heap warning: allocation of length 0

Call stack: 0xFFA09972 0xFFA080F6

No block address has been provided as there is no address associated with
this issue.

Warning About Memory Leak

Heap warning in block 0xFF80647C: unfreed block

No call stack is displayed here as it would refer to the call stack of the
function in which the leak was detected.

Call Stack

The call stack associated with heap operations will be included in the heap
debugging output file (and the report generated from the heap debugging
output file using the Reporter Tool) or any diagnostic messages produced
by the heap debugging library in order to help identify the source of the
identified issue.

The call stack is stored in a buffer on the system heap, requiring eight
bytes of memory for each potential element in the call stack. By default,
this call stack is five elements deep. The depth of the call stack can be
changed by calling adi_heap_debug_set_call_stack_depth at runtime,
which will try to re-allocate sufficient space for this buffer, or keeping the
original buffer and returning false if it is not possible to change the call
stack depth.

Analyzing Your Application

2-162 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The values displayed in the call stack are the PC address of the return from
the previous function, starting from the call to the heap function and tra-
versing the stack towards main (up to the maximum call stack depth).

For example, when run, the following code

#include <stdlib.h>

#include <heap_debug.h>

void do_free(char *x) {

free(x);

}

void main(void) {

adi_heap_debug_enable(_HEAP_STDERR_DIAG);

do_free(0x0);

}

will produce the following warning:

Heap warning: free of null pointer

Call stack: 0xFFA0153E 0xFFA01554 0xFFA00130

where the addresses in the call stack, 0xFFA0153E and 0xFFA01554, refer to
the return from the call to free in do_free and the call to do_free from
main, respectively. The last address, 0xFFA00130, is the call to main from
the start-up code.

Setting the Severity of Error Messages

When stderr diagnostics are enabled, the severity of errors can be set,
based on the type of the error. These severities are described in
Table 2-16.

CrossCore Embedded Studio 1.0 2-163
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

These can be configured at runtime by calling the functions
adi_heap_debug_set_error, adi_heap_debug_set_ignore, and
adi_heap_debug_set_warning, with a parameter, which is a bit-field where
each bit represents an error type. Macros representing these bits are
provided by heap_debug.h. Multiple error types can be set to a severity at
once by using the bitwise OR operator.

These severities can also be configured at build-time by defining the
following bit fields using the macros defined in heap_debug.h:

unsigned long adi_heap_debug_error;

unsigned long __heap_debug_ignore;

unsigned long __heap_debug_warning;

 Each error class should only be added to a single status, and each
error class should be added to a status, otherwise unexpected
behavior may occur.

These priorities have no impact on the report generation; all detected
errors will still be displayed in the generated report.

If a warning is encountered, but the heap debugging library is unable to
use I/O due to being in an interrupt or scheduling being disabled, the
warning will be raised to an error and adi_fatal_error will be called. For
this reason, setting the error type _HEAP_ERROR_ISR (heap usage within an
ISR) to a warning will have no effect. Setting _HEAP_ERROR_ISR to be
ignored will behave as expected.

Table 2-16. Heap Debugging Diagnostic Message Severities

Severity Description

Error The application will print a diagnostic message and terminate

Ignored The application will not print any diagnostic message and will continue running

Warning The application will print a diagnostic message and continue running

Analyzing Your Application

2-164 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Changing Error Severity Examples

To promote any cases in which the wrong heap is used to de-allocate
memory (and any cases of attempting to allocate more memory than the
size of the heap to be a terminating error), the following code can be used:

#include <heap_debug.h>

adi_heap_debug_set_error(_HEAP_ERROR_WRONG_HEAP |

_HEAP_ERROR_ALLOCATION_TOO_LARGE);

To demote any cases of using the wrong function to de-allocate memory,
de-allocations of invalid addresses and heap corruption to a warning, the
following code can be used:

#include <heap_debug.h>

adi_heap_debug_set_warning(_HEAP_ERROR_FUNCTION_MISMATCH |

_HEAP_ERROR_INVALID_ADDRESS |

_HEAP_ERROR_BLOCK_IS_CORRUPT);

To ignore any cases of the wrong heap or wrong function being used to
de-allocate memory, the following code can be used:

#include <heap_debug.h>

adi_heap_debug_set_ignore(_HEAP_ERROR_WRONG_HEAP |

_HEAP_ERROR_FUNCTION_MISMATCH);

Default Diagnostic Severities

By default, any potentially suspicious heap behavior which is documented
as acceptable by the run-time libraries or C standard will result in a
warning at runtime, since although this behavior may be intentional it
may indicate an error in the usage of the heap, such as attempting to free
memory from the wrong heap. Behavior which is incorrect will result in
an error at runtime. No issues are ignored by default.

CrossCore Embedded Studio 1.0 2-165
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The default severities of error messages are detailed in Table 2-17.

For more information on error classes, see heap_debug.h.

Guard Regions

The heap debugging library uses guard regions of 12 bytes before and after
each block allocated from the heap containing a known bit pattern. These
patterns are checked when the free/allocated status of the block is modi-
fied or at the end of the application. If the values do not match, then heap
corruption must have occurred, such as overwriting of a buffer or writing
to a block which has been de-allocated.

Table 2-17. Default Heap Debugging Diagnostic Severities

Error Type Default Severity

_HEAP_ERROR_UNKNOWN Error

_HEAP_ERROR_FAILED Warning

_HEAP_ERROR_ALLOCATION_OF_ZERO Warning

_HEAP_ERROR_NULL_PTR Warning

_HEAP_ERROR_INVALID_ADDRESS Error

_HEAP_ERROR_BLOCK_IS_CORRUPT Error

_HEAP_ERROR_FREE_OF_FREE Warning

_HEAP_ERROR_FUNCTION_MISMATCH Error

_HEAP_ERROR_UNFREED_BLOCK Warning

_HEAP_ERROR_WRONG_HEAP Warning

_HEAP_ERROR_ALLOCATION_TOO_LARGE Warning

_HEAP_ERROR_INVALID_INPUT Error

_HEAP_ERROR_INTERNAL Error

_HEAP_ERROR_IN_ISR Error

_HEAP_ERROR_MISSING_OUTPUT Warning

Analyzing Your Application

2-166 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Blocks that have been allocated from the heap have 12 bytes before and
after the block filled with the allocated block boundary pattern. Corrup-
tion of these before and after guard regions indicates underflow and
overflow of the block, respectively.

The contents of allocated blocks (other than blocks allocated using cal-
loc) are filled with the allocated block contents pattern to help manually
identify the use of allocated but uninitialized memory.

Free blocks are filled with the free blocks pattern. The 12-byte guard
region following the block is also filled with this value, though the 12-byte
guard region before the block is not as these 12 bytes are used by the heap
for the operation of the free list. Corruption of this memory indicates that
memory has been written to after it has been de-allocated.

Reading beyond the scope of the allocated block, free or uninitialized
memory can be identified by these bit patterns appearing in live data
within the application.

The default bit-patterns for the guard regions are shown in Table 2-18.

Table 2-18. Heap Debugging Guard Region Values

Guard Region Bit Pattern

Free blocks 0xBD

Allocated block boundaries 0xDD

Allocated block contents (not calloc) 0xED

Allocated block contents (calloc) 0x00

CrossCore Embedded Studio 1.0 2-167
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

These patterns can be changed at runtime by calling:

bool adi_heap_debug_set_guard_region(unsigned char free-pattern,

unsigned char allocated-pattern,

unsigned char content-pattern);

where each parameter is a character representing the required bit pattern.
Any existing blocks will be checked for corruption before the pattern is
changed. If there are any corruptions, then
adi_heap_debug_set_guard_region will not change the guard regions and
will return false. If the heap is valid, then the guard regions for all existing
allocations will be changed along with the guard regions of any future allo-
cations. The patterns written to allocated block contents will not be
updated, though any new allocations will be filled with the new bit
pattern.

The patterns can also be overridden at build-time by defining the
appropriate “C” variable, shown in Table 2-19.

These variables will be updated if adi_heap_debug_set_guard_region is
called at runtime, so they can be used to identify the current guard region
values.

 The variables described in Table 2-19 should not be written to at
runtime, or false corruption errors may be reported.

Table 2-19. Heap Debugging Guard Region Variables

Guard Region Variable

Free blocks unsigned char adi_heap_guard_free

Allocated block boundaries unsigned char adi_heap_guard_alloc

Allocated block contents (not calloc) unsigned char adi_heap_guard_content

Analyzing Your Application

2-168 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The guard regions can be returned to the defaults detailed in Table 2-18
by calling adi_heap_debug_set_guard_region. As with
adi_heap_debug_set_guard_region,
adi_heap_debug_reset_guard_region will only change the guard regions
if no corruption has been detected.

Enabling and Disabling Features

There are two ways in which features can be configured within an
application: via function calls at runtime, or by defining variables at
build-time. The default configuration is described in Default Behavior.

 Any allocation or de-allocation made while heap debugging is
disabled will not be recorded by the heap debugging library. This
may result in errors if the memory is then manipulated with heap
debugging enabled. For instance, a block allocated with heap
debugging disabled and then de-allocated when heap debugging
has been enabled will report a free from invalid address error.
Conversely, allocation of blocks with heap debugging enabled and
then manipulation of those blocks with heap debugging disabled
may result in an unfreed block error.

The features that can be enabled or disabled, along with the macros,
provided by heap_debug.h, are detailed in Table 2-20.

At Runtime

Features within the heap debugging library can be enabled or disabled at
runtime by using the functions adi_heap_debug_enable or

Table 2-20. Configurable Heap Debugging Features

Feature Macro

Run-time diagnostics _HEAP_STDERR_DIAG

Generation of .hpl file for heap report _HEAP_HPL_GEN

Tracking of heap usage _HEAP_TRACK_USAGE

CrossCore Embedded Studio 1.0 2-169
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

adi_heap_debug_disable, respectively, using a bit-field constructed by
combining the required macros specified in Table 2-20 using the bitwise
OR operator. To enable both run-time diagnostics and .hpl file generation,
the following can be used:

adi_heap_debug_enable(_HEAP_STDERR_DIAG | _HEAP_HPL_GEN);

Enabling either run-time diagnostics or .hpl file generation will implicitly
enable tracking of heap usage.

At Build-Time

The global variables used to configure the heap debugging features can be
defined at build-time, allowing the default configuration to be modified
with no performance overheads. These values can also be read at runtime
to identify the current configuration. These variables are detailed in
Table 2-21.

 The variables should not be written to directly at runtime, or
unexpected behavior may result.

Table 2-21. Variables Used to Configure Heap Debugging Features

Feature Variable

Tracking of heap usage bool adi_heap_debug_enabled

Run-time diagnostics bool adi_heap_debug_errors_enabled

Generation of .hpl file for heap report bool adi_heap_debug_hpl_gen

Analyzing Your Application

2-170 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Buffering

The contents of the .hpl file used to generate a heap debugging report can
be buffered by the heap debugging library to improve performance and to
avoid any recorded data being lost when it is not currently safe to write to
that file.

The buffer will be flushed periodically or when it is safe to carry out I/O
and the buffer has reached a certain threshold.

By default, the heap debugging library does not have a buffer configured.
This means that every use of the heap will result in the data being written
to the output file. As a result, the output file is always up to date and no
flushing of the output is required. This does, however, have an impact on
execution time due to the overhead of the I/O operations required and
means that any data that cannot be written at the time will be lost.

A buffer can be specified at runtime by calling adi_heap_debug_set_buffer
with a pointer to the memory and the size of the buffer in addressable
units. The buffer threshold will be set to half of the size of the buffer.

A buffer can be configured at build-time by defining the variables
described in Table 2-22.

The macro _ADI_HEAP_MIN_BUFFER, provided by heap_debug.h, can be
used to determine the minimum size required for the heap debugging
output buffer to be usable. This macro represents the size required to store
two entries of the log data along with associated call stacks. The memory
requirement for an entry of log data is 56 bytes + 8 bytes per call stack
item, up to the maximum call stack depth. The default maximum call
stack depth is five and can be modified by using
adi_heap_debug_set_call_stack_depth.

CrossCore Embedded Studio 1.0 2-171
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

When heap debugging is not enabled, _ADI_HEAP_MIN_BUFFER will be
defined to 0.

The number of bytes of data that has been lost due to insufficient buffer-
ing is stored in the 32-bit “C” integer variable adi_hpl_buf_lost_data,
provided by heap_debug.h.

Pausing Heap Debugging

Heap debugging can be temporarily disabled at runtime to improve the
performance in sections of code where heap usage does not need to be
debugged. With debugging disabled, no checks will be carried out and no
allocations or de-allocations will be recorded, but performance will be
close to the non-debug version of the heap functions.

 Heap debugging is enabled and disabled globally, so pausing heap
debugging will affect the tracking of all heap usage across any
threads which are running until it has been re-enabled.

 Any allocations or de-allocations made while heap debugging was
paused will not be recorded, so any corresponding operations made
after heap debugging has been resumed may result in false errors
being produced regarding invalid addresses or memory leaks.

Heap debugging can be paused by calling adi_heap_debug_pause and can
be re-enabled by calling adi_heap_debug_resume.

Table 2-22. Variables Used to Configure Heap Debugging Buffer

Variable Description

void *adi_hpl_buf_ptr Pointer to the start of the buffer

int adi_hpl_buf_size Size of the buffer in addressable units

int adi_hpl_buf_threshold Threshold at which buffer will be flushed

Analyzing Your Application

2-172 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Finishing Heap Debugging

If an application does not exit, or uses an operating system that does not
support atexit, the heap debugging library will not be able to clean up or
check for corrupt blocks and memory leaks. In these cases, the clean up
function adi_heap_debug_end should be called at a suitable point within
your application. Heap debugging will be disabled upon completion of
this function, and any further heap usage will be ignored unless heap
debugging has been re-enabled by calling adi_heap_debug_enable.

It is safe to call adi_heap_debug_end multiple times within an application.
If a .hpl output file has already been written to by the current instance of
the application, then the output file will be appended to.

 adi_heap_debug_end will attempt to flush any buffer for the .hpl
file generation, so it should only be called when I/O is safe to use.
Calling adi_heap_debug_end from within an interrupt or unsched-
uled region will result in adi_fatal_error being called.

Verifying Heaps

It is possible to check that a heap or that all heaps are free of corruption
(see Guard Regions for more information on heap corruption) at runtime
by calling the functions adi_verify_heap or adi_verify_all_heaps,
respectively.

These functions will return true if the heap or heaps are free of corruption,
or false if corruption is detected.

Behavior of Heap Debugging Library

While the heap debugging library is compatible with the non-debug
functionality where possible, so that application should operate in the
same with heap debugging enabled as without, some minor changes in
behavior may be observed. These changes in behavior are detailed below.

CrossCore Embedded Studio 1.0 2-173
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Application Size

Due to the additional functionality provided by the heap debugging
library, code and data usage for your application will increase when using
the heap debugging libraries. Your application may fail to link if
insufficient space is available for this library.

Performance

Due to additional validation checks, performance in the heap
manipulations will be degraded compared to the non-debug version of the
functions provided by the C/C++ run-time libraries, especially if
generation of the .hpl file is enabled. With heap debugging disabled or
paused, the performance should be close to the non-debug version of the
heap manipulation functions.

Heap debugging can be enabled or disabled at runtime, allowing you to
ignore selected parts of your applications to minimize the impact of heap
performance overheads.

 Heap operations that are carried out when heap debugging is dis-
abled will be ignored and may result in false errors being reported.

By default, for non-threaded applications, an output file is created which
is used to generate a heap debugging report. The I/O operations required
for this are time-consuming and can be disabled to improve performance
by using the following:

adi_heap_debug_disable(_HEAP_HPL_GEN);

If heap tracing is disabled, then run-time diagnostics should be enabled in
order to identify any heap errors.

Heap Usage

For each allocation on any heap, the heap debugging libraries will
over-allocate the memory by 24 bytes for use as a guard region, as well as
approximately 24 bytes of internal data on the system heap. As a result,

Analyzing Your Application

2-174 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

more heap space will be used when heap debugging is enabled. You may
need to increase the size of your heaps if insufficient space is available.

Stack Usage

The additional function calls used for the heap debugging will make use of
the stack of parameters and local variables, so the overall stack usage in
your application will increase when using the heap debugging library,
particularly when writing diagnostics or the .hpl file.

realloc

The versions of realloc and heap_realloc provided by the heap debug-
ging library will always de-allocate the original block of memory and
allocate a new block of memory of the required size; the equivalent of
calling malloc, free then memcpy, while the non-debug versions of
realloc and heap_realloc will try to re-use the existing memory first.

This change in behavior with the heap debugging version is to catch cases
where a block has been reallocated but pointers have not been updated to
reference the new block. These cases may happen to work in an applica-
tion, but this behavior cannot be relied on and may result in unexpected
behavior.

As a result of this, some calls to realloc or heap_realloc may fail with the
heap debugging which are successful without. This can be avoided by
ensuring sufficient heap space is available.

Unfreed File I/O Buffers

For each file stream used, the run-time library allocates 512 bytes of
memory from the heap to use as a buffer. For reasons of performance and
code size, the run-time libraries do not free this memory upon application
exit. The heap debugging library will identify these blocks as belonging to
a file buffer so it will not report an error about being unfreed. The
allocation of the I/O buffer memory will be seen in the heap debugging
report without a corresponding free.

CrossCore Embedded Studio 1.0 2-175
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Memory Used by Operating Systems

Operating systems used in an application may use the heaps to store
internal data. This data may be reported as an unfreed block by the heap
debugging library as it cannot identify the source of the allocation. Some
unfreed block reports are to be expected when using an operating system if
it is still running.

Stack Overflow Detection
The compiler provides support for detecting stack overflows, which can be
particularly troublesome bugs in the limited environment of an embedded
system.

This section includes:

• About Stack Overflows
gives a description of what a stack overflow is.

• Compiler’s Stack Overflow Detection Facility
explains how to use the compiler’s support for detecting stack
overflows.

About Stack Overflows

This section gives an introduction to stack overflows, and why they are
problematic.

This section includes:

• What is Stack Overflow?
describes a stack overflow, and why it is different from other bugs.

• Likely Causes of Stack Overflow
gives examples of the kind of issues that can lead to stack overflows.

Analyzing Your Application

2-176 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• Difficulties in Diagnosing Stack Overflow
shows why compiler support is useful.

• Limitations on the Compiler’s Stack Detection Capability
notes when compiler support is less useful.

• Fixing a Stack Overflow
gives advice on what to do when you have located your stack
overflow.

What is Stack Overflow?

A stack overflow is caused by the stack not being large enough for the
application. The effects of a stack overflow are undefined; the effects can
vary from data corruption to a catastrophic software crash.

The stack overflows when the stack pointer (SP) is modified to point past
the end of the memory reserved for the stack and the stack is written to
using the stack pointer or frame pointer (FP).

 A stack overflow is different from stack corruption caused by a bug
in your program code.

When the stack overflows, any writes to the stack using the stack pointer
(SP) or the frame pointer (FP) will begin to corrupt an area of memory
which it should not. The results are undefined.

Likely Causes of Stack Overflow

There are many reasons why a stack overflow can occur, for example:

1. A function defines a too-large local array.

2. A function defines a too-large variable-length array (Refer to Vari-
able-Length Arrays.)

CrossCore Embedded Studio 1.0 2-177
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

3. A function uses the alloca() function, with an too-large value as
its parameter, to allocate space in the stack frame of the caller.
(Refer to System Built-In Functions.)

4. The .ldf file has insufficient space set aside for the stack.

5. A function calls itself recursively too many times.

6. A function’s call tree is too deep.

7. A re-entrant interrupt handler is called too many times before the
interrupt is fully serviced.

Note that too large or too many is only slight more than not too large or not
too many; the application only has to exceed its available stack space by
one location for corruption to occur.

Difficulties in Diagnosing Stack Overflow

Without compiler support, debugging a stack overflow is not often easy
and mostly involves setting breakpoints or adding tracing statements at
various places in your application. A stack overflow might also not become
apparent if you are building your application in a Release configuration,
when optimizations are enabled; a stack overflow might not reveal itself
until your application is built in a Debug configuration, when optimiza-
tions are not enabled.

The timing of interrupts will also mask a stack overflow. If nested
interrupts are enabled and the time taken to service the interrupts is
insufficient before another interrupt is raised and serviced, then a stack
overflow can occur.

Analyzing Your Application

2-178 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Compiler’s Stack Overflow Detection Facility

You can enable stack overflow detection via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Run-time Checks
> Generate code to catch a Stack Overflow, or via the -rtcheck-stack
switch (on page 1-79).

Once the compiler’s stack overflow detection facility has been enabled, the
compiler will generate code in the function’s prologue and whenever the
stack pointer (SP) is modified in the function code, to check that the stack
pointer has not exceeded the stack limit. The current stack limit is held in
a global data structure called __adi_stack_bounds.

If the stack pointer, once modified, exceeds the stack limit a function,
called __adi_stack_overflowed, is invoked. The function that triggered
the stack overflow can be discovered by examining the RETS register.

Limitations on the Compiler’s Stack Detection Capability

The compiler cannot generate stack overflow detection code for assembly
files or files that have already been compiled to object files.

Certain compiler features will cause the compiler to generate calls to sup-
port libraries, which will transiently use arbitrarily-deep call-trees,
requiring additional stack space. These support libraries are not supplied
with variants that include stack overflow detection, so these features
should not be used in conjunction with stack overflow detection. These
features are:

• Profiling With Instrumented Code

• Profile-Guided Optimization and Code Coverage

• Heap Debugging

CrossCore Embedded Studio 1.0 2-179
C/C++ Compiler and Library Manual for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Fixing a Stack Overflow

Once it has been identified that a stack overflow is the cause of your
application failure, correcting the problem can be as simple as increasing
the amount of memory reserved for your stack.

If, due to hardware memory restrictions, you are unable to increase the
amount of memory used for the stack, then conduct a review of your
application, examining your use of local arrays, function calling and other
program code that leads to a stack overflow.

Analyzing Your Application

2-180 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

CrossCore Embedded Studio 1.0 3-1
C/C++ Compiler and Library Manual for Blackfin Processors

3 C/C++ RUN-TIME LIBRARY

The C and C++ run-time libraries are collections of functions, macros,
and class templates that may be called from your source programs. The
libraries provide a broad range of services, including those that are basic to
the languages such as memory allocation, character and string conversions,
and math calculations. Using the library simplifies software development
by providing code for a variety of common needs.

This chapter contains:

• C and C++ Run-Time Library Guide
provides introductory information about the ANSI/ISO standard
C and C++ libraries. It also provides information about the ANSI
standard header files and built-in functions that are included with
this release of the ccblkfn compiler.

• Documented Library Functions
tabulates the functions that are defined by ANSI standard header
files.

• C Run-Time Library Reference
provides reference information about the C run-time library
functions included with this release of the ccblkfn compiler.

The ccblkfn compiler provides a broad collection of library functions,
including those required by the ANSI standard and additional functions
supplied by Analog Devices that are of value in signal processing applica-
tions. In addition to the standard C library, this release of the compiler
software includes the full standard C++ library conforming to the
ISO/IEC 14882:2003 C++ standard and the abridged C++ library, which

C and C++ Run-Time Library Guide

3-2 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

is a conforming subset of the standard C++ library. The abridged C++
library includes the embedded C++ and standard template libraries.

This chapter describes the standard C/C++ library functions supported in
the current release of the run-time libraries. Chapter 4, DSP Run-Time
Library, describes signal processing, vector, matrix, and statistical func-
tions that assist DSP code development.

 For more information on the C standard library, see The Standard
C Library by P.J. Plauger, Prentice Hall, 1992. For information on
the algorithms on which many of the C library’s math functions are
based, see W. J. Cody and W. Waite, Software Manual for the Ele-
mentary Functions, Englewood Cliffs, New Jersey: Prentice Hall,
1980. For more information on the C++ library portion of the
ANSI/ISO Standard for C++, see Plauger, P. J. (Preface), The Draft
Standard C++ Library, Englewood Cliffs, New Jersey: Prentice
Hall, 1994, (ISBN: 0131170031).

The Abridged C++ library software documentation is located in the CCES
online help.

C and C++ Run-Time Library Guide
The C/C++ run-time libraries contain functions that can be called from
your source. This section describes how to use the library and provides
information on these topics:

• Calling Library Functions

• Using the Compiler’s Built-In Functions

• Linking Library Functions

• Library Attributes

• Library Function Re-Entrancy and Thread Safety

CrossCore Embedded Studio 1.0 3-3
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

• Working With Library Header Files

• Calling a Library Function From an ISR

• C++ Library Support

• File I/O Support

For information on the C library’s contents, see C Run-Time Library
Reference.

For information on the ISO/IEC 14882:2003 C++ standard library and
the abridged C++ library’s contents, see C++ Library Support.

Calling Library Functions
To use a C/C++ library function, call the function by name and provide
the appropriate arguments. The names and arguments for each function
are described on the reference pages, which begin in C Run-Time Library
Reference.

Like other functions, library functions should be declared. Declarations
are supplied in header files, as described in Working With Library Header
Files.

Function names are C/C++ function names. If you call a C/C++ run-time
library function from an assembly program, you must use the assembly
version of the function name.

• For C functions, this is an underscore (_) at the beginning of the C
function name. For example, the C function main() is referred to
as _main from an assembly program.

• Functions in C++ modules are normally compiled with an encoded
function name. Function names in C++ contain abbreviations for
the parameters to the function and also the return type. As such,
they can become very large. The compiler “mangles” these names

C and C++ Run-Time Library Guide

3-4 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

to a shorter form. You can instruct the C++ compiler to use the
single-underscore convention from C, as shown by the following
example.

extern "C" {

int myfunc(int); // external name is _myfunc

}

Alternatively, compile C++ files to assembler, and see how the function
has been declared in the assembly file.

It may not be possible to call inline functions as the compiler may have
removed the definition of the function if all calls to the function are
inlined. Global static variables cannot be referred to in assembly routines
as their names are encrypted.

For more information on naming conventions, see Symbol Names in
C/C++ and Assembly.

 Create a CCES project or use the archiver (elfar), described in the
Linker and Utilities Manual, to build library archive files of your
own functions.

Using the Compiler’s Built-In Functions
The C/C++ compiler’s built-in functions are a set of functions that the
compiler immediately recognizes and replaces with inline assembly code
instead of a function call. Typically, inline assembly code is faster than a
library routine, and does not incur the calling overhead. For example,
the absolute value function, abs(), is recognized by the compiler, which
subsequently replaces a call to the C/C++ run-time library version with
an inline version.

To use built-in functions, include the appropriate headers in your source;
otherwise, your program build will fail at link-time.

CrossCore Embedded Studio 1.0 3-5
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

 Standard math functions, such as abs, min, and max, are imple-
mented using compiler built-in functions. They perform as
described in C Run-Time Library Reference and DSP Run-Time
Library Reference.

Linking Library Functions
When you call a run-time library function, the call creates a reference that
the linker resolves when linking your program. One way to direct the
linker to the library’s location is to use the default Linker Description File
(ADSP-<your_target>.ldf).

If you are not using the default .ldf file, then either add the appropriate
library/libraries to the .ldf file used for your project, or use the compiler’s
-l switch to specify the library to be added to the link line. For example,
the switches -lc -ldsp add libc.dlb and libdsp.dlb to the list of libraries
to be searched by the linker. For more information on the .ldf file, see
the Linker and Utilities Manual.

Functional Breakdown

The C/C++ run-time library is organized as several libraries:

• Compiler support library – Contains internal functions that sup-
port the in-line code generated by the compiler; emulated
arithmetic is a typical case.

• C run-time library – Comprises all the functions that are defined
by the ANSI standard, plus various Analog Devices extensions.

• DSP run-time library – Contains additional library functions sup-
plied by Analog Devices that provide services commonly required
by DSP applications.

C and C++ Run-Time Library Guide

3-6 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• Heap debugging library – Contains debug versions of the heap sup-
port provided by the C/C++ run-time library, as well as some
additional diagnostic functions relating to heap use.

• Instrumented profiling library – Contains support routines for
recording the cycles spent in each profiled function.

• I/O library – Supports a subset of the C standard’s I/O
functionality.

• Dynamic module loader library – Supports loading and using
dynamically-loadable modules created using the elf2dyn utility.

In addition to regular run-time libraries, CCES has provides a variant of
LibIO (the I/O run-time support library):

• libio*_fx.dlb – libraries which provide versions of LibIO with full
support for the fixed-point format specifiers for the fract types.
These libraries can be used by specifying the following switch on
the build command line: -flags-link -MD_ADI_FX_LIBIO.

Library Location

The C/C++ run-time libraries are provided in binary form in directories
named Blackfin\lib\processor_rev_revision:

• processor identifies which processor for which the library is built,
and is the processor’s name with the leading “ADSP-” stripped.

• revision identifies which for which silicon revision the library is
built. For example, a revision of 0.1 would indicate that the library
was built with the command-line switch -si-revision 0.1.

So the directory Blackfin\lib\bf542_rev_any contains libraries that have
been built with -proc ADSP-BF542 -si-revision any switches.

CrossCore Embedded Studio 1.0 3-7
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

The C/C++ run-time libraries are provided in source form, where avail-
able, in the directories named Blackfin\lib\src\libname, where libname
indicates which library the source is used to build.

Library Selection

The library directory used to link an application is selected through the
-proc and -si-revision compiler switches, in conjunction with an XML
configuration file.

The -proc switch directs the compiler driver to read an XML configura-
tion file from System\ArchDef, based on the selected processor. For
example, a compiler switch of -proc ADSP-BF542 would cause the com-
piler driver to read the ADSP-BF542-compiler.xml file in System\ArchDef.

Each such XML file indicates which library subdirectory should be used,
for supported silicon revision of that processor. For example, the XML file
for the ADSP-BF542 processor indicates that for silicon revision 0.2, the
library directory to use is Blackfin\lib\bf542_rev_any.

A given library subdirectory might support more than one silicon revision.
In such cases, the XML file will give the same library subdirectory for sev-
eral silicon revisions.

Library Naming

Within the library subdirectories, the libraries follow a consistent naming
scheme, so that the library’s name will be lib<name><attrs>.dlb, where
name indicates the library’s purpose, and attrs is a sequence of zero or
more attributes. The library’s names are given in Table 3-2, and the attri-
butes are enumerated in Table 3-1.

C and C++ Run-Time Library Guide

3-8 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Table 3-1. Library Name Attributes

Attribute Meaning

mt Built with -threads for use in a multi-threaded environment

x Built with -eh -rtti to enable C++ exception handling

Table 3-2. C/C++ Library Names

Description Library Name Comments

Compiler support library libcc*.dlb

C run-time libraries libc*.dlb
librt*.dlb
libsmall*.lib

C++ run-time library libcpp*.dlb

DSP run-time library libdsp*.dlb

Device driver/Services libraries libdrv*.dlb
libssl*.dlb
libosal*.dlb

Refer to System Services and
Device Drivers found in
System Run-Time
Documentation.

ETSI library libetsi*.dlb

Event library libevent*.dlb

Heap debugging library libheapdbg*.dlb

Instrumented profiling library libprofile*.dlb

I/O run-time library libio*.dlb

I/O run-time library with full
support for the fixed-point for-
mat specifiers

libiofx*.dlb

Loader library for dynami-
cally-loadable modules (DLMs).

libdyn*.dlb Operates on DLMs pro-
duced by elf2dyn. Refer to
the Loader and Utilities
Manual.

CrossCore Embedded Studio 1.0 3-9
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Library Startup Files

The library subdirectories also contain object files which contain the
“run-time header”, or “C run-time” (CRT) startup code. These files con-
tain the code that is executed when your application first starts running; it
is this code that configures the expected C/C++ environment and passes
control to your main() function.

Startup files have names of the form crt<procid><attrs>.doj:

• procid indicates which processor the startup code is for; this is the
last three digits of the processor’s name.

• attrs is a list of zero or more names indicating which features are
configured by the startup code. These attributes and their mean-
ings are listed in Table 3-3.

Library Attributes
The run-time libraries make use of file attributes. (See File Attributes for
details on using file attributes.)

Table 3-3. CRT File Name Suffices

crt File Name Suffix Description

c Startup file used for C++ applications

f Startup file that enables file I/O support via stdio.h

s Startup file used by applications that run in supervisor mode

C and C++ Run-Time Library Guide

3-10 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

For each object (obj) in the run-time libraries, the following is true:

If an object in the run-time library calls into another object in the same
library, whether it is internal or publicly visible, the called object will
inherit extra libGroup and libFunc values from the caller.

The following example demonstrates how attributes would look in a small
example library (libfunc.dlb) that comprises three objects: func1.doj,

Table 3-4. Run-Time Library Object Attributes

Attribute name Meaning of attribute and value

libGroup A potentially multi-valued attribute. Each value is the name of a header file
that either defines obj or defines a function that calls obj.

libName The name of the library that contains obj, without the processor and variant.
For example, suppose that obj were part of libdsp532y.dlb, then the value
of the attribute would be libdsp.

libFunc The name of all the functions in obj. libFunc will have multiple values—
both the C and assembly linkage names will be listed. libFunc will also
contain all the published C and assembly linkage names of objects in obj's
library that call into obj.

prefersMem One of three values: internal, external, or any. If obj contains a function
that is likely to be application performance-critical, it will be marked as
internal. Most DSP run-time library functions fit into the internal
category. If a function is deemed unlikely to be essential for achieving the
necessary performance, it will be marked as external (all I/O library func-
tions fall into this category). Default .ldf files use this attribute to place
code and data optimally.

prefersMemNum Analogous to prefersMem but takes a numeric string value. The attribute can
be used in .ldf files to provide a greater measure of control over the place-
ment of binary object files than is available using the prefersMem attribute.
The values "30", "50", and "70" correspond to the prefersMem values
internal, any, and external, respectively. Default .ldf files use the pre-
fersMem attribute in preference to the prefersMemNum attribute to specify
the optimal placement of files.

FuncName Multi-valued attribute whose values are all the assembler linkage names of the
defined names in obj.

CrossCore Embedded Studio 1.0 3-11
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

func2.doj, and subfunc.doj. These objects are built from the following
source modules:

File: func1.h
void func1(void);

File: func2.h
void func2(void);

File: func1.c

#include "func1.h"

void func1(void) {

/* Compiles to func1.doj */

subfunc();

}

File: func2.c

#include "func2.h"

void func2(void) {

/* Compiles to func2.doj */

subfunc();

}

File: subfunc.c

void subfunc(void) {

/* Compiles to subfunc.doj */

}

C and C++ Run-Time Library Guide

3-12 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The objects in libfunc.dlb will have the attributes as defined in
Table 3-5.

Table 3-5. Attribute Values in libfunc.dlb

Attribute Value

func1.doj
libGroup
libName
libFunc
libFunc
FuncName
prefersMem
prefersMemNum

func1.h
libfunc
_func1
func1
_func1

any(1)
50

func2.doj
libGroup
libName
libFunc
libFunc
FuncName
prefersMem
prefersMemNum

func2.h
libfunc
_func2
func2
_func2

internal(2)
30

CrossCore Embedded Studio 1.0 3-13
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Exceptions to Library Attribute Conventions

This section lists exceptions to the library attribute conventions.

The C++ support libraries (libcpp*.dlb and libcppfull*.dlb) contain
functions that have C++ linkage. C++ linkage implies that the entry point
names within the libraries are encoded to include the parameter types, the
return type, and the namespace within which the function is declared (this
encoding is also known as name mangling). Thus any C++ library function
that is used as the value for a libFunc attribute must be the encoded name.

Table 3-6 lists additional libGroup attribute values.

subfunc.doj
libGroup
libGroup
libName
libFunc
libFunc
libFunc
libFunc
libFunc
libFunc
FuncName
prefersMem
prefersMemNum

func1.h

func2.h(3)
libfunc
_func1
func1
_func2
func2
_subfunc
subfunc
_subfunc

internal(4)
30

1 func1.doj will not be performance-critical, based on its normal usage.
2 func2.doj will be performance-critical in many applications, based on its normal usage.
3 libGroup contains the union of the libGroup attributes of the two calling objects.
4 prefersMem contains the highest priority of all the calling objects.

Table 3-5. Attribute Values in libfunc.dlb (Cont’d)

Attribute Value

C and C++ Run-Time Library Guide

3-14 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Objects with any of the libGroup attribute values listed in Table 3-6 will
not contain the libGroup or libFunc attributes from any calling objects.

Table 3-7 summarizes the default memory placement using prefersMem.

Table 3-6. Additional libGroup Attributes

Value Meaning

floating_point_support Compiler support routines for floating-point arithmetic

fixed_point_support Compiler support routines for native fixed-point types

integer_support Compiler support routines for integer arithmetic

runtime_support Other run-time functions that do not fit into any of the above
categories

runtime_checking Run-Time functions to provide support for dynamic checks

stack_overflow_detection Run-Time functions to support detection of stack overflow

libprofile Run-Time functions to support profiling

Table 3-7. Default Memory Placement Summary

Library Placement

crt*.doj
crtn*.doj
cplbtab*.doj
mc_data*.doj

Hard placement using sections

libcpp*.dlb
libcppfull*.dlb
libetsi*.dlb

Any (any)

libio*.dlb
libprofile*.dlb

External (external)

libc*.dlb any except for the stdio.h functions that are external and
qsort, which is internal

libdsp*.dlb internal except for the windowing functions and functions
that generate a twiddle table, which are external

libevent*.dlb internal for anything that may be called in response to an
event, plus flush_data_buffer; external for all exception
idle loops (where the processor has to halt); any for functions
that install and manage event handling functions

CrossCore Embedded Studio 1.0 3-15
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Mapping Objects to Flash Using Attributes

When using the memory initializer to initialize code and data areas from
flash memory, be sure to map code and data (used during initialization to
flash memory) so it is available during boot-up. The requiredForROMBoot
attribute is specified on library objects that contain such code and data
and can be used in the .ldf file to perform the required mapping. Refer to
the Linker and Utilities Manual for information on memory initialization.

Library Function Re-Entrancy and Thread Safety
This section includes the following topics:

• Non-Reentrant Functions

• Thread-Safe Libraries

• Using the Thread-Safe Libraries

Non-Reentrant Functions

Many of the functions in the C/C++ run-time libraries are re-entrant,
but some are not. A non-reentrant function can only have one active
instance at any given time (that is, it has to return before it can safely be
invoked again).

libmc*.dlb Any (any)

librt*.dlb internal or any

libsmall*.dlb any or external, except for the vector table for processor
events, which is internal

Table 3-7. Default Memory Placement Summary (Cont’d)

C and C++ Run-Time Library Guide

3-16 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

If multiple instances of a non-reentrant function are active at the same
time, results are undefined. This can occur in the following situations:

• The function is invoked recursively, either directly or indirectly.

• An interrupt service routine (ISR) invokes a function while the
main program or another ISR is also executing that function.

• Two or more threads in a multi-threaded program execute a func-
tion concurrently.

• Similarly to the previous case, more than one core in a multi-core
program executes a function at the same time.

Non-reentrant functions are those which access global variables, including
variables declared as static, or other global resources such as input/out-
put devices.

Examples of such library functions include:

• stdio.h functions that operate on streams (but not those which
operate on strings)

• C++ file streams

• Dynamic memory management functions, such as malloc() and
free()

• atexit() and signal(), as they manipulate global handler tables

• Functions that return a result in a statically allocated buffer; for
example, time.h functions such as asctime() or localtime()

• Functions that write to errno, such as many functions in math.h

• Functions that maintain private state across invocations; for
example, rand() with its random seed and strtok() with a pointer
to the last token

CrossCore Embedded Studio 1.0 3-17
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Invoking non-reentrant library functions from interrupt service routines is
not supported. (It may be possible to do so safely in special circumstances;
it is your responsibility to guarantee that only one invocation of the func-
tion is in progress at any given time.)

Thread-Safe Libraries

Use the thread-safe variants of the run-time libraries in multi-threaded
programs. Thread safety means that functions that are non-reentrant can
nevertheless be safely invoked from multiple threads.

This is achieved by two principal methods: thread-local storage and
mutual exclusion. Where possible, thread-local storage is employed,
whereby each thread gets its own version of global variables and buffers.

Where thread-local storage is not an appropriate solution, mutual
exclusion is used to ensure that only one thread at a time can access shared
global resources. This means that functions might block while waiting for
another thread to release the resource in question. The following are
affected:

• stdio.h streams and C++ file streams

• Dynamic memory management functions

• atexit() and signal()

The thread-safe variants of the run-time libraries have the suffix “mt” in
their name. These are used both for multi-threaded and for multi-core
programs.

Using the Thread-Safe Libraries

Select the thread-safe libraries by specifying the –threads switch during
compilation and linking. In the project Properties dialog box, this can be
done by enabling the Link against thread-safe libraries option.

C and C++ Run-Time Library Guide

3-18 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The effect of the –threads switch is to define the macro _ADI_THREADS. In
the library headers, this macro selects some code that is specific to the
thread-safe run-time libraries. Therefore, take care not to mix objects and
libraries that have been compiled with and without the –threads switch.
In the default Linker Description Files, the _ADI_THREADS macro selects
the thread-safe variants of the run-time libraries.

The run-time library can be used in both single and multi-threaded envi-
ronments. The thread-safe run-time libraries and other Analog Devices
software use Analog Devices’ own OS Abstraction Layer (OSAL). Each
supported RTOS package includes its own implementation of the OSAL
library which allows customers to use the run-time library seamlessly.

Working With Library Header Files
When using a library function in your program, include the function’s
header file with the #include preprocessor command. Each function’s
header file is identified in the Synopsis section of the function’s reference
page. Header files contain function prototypes, which are used by the
compiler to check that the function is called with the correct arguments.

Table 3-8 shows the standard C run-time library header files supplied
with this release of the Blackfin compiler. Refer to a C standard reference
(see C/C++ Compiler Overview) to augment information supplied in this
chapter.

Table 3-8. Standard C Run-Time Library Header Files

Header Purpose Standard

aditypes.h Type definitions (on page 3-20) Analog extension

assert.h Diagnostics (on page 3-20) ANSI

ccblkfn.h Access to system facilities on Blackfin processors
(on page 3-21)

Analog extension

ctype.h Character handling (on page 3-21) ANSI

errno.h Error handling (on page 3-22) ANSI

CrossCore Embedded Studio 1.0 3-19
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

The following sections describe the header files contained in the C library.
The header files are listed in alphabetical order.

float.h Floating point (on page 3-22) ANSI

heap_debug.h Macros and prototypes for heap debugging
(on page 3-23)

Analog extension

instrprof.h Instrumented profiling support (on page 3-25) Analog extension

iso646.h Boolean operators (on page 3-25) ANSI

libdyn.h Dynamically-loadable modules (on page 3-26) Analog extension

limits.h Limits (on page 3-26) ANSI

locale.h Localization (on page 3-26) ANSI

math.h Mathematics (on page 3-26) ANSI

mc_data.h Routines for accessing the core-specific data for
multi-core processors (on page 3-28)

Analog extension

misra_types.h Exact-width integer types (on page 3-28) MISRA-C:2004

pgo_hw.h Profile-guided optimization support (on page 3-28) Analog extension

setjmp.h Non-local jumps (on page 3-28) ANSI

signal.h Signal handling (on page 3-29) ANSI

stdarg.h Variable arguments (on page 3-29) ANSI

stdbool.h Boolean macros (on page 3-29) ANSI

stddef.h Standard definitions (on page 3-29) ANSI

stdfix.h Fixed point (on page 3-29) ISO/IEC TR
18037

stdint.h Exact-width integer types (on page 3-30) ANSI

stdio.h Input/output (on page 3-32) ANSI

stdlib.h Standard library (on page 3-36) ANSI

string.h String handling (on page 3-36) ANSI

time.h Date and time (on page 3-36) ANSI

Table 3-8. Standard C Run-Time Library Header Files (Cont’d)

Header Purpose Standard

C and C++ Run-Time Library Guide

3-20 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

adi_types.h

The adi_types.h header file contains the type definitions for char_t,
float32_t, and float64_t. The adi_types.h header file also includes
stdint.h (on page 3-30) and stdbool.h (on page 3-29).

assert.h

The assert.h header file defines the assert macro, which can insert
run-time diagnostics into a source file. The macro normally tests (asserts)
that an expression is true. If the expression is false, the macro prints an
error message first and then calls the abort function (on page 3-64)
to terminate the application. The message displayed by the assert macro
has the following form:

filename : linenumber expression – run-time assertion

where:

• filename – Name of the source file

• linenumber – Current line number in the source file

• expression – Expression tested

If the NDEBUG macro is defined at the point at which the assert.h header
file is included in the source file, the assert macro will be defined as a
null macro and no run-time diagnostics will be generated.

CrossCore Embedded Studio 1.0 3-21
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

 The strings associated with assert.h can be assigned to slower,
more plentiful memory (thereby freeing up faster memory)
by placing a default_section pragma above the sections of code
that contains the asserts.

For example:

#pragma default_section(STRINGS,"sdram_bank1")

This will move all strings—not just those associated with assert.

Alternatively, place the -section flag on the compiler command
line or include the option via Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler >
Additional Options.

For example:

-section strings=sdram_bank1

ccblkfn.h

The ccblkfn.h header file defines built-in functions that allow access to
system facilities on Blackfin processors (see Table 3-26).

ctype.h

The ctype.h header file defines the functions that may be useful in classi-
fying characters, or converting characters between upper and lower case.

All the functions defined by the header file have a single argument that is
an int whose value is either EOF or a value that corresponds to an
unsigned char. If the argument has some other value, then the behavior
of the function will be undefined.

See Table 3-27 which contains a list of the functions defined by this
header file.

C and C++ Run-Time Library Guide

3-22 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

 By default the char data type is signed and therefore the following
may return an unexpected result:

char ch = 0x80;

int f = isdigit(ch);

printf(“isdigit(ch) = %d\n”, f);

The scalar ch will be passed to isdigit as the value -128 (and not
128 as one may initially expect), which will lead to undefined
behavior.

errno.h

The errno.h header file provides access to errno. This facility is not, in
general, supported by the rest of the library.

float.h

The float.h header file defines the properties of the floating-point data
types implemented by the compiler (float, double, and long double).
These properties are defined as macros and include the following for each
supported data type:

• The maximum and minimum value (for example, FLT_MAX and
FLT_MIN)

• The maximum and minimum power of ten (for example,
FLT_MAX_10_EXP and FLT_MIN_10_EXP)

• The available precision, expressed in terms of decimal digits
(for example, FLT_DIG)

• A constant that represents the smallest value that may added to 1.0
and still result in a change of value (for example, FLT_EPSILON)

Note that the set of macros that define the properties of the double data
type will have the same values as the corresponding set of macros for the

CrossCore Embedded Studio 1.0 3-23
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

float type when doubles are specified to be 32 bits wide, and they will
have the same value as the macros for the long double data type when
doubles are specified to be 64 bits wide. (See -double-size-{32 | 64}.)

heap_debug.h

The heap_debug.h header file defines a set of functions and macros for
configuring and manipulating the heap debugging library. See Heap
Debugging for more information on heap debugging.

When the macro _HEAP_DEBUG is not defined, the functions defined in
heap_debug.h will be replaced by simple statements representing a
successful return from that function so that any code using these functions
will link and operate as expected without any performance degradation
when heap debugging is disabled.

Configuration macros are provided in this file, which represent the values
of the bit-fields used to control the behavior of the heap debugging. These
configuration macros are shown in Table 3-9.

These macros can be used as parameters to adi_heap_debug_enable and
adi_heap_debug_disable to enable or disable features at runtime. Tracking
of heap usage will be implicitly enabled when either report generation or
run-time diagnostics are enabled at runtime. See Enabling and Disabling
Features for more information.

Table 3-9. Control Macros for Heap Debugging

Macro Use

_HEAP_STDERR_DIAG Enable/disable diagnostics about heap usage via stderr

_HEAP_HPL_GEN Enable/disable generation of .hpl file used for heap
debugging report

_HEAP_TRACK_USAGE Enable/disable tracking of heap usage

C and C++ Run-Time Library Guide

3-24 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Macros representing various categories of heap error are defined in
heap_debug.h. These values can be used as parameters to the functions
adi_heap_debug_set_error, adi_heap_debug_set_ignore, and
adi_heap_debug_set_warning at runtime, or as definitions for the “C”
unsigned long variables adi_heap_debug_error, __heap_debug_ignore,
and __heap_debug_warning at build-time in order to configure the severity
of these error types when run-time diagnostics are enabled. These error
type macros are shown in Table 3-10. See Setting the Severity of Error
Messages for more information on using these macros.

Table 3-10. Error Type Macros for Heap Debugging

Macro Error

_HEAP_ERROR_UNKNOWN An unknown error has occurred

_HEAP_ERROR_FAILED An allocation has been unsuccessful

_HEAP_ERROR_ALLOCATION_OF_ZERO An allocation has been requested with size
of zero

_HEAP_ERROR_NULL_PTR A null pointer has been passed where not
expected

_HEAP_ERROR_INVALID_ADDRESS A pointer has been passed which does not
correspond to a block on the heap

_HEAP_ERROR_BLOCK_IS_CORRUPT Corruption has been detected in the heap

_HEAP_ERROR_FREE_OF_FREE A deallocation of an already de-allocated
block has been requested

_HEAP_ERROR_FUNCTION_MISMATCH An unexpected function is being used to
de-allocate a block (that is, calling free
on an block allocated by new)

_HEAP_ERROR_UNFREED_BLOCK A memory leak has been detected

_HEAP_ERROR_WRONG_HEAP A heap operation has the wrong heap
index specified

_HEAP_ERROR_INVALID_INPUT An invalid parameter has been passed to a
heap debugging function

_HEAP_ERROR_INTERNAL An internal error has occurred

CrossCore Embedded Studio 1.0 3-25
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

instrprof.h

The instrprof.h header file declares user-callable functions in support of
instrumented profiling. For more information, see Achieving Optimal
Performance From C/C++ Source Code.

iso646.h

The iso646.h header file defines symbolic names for certain C (Boolean)
operators. Table 3-11 shows symbolic names and their associated value.

_HEAP_ERROR_IN_ISR The heap has been used within an
interrupt

_HEAP_ERROR_MISSING_OUTPUT Report output has been lost due to
insufficient or no buffer space

_HEAP_ERROR_ALL Refers to all of the above errors
collectively

Table 3-11. Symbolic Names Defined in iso646.h

Symbolic Name Equivalent

and &&

and_eq &=

bitand &

bitor |

compl ~

not !

not_eq !=

or ||

or_eq |=

Table 3-10. Error Type Macros for Heap Debugging (Cont’d)

Macro Error

C and C++ Run-Time Library Guide

3-26 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

 The symbolic names have the same name as the C++ keywords that
are accepted by the compiler when the -alttok switch is specified.
(For more information, see -alttok.)

libdyn.h

The libdyn.h header file contains type definitions and function declara-
tions for loading dynamically-loadable modules (DLMs) that have been
produced by the elf2dyn utility. For more information on using elf2dyn,
refer to the Loader and Utilities Manual. For information on creating and
using DLMs, refer to the System Run-Time Documentation in the online
help.

limits.h

The limits.h header file contains definitions of maximum and minimum
values for each C data type other than a floating-point type.

locale.h

The locale.h header file contains definitions used for expressing numeric,
monetary, time, and other data.

math.h

The math.h header file (see Table 3-30) includes power, trigonometric,
logarithmic, exponential, and other miscellaneous functions. The library
contains the functions specified by the C standard along with
implementations for the data types float and long double.

xor ^

xor_eq ^=

Table 3-11. Symbolic Names Defined in iso646.h (Cont’d)

Symbolic Name Equivalent

CrossCore Embedded Studio 1.0 3-27
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Some functions are also provided that support 16-bit and 32-bit fractional
data types.

For every function that is defined to return a double, the math.h header
file also defines two corresponding functions that return a float and a
long double, respectively. The names of the float functions are the same
as the equivalent double function with an “f” appended to its name.
Similarly, the names of the long double functions are the same as the
double function with a “d” appended to its name. For example, the header
file contains the following prototypes for the sine function:

float sinf (float x);

double sin (double x);

long double sind (long double x);

The -double-size-{32|64} compiler switch (on page 1-37) controls the
size of the double data type. The default behavior is for the compiler to
compile the double type as a 32-bit floating-point data type, and the
header file will arrange that all references to a double function are directed
to the equivalent float function (with the “f” suffix). Conversely, when
the double type is defined as a 64-bit floating-point data type, all refer-
ences to the double functions of this header file are directed to the long
double version of the function (with the “d” suffix). This allows un-suf-
fixed function names to be used with arguments of type double, regardless
of whether doubles are 32 or 64 bits long.

The math.h file also defines the HUGE_VAL macro, which evaluates to the
maximum positive value that the type double can support.

Some functions in the math.h header file exist as both integer and floating
point. The floating-point functions typically have an “f” prefix. Ensure
that you are using the correct function.

C and C++ Run-Time Library Guide

3-28 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

 The C language provides implicit type conversion, so the following
sequence produces surprising results with no warnings.

float x,y;

y = abs(x);

The value in x is truncated to an integer prior to calculating the
absolute value; then it is reconverted to floating point for the
assignment to y.

mc_data.h

The mc_data.h header file (see Table 3-31) contains routines for accessing
the core-specific data for multi-core processors.

misra_types.h

The misra_types.h header file contains definitions of exact-width data
types, as defined in stdint.h and stdbool.h, plus data types char_t,
float32_t, and float64_t.

pgo_hw.h

The pgo_hw.h header file declares user-callable functions in support of
profile-guided optimization, when used with hardware rather than a
simulator. For more information, see Profile-Guided Optimization and
Code Coverage.

setjmp.h

The setjmp.h header file (see Table 3-32) contains setjmp and longjmp
for non-local jumps.

CrossCore Embedded Studio 1.0 3-29
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

signal.h

The signal.h header file (see Table 3-33) provides function prototypes
for the standard ANSI signal.h routines.

stdarg.h

The stdarg.h header file (see Table 3-34) contains definitions needed for
functions that accept a variable number of arguments. Programs that call
such functions must include a prototype for the referenced functions.

stdbool.h

The stdbool.h header file contains three Boolean-related macros (true,
false, and __bool_true_false_are_defined) and an associated data type
(bool). The stdbool.h header file was introduced in the C99 standard
library.

stddef.h

The stddef.h header file contains a few common definitions, such as
size_t, that are useful for portable programs.

stdfix.h

The stdfix.h file contains function prototypes and macro definitions to
support the native fixed-point types fract and accum as defined by the
ISO/IEC Technical Report 18037. The inclusion of this header file
enables the fract and accum keywords as aliases for _Fract and _Accum,
respectively. A discussion of support for native fixed-point types is given
in Using Native Fixed-Point Types.

C and C++ Run-Time Library Guide

3-30 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

stdint.h

The stdint.h header file contains various exact-width integer types along
with associated minimum and maximum values. The stdint.h header file
was introduced in the C99 standard library.

Table 3-12 shows each of the typedefs defined by the header file, and
documents the macro name of the associated minimum and maximum
values for the types.

Table 3-12. Exact-Width Integer Types

Type Common Equivalent MIN MAX

int8_t signed char INT8_MIN INT8_MAX

int16_t short INT16_MIN INT16_MAX

int32_t int INT32_MIN INT32_MAX

int64_t long long INT64_MIN INT64_MAX

uint8_t unsigned char 0 UINT8_MAX

uint16_t unsigned short 0 UINT16_MAX

uint32_t unsigned int 0 UINT32_MAX

uint64_t unsigned long long 0 UINT64_MAX

int_least8_t signed char INT_LEAST8_MIN INT_LEAST8_MAX

int_least16_t short INT_LEAST16_MIN INT_LEAST16_MAX

int_least32_t int INT_LEAST32_MIN INT_LEAST32_MAX

int_least64_t long long INT_LEAST64_MIN INT_LEAST64_MAX

uint_least8_t unsigned char 0 UINT_LEAST8_MAX

uint_least16_t unsigned short 0 UNT_LEAST16_MAX

uint_least32_t unsigned int 0 UNT_LEAST32_MAX

uint_least64_t unsigned long long 0 UNT_LEAST64_MAX

int_fast8_t signed char INT_FAST8_MIN INT_FAST8_MAX

int_fast16_t short INT_FAST16_MIN INT_FAST16_MAX

int_fast32_t int INT_FAST32_MIN INT_FAST32_MAX

CrossCore Embedded Studio 1.0 3-31
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Table 3-13 describes MIN and MAX macros defined for typedefs in other
headings.

Macros for minimum-width integer constants include: INT8_C(),
INT16_C(), INT32_C(), UINT8_C(), UINT16_C(), UINT32_C(), INT64_C(),
and UINT64_C().

Macros for greatest-width integer constants include INTMAX_C() and
UINTMAX_C().

int_fast64_t long long INT_FAST64_MIN INT_FAST64_MAX

uint_fast8_t unsigned char 0 UINT_FAST8_MAX

uint_fast16_t unsigned short 0 UINT_FAST16_MAX

uint_fast32_t unsigned int 0 UINT_FAST32_MAX

uint_fast64_t unsigned long long 0 UINT_FAST64_MAX

intmax_t long long INTMAX_MIN INTMAX_MAX

intptr_t int INTPTR_MIN INTPTR_MAX

uintmax_t unsigned long long 0 UINTMAX_MAX

uintptr_t unsigned int 0 UINTPTR_MAX

Table 3-13. MIN and MAX Macros for typedefs in Other
Headings

Type MIN MAX

ptrdiff_t PTRDIFF_MIN PTRDIFF_MAX

sig_atomic_t SIG_ATOMIC_MIN SIG_ATOMIC_MAX

size_t 0 SIZE_MAX

wchar_t WCHAR_MIN WCHAR_MAX

wint_t WINT_MIN WINT_MAX

Table 3-12. Exact-Width Integer Types (Cont’d)

Type Common Equivalent MIN MAX

C and C++ Run-Time Library Guide

3-32 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

stdio.h

The stdio.h header file (see Table 3-36) defines a set of functions, mac-
ros, and data types for performing input and output. The library functions
defined by this header file are thread-safe but they are not generally inter-
rupt-safe; therefore, they should not be called directly or indirectly from
an interrupt service routine.

The compiler uses the definitions within the header file to select an appro-
priate set of functions that correspond to the currently selected size of type
double (either 32 bits or 64 bits). Any source file that uses the facilities of
stdio.h should therefore include the stdio.h header file, especially if it is
compiled with the -double-size-64 switch (on page 1-37). Failure to
include the header file may result in a linker failure as the compiler must
see a correct function prototype in order to generate the correct calling
sequence.

This release provides three alternative run-time libraries that implement
the functionality of the header file. If an application is built with the
-full-io switch (on page 1-43), then it is linked with a third-party I/O
library that provides a comprehensive implementation of the ANSI C
Standard I/O functionality, but at the cost of performance. It also sup-
ports printing of the native fixed-point types fract and accum in decimal
format. No source files are provided for this proprietary library.

However, the normal behavior of the compiler is to link an application
against an I/O library provided by Analog Devices—this library does not
support all the facilities of the third-party library, but it is both faster and
smaller. To reduce the size of the library, the native fixed-point types
fract and accum are only printed in hexadecimal format. The source files
for this library are available under the CCES installation in the subdirec-
tory Blackfin\lib\src\libio.

A third option is to link an application against a variant of this default I/O
library containing extra support for printing the native fixed-point types
fract and accum in decimal format. You can do this by building the

CrossCore Embedded Studio 1.0 3-33
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

application with the -fixed-point-io switch (on page 1-41). As before,
this library does not support all the facilities of the third-party library, but
it is both faster and smaller. The source files for this library are available
under the CCES installation in the subdirectory
Blackfin\lib\src\libio.

At program termination, any output that is pending in an I/O buffer is
flushed to the appropriate stream and the host environment will then close
down any physical connection between the application and an opened file.
Note, however, that the I/O library does not implicitly close any opened
streams to avoid unnecessary overheads (particularly with respect to mem-
ory occupancy); this means, for example, that any heap space used for file
tables or I/O buffers will not be freed unless the associated stream is
explicitly closed by the application.

The functional differences between the library based on third-party soft-
ware (and accessed via the -full-io switch) and the default I/O run-time
library provided by Analog Devices are given below:

• The third-party I/O library supports the input and output of wide
characters (data of type wchar_t) and multi-byte characters. No
similar support is available under the Analog Devices I/O library.

• The fread() and fwrite() functions are commonly used to trans-
mit data between an application and a binary stream. For
efficiency, the Analog Devices I/O library may not use a buffer to
read or write data using these functions; thus, the data may be
transmitted directly between a program and an external device.
If an application relies on these functions to read and write data via
an I/O buffer, it should be linked against the third-party library
(using the -full-io switch).

• The functions tmpfile and tmpnam are only supported by the
third-party I/O library, albeit with limited functionality; refer to
the reference page for each of these functions for more details.

C and C++ Run-Time Library Guide

3-34 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• When inputting formatted data (via fscanf, sscanf, and so on), both
the third-party I/O library and the default I/O library support the
following additional size qualifiers, which are defined in the C99
(ISO/IEC 9899:1999) standard.

hh signed char or unsigned char
j intmax_t or uintmax_t
t ptrdiff_t

z size_t

These additional qualifiers may be used with the d, i, o, u, x, or X
conversion specifiers to describe the type of the corresponding
argument. However, only the third-party I/O library also supports
these additional size qualifiers when printing formatted data using
printf and its associated functions.

• The third-party I/O library accesses the current locale to determine
the symbol to be used as the decimal point character.

• The third-party I/O library accepts the values nan and inf (in any
case) as input for the e, f, and g conversion specifiers, these values
represent the IEEE floating-point values for NaN (Not-A-Number)
and Infinity respectively.

• The form of the output generated for the a conversion specifier by
the alternative libraries differ (both forms of output do, however,
conform to the requirements of ISO/IEC 9899:1999).

• The conversion specifier F is accepted by the third-party I/O
library; the specifier behaves the same as f.

• The third-party I/O library also supports the full functionality of
the [conversion specifier, while the Analog Devices I/O library
only provides the minimum facility level required by the ANSI
standard.

CrossCore Embedded Studio 1.0 3-35
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

The implementation of both I/O libraries is based on a simple interface
provided by the CCES simulator and EZ-KIT Lite® systems; for further
details of this interface, refer to the System Run-Time Documentation.

Applications should be aware that this interface is activated under any of
the following conditions:

• When a file is opened or closed

• When an input buffer becomes empty, or an output buffer
becomes full or is flushed

• When interrogating or re-positioning a file pointer

• When deleting a file, via the remove library function

• When renaming a file, via the rename library function

Under all the above conditions, the interface will disable interrupts, and
will halt the processor while it negotiates with the host to perform the
required I/O operation. Once the I/O operation has completed, the inter-
face will restart the processor and then re-enable interrupts.

While the processor is stopped, the cycle count registers are not updated
and the processor itself cannot initiate any interrupts; however, interrupts
that correspond to external events can still occur, and these may be acti-
vated once the interface re-enables interrupts.

The following restrictions apply to either library in this software release:

• Positioning within a file that has been opened as a text stream is
only supported if the lines within the file are terminated by the
character sequence \r\n.

• Support for formatted reading and writing of data of type long
double is only supported when an application is built with the
-double-size-64 switch.

C and C++ Run-Time Library Guide

3-36 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

stdlib.h

The stdlib.h header file (see Table 3-37) offers general utilities specified
by the C standard. These include integer math functions (such as abs, div,
and rand), general string-to-numeric conversions, memory-allocation
functions (such as malloc and free), and termination functions (such as
exit). This library also contains miscellaneous functions such as bsearch
and qsort.

string.h

The string.h header file (see Table 3-38) contains string handling func-
tions, including strcpy and memcpy.

time.h

The time.h header file (see Table 3-39) provides functions, data types,
and a macro for expressing and manipulating date and time information.
The header file defines two fundamental data types: clock_t and time_t.

The clock_t data type is associated with the number of implementa-
tion-dependent processor “ticks” used since an arbitrary starting point.

The time_t data type is used for values that represent the number of
seconds that have elapsed since a known epoch; values of this form are
known as calendar time. In this implementation, the epoch starts on the
1st of January, 1970, and calendar times before this date are represented
as negative values.

A calendar time may also be represented in a more versatile way as a
broken-down time, which is a structured variable of the following form:

struct tm {

int tm_sec; /* seconds after the minute [0,61] */

int tm_min; /* minutes after the hour [0,59] */

int tm_hour; /* hours after midnight [0,23] */

int tm_mday; /* day of the month [1,31] */

CrossCore Embedded Studio 1.0 3-37
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

int tm_mon; /* months since January [0,11] */

int tm_year; /* years since 1900 */

int tm_wday; /* days since Sunday [0, 6] */

int tm_yday; /* days since January 1st [0,365] */

int tm_isdst; /* Daylight Saving flag */

};

 This implementation does not support the Daylight Saving flag in
the structure struct tm; nor does it support the concept of time
zones. All calendar times are therefore assumed to relate to
Greenwich Mean Time (Coordinated Universal Time or UTC).

The time.h header file sets the CLOCKS_PER_SEC macro to the number of
processor cycles per second. This macro can therefore be used to convert
data of type clock_t into seconds, normally by using floating-point arith-
metic to divide it into the result returned by the clock function.

 Generally, processor speed is a property of a particular processor.
Therefore, it is recommended that the value to which this macro is
set be verified independently before being used by an application.

By default, the value of the CLOCKS_PER_SEC macro is defined by the
header file cycles.h. You may override this value by one of the following
methods (listed in descending order of precedence):

• Via the -DCLOCKS_PER_SEC=<definition> compile-time switch.
Because the time_t type is based on the long long int data type,
it is recommended that the value of the symbolic name
CLOCKS_PER_SEC be defined to be of type long long int by
qualifying the value with the LL (or ll) suffix. For example:
-DCLOCKS_PER_SEC=6000000LL

• Via the System Services Library

• Via the Processor speed option, found at Project > Properties >
C/C++ Build > Settings > Tool Settings > Compiler > Processor.

C and C++ Run-Time Library Guide

3-38 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Calling a Library Function From an ISR
Not all C run-time library functions are interrupt-safe (and can therefore
be called from an interrupt service routine). For a run-time function to be
classified as interrupt-safe:

• It must not update any global data, such as errno, and

• It must not write to (or maintain) any private static data

It is recommended that none of the functions defined in the math.h
header file, nor the string conversion functions defined in the stdlib.h
header file, be called from an ISR as these functions are commonly defined
to update the global variable errno. Similarly, the functions defined in the
stdio.h header file maintain static tables for currently opened streams and
should not be called from an ISR.

The memory allocation routines (such as malloc, calloc, realloc, and
free), the C++ operators new and delete, and any variants, read and
update global tables and are not interrupt-safe; they should not be called
from an ISR. The heap debugging library can detect calls to memory
allocation routines from an ISR, see Heap Debugging for more
information.

The following library functions are not interrupt-safe because they use
private static data.

asctime gmtime localtime

rand srand strtok

While not all C run-time library functions are interrupt-safe; thread-safe
versions of the functions are available for use in a multi-threaded environ-
ment. These library functions are found in the run-time libraries that have
an mt suffix in their file names.

CrossCore Embedded Studio 1.0 3-39
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

C++ Library Support
By default, the compiler will use header files and functions specified by
the abridged C++ library. If the -full-cpplib switch (-full-cpplib) is
enabled, the compiler will use header files and functions specified by the
ISO/IEC 14882:2003 C++ standard.

The abridged C++ library has two major components: the embedded C++
library (EC++), and the standard template library (STL) as defined by the
ISO/IEC 14882:2003 C++ standard. The embedded C++ library is a
conforming implementation of the embedded C++ library as specified by
the Embedded C++ Technical Committee. You can view the abridged
library in the CCES online help.

This section lists and briefly describes the following components of the
abridged C++ library:

• Embedded C++ Library Header Files

• Standard C++ Library Header Files

• Common Standard and Embedded C++ Library Header Files

• C++ Header Files for C Library Facilities

• Standard Template Library (STL) Header Files

C and C++ Run-Time Library Guide

3-40 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Embedded C++ Library Header Files

Table 3-14 describes the header files specifically implemented for the
abridged C++ library.

Table 3-14. Embedded C++ Library Header Files

Header Description

complex Defines a template class complex and a set of associated arithmetic opera-
tors. Predefined types include complex_float and complex_long_double.
The embedded implementation does not support the full set of complex
operations as specified by the C++ standard. In particular, it does not support
either the transcendental functions or the I/O operators “<<“ and “>>”. The
complex header file and the C library header file complex.h refer to two
different and incompatible implementations of the complex data type.

fstream Defines the filebuf, ifstream, and ofstream classes for external file
manipulations.

iomanip Declares several iostream manipulators. Each manipulator accepts a single
argument.

ios Defines several classes and functions for basic iostream manipulations.
Note that most of the iostream header files include ios.

iosfwd Declares forward references to various iostream classes defined in other
standard headers.

iostream Declares most of the iostream objects used for the standard stream manipu-
lations.

istream Defines the istream class for iostream extractions. Note that most of the
iostream header files include istream.

ostream Defines the ostream class for iostream insertions.

sstream Defines the stringbuf, istringstream, and ostringstream classes for
various string object manipulations.

streambuf Defines the streambuf classes for basic operations of the iostream classes.
Note that most of the iostream header files include streambuf.

CrossCore Embedded Studio 1.0 3-41
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Standard C++ Library Header Files

Table 3-15 describes the header files that are included by the ISO/IEC
14882:2003 C++ standard library.

string Defines a number of functions that help you manipulate C strings and other
array of characters.

strstream Defines the strstreambuf, istrstream, and ostream classes for
iostream manipulations on allocated, extended, and freed character
sequences.

Table 3-15. Standard C++ Library Header Files

Header Description

bitset Defines a template class bitset and two supporting templates.

complex Defines a template class complex and a host of supporting template func-
tions.

fstream Defines several types and functions that support iostreams operations on
sequences stored in external files.

iomanip Declares several iostream manipulators. Each manipulator accepts a single
argument.

ios Defines several classes and functions for basic iostream manipulations.
Note that most of the iostream header files include ios.

iosfwd Declares forward references to various iostream template classes defined in
other standard headers.

iostream Declares objects that control reading and writing to the standard streams. It
is often the only header required to perform input and output.

istream Defines the template class basic_istream, which manipulates extractions
for the iostreams.

limits Defines the template class numeric_limits.

locale Defines a number of template classes and functions that manipulate and
encapsulate locales.

Table 3-14. Embedded C++ Library Header Files (Cont’d)

Header Description

C and C++ Run-Time Library Guide

3-42 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Common Standard and Embedded C++ Library Header Files

Table 3-16 describes the header files that are common to and included by
both the ISO/IEC 14882:2003 C++ standard library and the abridged
C++ library.

ostream Defines the template class basic_ostream, which mediates insertions for
the iostreams.

sstream Defines a number of template classes that support iostream operations on
sequences stored in an allocated array object.

streambuf Defines the template class basic_streambuf, which is basic to the opera-
tion of the iostreams classes.

string Defines the container class basic_string and various supporting templates.

strstream Defines several classes that support iostreams operations on sequences stored
in an allocated array of char object.

valarray Defines the template class valarray and a number of supporting template
classes and functions.

Table 3-16. Common C++ Library Header Files

Header Description

exception Defines several types and functions related to the handling of exceptions.

fract Defines the fract class, which supports fractional arithmetic, assignment,
and type-conversion operations using a 32-bit data type. The header file is
fully described below. This class should not be confused with the native
fixed-point type available in C by including the stdfix.h header file, which
is also called fract.

new Declares several classes and functions for memory allocations and
deallocations.

Table 3-15. Standard C++ Library Header Files (Cont’d)

Header Description

CrossCore Embedded Studio 1.0 3-43
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

C++ Header Files for C Library Facilities

For each C standard library header, there is a corresponding standard C++
header. For example, if the name of a C standard library header file were
foo.h, the equivalent C++ header file would be named cfoo. Thus, the
C++ header file cstdio provides the same facilities as the C header file
stdio.h.

Table 3-17 lists the C++ header files that provide access to the C library
facilities.

The C standard header files may be used to define names in the C++
global namespace, and the equivalent C++ header files define names in the
standard namespace.

shortfract Defines the shortfract fractional class, which supports fractional arithme-
tic, assignment, and type-conversion operations using a 16-bit base type. The
header file is fully described under. This class should not be confused with
the native, fixed-point data type short fract, which is available in C by
including the stdfix.h header file.

stdexcept Defines a variety of classes for exception reporting.

typeinfo Defines several types associated wit the type identification operator typeid,
which yields information about both static and dynamic types.

Table 3-17. C++ Header Files for C Library Facilities

Header Description

cassert Enforces assertions during function executions

cctype Classifies characters

cerrno Tests error codes reported by library functions

cfloat Tests floating-point type properties

climits Tests integer type properties

Table 3-16. Common C++ Library Header Files (Cont’d)

Header Description

C and C++ Run-Time Library Guide

3-44 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Standard Template Library (STL) Header Files

Templates and the associated header files as defined by the ISO/IEC
14882:2003 C++ standard are not part of the embedded C++ standard
library, but are supported by the compiler in C++ mode. Table 3-18
describes the standard template library header files.

The embedded C++ library and the standard C++ library also include
several headers for compatibility with traditional C++ libraries; see
Table 3-19.

clocale Adapts to different cultural conventions

cmath Provides common mathematical operations

csetjmp Executes non-local goto statements

csignal Controls various exceptional conditions

cstdarg Accesses a various number of arguments

cstddef Defines several useful data types and macros

cstdio Performs input and output

cstdlib Performs a variety of operations

cstring Manipulates several kinds of strings

cwchar Manipulates wide strings. This is implemented for the full standard
library only. (-full-cpplib)

cwtype Classifies and maps codes for the target wide-character set. This is
implemented for the full standard library only. (-full-cpplib)

Table 3-17. C++ Header Files for C Library Facilities (Cont’d)

Header Description

CrossCore Embedded Studio 1.0 3-45
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Table 3-18. Standard Template Library (STL) Header Files

Header Description

algorithm Defines numerous common operations on sequences

deque Defines a deque template container

functional Defines numerous function templates that can be used to create
callable types

hash_map Defines two hashed map template containers.

hash_set Defines two hashed set template containers

iterator Defines common iterators and operations on iterators

list Defines a list template container

map Defines two map template containers

memory Defines facilities for managing memory

numeric Defines several numeric operations on sequences

queue Defines two queue template container adapters

set Defines two set template containers

stack Defines a stack template container adapter

utility Defines an assortment of utility templates

vector Defines a vector template container

Table 3-19. Header Library Files for Compatibility with Traditional C++
Libraries

Header Description

fstream.h Defines several iostreams template classes that manipulate external
files

iomanip.h Defines several iostreams manipulators that take a single argument

iostream.h Declares the iostreams objects that manipulate the standard streams

new.h Declares several functions that allocate and free storage

C and C++ Run-Time Library Guide

3-46 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

File I/O Support
The CCES environment provides access to files on a host system by using
stdio functions. File I/O support is provided through a set of low-level
primitives that implement the open, close, read, write, and seek opera-
tions, among others. The functions defined in the stdio.h header file use
these primitives to provide conventional C input and output facilities. For
details on File I/O support, refer to the System Run-Time Documentation.

Refer to stdio.h for information about the conventional C input and out-
put facilities provided by the compiler.

Fatal Error Handling
The CCES run-time library provides a global mechanism for handling
non-recoverable, or fatal, errors that are encountered during the execution
of an application. This is provided by the functions adi_fatal_error and
adi_fatal_exception, which will write information related to the encoun-
tered error before looping around the breakpoints __fatal_error and
__fatal_exception, respectively.

Four items of information can be stored regarding the encountered error:

• General code indicating the source of the error

• Specific code indicating the actual error that occurred

• A PC address indicating where the error was reported

• A value related to the error. This may not be relevant and may be
left empty.

CrossCore Embedded Studio 1.0 3-47
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

This information is stored in global variables detailed in Table 3-20. Each
variable is 32 bits in size. The value related to the error can be interpreted
in different ways, depending on the error to which it is associated.

FatalError.xml

FatalError.xml, contained in the System directory of your CCES installa-
tion, details the relationships between general codes and specific codes,
and provides additional detail on the specific code such as a description of
the error.

A general code is associated with a list of specific codes, though a list of
specific codes can be associated with one or more general codes. Specific
code values must be unique within a list of specific codes, but duplicate
specific codes are allowed if they are within separate lists.

General Codes

Three general codes are associated with the run-time libraries,
LibraryError, RunTimeError, and UnhandledException which refer to
errors identified with the use of the run-time libraries, errors associated
with run-time environment, and exceptions which don’t have a handler
set up, respectively. An additional general code, UserError, is available for
any user-defined error values. The values representing these codes are
shown in Table 3-21.

Table 3-20. Global Variables Used in Fatal Error Reporting

Use Label Type

General code __adi_fatal_error_general_code Integer

Specific code __adi_fatal_error_specific_code Integer

PC __adi_fatal_error_pc Memory address

Value __adi_fatal_error_value Depends on error

C and C++ Run-Time Library Guide

3-48 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Specific Codes

This section lists and describes the specific library and run-time errors that
may occur.

Library Errors

The specific code list associated with the LibraryError general code
details any fatal errors that may be identified by use of the run-time
libraries. These errors are described in Table 3-22.

Table 3-21. General Error Codes Used by Run-Time Library

General Code Name Value

Run-time library error LibraryError 0x7

Run-time environment error RunTimeError 0x8

Unhandled exception UnhandledException 0x9

Parity errors ParityError 0xA

errno values Errno 0xB

User-defined error UserError 0xffffffff

Table 3-22. LibraryError Specific Codes

Specific
Code
Value

Error Description Error Value
Interpretation

0x2 InsufficientHeapForLibrary An allocation from the default
heap, in the system libraries
has failed

None

0x3 IONotAllowed I/O has been requested when
scheduling has been disabled,
or from within an ISR

None

0x4 ProfBadExeName Profiling/heap debugging has
failed due to an invalid appli-
cation filename

none

CrossCore Embedded Studio 1.0 3-49
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

0x5 OSALBindingError An operating system abstrac-
tion layer function has failed

none

0x6 adi_osal_Init_failure The call to adi_osal_Init made
from the CRT startup code
returned an error

none

0x101 HeapUnknown An unknown heap debugging
error has occurred

None

0x102 HeapFailed A heap operation has failed None

0x103 HeapAllocationOfZero A heap allocation of zero has
been detected

None

0x104 HeapNullPointer A heap operation using an
unexpected null pointer has
been detected

None

0x105 HeapInvalidAddress A heap operation using an
invalid address has been
detected

Pointer to invalid
address

0x106 HeapBlockIsCorrupt A corrupt block has been
detected on the heap

Pointer to corrupt
block

0x107 HeapReallocOfZero A call to realloc with no
pointer or size has been
detected

None

0x108 HeapFunctionMisMatch A heap operation which is
incompatible with the block
being manipulated has been
detected

Pointer to block
being manipu-
lated

0x109 HeapUnfreedBlock An unfreed block on the heap
has been detected

Pointer to unfreed
block

0x10a HeapWrongHeap A heap operation using the
wrong heap has been detected

Pointer to block
being manipu-
lated

Table 3-22. LibraryError Specific Codes (Cont’d)

Specific
Code
Value

Error Description Error Value
Interpretation

C and C++ Run-Time Library Guide

3-50 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

0x10b HeapAllocationTooLarge A heap allocation request
larger than the heap it is being
allocated to has been detected

None

0x10c HeapInvalidInput A heap operation has been
given an invalid input

None

0x10d HeapInternalError An internal error has occurred
within the heap debugging
library

None

0x10e HeapInInterrupt The heap has been used
within an interrupt

None

0x10f HeapMissingOutput There is output missing from
the heap report file due to
insufficient buffering

Unsigned integer
counting number
of missing bytes

0x110 HeapInsufficientSpace Heap debugging has failed
due to insufficient available
heap space

None

0x111 HeapCantOpenDump Heap debugging cannot open
heap dump file

None

0x112 HeapCantOpenTrace Heap debugging cannot open
an .hpl file for report output

None

0x113 HeapInvalidHeapID An invalid heap ID has been
used

ID of invalid
heap

0x201 InstrprofIOFail Instrumented profiling cannot
open its output file

None

0x301 PGOHWFailedOutput The PGO on hardware
run-time support failed to
open an output file

None

Table 3-22. LibraryError Specific Codes (Cont’d)

Specific
Code
Value

Error Description Error Value
Interpretation

CrossCore Embedded Studio 1.0 3-51
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Run-Time Errors

The specific code list associated with the RunTimeError general code
details any fatal errors that may be identified by use of the run-time
environment. These errors are described in Table 3-23.

0x302 PGOHWDataCorrupted An internal error has occurred
in the PGO on hardware
run-time support

None

0x303 PGOHWInvalidPGO The existing PGO data file
appears to be corrupted.

None

Table 3-23. RunTimeError Specific Codes

Specific
Code
Value

Error Description Error Value
Interpretation

0x1 CPLBMissAllLocked A CPLB miss has occurred where all
active CPLBs are locked

None

0x2 CPLBMissWithoutRe-
placement

A CPLB miss has occurred without a
corresponding CPLB entry

None

0x3 CPLBProtectionViola-
tion

A CPLB protection violation has
occurred

None

0x4 CPLBAddressIsMis-
alignedForCPLBSize

A CPLB address is misaligned for the
size of that CPLB

None

0x5 L1CodeCacheEnabledWh
enL1UsedForCode

L1 code cache has been enabled when
L1 is used for code

None

0x6 L1DataACacheEnabledW
henUsedForData

L1 data A cache is enabled when it is
used for data

None

0x7 L1DataBCacheEnabledW
henUsedForData

L1 data B cache is enabled when it is
used for data

None

Table 3-22. LibraryError Specific Codes (Cont’d)

Specific
Code
Value

Error Description Error Value
Interpretation

C and C++ Run-Time Library Guide

3-52 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

0x8 TooManyLockedDataC-
PLB

Too many data CPLBs have been
locked

None

0x9 TooManyLockedIn-
structionCPLB

Too many instruction CPLBs have
been locked

None

0xB NoDispatchedHandler No dispatched handler available for
the specified interrupt code.

None

0x100 DMASrcConfigErr DMA has failed due to an error with
DMA source configuration.

None

0x101 DMASrcError DMA has failed due to an error with
DMA source.

None

0x110 DMASrcIllegalWrite DMA has failed due to an illegal write
in source DMA.

None

0x120 DMASrcAlignment DMA has failed due to an alignment
write in source DMA.

None

0x130 DMASrcMemErr DMA has failed due to a mem-
ory/fabric error in source DMA.

None

0x150 DMASrcTriggerOverrun DMA has failed due to trigger over-
run in source DMA.

None

0x160 DMASrcBWMon DMA has failed due to a bandwidth
monitor in source DMA.

None

0x200 DMADstConfigErr DMA has failed due to an error with
DMA destination configuration.

None

0x201 DMADstError DMA has failed due to an error with
DMA destination.

None

0x202 DMADstPatternSizeIn-
valid

DMA pattern length invalid. None

0x210 DMADstIllegalWrite DMA has failed due to an illegal write
in destination DMA.

None

0x220 DMADstAlignment DMA has failed due to an alignment
write in destination DMA.

None

Table 3-23. RunTimeError Specific Codes (Cont’d)

Specific
Code
Value

Error Description Error Value
Interpretation

CrossCore Embedded Studio 1.0 3-53
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Unhandled Exceptions

The specific code list associated with the UnhandledException general
code details any exceptions which do not have a handler set. These

0x230 DMADstMemErr DMA has failed due to a mem-
ory/fabric error in destination DMA.

None

0x250 DMADstTriggerOverrun DMA has failed due to trigger over-
run in destination DMA.

None

0x260 DMADstBWMon DMA has failed due to a bandwidth
monitor in destination DMA.

None

0x301 UnexpectedCPLBMgrRe-
turn

An unexpected value has been
returned by the CPLB Manager.

None

0x310 DCPLBMissAllLocked A data CPLB miss has occurred where
al active CPLBs are locked.

None

0x311 ICPLBMissAllLocked An instruction CPLB miss has
occurred where al active CPLBs are
locked.

None

0x320 DCPLBMissWithoutRe-
placement

A data CPLB miss has occurred with-
out a corresponding CPLB entry.

None

0x321 ICPLBMissWithoutRe-
placement

An instruction CPLB miss has
occurred without a corresponding
CPLB entry.

None

0x330 DCPLBProtectionVio-
lation

An illegal data memory access has
occurred.

None

0x331 ICPLBProtectionVio-
lation

An illegal instruction memory access
has occurred.

None

0x340 DCPLBDoubleHit More than one data CPLB covers the
accessed location.

None

0x341 ICPLBDoubleHit More than one instruction CPLB cov-
ers the accessed location.

None

Table 3-23. RunTimeError Specific Codes (Cont’d)

Specific
Code
Value

Error Description Error Value
Interpretation

C and C++ Run-Time Library Guide

3-54 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

exceptions are described in Table 3-24.

Parity Errors

The specific codes associated with the ParityError general code describe

Table 3-24. UnhandledException Specific Codes

Specific
Code
Value

Error Description Error Value
Interpretation

0x11 TraceBufferFull The trace buffer has overflowed None

0x21 UndefinedInstruction An undefined instruction has been
encountered

None

0x22 IllegalInstruction-
Combination

An illegal instruction combination
has been encountered

None

0x23 DataAccessCPLBPro-
tection

Attempted read/write of supervisor
resource, or illegal data access

None

0x24 DataMisalignedAc-
cessViolation

Attempted misaligned data access None

0x25 UnrecoverableEvent An unrecoverable event has occurred None

0x26 DataCPLBMiss CPLB miss on data fetch None

0x27 DataCPLBMultipleHits Multiple CPLBs match data fetch
address

None

0x28 EmulationWatchpoint There is a watchpoint match None

0x2A InstructionFetchMis-
aligned

Attempted misaligned instruction
cache fetch

None

0x2B InstructionFetchVio-
lation

Illegal instruction fetch access None

0x2C InstructionCPLBMiss CPLB miss on instruction fetch None

0x2D InstructionCPLBMul-
tipleHits

Multiple CPLBs match instruction
fetch address

None

0x2E SupervisorResource Attempt to use supervisor resource
from user mode

None

CrossCore Embedded Studio 1.0 3-55
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

errors to do with parity in L1 memory. There are two kinds of error,
depending on whether the location of the parity error can be identified.
Where the location is known, the specific code is a three-digit code
0xXYZ, where:

• X indicates Instruction memory (1) or Data memory (2).

• Y indicates the bank: A (1), B (2) or C (3).

• Z indicates the memory type: SRAM (1), Cache tags (2) or
Scratchpad (4).

The specific list in FatalError.xml contains several value which are com-
bined to produce the errors show in Table 3-25; the individual values are
never produced by themselves, so are not listed here. The combined errors
codes are listed in Table 3-25.

Table 3-25. ParityError Specific Codes

Specific
Code
Value

Error Description Error Value
Interpretation

0x1 NonSpeculativeAc-
cessAborted

A non-speculative access has been
aborted due to L1 parity error.

None

0x2 InstrReadForL2 Parity error on instruction L1 read for
L2 transfer

None

0x3 DataReadForL2 Parity error on data L1 read for L2
transfer

None

0x110 InstrBankA Parity error in L1 instruction bank A
SRAM

None

0x120 InstrBankB Parity error in L1 instruction bank B
SRAM

None

0x141 InstrBankCSRAM Parity error in L1 instruction bank C
SRAM

None

0x142 InstrBankCCache Parity error in L1 instruction bank C
Cache

None

Documented Library Functions

3-56 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Errno Values

The specific codes for the Errno general code map directly onto the errno
variable itself. Refer to errno.h for interpretation of the values.

Documented Library Functions
The C run-time library has several categories of functions and macros
defined by the ANSI C standard, plus extensions provided by Analog
Devices.

The following tables list the library functions documented in this chapter.
Note that the tables list the functions for each header file separately;
however, reference pages for these library functions present the functions
in alphabetical order.

0x211 DataBankASRAM Parity error in L1 data bank A SRAM None

0x212 DataBankACache Parity error in L1 data bank A Cache None

0x213 DataBankAXPAD Parity error in L1 data bank A
Scratchpad

None

0x221 DataBankBSRAM Parity error in L1 data bank B SRAM None

0x222 DataBankBCache Parity error in L1 data bank B Cache None

Table 3-25. ParityError Specific Codes (Cont’d)

Specific
Code
Value

Error Description Error Value
Interpretation

CrossCore Embedded Studio 1.0 3-57
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Table 3-26 lists functions in the ccblkfn.h header file. For more informa-
tion, see ccblkfn.h.

Table 3-27 lists functions in the ctype.h header file. For more informa-
tion, see ctype.h.

Table 3-28 lists the functions in the heap_debug.h header file. For more
information, see heap_debug.h.

Table 3-26. Library Functions in the ccblkfn.h Header File

adi_obtain_mc_slot,
adi_free_mc_slot,
adi_set_mc_value,
adi_get_mc_value

adi_core_id _l1_memcpy, _memcpy_l1

Table 3-27. Library Functions in the ctype.h Header File

isalnum isalpha iscntrl

isdigit isgraph islower

isprint ispunct isspace

isupper isxdigit tolower

toupper

Table 3-28. Library Functions in the heap_debug.h Header File

adi_dump_all_heaps adi_dump_heap

adi_heap_debug_disable adi_heap_debug_enable

adi_heap_debug_end adi_heap_debug_flush

adi_heap_debug_pause adi_heap_debug_reset_guard_region

adi_heap_debug_resume adi_heap_debug_set_buffer

adi_heap_debug_set_call_stack_depth adi_heap_debug_set_error

adi_heap_debug_set_guard_region adi_heap_debug_set_ignore

Documented Library Functions

3-58 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Table 3-29 lists functions in the libdyn.h header file. For more informa-
tion, see libdyn.h.

Table 3-30 lists functions in the math.h header file. For more information,
see math.h.

adi_heap_debug_set_warning adi_verify_all_heaps

adi_verify_heap

Table 3-29. Library Functions in the libdyn.h Header File

dyn_AddHeap dyn_alloc dyn_AllocSectionMem

dyn_AllocSectionMemHeap dyn_CopySectionContents dyn_FreeEntryPointArray

dyn_FreeSectionMem dyn_GetEntryPointArray dyn_GetExpSymTab

dyn_GetHeapForWidth dyn_GetNumSections dyn_GetSections

dyn_GetStringTable dyn_GetStringTableSize dyn_heap_init

dyn_LookupByName dyn_RecordRelocOutOfRange dyn_Relocate

dyn_RetrieveRelocOutOfRange dyn_RewriteImageToFile dyn_SetSectionAddr

dyn_SetSectionMem dyn_ValidateImage

Table 3-30. Library Functions in the math.h Header File

acos asin atan

atan2 ceil cos

cosh exp fabs

floor fmod frexp

isinf isnan ldexp

log log10 modf

pow sin sinh

sqrt tan tanh

Table 3-28. Library Functions in the heap_debug.h Header File (Cont’d)

CrossCore Embedded Studio 1.0 3-59
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Table 3-31 lists functions in the mc_data.h header file. For more informa-
tion, see mc_data.h.

Table 3-32 lists functions in the setjmp.h header file. For more informa-
tion, see setjmp.h.

Table 3-33 lists functions in the signal.h header file. For more informa-
tion, see signal.h.

Table 3-34 lists functions in the stdarg.h header file. For more informa-
tion, see stdarg.h.

Table 3-31. Library Functions in the mc_data.h Header File

adi_obtain_mc_slot,
adi_free_mc_slot,
adi_set_mc_value,
adi_get_mc_value

Table 3-32. Library Functions in the setjmp.h Header File

longjmp setjmp

Table 3-33. Library Functions in the signal.h Header File

raise signal

Table 3-34. Library Functions in the stdarg.h Header File

va_arg va_end va_start

Documented Library Functions

3-60 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Table 3-35 lists functions in the stdfix.h header file. For more informa-
tion, see stdfix.h.

Table 3-36 lists functions in the stdio.h header file. For more informa-
tion, see stdio.h.

Table 3-35. Library Functions in the stdfix.h Header File

absfx bitsfx countlsfx

divifx fxbits fxdivi

idivfx mulifx roundfx

strtofxfx

Table 3-36. Supported Library Functions in the stdio.h Header
File

clearerr fclose feof

ferror fflush fgetc

fgetpos fgets fileno

fprintf fputc fputs

fopen freopen fscanf

fread fseek fsetpos

ftell fwrite getc

getchar gets ioctl

perror printf putc

putchar puts remove

rename rewind scanf

setbuf setvbuf snprintf

sprintf sscanf ungetc

vfprintf vprintf vsprintf

vsnprintf

CrossCore Embedded Studio 1.0 3-61
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Table 3-37 lists functions in the stdlib.h header file. For more informa-
tion, see stdlib.h.

Table 3-38 lists functions in the string.h header file. For more informa-
tion, see string.h.

Table 3-37. Library Functions in stdlib.h Header File

abort abs adi_fatal_error

adi_fatal_exception atexit atof

atoi atol

atoll bsearch calloc

div exit free

heap_calloc heap_free heap_init

heap_install heap_lookup heap_malloc

heap_realloc heap_space_unused labs

ldiv malloc qsort

rand realloc space_unused

srand strtod strtof

strtol strtold strtoll

strtoul strtoull

Table 3-38. Library Functions in string.h Header File

memchr memcmp memcpy

memmove memset strcat

strchr strcmp strcoll

strcpy strcspn strerror

strlen strncat strncmp

strncpy strpbrk strrchr

strspn strstr strtok

strxfrm

Documented Library Functions

3-62 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Table 3-39 lists functions in the time.h header file. For more information,
see time.h.

Table 3-39. Library Functions in time.h Header File

asctime clock ctime

difftime gmtime localtime

mktime strftime time

CrossCore Embedded Studio 1.0 3-63
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

C Run-Time Library Reference
The C run-time library is a collection of functions called from your C
programs. The following items apply to all of the functions in the library.

Notation Conventions

An interval of numbers is indicated by the minimum and maximum, sepa-
rated by a comma, and enclosed in two square brackets, two parentheses,
or one of each. A square bracket indicates that the endpoint is included in
the set of numbers; a parenthesis indicates that the endpoint is not
included.

Reference Format

Each function in the library has a reference page. These pages have the fol-
lowing format:

• Name and Purpose of the function

• Synopsis – Required header file and functional prototype

• Description – Function specification

• Error Conditions – Method that the functions use to indicate an
error

• Example – Typical function usage

• See Also – Related functions

Documented Library Functions

3-64 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

abort

Abnormal program end

Synopsis

#include <stdlib.h>
void abort(void);

Description

The abort function causes an abnormal program termination by raising
the SIGABRT exception. If the SIGABRT handler returns, abort() calls
_Exit() to terminate the program with a failure condition.

Error Conditions

None.

Example

#include <stdlib.h>

extern int errors;

if(errors) /* terminate program if */

abort(); /* errors are present */

See Also

raise, signal

CrossCore Embedded Studio 1.0 3-65
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

abs

Absolute value

Synopsis

#include <stdlib.h>
int abs(int j);

Description

The abs function returns the absolute value of its integer input.

Note: The result of abs(INT_MIN) is undefined.

Error Conditions

None.

Example

#include <stdlib.h>

int i;

i = abs(-5); /* i == 5 */

See Also

absfx, fabs, labs

Documented Library Functions

3-66 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

absfx

absolute value

Synopsis

#include <stdfix.h>

short fract abshr(short fract f);

fract absr(fract f);

long fract abslr(long fract f);

short accum abshk(short accum a);

accum absk(accum a);

long accum abslk(long accum a);

Description

The absfx family of functions return the absolute value of their fixed-point
input. In addition to the individually-named functions for each
fixed-point type, a type-generic macro absfx is defined for use in C99
mode. This may be used with any of the fixed-point types and returns a
result of the same type as its operand.

Error Conditions

None.

Example

#include <stdfix.h>

accum a;

long fract f;

a = abshk(-12.5k); /* a == 12.5k */

a = absfx(-12.5k); /* a == 12.5k */

f = abslr(0.75lr); /* f == 0.75lr */

f = absfx(0.75lr); /* f == 0.75lr */

CrossCore Embedded Studio 1.0 3-67
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

abs, fabs, labs

Documented Library Functions

3-68 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

acos

Arc cosine

Synopsis

#include <math.h>

float acosf (float x);

double acos (double x);

long double acosd (long double x);

fract16 acos_fr16 (fract16 x);

fract32 acos_fr32 (fract32 x);

_Fract acos_fx16 (_Fract x);

long _Fract acos_fx32 (long _Fract x);

Description

The arc cosine functions return the arc cosine of x. Both the argument x
and the function results are in radians.

The input for the functions acos, acosf, and acosd must be in the range
[-1, 1], and the functions return a result that will be in the range [0,].

The acos_fr16, acos_fr32, acos_fx16 and acos_fx32 functions are
defined for fractional input values between 0 and 0.9. The outputs from
the functions are in the range [acos(0)*2/, acos(0.9)*2/].

Error Conditions

The arc cosine functions return a zero if the input is not in the defined
range.

CrossCore Embedded Studio 1.0 3-69
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <math.h>

double y;

y = acos(0.0); /* y = PI/2 */

See Also

cos

Documented Library Functions

3-70 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

adi_acquire_lock, adi_try_lock, adi_release_lock

Obtain and release locks for multi-core synchronization

Synopsis

#include <ccblkfn.h>

void adi_acquire_lock(testset_t *lockptr);

int adi_try_lock(testset_t *lockptr);

void adi_release_lock(testset_t *lockptr);

Description

These functions provide locking facilities for multi-core applications that
need to ensure private access to shared resources, or for applications that
need to build synchronization mechanisms.

The functions operate on a pointer to a testset_t object, which is a pri-
vate type used only by these routines. Objects of type testset_t must be
global, and initialized to zero (which indicates that the lock is unclaimed).
The type is automatically volatile.

The adi_acquire_lock function repeatedly attempts to acquire the lock,
until successful. Upon return, the lock will have been acquired. The func-
tion does not make use of any timers or other mechanisms to pause
between attempts, so this function implies continuous accesses to the lock
object.

The adi_try_lock function makes a single attempt to acquire the lock, but
does not block if the lock has already been acquired. The function returns
non-zero if it has successfully acquired the lock, and zero if the lock was
not available.

The adi_release_lock function releases the lock object, marking it as avail-
able to the next attempt by adi_acquire_lock or adi_try_lock. The
adi_release_lock function does not return a value, and does not verify

CrossCore Embedded Studio 1.0 3-71
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

whether the caller already holds the lock, or even if the lock is already held
by “another” caller.

Error Conditions

These functions do not return error conditions. Neither
adi_acquire_lock() nor adi_release_lock() return values. The
adi_try_lock() function merely returns a value indicating whether the lock
was acquired.

Examples

#include <ccblkfn.h>

void add_one(testset_t *lockptr, volatile int *valptr)

{

adi_acquire_lock(lockptr);

*valptr += 1;

adi_release_lock(lockptr);

}

 To be useful, the testset_t object must be located in a shared area
of memory accessible by both cores. These functions do not disable
interrupts; that is the responsibility of the caller.

#include <ccblkfn.h>

void claim_lock(testset_t *lockptr)

{

while (!adi_try_lock(lockptr)) {

// do something else or go to sleep

// before trying the lock again

}

}

Documented Library Functions

3-72 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

adi_core_id, adi_obtain_mc_slot, adi_free_mc_slot, adi_set_mc_value,
adi_get_mc_value

CrossCore Embedded Studio 1.0 3-73
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

adi_core_1_enable, adi_core_1_disable, adi_core_b_enable

Enable or disable another core

Synopsis

#include <ccblkfn.h>
void adi_core_1_enable(void);

void adi_core_1_disable(void);

void adi_core_b_enable(void);

Description

The adi_core_x_enable functions are available on multi-core processors,
to release the other available cores. Due to differences in processor termi-
nology, the ADSP-BF561 variant is called adi_core_b_enable, while the
other functions identify processors numerically from zero (e.g.
adi_core_1_enable). Once released, the core being executing instructions
from its reset address.

The emulator releases additional cores as part of the program-loading pro-
cess, so startup code employs a software lock to ensure that additional
cores do not start running their applications too soon; the
adi_core_x_enable functions toggle the software lock as well as releasing
the core, allowing any emulator-released cores to continue.

Where available, the adi_core_x_disable function puts the specified func-
tion back into Reset mode.

Error Conditions

None.

Documented Library Functions

3-74 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <ccblkfn.h>

int main(void)

{

// Core 1 is in Reset

adi_core_1_enable();

// Core 1 is now running

}

See Also

adi_acquire_lock, adi_try_lock, adi_release_lock

CrossCore Embedded Studio 1.0 3-75
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

adi_core_id

Identify caller’s core

Synopsis

#include <ccblkfn.h>
int adi_core_id(void);

Description

The adi_core_id function returns a numeric value indicating which pro-
cessor core is executing the call to the function. This function is most
useful on multi-core processors, when the caller is a function shared
between both cores, but which needs to perform different actions (or
access different data) depending on the core executing it.

The function returns a zero value when executed by core A, and a value of
one when executed on core B.

Error Conditions

None.

Example

#include <ccblkfn.h>

const char *core_name(void)

{

if (adi_core_id() == 0)

return "Core A";

else

return "Core B";

}

Documented Library Functions

3-76 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

adi_acquire_lock, adi_try_lock, adi_release_lock, adi_obtain_mc_slot,
adi_free_mc_slot, adi_set_mc_value, adi_get_mc_value

CrossCore Embedded Studio 1.0 3-77
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

adi_dump_all_heaps

Dump the current state of all heaps to a file

Synopsis

#include <heap_debug.h>
void adi_dump_all_heaps(char *filename);

Description

The adi_dump_all_heaps function writes the current state of all of the
heaps known to the heap debugging library to the file specified by file-
name. The information written to the file consists of the address, size, and
state of any blocks on that heap which have been tracked by the heap
debugging library, and the total memory currently allocated from that
heap.

If the specified file exists, the file will be appended to; otherwise, a new file
will be created.

 adi_dump_all_heaps relies on the heap usage being tracked by the
heap debugging library. Any heap activity which is carried out
when heap usage is not being tracked (when heap debugging is
paused or disabled) will not be included in the output.

 Only call adi_heap_dump_all_heaps when it is safe to carry out
I/O operations. Calling adi_adi_dump_all_heaps from within an
interrupt or an unscheduled region will result in adi_fatal_error
being called.

For more information on heap debugging, see Heap Debugging.

Error Conditions

adi_dump_heap will call adi_fatal_error if it is unable to open the
requested file.

Documented Library Functions

3-78 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <heap_debug.h>

#include <stdio.h>

void dump_heaps()

{

adi_dump_all_heaps(“./dumpfile.txt”);

}

See Also

adi_dump_heap, adi_fatal_error

CrossCore Embedded Studio 1.0 3-79
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

adi_dump_heap

Dump the current state of a heap to a file

Synopsis

#include <heap_debug.h>
bool adi_dump_heap(char *filename, int heapindex);

Description

The adi_dump_heap function writes the current state of the heap identi-
fied by heapindex to the file specified by filename. The information
written to the file consists of the address, size, and state of any blocks on
that heap which have been tracked by the heap debugging library, and the
total memory currently allocated from that heap.

If the specified file exists, the file will be appended to; otherwise, a new file
will be created.

The heap index of static heaps can be identified by using heap_lookup.
The heap index of a dynamically defined heap is the value returned from
heap_install.

 adi_dump_heap relies on the heap usage being tracked by the heap
debugging library. Any heap activity which is carried out when
heap usage is not being tracked (when heap debugging is paused or
disabled) will not be included in the output.

 Only call adi_heap_dump_heap when it is safe to carry out I/O
operations. Calling adi_dump_heap from within an interrupt or an
unscheduled region will result in adi_fatal_error being called.

For more information on heap debugging, see Heap Debugging.

Documented Library Functions

3-80 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Error Conditions

adi_dump_heap will return false if the heap specified by heapindex does
not exist.

adi_dump_heap will call adi_fatal_error if it is unable to open the
requested file.

Example

#include <heap_debug.h>

#include <stdio.h>

void dump_heap(int heapindex)

{

if (!adi_dump_heap(“./dumpfile.txt”, heapindex)) {

printf(“heap %d does not exist\n”, heapindex);

}

}

See Also

adi_dump_all_heaps, adi_fatal_error

CrossCore Embedded Studio 1.0 3-81
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

adi_fatal_error

Handle a non-recoverable error

Synopsis

#include <stdlib.h>
void adi_fatal_error(int general_code,

int specific_code,

int value);

Description

The adi_fatal_error function handles a non-recoverable error. The param-
eters general_code, specific_code, and value will be written to global
variables along with the return address, before looping around the label
__fatal_error.

The adi_fatal_error function can be jumped to rather than called, in order
to preserve the return address if required.

See Fatal Error Handling for more information.

Error Conditions

None.

Example

#include <stdlib.h>

#define MY_GENERAL_CODE (0x9)

void non_recoverable_error(int code, int value) {

adi_fatal_error(MY_GENERAL_CODE, code, value);

}

Documented Library Functions

3-82 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

adi_fatal_exception

CrossCore Embedded Studio 1.0 3-83
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

adi_fatal_exception

Handle a non-recoverable exception

Synopsis

#include <stdlib.h>
void adi_fatal_exception(int general_code,

int specific_code,

int value);

Description

The adi_fatal_exception function handles a non-recoverable exception.
The parameters general_code, specific_code, and value will be written
to global variables along with the return address, before looping around
the label __fatal_exception.

The adi_fatal_exception function can be jumped to rather than called, in
order to preserve the return address if required.

See Fatal Error Handling for more information.

Error Conditions

None.

Example

#include <stdlib.h>

#define MY_GENERAL_CODE (0x9)

void non_recoverable_exception(int code, int value) {

adi_fatal_exception(MY_GENERAL_CODE, code, value);

}

Documented Library Functions

3-84 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

adi_fatal_error

CrossCore Embedded Studio 1.0 3-85
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

adi_heap_debug_disable

Disable features of the heap debugging

Synopsis

#include <heap_debug.h>
void adi_heap_debug_disable(unsigned char flag);

Description

The adi_heap_debug_disable function accepts a bit-field parameter detail-
ing the features are to be enabled. These bits are represented by macros
defined in heap_debug.h.

These parameter bits can be combined using the bitwise OR operator to
allow multiple settings to be disabled at once.

For more information on heap debugging, see Heap Debugging.

Error Conditions

None.

Example

#include <heap_debug.h>

void disable_diagnostics()

{

// Disable run-time errors

adi_heap_debug_disable(_HEAP_STDERR_DIAG);

}

See Also

adi_heap_debug_enable

Documented Library Functions

3-86 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

adi_heap_debug_enable

Enable features of the heap debugging

Synopsis

#include <heap_debug.h>
void adi_heap_debug_enable(unsigned char flag);

Description

The adi_heap_debug_enable function accepts a bit-field parameter
detailing the features are to be enabled. These bits are represented by
macros defined in heap_debug.h. _HEAP_TRACK_USAGE (track heap activity)
will be implicitly enabled when either _HEAP_STDERR_DIAG (generate
diagnostics at runtime) or _HEAP_HPL_GEN (generate .hpl file of heap
activity used by report) are enabled.

These parameter bits can be combined using the bitwise OR operator to
allow multiple settings to be enabled at once.

For more information on heap debugging, see Heap Debugging.

Error Conditions

None.

Example

#include <heap_debug.h>

void enable_hpl_gen()

{

// Enable run-time errors and the generation of the .hpl file

adi_heap_debug_enable(_HEAP_STDERR_DIAG | _HEAP_HPL_GEN);

}

CrossCore Embedded Studio 1.0 3-87
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

adi_heap_debug_disable

Documented Library Functions

3-88 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

adi_heap_debug_end

Finish heap debugging

Synopsis

#include <heap_debug.h>
void adi_heap_debug_end(void);

Description

The adi_heap_debug_end function records the end of the heap debug-
ging. Internal data used by the heap debugging library will be freed, the
.hpl file generated will be closed (if .hpl generation is enabled), and any
heap corruption or memory leaks will be reported. adi_heap_debug_end
can be called multiple times, allowing heap debugging to be started and
ended over specific sections of code.

Use adi_heap_debug_end in non-terminating applications to instruct the
heap debugging library to carry out the end checks for the heap debugging
in that application.

Do not call adi_heap_debug_end from within an ISR (or when thread
switching) as there will be no way for it to produce any output.

For more information on heap debugging, see Heap Debugging.

Error Conditions

Corrupt blocks or memory leaks may be reported via the console view (if
run-time diagnostics are enabled) or via the report (if .hpl file generation
is enabled).

CrossCore Embedded Studio 1.0 3-89
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <heap_debug.h>

void main_func()

{

// Start heap debugging

adi_heap_debug_enable(_HEAP_STDERR_DIAG);

// Application code

run_application();

// Check for leaks or corruption

adi_heap_debug_end();

}

See Also

adi_heap_debug_enable

Documented Library Functions

3-90 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

adi_heap_debug_flush

Flush the heap debugging output buffer

Synopsis

#include <heap_debug.h>
void adi_heap_debug_flush(void);

Description

The adi_heap_debug_flush function will flush any buffered data to the
.hpl file used by the Reporter Tool to generated the heap debugging
report.

 Only call adi_heap_debug_flush when it is safe to carry out I/O
operations. Calling adi_heap_debug_flush from within an
interrupt or an unscheduled region will result in adi_fatal_error
being called.

For more information on heap debugging, see Heap Debugging.

Error Conditions

adi_heap_debug_flush will call _adi_fatal_error if called when it is
unsafe to use I/O.

Example

#include <heap_debug.h>

void flush_hpl_buffer()

{

adi_heap_debug_flush();

}

CrossCore Embedded Studio 1.0 3-91
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

adi_fatal_error, adi_heap_debug_resume

Documented Library Functions

3-92 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

adi_heap_debug_pause

Temporarily disable the heap debugging

Synopsis

#include <heap_debug.h>
void adi_heap_debug_pause(void);

Description

The adi_heap_debug_pause function disables the heap debugging func-
tionality. When disabled, the heap debugging library has a minimal
performance overhead compared to the non-debug versions of the heap
debugging functions provided by the C/C++ run-time libraries. Pausing
heap debugging means that any heap operations, which happen between
pausing and re-enabling the heap debugging, will not be tracked, meaning
that erroneous behavior may not be detected and false errors regarding
unfreed blocks or unknown addresses may be reported.

Take care when using adi_heap_debug_pause in a threaded environment,
as the heap debugging will be disabled globally rather than within the
context of the current thread.

For more information on heap debugging, see Heap Debugging.

Error Conditions

None.

CrossCore Embedded Studio 1.0 3-93
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <heap_debug.h>

void a_performance_critical_function(void);

void performance_critical_fn_wrapper()

{

adi_heap_debug_pause();

a_performance_critical_function();

adi_heap_debug_resume();

}

See Also

adi_heap_debug_resume

Documented Library Functions

3-94 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

adi_heap_debug_reset_guard_region

Reset guard regions to default values

Synopsis

#include <heap_debug.h>
bool adi_heap_debug_reset_guard_region(void);

Description

The adi_heap_debug_reset_guard_region function resets the guard region
values to the default. The heaps will be checked for guard region corrup-
tion before all existing guard regions are replaced with the new values. If
corruption is detected, no guard regions will be changed and
adi_heap_debug_reset_guard_region will return false. The contents of
existing allocated blocks will not be changed, but any newly allocated
blocks will be pre-filled with the new allocated block pattern.

The default reset values are detailed in Table 3-40.

For more information on heap debugging, see Heap Debugging.

Error Conditions

adi_heap_debug_reset_guard_region will return false if no guard region
change was made due to the detection of corruption on one of the heaps.

Table 3-40. Reset Values for Heap Guard Regions

Region Value

Free block 0xBD

Allocated block 0xDD

Block content (not calloc) 0xED

CrossCore Embedded Studio 1.0 3-95
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <heap_debug.h>

#include <stdio.h>

void reset_guard_region()

{

if (!adi_heap_debug_reset_guard_region()) {

printf(“couldn’t reset guard regions\n”);

}

}

See Also

adi_heap_debug_set_guard_region

Documented Library Functions

3-96 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

adi_heap_debug_resume

Re-enable the heap debugging

Synopsis

#include <heap_debug.h>
void adi_heap_debug_resume(void);

Description

The adi_heap_debug_resume function enables the heap debugging. Any
allocations or de-allocations which occurred when the heap debugging was
disabled will not have been tracked by the heap debugging library, so false
errors regarding invalid addresses or memory leaks may be produced.

For more information on heap debugging, see Heap Debugging.

Error Conditions

None.

Example

#include <heap_debug.h>

void a_performance_critical_function(void);

void performance_critical_fn_wrapper()

{

adi_heap_debug_pause();

a_performance_critical_function();

adi_heap_debug_resume();

}

CrossCore Embedded Studio 1.0 3-97
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

adi_heap_debug_pause

Documented Library Functions

3-98 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

adi_heap_debug_set_buffer

Configure a buffer to be used by the heap debugging

Synopsis

#include <heap_debug.h>
bool adi_heap_debug_set_buffer(void *ptr, size_t size,

size_t threshold);

Description

The adi_heap_debug_set_buffer function instructs the heap debugging
library to use the specified buffer for the writing of the .hpl file used by
the Reporter Tool to generate a heap debugging report. The buffer is of
size addressable units starting at address ptr, with a flush threshold of
threshold addressable units. The minimum size of the buffer in address-
able units can be determined using the macro _ADI_HEAP_MIN_BUFFER
(defined in heap_debug.h) and represents the memory required to store
two entries of the heap debugging buffer along with associated call stacks.
Changing the call stack depth after setting a buffer may alter the number
of entries which can be held within the buffer.

Buffering can be disabled by calling adi_heap_debug_set_buffer with a
null pointer as the first parameter.

Using a buffer will reduce the number of I/O operations to write the .hpl
file to the host which should in turn result in a significant reduction in
execution time when running applications which make frequent use of the
heap.

If the buffer is full or no buffer is specified, and heap activity occurs where
I/O is not permitted, that data will be lost.

The buffer will be flushed automatically when it is filled beyond a capacity
threshold, specified by the threshold parameter, and it is safe to flush.
Flushing can be triggered manually by calling adi_heap_debug_flush.

CrossCore Embedded Studio 1.0 3-99
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

For more information on heap debugging, see Heap Debugging.

 Only call adi_heap_debug_set_buffer when it is safe to carry out
I/O operations. Calling adi_heap_debug_set_buffer from within
an interrupt or an unscheduled region will result in adi_fatal_error
being called.

Error Conditions

adi_heap_debug_set_buffer will return false if the buffer passed is not
valid or big enough to be used by the heap debugging library.

Example

#include <heap_debug.h>

char heapbuffer[1024];

bool set_buffer(void)

{

if (sizeof(heapbuffer) < _ADI_HEAP_MIN_BUFFER) {

return false;

}

return adi_heap_debug_set_buffer(&heapbuffer,

sizeof(heapbuffer),

sizeof(heapbuffer)/2);

}

Documented Library Functions

3-100 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

adi_heap_debug_set_call_stack_depth

Change the depth of the call stack recorded by the heap debugging library

Synopsis

#include <heap_debug.h>
bool adi_heap_debug_set_call_stack_depth(unsigned int depth);

Description

The adi_heap_debug_set_call_stack_depth function sets the maximum
depth of the call stack recorded by the heap debugging library for use in
the heap reports and diagnostic messages. The memory for the call stack is
allocated from the system heap and requires eight bytes per call stack
element. The default value is five stack elements deep.

adi_heap_debug_set_call_stack_depth will return true if it is able to
change the depth; otherwise, false will be returned and the depth will
remain unchanged.

For more information on heap debugging, see Heap Debugging.

Error Conditions

adi_heap_debug_set_call_stack_depth will return false if it is unable to
allocate sufficient memory for the new call stack.

CrossCore Embedded Studio 1.0 3-101
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <heap_debug.h>

#include <stdio.h>

bool set_call_stack_depth(unsigned int size)

{

if (!adi_heap_debug_set_call_stack_depth(size)) {

printf(“unable to set heap debug call stack “

“to %d elements\n”, size);

return false;

}

return true;

}

Documented Library Functions

3-102 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

adi_heap_debug_set_error

Change error types to be regarded as terminating errors

Synopsis

#include <heap_debug.h>
void adi_heap_debug_set_error(unsigned long flag);

Description

The adi_heap_debug_set_error function changes the severity of the
specified types of heap error to a terminating run-time error. These types
are represented as a bit-field using macros defined in heap_debug.h.

Terminating run-time errors will print a diagnostic message to stderr
before calling _adi_fatal_error.

 Run-time errors will need to be enabled for these changes to have
any effect.

For more information on heap debugging, see Heap Debugging.

Error Conditions

None.

Example

#include <heap_debug.h>

void set_errors()

{

// Enable run-time diagnostics

adi_heap_debug_enable(_HEAP_STDERR_DIAG);

// Regard frees from the wrong heap or of null pointers

CrossCore Embedded Studio 1.0 3-103
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

// as terminating run-time errors

adi_heap_debug_set_error(_HEAP_ERROR_WRONG_HEAP |

_HEAP_ERROR_NULL_PTR);

}

See Also

adi_heap_debug_enable, adi_heap_debug_set_ignore,
adi_heap_debug_set_warning

Documented Library Functions

3-104 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

adi_heap_debug_set_guard_region

Change the bit patterns written to guard regions around memory blocks

Synopsis

#include <heap_debug.h>
bool adi_heap_debug_set_guard_region(unsigned char free,

unsigned char allocated,

unsigned char content);

Description

The adi_heap_debug_set_guard_region function changes the bit pattern
written to the guard regions around memory blocks used by the heap
debugging library to check if overwriting has occurred. The heaps will be
checked for guard region corruption before changing the guard regions.
If any guard region is corrupt, adi_heap_debug_set_guard_region will fail
and the guard regions will not be changed. The contents of existing
allocations will not be changed, but any new allocations will be pre-filled
with the pattern specified by the allocated parameter.

The value of free will be written to any blocks which are free, as well as
the preceding guard region. Corruption of these blocks indicates that a
pointer that has been written to after it has been freed.

The value of allocated will be written to the guard regions on either side
of the allocated block. Corruption of these blocks indicates that overflow
or underflow of that allocation has occurred.

The value of content will be written to the allocated memory block, with
the exception of memory allocated by calloc, which will be zero-filled.
Seeing this value in live data indicates that memory allocated from the
heap is used before being initialized.

The current values for the guard regions for free blocks, allocated blocks,
and the pattern used for allocated block contents are stored in the “C”

CrossCore Embedded Studio 1.0 3-105
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

char variables adi_heap_guard_free, adi_heap_guard_alloc, and
adi_heap_guard_content, respectively. These variables can be defined at
build-time but should not be written to directly at runtime, or false
corruption errors may be reported.

The guard region values can be reset to the Analog Devices default values
by calling adi_heap_debug_reset_guard_region.

For more information on heap debugging, see Heap Debugging.

Error Conditions

adi_heap_debug_set_guard_region will return false if it was unable to
change the guard regions due the presence of block corruption on one of
the heaps.

Example

#include <heap_debug.h>

#include <stdio.h>

bool set_guard_regions()

{

if (!adi_heap_debug_set_guard_region(0x11, 0x22, 0x33)) {

printf(“failed to change guard regions\n”);

return false;

}

return true;

}

See Also

adi_heap_debug_reset_guard_region

Documented Library Functions

3-106 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

adi_heap_debug_set_ignore

Change error types to be ignored

Synopsis

#include <heap_debug.h>
void adi_heap_debug_set_ignore(unsigned long flag);

Description

The adi_heap_debug_set_ignore function configures an error class as
ignored. These types are represented as a bit-field using macros defined in
heap_debug.h.

Ignored errors will produce no run-time diagnostics, but will appear in the
heap debugging report (if generated).

 Run-time errors must be enabled for these changes to have any
effect.

For more information on heap debugging, see Heap Debugging.

Error Conditions

None.

Example

#include <heap_debug.h>

void ignore_unwanted_errors()

{

// Enable run-time diagnostics

adi_heap_debug_enable(_HEAP_STDERR_DIAG);

CrossCore Embedded Studio 1.0 3-107
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

// Don’t produce run-time diagnostics about frees

// from the wrong heap or heap operations used from

// within an interrupt

adi_heap_debug_set_ignore(_HEAP_ERROR_WRONG_HEAP |

_HEAP_ERROR_IN_ISR);

}

See Also

adi_heap_debug_enable, adi_heap_debug_set_error,
adi_heap_debug_set_warning

Documented Library Functions

3-108 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

adi_heap_debug_set_warning

Change error types to be regarded as run-time warning

Synopsis

#include <heap_debug.h>
void adi_heap_debug_set_warning(unsigned long flag);

Description

The adi_heap_debug_set_warning function configures an error class to be
regarded as a warning. These types are represented as a bit-field using
macros defined in heap_debug.h.

A warning diagnostic will be produced at runtime if an error of that class
is detected, but the application will not terminate.

Any detected errors will be recorded in the heap debugging report
(if generated) as normal.

If the heap debugging library is unable to write a warning to stderr due to
being in an interrupt or an unscheduled region, the warning will be
treated as an error and _adi_fatal_error will be called. For this reason,
setting _HEAP_ERROR_IN_ISR (heap usage within interrupt) to be a warning
will have no effect.

 Run-time errors must be enabled for these changes to have any
effect.

For more information on heap debugging, see Heap Debugging.

Error Conditions

None.

CrossCore Embedded Studio 1.0 3-109
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <heap_debug.h>

void set_warnings()

{

// Enable run-time diagnostics

adi_heap_debug_enable(_HEAP_STDERR_DIAG);

// Produce warnings about de-allocating and reallocating

// pointers not returned by an allocation function and

// about de-allocations not using functions which correspond

// to an allocation, but don’t terminate the application

// on detection

adi_heap_debug_set_warning(_HEAP_ERROR_INVALID_ADDRESS |

_HEAP_ERROR_FUNCTION_MISMATCH);

}

See Also

adi_heap_debug_enable, adi_heap_debug_set_error,
adi_heap_debug_set_ignore

Documented Library Functions

3-110 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

adi_obtain_mc_slot, adi_free_mc_slot, adi_set_mc_value,
adi_get_mc_value

Obtain and manage storage for multi-core private data in shared functions

Synopsis

#include <mc_data.h>

int adi_obtain_mc_slot(int *slotID, void (fn)(void *));

int adi_free_mc_slot(int slotID);

int adi_set_mc_value(int slotID, void *valptr);

void *adi_get_mc_value(int slotID);

Description

These functions provide a framework for shared functions that may be
called from any core in a multi-core environment, yet need to maintain
data values that are private to the calling core. An example is errno—in a
multi-core environment, each core needs to maintain its own version of
the errno value, but the correct version of errno must be updated when a
shared standard library function is called.

The framework operates by maintaining a set of “slots”, each slot corre-
sponds to a data object that must be core-local. The slot holds a pointer
for each core, which can be set to point to the core’s private version of the
data object.

CrossCore Embedded Studio 1.0 3-111
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

The process is as follows:

1. If this is the first time any core has needed the private data, allocate
a slot.

2. If this is the first time this core has needed the private data, allocate
storage for the data and record it in the slot. Otherwise, retrieve the
location of the data’s storage from the slot.

3. Access the data.

The adi_obtain_mc_slot function is called to allocate a slot, when no core
has previously needed to access the data. slotID must be a pointer to a
global variable, shared by all the cores, which is initialized to the value
adi_mc_unallocated. The fn parameter must be NULL.

If the adi_obtain_mc_slot function can allocate a slot for the data object,
it will return the slot’s identifier, via the slotID pointer, and will return a
non-zero value. If there are no more slots remaining, the function returns
a zero value.

The adi_free_mc_slot function releases the slot indicated by slotID,
which must have been previously allocated by the adi_obtain_mc_slot
function. If slotID indicate a valid slot, the slot is freed and the function
returns a non-zero value. If slotID does not indicate a currently-valid slot,
the function returns zero.

The adi_set_mc_value function records the valptr pointer in the slot
indicated by slotID, as the location of the private data object for the call-
ing core. The function returns 1 if slotID refers to a currently-valid slot,
otherwise the function returns 0.

The adi_get_mc_value function returns a pointer previously stored in the
slot indicated by slotID, for the calling core. The pointer must have been
previously stored by the adi_set_mc_value function, by the current core,
otherwise the function returns NULL. The function also returns NULL if
slotID does not indicate a currently-valid slot.

Documented Library Functions

3-112 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Error Conditions

The adi_obtain_mc_slot function returns a zero value if a new slot cannot
be allocated.

The adi_free_mc_slot and adi_set_mc_value functions both return a zero
value if slotID does not refer to a currently-valid slot.

The adi_get_mc_value function returns NULL if slotID does not refer to
a currently-valid slot, or if the calling core has not yet stored a pointer in
the slot via adi_set_mc_value.

Example

/* error handling omitted */

#include <mc_data.h>

#include <ccblkfn.h>

#include <stdlib.h>

static int slotid = adi_mc_unallocated;

static testset_t slotlock = 0;

void set_error(int val)

{

int *storage;

adi_acquire_lock(&slotlock);

if (slotid == adi_mc_unallocated) {

// first core here

adi_obtain_mc_slot(&slotid, NULL);

}

adi_release_lock(&slotlock);

storage = adi_get_mc_value(slotid);

if (storage == NULL) {

// first time this core is here

storage = malloc(sizeof(int));

adi_set_mc_value(slotid, storage);

CrossCore Embedded Studio 1.0 3-113
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

}

*storage = val;

}

 The multi-core private storage routines do not disable interrupts;
that is left at the caller’s discretion.

Documented Library Functions

3-114 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

adi_verify_all_heaps

Verify that no heaps contain corrupt blocks

Synopsis

#include <heap_debug.h>
bool adi_verify_all_heaps(void);

Description

The adi_verify_all_heaps function checks that each heap tracked by the
heap debugging library contains no guard regions. If a corrupt guard
region is detected on any heaps, adi_verify_all_heaps will return false;
otherwise, true will be returned.

 adi_verify_all_heaps relies on the heap usage being tracked by
the heap debugging library. Any heap activity which is carried out
when heap usage is not being tracked (when heap debugging is
paused or disabled) will not be checked for corruption.

For more information on heap debugging, see Heap Debugging.

Error Conditions

adi_verify_all_heaps will return false if any corrupt guard regions were
detected on any heap.

Example

#include <heap_debug.h>

#include <stdio.h>

void check_heaps()

{

if(!adi_verify_all_heaps())

{

CrossCore Embedded Studio 1.0 3-115
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

printf(“heaps contain corruption\n”);

}

else

{

printf(“heaps are ok\n”);

}

}

See Also

adi_verify_heap

Documented Library Functions

3-116 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

adi_verify_heap

Verify that a heap contains no corrupt blocks

Synopsis

#include <heap_debug.h>
bool adi_verify_heap(int heapindex);

Description

The adi_verify_heap function checks that the heap specified with the
index heapindex has no corrupt guard regions. If any guard region
corruption is detected on that heap then adi_verify_heap will return
false, otherwise true will be returned.

The heap index of static heaps can be identified by using heap_malloc.
The heap index of a dynamically defined heap is the value returned from
heap_install.

 adi_verify_heap relies on the heap usage being tracked by the
heap debugging library, any heap activity which is carried out when
heap usage is not being tracked (when heap debugging is paused or
disabled) will not be checked for corruption.

For more information on heap debugging, see Heap Debugging.

Error Conditions

adi_verify_heap will return false if any corrupt guard regions were
detected on the specified heap.

CrossCore Embedded Studio 1.0 3-117
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <heap_debug.h>

#include <stdio.h>

void check_heap(int heapindex)

{

if(!adi_verify_heap(heapindex))

{

printf(“heap %d contain corruption\n”, heapindex);

}

else

{

printf(“heap %d is ok\n”, heapindex);

}

}

See Also

adi_verify_all_heaps

Documented Library Functions

3-118 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

asctime

Convert broken-down time into a string

Synopsis

#include <time.h>
char *asctime(const struct tm *t);

Description

The asctime function converts a broken-down time, as generated by the
functions gmtime and localtime, into an ASCII string that will contain
the date and time in the form

DDD MMM dd hh:mm:ss YYYY\n

where:

• DDD represents the day of the week (that is, Mon, Tue, Wed, etc.)

• MMM is the month and will be of the form Jan, Feb, Mar, etc.

• dd is the day of the month, from 1 to 31

• hh is the number of hours after midnight, from 0 to 23

• mm is the minute of the day, from 0 to 59

• ss is the second of the day, from 0 to 61 (to allow for leap seconds)

• YYYY represents the year

The function returns a pointer to the ASCII string, which may be over-
written by a subsequent call to this function. Also note that the function
ctime returns a string that is identical to

asctime(localtime(&t))

CrossCore Embedded Studio 1.0 3-119
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Error Conditions

None.

Example

#include <time.h>

#include <stdio.h>

struct tm tm_date;

printf("The date is %s",asctime(&tm_date));

See Also

ctime, gmtime, localtime

Documented Library Functions

3-120 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

asin

Arc sine

Synopsis

#include <math.h>

float asinf (float x);

double asin (double x);

long double asind (long double x);

fract16 asin_fr16(fract16 x);

fract32 asin_fr32(fract32 x);

_Fract asin_fx16(_Fract x);

long _Fract asin_fx32(long _Fract x);

Description

The arc sine functions return the arc sine of the argument x. Both the
argument x and the function results are in radians.

The input for the functions asin, asinf, and asind must be in the range
[-1, 1], and the functions return a result that will be the range [-/2, /2].

The asin_fr16, asin_fr32, asin_fx16 and asin_fx32 functions are
defined for fractional input values in the range [-0.9, 0.9]. The outputs
from the functions are in the range [asin(-0.9)*2/, asin(0.9)*2/].

Error Conditions

The arc sine functions return a zero if the input is not in the defined
range.

CrossCore Embedded Studio 1.0 3-121
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <math.h>

double y;

y = asin(1.0); /* y = PI/2 */

See Also

sin

Documented Library Functions

3-122 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

atan

Arc tangent

Synopsis

#include <math.h>

float atanf (float x);

double atan (double x);

long double atand (long double x);

fract16 atan_fr16 (fract16 x);

fract32 atan_fr32 (fract32 x);

_Fract atan_fx16 (_Fract x);

long _Fract atan_fx32 (long _Fract x);

Description

The arc tangent functions return the arc tangent of the argument. Both
the argument x and the function results are in radians.

The atanf, atan, and atand functions return a result that is in the range
[-/2, /2].

The atan_fr16, atan_fr32, atan_fx16 and atan_fx32 functions are
defined for fractional input values in the range [-1.0, 1.0). The outputs
from the functions are in the range [-/4, /4].

Error Conditions

None.

CrossCore Embedded Studio 1.0 3-123
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <math.h>

double y;

y = atan(0.0); /* y = 0.0 */

See Also

atan2, tan

Documented Library Functions

3-124 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

atan2

Arc tangent of quotient

Synopsis

#include <math.h>

float atan2f (float y, float x);

double atan2 (double y, double x);

long double atan2d (long double y, long double x);

fract16 atan2_fr16 (fract16 y, fract16 x);

fract32 atan2_fr32 (fract32 y, fract32 x);

_Fract atan2_fx16 (_Fract y, _Fract x);

long _Fract atan2_fx32 (long _Fract y, long _Fract x);

Description

The atan2 functions compute the arc tangent of the input value y divided
by input value x. The output is in radians.

The atan2f, atan2, and atan2d functions return a result that is in the
range [-,].

The atan2_fr16, atan2_fr32, atan2_fx16 and atan2_fx32 functions are
defined for fractional input values in the range [-1.0, 1.0). The outputs
from these function are scaled by and are in the range [-1.0, 1.0).

Error Conditions

The atan2 functions return a zero if x=0 and y=0.

CrossCore Embedded Studio 1.0 3-125
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <math.h>

double a,d;

float b,c;

a = atan2 (0.0, 0.0); /* the error condition: a = 0.0 */

b = atan2f (1.0, 1.0); /* b = /4 */

c = atan2f (1.0, 0.0); /* c = /2 */
d = atan2 (-1.0, 0.0); /* d = -/2 */

See Also

atan, tan

Documented Library Functions

3-126 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

atexit

Register a function to call at program termination

Synopsis

#include <stdlib.h>
int atexit(void (*func)(void));

Description

The atexit function registers a function to be called at program termina-
tion. Functions are called once for each time they are registered, in the
reverse order of registration. Up to 32 functions can be registered using
the atexit function.

Error Conditions

The atexit function returns a non-zero value if the function cannot be
registered.

Example

#include <stdlib.h>

extern void goodbye(void);

if (atexit(goodbye))

exit(1);

See Also

abort, exit

CrossCore Embedded Studio 1.0 3-127
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

atof

Convert string to a double

Synopsis

#include <stdlib.h>
double atof(const char *nptr);

Description

The atof function converts a character string into a floating-point value of
type double, and returns its value. The character string is pointed to by
the argument nptr and may contain any number of leading whitespace
characters (as determined by the function isspace) followed by a float-
ing-point number. The floating-point number may either be a decimal
floating-point number or a hexadecimal floating-point number.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and
digits are one or more decimal digits. The sequence of digits may contain
a decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (–) followed by the hexadecimal prefix 0x or 0X. This character

Documented Library Functions

3-128 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.

Error Conditions

The atof function returns a zero if no conversion is made. If the correct
value results in an overflow, a positive or negative (as appropriate)
HUGE_VAL is returned. If the correct value results in an underflow, 0.0 is
returned. The ERANGE value is stored in errno in the case of either an over-
flow or underflow.

Notes

The function reference atof (pdata) is functionally equivalent to:

strtod (pdata, (char *) NULL);

and therefore, if the function returns zero, it is not possible to determine
whether the character string contained a (valid) representation of 0.0 or
some invalid numerical string.

Example

#include <stdlib.h>

double x;

x = atof("5.5"); /* x == 5.5 */

CrossCore Embedded Studio 1.0 3-129
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

atoi, atol, strtod

Documented Library Functions

3-130 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

atoi

Convert string to integer

Synopsis

#include <stdlib.h>
int atoi (const char *nptr);

Description

The atoi function converts a character string to an integer value. The char-
acter string to be converted is pointed to by the input pointer, nptr. The
function clears any leading characters for which isspace would return
true. Conversion begins at the first digit (with an optional preceding sign)
and terminates at the first non-digit.

Error Conditions

The atoi function returns a zero if no conversion is made.

Example

#include <stdlib.h>

int i;

i = atoi("5"); /* i == 5 */

See Also

atof, atol, strtod, strtol, strtoul

CrossCore Embedded Studio 1.0 3-131
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

atol

Convert string to long integer

Synopsis

#include <stdlib.h>
long atol (const char *nptr);

Description

The atol function converts a character string to a long integer value. The
character string to be converted is pointed to by the input pointer, nptr.
The function clears any leading characters for which isspace would return
true. Conversion begins at the first digit (with an optional preceding sign)
and terminates at the first non-digit.

 There is no way to determine if a zero is a valid result or an indica-
tor of an invalid string.

Error Conditions

The atol function returns a zero if no conversion is made.

Example

#include <stdlib.h>

long int i;

i = atol("5"); /* i == 5 */

See Also

atof, strtod, strtol, strtoul

Documented Library Functions

3-132 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

atoll

Convert string to long long integer

Synopsis

#include <stdlib.h>
long long atoll (const char *nptr);

Description

The atoll function converts a character string to a long long integer value.
The character string to be converted is pointed to by the input pointer,
nptr. The function clears any leading characters for which isspace would
return true. Conversion begins at the first digit (with an optional preced-
ing sign) and terminates at the first non-digit.

 There is no way to determine whether a zero is a valid result or an
indicator of an invalid string.

Error Conditions

The atoll function returns a zero if no conversion is made.

Example

#include <stdlib.h>

long long int i;

i = atoll("5"); /* i == 5 */

See Also

strtoll

CrossCore Embedded Studio 1.0 3-133
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

bitsfx

Bitwise fixed-point to integer conversion

Synopsis

#include <stdfix.h>

int_hr_t bitshr(short fract f);

int_r_t bitsr(fract f);

int_lr_t bitslr(long fract f);

uint_uhr_t bitsuhr(unsigned short fract f);

uint_ur_t bitsur(unsigned fract f);

uint_ulr_t bitsulr(unsigned long fract f);

int_hk_t bitshk(short accum a);

int_k_t bitsk(accum a);

int_lk_t bitslk(long accum a);

uint_uhk_t bitsuhk(unsigned short accum a);

uint_uk_t bitsuk(unsigned accum a);

uint_ulk_t bitsulk(unsigned long accum a);

Description

Given a fixed-point operand, the bitsfx family of functions return the
fixed-point value multiplied by 2F, where F is the number of fractional
bits in the fixed-point type. This is equivalent to the bit-pattern of the
fixed-point value held in an integer type.

Error Conditions

None.

Documented Library Functions

3-134 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <stdfix.h>

int_k_t k;

uint_ulr_t ulr;

k = bitsk(-12.5k); /* k == 0xfffffff9c0000000 */

ulr = bitsulr(0.125ulr); /* ulr == 0x20000000 */

See Also

fxbits

CrossCore Embedded Studio 1.0 3-135
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

bsearch

Perform binary search in a sorted array

Synopsis

#include <stdlib.h>

void *bsearch (const void *key, const void *base,

size_t nelem, size_t size,

int (*compare)(const void *, const void *));

Description

The bsearch function searches the array base for an array element that
matches the element key. The size of each array element is specified by
size, and the array is defined to have nelem array elements.

The bsearch function will call the function compare with two arguments;
the first argument will point to the array element key and the second argu-
ment will point to an element of the array. The compare function should
return an integer that is either zero, or less than zero, or greater than zero,
depending upon whether the array element key is equal to, less than, or
greater than the array element pointed to by the second argument.

If the comparison function returns a zero, then bsearch will return a
pointer to the matching array element; if there is more than one matching
elements then it is not defined which element is returned. If no match is
found in the array, bsearch will return NULL.

The array to be searched would normally be sorted according to the crite-
ria used by the comparison function (the qsort function may be used to
first sort the array if necessary).

Documented Library Functions

3-136 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Error Conditions

The bsearch function returns a null pointer when the key is not found in
the array.

Example

#include <stdlib.h>

#include <string.h>

#define SIZE 3

struct record_t {
char *name;
char *street;
char *city;

};

struct record_t data_base[SIZE] = {
{"Baby Doe" , "Central Park" , "New York"},
{"Jane Doe" , "Regents Park" , "London" },
{"John Doe" , "Queens Park" , "Sydney" }

};

static int
compare_function (const void *arg1, const void *arg2)
{
 const struct record_t *pkey = arg1;
 const struct record_t *pbase = arg2;

 return strcmp (pkey->name,pbase->name);
}

struct record_t key = {"Baby Doe" , "" , ""};
struct record_t *search_result;

search_result = bsearch (&key,
data_base,
SIZE,
sizeof(struct record_t),
compare_function);

CrossCore Embedded Studio 1.0 3-137
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

qsort

Documented Library Functions

3-138 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

calloc

Allocate and initialize memory

Synopsis

#include <stdlib.h>
void *calloc (size_t nmemb, size_t size);

Description

The calloc function dynamically allocates a range of memory and initial-
izes all locations to zero. The number of elements (the first argument)
multiplied by the size of each element (the second argument) is the total
memory allocated. The memory may be deallocated with the free func-
tion. The memory allocated is aligned to a 4-byte boundary.

Error Conditions

The calloc function returns a null pointer if unable to allocate the
requested memory.

Example

#include <stdlib.h>

int *ptr;

ptr = (int *) calloc(10, sizeof(int));

/* ptr points to a zeroed array of length 10 */

See Also

free, malloc, realloc

CrossCore Embedded Studio 1.0 3-139
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

ceil

Ceiling

Synopsis

#include <math.h>

float ceilf (float x);

double ceil (double x);

long double ceild (long double x);

Description

The ceiling functions return the smallest integral value that is not less than
the argument x.

Error Conditions

None.

Example

#include <math.h>

double y;

float x;

y = ceil (1.05); /* y = 2.0 */

x = ceilf (-1.05); /* y = -1.0 */

See Also

floor

Documented Library Functions

3-140 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

clearerr

Clear file or stream error indicator

Synopsis

#include <stdio.h>
void clearerr(FILE *stream);

Description

The clearerr function clears the error and end-of-file (EOF) indicators for
the particular stream pointed to by stream.

The stream error indicators record whether any read or write errors have
occurred on the associated stream. The EOF indicator records when there is
no more data in the file.

Error Conditions

None.

Example

#include <stdio.h>

FILE *routine(char *filename)

{

FILE *fp;

fp = fopen(filename, "r");

/* Some operations using the file */

/* now clear the error indicators for the stream */

clearerr(fp);

return fp;

}

CrossCore Embedded Studio 1.0 3-141
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

feof, ferror

Documented Library Functions

3-142 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

clock

Processor time

Synopsis

#include <time.h>
clock_t clock(void);

Description

The clock function returns the number of processor cycles that have
elapsed since an arbitrary starting point. The function returns the value
(clock_t) -1, if the processor time is not available or if it cannot be rep-
resented. The result returned by the function may be used to calculate the
processor time in seconds by dividing it by the macro CLOCKS_PER_SEC.
For more information, see time.h. An alternative method of measuring the
performance of an application is described in Measuring Cycle Counts.

Error Conditions

None.

Example

#include <time.h>

time_t start_time,stop_time;

double time_used;

start_time = clock();

compute();

stop_time = clock();

time_used = ((double) (stop_time - start_time)) / CLOCKS_PER_SEC;

CrossCore Embedded Studio 1.0 3-143
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

No related functions.

Documented Library Functions

3-144 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

cos

Cosine

Synopsis

#include <math.h>

float cosf (float x);

double cos (double x);

long double cosd (long double x);

fract16 cos_fr16 (fract16 x);

_Fract cos_fx16 (_Fract x);

fract32 cos_fr32 (fract32 x);

long _Fract cos_fx32 (long _Fract x);

Description

The cosine functions return the cosine of the argument. Both the argu-
ment x and the results returned by the functions are in radians.

The cos_fr16, cos_fr32, cos_fx16 and cos_fx32 functions input a frac-
tional value in the range [-1.0, 1.0) corresponding to [-/2, /2]. The
domain represents half a cycle which can be used to derive a full cycle if
required (see Notes below). The result, in radians, is in the range [-1.0,
1.0).

The domain of cosf is [-102940.0, 102940.0], and the domain for cosd is
[-843314852.0, 843314852.0]. The result returned by the functions cos,
cosf, and cosd is in the range [-1, 1]. The functions return 0.0 if the input
argument x is outside the respective domains.

Error Conditions

None.

CrossCore Embedded Studio 1.0 3-145
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <math.h>

double y;

y = cos(3.14159); /* y = -1.0 */

Notes

The domain of the cos_fr16, cos_fr32, cos_fx16 and cos_fx32 functions
is restricted to the range [-1, 1) which corresponds to half a period from
–(/2) to /2. It is possible to derive the full period using the following
properties of the function.

cosine [0, /2] = -cosine [, 3/2]

cosine [-/2, 0] = -cosine [/2,]

The function below uses these properties to calculate the full period (from
0 to 2) of the cosine function using an input domain of [0, 0x7fff].

#include <math.h>

fract16 cos2pi_fr16 (fract16 x)

{

if (x < 0x2000) { /* <0.25 */

/* first quadrant [0../2): */

/* cos_fr16([0x0..0x7fff]) = [0..0x7fff) */

return cos_fr16(x * 4);

} else if (x < 0x6000) { /* < 0.75 */

/* if (x < 0x4000) */

/* second quadrant [/2..): */

/* -cos_fr16([0x8000..0x0)) = [0x7fff..0) */

/* */

/* if (x < 0x6000) */

/* third quadrant [..3/2): */

/* -cos_fr16([0x0..0x7fff]) = [0..0x8000) */

Documented Library Functions

3-146 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

return -cos_fr16((0xc000 + x) * 4);

} else {

/* fourth quadrant [3/2..): */

/* cos_fr16([0x8000..0x0)) = [0x8000..0) */

return cos_fr16((0x8000 + x) * 4);

}

}

See Also

acos, sin

CrossCore Embedded Studio 1.0 3-147
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

cosh

Hyperbolic cosine

Synopsis

#include <math.h>

float coshf (float x);

double cosh (double x);

long double coshd (long double x);

Description

The hyperbolic cosine functions return the hyperbolic cosine of their
argument.

Error Conditions

The domain of coshf is [-87.33, 88.72], and the domain for coshd is
[-710.44, 710.44]. The functions return HUGE_VAL if the input argument x
is outside the respective domains.

Example

#include <math.h>

double x, y;

float v, w;

y = cosh (x);

v = coshf (w);

See Also

sinh

Documented Library Functions

3-148 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

countlsfx

Count leading sign or zero bits

Synopsis

#include <stdfix.h>

int countlshr(short fract f);

int countlsr(fract f);

int countlslr(long fract f);

int countlsuhr(unsigned short fract f);

int countlsur(unsigned fract f);

int countlsulr(unsigned long fract f);

int countlshk(short accum a);

int countlsk(accum a);

int countlslk(long accum a);

int countlsuhk(unsigned short accum a);

int countlsuk(unsigned accum a);

int countlsulk(unsigned long accum a);

Description

Given a fixed-point operand x, the countlsfx family of functions return the
largest value of n for which x << n does not overflow. For a zero input
value, the function will return the number of bits in the fixed-point type.
In addition to the individually-named functions for each fixed-point type,
a type-generic macro countlsfx is defined for use in C99 mode. This may
be used with any of the fixed-point types.

Error Conditions

None.

CrossCore Embedded Studio 1.0 3-149
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <stdfix.h>

int n;

n = countlsk(-12.5k); /* n == 4 */

n = countlsfx(-12.5k); /* n == 4 */

n = countlsulr(0.125ulr); /* n == 2 */

n = countlsfx(0.125ulr); /* n == 2 */

See Also

No related functions.

Documented Library Functions

3-150 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

ctime

Convert calendar time into a string

Synopsis

#include <time.h>
char *ctime(const time_t *t);

Description

The ctime function converts a calendar time, pointed to by the argument
t, into a string that represents the local date and time. The form of the
string is the same as that generated by asctime, and so a call to ctime is
equivalent to:

asctime(localtime(&t))

A pointer to the string is returned by ctime, and it may be overwritten by
a subsequent call to the function.

Error Conditions

None.

Example

#include <time.h>

#include <stdio.h>

time_t cal_time;

if (cal_time != (time_t)-1)

printf("Date and Time is %s",ctime(&cal_time));

CrossCore Embedded Studio 1.0 3-151
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

asctime, gmtime, localtime, time

Documented Library Functions

3-152 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

difftime

Difference between two calendar times

Synopsis

#include <time.h>
double difftime(time_t t1, time_t t0);

Description

The difftime function returns the difference in seconds between two cal-
endar times, expressed as a double. By default, the double data type
represents a 32-bit, single precision, floating-point, value. This form is
normally insufficient to preserve all of the bits associated with the differ-
ence between two calendar times, particularly if the difference represents
more than 97 days. It is recommended therefore that any function that
calls difftime is compiled with the -double-size-64 switch.

Error Conditions

None.

Example

#include <time.h>

#include <stdio.h>

#define NA ((time_t)(-1))

time_t cal_time1;

time_t cal_time2;

double time_diff;

CrossCore Embedded Studio 1.0 3-153
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

if ((cal_time1 == NA) || (cal_time2 == NA))

printf("calendar time difference is not available\n");

else

time_diff = difftime(cal_time2,cal_time1);

See Also

time

Documented Library Functions

3-154 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

div

Division

Synopsis

#include <stdlib.h>
div_t div (int numer, int denom);

Description

The div function divides numer by denom, both of type int, and returns a
structure of type div_t. The type div_t is defined as:

typedef struct {

int quot;

int rem;

} div_t;

where quot is the quotient of the division and rem is the remainder, such
that if result is of type div_t, then

result.quot * denom + result.rem == numer

Error Conditions

If denom is zero, the behavior of the div function is undefined.

Example

#include <stdlib.h>

div_t result;

result = div(5, 2); /* result.quot=2, result.rem=1 */

See Also

ldiv, divifx, fmod, fxdivi, modf

CrossCore Embedded Studio 1.0 3-155
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

divifx

Division of integer by fixed-point to give integer result

Synopsis

#include <stdfix.h>

int divir(int numer, fract denom);

long int divilr(long int numer, long fract denom);

unsigned int diviur(unsigned int numer, unsigned fract denom);

unsigned long int diviulr(unsigned long int numer,

unsigned long fract denom);

int divik(int numer, accum denom);

long int divilk(long int numer, long accum denom);

unsigned int diviuk(unsigned int numer, unsigned accum denom);

unsigned long int diviulk(unsigned long int numer,

unsigned long accum denom);

Description

Given an integer numerator and a fixed-point denominator, the divifx
family of functions computes the quotient and returns the closest integer
value to the result.

Error Conditions

The divifx family of functions have undefined behavior if the denominator
is zero.

Documented Library Functions

3-156 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <stdfix.h>

int quo;

unsigned long int ulquo;

quo = divik(125, -12.5k); /* quo == -10 */

ulquo = diviulr(125, 0.125ulr); /* ulquo == 1000 */

See Also

fxdivi, idivfx

CrossCore Embedded Studio 1.0 3-157
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

dyn_AddHeap

Specify a new region of target memory which may be used for relocated,
dynamically-loaded code and data

Synopsis

#include <libdyn.h>

DYN_RESULT dyn_AddHeap(dyn_mem_image *image,

dyn_heap *heap);

Description

The dyn_AddHeap function declares a new region of target memory that
may be used to relocate the code or data in dynamically-loadable module
(DLM) image, as previously validated by dyn_ValidateImage. The heap
parameter indicates the width and alignment of the memory, as well as the
start and size.

The heap parameter must point to a dyn_heap structure that has been ini-
tialized by dyn_heap_init.

Error Conditions

The dyn_AddHeap function returns a status value indicating success, or
the reason for failure, as follows.

Returned Value Reason

DYN_NO_ERROR Success. The heap was added to the image’s list of regions
from which to allocate target memory.

DYN_BAD_PTR Either image or heap was NULL.

DYN_BAD_WIDTH A heap has already been specified which has the same width
as the heap being added.

Documented Library Functions

3-158 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <libdyn.h>

DYN_RESULT data_heap(dyn_mem_image *image) {,

static int myspace[50];

static dyn_heap h[1];

dyn_heap_init(h, myspace, sizeof(myspace), 4, 2); /*

error-checking omitted */

return dyn_AddHeap(image, h);

}

See Also

dyn_ValidateImage, dyn_heap_init, dyn_SetSectionAddr,
dyn_FreeSectionMem, dyn_AllocSectionMemHeap, malloc

CrossCore Embedded Studio 1.0 3-159
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

dyn_alloc

Allocate space from a target heap

Synopsis

#include <libdyn.h>

DYN_RESULT dyn_alloc(dyn_heap *heap,

size_t naddrs,

void **ptr);

Description

The dyn_alloc function allocates a number of contiguous addressable loca-
tions from the target heap specified by the heap parameter. The first of
these allocated locations is returned as the address pointed-to by the ptr
parameter. The naddrs parameter indicates how many contiguous loca-
tions must be allocated.

This function is not normally called directly; it is used by
dyn_AllocSectionMem and dyn_AllocSectionMemHeap.

Error Conditions

The dyn_alloc function returns a status value indicating success, or the
reason for failure, as follows.

Returned Value Reason

DYN_NO_ERROR Success. The space was allocated.

DYN_BAD_PTR Either ptr or heap was NULL.

DYN_BAD_IMAGE The available space in the heap is not aligned according to
the heap’s alignment. This should never occur.

DYN_TOO_SMALL There is insufficient space left in the heap to allocate naddrs
locations in an aligned manner.

Documented Library Functions

3-160 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <libdyn.h>

void *get_space(dyn_heap *heap) {

void *ptr = 0;

if (dyn_alloc(heap, 100, &ptr) == DYN_NO_ERROR)

return 0;

return ptr;

}

See Also

dyn_ValidateImage, dyn_heap_init, dyn_AddHeap, dyn_Relocate,
dyn_FreeSectionMem, dyn_AllocSectionMemHeap, malloc

CrossCore Embedded Studio 1.0 3-161
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

dyn_AllocSectionMem

Allocate memory aligned for a section in a dynamically-loadable module

Synopsis

#include <libdyn.h>
DYN_RESULT dyn_AllocSectionMem(dyn_mem_image *image,

dyn_section *sections,

size_t secnum,

dyn_section_mem **mem);

Description

The dyn_AllocSectionMem function allocates a target memory buffer
large enough to hold the contents of section secnum, in dynamically-load-
able module (DLM) image, as previously validated by dyn_ValidateImage.
The sections parameter is a local copy of the DLM’s section table,
obtained by dyn_GetSections. The memory allocated by this function
should be freed in a single step at a later time, by calling
dyn_FreeSectionMem.

Two areas of memory are allocated by this function:

1. A space is allocated in target memory to hold the contents of the
section. This space is allocated by dyn_alloc from a heap defined
by dyn_AddHeap; the heap in question is selected on the basis of the
memory width of the section secnum, by dyn_GetHeapForWidth.

2. A space is allocated in local memory to keep track of this alloca-
tion. This memory is allocated from the default heap, and is
attached to image, so that it may be freed later.

On exit, *mem points to the second of the two allocations.

Documented Library Functions

3-162 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Error Conditions

The dyn_AllocSectionMem function returns a status value indicating suc-
cess, or the reason for failure, as follows.

Example

#include <libdyn.h>

dyn_section_mem *secmem(dyn_mem_image *image,

dyn_section *sections,

int nsecs) {

int i;

dyn_section_mem *mem = 0;

for (i = 0; i < nsecs; i++) {

if (dyn_AllocSectionMem(image, sections, i, &mem) !=

DYN_NO_ERROR)

return NULL;

}

return mem;

}

Returned Value Reason

DYN_NO_ERROR Success. *mem contains a pointer to a suitable block of
memory; mem->aligned_addr can be used by
dyn_SetSectionAddr for section secnum.

DYN_BAD_PTR One or more of the pointer parameters was NULL.

DYN_NO_MEM Malloc failed, when attempting to allocate sufficient mem-
ory.

DYN_BAD_IMAGE The secnum parameter does not refer to a valid section in
the DLM.

CrossCore Embedded Studio 1.0 3-163
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

dyn_ValidateImage, dyn_GetNumSections, dyn_GetSections,
dyn_GetStringTableSize, dyn_GetStringTable, dyn_GetExpSymTab,
dyn_LookupByName, dyn_Relocate, dyn_SetSectionAddr,
dyn_CopySectionContents, dyn_FreeSectionMem,
dyn_AllocSectionMemHeap, malloc

Documented Library Functions

3-164 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

dyn_AllocSectionMemHeap

Allocate memory from a given heap, aligned for a section in a dynami-
cally-loadable module

Synopsis

#include <libdyn.h>
DYN_RESULT dyn_AllocSectionMemHeap(dyn_mem_image *image,

dyn_section *sections,

size_t secnum,

dyn_section_mem **mem,

int heapidx);

Description

The dyn_AllocSectionMemHeap function allocates a target memory buf-
fer large enough to hold the contents of section secnum, in
dynamically-loadable module (DLM) image, as previously validated by
dyn_ValidateImage. The sections parameter is a local copy of the DLM’s
section table, obtained by dyn_GetSections. The memory allocated by
this function should be freed in a single step at a later time, by calling
dyn_FreeSectionMem. The heapidx parameter indicates which heap should
be used to allocate house-keeping space.

Two areas of memory are allocated by this function:

1. A space is allocated in target memory to hold the contents of the
section. This space is allocated by dyn_alloc from a heap defined
by dyn_AddHeap; the heap in question is selected on the basis of the
memory width of the section secnum by dyn_GetHeapForWidth.

2. A space is allocated in local memory to keep track of this alloca-
tion. This memory is allocated using heap_malloc, with the heap in
question specified by heapidx. The resulting memory is attached to
image, so that it may be freed later.

CrossCore Embedded Studio 1.0 3-165
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

On exit, *mem points to the second of the two allocations.

Error Conditions

The dyn_AllocSectionMemHeap function returns a status value indicat-
ing success, or the reason for failure, as follows.

Example

#include <libdyn.h>

dyn_section_mem *secmem(dyn_mem_image *image,

dyn_section *sections,

int nsecs) {

int i;

dyn_section_mem *mem = 0;

for (i = 0; i < nsecs; i++) {

if (dyn_AllocSectionMemHeap(image, sections, i, &mem, 0) !=

DYN_NO_ERROR)

return NULL;

}

return mem;

}

Returned Value Reason

DYN_NO_ERROR Success. *mem contains a pointer to a suitable block of
memory; mem->aligned_addr can be used by
dyn_SetSectionAddr for section secnum.

DYN_BAD_PTR One or more of the pointer parameters was NULL.

DYN_NO_MEM Malloc failed, when attempting to allocate sufficient mem-
ory.

DYN_BAD_IMAGE The secnum parameter does not refer to a valid section in
the DLM.

Documented Library Functions

3-166 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

dyn_ValidateImage, dyn_GetNumSections, dyn_GetSections,
dyn_GetStringTableSize, dyn_GetStringTable, dyn_GetExpSymTab,
dyn_LookupByName, dyn_Relocate, dyn_SetSectionAddr,
dyn_CopySectionContents, dyn_AllocSectionMem,
dyn_FreeSectionMem, heap_malloc

CrossCore Embedded Studio 1.0 3-167
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

dyn_CopySectionContents

Copy the sections of a valid dynamically-loadable module

Synopsis

#include <libdyn.h>
DYN_RESULT dyn_CopySectionContents(dyn_mem_image *image,

dyn_section *sections);

Description

The dyn_CopySectionContents function will copy the contents of all sec-
tions from a dynamically-loadable module (DLM), into
previously-allocated local space. image is a DLM previously validated by
dyn_ValidateImage, and sections is a local copy of the DLM’s section
table, obtained by dyn_GetSections. An address must have previously
been allocated to each section, by dyn_SetSectionAddr.

Error Conditions

The dyn_CopySectionContents function returns a status value indicating
success, or the reason for failure, as follows.

Returned Value Reason

DYN_NO_ERROR Success. The DLM section contents were copied.

DYN_BAD_PTR The sections or image parameter is NULL.

DYN_BAD_IMAGE The image does not have the right magic number, or offsets
within the image are nonsensical.

Documented Library Functions

3-168 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <libdyn.h>

int copy_dlm(dyn_mem_image *image, dyn_sections *secs) {

if (dyn_CopySectionContents(image, secs) == DYN_NO_ERROR)

return 0;

return -1;

}

See Also

dyn_ValidateImage, dyn_GetNumSections, dyn_GetSections,
dyn_GetStringTableSize, dyn_GetStringTable, dyn_GetExpSymTab,
dyn_LookupByName, dyn_Relocate, dyn_SetSectionAddr,
dyn_AllocSectionMem

CrossCore Embedded Studio 1.0 3-169
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

dyn_FreeEntryPointArray

Release a previously-allocated list of entry points to the dynamically-load-
able module

Synopsis

#include <libdyn.h>
void dyn_FreeEntryPointArray(char *strtab, char **entries);

Description

The dyn_FreeEntryPointArray function releases memory that was allo-
cated by dyn_GetEntryPointArray.

Error Conditions

None.

Example

See dyn_GetEntryPointArray for an example.

See Also

dyn_ValidateImage, dyn_GetExpSymTab, dyn_LookupByName,
dyn_Relocate, dyn_GetEntryPointArray

Documented Library Functions

3-170 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

dyn_FreeSectionMem

Release memory allocated for sections in a dynamically-loadable module

Synopsis

#include <libdyn.h>
void dyn_FreeSectionMem(dyn_mem_image *image);

Description

The dyn_FreeSectionMem function releases house-keeping memory
blocks that were allocated by dyn_AllocSectionMem or
dyn_AllocSectionMemHeap. image is a DLM previously validated by
dyn_ValidateImage. Target memory, allocated from heaps declared by
dyn_AddHeap, remains valid.

Error Conditions

None.

Example

#include <libdyn.h>

void secmem(dyn_mem_image *image,dyn_section *sections ,int

nsecs) {

int i;

dyn_section_mem *mem = 0;

for (i = 0; i < nsecs; i++) {

if (dyn_AllocSectionMem(image, sections, i, &mem) !=

DYN_NO_ERROR)

return;

}

do_something();

dyn_FreeSectionMem(image);

CrossCore Embedded Studio 1.0 3-171
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

 return;

}

See Also

dyn_ValidateImage, dyn_GetNumSections, dyn_GetSections,
dyn_GetStringTableSize, dyn_GetStringTable, dyn_GetExpSymTab,
dyn_LookupByName, dyn_Relocate, dyn_SetSectionAddr,
dyn_CopySectionContents, dyn_AllocSectionMem

Documented Library Functions

3-172 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

dyn_GetEntryPointArray

Obtain a list of symbols exported by a dynamically-loadable module

Synopsis

#include <libdyn.h>
DYN_RESULT dyn_GetEntryPointArray(dyn_mem_image *image,

size_t symidx,

size_t stridx,

char **hstrtab,

char ***entries,

size_t *num_entries);

Description

The dyn_GetEntryPointArray function obtains the contents of the
exported symbol table of the dynamically-loadable module (DLM) image,
in an array of string pointers, pointed to by *entries. *num_entries is set
to contain the number of entries in the allocated array. Each entry in the
allocated array points to a string in a local copy of the string table, con-
verted to local string format. *entries is set to point to this local string
table.

This function can be used to determine which symbols are exported by the
DLM, if this is not known in advance. Once the array of entry-point
strings has been obtained, the strings can be passed to dyn_LookupByName
to determine the resolved address of the entry-point.

This function may only be called after the DLM has been relocated by
calling dyn_Relocate; prior to that point, the exported symbol table’s
entries are not completely resolved.

The symidx and stridx parameters identify the sections that contain the
exported symbol table and exported string table, respectively; these param-
eters are obtained via dyn_GetExpSymTab.

CrossCore Embedded Studio 1.0 3-173
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

The allocated memory should be freed by dyn_FreeEntryPointArray, once
it is no longer required.

Error Conditions

The dyn_GetEntryPointArray function returns a status value indicating
success, or the reason for failure, as follows.

Example

#include <stdio.h>

#include <libdyn.h>

void list_syms(dyn_mem_image *image,

const char *strtab,

dyn_section *sections) {

size_t symidx, stridx;

char *hstrtab, **syms;

int i, nsyms;

 dyn_GetExpSymTab(image, symtab, sections, &symidx, &stridx);

dyn_GetEntryPointArray(image, symidx, stridx, &hstrtab, &nsyms,

&syms);

for (i = 0; i < nsyms; i++)

printf(“Sym %d is %s\n”, i, syms[i]);

dyn_FreeEntryPointArray(hstrtab, syms);

}

Returned Value Reason

DYN_NO_ERROR Success. *ptr contains the address of the symbol, in the relo-
cated image.

DYN_BAD_PTR One or more of the pointer parameters is NULL.

DYN_NO_MEM There was not enough space to allocate either the entry
array, or the local copy of the string table.

DYN_NOT_FOUND The sections for the exported string table or exported sym-
bol table could not be retrieved.

Documented Library Functions

3-174 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

dyn_ValidateImage, dyn_GetNumSections, dyn_GetSections,
dyn_GetStringTableSize, dyn_GetStringTable, dyn_GetExpSymTab,
dyn_Relocate, dyn_SetSectionAddr, dyn_AllocSectionMem,
dyn_CopySectionContents

CrossCore Embedded Studio 1.0 3-175
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

dyn_GetExpSymTab

Locate a dynamically-loadable module’s table of exported symbols

Synopsis

#include <libdyn.h>
DYN_RESULT dyn_GetExpSymTab(dyn_mem_image *image,

const char *strtab,

dyn_section *sections,

size_t *symidx,

size_t *stridx);

Description

The dyn_GetExpSymTab function searches the dynamically-loadable
module (DLM) pointed to by image, looking for the table of exported
symbols. The strtab and sections parameters must be pointers to the
DLM’s string table and section table, obtained by dyn_GetStringTable
and dyn_GetSections, respectively.

The DLM’s exported-symbol table consists of two sections. One is a string
table, containing the names of exported symbols in native processor for-
mat; the other is a table where each entry points to the symbol’s name in
said string table, and to the symbol itself (whether code or data).

If successful, the function records the section numbers of the exported sec-
tion table and exported string table into the locations pointed to by
symidx and stridx, respectively.

Documented Library Functions

3-176 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Error Conditions

The dyn_GetExpSymTab function returns a status value indicating suc-
cess, or the reason for failure, as follows.

Example

#include <libdyn.h>

static size_t sec_tab, str_tab;

int find_secs(dyn_mem_image *image,

const char strtab,

dyn_section *sections) {

if (dyn_GetExpSymTab(image, strtab, sections,

&sec_tab, &str_tab) == DYN_NO_ERROR)

return 0;

return -1;

}

See Also

dyn_ValidateImage, dyn_GetNumSections, dyn_GetSections,
dyn_GetStringTableSize, dyn_GetStringTable, dyn_LookupByName,
dyn_Relocate, dyn_SetSectionAddr, dyn_AllocSectionMem,
dyn_CopySectionContents

Returned Value Reason

DYN_NO_ERROR Success. *symidx contains the section number containing
the exported symbol table, and *stridx contains the section
number containing the exported string table.

DYN_BAD_PTR One or more of the parameters is NULL.

DYN_BAD_IMAGE The function could not locate sections for both the
exported string table and the exported symbol table.

CrossCore Embedded Studio 1.0 3-177
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

dyn_GetHeapForWidth

Locate a target-memory heap that has the right number of bits per
addressable unit

Synopsis

#include <libdyn.h>
DYN_RESULT dyn_GetHeapForWidth(dyn_mem_image *image,

size_t byte_width,

dyn_heap **heap);

Description

The dyn_GetHeapForWidth function searches all target-memory heaps
that have been declared for this image (using dyn_AddHeap), and returns
the one that has a width of byte_width via *heap, if there is one.

Error Conditions

The dyn_GetHeapForWidth function returns a status value indicating
success, or the reason for failure, as follows.

Returned Value Reason

DYN_NO_ERROR Success. *heap contains a pointer to a heap which may be
used for allocation.

DYN_BAD_PTR Either heap or image was NULL.

DYN_NOT_FOUND No heap has been attached to image using dyn_AddHeap(),
which has a width that matches byte_width.

Documented Library Functions

3-178 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <libdyn.h>

dyn_heap *fetch_heap(dyn_mem_image *image, size_t width) {

dyn_heap *heap = 0;

if (dyn_GetHeapForWidth(image, &heap) != DYN_NO_ERROR)

return NULL;

return heap;

}

See Also

dyn_AddHeap, dyn_ValidateImage, dyn_heap_init, dyn_alloc,
dyn_FreeSectionMem, dyn_AllocSectionMemHeap, malloc

CrossCore Embedded Studio 1.0 3-179
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

dyn_GetNumSections

Obtain the number of sections in a dynamically-loadable module

Synopsis

#include <libdyn.h>
DYN_RESULT dyn_GetNumSections(dyn_mem_image *image,

size_t *num_sections);

Description

The dyn_GetNumSections function returns the number of sections in a
validate dynamically-loadable module (DLM), as produced by elf2dyn.
The image parameter should have been populated by a previous call to
dyn_ValidateImage.

In the context of this function, “sections” means “portions of the DLM
that contain executable code or usable data”; it does not include the string
table or any relocations for the DLM.

Upon success, the function writes the number of sections to the location
pointed to by the num_sections parameter.

Error Conditions

The dyn_GetNumSections function returns a status value indicating suc-
cess, or the reason for failure, as follows.

Returned Value Reason

DYN_NO_ERROR Success. *num_sections will contain the section count.

DYN_BAD_PTR The image or num_sections parameter is NULL.

Documented Library Functions

3-180 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <stdio.h>

#include <libdyn.h>

void count_sections(dyn_mem_image *dlm_info) {

size_t nsec;

if (dyn_GetNumSections(dlm_info, &nsec) == DYN_NO_ERROR)

printf(“There are %d section\n”, nsec);

}

See Also

dyn_ValidateImage, dyn_GetSections, dyn_GetStringTableSize,
dyn_GetStringTable, dyn_GetExpSymTab, dyn_LookupByName,
dyn_Relocate, dyn_SetSectionAddr, dyn_AllocSectionMem,
dyn_CopySectionContents

CrossCore Embedded Studio 1.0 3-181
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

dyn_GetSections

Obtain a native copy of the section table from a valid dynamically-load-
able module

Synopsis

#include <libdyn.h>
DYN_RESULT dyn_GetSections(dyn_mem_image *image,

dyn_section *sections);

Description

The dyn_GetSections function accepts a pointer sections to a block of
memory, and populates it with a native copy of the section table from the
dynamically-loadable module (DLM) pointed to by image. The resulting
section table copy is in the native byte order of the target processor.

The memory buffer must have been allocated previously, and must be
large enough to contain all the section headers for the DLM.

Error Conditions

The dyn_GetSections function returns a status value indicating success, or
the reason for failure, as follows.

Returned Value Reason

DYN_NO_ERROR Success. The section table will copied to sections.

DYN_BAD_PTR The sections or image parameter is NULL.

Documented Library Functions

3-182 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <stdlib.h>

#include <libdyn.h>

char *get_sec_table(dyn_mem_image *image, int nsecs) {

char *space = malloc(nsecs * sizeof(dyn_section));

if (dyn_GetSections(image, space) == DYN_NO_ERROR)

return space;

return NULL;

}

See Also

dyn_ValidateImage, dyn_GetNumSections, dyn_GetStringTableSize,
dyn_GetStringTable, dyn_GetExpSymTab, dyn_LookupByName,
dyn_Relocate, dyn_SetSectionAddr, dyn_AllocSectionMem,
dyn_CopySectionContents

CrossCore Embedded Studio 1.0 3-183
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

dyn_GetStringTable

Obtain a native copy of the string table of a valid dynamically-loadable
module

Synopsis

#include <libdyn.h>
DYN_RESULT dyn_GetStringTable(dyn_mem_image *image,

char *buffer);

Description

The dyn_GetStringTable function copies the string table from the dynam-
ically-loadable module image to the space pointed to by buffer. The
resulting copy is in the native format of the target processor.

Error Conditions

The dyn_GetStringTable function returns a status value indicating suc-
cess, or the reason for failure, as follows.

Returned Value Reason

DYN_NO_ERROR Success. Buffer contains a native copy of the string table
(one character per location).

DYN_BAD_PTR The buffer or image parameter is NULL.

Documented Library Functions

3-184 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <stdlib.h>

#include <libdyn.h>

char *get_strtab(dyn_mem_image *dlm_info, size_t *nchars) {

char *ptr = malloc(nchars);

if (dyn_GetStringTable(dlm_info, ptr) == DYN_NO_ERROR)

return ptr;

return NULL;

}

See Also

dyn_ValidateImage, dyn_GetNumSections, dyn_GetSections,
dyn_GetStringTableSize, dyn_GetExpSymTab, dyn_LookupByName,
dyn_Relocate, dyn_SetSectionAddr, dyn_AllocSectionMem,
dyn_CopySectionContents

CrossCore Embedded Studio 1.0 3-185
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

dyn_GetStringTableSize

Get the size of the string table in a valid dynamically-loadable module

Synopsis

#include <libdyn.h>
DYN_RESULT dyn_GetStringTableSize(dyn_mem_image *image,

size_t *sz);

Description

The dyn_GetStringTableSize function returns the number of bytes
required to hold the string table for the dynamically-loadable module
(DLM) pointed to by image. The size is returned in the location pointed
to by the sz parameter.

In a dynamically-loadable module, the string table contains the names of
the various sections in the DLM. It does not contain character strings or
other data that constitutes the loadable part of the DLM.

Error Conditions

The dyn_GetStringTableSize function returns a status value indicating
success, or the reason for failure, as follows.

Returned Value Reason

DYN_NO_ERROR Success. *sz contains the size of the string table.

DYN_BAD_PTR The sz or image parameter is NULL.

Documented Library Functions

3-186 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <stdio.h>

#include <libdyn.h>

void get_strtab_size(dyn_mem_image *dlm_info) {

size_t nchars;

if (dyn_GetStringTableSize(dlm_info, &nchars) == DYN_NO_ERROR)

printf(“There are %d characters in the table\n”, nchars);

}

See Also

dyn_ValidateImage, dyn_GetNumSections, dyn_GetSections,
dyn_GetStringTable, dyn_GetExpSymTab, dyn_LookupByName,
dyn_Relocate, dyn_SetSectionAddr, dyn_AllocSectionMem,
dyn_CopySectionContents

CrossCore Embedded Studio 1.0 3-187
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

dyn_heap_init

Initialize a target heap for dynamically-loadable modules

Synopsis

#include <libdyn.h>

DYN_RESULT dyn_heap_init(dyn_heap *heap,

void *base,

size_t size,

size_t width,

size_t align);

Description

The dyn_heap_init function initializes the heap parameter, so that it con-
tains a description of a region of target memory that can be used to
relocate dynamically-loaded code or data. The resulting structure will be
suitable for passing to dyn_AddHeap.

The heap parameter must point to a dyn_heap structure that is initialized
as follows:

• base — the address of the first addressable unit in the region of tar-
get memory.

• size — the number of addressable units that can be allocated.
Therefore, this should be set to the same value as total_size.

• width — should be set to the number of 8-bit values that can fit
into a single location in the target memory. Therefore: 2 for VISA
space, 4 for normal data memory, 6 for program memory, and 8 for
long-word data memory. Note that only one heap may be specified,
for each given width.

Documented Library Functions

3-188 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• align — when memory is allocated from this region, the offset
into the region will be a multiple of this value. Therefore, this must
be 1, 2 or 4, as required for memory alignment.

Error Conditions

The dyn_heap_init function returns a status value indicating success, or
the reason for failure, as follows.

Example

#include <libdyn.h>

DYN_RESULT data_heap(dyn_heap *heap) {,

static int myspace[50];

return dyn_heap_init(heap, myspace, sizeof(myspace), 4, 2);

}

See Also

dyn_ValidateImage, dyn_GetNumSections, dyn_GetSections,
dyn_GetStringTableSize, dyn_GetStringTable, dyn_GetExpSymTab,
dyn_LookupByName, dyn_Relocate, dyn_SetSectionAddr,
dyn_CopySectionContents, dyn_FreeSectionMem,
dyn_AllocSectionMemHeap, malloc

Returned Value Reason

DYN_NO_ERROR Success. The dyn_heap structure is now initialized.

DYN_BAD_PTR Either image or heap was NULL, or size was zero.

DYN_BAD_IMAGE The base pointer was not appropriately aligned for the align
parameter.

CrossCore Embedded Studio 1.0 3-189
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

dyn_LookupByName

Locate an exported symbol in a dynamically-loadable module

Synopsis

#include <libdyn.h>
DYN_RESULT dyn_LookupByName(dyn_mem_image *image,

const char *name,

void *symtab,

uint32_t secsize,

void **ptr);

Description

The dyn_LookupByName function searches the exported symbol table of
the dynamically-loadable module (DLM) image, looking for a symbol
called name. If such a symbol is found, the symbol’s address is returned in
the location pointed to by ptr. symtab is a pointer to the contents of the
DLM’s exported symbol table, as previously located via
dyn_GetExpSymTab; secsize indicates the section’s size.

This function may only be called after the DLM has been relocated by
calling dyn_Relocate; prior to that point, the exported symbol table’s
entries are not completely resolved.

The name parameter must match the exported symbol exactly. This means
that it must also be mangled appropriately for the symbol’s namespace.

Documented Library Functions

3-190 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Error Conditions

The dyn_LookupByName function returns a status value indicating suc-
cess, or the reason for failure, as follows.

Example

#include <stdio.h>

#include <libdyn.h>

int call_fn(dyn_mem_image *image,

void *symtab,

uint32_t secsize,

const char *fnname) {

void *ptr;

if (dyn_LookupByName(image, name, symtab,

secsize, &ptr) == DYN_NO_ERROR) {

int (*fnptr)(void) = (int (*)(void))*ptr;

return (*fnptr)();

}

return -1;

}

Returned Value Reason

DYN_NO_ERROR Success. *ptr contains the address of the symbol, in the relo-
cated image.

DYN_BAD_PTR The ptr or image parameter is NULL.

DYN_NOT_FOUND The exported symbol table does not contain a symbol
whose name exactly matches name.

CrossCore Embedded Studio 1.0 3-191
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

dyn_ValidateImage, dyn_GetNumSections, dyn_GetSections,
dyn_GetStringTableSize, dyn_GetStringTable, dyn_GetExpSymTab,
dyn_Relocate, dyn_SetSectionAddr, dyn_AllocSectionMem,
dyn_CopySectionContents

Documented Library Functions

3-192 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

dyn_RecordRelocOutOfRange

Record which relocation cannot be completed, while relocating a dynami-
cally-loadable module

Synopsis

#include <libdyn.h>
int dyn_RecordRelocOutOfRange(void *ref_addr,

uint32_t sym_addr);

Description

The dyn_RecordRelocOutOfRange function is invoked by dyn_Relocate,
if a computed relocation is out of range. It provides an opportunity to
make a note of the offending reference. Alternatively, it provides an
opportunity to ignore the problem.

ref_addr is the target address of the location being relocated, while
sym_addr is the computed location or value which is being referenced by
ref_addr. sym_addr is presented before being manipulated to fit into the
field at ref_addr. For example, if ref_addr only references even addresses,
the stored value in the field might be shifted down one place; sym_addr
represents the value before this shift has happened.

The default implementation of the dynRecordRelocOutOfRange function
records both ref_addr and sym_addr, so that they can be retrieved later
using dyn_RetrieveRelocOutOfRange.

Error Conditions

The dyn_RecordRelocOutOfRange function must return a value indicat-
ing whether this combination of ref_addr and sym_addr should be
considered an error. If the function returns false, then dyn_Relocate will
continue its operation. If the function returns true, then dyn_Relocate
will abort.

CrossCore Embedded Studio 1.0 3-193
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <libdyn.h>

int dyn_RecordRelocOutOfRange(void *ref_addr, uint32_t sym_addr)

{

/* alternative implementation that ignores all errors */

return 0;

}

See Also

dyn_Relocate, dyn_RetrieveRelocOutOfRange

Documented Library Functions

3-194 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

dyn_Relocate

Relocate a dynamically-loadable module

Synopsis

#include <libdyn.h>
DYN_RESULT dyn_Relocate(dyn_mem_image *image,

dyn_section *sections);

Description

The dyn_Relocate function processes the relocations in a dynami-
cally-loadable module (DLM) once its sections have been copied into local
memory.

image is the DLM, as loaded and validated. sections is a copy of the
DLM’s section table, as obtained via dyn_GetSections. Before relocation
can be performed, space must have been allocated for each of the sections
in the file, using dyn_AllocSectionMem, and the sections’ contents copied
into that space using dyn_CopySectionContents.

Error Conditions

The dyn_Relocate function returns a status value indicating success, or the
reason for failure, as follows.

Returned Value Reason

DYN_NO_ERROR Success. All sections were relocated.

DYN_BAD_PTR The sections or image parameter is NULL.

DYN_NO_SECTION_ADDR There is a section in the DLM which has not had an address
allocated, prior to attempting to relocate it.

DYN_BAD_RELOC The DLM contains a relocation that is not recognized by
the current instance of libdyn.

CrossCore Embedded Studio 1.0 3-195
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <libdyn.h>

int reloc_dlm(dyn_mem_image *dlm_info, dyn_section *sections) {

if (dyn_Relocate(dlm_info, sections) == DYN_NO_ERROR)

return 0;

return -1;

}

See Also

dyn_ValidateImage, dyn_GetNumSections, dyn_GetSections,
dyn_GetStringTableSize, dyn_GetStringTable, dyn_GetExpSymTab,
dyn_LookupByName, dyn_SetSectionAddr, dyn_AllocSectionMem,
dyn_CopySectionContents, dyn_RecordRelocOutOfRange,
dyn_RetrieveRelocOutOfRange

DYN_BAD_WIDTH The DLM contains a relocation that references a section
with a word size not supported by this instance of libdyn.

DYN_NOT_ALIGNED The DLM could not complete relocations because there is a
section that is not appropriately aligned for its word size.

DYN_OUT_OF_RANGE The DLM could not apply a relocation because the com-
puted value does not fit into the available space. This gener-
ally means that the reference and the target of the relocation
are too far apart. The function will invoke
dyn_RecordRelocOutOfRange to record the details of the
failing relocation. These details can be retrieved with
dyn_RetrieveRelocOutOfRange.

Returned Value Reason

Documented Library Functions

3-196 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

dyn_RetrieveRelocOutOfRange

Retrieve information about a relocation that failed

Synopsis

#include <libdyn.h>
DYN_RESULT dyn_RetrieveRelocOutOfRange(void **ref_addr,

uint32_t *sym_addr);

Description

The dyn_RetrieveRelocOutOfRange function is used to retrieve informa-
tion about a failing relocation, if dyn_Relocate returns DYN_OUT_OF_RANGE.
The information must first have been saved by
dyn_RecordRelocOutOfRange.

*ref_addr will be set to the target address of the location that was being
relocated, while *sym_addr will be set to the computed location or value
that was being referenced by *ref_addr.

Error Conditions

The dyn_RetrieveRelocOutOfRange function returns a value to indicate
the status of its operation, as follows.

Returned Value Reason

DYN_NO_ERROR Success. *ref_addr and *sym_addr have been updated.

DYN_BAD_PTR Either ref_addr or sym_addr was NULL.

CrossCore Embedded Studio 1.0 3-197
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <libdyn.h>

void reloc_dlm(dyn_mem_image *dlm_info, dyn_section *sections) {

if (dyn_Relocate(dlm_info, sections) == DYN_OUT_OF_RANGE &&

dyn_RetrieveRelocOutOfRange(&ref, &sym) == DYN_NO_ERROR)

printf(“Relocation %p -> %p failed\n”, ref, sym);

}

See Also

dyn_Relocate, dyn_RecordRelocOutOfRange

Documented Library Functions

3-198 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

dyn_RewriteImageToFile

Write a dynamically-loadable module back to a file, after relocation

Synopsis

#include <libdyn.h>
DYN_RESULT dyn_RewriteImageToFile(dyn_mem_image *image,

dyn_section *sections,

size_t num_sections,

FILE *outf);

Description

The dyn_RewriteImageToFile function writes the contents of a dynami-
cally-loadable module (DLM) to the specified output stream outf, after
relocation has taken place.

image is the DLM, as loaded, validated and relocated. sections is a copy
of the DLM’s section table, as obtained via dyn_GetSections.

Error Conditions

The dyn_RewriteImageToFile function returns a status value indicating
success, or the reason for failure, as follows.

Returned Value Reason

DYN_NO_ERROR Success. All sections were written back to the output stream
without error.

DYN_BAD_WRITE One of the output operations on the output stream did not
succeed.

DYN_NO_MEM There was insufficient memory to obtain a local working
copy of some data.

CrossCore Embedded Studio 1.0 3-199
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <libdyn.h>

int reloc_dlm(dyn_mem_image *dlm,

dyn_section *secs,

size_t nsecs,

FILE *fp) {

if (dyn_Relocate(dlm, secs) == DYN_NO_ERROR &&

dyn_RewriteImageToFile(dlm, secs, nsecs, fp) ==

DYN_NO_ERROR)

return 0;

return -1;

}

See Also

dyn_ValidateImage, dyn_GetNumSections, dyn_GetSections,
dyn_GetStringTableSize, dyn_GetStringTable, dyn_GetExpSymTab,
dyn_LookupByName, dyn_SetSectionAddr, dyn_AllocSectionMem,
dyn_CopySectionContents

DYN_BAD_PTR The image parameter was NULL, or a there is a corrupt
internal memory reference.

DYN_NOT_FOUND Not all sections could be located, suggesting that the
num_sections parameter is incorrect.

Returned Value Reason

Documented Library Functions

3-200 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

dyn_SetSectionAddr

Set the local address for a section in a dynamically-loadable module

Synopsis

#include <libdyn.h>
DYN_RESULT dyn_SetSectionAddr(dyn_mem_image *image,

dyn_section *sections,

size_t secnum,

void *addr);

Description

The dyn_SetSectionAddr function sets the local address for a given section
within a dynamically-loadable module (DLM). image is the DLM, vali-
dated by dyn_ValidateImage. sections is a native copy of the DLM’s
section table, obtained by dyn_GetSections. secnum is the number for the
section for which to set the address. addr is the local address.

In this context, “setting the address” means informing the DLM that
address addr is a suitable address at which section secnum may reside after
relocation; if dyn_CopySectionContents is called, the section’s contents
will be copied to addr, so sufficient space must have previously been
reserved at that address.

CrossCore Embedded Studio 1.0 3-201
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Error Conditions

The dyn_SetSectionAddr function returns a status value indicating suc-
cess, or the reason for failure, as follows.

Example

#include <libdyn.h>

int set_addr(dyn_mem_image *image, dyn_section *secs,

size_t num, void *ptr) {

if (dyn_SetSectionAddr(image, secs, num, ptr) == DYN_NO_ERROR)

return 0;

return -1;

}

See Also

dyn_ValidateImage, dyn_GetNumSections, dyn_GetSections,
dyn_GetStringTableSize, dyn_GetStringTable, dyn_GetExpSymTab,
dyn_LookupByName, dyn_Relocate, dyn_AllocSectionMem,
dyn_CopySectionContents

Returned Value Reason

DYN_NO_ERROR Success. The address has been recorded within the native
section table copy.

DYN_BAD_PTR The sections or image parameter is NULL, or there is no
section secnum. This value is also returned if the section
already has an address assigned, or it has already been relo-
cated.

Documented Library Functions

3-202 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

dyn_SetSectionMem

Specify the target address of a dynamically-loadable section

Synopsis

#include <libdyn.h>
DYN_RESULT dyn_SetSectionMem(dyn_mem_image *image,

dyn_section *sections,

size_t secnum,

uint32_t taddr,

dyn_section_mem **memptr);

Description

The dyn_SetSectionMem function creates internal house-keeping mem-
ory for a given section within a dynamically-loadable module (DLM), and
records the target address at which the section will reside. image is the
DLM, validated by dyn_ValidateImage. sections is a native copy of the
DLM’s section table, obtained by dyn_GetSections. secnum is the number
for the section for which to set the address. taddr is the target address.

In this context, the target address refers to the address at which the section
will begin, when relocated.

The function will create a dyn_section_mem structure, pointed to by
*memptr, which can be passed to dyn_SetSectionAddr.

CrossCore Embedded Studio 1.0 3-203
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Error Conditions

The dyn_SetSectionMem function returns a status value indicating suc-
cess, or the reason for failure, as follows.

Example

#include <libdyn.h>

dyn_section_mem *set_addr(dyn_mem_image *image, dyn_section

*secs,

size_t num, uint32_t addr) {

dyn_section_mem *mem = 0;

if (dyn_SetSectionMem(image, secs, num, addr, &mem) ==

DYN_NO_ERROR)

return 0;

return mem;

}

See Also

dyn_ValidateImage, dyn_GetNumSections, dyn_GetSections,
dyn_GetStringTableSize, dyn_GetStringTable, dyn_GetExpSymTab,
dyn_LookupByName, dyn_Relocate, dyn_AllocSectionMem,
dyn_CopySectionContents

Returned Value Reason

DYN_NO_ERROR Success. The address has been recorded within the native
section table copy.

DYN_BAD_PTR The image, sections or memptr parameter is NULL.

DYN_BAD_IMAGE There is no section secnum.

DYN_NO_MEM There is insufficient memory to allocate the internal
house-keeping structures.

Documented Library Functions

3-204 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

dyn_ValidateImage

Verify a memory buffer contains a valid dynamically-loadable module

Synopsis

#include <libdyn.h>
DYN_RESULT dyn_ValidateImage(void *ptr,

size_t len,

dyn_mem_image *image);

Description

The dyn_ValidateImage function accepts a pointer to a block of memory,
and performs various checks to determine whether the memory contains a
validate dynamically-loadable module (DLM), as produced by elf2dyn.

The memory buffer is pointed to by ptr, and must be at least len bytes in
size. If the buffer does contain a valid DLM, the function will populate
the structure pointed to by image; the resulting image pointer will be suit-
able for passing to other DLM-handling functions.

Error Conditions

The dyn_ValidateImage function returns a status value indicating success,
or the reason for failure, as follows.

Returned Value Reason

DYN_NO_ERROR Success. The buffer contains a valid DLM.

DYN_BAD_PTR The ptr or image parameter is NULL.

DYN_TOO_SMALL The memory buffer as described by ptr/len is too small to
contain any DLM, or the DLM’s sections/relocations
exceed the buffer.

DYN_BAD_IMAGE The image does not have the right magic number, or offsets
within the image are nonsensical.

CrossCore Embedded Studio 1.0 3-205
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <stdio.h>

#include <libdyn.h>

static dyn_mem_image dlm_info;

int check_dlm(FILE *fp, char *buf, size_t maxlen) {

size_t len = fread(buf, 1, maxlen, fp);

if (dyn_ValidateImage(buf, len, &dlm_info) == DYN_NO_ERROR)

return 0;

return -1;

}

See Also

dyn_GetNumSections, dyn_GetSections, dyn_GetStringTableSize,
dyn_GetStringTable, dyn_GetExpSymTab, dyn_LookupByName,
dyn_Relocate, dyn_SetSectionAddr, dyn_AllocSectionMem,
dyn_CopySectionContents

DYN_BAD_VERSION The DLM’s version number is not a version supported by
this instance of libdyn.

DYN_BAD_FAMILY The DLM is for a processor family not recognized by this
instance of libdyn.

Returned Value Reason

Documented Library Functions

3-206 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

exit

Normal program termination

Synopsis

#include <stdlib.h>
void exit (int status);

Description

The exit function causes normal program termination. The functions reg-
istered by the atexit function are called in reverse order of their
registration and the processor is put into the IDLE state. The status argu-
ment is stored in register R0, and control is passed to the
___lib_prog_term label, which is defined by this function.

Error Conditions

None.

Example

#include <stdlib.h>

exit(EXIT_SUCCESS);

See Also

abort, atexit

CrossCore Embedded Studio 1.0 3-207
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

exp

Exponential

Synopsis

#include <math.h>

float expf (float x);

double exp (double x);

long double expd (long double x);

Description

The exponential functions compute the exponential value e to the power
of their argument.

Error Conditions

The input argument x for expf must be in the domain [-87.33, 88.72],
and the input argument for expd must be in the domain [-708.39,
709.78]. The functions return HUGE_VAL if x is greater than the domain
and 0.0 if x is less than the domain.

Example

#include <math.h>

double y;

float x;

y = exp (1.0); /* y = 2.71828 */

x = expf (1.0); /* x = 2.71828 */

See Also

log, pow

Documented Library Functions

3-208 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fabs

Absolute value

Synopsis

#include <math.h>

float fabsf (float x);

double fabs (double x);

long double fabsd (long double x);

Description

The fabs functions return the absolute value of the argument x.

Error Conditions

None.

Example

#include <math.h>

double y;

float x;

y = fabs (-2.3); /* y = 2.3 */

y = fabs (2.3); /* y = 2.3 */

x = fabsf (-5.1); /* x = 5.1 */

See Also

abs, absfx, labs

CrossCore Embedded Studio 1.0 3-209
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

fclose

Close a stream

Synopsis

#include <stdio.h>
int fclose(FILE *stream);

Description

The fclose function flushes stream and closes the associated file. The flush
will result in any unwritten buffered data for the stream to be written to
the file, with any unread buffered data being discarded.

If the buffer associated with stream was allocated automatically, it will be
deallocated.

The fclose function will return 0 on successful completion.

Error Conditions

If the fclose function is not successful, it returns EOF.

Example

#include <stdio.h>

void example(char* fname)

{

FILE *fp;

fp = fopen(fname, "w+");

/* Do some operations on the file */

fclose(fp);

}

Documented Library Functions

3-210 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

fopen

CrossCore Embedded Studio 1.0 3-211
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

feof

Test for end of file

Synopsis

#include <stdio.h>
int feof(FILE *stream);

Description

The feof function tests whether or not the file identified by stream has
reached the end of the file. The routine returns 0 if the end of the file has
not been reached and a non-zero result if the end of file has been reached.

Error Conditions

None.

Example

#include <stdio.h>

void print_char_from_file(FILE *fp)

{

/* printf out each character from a file until EOF */

while (!feof(fp))

printf("%c", fgetc(fp));

printf("\n");

}

See Also

clearerr, ferror

Documented Library Functions

3-212 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

ferror

Test for read or write errors

Synopsis

#include <stdio.h>
int ferror(FILE *stream);

Description

The ferror function tests whether an uncleared error has occurred while
accessing stream. If there are no errors, the function will return zero;
otherwise it will return a non-zero value.

 The ferror function does not examine whether the file identified by
stream has reached the end of the file.

Error Conditions

None.

Example

#include <stdio.h>

void test_for_error(FILE *fp)

{

if (ferror(fp))

printf("Error with read/write to stream\n");

else

printf("read/write to stream OKAY\n");

}

See Also

clearerr, feof

CrossCore Embedded Studio 1.0 3-213
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

fflush

Flush a stream

Synopsis

#include <stdio.h>
int fflush(FILE *stream);

Description

The fflush function causes any unwritten data for stream to be written to
the file. If stream is a NULL pointer, fflush performs this flushing action
on all streams.

Upon successful completion, fflush returns zero.

Error Conditions

If fflush is unsuccessful, the EOF value is returned.

Example

#include <stdio.h>

void flush_all_streams(void)

{

fflush(NULL);

}

See Also

fclose

Documented Library Functions

3-214 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fgetc

 Get a character from a stream

Synopsis

#include <stdio.h>
int fgetc(FILE *stream);

Description

The fgetc function obtains the next character from the input stream
pointed to by stream, converts it from an unsigned char to an int, and
advances the file position indicator for the stream.

Upon successful completion, the fgetc function will return the next byte
from the input stream pointed to by stream.

Error Conditions

If the fgetc function is unsuccessful, then EOF is returned.

Example

#include <stdio.h>

char use_fgetc(FILE *fp)

{

char ch;

if ((ch = fgetc(fp)) == EOF) {

printf("Read End-of-file\n")

return 0;

} else {

return ch;

}

}

CrossCore Embedded Studio 1.0 3-215
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

getc

Documented Library Functions

3-216 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fgetpos

 Record the current position in a stream

Synopsis

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);

Description

The fgetpos function stores the current value of the file position indicator
for the stream pointed to by stream in the file position type object pointed
to by pos. The information generated by fgetpos in pos can be used with
the fsetpos function to return the file to this position.

Upon successful completion, the fgetpos function will return zero.

Error Conditions

If fgetpos is unsuccessful, the function will return a non-zero value.

Example

#include <stdio.h>

void aroutine(FILE *fp, char *buffer)

{

fpos_t pos;

/* get the current file position */

if (fgetpos(fp, &pos)!= 0) {

printf("fgetpos failed\n");

return;

}

CrossCore Embedded Studio 1.0 3-217
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

/* write the buffer to the file */

(void) fprintf(fp, "%s\n", buffer);

/* reset the file position to the value before the write */

if (fsetpos(fp, &pos) != 0) {

printf("fsetpos failed\n");

}

}

See Also

fsetpos, ftell, fseek, rewind

Documented Library Functions

3-218 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fgets

 Get a string from a stream

Synopsis

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

Description

The fgets function reads characters from stream into the array pointed to
by s. The function will read a maximum of one less character than the
value specified by n, although the get will also end if either a NEWLINE
character or the end-of-file marker are read. The array s will have a NUL
character written at the end of the string that has been read.

Upon successful completion, fgets will return s.

Error Conditions

If fgets is unsuccessful, the function will return a NULL pointer.

Example

#include <stdio.h>

char buffer[20];

void read_into_buffer(FILE *fp)

{

char *str;

str = fgets(buffer, sizeof(buffer), fp);

if (str == NULL) {

printf("Either read failed or EOF encountered\n");

} else {

printf("filled buffer with %s\n", str);

CrossCore Embedded Studio 1.0 3-219
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

}

}

See Also

 fgetc, getc, gets

Documented Library Functions

3-220 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fileno

Get the file descriptor for a stream

Synopsis

#include <stdio.h>
int fileno(FILE *stream);

Description

The fileno function returns the file descriptor for a stream. The file
descriptor is an opaque value used by the extensible device driver interface
to represent the open file. The resulting value may only be used as a
parameter to other functions that accept file descriptors.

Error Conditions

The fileno function returns -1 if it detects that stream is invalid or not
open. It returns a positive number if successful.

Example

#include <stdio.h>

int apply_control_cmd(FILE *fp, int cmd, int val) {

int fildes = fileno(fp);

return ioctl(fildes, cmd, val);

}

See Also

fopen, ioctl

CrossCore Embedded Studio 1.0 3-221
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

floor

Floor

Synopsis

#include <math.h>

float floorf (float x);

double floor (double x);

long double floord (long double x);

Description

The floor functions return the largest integral value that is not greater
than their argument.

Error Conditions

None.

Example

#include <math.h>

double y;

float z;

y = floor (1.25); /* y = 1.0 */

y = floor (-1.25); /* y = -2.0 */

z = floorf (10.1); /* z = 10.0 */

See Also

ceil

Documented Library Functions

3-222 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fmod

Floating-point modulus

Synopsis

#include <math.h>

float fmodf (float x, float y);

double fmod (double x, double y);

long double fmodd (long double x, long double y);

Description

The fmod functions compute the floating-point remainder that results
from dividing the first argument by the second argument.

The result is less than the second argument and has the same sign as the
first argument. If the second argument is equal to zero, the fmod func-
tions return zero.

Error Conditions

None.

Example

#include <math.h>

double y;

float x;

y = fmod (5.0, 2.0); /* y = 1.0 */

x = fmodf (4.0, 2.0); /* x = 0.0 */

See Also

div, ldiv, modf

CrossCore Embedded Studio 1.0 3-223
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

fopen

 Open a file

Synopsis

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

Description

The fopen function initializes the data structures that are required for
reading or writing to a file. The file’s name is identified by filename, with
the access type required specified by the string mode.

Valid selections for mode are specified below. If any other mode specifica-
tion is selected then the behavior is undefined.

mode Selection

r Open text file for reading. This operation fails if the file has not previ-
ously been created.

w Open text file for writing. If the file name already exists, it will be trun-
cated to zero length with the write starting at the beginning of the file. If
the file does not already exist, it is created.

a Open a text file for appending data. All data will be written to the end of
the specified file.

r+ As r with the exception that the file can also be written to.

w+ As w with the exception that the file can also be read from.

a+ As a with the exception that the file can also be read from any position
within the file. Data is only written to the end of the file.

rb As r with the exception that the file is opened in binary mode.

wb As w with the exception that the file is opened in binary mode.

ab As a with the exception that the file is opened in binary mode.

r+b/rb+ Open file in binary mode for both reading and writing.

Documented Library Functions

3-224 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

If the call to the fopen function is successful, a pointer to the object con-
trolling the stream is returned.

Error Conditions

If the fopen function is not successful, a NULL pointer is returned.

Example

#include <stdio.h>

FILE *open_output_file(void)

{

/* Open file for writing as binary */

FILE *handle = fopen("output.dat", "wb");

return handle;

}

See Also

fclose, fflush, freopen

w+b/wb+ Create or truncate to zero length a file for both reading and writing.

a+b/ab+ As a+ with the exception that the file is opened in binary mode.

mode Selection

CrossCore Embedded Studio 1.0 3-225
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

fprintf

Print formatted output

Synopsis

#include <stdio.h>
int fprintf(FILE *stream, const char *format, /*args*/ ...);

Description

The fprintf function places output on the named output stream. The
string pointed to by format specifies how the arguments are converted for
output.

The format string can contain zero or more conversion specifications, each
beginning with the % character. The conversion specification itself follows
the % character and consists of one or more of the following sequence:

• Flag – optional characters that modify the meaning of the
conversion.

• Width – optional numeric value (or *) that specifies the minimum
field width.

• Precision – optional numeric value that specifies the minimum
number of digits to appear.

• Length – optional modifier that specifies the size of the argument.

• Type – character that specifies the type of conversion to be applied.

Documented Library Functions

3-226 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The flag characters can be in any order and are optional. The valid flags
are described in the following table.

If a field width is specified, the converted value is padded with spaces to
the specified width if the converted value contains fewer characters than
the width. Normally spaces will be used to pad the field on the left, but
padding on the right will be used if the ‘-’ flag has been specified. The ‘0’
flag may be used as an alternative to space padding; see the description of
the flag field above. The width may also be specified as a ‘*’, which indi-
cates that the current argument in the call to fprintf is an int that defines
the value of the width. If the value is negative then it is interpreted as a ‘-’
flag and a positive field width.

The optional precision value begins with a period (.) and is followed
either by an asterisk (*) or by a decimal integer. An asterisk (*) indicates

Flag Field

- Left-justify the result within the field. (The result is right-justified by
default.)

+ Always begin a signed conversion with a plus or minus sign. By default,
only negative values will start with a sign.

space Prefix a space to the result if the first character is not a sign and the +
flag has not also been specified.

The result is converted to an alternative form depending on the type of
conversion:
 o : If the value is not zero, it is preceded with 0.
 x : If the value is not zero, it is preceded with 0x.
 X : If the value is not zero, it is preceded with 0X.
 a A e E f F k K r R: Always generate a decimal point.
 g G : as E, except trailing zeros are not removed.

0 (zero) Specifies an alternative to space padding. Leading zeroes will be used as
necessary to pad a field to the specified field width, the leading zeroes
will follow any sign or specification of a base. The flag will be ignored if
it appears with a ‘-’ flag or if it is used in a conversion specification that
uses a precision and one of the conversions a, A, d, i, o, u, x or X.
The 0 flag may be used with the a, A, d, i, o, u, x, X, e, E, f, g and G
conversions.

CrossCore Embedded Studio 1.0 3-227
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

that the precision is specified by an integer argument preceding the argu-
ment to be formatted. If only a period is specified, a precision of zero is
assumed. The precision value has differing effects, depending on the con-
version specifier being used:

• For A, a specifies the number of digits after the decimal point.
If the precision is zero and the # flag is not specified, no decimal
point will be generated.

• For d,i,o,u,x,X specifies the minimum number of digits to
appear, defaulting to 1.

• For f,F,E,e,k,K,r,R specifies the number of digits after the
decimal point character, the default being 6. If the # specifier is
present with a zero precision, no decimal point will be generated.

• For g, G specifies the maximum number of significant digits.

• For s, specifies the maximum number of characters to be written.

The length modifier can optionally be used to specify the size of the
argument. The length modifiers should only precede one of the d, i, o, u,
x, X, k, K, r, R, or n conversion specifiers unless other conversion specifiers
are detailed.

Length Action

h The argument should be interpreted as a short int, short fract, or short
accum.

hh The argument should be interpreted as a char.

j The argument should be interpreted as intmax_t or uintmax_t.

l The argument should be interpreted as a long int, long fract, or long accum.

ll The argument should be interpreted as a long long int.

Documented Library Functions

3-228 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Note that the hh, j, t, and z size specifiers, as described in the C99
(ISO/IEC 9899:1999) standard, are only available if the -full-io option
has been selected.

The following table contains definitions of the valid conversion specifiers
that define the type of conversion to be applied:

L The argument should be interpreted as a long double argument. This length mod-
ifier should precede one of the a, A, e, E, f, F, g, or G conversion specifiers.
Note that this length modifier is only valid if -double-size-64 is selected. If -dou-
ble-size-32 is selected, no conversion will occur, with the corresponding argument
being consumed.

t The argument should be interpreted as ptrdiff_t.

z The argument should be interpreted as size_t.

Specifier Conversion

a, A Floating-point number

c Character

d, i Signed decimal integer

e, E Scientific notation (mantissa/exponent)

f, F Decimal floating-point

g, G Convert as e, E or f, F

k Signed accum

K Unsigned accum

n Pointer to signed integer to which the number of characters written so
far will be stored with no other output

o Unsigned octal

p Pointer to void

r Signed fract

R Unsigned fract

s String of characters

Length Action

CrossCore Embedded Studio 1.0 3-229
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

The a|A conversion specifier converts to a floating-point number with the
notational style [-]0xh.hhhhp±d where there is one hexadecimal digit
before the period. The a|A conversion specifiers always contain a mini-
mum of one digit for the exponent.

The e|E conversion specifier converts to a floating-point number nota-
tional style [-]d.ddde±dd. The exponent always contains at least two
digits. The case of the e preceding the exponent will match that of the
conversion specifier.

The f|F conversion specifier converts to decimal notation [-]d.ddd.

The g|G conversion specifier converts as e|E or f|F specifiers depending on
the value being converted. If the exponent of the value being converted is
less than -4 or greater than or equal to the precision then e|E conversions
will be used, otherwise f|F conversions will be used.

For all of the a, A, e, E, f, F, g, and G specifiers, an argument that repre-
sents infinity is displayed as inf or INF, with the case matching that of the
specifier. For all of the a, A, e, E, f, F, g, and G specifiers, an argument that
represents a NaN result is displayed as nan or NAN, with the case matching
that of the specifier.

The k|K and r|R conversion specifiers convert a fixed-point value to deci-
mal notation [-]d.ddd when your application is built with the -full-io
or -fixed-point-io switch. Otherwise, the k|K and r|R conversion
specifiers convert a fixed-point value to hexadecimal.

The fprintf function returns the number of characters printed.

u Unsigned integer

x, X Unsigned hexadecimal notation

% Print a % character with no argument conversion

Specifier Conversion

Documented Library Functions

3-230 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Error Conditions

If the fprintf function is unsuccessful, a negative value is returned.

Example

#include <stdio.h>

void fprintf_example(void)

{

char *str = "hello world";

/* Output to stdout is " +1 +1." */

fprintf(stdout, "%+5.0f%+#5.0f\n", 1.234, 1.234);

/* Output to stdout is "1.234 1.234000 1.23400000" */

fprintf(stdout, "%.3f %f %.8f\n", 1.234, 1.234, 1.234);

/* Output to stdout is "justified:
left:5 right: 5" */

fprintf(stdout, "justified:\nleft:%-5dright:%5i\n", 5, 5);

/* Output to stdout is

"90% of test programs print hello world" */

fprintf(stdout, "90%% of test programs print %s\n", str);

/* Output to stdout is "0.0001 1e-05 100000 1E+06" */

fprintf(stdout, "%g %g %G %G\n", 0.0001, 0.00001, 1e5, 1e6);

}

See Also

printf, snprintf, vfprintf, vprintf, vsnprintf, vsprintf

CrossCore Embedded Studio 1.0 3-231
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

fputc

Put a character on a stream

Synopsis

#include <stdio.h>
int fputc(int ch, FILE *stream);

Description

The fputc function writes the argument ch to the output stream pointed
to by stream and advances the file position indicator. The argument ch is
converted to an unsigned char before it is written.

If the fputc function is successful then it will return the value that was
written to the stream.

Error Conditions

 If the fputc function is not successful, EOF is returned.

Example

#include <stdio.h>

void fputc_example(FILE* fp)

{

/* put the character 'i' to the stream pointed to by fp */

int res = fputc('i', fp);

if (res != 'i')

printf("fputc failed\n");

}

See Also

putc

Documented Library Functions

3-232 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fputs

Put a string on a stream

Synopsis

#include <stdio.h>
int fputs(const char *string, FILE *stream);

Description

The fputs function writes the string pointed to by string to the output
stream pointed to by stream. The NULL terminating character of the string
will not be written to stream.

If the call to fputs is successful, the function will return a non-negative
value.

Error Conditions

The fputs function will return EOF if a write error occurred.

Example

#include <stdio.h>

void fputs_example(FILE* fp)

{

/* put the string "example" to the stream pointed to by fp */

char *example = "example";

int res = fputs(example, fp);

if (res == EOF)

printf("fputs failed\n");

}

CrossCore Embedded Studio 1.0 3-233
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

puts

Documented Library Functions

3-234 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fread

Buffered input

Synopsis

#include <stdio.h>
size_t fread(void *ptr, size_t size, size_t n, FILE *stream);

Description

The fread function reads into an array pointed to by ptr up to a maximum
of n items of data from stream, where an item of data is a sequence of
bytes of length size. It stops reading bytes if an EOF or error condition is
encountered while reading from stream, or if n items have been read. It
advances the data pointer in stream by the number of bytes read. It does
not change the contents of stream.

The fread function returns the number of items read. This may be less
than n if there is insufficient data on the external device to satisfy the read
request. If size or n is zero, then fread will return zero and does not affect
the state of stream.

When the stream has been opened as a binary stream, the Analog Devices
I/O library may choose to bypass the I/O buffer and transmit data from an
external device directly into the program, particularly when the buffer size
(as defined by the macro BUFSIZ in the stdio.h header file or controlled
by the function setvbuf) is smaller than the number of characters to be
transferred. If an application relies on this function to always read data via
an I/O buffer, then it should be linked against the third-party library
(using the -full-io switch).

Error Conditions

If an error occurs, fread will return zero and set the error indicator for
stream.

CrossCore Embedded Studio 1.0 3-235
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <stdio.h>

int buffer[100];

int fill_buffer(FILE *fp)

{

int read_items;

/* Read from file pointer fp into array buffer */

read_items = fread(&buffer, sizeof(int), 100, fp);

if (read_items < 100) {

if (ferror(fp))

printf("fill_buffer failed with an I/O error\n");

else if (feof(fp))

printf("fill_buffer failed with EOF\n");

else

printf("fill_buffer only read %d items\n",read_items);

}

return read_items;

}

See Also

ferror, fgetc, fgets, fscanf

Documented Library Functions

3-236 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

free

Deallocate memory

Synopsis

#include <stdlib.h>
void free(void *ptr);

Description

The free function deallocates a pointer previously allocated to a range of
memory (by calloc or malloc) to the free memory heap. If the pointer
was not previously allocated by calloc, malloc, or realloc, the behavior
is undefined.

The free function returns the allocated memory to the heap from which it
was allocated.

Error Conditions

None.

Example

#include <stdlib.h>

char *ptr;

ptr = (char *)malloc(10); /* Allocate 10 bytes from heap */

free(ptr); /* Return space to free heap */

See Also

calloc, malloc, realloc

CrossCore Embedded Studio 1.0 3-237
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

freopen

Open a file using an existing file descriptor

Synopsis

#include <stdio.h>
FILE *freopen(const char *fname, const char *mode, FILE *stream);

Description

The freopen function opens the file specified by fname and associates it
with the stream pointed to by stream. The mode argument has the same
effect as described in fopen (see fopen for more information on the mode
argument).

Before opening the new file, the freopen function will first attempt to
flush the stream and close any file descriptor associated with stream.
Failure to flush or close the file successfully is ignored. Both the error and
EOF indicators for stream are cleared.

The original stream will always be closed regardless of whether the open-
ing of the new file is successful or not.

Upon successful completion, freopen returns the value of stream.

Error Conditions

If freopen is unsuccessful, a NULL pointer is returned.

Documented Library Functions

3-238 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <stdio.h>

void freopen_example(FILE* fp)

{

FILE *result;

char *newname = "newname";

/* reopen existing file pointer for reading file "newname" */

result = freopen(newname, "r", fp);

if (result == fp)

printf("%s reopened for reading\n", newname);

else

printf("freopen not successful\n");

}

See Also

fclose, fopen

CrossCore Embedded Studio 1.0 3-239
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

frexp

Separate fraction and exponent

Synopsis

#include <math.h>

float frexpf (float f, int *expptr);

double frexp(double f, int *expptr);

long double frexpd (long double f, int *expptr);

Description

The frexp functions separate a floating-point input into a normalized frac-
tion and a (base 2) exponent. The functions return the first argument as a
fraction which is in the interval ±[½, 1), and store a power of 2 in the
integer pointed to by the second argument. If the input is zero, then the
fraction and exponent are both set to zero.

Error Conditions

None.

Example

#include <math.h>

double y;

float x;

int exponent;

y = frexp (2.0, &exponent); /* y = 0.5, exponent = 2 */

x = frexpf (4.0, &exponent); /* x = 0.5, exponent = 3 */

See Also

modf

Documented Library Functions

3-240 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fscanf

Read formatted input

Synopsis

#include <stdio.h>
int fscanf(FILE *stream, const char *format, /* args */ ...);

Description

The fscanf function reads from the input file stream, interprets the inputs
according to format, and stores the results of the conversions (if any) in its
arguments. The format is a string containing the control format for the
input with the following arguments being pointers to the locations where
the converted results are to be written to.

The string pointed to by format specifies how the input is to be parsed
and, possibly, converted. It may consist of whitespace characters, ordinary
characters (apart from the % character), and conversion specifications. A
sequence of whitespace characters causes fscanf to continue to parse the
input until either there is no more input or until it find a non-whitespace
character. If the format specification contains a sequence of ordinary char-
acters, then fscanf will continue to read the next characters in the input
stream until the input data does not match the sequence of characters in
the format. At this point fscanf will fail, and the differing and subsequent
characters in the input stream will not be read.

The % character in the format string introduces a conversion specification.
A conversion specification has the following form:

% [*] [width] [length] type

A conversion specification always starts with the % character. It may
optionally be followed by an asterisk (*) character, which indicates that
the result of the conversion is not to be saved. In this context, the asterisk
character is known as the assignment-suppressing character. The optional

CrossCore Embedded Studio 1.0 3-241
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

token width represents a non-zero decimal number and specifies the maxi-
mum field width. The fscanf function will not read any more than width
characters while performing the conversion specified by type.

The length token can be used to define a length modifier. The length
modifier can be used to specify the size of the argument. The length mod-
ifiers should only precede one of the d, i, o, u, x, X, k, K, r, R or n
conversion specifiers unless other conversion specifiers are detailed.

Note that the hh, j, t, and z size specifiers are defined in the C99
(ISO/IEC 9899:1999) standard.

A conversion specification terminates with a conversion specifier that
defines how the input data is to be converted. The valid conversion speci-
fiers can be found in the following table.

Length Action

h The argument should be interpreted as a short int, short fract, or short
accum.

hh The argument should be interpreted as a char.

j The argument should be interpreted as intmax_t or uintmax_t.

l The argument should be interpreted as a long int, long fract, or long accum.

ll The argument should be interpreted as a long long int.

L The argument should be interpreted as a long double argument. This length mod-
ifier should precede one of the a, A, e, E, f, F, g, or G conversion specifiers.

t The argument should be interpreted as ptrdiff_t.

z The argument should be interpreted as size_t.

Specifier Conversion

a A e E f F g G Floating point, optionally preceded by a sign and optionally followed by
an e or E character

c Single character, including whitespace

d Signed decimal integer with optional sign

Documented Library Functions

3-242 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The “[” conversion specifier should be followed by a sequence of charac-
ters, referred to as the scanset, with a terminating “]” character and so will
take the form [scanset]. The conversion specifier copies into an array,
which is the corresponding argument, until a character that does not
match any of the scanset is read. If the scanset begins with a “^” character,
then the scanning will match against characters not defined in the scanset.
If the scanset is to include the “]” character, then this character must
immediately follow the “[” character or the “^” character (if specified).

Each input item is converted to a type appropriate to the conversion char-
acter, as specified in the table above. The result of the conversion is placed
into the object pointed to by the next argument that has not already been
the recipient of a conversion. If the suppression character has been speci-
fied, no data shall be placed into the object with the next conversion using
the object to store its result.

i Signed integer with optional sign

k Signed accum with optional sign

K Unsigned accum

n No input is consumed. The number of characters read so far will be
written to the corresponding argument. This specifier does not affect the
function result returned by fscanf.

o Unsigned octal

p Pointer to void

r Signed fract with optional sign

R Unsigned fract

s String of characters up to a whitespace character

u Unsigned decimal integer

x X Hexadecimal integer with optional sign

[Non-empty sequence of characters referred to as the scanset

% Single % character with no conversion or assignment

Specifier Conversion

CrossCore Embedded Studio 1.0 3-243
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Note that the k, K, r and R format specifiers are only supported when
building with either the -full-io (see -full-io) or -fixed-point-io
switches (see -fixed-point-io).

The fscanf function returns the number of items successfully read.

Error Conditions

If the fscanf function is not successful before any conversion, EOF is
returned.

Example

#include <stdio.h>

void fscanf_example(FILE *fp)

{

short int day, month, year;

float f1, f2, f3;

char string[20];

/* Scan a date with any separator, eg, 1-1-2006 or 1/1/2006 */

fscanf (fp, "%hd%*c%hd%*c%hd", &day, &month, &year);

/* Scan float values separated by "abc", for example

1.234e+6abc1.234abc235.06abc */

fscanf (fp, "%fabc%gabc%eabc", &f1, &f2, &f3);

/* For input "alphabet", string will contain "a" */

fscanf (fp, "%[aeiou]", string);

/* For input "drying", string will contain "dry" */

fscanf (fp, "%[^aeiou]", string);

}

Documented Library Functions

3-244 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

scanf, sscanf

CrossCore Embedded Studio 1.0 3-245
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

fseek

 Reposition a file position indicator in a stream

Synopsis

#include <stdio.h>
int fseek(FILE *stream, long offset, int whence);

Description

The fseek function sets the file position indicator for the stream pointed to
by stream. The position within the file is calculated by adding the offset
to a position dependent on the value of whence. The valid values and
effects for whence are as follows:

Using fseek to position a text stream is only valid if either offset is zero,
or if whence is SEEK_SET and offset is a value that was previously returned
by ftell.

 Positioning within a file that has been opened as a text stream is
only supported by the libraries supplied by Analog Devices if the
lines within the file are terminated by the character sequence \r\n.

whence Effect

SEEK_SET Set the position indicator to be equal to offset bytes from the begin-
ning of stream.

SEEK_CUR Set the new position indicator to current position indicator for stream
plus offset.

SEEK_END Set the position indicator to EOF plus offset.

Documented Library Functions

3-246 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

A successful call to fseek will clear the EOF indicator for stream and undo
any effects of ungetc on stream. If the stream has been opened as a update
stream, then the next I/O operation may be either a read request or a write
request.

The fseek function returns zero when successful.

Error Conditions

If the fseek function is unsuccessful, a non-zero value is returned.

Example

#include <stdio.h>

long fseek_and_ftell(FILE *fp)

{

long offset;

/* seek to 20 bytes offset from the start of fp */

if (fseek(fp, 20, SEEK_SET) != 0) {

printf("fseek failed\n");

return -1;

}

/* Now use ftell to get the offset value back */

offset = ftell(fp);

if (offset == -1)

printf("ftell failed\n");

if (offset == 20)

printf("ftell and fseek work\n");

return offset;

}

See Also

fflush, ftell, ungetc

CrossCore Embedded Studio 1.0 3-247
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

fsetpos

 Reposition a file pointer in a stream

Synopsis

#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

Description

The fsetpos function sets the file position indicator for stream, using the
value of the object pointed to by pos. The value pointed to by pos must be
a value obtained from an earlier call to fgetpos on the same stream.

 Positioning within a file that has been opened as a text stream is
only supported by the libraries supplied by Analog Devices if the
lines within the file are terminated by the character sequence \r\n.

A successful call to fsetpos clears the EOF indicator for stream and undoes
any effects of ungetc on the same stream.

The fsetpos function returns zero if it is successful.

Error Conditions

If the fsetpos function is unsuccessful, the function returns a non-zero
value.

Example

Refer to fgetpos for an example.

See Also

fgetpos, fseek, ftell, rewind, ungetc

Documented Library Functions

3-248 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

ftell

 Obtain current file position

Synopsis

#include <stdio.h>
long int ftell(FILE *stream);

Description

The ftell function obtains the current position for a file identified by
stream.

If stream is a binary stream, then the value is the number of characters
from the beginning of the file. If stream is a text stream, then the informa-
tion in the position indicator is unspecified information which is usable
by fseek for determining the file position indicator at the time of the
ftell call.

 Positioning within a file that has been opened as a text stream is
only supported by the libraries supplied by Analog Devices if the
lines within the file are terminated by the character sequence \r\n.

If successful, ftell returns the current value of the file position indicator
on the stream.

Error Conditions

If the ftell function is unsuccessful, a value of -1 is returned.

Example

Refer to fseek for an example.

See Also

fseek

CrossCore Embedded Studio 1.0 3-249
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

fwrite

Buffered output

Synopsis

#include <stdio.h>

size_t fwrite(const void *ptr, size_t size, size_t n,

FILE *stream);

Description

The fwrite function writes to the output stream up to n items of data from
the array pointed by ptr. An item of data is defined as a sequence of char-
acters of size size. The write will complete once n items of data have been
written to the stream. The file position indicator for stream is advanced
by the number of characters successfully written.

When the stream has been opened as a binary stream, the Analog Devices
I/O library may choose to bypass the I/O buffer and transmit data from
the program directly to the external device, particularly when the buffer
size (as defined by the macro BUFSIZ in the stdio.h header file, or con-
trolled by the function setvbuf) is smaller than the number of characters
to be transferred. If an application relies on this feature to always write
data via an I/O buffer, then it should be linked against the third-party I/O
library, using the -full-io switch.

If successful, the fwrite function will return the number of items written.

Error Conditions

If the fwrite function is unsuccessful, it will return the number of elements
successfully written which will be less than n.

Documented Library Functions

3-250 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <stdio.h>

#include <stdlib.h>

char* message="some text";

void write_text_to_file(void)

{

/* Open "file.txt" for writing */

FILE* fp = fopen("file.txt", "w");

int res, message_len = strlen(message);

if (!fp) {

printf("fopen was not successful\n");

return;

}

res = fwrite(message, sizeof(char), message_len, fp);

if (res != message_len)

printf("fwrite was not successful\n");

}

See Also

fread

CrossCore Embedded Studio 1.0 3-251
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

fxbits

Bitwise integer to fixed-point to conversion

Synopsis

#include <stdfix.h>

short fract hrbits(int_hr_t b);

fract rbits(int_r_t b);

long fract lrbits(int_lr_t b);

unsigned short fract uhrbits(uint_uhr_t b);

unsigned fract urbits(uint_ur_t b);

unsigned long fract ulrbits(uint_ulr_t b);

short accum hkbits(int_hk_t b);

accum kbits(int_k_t b);

long accum lkbits(int_lk_t b);

unsigned short accum uhkbits(uint_uhk_t b);

unsigned accum ukbits(uint_uk_t b);

unsigned long accum ulkbits(uint_ulk_t b);

Description

Given an integer operand, the fxbits family of functions return the integer
value divided by 2F, where F is the number of fractional bits in the result
fixed-point type. This is equivalent to the bit-pattern of the integer value
held in a fixed-point type.

Error Conditions

None. If the input integer value does not fit in the number of bits of the
fixed-point result type, the result is saturated to the largest or smallest
fixed-point value.

Documented Library Functions

3-252 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <stdfix.h>

accum k;

unsigned long fract ulr;

k = kbits(-0x640000000ll); /* k == -12.5k */

ulr = ulrbits(0x20000000); /* ulr == 0.125ulr */

See Also

bitsfx

CrossCore Embedded Studio 1.0 3-253
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

fxdivi

Division of integer by integer to give fixed-point result

Synopsis

#include <stdfix.h>

fract rdivi(int numer, int denom);

long fract lrdivi(long int numer, long int denom);

unsigned fract urdivi(unsigned int numer, unsigned int denom);

unsigned long fract ulrdivi(unsigned long int numer,

unsigned long int denom);

accum kdivi(int numer, int denom);

long accum lkdivi(long int numer, long int denom);

unsigned accum ukdivi(unsigned int numer, unsigned int denom);

unsigned long accum ulkdivi(unsigned long int numer,

unsigned long int denom);

Description

Given an integer numerator and denominator, the fxdivi family of
functions computes the quotient and returns the closest fixed-point value
to the result.

Error Conditions

The fxdivi family of functions have undefined behavior if the denominator
is zero.

Documented Library Functions

3-254 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <stdfix.h>

accum quo;

unsigned long fract ulquo;

quo = kdivi(125, -10); /* quo == -12.5k */

ulquo = ulrdivi(1, 8); /* ulquo == 0.125ulr */

See Also

divifx, idivfx

CrossCore Embedded Studio 1.0 3-255
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

getc

Get a character from a stream

Synopsis

#include <stdio.h>
int getc(FILE *stream);

Description

The getc function is functionally equivalent to fgetc, except that it is
implemented (if -full-io is specified) as a macro for C language dialects
and as an inline function if the language dialect is C++.

The resulting implementation will be more efficient than making a call to
the fgetc function, though there are considerations on code size and the
inability to pass the address of getc to another function.

Note that if the -fast-io switch option is specified, then getc is imple-
mented as a standard function call.

Error Conditions

If the getc function is unsuccessful, EOF is returned.

Example

#include <stdio.h>

char use_getc(FILE *fp)

{

char ch;

if ((ch = getc(fp)) == EOF) {

printf("Read End-of-file\n");

return (char)-1;

} else {

Documented Library Functions

3-256 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

return ch;

}

}

See Also

fgetc

CrossCore Embedded Studio 1.0 3-257
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

getchar

Get a character from stdin

Synopsis

#include <stdio.h>
int getchar(void);

Description

The getchar function is functionally the same as calling the getc function
with stdin as its argument. A call to getchar will return the next single
character from the standard input stream. The getchar function also
advances the standard input’s current position indicator.

The getchar function is implemented (if the -full-io switch option is
specified) as a macro for C language dialects and as an inline function if
the language dialect is C++.

The resulting implementation is more efficient than making a function
call, though there are considerations on code size and the ability to pass
the address of getchar to another function.

Note that if the -fast-io is specified, then getchar is implemented as a
standard function call.

Error Conditions

If the getchar function is unsuccessful, EOF is returned.

Documented Library Functions

3-258 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <stdio.h>

char use_getchar(void)

{

char ch;

if ((ch = getchar()) == EOF) {

printf("getchar() failed\n");

return (char)-1;

} else {

return ch;

}

}

See Also

getc

CrossCore Embedded Studio 1.0 3-259
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

gets

Get a string from a stream

Synopsis

#include <stdio.h>
char *gets(char *s);

Description

The gets function reads characters from the standard input stream into the
array pointed to by s. The read will terminate when a NEWLINE character is
read, with the NEWLINE character being replaced by a null character in the
array pointed to by s. The read will also halt if EOF is encountered.

The array pointed to by s must be of equal or greater length of the input
line being read. If this is not the case, the behavior is undefined.

If EOF is encountered without any characters being read, then a NULL
pointer is returned.

Error Conditions

If the gets function is not successful and a read error occurs, a NULL pointer
is returned.

Example

#include <stdio.h>

void fill_buffer(char *buffer)

{

if (gets(buffer) == NULL)

printf("gets failed\n")

Documented Library Functions

3-260 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

else

printf("gets read %s\n", buffer);

}

}

See Also

fgetc, fgets, fread, fscanf

CrossCore Embedded Studio 1.0 3-261
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

gmtime

Convert calendar time into broken-down time as UTC

Synopsis

#include <time.h>
struct tm *gmtime(const time_t *t);

Description

The gmtime function converts a pointer to a calendar time into a bro-
ken-down time in terms of Coordinated Universal Time (UTC). A
broken-down time is a structured variable, as described in time.h.

The broken-down time is returned by gmtime as a pointer to static mem-
ory, which may be overwritten by a subsequent call to either gmtime, or to
localtime.

Error Conditions

None.

Example

#include <time.h>

#include <stdio.h>

time_t cal_time;

struct tm *tm_ptr;

cal_time = time(NULL);

if (cal_time != (time_t) -1) {

tm_ptr = gmtime(&cal_time);

printf("The year is %4d\n",1900 + (tm_ptr->tm_year));

}

Documented Library Functions

3-262 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

localtime, mktime, time

CrossCore Embedded Studio 1.0 3-263
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

heap_calloc

Allocate and initialize memory from a heap

Synopsis

#include <stdlib.h>
void *heap_calloc(int heap_index, size_t nelem, size_t size);

Description

The heap_calloc function allocates an array from the heap identified by
heap_index. The array will contain nelem elements, each of size size; the
whole array will be initialized to zero.

The function returns a pointer to the array. The return value can be safely
converted to an object of any type whose size is not greater than
size*nelem bytes. The memory allocated by calloc may be deallocated by
either the free or heap_free functions.

 Note that the userid of a heap is not the same as the heap’s index; the
index of a heap is returned by the function heap_install or heap_lookup.
Refer to Using Multiple Heaps for more information on multiple
run-time heaps.

Error Conditions

The heap_calloc function returns a null pointer if the requested memory
could not be allocated.

Example

#include <stdlib.h>

#include <stdio.h>

int heapid = HEAP1_USERID;

int heapindex = -1;

Documented Library Functions

3-264 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

long *alloc_array(int nels)

{

if (heapindex < 0) {

heapindex = heap_lookup(heapid);

if (heapindex == -1) {

printf("Heap %d is not defined\n",heapid);

exit(EXIT_FAILURE);

}

}

return heap_calloc(heapindex,nels,sizeof(long));

}

See Also

calloc, free, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_realloc, heap_space_unused, malloc, realloc,
space_unused

CrossCore Embedded Studio 1.0 3-265
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

heap_free

Return memory to a heap

Synopsis

#include <stdlib.h>
void heap_free(int heap_index, void *ptr);

Description

The heap_free function deallocates the object whose address is ptr, pro-
vided that ptr is not a null pointer. If the object was not allocated by one
of the heap allocation routines, or if the object has been previously freed,
then the behavior of the function is undefined. If ptr is a null pointer,
then the heap_free function will just return.

The function does not use the heap_index argument; instead it identifies
the heap from which the object was allocated and returns the memory to
this heap. For more information on creating multiple run-time heaps,
refer to Using Multiple Heaps.

Error Conditions

None.

Example

#include <stdlib.h>

extern int userid;

int heapindex = heap_lookup(userid);

char *ptr = heap_malloc(heapindex,32 * sizeof(char));

...

heap_free(0,ptr);

Documented Library Functions

3-266 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

calloc, free, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_realloc, heap_space_unused, malloc, realloc,
space_unused

CrossCore Embedded Studio 1.0 3-267
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

heap_init

Re-initialize a heap

Synopsis

#include <stdlib.h>
int heap_init(int heap_index);

Description

The heap_init function re-initializes a heap, discarding all allocations
within the heap. Because the function discards any allocations within the
heap, it must not be used if there are any allocations on the heap that are
still active and may be used in the future.

The function returns a zero if it succeeds in re-initializing the heap
specified.

 The run-time libraries use the default heap for data storage,
potentially before the application has reached main. Therefore,
re-initializing the default heap may result in erroneous or
unexpected behavior.

Error Conditions

The heap_init function returns a non-zero result if it failed to re-initialize
the heap.

Example

#include <stdlib.h>

#include <stdio.h>

int heap_index = heap_lookup(USERID_HEAP);

if (heap_init(heap_index)!=0) {

Documented Library Functions

3-268 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

printf("Heap re-initialization failed\n");

}

See Also

calloc, free, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_realloc, heap_space_unused, malloc, realloc,
space_unused

CrossCore Embedded Studio 1.0 3-269
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

heap_install

Set up a heap at runtime

Synopsis

#include <stdlib.h>
int heap_install(void *base, size_t length, int userid);

Description

The heap_install function initializes the heap identified by the parameter
userid. The heap will be set up at the address specified by base and with a
size in bytes specified by length. The function will return the heap index
for the heap once it has been successfully initialized.

Not all length bytes will be available for allocation from the heap, as some
space is claimed for administration, and some space is required, per alloca-
tion. For more information, see Tips for Working With Heaps

The function heap_malloc and the associated functions, such as
heap_calloc and heap_realloc, may be used to allocate memory from the
heap once the heap has been initialized. Refer to Using Multiple Heaps for
more information.

To re-initialize a heap that is already installed, use the heap_init function
(on page 3-267).

Error Conditions

The heap_install function returns -1 if the heap was not initialized suc-
cessfully. Potential reasons include: there is not enough space available in
the __heaps table; a heap with the specified userid already exists; the
space is not large enough for the internal heap structures; the space wraps
around the end of the address space.

Documented Library Functions

3-270 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <stdlib.h>

#include <stdio.h>

static int heapid = 0;

int setup_heap(void *at, size_t bytes)

{

int index;

if ((index = heap_install(at, bytes, ++heapid)) == -1) {

printf("Failed to initialize heap with userid %d\n",

heapid);

exit(EXIT_FAILURE);

}

return index;

}

See Also

calloc, free, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_realloc, heap_space_unused, malloc, realloc,
space_unused

CrossCore Embedded Studio 1.0 3-271
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

heap_lookup

Convert a userid to a heap index

Synopsis

#include <stdlib.h>
int heap_lookup(int userid);

Description

The heap_lookup function converts a userid to a heap index. All heaps
have a userid and a heap index associated with them. Both the userid and
the heap index are set on heap creation. The default heap has userid 0
and heap index 0.

The heap index is required for the functions heap_calloc, heap_malloc,
heap_realloc, heap_init, and heap_space_unused. For more information
on creating multiple run-time heaps, refer to Using Multiple Heaps.

Error Conditions

The heap_lookup function returns -1 if there is no heap with the specified
userid.

Example

#include <stdlib.h>

#include <stdio.h>

int heap_userid = 1;

int heap_id;

if ((heap_id = heap_lookup(heap_userid)) == -1) {

printf("Heap %d not setup

-- will use the default heap\n", heap_userid);

heap_id = 0;

Documented Library Functions

3-272 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

}

char *ptr = heap_malloc(heap_id, 1024);

if (ptr == NULL) {

printf("heap_malloc failed to allocate memory\n");

}

See Also

calloc, free, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_realloc, heap_space_unused, malloc, realloc,
space_unused

CrossCore Embedded Studio 1.0 3-273
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

heap_malloc

Allocate memory from a heap

Synopsis

#include <stdlib.h>
void *heap_malloc(int heap_index, size_t size);

Description

The heap_malloc function allocates an object of size bytes, from the heap
with heap index heap_index. It returns the address of the object if success-
ful. The return value may be used as a pointer to an object of any type
whose size in bytes is not greater than size.

The block of memory returned is uninitialized. The memory may be deal-
located with either the free or heap_free function. For more information
on creating multiple run-time heaps, refer to Using Multiple Heaps.

Error Conditions

The heap_malloc function returns a null pointer if it was unable to allo-
cate the requested memory.

Example

#include <stdlib.h>

#include <stdio.h>

int heap_index = heap_lookup(USERID_HEAP);

long *buffer;

if (heap_index < 0) {

printf("Heap %d is not setup\n",USERID_HEAP);

exit(EXIT_FAILURE);

}

Documented Library Functions

3-274 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

buffer = heap_malloc(heap_index,16 * sizeof(long));

if (buffer == NULL) {

printf("heap_malloc failed to allocate memory\n");

}

See Also

calloc, free, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_realloc, heap_space_unused, malloc, realloc,
space_unused

CrossCore Embedded Studio 1.0 3-275
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

heap_realloc

Change memory allocation from a heap

Synopsis

#include <stdlib.h>
void *heap_realloc(int heap_index, void *ptr, size_t size);

Description

The heap_realloc function changes the size of a previously allocated block
of memory. The new size of the object in bytes is specified by the argu-
ment size; the new object retains the values of the old object up to its
original size, but any data beyond the original size will be indeterminate.
The address of the object is given by the argument ptr. The behavior of
the function is not defined if either the object has not been allocated from
a heap, or if it has already been freed.

If ptr is a null pointer, then heap_realloc behaves the same as
heap_malloc. If ptr is not a null pointer, and if size is zero, then
heap_realloc behaves the same as heap_free.

The argument heap_index is only used if ptr is a null pointer.

If the function successfully re-allocates the object, then it will return a
pointer to the new object.

Error Conditions

If heap_realloc cannot reallocate the memory, it returns a null pointer
and the original memory associated with ptr will be unchanged and will
still be available.

Documented Library Functions

3-276 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <stdlib.h>

#include <stdio.h>

int heap_index = heap_lookup(USERID_HEAP);

int *buffer;

int *temp_buffer;

if (heap_index < 0) {

printf("Heap %d is not setup\n",USERID_HEAP);

exit(EXIT_FAILURE);

}

buffer = heap_malloc(heap_index,32*sizeof(int));

if (buffer == NULL) {

printf("heap_malloc failed to allocate memory\n");

}

...

temp_buffer = heap_realloc(0,buffer,64*sizeof(int));

if (temp_buffer == NULL) {

printf("heap_realloc failed to allocate memory\n");

} else {

buffer = temp_buffer;

}

See Also

calloc, free, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_realloc, heap_space_unused, malloc, realloc,
space_unused

CrossCore Embedded Studio 1.0 3-277
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

heap_space_unused

Space unused in specific heap

Synopsis

#include <stdlib.h>
int heap_space_unused(int heap_index);

Description

The heap_space_unused function returns the total free space in bytes for
the heap with index heap_index.

Note that calling
heap_malloc(heap_index,heap_space_unused(heap_index)) does not
allocate space because each allocated block uses more memory internally
than the requested space. Note also that the free space in the heap may be
fragmented, and thus may not be available in one contiguous block.

Error Conditions

If a heap with heap index heap_index does not exist, this function returns
-1.

Example

#include <stdlib.h>

int free_space;

free_space = heap_space_unused(1); /* Get free space in heap 1

*/

See Also

calloc, free, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_realloc, heap_space_unused, malloc, realloc,
space_unused

Documented Library Functions

3-278 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

idivfx

Division of fixed-point by fixed-point to give integer result

Synopsis

#include <stdfix.h>

int idivi(fract numer, fract denom);

long int idivlr(long fract numer, long fract denom);

unsigned int idivur(unsigned fract numer, unsigned fract denom);

unsigned long int idivulr(unsigned long fract numer,

unsigned long fract denom);

int idivk(accum numer, accum denom);

long int idivlk(long accum numer, long accum denom);

unsigned int idivuk(unsigned accum numer, unsigned accum denom);

unsigned long int idivulk(unsigned long accum numer,

unsigned long accum denom);

Description

Given a fixed-point numerator and denominator, the idivfx family of
functions computes the quotient and returns the closest integer value to
the result.

Error Conditions

The idivfx family of functions have undefined behavior if the denominator
is zero.

CrossCore Embedded Studio 1.0 3-279
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <stdfix.h>

int quo;

unsigned long int ulquo;

quo = idivk(125.0k, -12.5k); /* quo == -10 */

ulquo = idivulr(0.5ulr, 0.125ulr); /* ulquo == 4 */

See Also

divifx, fxdivi

Documented Library Functions

3-280 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

instrprof_request_flush

Flush the instrumented profiling data to the host

Synopsis

#include <instrprof.h>
void instrprof_request_flush(void);

Description

The instrprof_request_flush function will attempt to flush any buffered
instrumented profiling data to the host computer.

The flush will occur immediately if file I/O operations are allowed (file
I/O operations cannot be executed from interrupt handlers or from
unscheduled regions in a multi-threaded application). If the flush cannot
occur immediately, it will occur the next time a profiled function is called,
or returned from when file I/O operations are allowed.

 Do not include the header file instrprof.h or reference the
function instrprof_request_flush in an application which is not
built with instrumented profiling enabled (see -p). You can guard
such code using the preprocessor macro _INSTRUMENTED_PROFILING;
the compiler only defines this macro when instrumented profiling
is enabled.

Flushing data to the host is a cycle-intensive operation. Consider carefully
when and where to call this function within your application. For more
information, see Profiling With Instrumented Code.

Error Conditions

None.

CrossCore Embedded Studio 1.0 3-281
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#if defined (_INSTRUMENTED_PROFILING)

#include <instrprof.h>

#endif

extern void do_something(void);

int main(void) {

do_something();

#if defined(_INSTRUMENTED_PROFILING)

instrprof_request_flush();

#endif

}

Documented Library Functions

3-282 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

ioctl

Apply a control operation to a file descriptor

Synopsis

#include <stdio.h>
int ioctl(int fildes, int cmd, ...);

Description

The ioctl function applies command cmd to file descriptor fildes, along
with any specified arguments for cmd. The file descriptor must be a value
returned by invoking the fileno function upon some open stream fp.

The ioctl function is delegated to the device driver upon which stream fp
was opened. The command cmd, and any provided arguments, are specific
to the device driver; each device driver may interpret commands and argu-
ments differently.

Error Conditions

The ioctl function returns -1 if the operation is not recognized by the
underlying device driver. Other return values are specific to the device
driver’s interpretation of the command.

Example

#include <stdio.h>

int apply_control_cmd(FILE *fp, int cmd, int val) {

int fildes = fileno(fp);

return ioctl(fildes, cmd, val);

}

See Also

fopen, fileno

CrossCore Embedded Studio 1.0 3-283
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

isalnum

Detect alphanumeric character

Synopsis

#include <ctype.h>
int isalnum(int c);

Description

The isalnum function determines whether the argument is an alphanu-
meric character (A-Z, a-z, or 0-9). If the argument is not alphanumeric,
isalnum returns a zero. If the argument is alphanumeric, isalnum returns a
non-zero value.

The function’s behavior is only defined if the argument c is either EOF, or
is equivalent to an unsigned char.

Error Conditions

None.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%3s", isalnum(ch) ? "alphanumeric" : "");

putchar('\n');

}

See Also

isalpha, isdigit

Documented Library Functions

3-284 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

isalpha

Detect alphabetic character

Synopsis

#include <ctype.h>
int isalpha(int c);

Description

The isalpha function determines whether the input is an alphabetic char-
acter (A-Z or a-z). If the input is not alphabetic, isalpha returns a zero.
If the input is alphabetic, isalpha returns a non-zero value.

The function’s behavior is only defined if the argument c is either EOF, or
is equivalent to an unsigned char.

Error Conditions

None.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isalpha(ch) ? "alphabetic" : "");

putchar('\n');

}

See Also

isalnum, isdigit

CrossCore Embedded Studio 1.0 3-285
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

iscntrl

Detect control character

Synopsis

#include <ctype.h>
int iscntrl(int c);

Description

The iscntrl function determines whether the argument is a control charac-
ter (0x00-0x1F or 0x7F). If the argument is not a control character,
iscntrl returns a zero. If the argument is a control character, iscntrl
returns a non-zero value.

The function’s behavior is only defined if the argument c is either EOF, or
is equivalent to an unsigned char.

Error Conditions

None.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", iscntrl(ch) ? "control" : "");

putchar('\n');

}

See Also

isalnum, isgraph

Documented Library Functions

3-286 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

isdigit

Detect decimal digit

Synopsis

#include <ctype.h>
int isdigit(int c);

Description

The isdigit function determines whether the input character is a decimal
digit (0-9). If the input is not a digit, isdigit returns a zero. If the input is
a digit, isdigit returns a non-zero value.

The function’s behavior is only defined if the argument c is either EOF, or
is equivalent to an unsigned char.

Error Conditions

None.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isdigit(ch) ? "digit" : "");

putchar('\n');

}

See Also

isalnum, isalpha, isxdigit

CrossCore Embedded Studio 1.0 3-287
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

isgraph

Detect printable character, not including white space

Synopsis

#include <ctype.h>
int isgraph(int c);

Description

The isgraph function determines whether the argument is a printable
character, not including white space (0x21-0x7e). If the argument is not a
printable character, isgraph returns a zero. If the argument is a printable
character, isgraph returns a non-zero value.

The function’s behavior is only defined if the argument c is either EOF, or
is equivalent to an unsigned char.

Error Conditions

None.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isgraph(ch) ? "graph" : "");

putchar('\n');

}

See Also

isalnum, iscntrl, isprint

Documented Library Functions

3-288 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

isinf

Test for infinity

Synopsis

#include <math.h>

int isinf(double x);

int isinff(float x);

int isinfd (long double x);

Description

The isinf functions return a zero if the argument is not set to the IEEE
constant for +Infinity or -Infinity; otherwise, the functions will return
a non-zero value.

Error Conditions

None.

Example

#include <stdio.h>

#include <math.h>

static int fail=0;

main(){

/* test int isinf(double) */

union {

double d; float f; unsigned long l;

} u;

#ifdef __DOUBLES_ARE_FLOATS__

CrossCore Embedded Studio 1.0 3-289
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

u.l=0xFF800000L; if (isinf(u.d)==0) fail++;

u.l=0xFF800001L; if (isinf(u.d)!=0) fail++;

u.l=0x7F800000L; if (isinf(u.d)==0) fail++;

u.l=0x7F800001L; if (isinf(u.d)!=0) fail++;

#endif

/* test int isinff(float) */

u.l=0xFF800000L; if (isinff(u.f)==0) fail++;

u.l=0xFF800001L; if (isinff(u.f)!=0) fail++;

u.l=0x7F800000L; if (isinff(u.f)==0) fail++;

u.l=0x7F800001L; if (isinff(u.f)!=0) fail++;

/* print pass/fail message */

if (fail==0)

printf("Test passed\n");

else

printf("Test failed: %d\n", fail);

}

See Also

isnan

Documented Library Functions

3-290 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

islower

Detect lowercase character

Synopsis

#include <ctype.h>
int islower(int c);

Description

The islower function determines whether the argument is a lowercase
character (a-z). If the argument is not lowercase, islower returns a zero.
If the argument is lowercase, islower returns a non-zero value.

The function’s behavior is only defined if the argument c is either EOF, or
is equivalent to an unsigned char.

Error Conditions

None.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", islower(ch) ? "lowercase" : "");

putchar('\n');

}

See Also

isalpha, isupper

CrossCore Embedded Studio 1.0 3-291
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

isnan

Test for Not-a-Number (NAN)

Synopsis

#include <math.h>

int isnanf(float x);

int isnan(double x);

int isnand (long double x);

Description

The isnan functions return a zero if the argument is not set to an IEEE
NaN; otherwise, the functions return a non-zero value.

Error Conditions

None.

Example

#include <stdio.h>

#include <math.h>

static int fail=0;

main(){

/* test int isnan(double) */

union {

double d; float f; unsigned long l;

} u;

#ifdef __DOUBLES_ARE_FLOATS__

u.l=0xFF800000L; if (isnan(u.d)!=0) fail++;

Documented Library Functions

3-292 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

u.l=0xFF800001L; if (isnan(u.d)==0) fail++;

u.l=0x7F800000L; if (isnan(u.d)!=0) fail++;

u.l=0x7F800001L; if (isnan(u.d)==0) fail++;

#endif

/* test int isnanf(float) */

u.l=0xFF800000L; if (isnanf(u.f)!=0) fail++;

u.l=0xFF800001L; if (isnanf(u.f)==0) fail++;

u.l=0x7F800000L; if (isnanf(u.f)!=0) fail++;

u.l=0x7F800001L; if (isnanf(u.f)==0) fail++;

/* print pass/fail message */

if (fail==0)

printf("Test passed\n");

else

printf("Test failed: %d\n", fail);

}

See Also

isinf

CrossCore Embedded Studio 1.0 3-293
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

isprint

Detect printable character

Synopsis

#include <ctype.h>
int isprint(int c);

Description

The isprint function determines whether the argument is a printable char-
acter (0x20-0x7E). If the argument is not a printable character, isprint
returns a zero. If the argument is a printable character, isprint returns a
non-zero value.

The function’s behavior is only defined if the argument c is either EOF, or
is equivalent to an unsigned char.

Error Conditions

None.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%3s", isprint(ch) ? "printable" : "");

putchar('\n');

}

See Also

isgraph, isspace

Documented Library Functions

3-294 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

ispunct

Detect punctuation character

Synopsis

#include <ctype.h>
int ispunct(int c);

Description

The ispunct function determines whether the argument is a punctuation
character. If the argument is not a punctuation character, ispunct returns
a zero. If the argument is a punctuation character, ispunct returns a
non-zero value.

The function’s behavior is only defined if the argument c is either EOF, or
is equivalent to an unsigned char.

Error Conditions

None.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%3s", ispunct(ch) ? "punctuation" : "");

putchar('\n');

}

See Also

isalnum

CrossCore Embedded Studio 1.0 3-295
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

isspace

Detect whitespace character

Synopsis

#include <ctype.h>
int isspace(int c);

Description

The isspace function determines whether the argument is a blank
whitespace character (0x09-0x0D or 0x20). This includes the characters
space (), form feed (\f), new line (\n), carriage return (\r), horizontal tab
(\t), and vertical tab (\v).

If the argument is not a blank space character, isspace returns a zero. If
the argument is a blank space character, isspace returns a non-zero value.

The function’s behavior is only defined if the argument c is either EOF, or
is equivalent to an unsigned char.

Error Conditions

None.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isspace(ch) ? "space" : "");

putchar('\n');

}

Documented Library Functions

3-296 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

iscntrl, isgraph

CrossCore Embedded Studio 1.0 3-297
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

isupper

Detect uppercase character

Synopsis

#include <ctype.h>
int isupper(int c);

Description

The isupper function determines whether the argument is an uppercase
character (A-Z). If the argument is not an uppercase character, isupper
returns a zero. If the argument is an uppercase character, isupper returns a
non-zero value.

The function’s behavior is only defined if the argument c is either EOF, or
is equivalent to an unsigned char.

Error Conditions

None.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isupper(ch) ? "uppercase" : "");

putchar('\n');

}

See Also

isalpha, islower

Documented Library Functions

3-298 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

isxdigit

Detect hexadecimal digit

Synopsis

#include <ctype.h>
int isxdigit(int c);

Description

The isxdigit function determines whether the argument is a hexadecimal
digit character (A-F, a-f, or 0-9). If the argument is not a hexadecimal
digit, isxdigit returns a zero. If the argument is a hexadecimal digit,
isxdigit returns a non-zero value.

The function’s behavior is only defined if the argument c is either EOF, or
is equivalent to an unsigned char.

Error Conditions

None.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isxdigit(ch) ? "hexadecimal" : "");

putchar('\n');

}

See Also

isalnum, isdigit

CrossCore Embedded Studio 1.0 3-299
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

_l1_memcpy, _memcpy_l1

Copy instructions between L1 instruction memory and data memory

Synopsis

#include <ccblkfn.h>

void *_l1_memcpy(void *datap, const void *instrp, size_t n);

void *_memcpy_l1(void *instrp, const void *datap, size_t n);

Description

The _l1_memcpy function copies n characters of program instructions
from the address instrp to the data buffer datap. The _memcpy_l1 func-
tion is the inverse: it copies n characters of program instructions from the
data buffer datap to the address instrp. Both functions share the follow-
ing restrictions:

• n must be a multiple of 8

• instrp must be an address in L1 instruction memory

• instrp must be 8-byte aligned

• datap must be 4-byte aligned

• instrp+n-1 must be within L1 instruction memory

• For dual-core processors, instrp must correspond to the core call-
ing the function.

The _l1_memcpy function returns datap for success. The _memcpy_l1
function returns instrp for success.

The C and C++ run-time libraries use _memcpy_l1 to implement the
memory-initialization process, if the .dxe file has been built with the -mem
compiler switch, or with the -meminit linker switch.

Documented Library Functions

3-300 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Error Conditions

If any of the restrictions are not met, the _l1_memcpy and _memcpy_l1
functions return NULL.

 On platforms where L1_CODE_CACHE does not follow on directly
from L1_CODE in memory (such as ADSP-BF561, ADSP-BF52x,
ADSP-BF531, ADSP-BF534, ADSP-BF536, ADSP-BF537, and
ADSP-BF54x processors), _l1_memcpy and _memcpy_l1 allow users
to write to any memory in between. Ensure that addresses being
written to are entirely within valid L1_CODE or L1_CODE_CACHE.

Example

/* copying program instructions from L1 Instruction

** memory to data memory.

*/

#include <ccblkfn.h>

char dest[32];

const char *src = (const char *)0xFFA00000;

if (_l1_memcpy(dest, src, 32) != dest)

exit(1);

/* copying program instructions from data memory

** to L1 Instruction memory.

*/

#include <ccblkfn.h>

const char src[32] = { /* some instruction op-codes */ };

char *dest = (char *)0xFFA00000;

if (_memcpy_l1(dest, src, 32) != dest)

exit(1);

See Also

memcpy

CrossCore Embedded Studio 1.0 3-301
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

labs

Long integer absolute value

Synopsis

#include <stdlib.h>

long int labs(long int j);

long long int llabs (long long int j);

Description

The labs and llabs functions return the absolute value of their integer
inputs.

Note: The result of labs(LONG_MIN) is undefined.

Error Conditions

None.

Example

#include <stdlib.h>

long int j;

j = labs(-285128); /* j = 285128 */

See Also

abs, absfx, fabs

Documented Library Functions

3-302 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

ldexp

Multiply by power of 2

Synopsis

#include <math.h>

float ldexpf (float x, int n);

double ldexp (double x, int n);

long double ldexpd (long double x, int n);

Description

The ldexp functions return the value of the floating-point argument mul-
tiplied by 2n. These functions add the value of n to the exponent of x.

Error Conditions

If the result overflows, the ldexp functions return HUGE_VAL with the
proper sign. If the result underflows, the functions return a zero.
In addition, ldexpf (and ldexp if the size of the double type is the same as
the size of the float type) will set errno to ERANGE.

Example

#include <math.h>

double y;

float x;

y = ldexp (0.5, 2); /* y = 2.0 */

x = ldexpf (1.0, 2); /* x = 4.0 */

See Also

exp, pow

CrossCore Embedded Studio 1.0 3-303
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

ldiv

Long division

Synopsis

#include <stdlib.h>

ldiv_t ldiv(long int numer, long int denom);

lldiv_t lldiv (long long int numer, long long int denom);

Description

The ldiv and lldiv functions divide numer by denom and return a structure
of type ldiv_t and lldiv_t, respectively. The types ldiv_t and lldiv_t
are defined as:

typedef struct {

long int quot;

long int rem;

} ldiv_t;

typedef struct {

long long int quot;

long long int rem;

} lldiv_t;

where quot is the quotient of the division and rem is the remainder, such
that if result is of the appropriate type, then

result.quot * denom + result.rem = numer

Error Conditions

If denom is zero, the behavior of the ldiv and lldiv functions are undefined.

Documented Library Functions

3-304 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <stdlib.h>

ldiv_t result;

result = ldiv(7, 2); /* result.quot=3, result.rem=1 */

See Also

div, divifx, fmod, fxdivi, idivfx

CrossCore Embedded Studio 1.0 3-305
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

localtime

Convert calendar time into broken-down time

Synopsis

#include <time.h>
struct tm *localtime(const time_t *t);

Description

The localtime function converts a pointer to a calendar time into a
broken-down time that corresponds to current time zone. A broken-down
time is a structured variable, which is described in time.h. This implemen-
tation of the header file does not support the Daylight Saving flag nor
does it support time zones and, thus, localtime is equivalent to the
gmtime function.

The broken-down time is returned by localtime as a pointer to static
memory, which may be overwritten by a subsequent call to either
localtime or to gmtime.

Error Conditions

None.

Example

#include <time.h>

#include <stdio.h>

time_t cal_time;

struct tm *tm_ptr;

Documented Library Functions

3-306 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

cal_time = time(NULL);

if (cal_time != (time_t) -1) {

tm_ptr = localtime(&cal_time);

printf("The year is %4d\n",1900 + (tm_ptr->tm_year));

}

See Also

asctime, gmtime, mktime, time

CrossCore Embedded Studio 1.0 3-307
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

log

Natural logarithm

Synopsis

#include <math.h>

float logf (float x);

double log (double x);

long double logd (long double x);

Description

The natural logarithm functions compute the natural (base e) logarithm
of their argument.

Error Conditions

The natural logarithm functions return -HUGE_VAL if the input value is
zero or negative.

Example

#include <math.h>

double y;

float x;

y = log (1.0); /* y = 0.0 */

x = logf (2.71828); /* x = 1.0 */

See Also

alog, exp, log10

Documented Library Functions

3-308 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

log10

Base 10 logarithm

Synopsis

#include <math.h>

float log10f (float f);

double log10(double f);

long double log10d (long double f);

Description

The log10 functions return the base 10 logarithm of their inputs.

Error Conditions

The log10 functions return -HUGE_VAL if the input is zero or negative.

Example

#include <math.h>

double y;

float x;

y = log10 (100.0); /* y = 2.0 */

x = log10f (10.0); /* x = 1.0 */

See Also

alog10, log, pow

CrossCore Embedded Studio 1.0 3-309
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

longjmp

Second return from setjmp

Synopsis

#include <setjmp.h>
void longjmp(jmp_buf env, int return_val);

Description

The longjmp function causes the program to execute a second return from
the place where setjmp (env) was called (with the same jmp_buf
argument).

The longjmp function takes as its arguments a jump buffer that contains
the context at the time of the original call to setjmp. It also takes an inte-
ger, return_val, which setjmp returns if return_val is non-zero.
Otherwise, setjmp returns a 1.

If env was not initialized through a previous call to setjmp or the function
that called setjmp has since returned, the behavior is undefined.

 The use of setjmp and longjmp (or similar functions which do not
follow conventional C/C++ flow control) may produce unexpected
results when the application is compiled with optimizations
enabled. Functions that call setjmp or longjmp are optimized by
the compiler with the assumption that all variables referenced may
be modified by any functions that are called. This assumption
ensures that it is safe to use setjmp and longjmp with optimizations
enabled, though it does mean that it is dangerous to conceal from
the optimizer that a call to setjmp or longjmp is being made, for
example by calling through a function pointer.

Error Conditions

None.

Documented Library Functions

3-310 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <setjmp.h>

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

jmp_buf env;

int res;

void setjump_example(void)

{

if ((res = setjmp(env)) != 0) {

printf ("Problem %d reported by func ()", res);

exit (EXIT_FAILURE);

}

func ();

}

void func (void)

{

if (errno != 0) {

longjmp (env, errno);

}

}

See Also

setjmp

CrossCore Embedded Studio 1.0 3-311
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

malloc

Allocate memory

Synopsis

#include <stdlib.h>
void *malloc(size_t size);

Description

The malloc function returns a pointer to a block of memory of length
size. The block of memory is not initialized. The memory allocated is
aligned to an 8-byte boundary.

Error Conditions

The malloc function returns a null pointer if it is unable to allocate the
requested memory.

Example

#include <stdlib.h>

long *ptr;

ptr = (long *)malloc(10 * sizeof(long)); /* ptr points to an */

/* array of 10 longs */

See Also

calloc, realloc, free

Documented Library Functions

3-312 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

memchr

Find first occurrence of character

Synopsis

#include <string.h>
void *memchr(const void *s1, int c, size_t n);

Description

The memchr function compares the range of memory pointed to by s1
with the input character c, and returns a pointer to the first occurrence of
c. A null pointer is returned if c does not occur in the first n characters.

Error Conditions

None.

Example

#include <string.h>

char *ptr;

ptr= memchr("TESTING", 'E', 7);

/* ptr points to the E in TESTING */

See Also

strchr, strrchr

CrossCore Embedded Studio 1.0 3-313
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

memcmp

Compare objects

Synopsis

#include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);

Description

The memcmp function compares the first n characters of the objects
pointed to by s1 and s2. This function returns a positive value if the s1
object is lexically greater than the s2 object, returns a negative value if the
s2 object is lexically greater than the s1 object, and returns a zero if the
objects are the same.

Error Conditions

None.

Example

#include <string.h>

char *string1 = "ABC";

char *string2 = "BCD";

int result;

result = memcmp (string1, string2, 3); /* result < 0 */

See Also

strcmp, strcoll, strncmp

Documented Library Functions

3-314 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

memcpy

Copy characters from one object to another

Synopsis

#include <string.h>
void *memcpy(void *s1, const void *s2, size_t n);

Description

The memcpy function copies n characters from the object pointed to by s2
into the object pointed to by s1. The behavior of memcpy is undefined if
the two objects overlap.

 The compiler will always align vectors and arrays on a 32-bit word
boundary, and the compiler will normally use this knowledge to
replace a call to memcpy by more efficient in-line code. The align-
ment assumptions made by the compiler are safe, provided that the
vectors and arrays were allocated by the compiler. If the vectors and
arrays were allocated via an assembly function, that assembly
function must ensure that the objects s1 and s2 are aligned on a
4-byte address boundary; this is normally achieved by preceding
the definition of s1 and s2 with the .align 4 assembly directive.

The memcpy function returns the address of s1.

Error Conditions

None.

Example

#include <string.h>

char *a = "SRC";

char *b = "DEST";

memcpy (b, a, 3); /* b="SRCT" */

CrossCore Embedded Studio 1.0 3-315
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

memmove, strcpy, strncpy

Documented Library Functions

3-316 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

memmove

Copy characters between overlapping objects

Synopsis

#include <string.h>
void *memmove(void *s1, const void *s2, size_t n);

Description

The memmove function copies n characters from the object pointed to by
s2 into the object pointed to by s1. The entire object is copied correctly
even if the objects overlap.

The memmove function returns a pointer to s1.

Error Conditions

None.

Example

#include <string.h>

char *ptr, *str = "ABCDE";

ptr = str + 2;

memmove(ptr, str, 3); /* ptr = "ABC", str = "ABABC" */

See Also

memmove, strcpy,strncpy

CrossCore Embedded Studio 1.0 3-317
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

memset

Set range of memory to a character

Synopsis

#include <string.h>
void *memset(void *s1, int c, size_t n);

Description

The memset function sets a range of memory to the input character c.
The first n characters of s1 are set to c.

The memset function returns a pointer to s1.

Error Conditions

None.

Example

#include <string.h>

char string1[50];

memset(string1, ‘\0’, 50); /* set string1 to 0 */

See Also

memcpy

Documented Library Functions

3-318 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

mktime

Convert broken-down time into a calendar time

Synopsis

#include <time.h>
time_t mktime(struct tm *tm_ptr);

Description

The mktime function converts a pointer to a broken-down time, which
represents a local date and time, into a calendar time. However, this
implementation of time.h does not support either daylight saving or time
zones and hence this function will interpret the argument as Coordinated
Universal Time (UTC).

A broken-down time is a structured variable which is defined in the
time.h header file as:

struct tm {

 int tm_sec; /* seconds after the minute [0,61] */

int tm_min; /* minutes after the hour [0,59] */

int tm_hour; /* hours after midnight [0,23] */

int tm_mday; /* day of the month [1,31] */

int tm_mon; /* months since January [0,11] */

int tm_year; /* years since 1900 */

int tm_wday; /* days since Sunday [0, 6] */

int tm_yday; /* days since January 1st [0,365] */

int tm_isdst; /* Daylight Saving flag */

};

The various components of the broken-down time are not restricted to the
ranges indicated above. The mktime function calculates the calendar time
from the specified values of the components (ignoring the initial values of
tm_wday and tm_yday) and then “normalizes” the broken-down time forc-
ing each component into its defined range.

CrossCore Embedded Studio 1.0 3-319
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

If the component tm_isdst is zero, then the mktime function assumes that
daylight saving is not in effect for the specified time. If the component is
set to a positive value, then the function assumes that daylight saving is in
effect for the specified time and will make the appropriate adjustment to
the broken-down time. If the component is negative, the mktime function
should attempt to determine whether daylight saving is in effect for the
specified time but because neither time zones nor daylight saving are sup-
ported, the effect will be as if tm_isdst were set to zero.

Error Conditions

The mktime function returns the value (time_t) -1 if the calendar time
cannot be represented.

Example

#include <time.h>

#include <stdio.h>

static const char *wday[] = {"Sun","Mon","Tue","Wed",

 "Thu","Fri","Sat","???"};

struct tm tm_time = {0,0,0,0,0,0,0,0,0};

tm_time.tm_year = 2000 - 1900;

tm_time.tm_mday = 1;

if (mktime(&tm_time) == -1)

tm_time.tm_wday = 7;

printf("%4d started on a %s\n",

1900 + tm_time.tm_year,

wday[tm_time.tm_wday]);

Documented Library Functions

3-320 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

gmtime, localtime, time

CrossCore Embedded Studio 1.0 3-321
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

modf

Separate integral and fractional parts

Synopsis

#include <math.h>

float modff (float x, float *intptr);

double modf (double x, double *intptr);

long double modfd (long double x, long double *intptr);

Description

The modf functions separate the first argument into integral and frac-
tional portions. The fractional portion is returned and the integral portion
is stored in the object pointed to by intptr. The integral and fractional
portions have the same sign as the input.

Error Conditions

None.

Example

#include <math.h>

double y, n;

float m, p;

y = modf (-12.345, &n); /* y = -0.345, n = -12.0 */

m = modff (11.75, &p); /* m = 0.75, p = 11.0 */

See Also

frexp

Documented Library Functions

3-322 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

mulifx

Multiplication of integer by fixed-point to give integer result

Synopsis

#include <stdfix.h>

int mulir(int a, fract b);

long int mulilr(long int a, long fract b);

unsigned int muliur(unsigned int a, unsigned fract b);

unsigned long int muliulr(unsigned long int a,

unsigned long fract b);

int mulik(int a, accum b);

long int mulilk(long int a, long accum b);

unsigned int muliuk(unsigned int a, unsigned accum b);

unsigned long int muliulk(unsigned long int a,

unsigned long accum b);

Description

Given an integer and a fixed-point value, the family of functions computes
the product and returns the closest integer value to the result.

Error Conditions

None.

Example

#include <stdfix.h>

int prod;

unsigned long int ulprod;

prod = mulik(128, -1.25k); /* prod == -160 */

ulprod = muliulr(128, 0.125ulr); /* ulquo == 16 */

CrossCore Embedded Studio 1.0 3-323
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

No related functions.

Documented Library Functions

3-324 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

perror

Print an error message on standard error

Synopsis

#include <stdio.h>
int perror(const char *s);

Description

The perror function is used to output an error message to the standard
stream stderr.

If the string s is not a null pointer and if the first character addressed by s
is not a null character, the function will output the string s followed by
the character sequence ": ". The function will then print the message that
is associated with the current value of errno. Note that the message
“no error” is used if the value of errno is zero.

Error Conditions

None.

Example

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#define BASE_10 10

int n;

n = strtol (“987654321”,NULL,BASE_10);

if (errno != 0)

perror (“strtol failed”);

CrossCore Embedded Studio 1.0 3-325
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

strerror

Documented Library Functions

3-326 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

pgo_hw_request_flush

Request a flush to the host of the data gathered through profile-guided
optimization on hardware

Synopsis

#include <pgo_hw.h>
void pgo_hw_request_flush(void);

Description

The pgo_hw_request_flush function requests that the run-time support
for profile-guided optimization on hardware should write gathered data to
the host computer. The flush will occur the next time the profile-guided
optimization on hardware run-time support attempts to record data, as
long as file I/O operations are allowed (file I/O operations cannot be
executed from interrupt handlers or when in an unscheduled region in a
multi-threaded application).

 Do not include the header file pgo_hw.h or reference the function
pgo_hw_request_flush in an application that is not built for pro-
file-guided optimization on hardware (see -pguide and -prof-hw).
You can guard such code using the preprocessor macro _PGO_HW;
the compiler only defines this macro when profile-guided optimi-
zation for hardware is enabled.

Flushing data to the host is a cycle-intensive operation. Consider carefully
when and where to call this function within your application. For more
information, see Profile-Guided Optimization and Code Coverage.

Error Conditions

None.

CrossCore Embedded Studio 1.0 3-327
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#if defined (_PGO_HW)

#include <pgo_hw.h>

#endif

extern void do_something(void);

int main(void) {

do_something();

#if defined(_PGO_HW)

pgo_hw_request_flush();

#endif

}

Documented Library Functions

3-328 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

pow

Raise to a power

Synopsis

#include <math.h>

float powf (float x, float y);

double pow (double x, double y);

long double powd (long double x, long double y);

Description

The power functions compute the value of the first argument raised to the
power of the second argument.

Error Conditions

The power functions return zero when the first argument x is zero and the
second argument y is not an integral value. When x is zero and y is less
than zero, or when the result cannot be represented, the functions will
return the constant HUGE_VAL.

Example

#include <math.h>

double z;

float x;

z = pow (4.0, 2.0); /* z = 16.0 */

x = powf (4.0, 2.0); /* x = 16.0 */

See Also

exp, ldexp

CrossCore Embedded Studio 1.0 3-329
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

printf

Print formatted output

Synopsis

#include <stdio.h>
int printf(const char *format, /* args*/ ...);

Description

The printf function places output on the standard output stream stdout
in a form specified by format. The printf function is equivalent to fprintf
with stdout passed as the first argument. The argument format contains a
set of conversion specifiers, directives, and ordinary characters that are
used to control how the data is formatted. Refer to (fprintf) for a descrip-
tion of the valid format specifiers.

The printf function returns the number of characters transmitted.

Error Conditions

If the printf function is unsuccessful, a negative value is returned.

Example

#include <stdio.h>

void printf_example(void)

{

int arg = 255;

/* Output will be "hex:ff, octal:377, integer:255" */

printf("hex:%x, octal:%o, integer:%d\n", arg, arg, arg);

}

Documented Library Functions

3-330 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

fprintf

CrossCore Embedded Studio 1.0 3-331
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

putc

Put a character on a stream

Synopsis

#include <stdio.h>
int putc(int ch, FILE *stream);

Description

The putc function writes its argument to the output stream pointed to by
stream, after converting ch from an int to an unsigned char.

If the putc function call is successful, putc returns its argument ch.

Error Conditions

The stream’s error indicator will be set if the call is unsuccessful, and the
function will return EOF.

Example

#include <stdio.h>

void putc_example(void)

{

/* write the character 'a' to stdout */

if (putc('a', stdout) == EOF)

fprintf(stderr, "putc failed\n");

}

See Also

fputc

Documented Library Functions

3-332 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

putchar

Write a character to stdout

Synopsis

#include <stdio.h>
int putchar(int ch);

Description

The putchar function writes its argument to the standard output stream,
after converting ch from an int to an unsigned char. A call to putchar is
equivalent to calling putc(ch, stdout).

The function is implemented as an inline function if the language dialect
is C++; for other C language dialects, it is implemented as a macro if the
switch -full-io is specified. When it is implemented as a macro, the
resulting implementation is more efficient than making a function call,
though there are considerations on code size and the ability to pass the
address of putchar to another function.

If the putchar function call is successful, putchar returns its argument ch.

Error Conditions

The stream’s error indicator will be set if the call is unsuccessful, and the
function will return EOF.

Example

#include <stdio.h>

void putchar_example(void)

{

/* write the character 'a' to stdout */

if (putchar('a') == EOF)

CrossCore Embedded Studio 1.0 3-333
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

fprintf(stderr, "putchar failed\n");

}

See Also

putc

Documented Library Functions

3-334 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

puts

Put a string to stdout

Synopsis

#include <stdio.h>
int puts(const char *s);

Description

The puts function writes the string pointed to by s, followed by a NEWLINE
character, to the standard output stream stdout. The terminating null
character of the string is not written to the stream.

If the function call is successful, then the return value is zero or greater.

Error Conditions

The macro EOF is returned if puts was unsuccessful, and the error indica-
tor for stdout will be set.

Example

#include <stdio.h>

void puts_example(void)

{

/* write the string "example" to stdout */

if (puts("example") < 0)

fprintf(stderr, "puts failed\n");

}

See Also

fputs

CrossCore Embedded Studio 1.0 3-335
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

qsort

Quicksort

Synopsis

#include <stdlib.h>

void qsort (void *base, size_t nelem, size_t size,

int (*compare) (const void *, const void *));

Description

The qsort function sorts an array of nelem objects, pointed to by base.
Each object is specified by its size.

The contents of the array are sorted into ascending order according to a
comparison function pointed to by compare, which is called with two
arguments that point to the objects being compared. The function returns
an integer less than, equal to, or greater than zero if the first argument is
considered to be respectively less than, equal to, or greater than the
second.

If two elements compare as equal, their order in the sorted array is unspec-
ified. The qsort function executes a binary search operation on a
pre-sorted array. Note that:

• base points to the start of the array

• nelem is the number of elements in the array

• size is the size of each element of the array

• compare is a pointer to a function that is called by qsort to com-
pare two elements of the array. The function returns a value less
than, equal to, or greater than zero, according to whether the first
argument is less than, equal to, or greater than the second.

Documented Library Functions

3-336 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Error Condition

None.

Example

#include <stdlib.h>

float a[10];

int compare_float (const void *a, const void *b)

{

float aval = *(float *)a;

float bval = *(float *)b;

if (aval < bval)

return -1;

else if (aval == bval)

return 0;

else

return 1;

}

qsort (a, sizeof (a)/sizeof (a[0]), sizeof (a[0]),compare_float);

See Also

bsearch

CrossCore Embedded Studio 1.0 3-337
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

raise

Force a signal

Synopsis

#include <signal.h>

int raise (int sig);

Description

The raise function invokes the function registered for signal sig by func-
tion signal, if any. The sig argument must be one of the signals listed in
signal.

 The raise function provides the functionality described in the
ISO/IEC 9899:1999 Standard, and has no impact on the proces-
sor’s interrupt mechanisms. For information on handling
interrupts, refer to the System Run-Time Documentation.

Error Conditions

The raise function returns a zero if successful or a non-zero value if sig is
an unrecognized signal value.

Example

#include <signal.h>

raise(SIGABRT); /* equivalent to calling abort() */

See Also

signal

Documented Library Functions

3-338 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

rand

Random number generator

Synopsis

#include <stdlib.h>
int rand(void);

Description

The rand function returns a pseudo-random integer value in the range
[0, 230– 1].

For this function, the measure of randomness is its periodicity—the num-
ber of values it is likely to generate before repeating a pattern. The output
of the pseudo-random number generator has a period in the order
of 230– 1.

Error Conditions

None.

Example

#include <stdlib.h>

int i;

i = rand();

See Also

srand

CrossCore Embedded Studio 1.0 3-339
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

realloc

Change memory allocation

Synopsis

#include <stdlib.h>
void *realloc(void *ptr, size_t size);

Description

The realloc function changes the memory allocation of the object pointed
to by ptr to size. Initial values for the new object are taken from the val-
ues in the object pointed to by ptr. If the size of the new object is greater
than the size of the object pointed to by ptr, then the values in the newly
allocated section are undefined. The memory allocated is aligned to a
4-byte boundary.

If ptr is a non-null pointer that was not allocated with malloc or
calloc, the behavior is undefined. If ptr is a null pointer, realloc
imitates malloc. If size is zero and ptr is not a null pointer, realloc
imitates free.

Error Conditions

If memory cannot be allocated, ptr remains unchanged and realloc
returns a null pointer.

Example

#include <stdlib.h>

int *ptr;

ptr = malloc(10 * sizeof(int)); /* ptr points to an array

of 10 ints */

ptr = realloc(ptr,20 * sizeof(int)); /* ptr now points to an

array of 20 ints */

Documented Library Functions

3-340 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

calloc, free, malloc

CrossCore Embedded Studio 1.0 3-341
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

remove

Remove file

Synopsis

#include <stdio.h>
int remove(const char *filename);

Description

The remove function removes the file whose name is filename. After the
function call, filename will no longer be accessible.

The remove function is delegated to the current default device driver.

The remove function returns zero on successful completion.

Error Conditions

If the remove function is unsuccessful, a non-zero value is returned.

Example

#include <stdio.h>

void remove_example(char *filename)

{

if (remove(filename))

printf("Remove of %s failed\n", filename);

else

printf("File %s removed\n", filename);

}

See Also

rename

Documented Library Functions

3-342 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

rename

Rename a file

Synopsis

#include <stdio.h>
int rename(const char *oldname, const char *newname);

Description

The rename function establishes a new name, using the string newname,
for a file currently known by the string oldname. After being successful
renamed, the file is no longer accessible by oldname.

The rename function is delegated to the current default device driver.

If rename is successful, a value of zero is returned.

Error Conditions

If rename fails, the file named oldname is unaffected and a non-zero value
is returned.

Example

#include <stdio.h>

void rename_file(char *new, char *old)

{

if (rename(old, new))

printf("rename failed for %s\n", old);

else

printf("%s now named %s\n", old, new);

}

CrossCore Embedded Studio 1.0 3-343
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

remove

Documented Library Functions

3-344 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

rewind

Reset file position indicator in a stream

Synopsis

#include <stdio.h>
void rewind(FILE *stream);

Description

The rewind function sets the file position indicator for stream to the
beginning of the file. This is equivalent to using the fseek routine in the
following manner:

fseek(stream, 0, SEEK_SET);

with the exception that rewind will also clear the error indicator.

Error Conditions

None.

Example

#include <stdio.h>

char buffer[20];

void rewind_example(FILE *fp)

{

/* write "a string" to a file */

fputs("a string", fp);

/* rewind the file to the beginning */

rewind(fp);

/* read back from the file - buffer will be "a string" */

fgets(buffer, sizeof(buffer), fp);

}

CrossCore Embedded Studio 1.0 3-345
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

fseek

Documented Library Functions

3-346 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

roundfx

Round a fixed-point value to a specified precision

Synopsis

#include <stdfix.h>

short fract roundhr(short fract f, int n);

fract roundr(fract f, int n);

long fract roundlr(long fract f, int n);

unsigned short fract rounduhr(unsigned short fract f, int n);

unsigned fract roundur(unsigned fract f, int n);

unsigned long fract roundulr(unsigned long fract f, int n);

short accum roundhk(short accum a, int n);

accum roundk(accum a, int n);

long accum roundlk(long accum a, int n);

unsigned short accum rounduhk(unsigned short accum a, int n);

unsigned accum rounduk(unsigned accum a, int n);

unsigned long accum roundulk(unsigned long accum a, int n);

Description

The roundfx family of functions round a fixed-point value to the number
of fractional bits specified by the second argument. The rounding is
round-to-nearest. If the rounded result is out of range of the result type,
the result saturated to the maximum or minimum fixed-point value. In
addition to the individually-named functions for each fixed-point type, a
type-generic macro roundfx is defined for use in C99 mode. This may be
used with any of the fixed-point types and returns a result of the same type
as its operand.

Error Conditions

None.

CrossCore Embedded Studio 1.0 3-347
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <stdfix.h>

accum a;

long fract f;

a = roundhk(-12.51k, 1); /* a == 12.5k */

a = roundfx(-12.51k, 1); /* a == 12.5k */

f = roundulr(0x12345678p-32ulr, 16); /* f == 0x12340000ulr */

f = roundfx(0x12345678p-32ulr, 16); /* f == 0x12340000ulr */

See Also

No related functions.

Documented Library Functions

3-348 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

scanf

Convert formatted input from stdin

Synopsis

#include <stdio.h>
int scanf(const char *format, /* args */...);

Description

The scanf function reads from the standard input stream stdin, interprets
the inputs according to format, and stores the results of the conversions in
its arguments. The string pointed to by format contains the control for-
mat for the input with the arguments that follow being pointers to the
locations where the converted results are to be written.

The scanf function is equivalent to calling fscanf with stdin as its first
argument. For details on the control format string, refer to fscanf.

The scanf function returns the number of successful conversions
performed.

Error Conditions

The scanf function returns EOF if it encounters an error before any conver-
sions are performed.

Example

#include <stdio.h>

void scanf_example(void)

{

short int day, month, year;

char string[20];

CrossCore Embedded Studio 1.0 3-349
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

/* Scan a string from standard input */

scanf ("%s", string);

/* Scan a date with any separator, eg, 1-1-2006 or 1/1/2006 */

scanf ("%hd%*c%hd%*c%hd", &day, &month, &year);

}

See Also

fscanf

Documented Library Functions

3-350 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

setbuf

Specify full buffering for a file or stream

Synopsis

#include <stdio.h>
void setbuf(FILE *stream, char* buf);

Description

The setbuf function results in the array pointed to by buf being used to
buffer the stream pointed to by stream instead of an automatically allo-
cated buffer. The setbuf function may be used only after the stream
pointed to by stream is opened but before it is read or written to. Note
that the buffer provided must be of size BUFSIZ as defined in the stdio.h
header.

If buf is the NULL pointer, the input/output will be completely unbuffered.

Error Conditions

None.

Example

#include <stdio.h>

#include <stdlib.h>

void* allocate_buffer_from_heap(FILE* fp)

{

/* Allocate a buffer from the heap for the file pointer */

void* buf = malloc(BUFSIZ);

if (buf != NULL)

setbuf(fp, buf);

return buf;

}

CrossCore Embedded Studio 1.0 3-351
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

setbuf

Documented Library Functions

3-352 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

setjmp

Define a run-time label

Synopsis

#include <setjmp.h>
int setjmp(jmp_buf env);

Description

The setjmp function saves the calling environment in the jmp_buf argu-
ment. The effect of the call is to declare a run-time label that can be
jumped to via a subsequent call to longjmp.

When setjmp is called, it immediately returns with a result of zero to indi-
cate that the environment has been saved in the jmp_buf argument. If, at
some later point, longjmp is called with the same jmp_buf argument,
longjmp restores the environment from the argument. The execution then
resumes at the statement immediately following the corresponding call to
setjmp. The effect is as if the call to setjmp has returned for a second time
but this time the function returns a non-zero result.

The effect of calling longjmp is undefined if the function that called
setjmp has returned in the interim.

 The use of setjmp and longjmp (or similar functions which do not
follow conventional C/C++ flow control) may produce unexpected
results when the application is compiled with optimizations
enabled. Functions that call setjmp or longjmp are optimized by
the compiler with the assumption that all variables referenced may
be modified by any functions that are called. This assumption
ensures that it is safe to use setjmp and longjmp with optimizations
enabled, though it does mean that it is dangerous to conceal from
the optimizer that a call to setjmp or longjmp is being made, for
example by calling through a function pointer.

CrossCore Embedded Studio 1.0 3-353
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Error Conditions

None.

Example

See longjmp for an example.

See Also

longjmp

Documented Library Functions

3-354 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

setvbuf

Specify buffering for a file or stream

Synopsis

#include <stdio.h>
int setvbuf(FILE *stream, char *buf, int type, size_t size);

Description

The setvbuf function may be used after a stream has been opened but
before it is read or written to. The kind of buffering that is to be used is
specified by the type argument. The valid values for type are detailed in
the following table.

If buf is not the NULL pointer, the array it points to will be used for buffer-
ing, instead of an automatically allocated buffer. If buf is non-NULL, you
must ensure that the associated storage continues to be available until you
close the stream identified by stream. The size argument specifies the size
of the buffer required. If input/output is unbuffered, the buf and size
arguments are ignored.

If buf is the NULL pointer, buffering is enabled and a buffer of size size
will be automatically generated.

The setvbuf function returns zero when successful.

Type Effect

_IOFBF Use full buffering for output. Only output to the host system when the buffer is
full, or when the stream is flushed or closed, or when a file positioning operation
intervenes.

_IOLBF Use line buffering. The buffer will be flushed whenever a NEWLINE is written, as
well as when the buffer is full, or when input is requested.

_IONBF Do not use any buffering at all.

CrossCore Embedded Studio 1.0 3-355
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Error Conditions

The setvbuf function will return a non-zero value if either an invalid value
is given for type, if the stream has already been used to read or write data,
or if an I/O buffer could not be allocated.

Example

#include <stdio.h>

void line_buffer_stderr(void)

{

/* stderr is not buffered - set to use line buffering */

setvbuf (stderr,NULL,_IOLBF,BUFSIZ);

}

See Also

setbuf

Documented Library Functions

3-356 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

signal

Define signal handling

Synopsis

#include <signal.h>

void (*signal (int sig, void (*func)(int))) (int);

Description

The signal function determines how to handle a signal that is triggered by
the raise or abort functions. The specified function func can be associ-
ated with one of the sig values listed in Table 3-41.

 The function is not thread-safe.

 Despite the interpretations of the sig values listed in Table 3-41,
the signal function has no effect on the processor’s interrupt mech-
anism. Any function registered via the signal function will only be
invoked if done so explicitly, via the function abort or the function
raise. For information on handling processor interrupts, see the
System Run-Time Documentation.

Table 3-41. Valid Values for Parameter sig

Sig value Meaning, according to ISO/IEC 9899:1999 Standard

SIGTERM Request for program termination

SIGABRT Program is terminating abnormally.

SIGFPE Arithmetic operation was erroneous, e.g. division by zero.

SIGILL Illegal instruction, or equivalent.

SIGINT Request for interactive attention

SIGSEGV Access to invalid memory.

CrossCore Embedded Studio 1.0 3-357
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

The func parameter may be one of the values listed in Table 3-42, instead
of a pointer to a function.

Return Value

The signal function returns the value of the previously installed signal or
signal handler action.

Error Conditions

The signal function returns SIG_ERR and sets errno to SIG_ERR if it does
not recognize the requested signal.

Example

#include <signal.h>

signal (SIGABRT, abort_handler); /* enable abort signal */

signal (SIGABRT, SIG_IGN); /* disable abort signal */

See Also

abort, raise

Table 3-42. Additional Valid Values for Parameter func

func value Meaning

SIG_DFL Default behavior: do nothing if the signal is triggered by raise or abort.

SIG_ERR An error occurred.

SIG_IGN Ignore the signal if triggered by raise or abort.

Documented Library Functions

3-358 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

sin

Sine

Synopsis

#include <math.h>

double sin (double x);

float sinf (float x);

long double sind (long double x);

fract16 sin_fr16 (fract16 x);

fract32 sin_fr32 (fract32 x);

_Fract sin_fx16 (_Fract x);

long _Fract sin_fx32 (long _Fract x);

Description

The sine functions return the sine of the argument. Both the argument x
and the results returned by the functions are in radians.

sin_fr16, sin_fr32, sin_fx16 and sin_fx32 sin functions input a frac-
tional value in the range [-1.0, 1.0) corresponding to [-/2, /2]. The
domain represents half a cycle which can be used to derive a full cycle if
required. (See Notes below.) The result, in radians, is in the range [-1.0,
1.0).

The domain of sinf is [-102940.0, 102940.0], and the domain for sind is
[-843314852.0, 843314852.0]. The result returned by the functions sin,
sinf, and sind is in the range [-1, 1]. The functions return 0.0 if the input
argument x is outside the respective domains.

Error Conditions

None.

CrossCore Embedded Studio 1.0 3-359
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <math.h>

double y;

y = sin(3.14159); /* y = 0.0 */

Notes

The domain of the sin_fr16, sin_fr32, sin_fx16 and sin_fx32 functions
is restricted to the fractional range [-1, 1), which corresponds to half a
period from –(/2) to /2. It is possible to derive the full period using the
following properties of the function.

sine [0, /2] = -sine [, 3/2]

sine [-/2, 0] = -sine [/2,]

The function below uses these properties to calculate the full period
(from 0 to 2) of the sine function using an input domain of [0, 0x7fff].

#include <math.h>

fract16 sin2pi_fr16 (fract16 x)

{

if (x < 0x2000) { /* <0.25 */

/* first quadrant [0../2): */

/* sin_fr16([0x0..0x7fff]) = [0..0x7fff) */

return sin_fr16(x * 4);

} else if (x == 0x2000) { /* = 0.25 */

return 0x7fff;

} else if (x < 0x6000) { /* < 0.75 */

/* if (x < 0x4000) */

/* second quadrant [/2..): */

/* -sin_fr16([0x8000..0x0)) = [0x7fff..0) */

/* */

Documented Library Functions

3-360 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

/* if (x < 0x6000) */

/* third quadrant [..3/2): */

/* -sin_fr16([0x0..0x7fff]) = [0..0x8000) */

return -sin_fr16((0xc000 + x) * 4);

} else {

/* fourth quadrant [3/2..): */

/* sin_fr16([0x8000..0x0)) = [0x8000..0) */

return sin_fr16((0x8000 + x) * 4);

}

}

See Also

asin, cos

CrossCore Embedded Studio 1.0 3-361
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

sinh

Hyperbolic sine

Synopsis

#include <math.h>

float sinhf (float x);

double sinh (double x);

long double sinhd (long double x);

Description

The hyperbolic sine functions return the hyperbolic sine of x.

Error Conditions

The input argument x must be in the domain [-87.33, 88.72] for sinhf,
and in the domain [-710.46, 710.47] for sinhd. If the input value is
greater than the function’s domain, HUGE_VAL is returned; if the input
value is less than the domain, -HUGE_VAL is returned.

Example

#include <math.h>

double x, y;

float z, w;

y = sinh (x);

z = sinhf (w);

See Also

cosh

Documented Library Functions

3-362 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

snprintf

Format data into an n-character array

Synopsis

#include <stdio.h>
int snprintf (char *str, size_t n, const char *format, ...);

Description

The snprintf function is defined in the C99 Standard (ISO/IEC 9899).

It is similar to the sprintf function in that snprintf formats data accord-
ing to the argument format, and then writes the output to the array str.
The argument format contains a set of conversion specifiers, directives,
and ordinary characters that are used to control how the data is formatted.
Refer to fprintf for a description of the valid format specifiers.

The function differs from sprintf in that no more than n-1 characters are
written to the output array. Any data written beyond the n-1'th character
is discarded. A terminating NUL character is written after the end of the last
character written to the output array unless n is set to zero, in which case
nothing will be written to the output array and the output array may be
represented by the NULL pointer.

The snprintf function returns the number of characters that would have
been written to the output array str if n was sufficiently large. The return
value does not include the terminating null character written to the array.

The output array will contain all of the formatted text if the return value is
not negative and is also less than n.

Error Conditions

The snprintf function returns a negative value if a formatting error
occurred.

CrossCore Embedded Studio 1.0 3-363
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <stdio.h>

#include <stdlib.h>

extern char *make_filename(char *name, int id)

{

char *filename_template = "%s%d.dat";

char *filename = NULL;

int len = 0;

int r; /* return value from snprintf */

do {

r = snprintf(filename,len,filename_template,name,id);

if (r < 0) /* formatting error? */

abort();

if (r < len) /* was complete string written? */

return filename; /* return with success */

filename = realloc(filename,(len=r+1));

} while (filename != NULL);

abort();

}

See Also

fprintf, sprintf, vsnprintf

Documented Library Functions

3-364 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

space_unused

Space unused in heap

Synopsis

#include <stdlib.h>
int space_unused(void);

Description

The space_unused function returns the total free space in bytes for the
default heap. Note that calling malloc(space_unused()) does not allocate
space because each allocated block uses more memory internally than the
requested space, and also the free space in the heap may be fragmented,
and thus not be available in one contiguous block.

Error Conditions

If there are no heaps, calling this function will return -1.

Example

#include <stdlib.h>

int free_space;

free_space = space_unused(); /* Get free space in the heap */

See Also

calloc, free,heap_calloc, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_space_unused, malloc, realloc, space_unused

CrossCore Embedded Studio 1.0 3-365
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

sprintf

Format data into a character array

Synopsis

#include <stdio.h>
int sprintf (char *str, const char *format, /* args */...);

Description

The sprintf function formats data according to the argument format, and
then writes the output to the array str. The argument format contains a
set of conversion specifiers, directives, and ordinary characters that are
used to control how the data is formatted. Refer to fprintf for a descrip-
tion of the valid format specifiers.

In all respects other than writing to an array rather than a stream, the
behavior of sprintf is similar to that of fprintf.

If the sprintf function is successful, it returns the number of characters
written in the array, not counting the terminating NULL character.

Error Conditions

The sprintf function returns a negative value if a formatting error
occurred.

Example

#include <stdio.h>

#include <stdlib.h>

char filename[128];

extern char *assign_filename(char *name)

Documented Library Functions

3-366 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

{

char *filename_template = "%s.dat";

int r; /* return value from sprintf */

if ((strlen(name)+5) > sizeof(filename))

abort();

r = sprintf(filename, filename_template, name);

if (r < 0) /* sprintf failed */

abort();

return filename; /* return with success */

}

See Also

fprintf, snprintf

CrossCore Embedded Studio 1.0 3-367
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

sqrt

Square root

Synopsis

#include <math.h>

float sqrtf (float x);

double sqrt (double x);

long double sqrtd (long double x);

fract16 sqrt_fr16 (fract16 x);

fract32 sqrt_fr32 (fract32 x);

_Fract sqrt_fx16 (_Fract x);

long _Fract sqrt_fx32 (long _Fract x);

Description

The square root functions return the positive square root of the argument
x.

Error Conditions

If the input argument is negative, then the functions sqrtf, sqrt and
sqrtd will return a NaN, while the functions sqrt_fr16, sqrt_fr32,
sqrt_fx16 and sqrt_fx32 will return a zero.

Example

#include <math.h>

double y;

y = sqrt(2.0); /* y = 1.414..... */

Documented Library Functions

3-368 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

rsqrt

CrossCore Embedded Studio 1.0 3-369
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

srand

Random number seed

Synopsis

#include <stdlib.h>
void srand(unsigned int seed);

Description

The srand function sets the seed value for the rand function. A particular
seed value always produces the same sequence of pseudo-random
numbers.

Error Conditions

None.

Example

#include <stdlib.h>

srand(22);

See Also

rand

Documented Library Functions

3-370 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

sscanf

Convert formatted input in a string

Synopsis

#include <stdio.h>
int sscanf(const char *s, const char *format, /* args */...);

Description

The sscanf function reads from the string s. The function is equivalent to
fscanf with the exception of the string being read from a string rather
than a stream. The behavior of sscanf when reaching the end of the string
equates to fscanf reaching the EOF in a stream. For details on the control
format string, refer to fscanf.

The sscanf function returns the number of items successfully read.

Error Conditions

If the sscanf function is unsuccessful, EOF is returned.

Example

#include <stdio.h>

void sscanf_example(const char *input)

{

short int day, month, year;

char string[20];

/* Scan for a string from "input" */

sscanf (input, "%s", string);

/* Scan a date with any separator, eg, 1-1-2006 or 1/1/2006 */

sscanf (input, "%hd%*c%hd%*c%hd", &day, &month, &year);

}

CrossCore Embedded Studio 1.0 3-371
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

fscanf

Documented Library Functions

3-372 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

strcat

Concatenate strings

Synopsis

#include <string.h>
char *strcat(char *s1, const char *s2);

Description

The strcat function appends a copy of the null-terminated string pointed
to by s2 to the end of the null-terminated string pointed to by s1. The
function returns a pointer to the new s1 string, which is null-terminated.
The behavior of strcat is undefined if the two strings overlap.

Error Conditions

None.

Example

#include <string.h>

char string1[50];

string1[0] = 'A';

string1[1] = 'B';

string1[2] = '\0';

strcat(string1, "CD"); /* new string is "ABCD" */

See Also

strncat

CrossCore Embedded Studio 1.0 3-373
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

strchr

Find first occurrence of character in string

Synopsis

#include <string.h>
char *strchr(const char *s1, int c);

Description

The strchr function returns a pointer to the first location in s1
(null-terminated string) that contains the character c.

Error Conditions

The strchr function returns a null pointer if c is not part of the string.

Example

#include <string.h>

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = strchr(ptr1, 'E');

/* ptr2 points to the E in TESTING */

See Also

memchr, strstr

Documented Library Functions

3-374 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

strcmp

Compare strings

Synopsis

#include <string.h>
int strcmp(const char *s1, const char *s2);

Description

The strcmp function lexicographically compares the null-terminated
strings pointed to by s1 and s2. The function returns a positive value if
the s1 string is greater than the s2 string, a negative value if the s2 string is
greater than the s1 string, and a zero if the strings are the same.

Error Conditions

None.

Example

#include <string.h>

char string1[50], string2[50];

if (strcmp(string1, string2))

printf("%s is different than %s \n", string1, string2);

See Also

memcmp, strncmp

CrossCore Embedded Studio 1.0 3-375
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

strcoll

Compare strings

Synopsis

#include <string.h>
int strcoll(const char *s1, const char *s2);

Description

The strcoll function compares the string pointed to by s1 with the string
pointed to by s2. The comparison is based on the LC_COLLATE locale
macro. Because only the C locale is defined in the Blackfin run-time envi-
ronment, the strcoll function is identical to the strcmp function. The
function returns a positive value if the s1 string is greater than the s2
string, a negative value if the s2 string is greater than the s1 string, and a
zero if the strings are the same.

Error Conditions

None.

Example

#include <string.h>

char string1[50], string2[50];

if (strcoll(string1, string2))

printf("%s is different than %s \n", string1, string2);

See Also

strcmp, strncmp

Documented Library Functions

3-376 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

strcpy

Copy from one string to another

Synopsis

#include <string.h>
void *strcpy(char *s1, const char *s2);

Description

The strcpy function copies the null-terminated string pointed to by s2
into the space pointed to by s1. The memory allocated for s1 must be
large enough to hold s2, plus one space for the null character ('\0').
The behavior of strcpy is undefined if the two objects overlap, or if s1 is
not large enough. The strcpy function returns the new s1.

Error Conditions

None.

Example

#include <string.h>

char string1[50];

strcpy(string1, "SOMEFUN");

/* SOMEFUN is copied into string1 */

See Also

memcpy, memmove, strncpy

CrossCore Embedded Studio 1.0 3-377
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

strcspn

Length of character segment in one string but not the other

Synopsis

#include <string.h>
size_t strcspn(const char *s1, const char *s2);

Description

The strcspn function returns the length of the initial segment of s1, which
consists entirely of characters not in the string pointed to by s2. The string
pointed to by s2 is treated as a set of characters. The order of the charac-
ters in the string is not significant.

Error Conditions

None.

Example

#include <string.h>

char *ptr1, *ptr2;

size_t len;

ptrl = "Tried and Tested";

ptr2 = "aeiou";

len = strcspn (ptrl,ptr2); /* len = 2 */

See Also

strlen, strspn

Documented Library Functions

3-378 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

strerror

Get string containing error message

Synopsis

#include <string.h>
char *strerror(int errnum);

Description

The strerror function returns a pointer to a string containing an error mes-
sage by mapping the number in errnum to that string.

Error Conditions

None.

Example

#include <string.h>

char *ptr1;

ptr1 = strerror(1);

See Also

No related functions.

CrossCore Embedded Studio 1.0 3-379
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

strftime

Format a broken-down time

Synopsis

#include <time.h>

size_t strftime(char *buf,

size_t buf_size,

const char *format,

const struct tm *tm_ptr);

Description

The strftime function formats the broken-down time tm_ptr into the char
array pointed to by buf, under the control of the format string format. At
most, buf_size characters (including the null terminating character) are
written to buf.

In a similar way as for printf, the format string consists of ordinary char-
acters, which are copied unchanged to the char array buf, and zero or
more conversion specifiers. A conversion specifier starts with the character
% and is followed by a character that indicates the form of transformation
required—the supported transformations are given below in Table 3-43.
The strftime function only supports the “C” locale, and this is reflected in
the table.

Table 3-43. Conversion Specifiers Supported by strftime

Conversion Specifier Transformation ISO/IEC 9899

%a Abbreviated weekday name Yes

%A Full weekday name Yes

%b Abbreviated month name Yes

%B Full month name Yes

Documented Library Functions

3-380 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

%c Date and time presentation in the form
of DDD MMM dd hh:mm:ss yyyy

Yes

%C Century of the year POSIX.2-1992 + ISO C99

%d Day of the month (01-31) Yes

%D Date represented as mm/dd/yy POSIX.2-1992 + ISO C99

%e Day of the month, padded with a space
character (cf %d)

POSIX.2-1992 + ISO C99

%F Date represented as yyyy-mm-dd POSIX.2-1992 + ISO C99

%h Abbreviated name of the month (same as
%b)

POSIX.2-1992 + ISO C99

%H Hour of the day as a 24-hour clock
(00-23)

Yes

%I Hour of the day as a 12-hour clock
(00-12)

Yes

%j Day of the year (001-366) Yes

%k Hour of the day as a 24-hour clock pad-
ded with a space (0-23)

No

%l Hour of the day as a 12-hour clock pad-
ded with a space (0-12)

No

%m Month of the year (01-12) Yes

%M Minute of the hour (00-59) Yes

%n Newline character POSIX.2-1992 + ISO C99

%p AM or PM Yes

%P am or pm No

%r Time presented as either hh:mm:ss AM
or as hh:mm:ss PM

POSIX.2-1992 + ISO C99

%R Time presented as hh:mm POSIX.2-1992 + ISO C99

%S Second of the minute (00-61) Yes

%t Tab character POSIX.2-1992 + ISO C99

Table 3-43. Conversion Specifiers Supported by strftime (Cont’d)

Conversion Specifier Transformation ISO/IEC 9899

CrossCore Embedded Studio 1.0 3-381
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

 The current implementation of time.h does not support time zones
and, therefore, the %Z specifier does not generate any characters.

The strftime function returns the number of characters (not including the
terminating null character) that have been written to buf.

Error Conditions

The strftime function returns zero if more than buf_size characters are
required to process the format string. In this case, the contents of the array
buf will be indeterminate.

%T Time formatted as %H:%M:%S POSIX.2-1992 + ISO C99

%U Week number of the year (week starts on
Sunday) (00-53)

Yes

%w Weekday as a decimal (0-6) (0 if Sun-
day)

Yes

%W Week number of the year (week starts on
Sunday) (00-53)

Yes

%x Date represented as mm/dd/yy (same as
%D)

Yes

%X Time represented as hh:mm:ss Yes

%y Year without the century (00-99) Yes

%Y Year with the century (nnnn) Yes

%Z Time zone name, or nothing if the name
cannot be determined

Yes

%% % character Yes

Table 3-43. Conversion Specifiers Supported by strftime (Cont’d)

Conversion Specifier Transformation ISO/IEC 9899

Documented Library Functions

3-382 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <time.h>

#include <stdio.h>

extern void

print_time(time_t tod)

{

char tod_string[100];

strftime(tod_string,

100,

"It is %M min and %S secs after %l o'clock (%p)",

gmtime(&tod));

puts(tod_string);

}

See Also

ctime, gmtime, localtime, mktime

CrossCore Embedded Studio 1.0 3-383
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

strlen

String length

Synopsis

#include <string.h>
size_t strlen(const char *s1);

Description

The strlen function returns the length of the null-terminated string
pointed to by s1 (not including the terminating null character).

Error Conditions

None.

Example

#include <string.h>

size_t len;

len = strlen("SOMEFUN"); /* len = 7 */

See Also

strcspn, strspn

Documented Library Functions

3-384 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

strncat

Concatenate characters from one string to another

Synopsis

#include <string.h>
char *strncat(char *s1, const char *s2, size_t n);

Description

The strncat function appends a copy of up to n characters in the
null-terminated string pointed to by s2 to the end of the null-terminated
string pointed to by s1. The function returns a pointer to the new s1
string.

The behavior of strncat is undefined if the two strings overlap. The new
s1 string is terminated with a null character ('\0').

Error Conditions

None.

Example

#include <string.h>

char string1[50], *ptr;

string1[0]='\0';

strncat(string1, "MOREFUN", 4);

/* string1 equals "MORE" */

See Also

strcat

CrossCore Embedded Studio 1.0 3-385
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

strncmp

Compare characters in strings

Synopsis

#include <string.h>
int strncmp(const char *s1, const char *s2, size_t n);

Description

The strncmp function lexicographically compares up to n characters of the
null-terminated strings pointed to by s1 and s2. The function returns a
positive value when the s1 string is greater than the s2 string, a negative
value when the s2 string is greater than the s1 string, and a zero when the
strings are the same.

Error Conditions

None.

Example

#include <string.h>

char *ptr1;

ptr1 = "TEST1";

if (strncmp(ptr1, "TEST", 4) == 0)

printf("%s starts with TEST \n", ptr1);

See Also

memcmp, strcmp

Documented Library Functions

3-386 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

strncpy

Copy characters from one string to another

Synopsis

#include <string.h>
char *strncpy(char *s1, const char *s2, size_t n);

Description

The strncpy function copies up to n characters of the null-terminated
string pointed to by s2 into the space pointed to by s1. If the last character
copied from s2 is not a null, the result does not end with a null. The
behavior of strncpy is undefined when the two objects overlap. The
strncpy function returns the new s1.

If the s2 string contains fewer than n characters, the s1 string is padded
with the null character until all n characters are written.

Error Conditions

None.

Example

#include <string.h>

char string1[50];

strncpy(string1, "MOREFUN", 4);

/* MORE is copied into string1 */

string1[4] = '\0'; /* must null-terminate string1 */

See Also

memcpy, memmove, strcpy

CrossCore Embedded Studio 1.0 3-387
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

strpbrk

Find character match in two strings

Synopsis

#include <string.h>
char *strpbrk(const char *s1, const char *s2);

Description

The strpbrk function returns a pointer to the first character in s1 that is
also found in s2. The string pointed to by s2 is treated as a set of charac-
ters. The order of the characters in the string is not significant.

Error Conditions

In the event that no character in s1 matches any in s2, a null pointer is
returned.

Example

#include <string.h>

char *ptr1, *ptr2, *ptr3;

ptr1 = "TESTING";

ptr2 = "SHOP"

ptr3 = strpbrk(ptr1, ptr2);

/* ptr3 points to the S in TESTING */

See Also

strspn

Documented Library Functions

3-388 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

strrchr

Find last occurrence of character in string

Synopsis

#include <string.h>
char *strrchr(const char *s1, int c);

Description

The strrchr function returns a pointer to the last occurrence of character c
in the null-terminated input string s1.

Error Conditions

The strrchr function returns a null pointer if c is not found.

Example

#include <string.h>

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = strrchr(ptr1, 'T');

/* ptr2 points to the second T of TESTING */

See Also

memchr, strchr

CrossCore Embedded Studio 1.0 3-389
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

strspn

Length of segment of characters in both strings

Synopsis

#include <string.h>
size_t strspn(const char *s1, const char *s2);

Description

The strspn function returns the length of the initial segment of s1, which
consists entirely of characters in the string pointed to by s2. The string
pointed to by s2 is treated as a set of characters. The order of the charac-
ters in the string is not significant.

Error Conditions

None.

Example

#include <string.h>

size_t len;

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = "ERST";

len = strspn(ptr1, ptr2); /* len = 4 */

See Also

strcspn, strlen

Documented Library Functions

3-390 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

strstr

Find string within string

Synopsis

#include <string.h>
char *strstr(const char *s1, const char *s2);

Description

The strstr function returns a pointer to the first occurrence in the string of
s1 of the characters pointed to by s2. This excludes the terminating null
character in s1.

Error Conditions

If the string is not found, strstr returns a null pointer. If s2 points to a
string of zero length, s1 is returned.

Example

#include <string.h>

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = strstr (ptr1, "E");

/* ptr2 points to the E in TESTING */

See Also

strchr

CrossCore Embedded Studio 1.0 3-391
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

strtod

Convert string to double

Synopsis

#include <stdlib.h>
double strtod (const char *nptr, char **endptr)

Description

The strtod function extracts a value from the string pointed to by nptr,
and returns the value as a double. The strtod function expects nptr to
point to a string that represents either a decimal floating-point number or
a hexadecimal floating-point number. Either form of number may be pre-
ceded by a sequence of whitespace characters (as determined by isspace)
that the function ignores.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and dig-
its are one or more decimal digits. The sequence of digits may contain a
decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (–) followed by the hexadecimal prefix 0x or 0X. This character

Documented Library Functions

3-392 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.
If endptr is not NULL, a pointer to the character that stopped the scan is
stored at the location pointed to by endptr. If no conversion can be per-
formed, the value of nptr is stored at the location pointed to by endptr.

Error Conditions

The strtod function returns a zero if no conversion is made and a pointer
to the invalid string is stored in the object pointed to by endptr. If the
correct value results in an overflow, a positive or negative (as appropriate)
HUGE_VAL is returned. If the correct value results in an underflow, zero is
returned. The ERANGE value is stored in errno in the case of either an over-
flow or underflow.

Example

#include <stdlib.h>

char *rem;

double dd;

dd = strtod ("2345.5E4 abc",&rem);

/* dd = 2.3455E+7, rem = " abc" */

dd = strtod ("-0x1.800p+9,123",&rem);

/* dd = -768.0, rem = ",123" */

CrossCore Embedded Studio 1.0 3-393
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

See Also

atof, strtofxfx, strtol, strtoul

Documented Library Functions

3-394 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

strtof

Convert string to float

Synopsis

#include <stdlib.h>
float strtof (const char *nptr, char **endptr)

Description

The strtof function extracts a value from the string pointed to by nptr,
and returns the value as a float. The strtof function expects nptr to point
to a string that represents either a decimal floating-point number or a
hexadecimal floating-point number. Either form of number may be pre-
ceded by a sequence of whitespace characters (as determined by isspace)
that the function ignores.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and dig-
its are one or more decimal digits. The sequence of digits may contain a
decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (–) followed by the hexadecimal prefix 0x or 0X. This character

CrossCore Embedded Studio 1.0 3-395
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.
If endptr is not NULL, a pointer to the character that stopped the scan is
stored at the location pointed to by endptr. If no conversion can be per-
formed, the value of nptr is stored at the location pointed to by endptr.

Error Conditions

The strtof function returns a zero if no conversion is made and a pointer
to the invalid string is stored in the object pointed to by endptr. If the
correct value results in an overflow, a positive or negative (as appropriate)
HUGE_VAL is returned. If the correct value results in an underflow, zero is
returned. The ERANGE value is stored in errno in the case of either an over-
flow or underflow.

Example

#include <stdlib.h>

char *rem;

float ff;

ff = strtof ("2345.5E4 abc",&rem);

/* ff = 2.3455E+7, rem = " abc" */

ff = strtof ("-0x1.800p+9,123",&rem);

/* ff = -768.0, rem = ",123" */

Documented Library Functions

3-396 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

atof, strtofxfx, strtol, strtoul

CrossCore Embedded Studio 1.0 3-397
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

strtofxfx

Convert string to fixed-point

Synopsis

#include <stdfix.h>

short fract strtofxhr(const char *nptr, char **endptr);

fract strtofxr(const char *nptr, char **endptr);

long fract strtofxlr(const char *nptr, char **endptr);

unsigned short fract strtofxuhr(const char *nptr, char **endptr);

unsigned fract strtofxur(const char *nptr, char **endptr);

unsigned long fract strtofxulr(const char *nptr, char **endptr);

short accum strtofxhk(const char *nptr, char **endptr);

accum strtofxk(const char *nptr, char **endptr);

long accum strtofxlk(const char *nptr, char **endptr);

unsigned short accum strtofxuhk(const char *nptr, char **endptr);

unsigned accum strtofxuk(const char *nptr, char **endptr);

unsigned long accum strtofxulk(const char *nptr, char **endptr);

Description

The strtofxfx family of functions extracts a value from the string pointed
to by nptr, and returns the value as a fixed-point. The strtofxfx functions
expect nptr to point to a string that represents either a decimal float-
ing-point number or a hexadecimal floating-point number. Either form of
number may be preceded by a sequence of whitespace characters (as deter-
mined by isspace) that the function ignores.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and
digits are one or more decimal digits. The sequence of digits may contain
a decimal point (.).

Documented Library Functions

3-398 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (–) followed by the hexadecimal prefix 0x or 0X. This character
sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.
If endptr is not NULL, a pointer to the character that stopped the scan is
stored at the location pointed to by endptr. If no conversion can be per-
formed, the value of nptr is stored at the location pointed to by endptr.

Error Conditions

The strtofxfx functions return a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr. If
the correct value results in an overflow, the maximum positive or negative
(as appropriate) fixed-point value is returned. If the correct value results in
an underflow, zero is returned. The ERANGE value is stored in errno in the
case of overflow.

CrossCore Embedded Studio 1.0 3-399
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <stdfix.h>

char *rem;

accum k;

unsigned long fract ulr;

k = strtofxk ("-2345.5E-3 abc",&rem);

/* k = -2.3455k, rem = " abc" */

ulr = strtofxulr ("0x180p-12,123",&rem);

/* ulr = 0x1800p-16ulr, rem = ",123" */

See Also

strtod, strtol, strtoul

Documented Library Functions

3-400 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

strtok

Convert string to tokens

Synopsis

#include <string.h>
char *strtok(char *s1, const char *s2);

Description

The strtok function returns successive tokens from the string s1, where
each token is delimited by characters from the string s2.

A call to strtok, with s1 not NULL, returns a pointer to the first token in
s1, where a token is a consecutive sequence of characters not in s2. The s1
string is modified in place to insert a null character at the end of the
returned token. If s1 consists entirely of characters from s2, NULL is
returned.

Subsequent calls to strtok, with s1 equal to NULL, return successive tokens
from the same string. When the string contains no further tokens, NULL is
returned. Each new call to strtok may use a new delimiter string, even if
s1 is NULL. If s1 is NULL, the remainder of the string is converted into
tokens using the new delimiter characters.

Error Conditions

The strtok function returns a null pointer if there are no tokens remaining
in the string.

CrossCore Embedded Studio 1.0 3-401
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <string.h>

static char str[] = "a phrase to be tested, today";

char *t;

t = strtok(str, " "); /* t points to "a" */

t = strtok(NULL, " "); /* t points to "phrase" */

t = strtok(NULL, ","); /* t points to "to be tested" */

t = strtok(NULL, "."); /* t points to " today" */

t = strtok(NULL, "."); /* t = NULL */

See Also

No related functions.

Documented Library Functions

3-402 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

strtol

Convert string to long integer

Synopsis

#include <stdlib.h>
long int strtol(const char *nptr, char **endptr, int base);

Description

The strtol function returns as a long int the value represented by the
string nptr. If endptr is not a null pointer, strtol stores a pointer to the
unconverted remainder in *endptr.

The strtol function breaks down the input into three sections: white space
(as determined by isspace), initial characters, and unrecognized charac-
ters, including a terminating null character. The initial characters may
comprise an optional sign character, 0x or 0X, when base is 16, and those
letters and digits which represent an integer with a radix of base. The let-
ters (a-z or A-Z) are assigned the values 10 to 35 and are permitted only
when those values are less than the value of base.

If base is zero, the base is taken from the initial characters. A leading 0x
indicates base 16; a leading 0 indicates base 8. For any other leading char-
acters, base 10 is used. If base is between 2 and 36, it is used as a base for
conversion.

Error Conditions

The strtol function returns a zero if no conversion is made, and a pointer
to the invalid string is stored in the object pointed to by endptr (provided
that endptr is not a null pointer). If the correct value results in an over-
flow, positive or negative (as appropriate) LONG_MAX is returned. If the
correct value results in an underflow, LONG_MIN is returned. The ERANGE
value is stored in errno in the case of either overflow or underflow.

CrossCore Embedded Studio 1.0 3-403
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <stdlib.h>

#define base 10

char *rem;

long int i;

i = strtol("2345.5", &rem, base);

/* i=2345, rem=".5" */

See Also

atoi, atol, strtofxfx, strtoul

Documented Library Functions

3-404 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

strtold

Convert string to long double

Synopsis

#include <stdlib.h>
long double strtold(const char *nptr, char **endptr)

Description

The strtold function extracts a value from the string pointed to by nptr,
and returns the value as a long double. The strtold function expects nptr
to point to a string that represents either a decimal floating-point number
or a hexadecimal floating-point number. Either form of number may be
preceded by a sequence of whitespace characters (as determined by
isspace) that the function ignores.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and dig-
its are one or more decimal digits. The sequence of digits may contain a
decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (–) followed by the hexadecimal prefix 0x or 0X. This character

CrossCore Embedded Studio 1.0 3-405
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.
If endptr is not NULL, a pointer to the character that stopped the scan is
stored at the location pointed to by endptr. If no conversion can be per-
formed, the value of nptr is stored at the location pointed to by endptr.

Error Conditions

The strtold function returns a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr. If
the correct value results in an overflow, a positive or negative (as appropri-
ate) LDBL_MAX is returned. If the correct value results in an underflow, zero
is returned. The ERANGE value is stored in errno in the case of either an
overflow or underflow.

Example

#include <stdlib.h>

char *rem;

long double dd;

dd = strtold ("2345.5E4 abc",&rem);

/* dd = 2.3455E+7, rem = " abc" */

dd = strtold ("-0x1.800p+9,123",&rem);

/* dd = -768.0, rem = ",123" */

Documented Library Functions

3-406 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

strtofxfx, strtol, strtoul

CrossCore Embedded Studio 1.0 3-407
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

strtoll

Convert string to long long integer

Synopsis

#include <stdlib.h>
long long int strtoll(const char *nptr, char **endptr, int base);

Description

The strtoll function returns as a long long int the value represented by
the string nptr. If endptr is not a null pointer, strtoll stores a pointer to
the unconverted remainder in *endptr.

The strtoll function breaks down the input into three sections: white space
(as determined by isspace), initial characters, and unrecognized charac-
ters, including a terminating null character. The initial characters may
comprise an optional sign character, 0x or 0X, when base is 16, and those
letters and digits which represent an integer with a radix of base. The let-
ters (a-z or A-Z) are assigned the values 10 to 35 and are permitted only
when those values are less than the value of base.

If base is zero, the base is taken from the initial characters. A leading 0x
indicates base 16; a leading 0 indicates base 8. For any other leading char-
acters, base 10 is used. If base is between 2 and 36, it is used as a base for
conversion.

Error Conditions

The strtoll function returns a zero if no conversion is made and a pointer
to the invalid string is stored in the object pointed to by endptr (provided
that endptr is not a null pointer). If the correct value results in an over-
flow, positive or negative (as appropriate) LLONG_MAX is returned. If the
correct value results in an underflow, LLONG_MIN is returned. The ERANGE
value is stored in errno in the case of either overflow or underflow.

Documented Library Functions

3-408 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <stdlib.h>

#define base 10

char *rem;

long long int i;

i = strtoll("2345.5", &rem, base);

/* i=2345, rem=".5" */

See Also

atoll, strtofxfx, strtoul

CrossCore Embedded Studio 1.0 3-409
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

strtoul

Convert string to unsigned long integer

Synopsis

#include <stdlib.h>

unsigned long int strtoul(const char *nptr,

char **endptr, int base);

Description

The strtoul function returns as an unsigned long int the value represented
by the string nptr. If endptr is not a null pointer, strtoul stores a pointer
to the unconverted remainder in *endptr.

The strtoul function breaks down the input into three sections:

• Whitespace (as determined by isspace)

• Initial characters

• Unrecognized characters including a terminating null character

The initial characters may comprise an optional sign character, 0x or 0X,
when base is 16, and those letters and digits which represent an integer
with a radix of base. The letters (a-z or A-Z) are assigned the values 10
to 35 and are permitted only when those values are less than the value of
base.

If base is zero, the base is taken from the initial characters. A leading 0x
indicates base 16; a leading 0 indicates base 8. For any other leading
characters, base 10 is used. If base is between 2 and 36, it is used as a base
for conversion.

Documented Library Functions

3-410 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Error Conditions

The strtoul function returns a zero if no conversion is made and a pointer
to the invalid string is stored in the object pointed to by endptr (provided
that endptr is not a null pointer). If the correct value results in an over-
flow, ULONG_MAX is returned. The ERANGE value is stored in errno in the
case of overflow.

Example

#include <stdlib.h>

#define base 10

char *rem;

unsigned long int i;

i = strtoul("2345.5", &rem, base);

/* i = 2345, rem = ".5" */

See Also

atoi, atol, strtofxfx, strtol

CrossCore Embedded Studio 1.0 3-411
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

strtoull

Convert string to unsigned long long integer

Synopsis

#include <stdlib.h>

unsigned long long int strtoull(const char *nptr,

char **endptr, int base);

Description

The strtoull function returns as an unsigned long long int, the value
represented by the string nptr. If endptr is not a null pointer, strtoull
stores a pointer to the unconverted remainder in *endptr.

The strtoull function breaks down the input into three sections:

• Whitespace (as determined by isspace)

• Initial characters

• Unrecognized characters including a terminating null character

The initial characters may comprise an optional sign character, 0x or 0X,
when base is 16, and those letters and digits which represent an integer
with a radix of base. The letters (a-z or A-Z) are assigned the values 10
to 35 and are permitted only when those values are less than the value of
base.

If base is zero, the base is taken from the initial characters. A leading 0x
indicates base 16; a leading 0 indicates base 8. For any other leading
characters, base 10 is used. If base is between 2 and 36, it is used as a base
for conversion.

Documented Library Functions

3-412 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Error Conditions

The strtoull function returns a zero if no conversion is made and a pointer
to the invalid string is stored in the object pointed to by endptr (provided
that endptr is not a null pointer). If the correct value results in an over-
flow, ULLONG_MAX is returned. The ERANGE value is stored in errno in the
case of overflow.

Example

#include <stdlib.h>

#define base 10

char *rem;

unsigned long long int i;

i = strtoull("2345.5", &rem, base);

/* i = 2345, rem = ".5" */

See Also

atoll, strtofxfx, strtoll

CrossCore Embedded Studio 1.0 3-413
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

strxfrm

Transform string using LC_COLLATE

Synopsis

#include <string.h>
size_t strxfrm(char *s1, const char *s2, size_t n);

Description

The strxfrm function transforms the string pointed to by s2 using the
locale-specific category LC_COLLATE. The function places the result in the
array pointed to by s1.

If s1 and s2 are transformed and used as arguments to strcmp, the result is
identical to the result derived from strcoll using s1 and s2 as arguments.
However, since only C locale is implemented, this function does not per-
form any transformations other than the number of characters. The string
stored in the array pointed to by s1 is never more than n characters,
including the terminating null character.

The function returns 1. If this value is n or greater, the result stored in the
array pointed to by s1 is indeterminate. The s1 can be a null pointer if n
is 0.

Error Conditions

None.

Example

#include <string.h>

char string1[50];

strxfrm(string1, "SOMEFUN", 49);

/* SOMEFUN is copied into string1 */

Documented Library Functions

3-414 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

strcmp, strcoll

CrossCore Embedded Studio 1.0 3-415
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

tan

Tangent

Synopsis

#include <math.h>

float tanf (float x);

double tan (double x);

long double tand (long double x);

fract16 tan_fr16 (fract16 x);

fract32 tan_fr32 (fract32 x);

_Fract tan_fx16 (_Fract x);

long _Fract tan_fx32 (long _Fract x);

Description

The tangent functions return the tangent of x. Both the argument x and
the function results are in radians. The defined domain for the tanf
function is [-9099, 9099], and for the tand function the domain is
[-4.216e8, 4.216e8].

The tan_fr16, tan_fr32, tan_fx16 and tan_fx32 functions are defined for
fractional input values between [- /4, /4]. The output from the function
is in the range [-1.0, 1.0).

Error Conditions

The tangent functions return a zero if the input argument is not in the
defined domain.

Documented Library Functions

3-416 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <math.h>

double y;

y = tan (3.14159/4.0) /* y = 1.0 */

See Also

atan, atan2

CrossCore Embedded Studio 1.0 3-417
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

tanh

Hyperbolic tangent

Synopsis

#include <math.h>

float tanhf (float x);

double tanh (double x);

long double tanhd (long double x);

Description

The hyperbolic tangent functions return the hyperbolic tangent of the
argument x, where x is measured in radians.

Error Conditions

None.

Example

#include <math.h>

double x, y;

float z, w;

y = tanh (x);

z = tanhf (w);

See Also

cosh, sinh

Documented Library Functions

3-418 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

time

Calendar time

Synopsis

#include <time.h>
time_t time(time_t *t);

Description

The time function returns the current calendar time, which measures the
number of seconds that have elapsed since the start of a known epoch.
As the calendar time cannot be determined in this implementation of
time.h, a result of (time_t)-1 is returned. The function result is also
assigned to its argument, if the pointer to t is not a null pointer.

Error Conditions

The time function will return the value (time_t) -1 if the calendar time is
not available.

Example

#include <time.h>

#include <stdio.h>

if (time(NULL) == (time_t) -1)

printf("Calendar time is not available\n");

See Also

ctime, gmtime, localtime

CrossCore Embedded Studio 1.0 3-419
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

tmpfile

Create a temporary file

Synopsis

#include <stdio.h>
FILE *tmpfile(void);

Description

This function is not thread-safe, and is only available if an application is
built with the switch -full-io.

The tmpfile function creates a temporary file and uses fopen to open the
file in binary read/write mode (mode = "wb+"). The remove function will
be used to delete the file when it is closed or when the application
terminates.

If successful, the function will return a pointer to the stream; if the func-
tion could not open a temporary file, it will return NULL.

 The implementation of the function uses tmpnam. Refer to the
function’s reference page to see how it creates a file name.

Error Conditions

The function will return a null pointer if it could not open a temporary
file.

Documented Library Functions

3-420 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <stdio.h>

#include <string.h>

#include <stdfix.h>

FILE *tmp1;

FILE *tmp2;

long fract temp_results1[32768];

long fract temp_results2[32768];

tmp1 = tmpfile();

tmp2 = tmpfile();

if ((tmp1) && (tmp2)) {

/* Save some temporary calculations */

fwrite (temp_results1,1,sizeof(temp_results1),tmp1);

fwrite (temp_results2,1,sizeof(temp_results2),tmp2);

- - - - - - - - - - - - - -

/* Restore temporary calculations */

rewind (tmp1);

fread (temp_results1,1,sizeof(temp_results1),tmp1);

CrossCore Embedded Studio 1.0 3-421
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

rewind (tmp2);

fread (temp_results2,1,sizeof(temp_results2),tmp2);

/* Close (and delete) the temporary files */

fclose (tmp1);

fclose (tmp2);
}

See Also

fopen, tmpnam, remove

Documented Library Functions

3-422 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

tmpnam

Create a name for a temporary file

Synopsis

#include <stdio.h>
char *tmpnam(char *tempname);

Description

This function is only available if an application is built with the switch
-full-io.

The tmpnam function generates a file name that can be used as the name
of a temporary file. If the argument tempname is not a NULL pointer, the
function will assume that the pointer is to an array of at least L_tmpnam
characters, and it will copy the file name into the array.

The function generates a different file name each time that it is called. In
this implementation, the file name generated is of the form:

ctmNNNNN.tmp

where NNNNN represents a five-digit octal number, starting with 00000
and incrementing through to 77777.

 The file name generated is a valid file name that is not the same as
the name of an existing file. This implementation will ensure that
it is unique by calling the remove function to delete any existing
version of the file.

Files whose names are generated by tmpnam are only temporary in the sense
that their names are unique—unlike files created by tmpfile, they are not
removed when the application terminates or they are closed; removing the
files created by using names generated by tmpnam remains the responsibil-
ity of the programmer.

CrossCore Embedded Studio 1.0 3-423
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

The tmpnam function is thread-safe and will generate a different file name
on an application-wide basis—that is, each thread will effectively share a
common copy of the function and its data.

The function returns a pointer to the file name. If the argument tempname
is a NULL pointer then the function will return a pointer to internal static
memory that contains the file name; this static memory may be overwrit-
ten by a subsequent call to tmpnam.

Error Conditions

None.

Example

#include <stdio.h>

FILE *open_temp_file(char *filename)

{

 return fopen(tmpnam(filename), "w+");

}

void close_temp_file(FILE * workfp, char *filename)

{

fclose(workfp);

remove(filename);

}

FILE *workfp;

char workname[L_tmpnam];

workfp = open_temp_file(workname);

close_temp_file(workfp, workname);

Documented Library Functions

3-424 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

See Also

tmpfile, fopen, remove

CrossCore Embedded Studio 1.0 3-425
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

tolower

Convert from uppercase to lowercase

Synopsis

#include <ctype.h>
int tolower(int c);

Description

The tolower function converts the input character to lowercase if it is
uppercase; otherwise, it returns the character.

The function’s behavior is only defined if the argument c is either EOF, or
is equivalent to an unsigned char.

Error Conditions

None.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

if(isupper(ch))

printf("tolower=%#04x", tolower(ch));

putchar('\n');

}

See Also

islower, isupper, toupper

Documented Library Functions

3-426 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

toupper

Convert from lowercase to uppercase

Synopsis

#include <ctype.h>
int toupper(int c);

Description

The toupper function converts the input character to uppercase if it is in
lowercase; otherwise, it returns the character.

The function’s behavior is only defined if the argument c is either EOF, or
is equivalent to an unsigned char.

Error Conditions

None.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

if(islower(ch))

printf("toupper=%#04x", toupper(ch));

putchar('\n');

}

See Also

islower, isupper, tolower

CrossCore Embedded Studio 1.0 3-427
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

ungetc

Push character back into input stream

Synopsis

#include <stdio.h>
int ungetc(int uc, FILE *stream);

Description

The ungetc function pushes the character specified by uc back onto
stream. The characters that have been pushed back onto stream will be
returned by any subsequent read of stream in the reverse order of their
pushing.

A successful call to the ungetc function will clear the EOF indicator for
stream. The file position indicator for stream is decremented for every
successful call to ungetc.

Upon successful completion, ungetc returns the character pushed back
after conversion.

Error Conditions

If the ungetc function is unsuccessful, EOF is returned.

Example

#include <stdio.h>

void ungetc_example(FILE *fp)

{

int ch, ret_ch;

/* get char from file pointer */

ch = fgetc(fp);

/* unget the char, return value should be char */

Documented Library Functions

3-428 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

if ((ret_ch = ungetc(ch, fp)) != ch)

printf("ungetc failed\n");

/* make sure that the char had been placed in the file */

if ((ret_ch = fgetc(fp)) != ch)

printf("ungetc failed to put back the char\n");

}

See Also

fseek, fsetpos, getc

CrossCore Embedded Studio 1.0 3-429
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

va_arg

Get next argument in variable-length list of arguments

Synopsis

#include <stdarg.h>
void va_arg(va_list ap, type);

Description

The va_arg macro is used to walk through the variable-length list of argu-
ments to a function.

After starting to process a variable-length list of arguments with va_start,
call va_arg with the same va_list variable to extract arguments from the
list. Each call to va_arg returns a new argument from the list.

Substitute a type name corresponding to the type of the next argument for
the type parameter in each call to va_arg. After processing the list, call
va_end.

The stdarg.h header file defines a pointer type called va_list that is used
to access the list of variable arguments.

The function calling va_arg is responsible for determining the number
and types of arguments in the list. The function needs this information to
determine how many times to call va_arg and what to pass for the type
parameter each time. There are several common ways for a function to
determine this type of information. The standard C printf function reads
its first argument looking for % sequences to determine the number and
types of its extra arguments. In the example, all of the arguments are of the
same type (char*), and a termination value (NULL) is used to indicate the
end of the argument list. Other methods are also possible.

Documented Library Functions

3-430 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

If a call to va_arg is made after all arguments have been processed, or if
va_arg is called with a type parameter that is different from the type of the
next argument in the list, the behavior of va_arg is undefined.

Error Conditions

None.

Example

#include <stdio.h>

#include <stdarg.h>

#include <string.h>

#include <stdlib.h>

char *concat(char *s1,...)

{

int len = 0;

char *result;

char *s;

va_list ap;

va_start (ap,s1);

s = s1;

while (s){

len += strlen (s);

s = va_arg (ap,char *);

}

va_end (ap);

result = malloc (len +7);

if (!result)

return result;

*result = '\0';

va_start (ap,s1);

CrossCore Embedded Studio 1.0 3-431
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

s = s1;

while (s){

strcat (result,s);

s = va_arg (ap,char *);

}

va_end (ap);

return result;

}

char *txt1 = "One";

char *txt2 = "Two";

char *txt3 = "Three";

extern int main(void)

{

char *result;

result = concat(txt1, txt2, txt3, NULL);

puts(result); /* prints "OneTwoThree" */

free(result);

}

See Also

va_start, va_end

Documented Library Functions

3-432 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

va_end

Finish processing variable-length list of arguments

Synopsis

#include <stdarg.h>
void va_end(va_list ap);

Description

The va_end macro can only be used after the va_start macro has been
invoked. A call to va_end concludes the processing of a variable length list
of arguments that was begun by va_start.

Error Conditions

None.

See Also

va_arg, va_start

CrossCore Embedded Studio 1.0 3-433
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

va_start

Initialize processing variable-length list of arguments

Synopsis

#include <stdarg.h>
void va_start(va_list ap, parmN);

Description

The va_start macro is used to start processing variable arguments in a
function declared to take a variable number of arguments. The first argu-
ment to va_start should be a variable of type va_list, which is used by
va_arg to walk through the arguments.

The second argument is the name of the last named parameter in the func-
tion’s parameter list; the list of variable arguments immediately follows
this parameter. The va_start macro must be invoked before either the
va_arg or va_end macro can be invoked.

Error Conditions

None.

See Also

va_arg, va_end

Documented Library Functions

3-434 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

vfprintf

Print formatted output of a variable argument list

Synopsis

#include <stdio.h>
#include <stdarg.h>

int vfprintf(FILE *stream, const char *format, va_list ap);

Description

The vfprintf function formats data according to the argument format, and
then writes the output to the stream stream. The argument format con-
tains a set of conversion specifiers, directives, and ordinary characters that
are used to control how the data is formatted. Refer to fprintf for a
description of the valid format specifiers.

The vfprintf function behaves in the same manner as fprintf with the
exception that instead of being a function which takes a variable number
or arguments it is called with an argument list ap of type va_list, as
defined in stdarg.h.

If the vfprintf function is successful it will return the number of characters
output.

Error Conditions

The vfprintf function returns a negative value if unsuccessful.

CrossCore Embedded Studio 1.0 3-435
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <stdio.h>

#include <stdarg.h>

void write_name_to_file(FILE *fp, char *name_template, ...)

{

va_list p_vargs;

int ret; /* return value from vfprintf */

va_start (p_vargs,name_template);

ret = vfprintf(fp, name_template, p_vargs);

va_end (p_vargs);

if (ret < 0)

printf("vfprintf failed\n");

}

See Also

fprintf, va_start, va_end

Documented Library Functions

3-436 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

vprintf

Print formatted output of a variable argument list to stdout

Synopsis

#include <stdio.h>
#include <stdarg.h>

int vprintf(const char *format, va_list ap);

Description

The vprintf function formats data according to the argument format, and
then writes the output to the standard output stream stdout. The argu-
ment format contains a set of conversion specifiers, directives, and
ordinary characters that are used to control how the data is formatted.
Refer to fprintf for a description of the valid format specifiers.

The vprintf function behaves in the same manner as vfprintf with stdout
provided as the pointer to the stream.

If the vprintf function is successful it will return the number of characters
output.

Error Conditions

The vprintf function returns a negative value if unsuccessful.

CrossCore Embedded Studio 1.0 3-437
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

void print_message(int error, char *format, ...)

{

/* This function is called with the same arguments as for */

/* printf but if the argument error is not zero, then the */

/* output will be preceded by the text "ERROR:" */

va_list p_vargs;

int ret; /* return value from vprintf */

va_start (p_vargs, format);

if (!error)

printf("ERROR: ");

ret = vprintf(format, p_vargs);

va_end (p_vargs);

if (ret < 0)

printf("vprintf failed\n");

}

See Also

fprintf, vfprintf

Documented Library Functions

3-438 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

vsnprintf

Format argument list into an n-character array

Synopsis

#include <stdio.h>
#include <stdarg.h>

int vsnprintf (char *str, size_t n, const char *format,

va_list args);

Description

The vsnprintf function is similar to the vsprintf function in that it formats
the variable argument list args according to the argument format, and
then writes the output to the array str. The argument format contains a
set of conversion specifiers, directives, and ordinary characters that are
used to control how the data is formatted. Refer to fprintf for a descrip-
tion of the valid format specifiers.

The function differs from vsprintf in that no more than n-1 characters
are written to the output array. Any data written beyond the n-1'th char-
acter is discarded. A terminating NUL character is written after the end of
the last character written to the output array unless n is set to zero, in
which case nothing will be written to the output array and the output
array may be represented by the NULL pointer.

The vsnprintf function returns the number of characters that would have
been written to the output array str if n was sufficiently large. The return
value does not include the terminating NUL character written to the array.

Error Conditions

The vsnprintf function returns a negative value if unsuccessful.

CrossCore Embedded Studio 1.0 3-439
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

char *message(char *format, ...)

{

char *message = NULL;

int len = 0;

int r;

va_list p_vargs; /* return value from vsnprintf */

do {

va_start (p_vargs,format);

r = vsnprintf (message,len,format,p_vargs);

va_end (p_vargs);

if (r < 0) /* formatting error? */

abort();

if (r < len) /* was complete string written? */

return message; /* return with success */

message = realloc (message,(len=r+1));

} while (message != NULL);

abort();

}

See Also

fprintf, snprintf

Documented Library Functions

3-440 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

vsprintf

Format argument list into a character array

Synopsis

#include <stdio.h>
#include <stdarg.h>

int vsprintf (char *str, const char *format, va_list args);

Description

The vsprintf function formats the variable argument list args according to
the argument format, and then writes the output to the array str.
The argument format contains a set of conversion specifiers, directives,
and ordinary characters that are used to control how the data is formatted.
Refer to fprintf for a description of the valid format specifiers.

The vsprintf function behaves in the same manner as sprintf with the
exception that instead of being a function which takes a variable number
or arguments function it is called with an argument list args of type
va_list, as defined in stdarg.h.

The vsprintf function returns the number of characters that have been
written to the output array str. The return value does not include the
terminating NUL character written to the array.

Error Conditions

The vsprintf function returns a negative value if unsuccessful.

CrossCore Embedded Studio 1.0 3-441
C/C++ Compiler and Library Manual for Blackfin Processors

C/C++ Run-Time Library

Example

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

char filename[128];

char *assign_filename(char *filename_template, ...)

{

char *message = NULL;

int r;

va_list p_vargs; /* return value from vsprintf */

va_start (p_vargs,filename_template);

r = vsprintf(&filename[0], filename_template, p_vargs);

va_end (p_vargs);

if (r < 0) /* formatting error? */

abort();

return &filename[0]; /* return with success */

}

See Also

fprintf, sprintf, snprintf

Documented Library Functions

3-442 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

CrossCore Embedded Studio 1.0 4-1
C/C++ Compiler and Library Manual for Blackfin Processors

4 DSP RUN-TIME LIBRARY

This chapter describes the DSP run-time library, which contains a broad
collection of functions that are commonly required by signal processing
applications. The services provided by the DSP run-time library include
support for general-purpose signal processing such as companders, filters,
and Fast Fourier Transform (FFT) functions. These services are Analog
Devices extensions to ANSI standard C. These support functions are in
addition to the C/C++ run-time library functions described in Chapter 3,
C/C++ Run-Time Library. (The library also contains functions called
implicitly by the compiler, for example div32.)

For more information about the algorithms on which many of the DSP
run-time library’s math functions are based, see W. J. Cody and W.
Waite, Software Manual for the Elementary Functions, Englewood Cliffs,
New Jersey: Prentice Hall, 1980.

 In addition to containing the user-callable functions described
in this chapter, the DSP run-time library also contains compiler
support functions that perform basic operations on integer and
floating-point types that the compiler might not perform in-line.
These functions are called by compiler-generated code to imple-
ment basic type conversions, floating-point operations, and so on.
Compiler support functions should not be called directly from user
code.

DSP Run-Time Library Guide

4-2 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

This chapter contains:

• DSP Run-Time Library Guide
contains information about the library and provides a description
of the DSP header files that are included with this release of the
ccblkfn compiler.

• DSP Run-Time Library Reference
contains the complete reference for each DSP run-time library
function provided with this release of the ccblkfn compiler.

DSP Run-Time Library Guide
The DSP run-time library contains functions that can be called from your
source program. This section includes:

• Working With Library Source Code

• Library Attributes

• DSP Header Files

• Measuring Cycle Counts

Working With Library Source Code
The source code for the functions in the DSP run-time library is provided
with CCES. By default, the libraries are installed in the directory Black-
fin\lib, and the source files are copied into Blackfin\lib\src. Each
function is contained in a separate file. The file name is the name of the
function with an .asm or .c extension. If you do not intend to modify any
of the run-time library functions, you may delete this directory and its
contents to conserve disk space.

CrossCore Embedded Studio 1.0 4-3
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Source code is provided so you can customize specific functions.
To modify these files, proficiency in Blackfin assembly language and an
understanding of the run-time environment is needed.

Refer to C/C++ Run-Time Model and Environment for more
information.

Before modifying source code, copy it to a file with a different file name
and rename the function itself. Test the function before you use it in your
system to verify that it is functionally correct.

 Analog Devices only supports the run-time library functions as
currently provided.

Library Attributes
The DSP run-time library contains the same attributes as the C/C++
run-time library. For more information, see Library Attributes.

DSP Header Files
The DSP header files contain prototypes for the DSP library functions.
When the appropriate #include preprocessor command is included in
your source, the compiler uses the prototypes to check that each function
is called with the correct arguments. Table 4-1 shows the DSP header files
included in this release of the ccblkfn compiler.

Table 4-1. DSP Header Files

Header File Description

complex.h Basic complex arithmetic functions (on page 4-4)

cycle_count.h Basic cycle counting (on page 4-8)

cycles.h Cycle counting with statistics (on page 4-8)

filter.h Filters and transformations (on page 4-9)

math.h Math functions (on page 4-19)

DSP Run-Time Library Guide

4-4 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

complex.h

The complex.h header file contains type definitions and basic arithmetic
operations for variables of type complex_float, complex_double,
complex_long_double, complex_fract16, and complex_fract32.

The complex functions defined in this header file are listed in Table 4-2.
Functions that operate in the complex_fract16 and complex_fract32 data
types use saturating arithmetic. The complex_fract16 data type has 32-bit
alignment.

The following structures represent complex numbers in rectangular
coordinates:

typedef struct

{

float re;

float im;

} complex_float;

typedef struct

{

double re;

double im;

} complex_double;

typedef struct

{

matrix.h Matrix functions (on page 4-23)

stats.h Statistical functions (on page 4-37)

vector.h Vector functions (on page 4-44)

window.h Window generators (on page 4-60)

Table 4-1. DSP Header Files (Cont’d)

Header File Description

CrossCore Embedded Studio 1.0 4-5
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

long double re;

long double im;

} complex_long_double;

typedef struct

{

#pragma align 4

fract16 re;

fract16 im;

} complex_fract16;

typedef struct

{

fract32 re;

fract32 im;

} complex_fract32;

Details about basic complex arithmetic functions are included in DSP
Run-Time Library Reference starting on page 4-75.

DSP Run-Time Library Guide

4-6 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Table 4-2. Complex Functions

Description Prototype

Complex
Absolute Value

double cabs (complex_double a)
float cabsf (complex_float a)
long double cabsd (complex_long_double a)
fract16 cabs_fr16 (complex_fract16 a)
_Fract cabs_fx_fr16 (complex_fract16 a)
fract32 cabs_fr32 (complex_fract32 a)
_Fract cabs_fx_fr16 (complex_fract16 a)
long _Fract cabs_fx_fr32 (complex_fract32 a)

Complex Addition complex_double cadd
(complex_double a, complex_double b)

complex_float caddf
(complex_float a, complex_float b)

complex_long_double caddd
(complex_long_double a, complex_long_double b)

complex_fract16 cadd_fr16
(complex_fract16 a, complex_fract16 b)

complex_fract32 cadd_fr32
(complex_fract32 a, complex_fract32 b)

Complex Subtraction complex_double csub
(complex_double a, complex_double b)

complex_float csubf
(complex_float a, complex_float b)

complex_long_double csubd
(complex_long_double a, complex_long_double b)

complex_fract16 csub_fr16
(complex_fract16 a, complex_fract16 b)

complex_fract32 csub_fr32
(complex_fract32 a, complex_fract32 b)

Complex Multiply complex_double cmlt
(complex_double a, complex_double b)

complex_float cmltf
(complex_float a, complex_float b)

complex_long_double cmltd
(complex_long_double a, complex_long_double b)

complex_fract16 cmlt_fr16
(complex_fract16 a, complex_fract16 b)

complex_fract32 cmlt_fr32
(complex_fract32 a, complex_fract32 b)

CrossCore Embedded Studio 1.0 4-7
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Complex Division complex_double cdiv
(complex_double a, complex_double b)

complex_float cdivf
(complex_float a, complex_float b)

complex_long_double cdivd
(complex_long_double a, complex_long_double b)

complex_fract16 cdiv_fr16
(complex_fract16 a, complex_fract16 b)

complex_fract32 cdiv_fr32
(complex_fract32 a, complex_fract32 b)

Get Phase of a
Complex Number

double arg (complex_double a)
float argf (complex_float a)
long double argd (complex_long_double a)
fract16 arg_fr16 (complex_fract16 a)
fract32 arg_fr32 (complex_fract32 a)
_Fract arg_fx_fr16 (complex_fract16 a)
long _Fract arg_fx_fr32 (complex_fract32 a)

Complex Conjugate complex_double conj (complex_double a)
complex_float conjf (complex_float a)
complex_long_double conjd (complex_long_double a)
complex_fract16 conj_fr16 (complex_fract16 a)
complex_fract32 conj_fr32 (complex_fract32 a)

Convert Cartesian to
Polar Coordinates

double cartesian (complex_double a, double* phase)
float cartesianf (complex_float a, float* phase)
long double cartesiand

(complex_long_double a, long double* phase)
fract16 cartesian_fr16

(complex_fract16 a, fract16* phase)
fract32 cartesian_fr32
 (complex_fract32 a, fract32* phase)
_Fract cartesian_fx_fr16

(complex_fract16 a, _Fract* phase)
long _Fract cartesian_fx_fr32

(complex_fract32 a, long _Fract* phase)

Table 4-2. Complex Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-8 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

cycle_count.h

The cycle_count.h header file provides an inexpensive method for bench-
marking C-written source by defining basic facilities for measuring cycle
counts. The facilities provided are based upon two macros and a data type,
which are described in Measuring Cycle Counts.

cycles.h

The cycles.h header file defines a set of five macros and an associated
data type that may be used to measure the cycle counts used by a section
of C-written source. The macros can record how many times a particular
piece of code has been executed, and the minimum, average, and maxi-
mum number of cycles used. The facilities available via this header file are
described in Measuring Cycle Counts.

Convert Polar to
Cartesian Coordinates

complex_double polar (double mag, double phase)
complex_float polarf (float mag, float phase)
complex_long_double polard

(long double mag, long double phase)
complex_fract16 polar_fr16

(fract16 mag, fract16 phase)
complex_fract32 polar_fr32 (fract32 mag, fract32 phase)
complex_fract16 polar_fx_fr16

(_Fract mag, _Fract phase)
complex_fract32 polar_fx_fr32

(long _Fract mag, long _Fract phase)

Complex
Exponential

complex_double cexp (double a)
complex_long_double cexpd (long double a)
complex_float cexpf (float a)

Normalization complex_double norm (complex_double a)
complex_long_double normd (complex_long_double a)
complex_float normf (complex_float a)

Table 4-2. Complex Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-9
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

filter.h

The filter.h header file contains filters used in signal processing. The file
also includes the A-law and µ-law companders used by voice-band com-
pression and expansion applications.

This header file also contains functions that perform key signal processing
transformations, including FFTs and convolution.

The library supports three different sets of FFT function. Each set consists
of an FFT function for a complex input signal, a function for a real input
signal, and a function that computes the inverse of an FFT. The FFT
functions are available for both the fract16 and fract32 data types. The
first set of functions are radix-2 FFT functions that support three different
forms of scaling, The second set are optimized mixed-radix functions that
only support static scaling and the third set of functions compute a
2-dimensional FFT. The number of points in an FFT is specified as a
function parameter and must be a power of 2. The twiddle table for the
FFT functions is supplied as a separate argument and is normally calcu-
lated once during program initialization. All FFT functions have also a
stride argument as function parameter to facilitate sharing of twiddle
tables between different sized FFTs.

Library functions are provided to initialize a twiddle table. A twiddle table
can accommodate several FFTs of different sizes by allocating the table at
maximum size, and then using the FFT function’s stride argument to
specify the step size through the table. If the stride argument is set to 1,
the FFT function uses the entire table; if the FFT uses only half the
number of points of the largest, the stride is 2.

An FFT magnitude function is also provided that computes the normal-
ized power spectrum of an FFT.

The functions defined in this header file are listed in Table 4-3 and
Table 4-4 and are described in DSP Run-Time Library Reference.

DSP Run-Time Library Guide

4-10 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Table 4-3. Filter Library

Description Prototype

Finite Impulse
Response Filter

void fir_fr16
(const fract16 input[], fract16 output[],
int length, fir_state_fr16 *filter_state)

void fir_fx16
(const _Fract input[], _Fract output[],
int length, fir_state_fx16 *filter_state)

void fir_fr32
(const fract32 input[], fract32 output[],
int length, fir_state_fr32 *filter_state)

void fir_fx32
(const long _Fract input[], long _Fract output[],
int length, fir_state_fx32 *filter_state)

Infinite Impulse
Response Filter

void iir_fr16
(const fract16 input[], fract16 output[],
int length, iir_state_fr16 *filter_state)

void iir_fx16
(const _Fract input[], _Fract output[],
int length, iir_state_fx16 *filter_state)

void iir_fr32
(const fract32 input[], fract32 output[],
int length, iir_state_fr32 *filter_state)

void iir_fx32
(const long _Fract input[], long _Fract output[],
int length, iir_state_fx32 *filter_state)

Direct Form I Infinite
Response Filter

void iirdf1_fr16
(const fract16 input[], fract16 output[],
int length, iirdf1_state_fr16 *filter_state)

void iirdf1_fx16
(const _Fract input[], _Fract output[],
int length, iirdf1_state_fx16 *filter_state)

void iirdf1_fr32
(const fract32 input[], fract32 output[],
int length, iirdf1_state_fr32 *filter_state)

void iirdf1_fx32
(const long _Fract input[], long _Fract output[],
int length, iirdf1_state_fx32 *filter_state)

CrossCore Embedded Studio 1.0 4-11
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

FIR Decimation Filter void fir_decima_fr16
(const fract16 input[], fract16 output[],
int length, fir_state_fr16 *filter_state)

void fir_decima_fx16
(const _Fract input[], _Fract output[],
int length, fir_state_fx16 *filter_state)

void fir_decima_fr32
(const fract32 input[], fract32 output[],
int length, fir_state_fr32 *filter_state)

void fir_decima_fx32
(const long _Fract input[], long _Fract output[],
int length, fir_state_fx32 *filter_state)

FIR Interpolation Filter void fir_interp_fr16
(const fract16 input[], fract16 output[],
int length, fir_state_fr16 *filter_state)

void fir_interp_fx16
(const _Fract input[], _Fract output[],
int length, fir_state_fx16 *filter_state)

void fir_interp_fr32
(const fract32 input[], fract32 output[],
int length, fir_state_fr32 *filter_state)

void fir_interp_fx32
(const long _Fract input[], long _Fract output[],
int length, fir_state_fx32 *filter_state)

Table 4-3. Filter Library (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-12 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Complex Finite Impulse
Response Filter

void cfir_fr16
(const complex_fract16 input[],
complex_fract16 output[],
int length, cfir_state_fr16 *filter_state)

void cfir_fr32
(const complex_fract32 input[],
complex_fract32 output[],
int length, cfir_state_fr32 *filter_state)

Convert Coefficients for
DF1 IIR

void coeff_iirdf1_fr16
(const float acoeff[], const float bcoeff[],
fract16 coeff[], int nstages)

void coeff_iirdf1_fx16
(const float acoeff[], const float bcoeff[],
_Fract coeff[], int nstages)

void coeff_iirdf1_fr32
(const long double acoeff[],
const long double bcoeff[],
fract32 coeff[], int nstages)

void coeff_iirdf1_fx32
(const long double acoeff[],
const long double bcoeff[],
long _Fract coeff[], int nstages)

Table 4-4. Transformational Functions

Description Prototype

Fast Fourier Transforms

Generate FFT Twiddle
Factors for Radix-2 FFT

void twidfftrad2_fr16
(complex_fract16 twiddle_table[], int fft_size)

void twidfftrad2_fr32
(complex_fract32 twiddle_table[], int fft_size)

Generate FFT Twiddle
Factors for 2-D FFT

void twidfft2d_fr16
(complex_fract16 twiddle_table[], int fft_size)

void twidfft2d_fr32
(complex_fract32 twiddle_table[], int fft_size)

Table 4-3. Filter Library (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-13
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Generate FFT Twiddle
Factors for Optimized
FFT

void twidfftf_fr16
(complex_fract16 twiddle_table[], int fft_size)

void twidfftf_fr32
(complex_fract32 twiddle_table[], int fft_size)

FFT Magnitude void fft_magnitude_fr16
(const complex_fract16 input[],
fract16 output[],
int fft_size, int block_exponent, int mode)

void fft_magnitude_fr32
(const complex_fract32 input[],
fract32 output[],
int fft_size, int block_exponent, int mode)

N Point Radix-2
Complex Input FFT

void cfft_fr16
(const complex_fract16 *input,
complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int *block_exponent, int scale_method)

void cfft_fr32
(const complex_fract32 *input,
complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size,
int *block_exponent, int scale_method)

Table 4-4. Transformational Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-14 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

N Point Radix-2
Real Input FFT

void rfft_fr16
(const fract16 *input, complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int *block_exponent, int scale_method)

void rfft_fx_fr16
(const _Fract *input, complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int *block_exponent, int scale_method)

void rfft_fr32
(const fract32 *input, complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size,
int *block_exponent, int scale_method)

void rfft_fx_fr32
(const long _Fract *input,
 complex_fract32 *output,
 const complex_fract32 *twiddle_table,
 int twiddle_stride, int fft_size,
 int *block_exponent, int scale_method)

N Point Radix-2
Inverse FFT

void ifft_fr16
(const complex_fract16 *input,
complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int *block_exponent, int scale_method)

void ifft_fr32
(const complex_fract32 *input,
complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size,
int *block_exponent, int scale_method)

Table 4-4. Transformational Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-15
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Fast N point Radix-4
Complex Input FFT

void cfftf_fr16
(const complex_fract16 *input,
complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size)

void cfftf_fr32
(const complex_fract32 *input,
complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size)

Fast N point Mixed-Radix
Inverse Input FFT

void ifftf_fr16
(const complex_fract16 *input,
complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size)

void ifftf_fr32
(const complex_fract32 *input,
complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size)

Table 4-4. Transformational Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-16 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Fast N point Mixed-Radix
Real Input FFT

void rfftf_fr16
(const complex_fract16 *input,

complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size)

void rfftf_fx_fr16
(const _Fract *input,
complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size)

void rfftf_fr32
(const complex_fract32 *input,

complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size)

void rfftf_fx_fr32
(const long _Fract *input,
complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size)

NxN Point 2-D
Complex Input FFT

void cfft2d_fr16
(const complex_fract16 *input,
complex_fract16 *temp, complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int block_exponent, int scale_method)

void cfft2d_fr32
(const complex_fract32 *input,
complex_fract32 *temp, complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size)

Table 4-4. Transformational Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-17
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

NxN Point 2-D
Real Input FFT

void rfft2d_fr16
(const fract16 *input, complex_fract16 *temp,
complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int block_exponent, int scale_method)

void rfft2d_fx_fr16
(const _Fract *input, complex_fract16 *temp,
complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int block_exponent, int scale_method)

void rfft2d_fr32
(const fract32 *input, complex_fract32 *temp,
complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size)

void rfft2d_fx_fr32
(const long _Fract *input,
 complex_fract32 *temp,
complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size)

NxN Point 2-D
Inverse FFT

void ifft2d_fr16
(const complex_fract16 *input,
complex_fract16 *temp, complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int block_exponent, int scale_method)

void ifft2d_fr32
(const complex_fract32 *input,
complex_fract32 *temp, complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size)

Table 4-4. Transformational Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-18 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Convolutions

Convolution void convolve_fr16
(const fract16 input_x[], int length_x,
const fract16 input_y[], int length_y,
fract16 output[])

void convolve_fr32
(const fract32 input_x[], int length_x,

const fract32 input_y[], int length_y,
fract32 output[])

void convolve_fx16
(const _Fract input_x[], int length_x,
const _Fract input_y[], int length_y,
_Fract output[])

void convolve_fx32
(const long _Fract input_x[], int length_x,
const long _Fract input_y[], int length_y,
long _Fract output[])

2-D Convolution void conv2d_fr16
(const fract16 *input_x, int rows_x, int columns_x,
const fract16 *input_y, int rows_y, int columns_y,
fract16 *output)

void conv2d_fx16
(const _Fract *input_x, int rows_x, int columns_x,
const _Fract *input_y, int rows_y, int columns_y,
_Fract *output)

void conv2d_fr32
(const fract32 *input_x, int rows_x, int columns_x,
const fract32 *input_y, int rows_y, int columns_y,
fract32 *output)

void conv2d_fx32
(const long _Fract *input_x, int rows_x,
int columns_x, const long _Fract *input_y,
int rows_y, int columns_y, long _Fract *output)

Table 4-4. Transformational Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-19
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

math.h

The standard math functions have been augmented by implementations
for the float and long double data types, and in some cases, for the
fract16 and fract32 data types, and the Embedded C data types _Fract
and long _Fract.

Table 4-5 summarizes the functions defined by the math.h header file.
Descriptions of these functions are given under the name of the double
version in C Run-Time Library Reference.

2-D Convolution
3x3 Matrix

void conv2d3x3_fr16
(const fract16 *input_x, int rows_x, int columns_x,
const fract16 input_y [], fract16 *output)

void conv2d3x3_fx16
(const _Fract *input_x, int rows_x, int columns_x,
const _Fract input_y [], _Fract *output)

void conv2d3x3_fr32
(const fract32 *input_x, int rows_x, int columns_x,
const fract32 input_y [], fract32 *output)

void conv2d3x3_fx32
(const long _Fract *input_x, int rows_x,
int columns_x, const long _Fract input_y [],
long _Fract *output)

Compression/Expansion

A-law compression void a_compress
(const short input[], short output[], int length)

A-law expansion void a_expand
(const short input[], short output[], int length)

µ-law compression void mu_compress
(const short input[], short output[], int length)

µ-law expansion void mu_expand
(const short input[], short output[], int length)

Table 4-4. Transformational Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-20 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The math.h header file also provides prototypes for additional math func-
tions (clip, copysign, max, and min), and an integer function (countones).
These functions are described in DSP Run-Time Library Reference.

Table 4-5. Math Library

Description Prototype

Absolute Value double fabs (double x)
float fabsf (float x)
long double fabsd (long double x)

Anti-log double alog (double x)
float alogf (float x)
long double alogd (long double x)

Base 10 Anti-log double alog10 (double x)
float alog10f (float x)
long double alog10d (long double x)

Arc Cosine double acos (double x)
float acosf (float x)
long double acosd (long double x)
fract16 acos_fr16 (fract16 x)
_Fract acos_fx16 (_Fract x)
fract32 acos_fr32 (fract32 x)
long _Fract acos_fx32 (long _Fract x)

Arc Sine double asin (double x)
float asinf (float x)
long double asind (long double x)
fract16 asin_fr16 (fract16 x)
_Fract asin_fx16 (_Fract x)
fract32 asin_fr32 (fract32 x)
long _Fract asin_fx32 (long _Fract x)

Arc Tangent double atan (double x)
float atanf (float x)
long double atand (long double x)
fract16 atan_fr16 (fract16 x)
_Fract atan_fx16 (_Fract x)
fract32 atan_fr32 (fract32 x)
long _Fract atan_fx32 (long _Fract x)

CrossCore Embedded Studio 1.0 4-21
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Arc Tangent of Quotient double atan2 (double y, double x)
float atan2f (float y, float x)
long double atan2d (long double y, long double x)
fract16 atan2_fr16 (fract16 y, fract16 x)
_Fract atan2_fx16 (_Fract y, _Fract x)
fract32 atan2_fr32 (fract32 y, fract32 x)
long _Fract atan2_fx32
 (long _Fract y, long _Fract x)

Ceiling double ceil (double x)
float ceilf (float x)
long double ceild (long double x)

Cosine double cos (double x)
float cosf (float x)
long double cosd (long double x)
fract16 cos_fr16 (fract16 x)
_Fract cos_fx16 (_Fract x)
fract32 cos_fr32 (fract32 x)
long _Fract cos_fx32 (long _Fract x)

Cotangent double cot (double x)
float cotf (float x)
long double cotd (long double x)

Hyperbolic Cosine double cosh (double x)
float coshf (float x)
long double coshd (long double x)

Exponential double exp (double x)
float expf (float x)
long double expd (long double x)

Floor double floor (double x)
float floorf (float x)
long double floord (long double x)

Floating-Point Remainder double fmod (double x, double y)
float fmodf (float x, float y)
long double fmodd (long double x, long double y)

Get Mantissa and Exponent double frexp (double x, int *n)
float frexpf (float x, int *n)
long double frexpd (long double x, int *n)

Table 4-5. Math Library (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-22 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Is Not a Number? int isnanf (float x)
int isnan (double x)
int isnand (long double x)

Is Infinity? int isinff (float x)
int isinf (double x)
int isinfd (long double x)

Multiply by Power of 2 double ldexp(double x, int n)
float ldexpf(float x, int n)
long double ldexpd (long double x, int n)

Natural Logarithm double log (double x)
float logf (float x)
long double logd (long double x)

Logarithm Base 10 double log10 (double x)
float log10f (float x)
long double log10d (long double x)

Get Fraction and Integer double modf (double x, double *i)
float modff (float x, float *i)
long double modfd (long double x, long double *i)

Power double pow (double x, double y)
float powf (float x, float y)
long double powd (long double x, long double y)

Reciprocal Square Root double rsqrt (double x)
float rsqrtf (float x)
long double rsqrtd (long double x)

Sine double sin (double x)
float sinf (float x)
long double sind (long double x)
fract16 sin_fr16 (fract16 x)
_Fract sin_fx16 (_Fract x)
fract32 sin_fr32 (fract32 x)
long _Fract sin_fx32 (long _Fract x)

Hyperbolic Sine double sinh (double x)
float sinhf (float x)
long double sinhd (long double x)

Table 4-5. Math Library (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-23
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

matrix.h

The matrix.h header file contains matrix functions for operating on real
and complex matrices, both matrix-scalar and matrix-matrix operations.
See complex.h for definitions of the complex types.

The matrix functions defined in the matrix.h header file are listed in
Table 4-6. Matrix functions that operate on the fract16, fract32,
complex_fract16 and complex_fract32 data types, and on the Embedded
C data types _Fract and long _Fract, use saturating arithmetic.

Square Root double sqrt (double x)
float sqrtf (float x)
long double sqrtd (long double x)
fract16 sqrt_fr16 (fract16 x)
fract32 sqrt_fr32 (fract32 x)
_Fract sqrt_fx16 (_Fract x)
long _Fract sqrt_fx32 (long _Fract x)

Tangent double tan (double x)
float tanf (float x)
long double tand (long double x)
fract16 tan_fr16 (fract16 x)
fract32 tan_fr32 (fract32 x)
_Fract tan_fx16 (_Fract x)
long _Fract tan_fx32 (long _Fract x)

Hyperbolic Tangent double tanh (double x)
float tanhf (float x)
long double tanhd (long double x)

Table 4-5. Math Library (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-24 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Table 4-6. Matrix Functions

Description Prototype

Real Matrix +
Scalar Addition

void matsadd
(const double *matrix, double scalar,
int rows, int columns, double *out)

void matsaddf
(const float *matrix, float scalar,
int rows, int columns, float *out)

void matsaddd
(const long double *matrix, long double scalar,
int rows, int columns, long double *out)

void matsadd_fr16
(const fract16 *matrix, fract16 scalar,
int rows, int columns, fract16 *out)

void matsadd_fr32
(const fract32 *matrix, fract32 scalar,

int rows, int columns, fract32 *out)
void matsadd_fx16

(const _Fract *matrix, _Fract scalar,
int rows, int columns, _Fract *out)

void matsadd_fx32
(const long _Fract *matrix, long _Fract scalar,
int rows, int columns, long _Fract *out)

CrossCore Embedded Studio 1.0 4-25
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Real Matrix –
Scalar Subtraction

void matssub
(const double *matrix, double scalar,
int rows, int columns, double *out)

void matssubf
(const float *matrix, float scalar,
int rows, int columns, float *out)

void matssubd
(const long double *matrix, long double scalar,
int rows, int columns, long double *out)

void matssub_fr16
(const fract16 *matrix, fract16 scalar,
int rows, int columns, fract16 *out)

void matssub_fr32
(const fract32 *matrix, fract32 scalar,

int rows, int columns, fract32 *out)
void matssub_fx16

(const _Fract *matrix, _Fract scalar,
int rows, int columns, _Fract *out)

void matssub_fx32
(const long _Fract *matrix, long _Fract scalar,
int rows, int columns, long _Fract *out)

Table 4-6. Matrix Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-26 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Real Matrix *
Scalar Multiplication

void matsmlt
(const double *matrix, double scalar,

int rows, int columns, double *out)
void matsmltf

(const float *matrix, float scalar,
int rows, int columns, float *out)

void matsmltd
(const long double *matrix, long double scalar,

int rows, int columns, long double *out)
void matsmlt_fr16

(const fract16 *matrix, fract16 scalar,
int rows, int columns, fract16 *out)

void matsmlt_fr32
(const fract32 *matrix, fract32 scalar,

int rows, int columns, fract32 *out)
void matsmlt_fx16

(const _Fract *matrix, _Fract scalar,
int rows, int columns, _Fract *out)

void matsmlt_fx32
(const long _Fract *matrix, long _Fract scalar,
int rows, int columns, long _Fract *out)

Table 4-6. Matrix Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-27
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Real Matrix +
Matrix Addition

void matmadd
(const double *matrix_a, const double *matrix_b,

int rows, int columns, double *out)
void matmaddf

(const float *matrix_a, const float *matrix_b,
int rows, int columns, float *out)

void matmaddd
(const long double *matrix_a,
const long double *matrix_b,
int rows, int columns, long double *out)

void matmadd_fr16
(const fract16 *matrix_a, const fract16 *matrix_b,

int rows, int columns, fract16 *out)
void matmadd_fr32

(const fract32 *matrix_a, const fract32 *matrix_b,
int rows, int columns, fract32 *out)

void matmadd_fx16
(const _Fract *matrix_a, const _Fract *matrix_b,
int rows, int columns, _Fract *out)

void matmadd_fx32
(const long _Fract *matrix_a,
 const long _Fract *matrix_b,
int rows, int columns, long _Fract *out)

Table 4-6. Matrix Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-28 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Real Matrix –
Matrix Subtraction

void matmsub
(const double *matrix_a, const double *matrix_b,

int rows, int columns, double *out)
void matmsubf

(const float *matrix_a, const float *matrix_b,
int rows, int columns, float *out)

void matmsubd
(const long double *matrix_a,
const long double *matrix_b,
int rows, int columns, long double *out)

void matmsub_fr16
(const fract16 *matrix_a, const fract16 *matrix_b,
int rows, int columns, fract16 *out)

void matmsub_fr32
(const fract32 *matrix_a, const fract32 *matrix_b,

int rows, int columns, fract32 *out)
void matmsub_fx16

(const _Fract *matrix_a, const _Fract *matrix_b,
int rows, int columns, _Fract *out)

void matmsub_fx32
(const long _Fract *matrix_a,
const long _Fract *matrix_b,
int rows, int columns, long _Fract *out)

Table 4-6. Matrix Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-29
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Real Matrix *
Matrix Multiplication

void matmmlt
(const double *matrix_a, int rows_a, int columns_a,

const double *matrix_b, int columns_b, double *out)
void matmmltf

(const float *matrix_a, int rows_a, int columns_a,
const float *matrix_b, int columns_b, float *out)

void matmmltd
(const long double *matrix_a, int rows_a,
int columns_a,
const long double *matrix_b, int columns_b,
long double *out)

void matmmlt_fr16
(const fract16 *matrix_a, int rows_a, int columns_a,

const fract16 *matrix_b, int columns_b,
fract16 *out)

void matmmlt_fr32
(const fract32 *matrix_a, int rows_a, int columns_a,

const fract32 *matrix_b, int columns_b,
fract32 *out)

void matmmlt_fx16
(const _Fract *matrix_a, int rows_a, int columns_a,
const _Fract *matrix_b, int columns_b,
_Fract *out)

void matmmlt_fx32
(const long _Fract *matrix_a,
 int rows_a, int columns_a,
const long _Fract *matrix_b, int columns_b,
long _Fract *out)

Table 4-6. Matrix Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-30 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Complex Matrix +
Scalar Addition

void cmatsadd
(const complex_double *matrix,

complex_double scalar,
int rows, int columns, complex_double *out)

void cmatsaddf
(const complex_float *matrix,

complex_float scalar,
int rows, int columns, complex_float *out)

void cmatsaddd
(const complex_long_double *matrix,

complex_long_double scalar,
int rows, int columns, complex_long_double *out)

void cmatsadd_fr16
(const complex_fract16 *matrix,

complex_fract16 scalar,
int rows, int columns, complex_fract16 *out)

void cmatsadd_fr32
(const complex_fract32 *matrix,

complex_fract32 scalar,
int rows, int columns, complex_fract32 *out)

Table 4-6. Matrix Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-31
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Complex Matrix –
Scalar Subtraction

void cmatssub
(const complex_double *matrix,

complex_double scalar,
int rows, int columns, complex_double *out)

void cmatssubf
(const complex_float *matrix,

complex_float scalar,
int rows, int columns, complex_float *out)

void cmatssubd
(const complex_long_double *matrix,

complex_long_double scalar,
int rows, int columns, complex_long_double *out)

void cmatssub_fr16
(const complex_fract16 *matrix,

complex_fract16 scalar,
int rows, int columns, complex_fract16 *out)

void cmatssub_fr32
(const complex_fract32 *matrix,

complex_fract32 scalar,
int rows, int columns, complex_fract32 *out)

Table 4-6. Matrix Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-32 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Complex Matrix *
Scalar Multiplication

void cmatsmlt
(const complex_double *matrix,

complex_double scalar,
int rows, int columns, complex_double *out)

void cmatsmltf
(const complex_float *matrix,

complex_float scalar,
int rows, int columns, complex_float *out)

void cmatsmltd
(const complex_long_double *matrix,

complex_long_double scalar,
int rows, int columns, complex_long_double *out)

void cmatsmlt_fr16
(const complex_fract16 *matrix,

complex_fract16 scalar,
int rows, int columns, complex_fract16 *out)

void cmatsmlt_fr32
(const complex_fract32 *matrix,

complex_fract32 scalar,
int rows, int columns, complex_fract32 *out)

Table 4-6. Matrix Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-33
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Complex Matrix +
Matrix Addition

void cmatmadd
(const complex_double *matrix_a,
const complex_double *matrix_b,
int rows, int columns, complex_double *out)

void cmatmaddf
(const complex_float *matrix_a,
const complex_float *matrix_b,
int rows, int columns, complex_float *out)

void cmatmaddd
(const complex_long_double *matrix_a,
const complex_long_double *matrix_b,
int rows, int columns, complex_long_double *out)

void cmatmadd_fr16
(const complex_fract16 *matrix_a,
const complex_fract16 *matrix_b,
int rows, int columns, complex_fract16 *out)

void cmatmadd_fr32
(const complex_fract32 *matrix_a,
const complex_fract32 *matrix_b,
int rows, int columns, complex_fract32 *out)

Table 4-6. Matrix Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-34 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Complex Matrix –
Matrix Subtraction

void cmatmsub
(const complex_double *matrix_a,

const complex_double *matrix_b,
int rows, int columns, complex_double *out)

void cmatmsubf
(const complex_float *matrix_a,

const complex_float *matrix_b,
int rows, int columns, complex_float *out)

void cmatmsubd
(const complex_long_double *matrix_a,

const complex_long_double *matrix_b,
int rows, int columns, complex_long_double *out)

void cmatmsub_fr16
(const complex_fract16 *matrix_a,

const complex_fract16 *matrix_b,
int rows, int columns, complex_fract16 *out)

void cmatmsub_fr32
(const complex_fract32 *matrix_a,

const complex_fract32 *matrix_b,
int rows, int columns, complex_fract32 *out)

Table 4-6. Matrix Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-35
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Complex Matrix *
Matrix Multiplication

void cmatmmlt
(const complex_double *matrix_a,
int rows_a, int columns_a,
const complex_double *matrix_b,
int columns_b, complex_double *out)

void cmatmmltf
(const complex_float *matrix_a,
int rows_a, int columns_a,
const complex_float *matrix_b, int columns_b,
complex_float *out)

void cmatmmltd
(const complex_long_double *matrix_a,
int rows_a, int columns_a,
const complex_long_double *matrix_b,
int columns_b, complex_long_double *out)

void cmatmmlt_fr16
(const complex_fract16 *matrix_a, int rows_a,
int columns_a, const complex_fract16 *matrix_b,
int columns_b, complex_fract16 *out)

void cmatmmlt_fr32
(const complex_fract32 *matrix_a, int rows_a,
int columns_a, const complex_fract32 *matrix_b,
int columns_b, complex_fract32 *out)

Table 4-6. Matrix Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-36 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Transpose void transpm
(const double *matrix, int rows, int columns,

double *out)
void transpmf

(const float *matrix, int rows, int columns,
float *out)

void transpmd
(const long double *matrix, int rows,

int columns, long double *out)
void transpm_fr16

(const fract16 *matrix, int rows, int columns,
fract16 *out)

void transpm_fr32
(const fract32 *matrix, int rows, int columns,

fract32 *out)
void transpm_fx16

(const _Fract *matrix, int rows, int columns,
_Fract *out)

void transpm_fx32
(const long _Fract *matrix, int rows, int columns,

long _Fract *out)

Complex Transpose void ctranspm
 (const complex_double *matrix, int rows,
 int columns, complex_double *out)
void ctranspmf
 (const complex_float *matrix, int rows,
 int columns, complex_float *out)
void ctranspmd
 (const complex_long_double *matrix, int rows,
 int columns, complex_long_double *out)
void ctranspm_fr16
 (const complex_fract16 *matrix, int rows,
 int columns, complex_fract16 *out)
void ctranspm_fr32
 (const complex_fract32 *matrix, int rows
 int columns, complex_fract32 *out)

Table 4-6. Matrix Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-37
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

In most of the function prototypes:

In the matrix*matrix functions, rows_a and columns_a are the dimensions
of matrix a, and rows_b and columns_b are the dimensions of matrix b.

The functions described by this header assume that input array arguments
are constant; that is, their contents do not change during the course of the
routine. In particular, this means the input arguments do not overlap with
any output argument.

stats.h

The statistical functions defined in the stats.h header file are listed in
Table 4-7 and are described in DSP Run-Time Library Reference.

*matrix_a Is a pointer to input matrix matrix_a [] []

*matrix_b Is a pointer to input matrix matrix_b [] []

scalar Is an input scalar

rows Is the number of rows

columns Is the number of columns

*out Is a pointer to output matrix out [][]

DSP Run-Time Library Guide

4-38 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Table 4-7. Statistical Functions

Description Prototype

Autocoherence void autocohf
(const float samples[], int sample_length, int lags,

 float out[])
void autocoh

(const double samples[], int sample_length, int lags,
 double out[])

void autocohd
(const long double samples[], int sample_length,

int lags, long double out[])
void autocoh_fr16

(const fract16 samples[], int sample_length, int lags,
fract16 out[])

void autocoh_fr32
(const fract32 samples[], int sample_length, int lags,

fract32 out[])
void autocoh_fx16

(const _Fract samples[], int sample_length, int lags,
_Fract out[])

void autocoh_fx32
(const long _Fract samples[], int sample_length,
int lags, long _Fract out[])

CrossCore Embedded Studio 1.0 4-39
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Autocorrelation void autocorrf
(const float samples[], int sample_length, int lags,

float out[])
void autocorr

(const double samples[], int sample_length, int lags,
double out[])

void autocorrd
(const long double samples[], int sample_length,

int lags, long double out[])
void autocorr_fr16

(const fract16 samples[], int sample_length, int lags,
fract16 out[])

void autocorr_fr32
(const fract32 samples[], int sample_length, int lags,

fract32 out[])
void autocorr_fx16

(const _Fract samples[], int sample_length, int lags,
_Fract out[])

void autocorr_fx32
(const long _Fract samples[], int sample_length,
int lags, long _Fract out[])

Table 4-7. Statistical Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-40 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Cross-coherence void crosscohf
(const float samples_a[], const float samples_b[],

int sample_length, int lags, float out[])
void crosscoh

(const double samples_a[], const double samples_b[],
int sample_length, int lags, double out[])

void crosscohd
(const long double samples_a[],

const long double samples_b[], int sample_length,
int lags, long double out[])

void crosscoh_fr16
(const fract16 samples_a[], const fract16 samples_b[],

int sample_length, int lags, fract16 out[])
void crosscoh_fr32

(const fract32 samples_a[], const fract32 samples_b[],
int sample_length, int lags, fract32 out[])

void crosscoh_fx16
(const _Fract samples_a[], const _Fract samples_b[],
int sample_length, int lags, _Fract out[])

void crosscoh_fx32
(const long _Fract samples_a[],
 const long _Fract samples_b[],
int sample_length, int lags, long _Fract out[])

Table 4-7. Statistical Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-41
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Cross-correlation void crosscorrf
(const float samples_a[], const float samples_b[],

int sample_length, int lags, float out[])
void crosscorr

(const double samples_a[], const double samples_b[],
int sample_length, int lags, double out[])

void crosscorrd
(const long double samples_a[],

const long double samples_b[], int sample_length,
int lags, long double out[])

void crosscorr_fr16
(const fract16 samples_a[], const fract16 samples_b[],

int sample_length, int lags, fract16 out[])
void crosscorr_fx16

(const _Fract samples_a[], const _Fract samples_b[],
int sample_length, int lags, _Fract out[])

void crosscorr_fr32
(const fract32 samples_a[], const fract32 samples_b[],
int sample_length, int lags, fract32 out[])

void crosscorr_fx32
(const long _Fract samples_a[],
const long _Fract samples_b[],
int sample_length, int lags, long _Fract out[])

Table 4-7. Statistical Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-42 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Histogram void histogramf
(const float samples[], int out[],
float max_sample, float min_sample,
int sample_length, int bin_count)

void histogram
(const double samples[], int out[],
double max_sample, double min_sample,
int sample_length, int bin_count)

void histogramd
(const long double samples[], int out[],
long double max_sample, long double min_sample,
int sample_length, int bin_count)

void histogram_fr16
(const fract16 samples[], int out[],
fract16 max_sample, fract16 min_sample,
int sample_length, int bin_count)

void histogram_fx16
(const _Fract samples[], int out[],
_Fract max_sample, _Fract min_sample,
int sample_length, int bin_count)

void histogram_fr32
(const fract32 samples[], int out[],
fract32 max_sample, fract32 min_sample,
int sample_length, int bin_count)

void histogram_fx32
(const long _Fract samples[], int out[],
long _Fract max_sample, long _Fract min_sample,
int sample_length, int bin_count)

Table 4-7. Statistical Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-43
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Mean float meanf (const float samples[], int sample_length)
double mean (const double samples[], int sample_length)
long double meand

(const long double samples[], int sample_length)
fract16 mean_fr16

(const fract16 samples[], int sample_length)
_Fract mean_fx16

(const _Fract samples[], int sample_length)
fract32 mean_fr32

(const fract32 samples[], int sample_length)
long _Fract mean_fx32

(const long _Fract samples[], int sample_length)

Root Mean Square float rmsf (const float samples[], int sample_length)
double rms (const double samples[], int sample_length)
long double rmsd

(const long double samples[], int sample_length)
fract16 rms_fr16

(const fract16 samples[], int sample_length)
fract32 rms_fr32

(const fract32 samples[], int sample_length)
_Fract rms_fx16

(const _Fract samples[], int sample_length)
long _Fract rms_fx32

(const long _Fract samples[], int sample_length)

Table 4-7. Statistical Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-44 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

vector.h

The vector.h header file contains functions for operating on real and
complex vectors, both vector-scalar and vector-vector operations. See
complex.h for definitions of the complex types.

The functions defined in the vector.h header file are listed in Table 4-8.
Vector functions that operate on the complex_fract16 and
complex_fract32 data types, and on the Embedded C data types _Fract
and long _Fract, use saturating arithmetic.

Variance float varf (const float samples[], int sample_length)
double var (const double samples[], int sample_length)
long double vard

(const long double samples[], int sample_length)
fract16 var_fr16

(const fract16 samples[], int sample_length)
_Fract var_fx16

(const _Fract samples[], int sample_length)
fract32 var_fr32

(const fract32 samples[], int sample_length)
long _Fract var_fx32

(const long _Fract samples[], int sample_length)

Count Zero Crossing int zero_crossf
(const float samples[], int sample_length)

int zero_cross
(const double samples[], int sample_length)

int zero_crossd
(const long double samples[], int sample_length)

int zero_cross_fr16
(const fract16 samples[], int sample_length)

int zero_cross_fx16
(const _Fract samples[], int sample_length)

int zero_cross_fr32
(const fract32 samples[], int sample_length)

int zero_cross_fx32
(const long _Fract samples[], int sample_length)

Table 4-7. Statistical Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-45
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

In the Prototype column, vec[], vec_a[], and vec_b[] are input vectors,
scalar is an input scalar, out[] is an output vector, and sample_length is
the number of elements. The functions assume that input array arguments
are constant; that is, their contents will not change during the course of
the routine. In particular, this means the input arguments do not overlap
with any output argument. In general, better run-time performance is
achieved by the vector functions when the input vectors and the output
vector are in different memory banks. This structure avoids any potential
memory bank collisions.

DSP Run-Time Library Guide

4-46 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Table 4-8. Vector Functions

Description Prototype

Real Vector +
Scalar Addition

void vecsadd
(const double vec[], double scalar,

double out[], int length)
void vecsaddd

(const long double vec[], long double scalar,
long double out[], int length)

void vecsaddf
(const float vec[], float scalar,

float out[], int length)
void vecsadd_fr16

(const fract16 vec[], fract16 scalar,
fract16 out[], int length)

void vecsadd_fx16
(const _Fract vec[], _Fract scalar,
_Fract out[], int length)

void vecsadd_fr32
(const fract32 vec[], fract32 scalar,
fract32 out[], int length)

void vecsadd_fx32
(const long _Fract vec[], long _Fract scalar,
long _Fract out[], int length)

CrossCore Embedded Studio 1.0 4-47
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Real Vector –
Scalar Subtraction

void vecssub
(const double vec[], double scalar,

double out[], int length)
void vecssubd

(const long double vec[], long double scalar,
long double out[], int length)

void vecssubf
(const float vec[], float scalar,

float out[], int length)
void vecssub_fr16

(const fract16 vec[], fract16 scalar,
fract16 out[], int length)

void vecssub_fx16
(const _Fract vec[], _Fract scalar,
_Fract out[], int length)

void vecssub_fr32
(const fract32 vec[], fract32 scalar,
fract32 out[], int length)

void vecssub_fx32
(const long _Fract vec[], long _Fract scalar,
long _Fract out[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-48 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Real Vector *
Scalar Multiplication

void vecsmlt
(const double vec[], double scalar,

double out[], int length)
void vecsmltd

(const long double vec[], long double scalar,
long double out[], int length)

void vecsmltf
(const float vec[], float scalar,

float out[], int length)
void vecsmlt_fr16

(const fract16 vec[], fract16 scalar,
fract16 out[], int length)

void vecsmlt_fx16
(const _Fract vec[], _Fract scalar,
_Fract out[], int length)

void vecsmlt_fr32
(const fract32 vec[], fract32 scalar,
fract32 out[], int length)

void vecsmlt_fx32
(const long _Fract vec[], long _Fract scalar,
long _Fract out[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-49
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Real Vector +
Vector Addition

void vecvadd
(const double vec_a[], const double vec_b[],
double out[], int length)

void vecvaddd
(const long double vec_a[],
const long double vec_b[],
long double out[], int length)

void vecvaddf
(const float vec_a[], const float vec_b[],
float out[], int length)

void vecvadd_fr16
(const fract16 vec_a[], const fract16 vec_b[],
fract16 out[], int length)

void vecvadd_fx16
(const _Fract vec_a[], const _Fract vec_b[],
_Fract out[], int length)

void vecvadd_fr32
(const fract32 vec_a[], const fract32 vec_b[],
fract32 out[], int length)

void vecvadd_fx32
(const long _Fract vec_a[],
const long _Fract vec_b[],
long _Fract out[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-50 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Real Vector –
Vector Subtraction

void vecvsub
(const double vec_a[], const double vec_b[],

double out[], int length)
void vecvsubd

(const long double vec_a[],
 const long double vec_b[],

long double out[], int length)
void vecvsubf

(const float vec_a[], const float vec_b[],
float out[], int length)

void vecvsub_fr16
(const fract16 vec_a[],

const fract16 vec_b[],
fract16 out[], int length)

void vecvsub_fx16
(const _Fract vec_a[],
const _Fract vec_b[],
_Fract out[], int length)

void vecvsub_fr32
(const fract32 vec_a[],
const fract32 vec_b[],
fract32 out[], int length)

void vecvsub_fx32
(const long _Fract vec_a[],
const long _Fract vec_b[],
long _Fract out[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-51
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Real Vector *
Vector Multiplication

void vecvmlt
(const double vec_a[], const double vec_b[],

double out[], int length)
void vecvmltd

(const long double vec_a[],
 const long double vec_b[],
long double out[], int length)

void vecvmltf
(const float vec_a[], const float vec_b[],

float out[], int length)
void vecvmlt_fr16

(const fract16 vec_a[], const fract16 vec_b[],
fract16 out[], int length)

void vecvmlt_fx16
(const _Fract vec_a[], const _Fract vec_b[],
_Fract out[], int length)

void vecvmlt_fr32
(const fract32 vec_a[], const fract32 vec_b[],
fract32 out[], int length)

void vecvmlt_fx32
(const long _Fract vec_a[],
const long _Fract vec_b[],
long _Fract out[], int length)

Maximum Value of
Vector Elements

double vecmax (const double vec[], int length)
long double vecmaxd

(const long double vec[], int length)
float vecmaxf (const float vec[], int length)
fract16 vecmax_fr16 (const fract16 vec[], int length)
_Fract vecmax_fx16 (const _Fract vec[], int length)
fract32 vecmax_fr32 (const fract32 vec[], int length)
long _Fract vecmax_fx32
 (const long _Fract vec[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-52 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Minimum Value of
Vector Elements

double vecmin (const double vec[], int length)
long double vecmind

(const long double vec[], int length)
float vecminf (const float vec[], int length)
fract16 vecmin_fr16(const fract16 vec[], int length)
_Fract vecmin_fx16(const _Fract vec[], int length)
fract32 vecmin_fr32(const fract32 vec[], int length)
long _Fract vecmin_fx32

(const long _Fract vec[], int length)

Index of Maximum Value
of Vector Elements

int vecmaxloc (const double vec[], int length)
int vecmaxlocd

(const long double vec[], int length)
int vecmaxlocf(const float vec[], int length)
int vecmaxloc_fr16

(const fract16 vec[], int length)
int vecmaxloc_fx16
(const _Fract vec[], int length)

int vecmaxloc_fr32 (const fract32 vec[], int length)
int vecmaxloc_fx32

(const long _Fract vec[], int length)

Index of Minimum Value
of Vector Elements

int vecminloc (const double vec[], int length)
int vecminlocd(const long double vec[], int length)
int vecminlocf (const float vec[], int length)
int vecminloc_fr16(const fract16 vec[], int length)
int vecminloc_fx16(const _Fract vec[], int length)
int vecminloc_fr32(const fract32 vec[], int length)
int vecminloc_fx32

(const long _Fract vec[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-53
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Complex Vector +
Scalar Addition

void cvecsadd
(const complex_double vec[],
complex_double scalar,
complex_double out[], int length)

void cvecsaddd
(const complex_long_double vec[],
complex_long_double scalar,
complex_long_double out[], int length)

void cvecsaddf
(const complex_float vec[],
complex_float scalar,
complex_float out[], int length)

void cvecsadd_fr16
(const complex_fract16 vec[],
complex_fract16 scalar,
complex_fract16 out[], int length)

void cvecsadd_fr32
(const complex_fract32 vec[],
complex_fract32 scalar,
complex_fract32 out[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-54 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Complex Vector –
Scalar Subtraction

void cvecssub
(const complex_double vec[],
complex_double scalar,
complex_double out[], int length)

void cvecssubd
(const complex_long_double vec[],
complex_long_double scalar,
complex_long_double out[], int length)

void cvecssubf
(const complex_float vec[],
complex_float scalar,
complex_float out[], int length)

void cvecssub_fr16
(const complex_fract16 vec[],
complex_fract16 scalar,
complex_fract16 out[], int length)

void cvecssub_fr32
(const complex_fract32 vec[],
complex_fract32 scalar,
complex_fract32 out[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-55
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Complex Vector *
Scalar Multiplication

void cvecsmlt
(const complex_double vec[],
complex_double scalar,
complex_double out[], int length)

void cvecsmltd
(const complex_long_double vec[],
complex_long_double scalar,
complex_long_double out[], int length)

void cvecsmltf
(const complex_float vec[],
complex_float scalar,
complex_float out[], int length)

void cvecsmlt_fr16
(const complex_fract16 vec[],
complex_fract16 scalar,
complex_fract16 out[], int length)

void cvecsmlt_fr32
(const complex_fract32 vec[],
complex_fract32 scalar,
complex_fract32 out[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-56 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Complex Vector + Vector
Addition

void cvecvadd
(const complex_double vec_a[],

const complex_double vec_b[],
complex_double out[], int length)

void cvecvaddd
(const complex_long_double vec_a[],

const complex_long_double vec_b[],
complex_long_double out[], int length)

void cvecvaddf
(const complex_float vec_a[],

const complex_float vec_b[],
complex_float out[], int length)

void cvecvadd_fr16
(const complex_fract16 vec_a[],

const complex_fract16 vec_b[],
complex_fract16 out[], int length)

void cvecvadd_fr32
(const complex_fract32 vec_a[],
const complex_fract32 vec_b[],
complex_fract32 out[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-57
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Complex Vector –
Vector Subtraction

void cvecvsub
(const complex_double vec_a[],
 const complex_double vec_b[],
complex_double out[], int length)

void cvecvsubd
(const complex_long_double vec_a[],
 const complex_long_double vec_b[],
complex_long_double out[], int length)

void cvecvsubf
(const complex_float vec_a[],
 const complex_float vec_b[],
complex_float out[], int length)

void cvecvsub_fr16
(const complex_fract16 vec_a[],
const complex_fract16 vec_b[],
complex_fract16 out[], int length)

void cvecvsub_fr32
(const complex_fract32 vec_a[],
const complex_fract32 vec_b[],
complex_fract32 out[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-58 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Complex Vector *
Vector Multiplication

void cvecvmlt
(const complex_double vec_a[],
const complex_double vec_b[],
complex_double out[], int length)

void cvecvmltd
(const complex_long_double vec_a[],
const complex_long_double vec_b[],
complex_long_double out[], int length)

void cvecvmltf
(const complex_float vec_a[],
const complex_float vec_b[],
complex_float out[], int length)

void cvecvmlt_fr16
(const complex_fract16 vec_a[],
const complex_fract16 vec_b[],
complex_fract16 out[], int length)

void cvecvmlt_fr32
(const complex_fract32 vec_a[],
const complex_fract32 vec_b[],
complex_fract32 out[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-59
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Real Vector Dot Product double vecdot
(const double vec_a[],
const double vec_b[], int length)

long double vecdotd
(const long double vec_a[],
const long double vec_b[], int length)

float vecdotf
(const float vec_a[],
const float vec_b[], int length)

fract16 vecdot_fr16
(const fract16 vec_a[],
const fract16 vec_b[], int length)

_Fract vecdot_fx16
(const _Fract vec_a[],
const _Fract vec_b[], int length)

fract32 vecdot_fr32
(const fract32 vec_a[],
const fract32 vec_b[], int length)

long _Fract vecdot_fx32
(const long _Fract vec_a[],
const long _Fract vec_b[], int length)

Complex Vector Dot
Product

complex_double cvecdot
(const complex_double vec_a[],
const complex_double vec_b[], int length)

complex_long_double cvecdotd
(const complex_long_double vec_a[],
const complex_long_double vec_b[],
int length)

complex_float cvecdotf
(const complex_float vec_a[],
const complex_float vec_b[], int length)

complex_fract16 cvecdot_fr16
(const complex_fract16 vec_a[],
const complex_fract16 vec_b[], int length)

complex_fract32 cvecdot_fr32
(const complex_fract32 vec_a[],
const complex_fract32 vec_b[], int length)

Table 4-8. Vector Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-60 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

window.h

The window.h header file contains various functions to generate windows
based on various methodologies. The functions defined in the window.h
header file are listed in Table 4-9 and are described in DSP Run-Time
Library Reference.

For all window functions, a stride parameter (window_stride) is used to
space the window values. The window length parameter (window_size)
equates to the number of elements in the window. Therefore, for a
window_stride of 2 and a window_length of 10, an array of length 20 is
required, where every second entry is untouched.

Table 4-9. Window Generator Functions

Description Prototype

Generate Bartlett
window

void gen_bartlett_fr16
(fract16 bartlett_window[],
int window_stride, int window_size)

void gen_bartlett_fx16
(_Fract bartlett_window[],
int window_stride, int window_size)

void gen_bartlett_fr32
(fract32 bartlett_window[],
int window_stride, int window_size)

void gen_bartlett_fx32
(long _Fract bartlett_window[],
int window_stride, int window_size)

Generate Blackman
window

void gen_blackman_fr16
(fract16 blackman_window[],
int window_stride, int window_size)

void gen_blackman_fx16
(_Fract blackman_window[],
int window_stride, int window_size)

void gen_blackman_fr32
(fract32 blackman_window[],
int window_stride, int window_size)

void gen_blackman_fx32
(long _Fract blackman_window[],
int window_stride, int window_size)

CrossCore Embedded Studio 1.0 4-61
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Generate Gaussian
window

void gen_gaussian_fr16
(fract16 gaussian_window[],
float alpha, int window_stride, int window_size)

void gen_gaussian_fx16
(_Fract gaussian_window[],
float alpha, int window_stride, int window_size)

void gen_gaussian_fr32
(fract32 gaussian_window[], long double alpha,
int window_stride, int window_size)

void gen_gaussian_fx32
(long _Fract gaussian_window[], long double alpha,
int window_stride, int window_size)

Generate Hamming
window

void gen_hamming_fr16
(fract16 hamming_window[],

int window_stride, int window_size)
void gen_hamming_fx16

(_Fract hamming_window[],
int window_stride, int window_size)

void gen_hamming_fr32
(fract32 hamming_window[],
int window_stride, int window_size)

void gen_hamming_fx32
(long _Fract hamming_window[],
int window_stride, int window_size)

Generate Hanning
window

void gen_hanning_fr16
(fract16 hanning_window[],

int window_stride, int window_size)
void gen_hanning_fx16

(_Fract hanning_window[],
int window_stride, int window_size)

void gen_hanning_fr32
(fract32 hanning_window[],
int window_stride, int window_size)

void gen_hanning_fx32
(long _Fract hanning_window[],
int window_stride, int window_size)

Table 4-9. Window Generator Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-62 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Generate Harris
window

void gen_harris_fr16
(fract16 harris_window[],

int window_stride, int window_size)
void gen_harris_fx16

(_Fract harris_window[],
int window_stride, int window_size)

void gen_harris_fr32
(fract32 harris_window[],
int window_stride, int window_size)

void gen_harris_fx32
(long _Fract harris_window[],
int window_stride, int window_size)

Generate Kaiser
window

void gen_kaiser_fr16
(fract16 kaiser_window[], float beta,

int window_stride, int window_size)
void gen_kaiser_fx16

(_Fract kaiser_window[], float beta,
int window_stride, int window_size)

void gen_kaiser_fr32
(fract32 kaiser_window[], long double beta,
int window_stride, int window_size)

void gen_kaiser_fx32
(long _Fract kaiser_window[], long double beta,
int window_stride, int window_size)

Generate rectangular
window

void gen_rectangular_fr16
(fract16 rectangular_window[],

int window_stride, int window_size)
void gen_rectangular_fx16

(_Fract rectangular_window[],
int window_stride, int window_size)

void gen_rectangular_fr32
(fract32 rectangular_window[],
int window_stride, int window_size)

void gen_rectangular_fx32
(long _Fract rectangular_window[],
int window_stride, int window_size)

Table 4-9. Window Generator Functions (Cont’d)

Description Prototype

CrossCore Embedded Studio 1.0 4-63
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Measuring Cycle Counts
The common basis for benchmarking some arbitrary C-written source is
to measure the number of processor cycles that the code uses. Once
known, calculate the actual time taken by multiplying the number of
processor cycles by the clock rate of the processor.

 The cycle counting macros detailed in this section are not
thread-safe. If the cycle counting macros are to be used in a
multi-threaded environment, they should be invoked from a
critical region.

Generate triangle
window

void gen_triangle_fr16
(fract16 triangle_window[],

int window_stride, int window_size)
void gen_triangle_fx16

(_Fract triangle_window[],
int window_stride, int window_size)

void gen_triangle_fr32
(fract32 triangle_window[],
int window_stride, int window_size)

void gen_triangle_fx32
(long _Fract triangle_window[],
int window_stride, int window_size)

Generate von Hann
window

void gen_vonhann_fr16
(fract16 vonhann_window[],

int window_stride, int window_size)
void gen_vonhann_fx16

(_Fract vonhann_window[],
int window_stride, int window_size)

void gen_vonhann_fr32
(fract32 vonhann_window[],
int window_stride, int window_size)

void gen_vonhann_fx32
(long _Fract vonhann_window[],
int window_stride, int window_size)

Table 4-9. Window Generator Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-64 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The run-time library provides three alternative methods for measuring
processor counts, as described in the following sections:

• Basic Cycle-Counting Facility

• Cycle-Counting Facility With Statistics

• Using time.h to Measure Cycle Counts

• Determining the Processor Clock Rate

• Considerations When Measuring Cycle Counts

Basic Cycle-Counting Facility

The fundamental approach to measuring the performance of a section
of code is to record the current value of the cycle-count register before
executing the section of code, and to read the register again after the code
has been executed. This process is represented by two macros defined in
the cycle_count.h header file:

• START_CYCLE_COUNT(S)

• STOP_CYCLE_COUNT(T,S)

The parameter S is set by the macro START_CYCLE_COUNT to the current
value of the cycle-count register; this value is then passed to the macro
STOP_CYCLE_COUNT, which calculates the difference between the parameter
and current value of the cycle-count register. Reading the cycle-count
register incurs an overhead of a small number of cycles, and the macro
ensures that the difference returned (in parameter T) will be adjusted to
allow for this additional cost. Parameters S and T must be separate vari-
ables; they should be declared as a cycle_t data type, which the header file
cycle_count.h defines as:

typedef volatile unsigned long long cycle_t;

CrossCore Embedded Studio 1.0 4-65
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

 The use of the volatile type qualifier in the definition of the
cycle_t data type means that cycle_t cannot be specified as a
function return type.

The header file also defines the macro PRINT_CYCLES(STRING,T)
which is provided mainly as an example of how to print a value of type
cycle_t; the macro outputs the text STRING to stdout followed by the
number of cycles T.

The instrumentation represented by the macros defined in this section is
activated only when the program is compiled with the –DDO_CYCLE_COUNTS
compile-time switch. If this switch is not specified, the macros are
replaced by empty statements and have no effect on the program.

The following example demonstrates how the basic cycle-counting facility
may be used to monitor the performance of a section of code.

#include <cycle_count.h>

#include <stdio.h>

extern int

main(void)

{

cycle_t start_count;

cycle_t final_count;

START_CYCLE_COUNT(start_count);

Some_Function_Or_Code_To_Measure();

STOP_CYCLE_COUNT(final_count,start_count);

PRINT_CYCLES("Number of cycles: ",final_count);

}

The run-time libraries provide alternative facilities for measuring the
performance of C source (see Cycle-Counting Facility With Statistics and
Using time.h to Measure Cycle Counts); the relative benefits of this

DSP Run-Time Library Guide

4-66 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

facility are outlined in Considerations When Measuring Cycle Counts.

The basic cycle-counting facility is based upon macros; it may therefore be
customized for a particular application (if required), without having to
rebuild the run-time libraries.

Cycle-Counting Facility With Statistics

The cycles.h header file defines a set of macros for measuring the
performance of compiled C source. In addition to providing the basic
facility for reading the cycle-count registers of the Blackfin architecture,
the macros can also accumulate statistics suited to recording the perfor-
mance of a section of code that is executed repeatedly.

If the -DDO_CYCLE_COUNTS switch is specified at compile-time, the
cycles.h header file defines the following macros:

• CYCLES_INIT(S)
This macro initializes the system timing mechanism and clears the
parameter S; an application must contain one reference to this
macro.

• CYCLES_START(S)
This macro extracts the current value of the cycle-count register
and saves it in the parameter S.

• CYCLES_STOP(S)
This macro extracts the current value of the cycle-count register
and accumulates statistics in the parameter S, based on the previous
reference to the CYCLES_START macro.

CrossCore Embedded Studio 1.0 4-67
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

• CYCLES_PRINT(S)

This macro prints a summary of the accumulated statistics
recorded in the parameter S.

• CYCLES_RESET(S)

This macro re-zeros the accumulated statistics recorded in the
parameter S.

The parameter S that is passed to the macros must be declared to be of the
type cycle_stats_t; this is a structured data type that is defined in the
cycles.h header file. The data type can record the number of times that
an instrumented part of the source has been executed, as well as the
minimum, maximum, and average number of cycles that have been used.
For example, if an instrumented piece of code has been executed 4 times,
the CYCLES_PRINT macro would generate output on the standard stream
stdout in the form:

AVG : 95

MIN : 92

MAX : 100

CALLS : 4

If an instrumented piece of code had only been executed once, then the
CYCLES_PRINT macro would print a message of the form:

CYCLES : 95

If the -DDO_CYCLE_COUNTS switch is not specified, the macros described
above are defined as null macros and no cycle-count information is
gathered. To switch between development and release mode therefore
requires re-compilation and does not require any changes to the source of
an application.

The macros defined in the cycles.h header file may be customized for a
particular application without having to rebuild the run-time libraries.

DSP Run-Time Library Guide

4-68 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The following example demonstrates how this facility may be used.

#include <cycles.h>

#include <stdio.h>

extern void foo(void);

extern void bar(void);

extern int

main(void)

{

cycle_stats_t stats;

int i;

CYCLES_INIT(stats);

for (i = 0; i < LIMIT; i++) {

CYCLES_START(stats);

foo();

CYCLES_STOP(stats);

}

printf("Cycles used by foo\n");

CYCLES_PRINT(stats);

CYCLES_RESET(stats);

for (i = 0; i < LIMIT; i++) {

CYCLES_START(stats);

bar();

CYCLES_STOP(stats);

}

printf("Cycles used by bar\n");

CYCLES_PRINT(stats);

}

CrossCore Embedded Studio 1.0 4-69
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

This example might output:

Cycles used by foo

AVG : 25454

MIN : 23003

MAX : 26295

CALLS : 16

Cycles used by bar

AVG : 8727

MIN : 7653

MAX : 8912

CALLS : 16

Alternative methods of measuring the performance of compiled C source
are described in Basic Cycle-Counting Facility and Using time.h to Mea-
sure Cycle Counts. Also refer to Considerations When Measuring Cycle
Counts, which provides useful tips with regards to performance
measurements.

Using time.h to Measure Cycle Counts

The time.h header file defines the data type clock_t, the clock function,
and the macro CLOCKS_PER_SEC, which together may be used to calculate
the number of seconds spent in a program.

In the ANSI C standard, the clock function is defined to return the num-
ber of implementation-dependent clock “ticks” that have elapsed since the
program began. In this version of the C/C++ compiler, the clock function
returns the number of processor cycles that an application has used.

The conventional way of using the facilities of the time.h header file to
measure the time spent in a program is to call the clock function at the
start of a program, and then subtract this value from the value returned by
a subsequent call to the function. The computed difference is usually cast

DSP Run-Time Library Guide

4-70 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

to a floating-point type, and is then divided by the macro CLOCKS_PER_SEC
to determine the time in seconds that has occurred between the two calls.

If this method of timing is used by an application, note that:

• The value assigned to the macro CLOCKS_PER_SEC should be verified
independently to ensure that it is correct for the particular proces-
sor being used (see Determining the Processor Clock Rate).

• The result returned by the clock function does not include the
overhead of calling the library function.

A typical example that demonstrates the use of the time.h header file to
measure the amount of time that an application takes is shown below.

#include <time.h>

#include <stdio.h>

extern int

main(void)

{

volatile clock_t clock_start;

volatile clock_t clock_stop;

double secs;

clock_start = clock();

Some_Function_Or_Code_To_Measure();

clock_stop = clock();

secs = ((double) (stop_time - start_time))

/ CLOCKS_PER_SEC;

printf("Time taken is %e seconds\n",secs);

}

CrossCore Embedded Studio 1.0 4-71
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

The cycles.h and cycle_count.h header files define other methods for
benchmarking an application—these header files are described in Basic
Cycle-Counting Facility and Cycle-Counting Facility With Statistics,
respectively. Also refer to Considerations When Measuring Cycle Counts,
which provides useful guidelines.

Determining the Processor Clock Rate

Applications may be benchmarked with respect to how many processor
cycles they use. However, applications are typically benchmarked with
respect to how much time (for example, in seconds) that they take.

Measuring the amount of time an application takes to run on a Blackfin
processor usually involves first determining the number of cycles that the
processor takes, and then dividing this value by the processor’s clock rate.
The time.h header file defines the macro CLOCKS_PER_SEC as the number
of processor “ticks” per second.

On Blackfin processors, it is set by the run-time library to one of the
following values in descending order of precedence:

• By way of the -DCLOCKS_PER_SEC=<definition> compile-time
switch. Because the time_t type is based on the long long int data
type, it is recommended that the value assigned to the symbolic
name CLOCKS_PER_SEC is defined as the same data type by qualify-
ing the value with the LL (or ll) suffix (for example,
-DCLOCKS_PER_SEC=60000000LL).

• By way of the System Services Library

DSP Run-Time Library Guide

4-72 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• By way of the Processor speed option, found at Project >
Properties > C/C++ Build > Settings > Tool Settings >
Compiler > Processor

• From the cycles.h header file

If the value of the macro CLOCKS_PER_SEC is taken from the cycles.h
header file, be aware that the clock rate of the processor will usually be
taken to be the maximum speed of the processor, which is not necessarily
the speed of the processor at RESET.

Considerations When Measuring Cycle Counts

This section summarizes cycle-counting techniques for benchmarking
C-compiled code. Each of these alternatives are described below.

• Basic Cycle-Counting Facility
This cycle-counting facility represents an inexpensive and relatively
unobtrusive method for benchmarking C-written source using
cycle counts. The facility is based on macros that factor in the
overhead incurred by the instrumentation. The macros may be cus-
tomized and can be switched on or off, so no source changes are
required when moving between development and release mode.
The same set of macros is available on other platforms provided by
Analog Devices.

• Cycle-Counting Facility With Statistics
This cycle-counting facility offers more features than the basic
cycle-counting facility described above. It is more expensive in
terms of program memory, data memory, and cycles consumed.
However, it can record the number of times that the instrumented
code has been executed and can calculate the maximum, minimum,
and average cost of each iteration. The provided macros take into
account the overhead involved in reading the cycle-count register.
By default, the macros are switched off, but they can be switched
on by specifying the -DDO_CYCLE_COUNTS compile-time switch.

CrossCore Embedded Studio 1.0 4-73
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

These macros may also be customized for a specific application.
This cycle-counting facility is available on other Analog Devices
architectures.

• Using time.h to Measure Cycle Counts
The facilities of the time.h header file represent a simple method
for measuring the performance of an application that is portable
across many different architectures and systems. These facilities are
based on the clock function.

The clock function, however, does not account for the cost
involved in invoking the function. In addition, references to the
function may affect the optimizer-generated code in the vicinity of
the function call. This benchmarking method may not accurately
reflect the true cost of the code being measured.

This method is best suited for benchmarking applications rather
than small sections of code that run for a much shorter time span.

When benchmarking code, some thought is required when adding
timing instrumentation to C source that will be optimized. If the
sequence of statements to be measured is not selected carefully, the
optimizer may move instructions into (and out of) the code region
and/or it may re-site the instrumentation itself, leading to distorted
measurements. Therefore, it is generally considered more reliable
to measure the cycle count of calling (and returning from) a func-
tion rather than a sequence of statements within a function.

It is recommended that variables used directly in benchmarking be
simple scalars that are allocated in internal memory (be they
assigned the result of a reference to the clock function, or be they
used as arguments to the cycle-counting macros). In the case of
variables that are assigned the result of the clock function, it is also
recommended that they be defined with the volatile keyword.

DSP Run-Time Library Guide

4-74 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The cycle-count registers of the Blackfin architecture are called the
CYCLES and CYCLES2 registers. These registers are 32-bit registers.
The CYCLES register is incremented at every processor cycle; when
CYCLES wraps back to zero, the CYCLES2 register is incremented.
Together, these registers represent a 64-bit counter that is unlikely
to wrap around to zero during the timing of an application.

 The cycle counting macros detailed in this section are not
thread-safe because a context switch may occur between the read-
ing of the CYCLES and CYCLES2 registers. If the cycle counting
macros are to be used in a multi-threaded environment, they
should be invoked from a critical region.

CrossCore Embedded Studio 1.0 4-75
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

DSP Run-Time Library Reference
This section provides descriptions of the DSP run-time library functions.

Notation Conventions

An interval of numbers is indicated by the minimum and maximum,
separated by a comma, and enclosed in two square brackets, two
parentheses, or one of each. A square bracket indicates that the endpoint is
included in the set of numbers; a parenthesis indicates that the endpoint is
not included.

Reference Format

Each function in the library has a reference page, formatted as follows:

Name and purpose of the function

Synopsis – Required header file and functional prototype; when
the functionality is provided for several data types (for example,
float, double, long double, or fract16), several prototypes are
given

Description – Function specification

Algorithm – High-level mathematical representation of the
function

Domain – Range of values supported by the function

Notes – Miscellaneous information

DSP Run-Time Library Guide

4-76 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

a_compress

A-law compression

Synopsis

#include <filter.h>
void a_compress(const short input[], short output[], int length);

Description

The a_compress function takes a vector of linear 13-bit signed speech
samples and performs A-law compression according to ITU recommenda-
tion G.711. Each sample is compressed to 8 bits and is returned in the
vector pointed to by output.

Algorithm

C(k)=a-law compression of A(k) for k = 0 to length-1

Domain

Content of input array: [–4096 , 4095]

CrossCore Embedded Studio 1.0 4-77
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

a_expand

A-law expansion

Synopsis

#include <filter.h>
void a_expand (const short input[], short output[], int length);

Description

The a_expand function inputs a vector of 8-bit compressed speech sam-
ples and expands them according to ITU recommendation G.711. Each
input value is expanded to a linear 13-bit signed sample in accordance
with the A-law definition and is returned in the vector pointed to by
output.

Algorithm

C(k)=a-law expansion of A(k) for k = 0 to length-1

Domain

Content of input array: [0 , 255]

DSP Run-Time Library Guide

4-78 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

alog

Anti-log

Synopsis

#include <math.h>

float alogf (float x);

double alog (double x);

long double alogd (long double x);

Description

The anti-log functions calculate the natural (base e) anti-log of their
argument. An anti-log function performs the reverse of a log function and
is therefore equivalent to exponentiation.

The value HUGE_VAL is returned if the argument x is greater than the
function’s domain. For input values less than the domain, the functions
return 0.0.

Algorithm

c = ex

Domain

x = [–87.33 , 88.72] for alogf()

x = [–708.39 , 709.78] for alogd()

CrossCore Embedded Studio 1.0 4-79
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Example

#include <math.h>

double y;

y = alog(1.0); /* y = 2.71828... */

See Also

alog10, exp, log, pow

DSP Run-Time Library Guide

4-80 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

alog10

Base 10 anti-log

Synopsis

#include <math.h>

float alog10f (float x);

double alog10 (double x);

long double alog10d (long double x);

Description

The base 10 anti-log functions calculate the base 10 anti-log of their
argument. An anti-log function performs the reverse of a log function and
is therefore equivalent to exponentiation. Therefore, alog10(x) is
equivalent to exp(x * log(10.0)).

The value HUGE_VAL is returned if the argument x is greater than the
function’s domain. For input values less than the domain, the functions
return 0.0.

Algorithm

c = e(x * log(10.0))

Domain

x = [–37.92 , 38.53] for alog10f()

x = [–307.65 , 308.25] for alog10d()

CrossCore Embedded Studio 1.0 4-81
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Example

#include <math.h>

double y;

y = alog10(1.0); /* y = 10.0 */

See Also

alog, exp, log10, pow

DSP Run-Time Library Guide

4-82 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

arg

Get phase of a complex number

Synopsis

#include <complex.h>

float argf (complex_float a);

double arg (complex_double a);

long double argd (complex_long_double a);

fract16 arg_fr16 (complex_fract16 a);

fract32 arg_fr32 (complex_fract32 a);

_Fract arg_fx_fr16 (complex_fract16 a);

long _Fract arg_fx_fr32 (complex_fract32 a);

Description

The arg functions compute the phase associated with a Cartesian number,
represented by the complex argument a, and return the result.

 Refer to the description of the polar_fr16 function (see polar),
which explains how a phase, represented as a fractional number, is
interpreted in polar notation.

Algorithm

The following equation is the basis of the algorithm.

c
Im(a)
Re(a)

 atan=

CrossCore Embedded Studio 1.0 4-83
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Domain

Note

[–3.4e38 , +3.4e38] for argf()

[–1.7 e308 , +1.7e308] for argd()

[–1.0 , +1.0) for arg_fr16(), arg_fx_fr16(),
 arg_fr32(), arg_fx_fr32()

Im (a) /Re (a) <=1 for arg_fr16 (), arg_fx_fr16()

DSP Run-Time Library Guide

4-84 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

autocoh

Auto-coherence

Synopsis

#include <stats.h>

void autocohf (const float samples[],

int sample_length,

int lags,

float coherence[]);

void autocoh (const double samples[],

int sample_length,

int lags,

double coherence[]);

void autocohd (const long double samples[],

int sample_length,

int lags,

long double coherence[]);

void autocoh_fr16 (const fract16 samples[],

int sample_length,

int lags,

fract16 coherence[]);

void autocoh_fr32 (const fract32 samples[],

int sample_length,

int lags,

fract32 coherence[]);

CrossCore Embedded Studio 1.0 4-85
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

void autocoh_fx16 (const _Fract samples[],

int sample_length,

int lags,

_Fract coherence[]);

void autocoh_fx32 (const long _Fract samples[],

int sample_length,

int lags,

long _Fract coherence[]);

Description

The autocoh functions compute the auto-coherence of the signal con-
tained in samples, of length sample_length. The auto-coherence of an
input signal is its auto-correlation minus the product of the partial means
of the input signal.

The auto-coherence between the input signal and itself is returned in the
array coherence of length lags.

Error Conditions

The autocoh functions will return without modifying the output array if
either the number of samples is less than or equal to 1, or if the number of
lags is less than 1, or if the number of lags is not less than the number of
samples.

Algorithm

The auto-coherence functions are based on the following algorithm.

ck
1

n k–
----------- ajaj k+

j 0=

n k– 1–

1

n k–
----------- aj

j 0=

n k– 1–

1
n k–
----------- aj

j k=

n 1–

–=

DSP Run-Time Library Guide

4-86 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

where:
n = sample_length
k = { 0, 1, ..., lags–1 }
a = samples

Domain

Example

#include <stats.h>

#define SAMPLES 1024

#define LAGS 16

fract32 x[SAMPLES];

fract32 response[LAGS];

autocoh_fr32 (x, SAMPLES, LAGS, response);

See Also

autocorr, crosscoh, crosscorr

[–3.4e38 , +3.4e38] for autocohf()

[–1.7e308 , +1.7e308] for autocohd()

[–1.0 , 1.0) for autocoh_fr16(), autocoh_fx16(),
autocoh_fr32(), autocoh_fx32()

CrossCore Embedded Studio 1.0 4-87
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

autocorr

Autocorrelation

Synopsis

#include <stats.h>

void autocorrf (const float samples[],

int sample_length,

int lags,

float correlation[]);

void autocorr (const double samples[],

int sample_length,

int lags,

double correlation[]);

void autocorrd (const long double samples[],

int sample_length,

int lags,

long double correlation[]);

void autocorr_fr16 (const fract16 samples[],

int sample_length,

int lags,

fract16 correlation[]);

void autocorr_fr32 (const fract32 samples[],

int sample_length,

int lags,

fract32 correlation[]);

DSP Run-Time Library Guide

4-88 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

void autocorr_fx16 (const _Fract samples[],

int sample_length,

int lags,

_Fract correlation[]);

void autocorr_fx32 (const long _Fract samples[],

int sample_length,

int lags,

long _Fract correlation[]);

Description

The autocorrelation functions perform an autocorrelation of a signal.
Autocorrelation is the cross-correlation of a signal with a copy of itself.
It provides information about the time variation of the signal. The signal
to be autocorrelated is given by the samples[] input array. The number of
samples of the autocorrelation sequence to be produced is given by lags.
The length of the input sequence is given by sample_length.

Autocorrelation is used in digital signal processing applications such as
speech analysis.

Algorithm

The following equation is the basis of the algorithm.

where:
a = samples;
k = {0, 1, ..., m–1}
m is the number of lags
n is the size of the input vector samples

ck
1
n
--- aj

j 0=

n k– 1–

 aj k+=

CrossCore Embedded Studio 1.0 4-89
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Domain

[–3.4e38 , +3.4e38] for autocorrf()

[–1.7e308 , +1.7e308] for autocorrd()

[–1.0 , 1.0) for autocorr_fr16() and autocorr_fx16()
for autocorr_fr32() and autocorr_fx32()

DSP Run-Time Library Guide

4-90 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

cabs

Complex absolute value

Synopsis

#include <complex.h>

float cabsf (complex_float a);

double cabs (complex_double a);

long double cabsd (complex_long_double a);

fract16 cabs_fr16 (complex_fract16 a);

fract32 cabs_fr32 (complex_fract32 a);

_Fract cabs_fx_fr16 (complex_fract16 a);

long _Fract cabs_fx_fr32 (complex_fract32 a);

Description

The cabs functions compute the complex absolute value of a complex
input and return the result.

Algorithm

The following equation is the basis of the algorithm.

c Re2 a Im2 a +=

CrossCore Embedded Studio 1.0 4-91
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Domain

Re 2 (a) + Im2 (a) <= 3.4 x 10 38 for cabsf()

Re 2 (a) + Im2 (a) <= 1.7 x 10 308 for cabsd()

Re 2 (a) + Im2 (a) <= 1.0 for cabs_fr16() and
cabs_fx_fr16()
for cabs_fr32() and
cabs_fx_fr32()

DSP Run-Time Library Guide

4-92 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

cadd

Complex addition

Synopsis

#include <complex.h>

complex_float caddf (complex_float a, complex_float b);

complex_double cadd (complex_double a, complex_double b);

complex_long_double caddd (complex_long_double a,

complex_long_double b);

complex_fract16 cadd_fr16 (complex_fract16 a, complex_fract16 b);

complex_fract32 cadd_fr32 (complex_fract32 a, complex_fract32 b);

Description

The cadd functions compute the complex addition of two complex inputs,
a and b, and return the result.

Algorithm

Re(c) = Re(a) + Re(b)

Im(c) = Im(a) + Im(b)

Domain

[–3.4e38 , +3.4e38] for caddf()

[–1.7e308 , +1.7e308] for caddd()

[–1.0 , +1.0) for cadd_fr16()
for cadd_fr32()

CrossCore Embedded Studio 1.0 4-93
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

cartesian

Convert Cartesian to polar notation

Synopsis

#include <complex.h>

float cartesianf (complex_float a, float *phase);

double cartesian (complex_double a, double *phase);

long double cartesiand (complex_long_double a,

long double *phase);

fract16 cartesian_fr16 (complex_fract16 a, fract16 *phase);

fract32 cartesian_fr32 (complex_fract32 a, fract32 *phase);

_Fract cartesian_fx_fr16 (complex_fract16 a, _Fract *phase);

long _Fract cartesian_fx_fr32 (complex_fract32 a,

long _Fract *phase);

Description

The cartesian functions transform a complex number from Cartesian
notation to polar notation. The Cartesian number is represented by the
argument a that the function converts into a corresponding magnitude,
which it returns as the function’s result, and a phase that is returned via
the second argument phase.

 Refer to the description of the polar_fr16 function (see polar),
which explains how a phase, represented as a fractional number, is
interpreted in polar notation.

DSP Run-Time Library Guide

4-94 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Algorithm

magnitude = cabs(a)

phase = arg(a)

Domain

Example

#include <complex.h>

complex_float point = {-2.0 , 0.0};

float phase;

float mag;

mag = cartesianf (point,&phase); /* mag = 2.0, phase = */

[–3.4e38 , +3.4e38] for cartesianf()

[–1.7e308 , +1.7e308] for cartesiand()

[–1.0 , +1.0) for cartesian_fr16() and cartesian_fx_fr16()
for cartesian_fr32() and cartesian_fx_fr32()

CrossCore Embedded Studio 1.0 4-95
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

cdiv

Complex division

Synopsis

#include <complex.h>

complex_float cdivf (complex_float a, complex_float b);

complex_double cdiv (complex_double a, complex_double b);

complex_long_double cdivd (complex_long_double a,

complex_long_double b);

complex_fract16 cdiv_fr16 (complex_fract16 a, complex_fract16 b);

complex_fract32 cdiv_fr32 (complex_fract32 a, complex_fract32 b);

Description

The cdiv functions compute the complex division of complex input a by
complex input b, and return the result.

Algorithm

The following equation is the basis of the algorithm.

Re c Re a Re b Im a Im b +

Re2 b Im2 b +
---=

Im c Re b Im a Im b Re a –

Re2 b Im2 b +
--=

DSP Run-Time Library Guide

4-96 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Domain

[–3.4e38 , +3.4e38] for cdivf()

[–1.7e308 , +1.7e308] for cdivd()

[–1.0 , +1.0) for cdiv_fr16()
for cdiv_fr32()

CrossCore Embedded Studio 1.0 4-97
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

cexp

Complex exponential

Synopsis

#include <complex.h>

complex_float cexpf (float x);

complex_double cexp (double x);

complex_long_double cexpd (long double x);

Description

The cexp functions compute the complex exponential of real input x and
return the result.

Algorithm

Re(c) = cos(x)

Im(c) = sin(x)

Domain

x = [–102940 , 102940] for cexpf()

x = [-8.433e8 , 8.433e8] for cexpd()

DSP Run-Time Library Guide

4-98 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

cfft

Complex radix-2 Fast Fourier Transform

Synopsis

#include <filter.h>

void cfft_fr16(const complex_fract16 input[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int *block_exponent,

int scale_method);

void cfft_fr32(const complex_fract32 input[],
complex_fract32 output[],
const complex_fract32 twiddle_table[],
int twiddle_stride,
int fft_size,
int *block_exponent,
int scale_method);

Description

The cfft functions transform the time domain complex input signal
sequence to the frequency domain by using the radix-2 Fast Fourier
Transform (FFT).

The size of the input array input and the output array output is fft_size,
where fft_size represents the number of points in the FFT. By allocating
these arrays in different memory banks, any potential data bank collisions
are avoided, thus improving run-time performance. If the input data can
be overwritten, optimal memory usage can be achieved by also specifying
the input array as the output array.

CrossCore Embedded Studio 1.0 4-99
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

The twiddle table is passed in the argument twiddle_table, which must
contain at least fft_size/2 twiddle factors. The table is composed of
+cosine and -sine coefficients and may be initialized by using the
function twidfftrad2_fr16 (on page 4-236) and twidfftrad2_fr32 for
cfft_fr32. For optimal performance, the twiddle table should be
allocated in a different memory section than the output array.

The argument twiddle_stride should be set to 1 if the twiddle table was
originally created for an FFT of size fft_size. If the twiddle table was cre-
ated for a larger FFT of size N*fft_size (where N is a power of 2), then
twiddle_stride should be set to N. This argument therefore provides a
way of using a single twiddle table to calculate FFTs of different sizes.

The argument scale_method controls how the function will apply scaling
while computing a Fourier Transform. The available options are static
scaling (dividing the input at any stage by 2), dynamic scaling (dividing
the input at any stage by 2 if the largest absolute input value is greater
than or equal to 0.25), or no scaling. Note that the number of stages
required to compute an FFT is dependent on the size of the FFT and is
given by the formula log2(fft_size).

If static scaling is selected, the function will always scale intermediate
results, thus preventing overflow. The loss of precision increases in line
with fft_size and is more pronounced for input signals with a small mag-
nitude (since the output is scaled by 1/fft_size). To select static scaling,
set the argument scale_method to a value of 1. The block exponent
returned will be log2(fft_size).

If dynamic scaling is selected, the function will inspect intermediate
results and only apply scaling where required to prevent overflow. The loss
of precision increases in line with the size of the FFT and is more pro-
nounced for input signals with a large magnitude (since these factors
increase the need for scaling). The requirement to inspect intermediate
results will have an impact on performance. To select dynamic scaling, set
the argument scale_method to a value of 2. The block exponent returned

DSP Run-Time Library Guide

4-100 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

will be between 0 and log2(fft_size) depending upon the number of
times that the function scales each set of intermediate results.

If no scaling is selected, the function will never scale intermediate results.
There will be no loss of precision unless overflow occurs and in this case
the function will generate saturated results. The likelihood of saturation
increases in line with the fft_size and is more pronounced for input sig-
nals with a large magnitude. To select no scaling, set the argument
scale_method to 3. The block exponent returned will be 0.

 Any values for the argument scale_method other than 2 or 3 will
result in the function performing static scaling.

Error Conditions

The cfft functions abort if the FFT size is less than 8 or if the twiddle
stride is less than 1.

Algorithm

The following equation is the basis of the algorithm.

Domain

Input sequence length n must be a power of 2 and at least 8.

X k x n WN

nk

n 0=

N 1–

=

CrossCore Embedded Studio 1.0 4-101
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Example

#include <filter.h>

#define FFT_SIZE1 32

#define FFT_SIZE2 256

#define TWID_SIZE (FFT_SIZE2/2)

complex_fract32 in1[FFT_SIZE1], in2[FFT_SIZE2];

complex_fract32 out1[FFT_SIZE1], out2[FFT_SIZE2];

complex_fract32 twiddle[TWID_SIZE];

int block_exponent1, block_exponent2;

twidfftrad2_fr32 (twiddle, FFT_SIZE2);

cfft_fr32 (in1, out1, twiddle,

 (FFT_SIZE2 / FFT_SIZE1), FFT_SIZE1,

 &block_exponent1, 1 /*static scaling*/);

cfft_fr32 (in2, out2, twiddle, 1, FFT_SIZE2,

&block_exponent2, 2 /*dynamic scaling*/);

DSP Run-Time Library Guide

4-102 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

cfftf

Fast N-point complex input FFT

Synopsis

#include <filter.h>

void cfftf_fr16(const complex_fract16 input[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size);

void cfftf_fr32(const complex_fract32 input[],

complex_fract32 output[],

const complex_fract32 twiddle_table[],

int twiddle_stride,

int fft_size);

Description

The cfftf functions transform the time domain complex input signal
sequence to the frequency domain by using the accelerated version of the
“Discrete Fourier Transform” known as a “Fast Fourier Transform”
or FFT. The functions “decimate in frequency” using a mixed-radix
algorithm.

The size of the input array input and the output array output is fft_size,
where fft_size represents the number of points in the FFT.

The number of points in the FFT must be a power of 2 and must be at
least 8.

The twiddle table is passed in the argument twiddle_table, which must
contain at least 3*fft_size/4 complex twiddle factors. The table should
be initialized with complex twiddle factors in which the real coefficients

CrossCore Embedded Studio 1.0 4-103
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

are positive cosine values and the imaginary coefficients are negative sine
values. The function twidfftf_fr16 (on page 4-239) may be used to ini-
tialize the array for cfftf_fr16 with twidfftf_fr32 used to initialize the
array for cfftf_fr32.

If the twiddle table has been generated for an fft_size FFT, then the
twiddle_stride argument should be set 1. On the other hand, if the twid-
dle table has been generated for an FFT of size x, where x > fft_size,
then the twiddle_stride argument should be set to x / fft_size. The
twiddle_stride argument therefore allows the same twiddle table to be
used for different sizes of FFT. (The twiddle_stride argument cannot be
either zero or negative).

It is recommended that the output array not be allocated in the same 4K
memory sub-bank as the input array or the twiddle table, as the perfor-
mance of the cfftf functions may otherwise degrade due to data bank
collisions.

The functions use static scaling of intermediate results to prevent over-
flow, and the final output therefore is scaled by 1/fft_size.

Algorithm

The following equation is the basis of the algorithm.

The cfftf functions use a mixed-radix algorithm (radix-2 and radix-4).

Domain

The number of points in the FFT must be a power of 2 and must be at
least 8.

X k x n WN

nk

n 0=

N 1–

=

DSP Run-Time Library Guide

4-104 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <filter.h>
#define FFT_SIZE1 32
#define FFT_SIZE2 256
#define TWID_SIZE ((3 * FFT_SIZE2) / 4)

complex_fract32 in1[FFT_SIZE1], in2[FFT_SIZE2];
complex_fract32 out1[FFT_SIZE1], out2[FFT_SIZE2];
complex_fract32 twiddle[TWID_SIZE];

twidfftf_fr32 (twiddle, FFT_SIZE2);

cfftf_fr32 (in1, out1, twiddle,
FFT_SIZE2/FFT_SIZE1, FFT_SIZE1);

cfftf_fr32 (in2, out2, twiddle,

1, FFT_SIZE2);

CrossCore Embedded Studio 1.0 4-105
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

cfft2d

N x N point 2-D complex input FFT

Synopsis

#include <filter.h>

void cfft2d_fr16(const complex_fract16 *input,

complex_fract16 *temp,

complex_fract16 *output,

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int block_exponent,

int scale_method);

void cfft2d_fr32(const complex_fract32 *input,

complex_fract32 *temp,

complex_fract32 *output,

const complex_fract32 twiddle_table[],

int twiddle_stride,

int fft_size);

Description

These cfft2d functions compute the two-dimensional Fast Fourier Trans-
form (FFT) of the complex input matrix input[fft_size][fft_size] and
store the result to the complex output matrix
output[fft_size][fft_size].

The size of the input array input, the output array output, and the
temporary working buffer temp is fft_size*fft_size, where fft_size
represents the number of rows and number of columns in the FFT. The
argument fft_size must be a power of 2 and must be at least 4 for
cfft2d_fr16 and at least 8 for cfft2d_fr32.

DSP Run-Time Library Guide

4-106 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Memory bank collisions, which have an adverse effect on run-time perfor-
mance, may be avoided by allocating the twiddle table in a different
memory bank than the output matrix and temporary buffer. If the input
data can be overwritten, the optimum memory usage can be achieved by
also specifying the input matrix as the output buffer.

The twiddle table is passed in the argument twiddle_table, which must
contain at least fft_size twiddle factors for cfft2d_fr16 and at least
3*fft_size/4 twiddle factors for cfft2d_fr32. The table should be initial-
ized with complex twiddle factors in which the real coefficients are
positive cosine values and the imaginary coefficients are negative sine val-
ues. The functions twidfft2d_fr16 and twidfft2d_fr32 may be used to
initialize the arrays for cfft2d_fr16 and cfft2d_fr32 respectively.

If the twiddle table has been generated for an fft_size FFT, the
twiddle_stride argument should be set 1. On the other hand, if the twid-
dle table has been generated for an FFT of size x, where x > fft_size, then
the twiddle_stride argument should be set to x / fft_size. The
twiddle_stride argument therefore allows the same twiddle table to be
used for different sizes of FFT. (The twiddle_stride argument cannot be
either zero or negative).

To avoid overflow, the functions scale the output by fft_size*fft_size.

The cfft2d_fr16 arguments block_exponent and scale_method have been
added for future expansion. These arguments are ignored by the function.

Error Conditions

The cfft2d functions abort if the twiddle stride is less than 1, or if fft_size is
less than 4 for cfft2d_fr16, or if fft_size is less than 8 for cfft2d_f32.

CrossCore Embedded Studio 1.0 4-107
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Algorithm

The following equation is the basis of the algorithm.

where:
i = {0, 1, ..., n–1}
j = {0, 1, ..., n–1}
a = input
c = output
n = fft_size

Domain

Input sequence length fft_size must be a power of 2 and at least 4 for
cfft2d_fr16 and at least 8 for cfft2d_fr32.

Example

#include <filter.h>

#define FFT_SIZE1 128

#define FFT_SIZE2 32

#define TWIDDLE_STRIDE1 (FFT_SIZE1 / FFT_SIZE1)

#define TWIDDLE_STRIDE2 (FFT_SIZE1 / FFT_SIZE2)

complex_fract32 in_a[FFT_SIZE1][FFT_SIZE1];
complex_fract32 in_b[FFT_SIZE2][FFT_SIZE2];
complex_fract32 out[FFT_SIZE2][FFT_SIZE2];
complex_fract32 temp[FFT_SIZE1][FFT_SIZE1];
complex_fract32 twiddle[(3*FFT_SIZE1)/4];

c i j a k l e 2– i k j l+ n
l 0=

n 1–

k 0=

n 1–

=

DSP Run-Time Library Guide

4-108 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

complex_fract32* in1 = (complex_fract32*)in_a;

complex_fract32* in2 = (complex_fract32*)in_b;

complex_fract32* out2 = (complex_fract32*)out;

complex_fract32* tmp = (complex_fract32*)temp;

twidfft2d_fr32 (twiddle, FFT_SIZE1);

/* In-place computation */

cfft2d_fr32(in1, tmp, in1, twiddle, TWIDDLE_STRIDE1, FFT_SIZE1);

cfft2d_fr32(in2, tmp, out2, twiddle, TWIDDLE_STRIDE2, FFT_SIZE2);

CrossCore Embedded Studio 1.0 4-109
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

cfir

Complex finite impulse response filter

Synopsis

#include <filter.h>

void cfir_fr16(const complex_fract16 input[],

complex_fract16 output[],

int length,

cfir_state_fr16 *filter_state);

void cfir_fr32(const complex_fract32 input[],
complex_fract32 output[],
int length,
cfir_state_fr32 *filter_state);

The cfir_fr16 function uses the following structure to maintain the state
of the filter.

typedef struct

{

int k; /* Number of coefficients */

complex_fract16 *h; /* Filter coefficients */

complex_fract16 *d; /* Start of delay line */

complex_fract16 *p; /* Read/write pointer */

} cfir_state_fr16;

The cfir_fr32 function uses the following structure to maintain the state
of the filter.

typedef struct
{

int k; /* Number of coefficients */
complex_fract32 *h; /* Filter coefficients */
complex_fract32 *d; /* Start of delay line */

DSP Run-Time Library Guide

4-110 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

complex_fract32 *p; /* Read/write pointer */
} cfir_state_fr32;

Description

The cfir functions implement a complex finite impulse response (CFIR)
filter. They generate the filtered response of the complex input data input
and store the result in the complex output vector output.

The functions maintain the filter state in the structured variable
filter_state, which must be declared and initialized before calling the
functions. The macro cfir_init, in the filter.h header file, is available
to initialize the structure.

It is defined as:

#define cfir_init(state, coeffs, delay, ncoeffs) \

do { \

 (state).h = (coeffs); \

 (state).d = (delay); \

 (state).p = (delay); \

 (state).k = (ncoeffs); \

} while (0)

The characteristics of the filter (passband, stopband, and so on) depend
upon the number of complex filter coefficients and their values. A pointer
to the coefficients should be stored in filter_state->h, and
filter_state->k should be set to the number of coefficients. The func-
tions assume that the coefficients are stored in the normal order, thus
filter_state->h[0] contains the first filter coefficient and
filter_state->h[k-1] contains the last coefficient.

Each filter should have its own delay line, which is a vector of type
complex_fract16 (for cfir_fr16) or complex_fract32 (for cfir_fr32)
whose length is equal to the number of coefficients. The vector should be
cleared to zero before calling the function for the first time and should not
otherwise be modified by the user program. The structure member

CrossCore Embedded Studio 1.0 4-111
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

filter_state->d should be set to the start of the delay line, and the
function uses filter_state->p to keep track of its current position within
the vector.

Error Conditions

The cfir functions check that the number of samples and the number of
coefficients are positive—if not, the functions just return.

Algorithm

The following equation is the basis of the algorithm.

where:
x = input
y = output
h = array of coefficients
k = number of coefficients
i = {0, 1, ..., length–1}

Domain

[–1.0 , +1.0)

y i h j x i j–
j 0=

k 1–

=

DSP Run-Time Library Guide

4-112 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <filter.h>

#define LENGTH 85

#define COEFFS_N 32

complex_fract32 input[LENGTH];

complex_fract32 output[LENGTH];

complex_fract32 coeffs[COEFFS_N];

complex_fract32 delay[COEFFS_N];

cfir_state_fr32 state;

int i;

for (i=0; i < COEFFS_N; i++) /* clear the delay line */

{

delay[i].re = 0;

delay[i].im = 0;

}

cfir_init(state, coeffs, delay, COEFFS_N);

cfir_fr32(input, output, LENGTH, &state);

CrossCore Embedded Studio 1.0 4-113
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

clip

Clip

Synopsis

#include <math.h>

int clip (int parm1, int parm2);

long int lclip (long int parm1, long int parm2);

long long int llclip (long long int parm1,

long long int parm2);

float fclipf (float parm1, float parm2);

double fclip (double parm1, double parm2);

long double fclipd (long double parm1, long double parm2);

fract16 clip_fr16 (fract16 parm1, fract16 parm2);

fract32 clip_fr32 (fract32 parm1, fract32 parm2);

_Fract clip_fx16 (_Fract parm1, _Fract parm2);

long _Fract clip_fx32 (long _Fract parm1, long _Fract parm2);

Description

The clip functions return the first argument if its absolute value is less
than the absolute value of the second argument; otherwise, they return the
absolute value of the second argument if the first is positive, or minus the
absolute value if the first argument is negative.

Algorithm

If (|parm1| < |parm2|)

return (parm1)

else

return (|parm2| * signof(parm1))

DSP Run-Time Library Guide

4-114 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Domain

Full range for various input parameter types.

CrossCore Embedded Studio 1.0 4-115
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

cmlt

Complex multiply

Synopsis

#include <complex.h>

complex_float cmltf (complex_float a, complex_float b);

complex_double cmlt (complex_double a, complex_double b);

complex_long_double cmltd (complex_long_double a,

complex_long_double b);

complex_fract16 cmlt_fr16 (complex_fract16 a, complex_fract16 b);
complex_fract32 cmlt_fr32 (complex_fract32 a, complex_fract32 b);

Description

The cmlt functions compute the complex multiplication of two complex
inputs, a and b, and return the result.

Error Conditions

None.

Algorithm

Re(c) = Re(a) * Re(b) - Im(a) * Im(b)

Im(c) = Re(a) * Im(b) + Im(a) * Re(b)

DSP Run-Time Library Guide

4-116 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Domain

Example

#include <complex.h>

complex_fract32 x;

complex_fract32 y;

complex_fract32 z;

z = cmlt_fr32 (x, y);

[–3.4e38 , +3.4e38] for cmltf()

[–1.7e308 , +1.7e308] for cmltd()

[–1.0 , +1.0) for cmlt_fr16(), cmlt_fr32()

CrossCore Embedded Studio 1.0 4-117
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

coeff_iirdf1

Convert coefficients for DF1 IIR filter

Synopsis

#include <filter.h>

void coeff_iirdf1_fr16 (const float acoeff[],

const float bcoeff[],

fract16 coeff[], int nstages);

void coeff_iirdf1_fx16 (const float acoeff[],

const float bcoeff[],

_Fract coeff[], int nstages);

void coeff_iirdf1_fr32 (const long double acoeff[],

const long double bcoeff[],

fract32 coeff[], int nstages);

void coeff_iirdf1_fx32 (const long double acoeff[],

const long double bcoeff[],

long _Fract coeff[], int nstages);

Description

The coeff_iirdf1 functions transform a set of A-coefficients and a set of
B-coefficients into a set of coefficients for the iirdf1 functions which
implement an optimized, direct form 1 infinite impulse response (IIR) fil-
ter. The coeff_iirdf1_fr16 coefficients are for use with the iirdf1_fr16
function (on page 4-239), the coeff_iirdf1_fx16 function coeffi-
cients for iirdf1_fx16, the coeff_iirdf1_fr32 function coefficients for
iirdf1_fr32 and the coeff_iirdf1_fx32 function coefficients are suitable
for use with iirdf1_fx32.

DSP Run-Time Library Guide

4-118 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The A-coefficients and the B-coefficients are passed into the function via
the floating-point vectors acoeff and bcoeff, respectively. The A0 coeffi-
cients are assumed to be 1.0, and all other A-coefficients must be scaled
according; the A0 coefficients should not be included in the acoeffs vec-
tor. The number of stages in the filter is given by the parameter nstages,
and therefore the size of the acoeffs vector is 2*nstages and the size of
the bcoeffs vector is (2*nstages) + 1.

 For the coeff_iirdf1_fr16 and coeff_iirdf1_fx16 functions, the
values of the coefficients that are held in the vectors acoeffs and
bcoeffs must be in the range of [LONG_MIN, LONG_MAX]; that is,
they must not be less than -2147483648, or greater than
2147483647.

The coeff_iirdf1 functions scale the coefficients and store them in the vec-
tor coeff. The functions also store the appropriate scaling factor in the
vector which the iirdf1 function will then apply to the filtered response
that they generate (thus eliminating the need to scale the output generated
by the IIR function). The size of coeffs array should be (4*nstages) + 2.

 Be aware of the consequence of specifying a set of filter coefficients
whose order of magnitude are significantly different. For instance,
when using 16-bit fractional data types, the term “significantly”
refers to an order of magnitude greater than or equal to 15 when
expressed as a power of 2. In this situation, one or more filter
coefficients may be transformed to zero due to the restricted
precision of the fract16 type, and this may affect the performance
of the user-designed filter.

CrossCore Embedded Studio 1.0 4-119
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Algorithm

The A-coefficients and the B-coefficients represent the numerator and
denominator coefficients of H(z), where H(z) is defined as:

If any of the coefficients are greater than or equal to 1.0, then all the
A-coefficients and all the B-coefficients are scaled to be less than 1.0. The
coefficients are stored into the vector coeffs in the following order:

[b0 , -a01 , b01 , -a02, b02, ..., -an1 , bn1 , -an2 , bn2 , scale factor]

where n is the number of stages.

 Note that the A-coefficients are negated by the function.

Domain

The vectors acoeff and bcoeff must be in the domain [LONG_MIN,
LONG_MAX] for the coeff_iirdf1_fr16 and coeff_iirdf1_fx16 functions,
and in the domain [LLONG_MIN, LLONG MAX] for the functions
coeff_iirdf1_fr32 and coeff_iirdf1_fx32, where LONG_MIN, LONG_MAX,
LLONG_MIN and LLONG_MAX are macros that are defined in the limits.h
header file.

H z B z
A z

b1 b2z
1–

 b+ m 1+ z
m–

+ +

a1 a2z
1–

 am 1+ z
m–

+ + +
---= =

DSP Run-Time Library Guide

4-120 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <filter.h>

#define N_STAGES 25

long double a_coeff[2*N_STAGES];

long double b_coeff[2*N_STAGES+1];

fract32 coefficient[4*N_STAGES+2];

coeff_iirdf1_fr32(a_coeff, b_coeff, coefficient, N_STAGES);

CrossCore Embedded Studio 1.0 4-121
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

conj

Complex conjugate

Synopsis

#include <complex.h>

complex_float conjf (complex_float a);
complex_double conj (complex_double a);
complex_long_double conjd (complex_long_double a);

complex_fract16 conj_fr16 (complex_fract16 a);

complex_fract32 conj_fr32 (complex_fract32 a);

Description

The complex conjugate functions conjugate the complex input a and
return the result.

Algorithm

Re(c) = Re(a)

Im(c) = -Im(a)

Domain

[–3.4e38 , +3.4e38] for conjf()

[–1.7e308 , +1.7e308] for conjd()

[–1.0 , +1.0) for conj_fr16()
for conj_fr32()

DSP Run-Time Library Guide

4-122 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

convolve

Convolution

Synopsis

#include <filter.h>

void convolve_fr16(const fract16 input_x[],
int length_x,

const fract16 input_y[],

int length_y,

fract16 output[]);

void convolve_fr32(const fract32 input_x[],
int length_x,

const fract32 input_y[],

int length_y,

fract32 output[]);

void convolve_fx16(const _Fract input_x[],
int length_x,

const _Fract input_y[],

int length_y,

_Fract output[]);

void convolve_fx32(const long _Fract input_x[],
int length_x,

const long _Fract input_y[],

int length_y,

long _Fract output[]);

CrossCore Embedded Studio 1.0 4-123
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Description

The convolution functions convolve two sequences pointed to by input_x
and input_y. If input_x points to the sequence whose length is length_x
and input_y points to the sequence whose length is length_y, the result-
ing sequence pointed to by output has length length_x + length_y – 1.

Algorithm

Convolution between two sequences input_x and input_y is described as:

for n = 0 to clen1 + clen2-2.

Values for cin1[j] are considered to be zero for j < 0 or j > clen1-1,
where:

cin1 = input_x
cin2 = input_y
cout = output
clen1 = length_x
clen2 = length_y

Domain

[–1.0 , +1.0)

cout n cin1 n k clen2 1– –+ cin2 clen2 1– k–
k 0=

clen2 1–

=

DSP Run-Time Library Guide

4-124 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

The following is an example of a convolution where input_x is of length 4
and input_y is of length 3. If we represent input_x as “A” and input_y as
“B”, the elements of the output vector are:

{A[0]*B[0],

A[1]*B[0] + A[0]*B[1],

A[2]*B[0] + A[1]*B[1] + A[0]*B[2],

A[3]*B[0] + A[2]*B[1] + A[1]*B[2],

A[3]*B[1] + A[2]*B[2],

A[3]*B[2]}

CrossCore Embedded Studio 1.0 4-125
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

conv2d

2-D convolution

Synopsis

#include <filter.h>

void conv2d_fr16(const fract16 *input_x,

int rows_x,

int columns_x,

const fract16 *input_y,

int rows_y,

int columns_y,

fract16 *output);

void conv2d_fx16(const _Fract *input_x,

int rows_x,

int columns_x,

const _Fract *input_y,

int rows_y,

int columns_y,

_Fract *output);

void conv2d_fr32(const fract32 *input_x,
int rows_x,
int columns_x,
const fract32 *input_y,
int rows_y,
int columns_y,
fract32 *output);

DSP Run-Time Library Guide

4-126 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

void conv2d_fx32(const long _Fract *input_x,
int rows_x,
int columns_x,
const long _Fract *input_y,
int rows_y,
int columns_y,
long _Fract *output);

Description

The conv2d functions compute the two-dimensional convolution of input
matrix input_x of size rows_x*columns_x and input_y of size rows_y*
columns_y and store the result in matrix output of dimension
(rows_x + rows_y-1) x (columns_x + columns_y-1).

 A temporary work area is allocated from the run-time stack that the
conv2d_fr16 and conv2d_fx16 functions use to preserve accuracy
while evaluating the algorithm. The stack may therefore overflow if
the sizes of the input matrices are sufficiently large. The size of the
stack may be adjusted by making appropriate changes to the .ldf
file.

Error Conditions

The conv2d functions return if the sizes of any of the dimensions (rows_x,
columns_x, rows_y, columns_y) are less than or equal to zero.

Algorithm

The two-dimensional convolution of x[rows_x][cols_x] and
y[rows_y][cols_y] is defined as:

output[r][c] x[j][k] y[r-j][c-k]
k=0

cols_x-1

i=0

rows_x-1

=

CrossCore Embedded Studio 1.0 4-127
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

where:
r = 0 to [rows_x + rows_y – 1]
c = 0 to [cols_x + cols_y – 1]

Domain

[–1.0 , +1.0)

Example

#include <filter.h>

#define ROWS_1 4

#define ROWS_2 4

#define COLS_1 8

#define COLS_2 2

fract32 input_1[ROWS_1][COLS_1], *a_p = (fract32 *) (&input_1);

fract32 input_2[ROWS_2][COLS_2], *b_p = (fract32 *) (&input_2);

fract32 result[ROWS_1+ROWS_2-1][COLS_1+COLS_2-1];

fract32 *res_p = (fract32 *)(&result);

conv2d_fr32 (a_p, ROWS_1, COLS_1, b_p, ROWS_2, COLS_2, res_p);

DSP Run-Time Library Guide

4-128 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

conv2d3x3

2-D circular convolution with 3 x 3 matrix

Synopsis

#include <filter.h>

void conv2d3x3_fr16(const fract16 *input_x,

int rows_x,

int columns_x,

const fract16 *input_y,

fract16 *output);

void conv2d3x3_fx16(const _Fract *input_x,

int rows_x,

int columns_x,

const _Fract *input_y,

_Fract *output);

void conv2d3x3_fr32(const fract32 *input_x,
int rows_x,
int columns_x,
const fract32 *input_y,
fract32 *output);

void conv2d3x3_fx32(const long _Fract *input_x,
int rows_x,
int columns_x,
const long _Fract *input_y,
long _Fract *output);

CrossCore Embedded Studio 1.0 4-129
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Description

The conv2d3x3 functions compute the two-dimensional circular convolu-
tion of matrix input_x with dimensions [rows_x][columns_x]) and matrix
input_y with dimensions [3][3], and store the result in matrix output with
dimensions [rows_x][columns_x].

Error Conditions

The conv2d3x3 functions return if any of the dimensions rows_x or
columns_x are less than or equal to zero.

Algorithm

The two-dimensional circular convolution of x[rows_x][cols_x] and
y[3][3] is defined as:

where:
r = 0 to rows_x – 1
c = 0 to cols_x – 1

Domain

[–1.0 , +1.0)

output[r][c] x[(rows_x-j)%rows_x][cols_x-k)%cols_x] y[j][k]
k 0=

2

j 0=

2

=

DSP Run-Time Library Guide

4-130 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <filter.h>

#define ROWS 9

#define COLS 9

fract32 input_1[ROWS][COLS], *a_p = (fract32 *) (&input_1);

fract32 input_2[3][3], *b_p = (fract32 *) (&input_2);

fract32 result[ROWS][COLS];

fract32 *res_p = (fract32 *)(&result);

conv2d3x3_fr32 (a_p, ROWS, COLS, b_p, res_p);

CrossCore Embedded Studio 1.0 4-131
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

copysign

Copysign

Synopsis

#include <math.h>

float copysignf (float parm1, float parm2);

double copysign (double parm1, double parm2);
long double copysignd (long double parm1, long double parm2);

fract16 copysign_fr16 (fract16 parm1, fract16 parm2);

fract32 copysign_fr32 (fract32 parm1, fract32 parm2);

_Fract copysign_fx16 (_Fract parm1, _Fract parm2);

long _Fract copysign_fx32 (long _Fract parm1, long _Fract parm2);

Description

The copysign functions copy the sign of the second argument to the first
argument.

Algorithm

return (|parm1| * copysignof(parm2))

Domain

Full range for type of parameters used.

DSP Run-Time Library Guide

4-132 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

cot

Cotangent

Synopsis

#include <math.h>

float cotf (float a);
double cot (double a);
long double cotd (long double a);

Description

The cotangent functions calculate the cotangent of the argument a,
which is measured in radians. If a is outside of the domain, the functions
return 0.

Algorithm

 c = cot(a)

Domain

a = [–9099 , 9099] for cotf()

a = [-4.21657e8 , 4.21657e8] for cotd()

CrossCore Embedded Studio 1.0 4-133
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

countones

Count one bits in word

Synopsis

#include <math.h>

int countones(int parm);
int lcountones(long parm);
int llcountones(long long int parm);

Description

The countones functions count the number of one bits in the argument
parm.

Algorithm

The following equation is the basis of the algorithm.

where:
N is the number of bits in parm
bit[j] represents the jth bit of the parameter parm

return bit j
j 0=

N 1–

=

DSP Run-Time Library Guide

4-134 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

crosscoh

Cross-coherence

Synopsis

#include <stats.h>

void crosscohf (const float samples_x[],

const float samples_y[],

int sample_length,

int lags,

float coherence[]);

void crosscoh (const double samples_x[],

const double samples_y[],

int sample_length,

int lags,

double coherence[]);

void crosscohd (const long double samples_x[],

const long double samples_y[],

int sample_length,

int lags,

long double coherence[]);

void crosscoh_fr16 (const fract16 samples_x[],

const fract16 samples_y[],

int sample_length,

int lags,

fract16 coherence[]);

CrossCore Embedded Studio 1.0 4-135
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

void crosscoh_fr32 (const fract32 samples_x[],

const fract32 samples_y[],

int sample_length,

int lags,

fract32 coherence[]);

void crosscoh_fx16 (const _Fract samples_x[],

const _Fract samples_y[],

int sample_length,

int lags,

_Fract coherence[]);

void crosscoh_fx32 (const long _Fract samples_x[],

const long _Fract samples_y[],

int sample_length,

int lags,

long _Fract coherence[]);

Description

The crosscoh functions perform a cross-coherence between the two signals
contained in samples_x and samples_y, both of length samples_length.
The cross-coherence is the sum of the scalar products of the input signals
in which the signals are displaced in time with respect to one another (i.e.
the cross-correlation between the input signals), minus the product of the
partial mean of samples_x and the partial mean of samples_y. The
cross-coherence between the two input signals is returned in the array
coherence of length lags.

Error Conditions

The crosscoh functions will return without modifying the output array if
either the number of samples is less than or equal to 1, or if the number of
lags is less than 1, or if the number of lags is not less than the number of
samples.

DSP Run-Time Library Guide

4-136 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Algorithm

The cross-coherence functions are based on the following algorithm.

where:
n = sample_length
k = { 0, 1,, lags–1 }
a = samples_x
b = samples_y

Domain

Example

#include <stats.h>

#define SAMPLES 1024

#define LAGS 16

fract32 x[SAMPLES];

fract32 y[SAMPLES];

fract32 response[LAGS];

crosscoh_fr32 (x, y, SAMPLES, LAGS, response);

[–3.4e38 , +3.4e38] for crosscohf()

[–1.7e308 , +1.7e308] for crosscohd()

[–1.0 , +1.0) for crosscoh_fr16() and crosscoh_fx16()
for crosscoh_fr32() and crosscoh_fx32()

ck
1

n k–
----------- ajbj k+

j 0=

n k– 1–

1

n k–
----------- aj

j 0=

n k– 1–

1
n k–
----------- bj

j k=

n 1–

–=

CrossCore Embedded Studio 1.0 4-137
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

See Also

autocoh, autocorr, crosscorr

DSP Run-Time Library Guide

4-138 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

crosscorr

Cross-correlation

Synopsis

#include <stats.h>

void crosscorrf (const float samples_x[],

const float samples_y[],

int sample_length,

int lags,

float correlation[]);

void crosscorr (const double samples_x[],

const double samples_y[],

int sample_length,

int lags,

double correlation[]);

void crosscorrd (const long double samples_x[],

const long double samples_y[],

int sample_length,

int lags,

long double correlation[]);

void crosscorr_fr16 (const fract16 samples_x[],

const fract16 samples_y[],

int sample_length,

int lags,

fract16 correlation[]);

CrossCore Embedded Studio 1.0 4-139
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

void crosscorr_fx16 (const _Fract samples_x[],

const _Fract samples_y[],

int sample_length,

int lags,

_Fract correlation[]);

void crosscorr_fr32 (const fract32 samples_x[],

const fract32 samples_y[],

int sample_length,

int lags,

fract32 correlation[]);

void crosscorr_fx32 (const long _Fract samples_x[],

const long _Fract samples_y[],

int sample_length,

int lags,

long _Fract correlation[]);

Description

The cross-correlation functions perform a cross-correlation between two
signals. The cross-correlation is the sum of the scalar products of the sig-
nals in which the signals are displaced in time with respect to one another.
The signals to be correlated are given by the input vectors samples_x[]
and samples_y[]. The length of the input vectors is given by
sample_length. The functions return the result in the array correlation
with lags elements.

Cross-correlation is used in signal processing applications such as speech
analysis.

DSP Run-Time Library Guide

4-140 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Algorithm

The following equation is the basis of the algorithm.

where:
k = {0, 1, ..., lags–1}
a = samples_x
b = samples_y
n = sample_length

Domain

[–3.4e38 , +3.4e38] for crosscorrf()

[–1.7e308 , +1.7e308] for crosscorrd()

[–1.0 , +1.0) for crosscorr_fr16(),
crosscorr_fx16(),
crosscorr_fr32(),
crosscorr_fx32()

ck
1
n
--- aj bj k+

j 0=

n k– 1–

=

CrossCore Embedded Studio 1.0 4-141
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

csub

Complex subtraction

Synopsis

#include <complex.h>

complex_float csubf (complex_float a, complex_float b);

complex_double csub (complex_double a, complex_double b);

complex_long_double csubd (complex_long_double a,

complex_long_double b);

complex_fract16 csub_fr16 (complex_fract16 a, complex_fract16 b);

complex_fract32 csub_fr32 (complex_fract32 a, complex_fract32 b);

Description

The csub functions compute the complex subtraction of two complex
inputs, a and b, and return the result.

Algorithm

Re(c) = Re(a) – Re(b)

Im(c) = Im(a) – Im(b)

Domain

[–3.4e38 , +3.4e38] for csubf()

[–1.7e308 , +1.7e308] for csubd()

[–1.0 , +1.0) for csub_fr16() and csub_fr32()

DSP Run-Time Library Guide

4-142 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fir

Finite impulse response filter

Synopsis

#include <filter.h>

void fir_fr16(const fract16 input[],

fract16 output[],

int length,

fir_state_fr16 *filter_state);

void fir_fx16(const _Fract input[],

_Fract output[],

int length,

fir_state_fx16 *filter_state);

void fir_fr32(const fract32 input[],
fract32 output[],
int length,
fir_state_fr32 *filter_state);

void fir_fx32(const long _Fract input[],
long _Fract output[],
int length,
fir_state_fx32 *filter_state);

The fir_fr16 function uses the following structure to maintain the state
of the filter.

typedef struct

{

fract16 *h, /* filter coefficients */

fract16 *d, /* start of delay line */

fract16 *p, /* read/write pointer */

int k; /* number of coefficients */

CrossCore Embedded Studio 1.0 4-143
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

int l; /* interpolation/decimation index */

} fir_state_fr16;

The fir_fx16 function uses the following structure to maintain the state
of the filter.

typedef struct

{

_Fract *h, /* filter coefficients */

_Fract *d, /* start of delay line */

_Fract *p, /* read/write pointer */

int k; /* number of coefficients */

int l; /* interpolation/decimation index */

} fir_state_fx16;

The fir_fr32 function uses the following structure to maintain the state
of the filter.

typedef struct
{

fract32 *h, /* filter coefficients */
fract32 *d, /* start of delay line */
fract32 *p, /* read/write pointer */
int k; /* number of coefficients */
int l; /* interpolation/decimation index */

} fir_state_fr32;

The fir_fx32 function uses the following structure to maintain the state
of the filter.

typedef struct
{

long _Fract *h, /* filter coefficients */
long _Fract *d, /* start of delay line */
long _Fract *p, /* read/write pointer */
int k; /* number of coefficients */
int l; /* interpolation/decimation index */

} fir_state_fx32;

DSP Run-Time Library Guide

4-144 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Description

The fir functions implement a finite impulse response (FIR) filter. The
functions generate the filtered response of the input data input and store
the result in the output vector output. The number of input samples and
the length of the output vector are specified by the argument length.

The functions maintain the filter state in the structured variable
filter_state, which must be declared and initialized before calling the
function. The macro fir_init, defined in the filter.h header file, is
available to initialize the structure.

It is defined as:

#define fir_init(state, coeffs, delay, ncoeffs. index) \

do { \

(state).h = (coeffs); \

(state).d = (delay); \

(state).p = (delay); \

(state).k = (ncoeffs); \

(state).l = (index); \

} while (0)

The characteristics of the filter (passband, stopband, and so on) are depen-
dent upon the number of filter coefficients and their values. A pointer to
the coefficients should be stored in filter_state->h, and
filter_state->k should be set to the number of coefficients. The func-
tions assume that the coefficients are stored in the normal order, thus
filter_state->h[0] contains the first filter coefficient and
filter_state->h[k-1] contains the last coefficient.

 The fir_fr16 and fir_fx16 functions will exploit the Blackfin
architecture by computing the filtered response of two input sam-
ples at one time. As a consequence of this optimization, the input
and output vectors and the array of filter coefficients must be
aligned on a 32-bit address boundary. Under most circumstances,
the compiler will allocate arrays on a 32-bit word-aligned address

CrossCore Embedded Studio 1.0 4-145
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

boundary. However, arrays within structures are not aligned
beyond the required alignment for their type. So if any of the
input, output, or coefficients arrays are allocated as part of a struc-
ture, then they should be explicitly aligned to a word address by
preceding their declaration with a #pragma align 4 directive. For
more information, see #pragma align num.

Each filter should have its own delay line which is a vector of type fract16
(for fir_fr16), _Fract (for fir_fx16), fract32 (for fir_fr32) or long
_Fract (for fir_fx32) whose length is equal to the number of coefficients.
The vector should be initially cleared to zero and should not otherwise be
modified by the user program. The structure member filter_state->d
should be set to the start of the delay line, and the function uses
filter_state->p to keep track of its current position within the vector.

The structure member filter_state->l is not used by fir_fr16,
fir_fx16, fir_fr32, or fir_fx32. This field is normally set to an
interpolation/decimation index before calling either the fir_interp or
fir_decima functions.

Error Conditions

The fir functions check that the number of input samples and the number
of coefficients are greater than zero—if not, the functions just return.

Algorithm

The following equation is the basis of the algorithm.

y i h j x i j–
j 0=

k 1–

=

DSP Run-Time Library Guide

4-146 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

where:
x = input
y = output
h = array of coefficients
k = number of coefficients
i = {0, 1, ..., length–1}

Domain

[–1.0 , +1.0)

Example

#include <filter.h>

#define NUM_SAMPLES 256

#define NUM_COEFFS 89

fract32 input[NUM_SAMPLES];

fract32 output[NUM_SAMPLES];

#pragma section("L1_data_a")

fract32 coeffs[NUM_COEFFS];

#pragma section("L1_data_b")

fract32 delay[NUM_COEFFS];

fir_state_fr32 state;

int i;

for (i = 0; i < NUM_COEFFS; i++) /* clear the delay line */

{

delay[i] = 0;

}

fir_init(state, coeffs, delay, NUM_COEFFS, 0);

fir_fr32(input, output, NUM_SAMPLES, &state);

CrossCore Embedded Studio 1.0 4-147
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

fir_decima

FIR decimation filter

Synopsis

#include <filter.h>

void fir_decima_fr16(const fract16 input[],

fract16 output[],

int length,

fir_state_fr16 *filter_state);

void fir_decima_fx16(const _Fract input[],

_Fract output[],

int length,

fir_state_fx16 *filter_state);

void fir_decima_fr32(const fract32 input[],
fract32 output[],
int length,
fir_state_fr32 *filter_state);

void fir_decima_fx32(const long _Fract input[],
long _Fract output[],
int length,
fir_state_fx32 *filter_state);

The fir_decima_fr16 function uses the following structure to maintain
the state of the filter.

typedef struct

{

fract16 *h; /* filter coefficients */

fract16 *d; /* start of delay line */

fract16 *p; /* read/write pointer */

DSP Run-Time Library Guide

4-148 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

int k; /* number of coefficients */

int l; /* interpolation/decimation index */

} fir_state_fr16;

The fir_decima_fx16 function uses the following structure to maintain
the state of the filter.

typedef struct

{

_Fract *h; /* filter coefficients */

_Fract *d; /* start of delay line */

_Fract *p; /* read/write pointer */

int k; /* number of coefficients */

int l; /* interpolation/decimation index */

} fir_state_fx16;

The fir_decima_fr32 function uses the following structure to maintain
the state of the filter.

typedef struct
{

fract32 *h; /* filter coefficients */
fract32 *d; /* start of delay line */
fract32 *p; /* read/write pointer */
int k; /* number of coefficients */
int l; /* interpolation/decimation index */

} fir_state_fr32;

The fir_decima_fx32 function uses the following structure to maintain
the state of the filter.

typedef struct
{

long _Fract *h; /* filter coefficients */
long _Fract *d; /* start of delay line */
long _Fract *p; /* read/write pointer */
int k; /* number of coefficients */

CrossCore Embedded Studio 1.0 4-149
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

int l; /* interpolation/decimation index */
} fir_state_fx32;

Description

The fir_decima functions perform an FIR-based decimation filter. They
generate the filtered decimated response of the input data input and store
the result in the output vector output. The number of input samples is
specified by the argument length, and the size of the output vector should
be length/l where l is the decimation index.

The functions maintain the filter state in the structured variable
filter_state, which must be declared and initialized before calling the
function. The macro fir_init, defined in the filter.h header file, is
available to initialize the structure.

It is defined as:

#define fir_init(state, coeffs, delay, ncoeffs, index) \

do { \

(state).h = (coeffs); \

(state).d = (delay); \

(state).p = (delay); \

(state).k = (ncoeffs); \

(state).l = (index); \

} while (0)

The characteristics of the filter are dependent upon the number of filter
coefficients and their values, and on the decimation index supplied by the
calling program. A pointer to the coefficients should be stored in
filter_state->h, and filter_state->k should be set to the number of
coefficients. The functions assume that the coefficients are stored in the
normal order, thus filter_state->h[0] contains the first filter coefficient
and filter_state->h[k-1] contains the last coefficient. The decimation
index is supplied to the function in filter_state->l.

DSP Run-Time Library Guide

4-150 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Each filter should have its own delay line which is a vector of type fract16
(for fir_decima_fr16), _Fract (for fir_decima_fx16), fract32 (for
fir_decima_fr32), or long _Fract (for fir_decima_fx32) whose length is
equal to the number of coefficients. The vector should be initially cleared
to zero and should not otherwise be modified by the user program. The
structure member filter_state->d should be set to the start of the delay
line, and the function uses filter_state->p to keep track of its current
position within the vector.

Error Conditions

The fir_decima functions check that the number of input samples, the
number of coefficients and the decimation index are greater than zero—if
not, the functions just return.

Algorithm

The following equation is the basis of the algorithm.

where:
h = array of coefficients
k = number of coefficients
n = length
l = decimation index
i = {0, 1, ..., (n/l) – 1}
x = input
y = output

y i x i l j–
j 0=

k 1–

 h j =

CrossCore Embedded Studio 1.0 4-151
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Domain

[–1.0 , +1.0)

Example

#include <filter.h>

#define NUM_INSAMPLES 256

#define NUM_COEFFS 89

#define NUM_DECIMATION 16

#define NUM_OUTSAMPLES (NUM_INSAMPLES / NUM_DECIMATION)

fract32 input[NUM_INSAMPLES];

fract32 output[NUM_OUTSAMPLES];

#pragma section("L1_data_a")

fract32 coeffs[NUM_COEFFS];

#pragma section("L1_data_b")

fract32 delay[NUM_COEFFS];

fir_state_fr32 state;

int i;

for (i = 0; i < NUM_COEFFS; i++) /* clear the delay line */

{

delay[i] = 0;

}

fir_init(state, coeffs, delay, NUM_COEFFS, NUM_DECIMATION);

fir_decima_fr32(input, output, NUM_INSAMPLES, &state);

DSP Run-Time Library Guide

4-152 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fir_interp

FIR interpolation filter

Synopsis

#include <filter.h>

void fir_interp_fr16(const fract16 input[],

fract16 output[],

int length,

fir_state_fr16 *filter_state);

void fir_interp_fx16(const _Fract input[],

_Fract output[],

int length,

fir_state_fx16 *filter_state);

void fir_interp_fr32(const fract32 input[],

fract32 output[],

int length,

fir_state_fr32 *filter_state);

void fir_interp_fx32(const long _Fract input[],

long _Fract output[],

int length,

fir_state_fx32 *filter_state);

The fir_interp_fr16 function uses the following structure to maintain
the state of the filter.

typedef struct

{

fract16 *h; /* filter coefficients */

fract16 *d; /* start of delay line */

fract16 *p; /* read/write pointer */

CrossCore Embedded Studio 1.0 4-153
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

int k; /* number of coefficients per polyphase */

int l; /* interpolation/decimation index */

} fir_state_fr16;

The fir_interp_fx16 function uses the following structure to maintain
the state of the filter.

typedef struct

{

_Fract *h; /* filter coefficients */

_Fract *d; /* start of delay line */

_Fract *p; /* read/write pointer */

int k; /* number of coefficients per polyphase */

int l; /* interpolation/decimation index */

} fir_state_fx16;

The fir_interp_fr32 function uses the following structure to maintain
the state of the filter.

typedef struct

{

fract32 *h; /* filter coefficients */

fract32 *d; /* start of delay line */

fract32 *p; /* read/write pointer */

int k; /* number of coefficients per polyphase */

int l; /* interpolation/decimation index */

} fir_state_fr32;

The fir_interp_fx32 function uses the following structure to maintain
the state of the filter.

typedef struct

{

long _Fract *h; /* filter coefficients */

long _Fract *d; /* start of delay line */

long _Fract *p; /* read/write pointer */

int k; /* number of coefficients per polyphase */

DSP Run-Time Library Guide

4-154 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

int l; /* interpolation/decimation index */

} fir_state_fx32;

Description

The fir_interp functions perform an FIR-based interpolation filter. They
generate the interpolated filtered response of the input data input and
store the result in the output vector output. The number of input samples
is specified by the argument length, and the size of the output vector
should be length*l where l is the interpolation index.

The filter characteristics are dependent upon the number of polyphase fil-
ter coefficients and their values, and on the interpolation factor supplied
by the calling program.

The fir_interp functions assume that the coefficients are stored in the
following order:

coeffs[(np * ncoeffs) + nc]

where:

np = {0, 1, ..., nphases-1}

nc = {0, 1, ..., ncoeffs-1}

In the above syntax, nphases is the number of polyphases and ncoeffs is
the number of coefficients per polyphase. A pointer to the coefficients is
passed into the fir_interp functions via the argument filter_state, which
is a structured variable that represents the filter state. This structured vari-
able must be declared and initialized before calling the function. The
filter.h header file contains the macro fir_init that can be used to ini-
tialize the structure and is defined as:

#define fir_init(state, coeffs, delay, ncoeffs, index) \

do { \

(state).h = (coeffs); \

(state).d = (delay); \

CrossCore Embedded Studio 1.0 4-155
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

(state).p = (delay); \

(state).k = (ncoeffs); \

(state).l = (index); \

} while (0)

The interpolation factor is supplied to the function in filter_state->l.
A pointer to the coefficients should be stored in filter_state->h, and
filter_state->k should be set to the number of coefficients per poly-
phase filter.

Each filter should have its own delay line which is a vector of type fract16
(for fir_interp_fr16), _Fract (for fir_interp_fx16), fract32 (for
fir_interp_fr32), or long _Fract (for fir_interp_fx32) whose length is
equal to the number of coefficients in each polyphase. The vector should
be cleared to zero before calling the function for the first time and should
not otherwise be modified by the user program. The structure member
filter_state->d should be set to the start of the delay line, and the func-
tion uses filter_state->p to keep track of its current position within the
vector.

Error Conditions

The fir_interp functions check that the number of input samples, the
number of coefficients and the interpolation index are greater than zero—
if not, the functions just return.

Algorithm

The following equation is the basis of the algorithm.

y i l m+ x i j–
j 0=

k 1–

 h m k j+ =

DSP Run-Time Library Guide

4-156 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

where:
h = array of coefficients
k = number of coefficients
n = length
l = interpolation index
i = {0, 1, ..., n–1}
m = {0, 1, ..., l–1}
x = input
y = output

Domain

[–1.0 , +1.0)

Example

The following example demonstrates how the library function may be
called.

#include <filter.h>

#include <fract2float_conv.h>

#define N_INSAMPLES 257

#define N_COEFFS 128

#define N_INTERPOLATION 16

#define N_POLY N_INTERPOLATION

#define N_COEFFS_PER_POLY (N_COEFFS / N_POLY)

#define N_OUTSAMPLES (N_INSAMPLES * N_INTERPOLATION)

fract16 signal[N_INSAMPLES];

fract16 output[N_OUTSAMPLES];

/* Filter coefficients from a filter design tool */

float filter_coeffs[N_POLY][N_COEFFS_PER_POLY];

CrossCore Embedded Studio 1.0 4-157
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

/* Coefficients and delay line for the filter function

(use separate memory banks for best performance)

*/

#pragma section("L1_data_a")

fract16 coeffs[N_COEFFS];

#pragma section("L1_data_b")

fract16 delay[N_COEFFS_PER_POLY];

fir_state_fr16 state;

fract16 x;
int i,np,nc;

/* Transform the coefficients from the filter design tool

into coefficients for the fir_interp function

(all filter coefficients are assumed to be < 1.0)

*/

for (np = 0; np < N_POLY; np++) {

for (nc = 0; nc < N_COEFFS_PER_POLY; nc++) {

x = float_to_fr16 (filter_coeffs[np][nc]);

coeffs[(np * N_COEFFS_PER_POLY) + nc] = x;

}

}

/* Configure filter descriptor */

fir_init (state,coeffs,delay,N_COEFFS_PER_POLY,N_POLY);

/* Zero delay line to start or reset the filter */

for (i = 0; i < N_COEFFS_PER_POLY; i++)

delay[i] = 0;

/* Perform a FIR-based interpolation filter */

fir_interp_fr16 (signal,output,N_INSAMPLES,&state);

DSP Run-Time Library Guide

4-158 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

fft_magnitude

FFT magnitude

Synopsis

#include <filter.h>

void fft_magnitude_fr16(const complex_fract16 input[],

fract16 output[],

int fft_size,

int block_exponent,

int mode);

void fft_magnitude_fr32(const complex_fract32 input[],

fract32 output[],

int fft_size,

int block_exponent,

int mode);

Description

The FFT magnitude functions, fft_magnitude_fr16 and
fft_magnitude_fr32, compute a normalized power spectrum from the
output signal generated by an FFT function. The fft_size argument
specifies the size of the FFT and must be a power of 2. The mode argument
is used to specify the type of FFT function used to generate the input
array. The function fft_magnitude_fr16 computes the magnitude of an
FFT that is represented by a fract16 input array, while
fft_magnitude_fr32 computes the magnitude of an FFT that is repre-
sented by a fract32 input array.

If the input array has been generated from a time-domain complex input
signal, the mode argument must be set to 0. Otherwise the mode argument
must be set to 1 to signify that the input array has been generated from a

CrossCore Embedded Studio 1.0 4-159
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

time-domain real input signal. For example, mode must be set to 0 if the
input was generated by one of the following library functions:

cfft_fr16, cfftf_fr16

cfft_fr32, cfftf_fr32

and mode must be set to 1 if the input was generated by one of the follow-
ing library functions:

rfft_fr16, rfftf_fr16

rfft_fr32, rfftf_fr32

The block_exponent argument is used to control the normalization of the
power spectrum. It will usually be set to the block_exponent that is
returned by the cfft_fr16 or cfft_fr32, rfft_fr16 or rfft_fr32 func-
tions. If, on the other hand, the input array was generated by one of the
functions cfftf_fr16, cfftf_fr32, rfftf_fr16 or rfftf_fr32, then the
block_exponent argument should be set to -1, which indicates that the
input array was generated using static scaling.

If the input array was generated by some other means, then the value spec-
ified for the block_exponent argument will depend upon how the FFT
was calculated. If the function used to calculate the FFT did not scale the
intermediate results at any of the stages of the computation, then set
block_exponent to zero; if the FFT function scaled the intermediate
results at each stage of the computation, then set block_exponent to -1;
otherwise set block_exponent to the number of computation stages that
did scale the intermediate results (this value will be in the range 0 to
log2(fft_size)).

 Functions that compute an FFT using fixed-point arithmetic will
usually scale a set of intermediate results to avoid the arithmetic
from generating any saturated results. Refer to the description of
the cfft_fr16, rfft_fr16 or cfft_fr32, rfft_fr32 functions for
more information about different scaling methods.

DSP Run-Time Library Guide

4-160 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The fft_magnitude_fr16 and fft_magnitude_fr32 functions write the
power spectrum to the output array output. If mode is set to 0, then the
length of the power spectrum will be fft_size. If mode is set to 1, then the
length of the power spectrum will be ((fft_size/2)+1).

Error Conditions

The FFT magnitude functions exit without modifying the output vector if
any of the following conditions are true:

• fft_size is less than 2,

• the mode argument is set to a value other than 0 or 1,

• block_exponent contains a value less than -1,

• block exponent is greater than 0 and the following condition is not
true:

fft_size >= (1 << block_exponent)

Algorithm

For mode 0 (cfft-generated input):

where: i = [0 ... fft_size)

fft_magnitude[i]
sqrt input[i].re2 input[i].im2

+
fft_size

--=

CrossCore Embedded Studio 1.0 4-161
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

For mode 1 (rfft-generated input):

where: i = [0 ... fft_size/2]

Example

#include <filter.h>

#define N_FFT 1024
#pragma align 4096
complex_fract16 cplx_signal[N_FFT];

fract16 real_signal[N_FFT];

complex_fract16 fft_output[N_FFT];

complex_fract16 twiddle_table[N_FFT];

fract16 real_magnitude[(N_FFT/2)+1];

fract16 cplx_magnitude[N_FFT];

int block_exponent;

twidfftrad2_fr16 (twiddle_table, N_FFT);

rfft_fr16(real_signal,fft_output,

 twiddle_table,1,N_FFT,&block_exponent,2);

fft_magnitude_fr16 (fft_output,real_magnitude

 N_FFT,block_exponent,1);

twidfftf_fr16 (twiddle_table,N_FFT);

fft_magnitude[i]
2 sqrt input[i].re2 input[i].im2

+
fft_size

--=

DSP Run-Time Library Guide

4-162 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

cfftf_fr16 (cplx_signal,fft_output,twiddle_table,1,N_FFT);

fft_magnitude_fr16 (fft_output,cplx_magnitude,N_FFT,-1,0);

See Also

cfft, cfftf, rfft, rfftf

CrossCore Embedded Studio 1.0 4-163
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

gen_bartlett

Generate Bartlett window

Synopsis

#include <window.h>

void gen_bartlett_fr16(fract16 bartlett_window[],

int window_stride,

int window_size);

void gen_bartlett_fx16(_Fract bartlett_window[],

int window_stride,

int window_size);

void gen_bartlett_fr32(fract32 bartlett_window[],

int window_stride,

int window_size);

void gen_bartlett_fx32(long _Fract bartlett_window[],

int window_stride,

int window_size);

Description

The gen_bartlett functions generate a vector containing the Bartlett win-
dow. The length of the window required is specified by the parameter
window_size, and the parameter window_stride is used to space the win-
dow values within the output vector bartlett_window. The length of the
output vector should therefore be window_size*window_stride.

DSP Run-Time Library Guide

4-164 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The Bartlett window is similar to the triangle window (on page 4-180) but
has the following different properties:

• The Bartlett window always returns a window with two zeros on
either end of the sequence, so that for odd n, the center section of
an N+2 Bartlett window equals an N triangle window.

• For even n, the Bartlett window is still the convolution of two rect-
angular sequences. There is no standard definition for the triangle
window for even n; the slopes of the triangle window are slightly
steeper than those of the Bartlett window.

Algorithm

The following equation is the basis of the algorithm.

where:
w = bartlett_window
N = window_size
n = {0, 1, 2, ..., N–1}

Domain

window_stride > 0
N > 0

w n 1
n

N 1–
2

-------------–

N 1–
2

----------------------–=

CrossCore Embedded Studio 1.0 4-165
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Example

#include <window.h>

#define N 100

#define n 2

fract32 b[n*N];

gen_bartlett_fr32(b, n, N);

DSP Run-Time Library Guide

4-166 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

gen_blackman

Generate Blackman window

Synopsis

#include <window.h>

void gen_blackman_fr16(fract16 blackman_window[],

int window_stride,

int window_size);

void gen_blackman_fr32(fract32 blackman_window[],

int window_stride,

int window_size);

void gen_blackman_fx16(_Fract blackman_window[],

int window_stride,

int window_size);

void gen_blackman_fx32(long _Fract blackman_window[],

int window_stride,

int window_size);

Description

The gen_blackman functions generate a vector containing the Blackman
window. The length of the window required is specified by the parameter
window_size, and the parameter window_stride is used to space the win-
dow values within the output vector blackman_window. The length of the
output vector should therefore be window_size*window_stride.

CrossCore Embedded Studio 1.0 4-167
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Algorithm

The following equation is the basis of the algorithm.

where:
N = window_size
w = blackman_window
n = {0, 1, 2, ..., N–1}

Domain

window_stride > 0
N > 0

w n 0.42 0.5
2n

N 1–

 cos 0.08

4n
N 1–

 cos+–=

DSP Run-Time Library Guide

4-168 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

gen_gaussian

Generate Gaussian window

Synopsis

#include <window.h>

void gen_gaussian_fr16(fract16 gaussian_window[],

float alpha,

int window_stride,

int window_size);

void gen_gaussian_fr32(fract32 gaussian_window[],

long double alpha,

int window_stride,

int window_size);

void gen_gaussian_fx16(_Fract gaussian_window[],

float alpha,

int window_stride,

int window_size);

void gen_gaussian_fx32(long _Fract gaussian_window[],

long double alpha,

int window_stride,

int window_size);

Description

The gen_gaussian functions generate a vector containing the Gaussian
window. The length of the window required is specified by the parameter
window_size, and the parameter window_stride is used to space the win-
dow values within the output vector gaussian_window. The length of the
output vector should therefore be window_size*window_stride.

CrossCore Embedded Studio 1.0 4-169
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

The parameter alpha is used to control the shape of the window. In gen-
eral, the peak of the Gaussian window will become narrower and the
leading and trailing edges will tend towards zero the larger that alpha
becomes. Conversely, the peak will get wider and wider the more that
alpha tends towards zero.

Algorithm

The following equation is the basis of the algorithm.

where:
w = gaussian_window
N = window_size
n = {0, 1, 2, ..., N–1}
 is an input parameter

Domain

window_stride > 0
window_size > 0
 > 0

w n 1–
2

n

N
2
----–

 1
2

 + +

N
2

2

exp=

DSP Run-Time Library Guide

4-170 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

gen_hamming

Generate Hamming window

Synopsis

#include <window.h>

void gen_hamming_fr16(fract16 hamming_window[],

int window_stride,

int window_size);

void gen_hamming_fr32(fract32 hamming_window[],

int window_stride,

int window_size);

void gen_hamming_fx16(_Fract hamming_window[],

int window_stride,

int window_size);

void gen_hamming_fx32(long _Fract hamming_window[],

int window_stride,

int window_size);

Description

The gen_hamming functions generate a vector containing the Hamming
window. The length of the window required is specified by the parameter
window_size, and the parameter window_stride is used to space the win-
dow values within the output vector hamming_window. The length of the
output vector should therefore be window_size*window_stride.

CrossCore Embedded Studio 1.0 4-171
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Algorithm

The following equation is the basis of the algorithm.

where:
w = hamming_window
N = window_size
n = {0, 1, 2, ..., N–1}

Domain

window_stride > 0
N > 0

w n 0.54 0.46
2n

N 1–

 cos–=

DSP Run-Time Library Guide

4-172 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

gen_hanning

Generate Hanning window

Synopsis

#include <window.h>

void gen_hanning_fr16(fract16 hanning_window[],

int window_stride,

int window_size);

void gen_hanning_fr32(fract32 hanning_window[],

int window_stride,

int window_size);

void gen_hanning_fx16(_Fract hanning_window[],

int window_stride,

int window_size);

void gen_hanning_fx32(long _Fract hanning_window[],

int window_stride,

int window_size);

Description

The gen_hanning functions generate a vector containing the Hanning
window. The length of the window required is specified by the parameter
window_size, and the parameter window_stride is used to space the win-
dow values within the output vector hanning_window. The length of the
output vector should therefore be window_size*window_stride. This win-
dow is also known as the cosine window.

CrossCore Embedded Studio 1.0 4-173
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Algorithm

The following equation is the basis of the algorithm.

where:
N = window_size
w = hanning_window
n = {0, 1, 2, ..., N–1}

Domain

window_stride > 0
N > 0

w n 0.5 0.5
2n

N 1–

 cos–=

DSP Run-Time Library Guide

4-174 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

gen_harris

Generate Harris window

Synopsis

#include <window.h>

void gen_harris_fr16(fract16 harris_window[],

int window_stride,

int window_size);

void gen_harris_fr32(fract3 harris_window[],

int window_stride,

int window_size);

void gen_harris_fx16(_Fract harris_window[],

int window_stride,

int window_size);

void gen_harris_fx32(long _Fract harris_window[],

int window_stride,

int window_size);

Description

The gen_harris functions generate a vector containing the Harris window.
The length of the window required is specified by the parameter
window_size, and the parameter window_stride is used to space the win-
dow values within the output vector harris_window. The length of the
output vector should therefore be window_size*window_stride. This win-
dow is also known as the Blackman-Harris window.

CrossCore Embedded Studio 1.0 4-175
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Algorithm

The following equation is the basis of the algorithm.

where:
N = window_size
w = harris_window
n = {0, 1, 2, ..., N–1}

Domain

window_stride > 0
N > 0

w[n] 0.35875 0.48829
2n

N 1–

 cos 0.14128

4n
N 1–

 cos 0.01168

6n
N 1–

 cos–+–=

DSP Run-Time Library Guide

4-176 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

gen_kaiser

Generate Kaiser window

Synopsis

#include <window.h>

void gen_kaiser_fr16(fract16 kaiser_window[],

float beta,

int window_stride,

int window_size);

void gen_kaiser_fr32(fract32 kaiser_window[],

long double beta,

int window_stride,

int window_size);

void gen_kaiser_fx16(_Fract kaiser_window[],

float beta,

int window_stride,

int window_size);

void gen_kaiser_fx32(long _Fract kaiser_window[],

long double beta,

int window_stride,

int window_size);

Description

The gen_kaiser functions generate a vector containing the Kaiser window.
The length of the window required is specified by the parameter
window_size, and the parameter window_stride is used to space the win-
dow values within the output vector kaiser_window. The length of the

CrossCore Embedded Studio 1.0 4-177
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

output vector should therefore be window_size*window_stride. The
value is specified by parameter beta.

Algorithm

The following equation is the basis of the algorithm.

where:
N = window_size
w = kaiser_window
n = {0, 1, 2, ..., N–1}
 = (N–1) / 2
I0() = Zeroth -order in modified Bessel function of the first kind

Domain

a > 0
N > 0
 > 0.0

w n

I0 1
n –

------------–
2

1
2

I0
--=

DSP Run-Time Library Guide

4-178 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

gen_rectangular

Generate rectangular window

Synopsis

#include <window.h>

void gen_rectangular_fr16(fract16 rectangular_window[],

int window_stride,

int window_size);

void gen_rectangular_fr32(fract32 rectangular_window[],

int window_stride,

int window_size);

void gen_rectangular_fx16(_Fract rectangular_window[],

int window_stride,

int window_size);

void gen_rectangular_fx32(long _Fract rectangular_window[],

int window_stride,

int window_size);

Description

The gen_rectangle functions generate a vector containing the rectangular
window. The length of the window required is specified by the parameter
window_size, and the parameter window_stride is used to space the win-
dow values within the output vector rectangular_window. The length of
the output vector should therefore be window_size*window_stride.

CrossCore Embedded Studio 1.0 4-179
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Algorithm

rectangular_window[n] = 1

where:
N = window_size
n = {0, 1, 2, ..., N–1}

Domain

window_stride > 0
N > 0

DSP Run-Time Library Guide

4-180 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

gen_triangle

 Generate triangle window

Synopsis

#include <window.h>

void gen_triangle_fr16(fract16 triangle_window[],

int window_stride,

int window_size);

void gen_triangle_fr32(fract32 triangle_window[],

int window_stride,

int window_size);

void gen_triangle_fx16(_Fract triangle_window[],

int window_stride,

int window_size);

void gen_triangle_fx32(long _Fract triangle_window[],

int window_stride,

int window_size);

Description

The gen_triangle functions generate a vector containing the triangle win-
dow. The length of the window required is specified by the parameter
window_size, and the parameter window_stride is used to space the win-
dow values within the output vector triangle_window.

Refer to the Bartlett window (on page 4-163) regarding the relationship
between it and the triangle window.

CrossCore Embedded Studio 1.0 4-181
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Algorithm

For even n, the following equation applies.

where:
N = window_size
w = triangle_window
n = {0, 1, 2, ..., N–1}

For odd n, the following equation applies.

where n = {0, 1, 2, ..., N–1}

Domain

window_stride > 0
N > 0

w n

2n 1+
N

-------------------- n
N
2

2N 2n– 1–
N

----------------------------- n
N
2

=

w n

2n 2+
N 1+

-------------------- n
N
2

2N 2n–
N 1+

-------------------- n
N
2

=

DSP Run-Time Library Guide

4-182 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

gen_vonhann

Generate von Hann window

Synopsis

#include <window.h>

void gen_vonhann_fr16(fract16 vonhann_window[],

int window_stride,

int window_size);

void gen_vonhann_fr32(fract32 vonhann_window[],

int window_stride,

int window_size);

void gen_vonhann_fx16(_Fract vonhann_window[],

int window_stride,

int window_size);

void gen_vonhann_fx32(long _Fract vonhann_window[],

int window_stride,

int window_size);

Description

The gen_vonhann functions are identical to the Hanning window
functions (on page 4-172).

Domain

window_stride > 0
window_size > 0

CrossCore Embedded Studio 1.0 4-183
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

histogram

Histogram

Synopsis

#include <stats.h>

void histogramf (const float samples[],

int histogram[],

float max_sample,

float min_sample,

int sample_length,

int bin_count);

void histogram (const double samples[],

int histogram[],

double max_sample,

double min_sample,

int sample_length,

int bin_count);

void histogramd (const long double samples[],

int histogram[],

long double max_sample,

long double min_sample,

int sample_length,

int bin_count);

void histogram_fr16 (const fract16 samples[],

int histogram[],

fract16 max_sample,

fract16 min_sample,

int sample_length,

int bin_count);

DSP Run-Time Library Guide

4-184 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

void histogram_fx16 (const _Fract samples[],

int histogram[],

_Fract max_sample,

_Fract min_sample,

int sample_length,

int bin_count);

void histogram_fr32 (const fract32 samples[],

int histogram[],
fract32 max_sample,
fract32 min_sample,
int sample_length,
int bin_count);

void histogram_fx32 (const long _Fract samples[],

int histogram[],
long _Fract max_sample,
long _Fract min_sample,
int sample_length,
int bin_count);

Description

The histogram functions compute a histogram of the input vector
samples[] that contains nsamples samples, and store the result in the
output vector histogram.

The minimum and maximum value of any input sample is specified by
min_sample and max_sample, respectively. These values are used by the
function to calculate the size of each bin as (max_sample – min_sample) /
bin_count, where bin_count is the size of the output vector histogram.

Any input value that is outside the range [min_sample, max_sample)
exceeds the boundaries of the output vector and is discarded.

CrossCore Embedded Studio 1.0 4-185
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

 To preserve maximum performance while performing
out-of-bounds checking, the histogram_fr16 and histogram_fx16
functions allocate a temporary work area on the stack. The work
area is allocated with (bin_count + 2) elements and the stack may
therefore overflow if the number of bins is sufficiently large. The
size of the stack may be adjusted by making appropriate changes to
the .ldf file.

Algorithm

Each input value is adjusted by min_sample, multiplied by
1/sample_length, and rounded. The appropriate bin in the output vector
is then incremented.

Domain

[–3.4e38 , +3.4e38] for histogramf()

[–1.7e308 , +1.7e308] for histogramd()

[–1.0 , +1.0) for histogram_fr16(),
histogram_fx16(),
histogram_fr32(),
histogram_fx32()

DSP Run-Time Library Guide

4-186 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

ifft

Inverse radix-2 Fast Fourier Transform

Synopsis

#include <filter.h>

void ifft_fr16(const complex_fract16 input[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int *block_exponent,
int scale_method);

void ifft_fr32(const complex_fract32 input[],

complex_fract32 output[],

const complex_fract32 twiddle_table[],

int twiddle_size,

int fft_size,

int *block_exponent,

int scale_method);

Description

The ifft functions transform the frequency domain complex input signal
sequence to the time domain by using the radix-2 Fast Fourier Transform
(FFT).

The size of the input array input and the output array is fft_size, where
fft_size represents the number of points in the FFT. By allocating these
arrays in different memory banks, any potential data bank collisions are
avoided, thus improving run-time performance. If the input data can be over-
written, the optimum memory usage can be achieved by also specifying the
input array as the output array.

CrossCore Embedded Studio 1.0 4-187
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

The twiddle table is passed in the argument twiddle_table, which must
contain at least fft_size/2 twiddle factors. The table is composed of
+cosine and -sine coefficients and may be initialized by using the func-
tion twidfftrad2_fr16 for ifft_fr16 and twidfftrad2_fr32 for
ifft_fr32. For optimal performance, the twiddle table should be allo-
cated in a different memory section than the output array.

The argument twiddle_stride should be set to 1 if the twiddle table was
originally created for an FFT of size fft_size. If the twiddle table was cre-
ated for a larger FFT of size N*fft_size (where N is a power of 2), then
twiddle_stride should be set to N. This argument therefore provides a
way of using a single twiddle table to calculate FFTs of different sizes.

The argument scale_method controls how the function will apply scaling
while computing a Fourier Transform. The available options are static
scaling (dividing the input at any stage by 2), dynamic scaling (dividing
the input at any stage by 2 if the largest absolute input value is greater or
equal to 0.25), or no scaling. Note that the number of stages required to
compute an FFT is dependent on the size of the FFT and is given by the
formula log2(fft_size).

If static scaling is selected, the function will always scale intermediate
results, thus preventing overflow. The loss of precision increases in line
with fft_size and is more pronounced for input signals with a small mag-
nitude (since the output is scaled by 1/fft_size). To select static scaling,
set the argument scale_method to a value of 1. The block exponent
returned will be log2(fft_size).

If dynamic scaling is selected, the function will inspect intermediate
results and only apply scaling where required to prevent overflow. The loss
of precision increases in line with the size of the FFT and is more pro-
nounced for input signals with a large magnitude (since these factors
increase the need for scaling). The requirement to inspect intermediate
results will have an impact on performance. To select dynamic scaling, set
the argument scale_method to a value of 2. The block exponent returned

DSP Run-Time Library Guide

4-188 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

will be between 0 and log2(fft_size) depending upon the number of
times that the function scales each set of intermediate results.

If no scaling is selected, the function will never scale intermediate results.
There will be no loss of precision unless overflow occurs and in this case
the function will generate saturated results. The likelihood of saturation
increases in line with the fft_size and is more pronounced for input sig-
nals with a large magnitude. To select no scaling, set the argument
scale_method to 3. The block exponent returned will be 0.

 Any values for the argument scale_method other than 2 or 3 will
result in the function performing static scaling.

Error Conditions

The ifft functions abort if the FFT size is less than 8 or if the twiddle
stride is less than 1.

Algorithm

The following equation is the basis of the algorithm.

Domain

Input sequence length fft_size must be a power of 2 and at least 8.

x n 1
N
---- X k WN

nk–

k 0=

N 1–

=

CrossCore Embedded Studio 1.0 4-189
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Example

/* Compute IFFT(CFFT(X)) = X */

#include <filter.h>

#define N_FFT 64

complex_fract16 in[N_FFT];

complex_fract16 out_cfft[N_FFT];

complex_fract16 out_ifft[N_FFT];

complex_fract16 twiddle[N_FFT/2];

int blk_exp;

void ifft_fr16_example(void)

{

int i;

/* Generate DC signal */

for(i = 0; i < N_FFT; i++)

{

in[i].re = 0x100;

in[i].im = 0x0;

}

/* Populate twiddle table */

twidfftrad2_fr16(twiddle, N_FFT);

/* Compute Fast Fourier Transform */

cfft_fr16(in, out_cfft, twiddle, 1, N_FFT, &blk_exp, 0);

/* Reverse static scaling applied by cfft_fr16() function

Apply the shift operation before the call to the

ifft_fr16() function only if all the values in out_cfft

= 0x100. Otherwise, perform the shift operation after the

ifft_fr16() function has been computed.

*/

for(i = 0; i < N_FFT; i++)

DSP Run-Time Library Guide

4-190 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

{

out_cfft[i].re = out_cfft[i].re << 6; /* log2(N_FFT) = 6 */

out_cfft[i].im = out_cfft[i].im << 6;

}

/* Compute Inverse Fast Fourier Transform

The output signal from the ifft function will be the same

as the DC signal of magnitude 0x100 which was passed into

the cfft function.

*/

ifft_fr16(out_cfft, out_ifft, twiddle, 1, N_FFT, &blk_exp, 0);

}

CrossCore Embedded Studio 1.0 4-191
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

ifftf

Fast Inverse N-point Fast Fourier Transform

Synopsis

#include <filter.h>

void ifftf_fr16(const complex_fract16 input[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size);

void ifftf_fr32(const complex_fract32 input[],

complex_fract32 output[],

const complex_fract32 twiddle_table[],

int twiddle_stride,

int fft_size);

Description

The ifftf functions transform the frequency domain complex input signal
sequence to the time domain by using the accelerated version of the “Dis-
crete Fourier Transform” known as a “Fast Fourier Transform” or FFT.
The functions use a mixed-radix algorithm.

The size of the input array input and the output array output is fft_size,
where fft_size represents the number of points in the FFT. The number
of points in the FFT must be a power of 2 and must be at least 8.

The twiddle table is passed in the argument twiddle_table, which must
contain at least 3*fft_size/4 complex twiddle factors. The table should
be initialized with complex twiddle factors in which the real coefficients
are positive cosine values and the imaginary coefficients are negative sine
values. The function twidfftf_fr16 may be used to initialize the array for

DSP Run-Time Library Guide

4-192 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

ifftf_fr16, while the twidfftf_fr32 function may be used to initialize
the array for ifftf_fr32.

If the twiddle table has been generated for an fft_size FFT, then the
twiddle_stride argument should be set 1. On the other hand, if the twid-
dle table has been generated for an FFT of size x, where x > fft_size,
then the twiddle_stride argument should be set to x / fft_size. The
twiddle_stride argument therefore allows the same twiddle table to be
used for different sizes of FFT. (The twiddle_stride argument cannot be
either zero or negative).

It is recommended that the output array not be allocated in the same 4K
memory sub-bank as the input array or the twiddle table, as the perfor-
mance of the ifftf functions may otherwise degrade due to data bank
collisions.

The functions use static scaling of intermediate results to prevent over-
flow, and the final output therefore is scaled by 1/fft_size.

Algorithm

The following equation is the basis of the algorithm.

The functions use a mixed-radix algorithm (radix-4 and radix-2).

x n 1
N
---- X k WN

nk–

k 0=

N 1–

=

CrossCore Embedded Studio 1.0 4-193
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Example

#include <filter.h>

#define FFT_SIZE1 32

#define FFT_SIZE2 256

#define TWID_SIZE ((3 * FFT_SIZE2) / 4)

complex_fract32 in1[FFT_SIZE1], in2[FFT_SIZE2];

complex_fract32 out1[FFT_SIZE1], out2[FFT_SIZE2];

complex_fract32 twiddle[TWID_SIZE];

twidfftf_fr32(twiddle,FFT_SIZE2);

ifftf_fr32(in1, out1, twiddle,

FFT_SIZE2/FFT_SIZE1, FFT_SIZE1);

ifftf_fr32(in2, out2, twiddle, 1, FFT_SIZE2);

DSP Run-Time Library Guide

4-194 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

ifft2d

N x N point 2-D inverse input FFT

Synopsis

#include <filter.h>

void ifft2d_fr16(const complex_fract16 *input,

complex_fract16 *temp,

complex_fract16 *output,

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int block_exponent,

int scale_method);

void ifft2d_fr32(const complex_fract32 *input,

complex_fract32 *temp,

complex_fract32 *output,

const complex_fract32 twiddle_table[],

int twiddle_stride,

int fft_size);

Description

The ifft2d functions compute a two-dimensional Inverse Fast Fourier
Transform (FFT) of the complex input matrix
input[fft_size][fft_size] and store the result to the complex output
matrix output[fft_size][fft_size].

The size of the input array input, the output array output, and the tempo-
rary working buffer temp is fft_size*fft_size, where fft_size
represents the number of points in the FFT. The argument fft_size must
be a power of 2 and must be at least 4 for ifft2d_fr16 and at least 8 for
ifft2d_fr32.

CrossCore Embedded Studio 1.0 4-195
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Memory bank collisions, which have an adverse effect on run-time perfor-
mance, may be avoided by allocating the temporary array and the twiddle
table in separate memory banks if using ifft2d_fr16, or by allocating the
twiddle table in a different memory bank than the output array and the
temporary array if using ifft2d_fr32.

The twiddle table is passed in the argument twiddle_table, which must
contain at least fft_size twiddle factors for ifft2d_fr16 and at least
3*fft_size/4 twiddle factors for ifft2d_fr32. The table should be initial-
ized with complex twiddle factors in which the real coefficients are
positive cosine values and the imaginary coefficients are negative sine val-
ues. The functions twidfft2d_fr16 and twidfft2d_fr32 may be used to
initialize the arrays for ifft2d_fr16 and ifft2d_fr32 respectively.

If the twiddle table has been generated for an fft_size FFT, the
twiddle_stride argument should be set 1. On the other hand, if the twid-
dle table has been generated for an FFT of size x, where x > fft_size, then
the twiddle_stride argument should be set to x / fft_size. The
twiddle_stride argument therefore allows the same twiddle table to be
used for different sizes of FFT. (The twiddle_stride argument cannot be
either zero or negative).

To avoid overflow, the functions scale the output by fft_size *
fft_size.

The ifft2d_fr16 arguments block_exponent and scale_method have been
added for future expansion. These arguments are ignored by the function.

Error Conditions

The ifft2d functions abort if the twiddle stride is less than 1, or if fft_size is
less than 4 for ifft2d_fr16, or if fft_size is less than 8 for ifft2d_f32.

DSP Run-Time Library Guide

4-196 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Algorithm

The following equation is the basis of the algorithm.

where:
i = {0, 1, ..., n–1}
j = {0, 1, ..., n–1}

Domain

Input sequence length fft_size must be a power of 2 and at least 4 for
ifft2d_fr16 and at least 8 for ifft2d_fr32.

Example

#include <filter.h>

#define FFT_SIZE1 128

#define FFT_SIZE2 32

#define TWIDDLE_STRIDE1 (FFT_SIZE1 / FFT_SIZE1)

#define TWIDDLE_STRIDE2 (FFT_SIZE1 / FFT_SIZE2)

complex_fract32 in1[FFT_SIZE1][FFT_SIZE1];
complex_fract32 in2[FFT_SIZE2][FFT_SIZE2];
complex_fract32 out2[FFT_SIZE2][FFT_SIZE2];
complex_fract32 tmp[FFT_SIZE1][FFT_SIZE1];
complex_fract32 twiddle[(3*FFT_SIZE1)/4];

twidfft2d_fr32 (twiddle, FFT_SIZE1);

c i j 1

n2
----- a k l

l 0=

n 1–

k 0=

n 1–

 e 2j i k j l+ – n=

CrossCore Embedded Studio 1.0 4-197
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

/* In-place computation */

ifft2d_fr32(in1, tmp, in1, twiddle, TWIDDLE_STRIDE1, FFT_SIZE1);

ifft2d_fr32(in2, tmp, out2, twiddle, TWIDDLE_STRIDE2, FFT_SIZE2);

DSP Run-Time Library Guide

4-198 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

iir

Infinite impulse response filter

Synopsis

#include <filter.h>

void iir_fr16(const fract16 input[],

fract16 output[],

int length,

iir_state_fr16 *filter_state);

void iir_fx16(const _Fract input[],

_Fract output[],

int length,

iir_state_fx16 *filter_state);

void iir_fr32(const fract32 input[],
fract32 output[],
int length,
iir_state_fr32 *filter_state);

void iir_fx32(const long _Fract input[],
long _Fract output[],
int length,
iir_state_fx32 *filter_state);

The iir_fr16 function uses the following structure to maintain the state
of the filter.

typedef struct

{

fract16 *c; /* coefficients */

fract16 *d; /* start of delay line */

int k; /* number of biquad stages */

} iir_state_fr16;

CrossCore Embedded Studio 1.0 4-199
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

The iir_fx16 function uses the following structure to maintain the state
of the filter.

typedef struct

{

_Fract *c; /* coefficients */

_Fract *d; /* start of delay line */

int k; /* number of biquad stages */

} iir_state_fx16;

The iir_fr32 function uses the following structure to maintain the state
of the filter.

typedef struct
{

fract32 *c; /* coefficients */
fract32 *d; /* start of delay line */
int k; /* number of biquad stages */

} iir_state_fr32;

The iir_fx32 function uses the following structure to maintain the state
of the filter.

typedef struct
{

long _Fract *c; /* coefficients */
long _Fract *d; /* start of delay line */
int k; /* number of biquad stages */

} iir_state_fx32;

Description

The iir functions implement a biquad direct form II infinite impulse
response (IIR) filter. They generate the filtered response of the input data
input and store the result in the output vector output. The number of
input samples and the length of the output vector are specified by the
argument length.

DSP Run-Time Library Guide

4-200 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

The functions maintain the filter state in the structured variable
filter_state, which must be declared and initialized before calling the
function. The macro iir_init, defined in the filter.h header file, is
available to initialize the structure and is defined as:

#define iir_init(state, coeffs, delay, stages) \

do { \
(state).c = (coeffs); \

(state).d = (delay); \

(state).k = (stages); \
} while (0)

The characteristics of the filter are dependent upon filter coefficients and
the number of stages. Each stage has five coefficients which must be stored
in the order A2, A1, B2, B1, and B0. The value of A0 is implied to be 1.0 and
A1 and A2 should be scaled accordingly. This requires that the value of the
A0 coefficient be greater than both A1 and A2 for all the stages. The func-
tions iirdf1_fr16, iirdf1_fx16, iirdf1_fr32, and iirdf1_fx32
(on page 4-205) implement a direct form I filter, and do not impose this
requirement; however, they do assume that the A0 coefficients are 1.0.

A pointer to the coefficients should be stored in filter_state->c, and
filter_state->k should be set to the number of stages.

Each filter should have its own delay line which is a vector of type fract16
(for iir_fr16), _Fract (for iir_fx16), fract32 (for iir_fr32), or long
_Fract (for iir_fx32), whose length is equal to twice the number of
stages. The vector should be initially cleared to zero and should not
otherwise be modified by the user program. The structure member
filter_state->d should be set to the start of the delay line.

 The iir_fr16 and iir_fx16 functions will exploit the Blackfin
architecture by computing the filtered response of two input sam-
ples at one time. As a consequence of this optimization, the input
and output vectors and delay line must be aligned on a 32-bit
address boundary. Under most circumstances, the compiler will

CrossCore Embedded Studio 1.0 4-201
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

allocate arrays on a 32-bit word-aligned address boundary. How-
ever, arrays within structures are not aligned beyond the required
alignment for their type. So if any of the input or output arrays, or
the delay line, are allocated as part of a structure, then they should
be explicitly aligned to a word address by preceding their declara-
tion with a #pragma align 4 directive. For more information, see
#pragma align num.

Algorithm

The following equation is the basis of the algorithm.

where

where m = {0, 1, 2, ..., length–1}

Domain

[–1.0 , +1.0)

H z
B0 B1z

1–
B2z

2–
+ +

1 A1z
1–

 A2z
2–

 + +
--=

Dm Xm A2– Dm 2– A1– Dm 1–=

Ym B2 Dm 2– B1+ Dm 1– B0+ Dm=

DSP Run-Time Library Guide

4-202 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <filter.h>

#include <fract2float_conv.h>

#define NUM_STAGES 2

#define NUM_SAMPLES 64

/* Filter coefficients generated by a filter design

tool that uses a direct form II */

const struct {

float a0;

float a1;

float a2;

} A_coeffs[NUM_STAGES] = {

1.000000F, 0.453120F, 0.466326F,

1.000000F, 0.328976F, 0.064588F,

};

const struct {

float b0;

float b1;

float b2;

} B_coeffs[NUM_STAGES] = {

1.000000F, -2.000000F, 1.000000F,

1.000000F, -2.000000F, 1.000000F,

};

const int Bscale = 2; /* to scale B-coeffs into the fract */

/* range (must be a power of 2) */

/* Coefficients and delay line for the iir function

(use separate memory banks for best performance)

*/

CrossCore Embedded Studio 1.0 4-203
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

#pragma section("L1_data_a")

fract16 coeffs[NUM_STAGES * 5];

#pragma section("L1_data_b")

fract16 delay[NUM_STAGES * 2];

iir_state_fr16 filter_state;

/* Input and output arrays */

fract16 signal[NUM_SAMPLES];

fract16 output[NUM_SAMPLES];

int k;

/* Transform the A-coefficients and B-coefficients from a

filter design tool into the form required by iir_fr16

-> A0 coefficients are assumed to be 1.0, and are not

passed to the iir function

-> A1 and A2 coefficients must be scaled against the A0

coefficient (use the iirdf1_fr16 function instead if

the A1 and A2 coefficients are larger than A0)

-> scale the B coefficients to fit into the fractional

range [-1..1); the scale factor must be a power of 2

*/

for (k = 0; k < NUM_STAGES; k++) {

coeffs[(5*k)+0] = float_to_fr16 (A_coeffs[k].a2);

coeffs[(5*k)+1] = float_to_fr16 (A_coeffs[k].a1);

coeffs[(5*k)+2] = float_to_fr16 (B_coeffs[k].b2/Bscale);

coeffs[(5*k)+3] = float_to_fr16 (B_coeffs[k].b1/Bscale);

coeffs[(5*k)+4] = float_to_fr16 (B_coeffs[k].b0/Bscale);

}

/* Configure filter state */

iir_init (filter_state,coeffs,delay,NUM_STAGES);

DSP Run-Time Library Guide

4-204 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

/* Zero delay line to start or reset the filter */

for (k = 0; k < (NUM_STAGES * 2); k++)

delay[k] =0;

/* Compute filter response */

iir_fr16 (signal,output,NUM_SAMPLES,&filter_state);

/* Undo scaling B coefficients */

for (k = 0; k < NUM_SAMPLES; k++)

output[k] = output[k] * (Bscale * NUM_STAGES);

CrossCore Embedded Studio 1.0 4-205
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

iirdf1

Direct form I impulse response filter

Synopsis

#include <filter.h>

void iirdf1_fr16(const fract16 input[],

fract16 output[],

int length,

iirdf1_state_fr16 *filter_state);

void iirdf1_fx16(const _Fract input[],

_Fract output[],

int length,

iirdf1_state_fx16 *filter_state);

void iirdf1_fr32(const fract32 input[],

fract32 output[],

int length,

iirdf1_state_fr32 *filter_state);

void iirdf1_fx32(const long _Fract input[],

long _Fract output[],

int length,

iirdf1_state_fx32 *filter_state);

The iirdf1_fr16 function uses the following structure to maintain the
state of the filter.

typedef struct

{

fract16 *c; /* coefficients */

fract16 *d; /* start of delay line */

fract16 *p; /* read/write pointer */

DSP Run-Time Library Guide

4-206 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

int k; /* 2*number of stages + 1 */

} iirdf1_state_fr16;

The iirdf1_fx16 function uses the following structure to maintain the
state of the filter.

typedef struct

{

_Fract *c; /* coefficients */

_Fract *d; /* start of delay line */

_Fract *p; /* read/write pointer */

int k; /* 2*number of stages + 1 */

} iirdf1_state_fx16;

The iirdf1_fr32 function uses the following structure to maintain the
state of the filter.

typedef struct

{

fract32 *c; /* coefficients */

fract32 *d; /* start of delay line */

fract32 *p; /* read/write pointer */

int k; /* 2*number of stages + 1 */

} iirdf1_state_fr32;

The iirdf1_fx32 function uses the following structure to maintain the
state of the filter.

typedef struct

{

long _Fract *c; /* coefficients */

long _Fract *d; /* start of delay line */

long _Fract *p; /* read/write pointer */

int k; /* 2*number of stages + 1 */

} iirdf1_state_fx32;

CrossCore Embedded Studio 1.0 4-207
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Description

The iirfd1 functions implement a direct form I infinite impulse response
(IIR) filter. They generate the filtered response of the input data input
and store the result in the output vector output. The number of input
samples and the length of the output vector is specified by the argument
length.

The functions maintain the filter state in the structured variable
filter_state, which must be declared and initialized before calling the
function. The macro iirdf1_init, defined in the filter.h header file, is
available to initialize the structure.

The macro is defined as:

#define iirdf1_init(state, coeffs, delay, stages) \

do { \

(state).c = (coeffs); \

(state).d = (delay); \

(state).p = (delay); \

(state).k = (2*(stages)+1); \
} while (0)

The characteristics of the filter are dependent upon the filter coefficients
and the number of stages. The A-coefficients and the B-coefficients for
each stage are stored in a vector that is addressed by the pointer
filter_state->c. This vector should be generated by the
coeff_iirdf1_fr16 function (on page 4-117) for use with
iirdf1_fr16, coeff_iirdf1_fx16 for use with iirdf1_fx16,
coeff_iirdf1_fr32 for use with iirdf1_fr32, and by coeff_iirdf1_fx32
for use with iirdf1_fx32. The variable filter_state->k should be set to
the expression (2*stages) + 1.

 Each of the iirdf1 and iir functions assume that the value of the A0
coefficients is 1.0, and that all other A-coefficients have been scaled
according. For the iir functions, this also implies that the value of
the A0 coefficient is greater than both the A1 and A2 for all stages.

DSP Run-Time Library Guide

4-208 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

This restriction does not apply to the iirdf1 functions because the
coefficients are specified as floating-point values to the coeff_iirdf1
functions.

Each filter should have its own delay line which is a vector of type fract16
(for iirdf1_fr16) or _Fract (for iirdf1_fr16), fract32 (for
iirdf1_fr32), or long _Fract (for iirdf1_fx32) whose length is equal to
(4 * stages) + 2. The vector should be initially cleared to zero and
should not otherwise be modified by the user program. The structure
member filter_state->d should be set to the start of the delay line, and
the function uses filter_state->p to keep track of its current position
within the vector. For optimum performance, coefficient and state arrays
should be allocated in separate memory blocks.

The iirdf1 functions will adjust the output by the scaling factor that was
applied to the A-coefficients and the B-coefficients by the coeff_iirdf1
functions.

 It is possible the filter’s gain will cause the filtered response to be
saturated. To avoid the saturation, the B-coefficients can be scaled
before calling the coeff_iirdf1 functions. For more information,
refer to the example below.

Algorithm

The following equation is the basis of the algorithm.

H z
B0 B1z

1–
B2z

2–
+ +

1 A1z
1–

 – A2z
2–

 –
--=

CrossCore Embedded Studio 1.0 4-209
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

where:
V = B0 * x(i) + B1 * x(i–1) + B2 * x(i–2)
y(i) = V + A1 * y(i–1) + A2 * y(i–2)
i = {0, 1, .., length–1}
x = input
y = output

Domain

[-1.0 , +1.0)

Example

#include <filter.h>

#include <vector.h>

#define NSAMPLES 50

#define NSTAGES 2

/* Coefficients for the coeff_iirdf1_fr16 function */

const float a_coeffs[(2 * NSTAGES)] = { . . . };

const float b_coeffs[(2 * NSTAGES) + 1] = { . . . };

float *coeffs = (float *)b_coeffs;

/* Coefficients for the iirdf1_fr16 function */

fract16 df1_coeffs[(4 * NSTAGES) + 2];

DSP Run-Time Library Guide

4-210 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

/* Input, Output, Delay Line, and Filter State */

fract16 input[NSAMPLES], output[NSAMPLES];

fract16 delay[(4 * NSTAGES) + 2];

iirdf1_state_fr16 state;

float gain;

int i;

/* Initialize filter description */

iirdf1_init (state,df1_coeffs,delay,NSTAGES);

/* Initialize the delay line */

for (i = 0; i < ((4 * NSTAGES) + 2); i++)

delay[i] = 0;

/* Convert coefficients */

if (gain >= 1.0F)

{

vecsmltf (b_coeffs,(1.0F/gain), b_coeffs,((2*NSTAGES)+1));

}

coeff_iirdf1_fr16 (a_coeffs,b_coeffs,df1_coeffs,NSTAGES);

/* Call the function */

iirdf1_fr16 (input,output,NSAMPLES,&state);

CrossCore Embedded Studio 1.0 4-211
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

max

Maximum

Synopsis

#include <math.h>

int max (int parm1, int parm2);

long int lmax (long int parm1, long int parm2);

long long int llmax (long long int parm1, long long int parm2);

float fmaxf (float parm1, float parm2);

double fmax (double parm1, double parm2);
long double fmaxd (long double parm1, long double parm2);

fract16 max_fr16 (fract16 parm1, fract16 parm2);

fract32 max_fr32 (fract32 parm1, fract32 parm2);

_Fract max_fx16 (_Fract parm1, _Fract parm2);

long _Fract max_fx32 (long _Fract parm1, long _Fract parm2);

Description

The max functions return the larger of their two arguments.

Algorithm

if (parm1 > parm2)

return (parm1)

else

return (parm2)

Domain

Full range for type of parameters.

DSP Run-Time Library Guide

4-212 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

mean

Mean

Synopsis

#include <stats.h>

float meanf(const float samples[],

int sample_length);

double mean(const double samples[],

int sample_length);

long double meand(const long double samples[],

int sample_length);

fract16 mean_fr16(const fract16 samples[],

int sample_length);

_Fract mean_fx16(const _Fract samples[],

int sample_length);

fract32 mean_fr32(const fract32 samples[],

int sample_length);

long _Fract mean_fx32(const long _Fract samples[],

int sample_length);

Description

The mean functions return the mean of the input array samples[].
The number of elements in the array is sample_length.

CrossCore Embedded Studio 1.0 4-213
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Algorithm

The following equation is the basis of the algorithm.

Error Conditions

The mean_fr16 and mean_fx16 functions can be used to compute the mean
of up to 65535 input data with a value of 0x8000 before the sum ai satu-
rates. The mean_fr32 and mean_fx32 functions can be used to compute the
mean of up to 4294967295 input data with a value of 0x80000000 before
the sum ai saturates.

Domain

[–3.4e38 , +3.4e38] for meanf()

[–1.7e308 , +1.7e308] for meand()

[–1.0 , +1.0) for mean_fr16(), mean_fx16(), mean_fr32(),
mean_fx32()

c
1
n
--- ai

i 0=

n 1–

=

DSP Run-Time Library Guide

4-214 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

min

Minimum

Synopsis

#include <math.h>

int min (int parm1, int parm2);

long int lmin (long int parm1, long int parm2);
long long int llmin (long long int parm1, long long int parm2);

float fminf (float parm1, float parm2);

double fmin (double parm1, double parm2);
long double fmind (long double parm1, long double parm2);

fract16 min_fr16 (fract16 parm1, fract16 parm2);

fract32 min_fr32 (fract32 parm1, fract32 parm2);

_Fract min_fx16 (_Fract parm1, _Fract parm2);

long _Fract min_fx32 (long _Fract parm1, long _Fract parm2);

Description

The min functions return the smaller of their two arguments.

Algorithm

if (parm1 < parm2)

return (parm1)

else

return (parm2)

Domain

Full range for type of parameters used.

CrossCore Embedded Studio 1.0 4-215
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

mu_compress

µ-law compression

Synopsis

#include <filter.h>

void mu_compress(const short input[],

short output[],

int length);

Description

The mu_compress function takes a vector of linear 14-bit signed speech
samples and performs µ-law compression according to ITU recommenda-
tion G.711. Each sample is compressed to 8 bits and is returned in the
vector pointed to by output.

Algorithm

C(k)= mu_law compression of A(k) for k = 0 to length-1

Domain

Content of input array: [–8192 , 8191]

DSP Run-Time Library Guide

4-216 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

mu_expand

µ-law expansion

Synopsis

#include <filter.h>

void mu_expand(const short input[],

short output[],

int length);

Description

The mu_expand function inputs a vector of 8-bit compressed speech sam-
ples and expands them according to ITU recommendation G.711. Each
input value is expanded to a linear 14-bit signed sample in accordance
with the µ-law definition and is returned in the vector pointed to output.

Algorithm

C(k)= mu_law expansion of A(k) for k = 0 to length-1

Domain

Content of input array: [0 , 255]

CrossCore Embedded Studio 1.0 4-217
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

norm

Normalization

Synopsis

#include <complex.h>

complex_float normf (complex_float a);

complex_double norm (complex_double a);

complex_long_double normd (complex_long_double a);

Description

The normalization functions normalize the complex input a and return
the result.

Algorithm

The following equations are the basis of the algorithm.

Domain

[–3.4e38 , +3.4e38] for normf()

[–1.7e308 , +1.7e308] for normd()

Re c Re a

Re2 a Im2 a +
--=

Im c Im a

Re2 a Im2 a +
--=

DSP Run-Time Library Guide

4-218 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

polar

Convert polar to Cartesian notation

Synopsis

#include <complex.h>

complex_float polarf(float magnitude,

float phase);

complex_double polar(double magnitude,

double phase);

complex_long_double polard(long double magnitude,

long double phase);

complex_fract16 polar_fr16(fract16 magnitude,

fract16 phase);

complex_fract32 polar_fr32(fract32 magnitude,

fract32 phase);

complex_fract16 polar_fx_fr16(_Fract magnitude,

_Fract phase);
complex_fract32 polar_fx_fr32(long _Fract magnitude,

long _Fract phase);

Description

The polar functions transform the polar coordinate, specified by the argu-
ments magnitude and phase, into a Cartesian coordinate and return the
result as a complex number in which the x-axis is represented by the real
part, and the y-axis by the imaginary part. The phase argument is inter-
preted as radians.

CrossCore Embedded Studio 1.0 4-219
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

The phase must be scaled by 2 and must be in the range [0x8000,
0x7fff] for the polar_fr16 and polar_fx_fr16 functions, and in the
range [0x80000000, 0x7fffffff] for the polar_fr32 and polar_fx_fr32
functions. The value of the phase may be either positive or negative. Posi-
tive values are interpreted as an anti-clockwise motion around a circle with
a radius equal to the magnitude as shown in Table 4-10. Negative values
for the phase argument are interpreted as a clockwise movement.

Algorithm

The following equations are the basis of the algorithm.

Re(c) = r*cos()

Im(c) = r*sin()

where:
 is the phase
r is the magnitude

Table 4-10. Positive and Negative Phases for Fractional Polar Functions

Radians Phase

0 0.0 -1

/2 0.25(0x2000) -0.75

 0.50(0x4000) -0.5

3/2 0.75(0x6000) -0.25

<2 0.999(0x7fff)

DSP Run-Time Library Guide

4-220 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Domain

Example

#include <complex.h>

#include <fract2float_conv.h>

#define PI 3.14159265

complex_fract16 point;

float phase_float;

fract16 phase_fr16;

fract16 mag_fr16;

phase_float = PI;

phase_fr16 = float_to_fr16(phase_float / (2*PI));

mag_fr16 = 0x0200;

point = polar_fr16 (mag_fr16,phase_fr16);

/* point.re = 0xfe00 */

/* point.im = 0x0000 */

phase = [–1.0294e+5, 1.0294e+5]
magnitude = [–3.4e38 , +3.4e38]

for polarf ()

phase = [–8.43315e8 , 8.43315e8]
magnitude = [–1.7e308 , +1.7e308]

for polard ()

[–1.0 , +1.0) for polar_fr16(),
polar_fx_fr16(),
polar_fr32() and
polar_fx_fr32()

CrossCore Embedded Studio 1.0 4-221
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

rfft

Real radix-2 Fast Fourier Transform

Synopsis

#include <filter.h>

void rfft_fr16(const fract16 input[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,
int fft_size,

int *block_exponent,

int scale_method);

void rfft_fx_fr16(const _Fract input[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,
int fft_size,

int *block_exponent,

int scale_method);

void rfft_fr32(const fract32 input[],

complex_fract32 output[],

const complex_fract32 twiddle_table[],

int twiddle_stride,
int fft_size,

int *block_exponent,

int scale_method);

DSP Run-Time Library Guide

4-222 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

void rfft_fx_fr32(const long _Fract input[],

complex_fract32 output[],

const complex_fract32 twiddle_table[],

int twiddle_stride,
int fft_size,

int *block_exponent,

int scale_method);

Description

The rfft functions transform the time domain real input signal sequence to
the frequency domain by using the radix-2 FFT. The functions take
advantage of the fact that the imaginary part of the input equals zero,
which in turn eliminates half of the multiplications in the butterfly.

The size of the input array input and the output array output is fft_size,
where fft_size represents the number of points in the FFT. By allocating
these arrays in different memory banks, any potential data bank collisions are
avoided, thus improving run-time performance. If the input data can be
overwritten, the optimum memory usage can be achieved by also specify-
ing the input array as the output array, provided that the memory size of
the input array is at least 2*fft_size.

The twiddle table is passed in the argument twiddle_table, which must
contain at least fft_size/2 twiddle factors. The table is composed of
+cosine and -sine coefficients and may be initialized by using the func-
tion twidfftrad2_fr16 for use with rfft_fr16 or rfft_fx_fr16, and
twidfftrad2_fr32 for use with rfft_fr32 or rfft_fx_fr32. For optimal
performance, the twiddle table should be allocated in a different memory
section than the output array.

The argument twiddle_stride should be set to 1 if the twiddle table was
originally created for an FFT of size fft_size. If the twiddle table was cre-
ated for a larger FFT of size N*fft_size (where N is a power of 2), then
twiddle_stride should be set to N. This argument therefore provides a
way of using a single twiddle table to calculate FFTs of different sizes.

CrossCore Embedded Studio 1.0 4-223
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

The argument scale_method controls how the functions will apply scaling
while computing a Fourier Transform. The available options are static
scaling (dividing the input at any stage by 2), dynamic scaling (dividing
the input at any stage by 2 if the largest absolute input value is greater or
equal than 0.25), or no scaling. Note that the number of stages required to
compute an FFT is dependent on the size of the FFT and is given by the
formula log2(fft_size).

If static scaling is selected, the functions will always scale intermediate
results, thus preventing overflow. The loss of precision increases in line
with fft_size and is more pronounced for input signals with a small mag-
nitude (since the output is scaled by 1/fft_size). To select static scaling,
set the argument scale_method to a value of 1. The block exponent
returned will be log2(fft_size).

If dynamic scaling is selected, the functions will inspect intermediate
results and only apply scaling where required to prevent overflow. The loss
of precision increases in line with the size of the FFT and is more pro-
nounced for input signals with a large magnitude (since these factors
increase the need for scaling). The requirement to inspect intermediate
results will have an impact on performance. To select dynamic scaling, set
the argument scale_method to a value of 2. The block exponent returned
will be between 0 and log2(fft_size), depending upon the number of
times that the functions scales the intermediate set of results.

If no scaling is selected, the functions will never scale intermediate results.
There will be no loss of precision unless overflow occurs and in this case
the functions will generate saturated results. The likelihood of saturation
increases in line with the fft_size and is more pronounced for input sig-
nals with a large magnitude. To select no scaling, set the argument
scale_method to 3. The block exponent returned will be 0.

 Any values for the argument scale_method other than 2 or 3 will
result in the functions performing static scaling.

DSP Run-Time Library Guide

4-224 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Error Conditions

The rfft functions abort if the FFT size is less than 8 or if the twiddle
stride is less than 1.

Algorithm

See cfft for more information.

Domain

Input sequence length fft_size must be a power of 2 and at least 8.

Example

#include <filter.h>

#define FFT_SIZE1 32

#define FFT_SIZE2 256

#define TWID_SIZE (FFT_SIZE2/2)

fract32 in1[FFT_SIZE1], in2[FFT_SIZE2];

complex_fract32 out1[FFT_SIZE1], out2[FFT_SIZE2];

complex_fract32 twiddle[TWID_SIZE];

int block_exponent1, block_exponent2;

twidfftrad2_fr32 (twiddle, FFT_SIZE2);

rfft_fr32 (in1, out1, twiddle,

(FFT_SIZE2 / FFT_SIZE1), FFT_SIZE1,

&block_exponent1, 1 /*static scaling*/);

rfft_fr32 (in2, out2, twiddle, 1, FFT_SIZE2,

&block_exponent2, 2 /*dynamic scaling*/);

CrossCore Embedded Studio 1.0 4-225
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

rfftf

Fast N-point real input Fast Fourier Transform

Synopsis

#include <filter.h>

void rfftf_fr16(const fract16 input[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size);

void rfftf_fr32(const fract32 input[],

complex_fract32 output[],

const complex_fract32 twiddle_table[],

int twiddle_stride,

int fft_size);

void rfftf_fx_fr16(const _Fract input[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size);

void rfftf_fx_fr32(const long _Fract input[],

complex_fract32 output[],

const complex_fract32 twiddle_table[],

int twiddle_stride,

int fft_size);

DSP Run-Time Library Guide

4-226 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Description

The rfftf functions transform the time domain real input signal sequence
to the frequency domain by using the accelerated version of the “Discrete
Fourier Transform” known as a “Fast Fourier Transform” or FFT. They
decimate in frequency using a mixed-radix algorithm.

The size of the input array input and the output array output is fft_size,
where fft_size represents the number of points in the FFT. The number
of points in the FFT must be a power of 2 and must be at least 16.

As the complex spectrum of a real FFT is symmetrical about the midpoint,
the rfftf functions only generate the first (fft_size/2)+1 points of the
FFT, and so the size of the output array output must be at least of length
(fft_size/2) + 1. After returning, the output array will contain the fol-
lowing values:

• DC component of the signal in output[0].re (output[0].im = 0)

• First half of the complex spectrum in output[1]
...output[(fft_size/2)-1]

• Nyquist frequency in output[fft_size/2].re (with
output[fft_size/2].im = 0)

Refer to the Example section below to see how an application would con-
struct the full complex spectrum using the symmetry of a real FFT.

The twiddle table is passed in the argument twiddle_table, which must
contain at least 3*fft_size/4 complex twiddle factors. The table should
be initialized with complex twiddle factors in which the real coefficients
are positive cosine values and the imaginary coefficients are negative sine
values. The function twidfftf_fr16 may be used to initialize the array for
rfftf_fr16 and rfftf_fx_fr16, and the function twidfftf_fr32 may be
used to initialize the array for rfftf_fr32 and rfftf_fx_fr32.

If the twiddle table has been generated for an fft_size FFT, then the
twiddle_stride argument should be set 1. On the other hand, if the

CrossCore Embedded Studio 1.0 4-227
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

twiddle table has been generated for an FFT of size x, where
x > fft_size, then the twiddle_stride argument should be set to
x / fft_size. The twiddle_stride argument therefore allows the same
twiddle table to be used for different sizes of FFT. (The twiddle_stride
argument cannot be either zero or negative).

It is recommended that the output array not be allocated in the same 4K
memory sub-bank as the input array or the twiddle table, as the perfor-
mance of the rfftf functions may otherwise degrade due to data bank
collisions.

The functions use static scaling of intermediate results to prevent over-
flow, and the final output therefore is scaled by 1/fft_size.

Algorithm

The following equation is the basis of the algorithm.

The implementation uses a mixed-radix algorithm (radix4 and radix-2).

Example

#include <filter.h>

#include <complex.h>

#define FFTSIZE 32

#define TWIDSIZE ((3 * FFTSIZE) / 4)

fract32 sigdata[FFTSIZE];

complex_fract32 r_output[FFTSIZE];

complex_fract32 twiddles[TWIDSIZE];

int i;

x n 1
N
---- X k WN

nk–

k 0=

N 1–

=

DSP Run-Time Library Guide

4-228 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

/* Initialize the twiddle table */

twidfftf_fr32(twiddles,FFTSIZE);

/* Calculate the FFT of a real signal */

rfftf_fr32(sigdata, r_output, twiddles,1,FFTSIZE);

/* rfftf_fr32 sets r_output[FFTSIZE/2] to the Nyquist */

/* Add the 2nd half of the spectrum */

for (i = 1; i < (FFTSIZE/2); i++) {

r_output[FFTSIZE - i] = conj_fr32(r_output[i]);

}

CrossCore Embedded Studio 1.0 4-229
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

rfft2d

N x N point 2-D real input FFT

Synopsis

#include <filter.h>

void rfft2d_fr16(const fract16 input[],

complex_fract16 temp[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int block_exponent,

int scale_method);

void rfft2d_fx_fr16(const _Fract input[],

complex_fract16 temp[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int block_exponent,

int scale_method);

void rfft2d_fr32(const fract32 input[],

complex_fract32 temp[],

complex_fract32 output[],

const complex_fract32 twiddle_table[],

int twiddle_stride,

int fft_size);

DSP Run-Time Library Guide

4-230 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

void rfft2d_fx_fr32(const long _Fract input[],

complex_fract32 temp[],

complex_fract32 output[],

const complex_fract32 twiddle_table[],

int twiddle_stride,

int fft_size);

Description

The rfft2d functions compute a two-dimensional Fast Fourier Transform
(FFT) of the real input matrix input[fft_size][fft_size], and store the
result to the complex output matrix output[fft_size][fft_size].

The size of the input array input, the output array output, and the tempo-
rary working buffer temp is fft_size*fft_size, where fft_size
represents the number of rows and number of columns in the FFT. The
argument fft_size must be a power of 2 and must be at least 4 for
rfft2d_fr16 and rfft2d_fx_fr16, and at least 16 for rfft2d_fr32 and
rfft2d_fx_fr32.

Memory bank collisions, which have an adverse effect on run-time perfor-
mance, may be avoided by allocating the temporary array and the twiddle
table in separate memory banks if using rfft2d_fr16, or by allocating the
twiddle table in a different memory bank than the output array and the
temporary array if using rfft2d_fr32. If the input data can be overwrit-
ten, optimal memory usage can be achieved by also specifying the input
matrix as the output buffer, provided that the size of the input array is at
least 2 * fft_size * fft_size.

The twiddle table is passed in the argument twiddle_table, which must
contain at least fft_size twiddle factors for rfft2d_fr16 and at least
3*fft_size/4 twiddle factors for rfft2d_fr32. The table should be initial-
ized with complex twiddle factors in which the real coefficients are
positive cosine values and the imaginary coefficients are negative sine val-
ues. The function twidfft2d_fr16 may be used to initialize the arrays for

CrossCore Embedded Studio 1.0 4-231
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

rfft2d_fr16 and rfft2d_fx_fr16, while twidfft2d_fr32 may be used to
initialize the arrays for rfft2d_fr32 and rfft2d_fx_fr32.

If the twiddle table has been generated for an fft_size FFT, the
twiddle_stride argument should be set 1. On the other hand, if the twid-
dle table has been generated for an FFT of size x, where x > fft_size, then
the twiddle_stride argument should be set to x / fft_size. The
twiddle_stride argument therefore allows the same twiddle table to be
used for different sizes of FFT. (The twiddle_stride argument cannot be
either zero or negative).

To avoid overflow, the functions scale the output by fft_size*fft_size.

The rfft2d_fr16 arguments block_exponent and scale_method have been
added for future expansion. These arguments are ignored by the function.

Error Conditions

The rfft2d functions abort if the twiddle stride is less than 1, or if
fft_size is less than 4 for rfft2d_fr16 or rfft2d_fx_fr16, or if fft_size
is less than 16 for rfft2d_fr32 or rfft2d_fx_fr32.

Algorithm

The following equation is the basis of the algorithm.

where:
i = {0, 1, ..., n–1}
j = {0, 1, ..., n–1}

c i j a k l e 2– i k j l+ n
l 0=

n 1–

k 0=

n 1–

=

DSP Run-Time Library Guide

4-232 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Domain

The argument fft_size must be a power of 2 and at least 4 for
rfft2d_fr16 and rfft2d_fx_fr16, and at least 16 for rfft2d_fr32 and
rfft2d_fx_fr32.

Example

#include <filter.h>

#define FFT_SIZE1 128

#define FFT_SIZE2 32

#define TWIDDLE_STRIDE1 (FFT_SIZE1 / FFT_SIZE1)

#define TWIDDLE_STRIDE2 (FFT_SIZE1 / FFT_SIZE2)

complex_fract32 out_a[FFT_SIZE1][FFT_SIZE1];

complex_fract32 out_b[FFT_SIZE2][FFT_SIZE2];

complex_fract32 in[FFT_SIZE2][FFT_SIZE2];

complex_fract32 tmp[FFT_SIZE1][FFT_SIZE1];

complex_fract32 twiddle[(3*FFT_SIZE1)/4];

fract32 *in1 = (fract32*)&out_a;
complex_fract32 *out1 = (complex_fract32*)&out_a;
fract32 *in2 = (fract32*)∈
complex_fract32 *out2 = (complex_fract32*)&out_b;
complex_fract32 *tmp = (complex_fract32*)&temp;

twidfft2d_fr32 (twiddle, FFT_SIZE1);

/* In-place computation */

rfft2d_fr32(in1, tmp, out1, twiddle, TWIDDLE_STRIDE1, FFT_SIZE1);

rfft2d_fr32(in2, tmp, out2, twiddle, TWIDDLE_STRIDE2, FFT_SIZE2);

CrossCore Embedded Studio 1.0 4-233
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

rms

Root mean square

Synopsis

#include <stats.h>

float rmsf(const float samples[],

int sample_length);

double rms(const double samples[],

int sample_length);

long double rmsd(const long double samples[],

int sample_length);

fract16 rms_fr16(const fract16 samples[],

int sample_length);

fract32 rms_fr32(const fract32 samples[],

int sample_length);

_Fract rms_fx16(const _Fract samples[],

int sample_length);

long _Fract rms_fx32(const long _Fract samples[],

int sample_length);

Description

The root mean square functions return the root mean square of the ele-
ments within the input vector samples[]. The number of elements in the
vector is sample_length.

DSP Run-Time Library Guide

4-234 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Algorithm

The following equation is the basis of the algorithm.

where:
a = samples
n = sample_length

Domain

[–3.4e38 , +3.4e38] for rmsf()

[–1.7e308 , +1.7e308] for rmsd()

[–1.0 , +1.0) for rms_fr16(), rms_fx16(),
rms_fr32() and rms_fx32()

c

ai
2

i 0=

n 1–

n
---------------=

CrossCore Embedded Studio 1.0 4-235
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

rsqrt

Reciprocal square root

Synopsis

#include <math.h>

float rsqrtf (float a);

double rsqrt (double a);
long double rsqrtd (long double a);

Description

The rsqrt functions calculate the reciprocal of the square root of the
number a. If a is negative, the functions return 0.

Algorithm

The following equation is the basis of the algorithm.

Domain

[0.0 , 3.4e38] for rsqrtf()

[0.0 , +1.7e308] for rsqrtd()

c
1

a
------=

DSP Run-Time Library Guide

4-236 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

twidfftrad2

Generate FFT twiddle factors for radix-2 FFT

Synopsis

#include <filter.h>

void twidfftrad2_fr16(complex_fract16 twiddle_table[],

int fft_size);

void twidfftrad2_fr32(complex_fract32 twiddle_table[],

int fft_size);

Description

The twidfftrad2 functions calculate complex twiddle coefficients for an
FFT of size fft_size and return the coefficients in the vector
twiddle_table. The size of the vector, which is known as a twiddle table,
must be at least fft_size/2. It contains pairs of sine and cosine values that
are used by an FFT function to calculate a Fast Fourier Transform. The
table generated by the function twidfftrad2_fr16 may be used by any of
the functions cfft_fr16, ifft_fr16, rfft_fr16 and rfft_fx_fr16, and
the table generated by the function twidfftrad2_fr32 may be used by any
of the functions cfft_fr32, ifft_fr32, rfft_fr32 and rfft_fx_fr32.

A twiddle table of a given size will contain constant values, and so typi-
cally such a table would be generated only once during the development
cycle of an application and would thereafter be preserved by the applica-
tion in some suitable form.

An application that calculates FFTs of different sizes does not require
multiple twiddle tables. A single twiddle table can be used to compute the
FFTs provided that the table is created for the largest FFT that the appli-
cation expects to generate. Each of the FFT functions cfft, ifft, and rfft

CrossCore Embedded Studio 1.0 4-237
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

have a twiddle stride argument that the application would set to 1 when it
is generating an FFT with the largest number of data points.

To generate smaller FFTs, the twiddle stride argument should be set
according to the formula:

For example, if a twiddle table had been created for a 1024-point FFT,
then the same table could also be used to calculate a 256-point FFT by
setting the twiddle stride argument to 4.

Algorithm

These functions calculate a lookup table of complex twiddle factors. The
coefficients generated are:

where:
n = fft_size
k = {0, 1, 2, ..., n/2 – 1}

Domain

The FFT length fft_size must be a power of 2 and at least 8.

largest FFT size
current FFT size

twid_re(k)
2
n

------k
 cos=

twid_im(k)
2
n

------k
 sin–=

DSP Run-Time Library Guide

4-238 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Example

#include <filter.h>

#define FFT_SIZE1 256

#define FFT_SIZE2 64

#define TWID_SIZE (FFT_SIZE1/2)

complex_fract32 input1[FFT_SIZE1];

complex_fract32 output1[FFT_SIZE1];

complex_fract32 input2[FFT_SIZE2];

complex_fract32 output2[FFT_SIZE2];

complex_fract32 twiddles[TWID_SIZE];

int block_exponent1, block_exponent2;

int scale_method = 1;

twidfftrad2_fr32 (twiddles, FFT_SIZE1);

cfft_fr32 (input1, output1, twiddles, 1, FFT_SIZE1,

&block_exponent1, scale_method);

cfft_fr32 (input1, output2, twiddles, (FFT_SIZE1/FFT_SIZE2),

FFT_SIZE2, &block_exponent2, scale_method);

CrossCore Embedded Studio 1.0 4-239
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

twidfftf

Generate FFT twiddle factors for a fast FFT

Synopsis

#include <filter.h>

void twidfftf_fr16(complex_fract16 twiddle_table[],

int fft_size);

void twidfftf_fr32(complex_fract32 twiddle_table[],

int fft_size);

Description

The twidfftf functions generate complex twiddle factors for the fast
mixed-radix cfftf, ifftf, and rfftf functions. The twiddle factors are pairs of
cosine and sine values that are stored in the vector twiddle_table; the FFT
functions will then use this table to generate a Fast Fourier Transform.
The size of the twiddle table must be at least 3*fft_size/4 where
fft_size is the number of points in the FFT. The table generated by the
function twidfftf_fr16 may be used by any of the functions cfftf_fr16,
ifftf_fr16, rfftf_fr16 and rfftf_fx_fr16, and the table generated by
the function twidfftf_fr32 may be used by any of the functions
cfftf_fr32, ifftf_fr32, rfftf_fr32 and rfftf_fx_fr32.

A twiddle table of a given size will contain constant values, and so typi-
cally such a table would be generated only once during the development
cycle of an application and would thereafter be preserved by the applica-
tion in some suitable form.

An application that calculates FFTs of different sizes does not require
multiple twiddle tables. A single twiddle table can be used to compute the
FFTs provided that the table is created for the largest FFT that the appli-
cation expects to generate. Each FFT function has a twiddle stride

DSP Run-Time Library Guide

4-240 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

argument that the application would set to 1 when it is generating an FFT
with the largest number of data points. To generate smaller FFTs, the
twiddle stride argument should be set according to the formula:

For example, if a twiddle table had been created for a 1024-point FFT,
then the same table could also be used to calculate a 256-point FFT by
setting the twiddle stride argument to 4.

Error Conditions

None.

Algorithm

The functions calculate a lookup table of complex twiddle factors.
The coefficients generated are:

where:
n = fft_size
k = {0, 1, 2, ..., ¾n – 1}

largest FFT size
current FFT size

twid_re(k)
2
n

------k
 cos=

twid_im(k)
2
n

------k
 sin–=

CrossCore Embedded Studio 1.0 4-241
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

Domain

The number of points in the FFT, fft_size, must be a power of 2. It must
also be at least 8 for the cfftf and ifftf functions, and must be at least 16 for the
rfftf functions.

Example

#include <filter.h>

#define FFT_SIZE1 256

#define FFT_SIZE2 64

#define TWIDDLE_SIZE ((3*FFT_SIZE1)/4)

complex_fract32 in1[FFT_SIZE1];
complex_fract32 out1[FFT_SIZE1];
complex_fract32 in2[FFT_SIZE2];
complex_fract32 out2[FFT_SIZE2];
complex_fract32 twiddles[TWIDDLE_SIZE];

twidfftf_fr32 (twiddles, FFT_SIZE1);

cfftf_fr32(in1, out1, twiddles, 1, FFT_SIZE1);

cfftf_fr32(in2, out2, twiddles, FFT_SIZE1/FFT_SIZE2, FFT_SIZE2);

DSP Run-Time Library Guide

4-242 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

twidfft2d

Generate FFT twiddle factors for 2-D FFT

Synopsis

#include <filter.h>

void twidfft2d_fr16 (complex_fract16 twiddle_table[],

int fft_size);

void twidfft2d_fr32 (complex_fract32 twiddle_table[],

int fft_size);

Description

The twidfft2d functions calculate complex twiddle coefficients for a 2-D
FFT of size fft_size and return the coefficients in the vector
twiddle_table. The size of the vector, which is known as a twiddle table,
must be at least fft_size for twidfft2d_fr16, and at least 3*fft_size/4
for twidfft2d_fr32. It contains pairs of sine and cosine values that are
used by an FFT function to calculate a Fast Fourier Transform. The table
generated by the function twidfft2d_fr16 may be used by any of the
functions cfft2d_fr16, ifft2d_fr16, rfft2d_fr16, and rfft2d_fx_fr16,
and the table generated by the function twidfft2d_fr32 may be used by
any of the functions cfft2d_fr32, ifft2d_fr32, rfft2d_fr32, and
rfft2d_fx_fr32.

A twiddle table of a given size will contain constant values, and so typi-
cally such a table would be generated only once during the development
cycle of an application and would thereafter be preserved by the applica-
tion in some suitable form.

An application that calculates FFTs of different sizes does not require
multiple twiddle tables. A single twiddle table can be used to compute the
FFTs provided that the table is created for the largest FFT that the appli-
cation expects to generate. Each 2-D FFT function has a twiddle stride

CrossCore Embedded Studio 1.0 4-243
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

argument that the application would set to 1 when it is generating an FFT
with the largest number of data points.

To generate smaller FFTs, the twiddle stride argument should be set
according to the formula:

For example, if a twiddle table had been created for a 1024-point FFT,
then the same table could also be used to calculate a 256-point FFT by
setting the twiddle stride argument to 4.

Algorithm

This function takes an FFT length (fft_size) as an input parameter and
generates the lookup table of complex twiddle coefficients.

The samples generated are:

where:
n = fft_size
k = {0, 1, 2, ..., n–1}

largest FFT size
current FFT size

twid_re(k)
2
n

------k
 cos=

twid_im(k)
2
n

------k
 sin–=

DSP Run-Time Library Guide

4-244 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Domain

The number of points in the FFT must be a power of 2, and must be at
least 4 for cfft2d_fr16, ifft2d_fr16, rfft2d_fr16 and rfft2d_fx_fr16,
at least 8 for cfft2d_fr32 and ifft2d_fr32 and at least 16 for the
rfft2d_fr32 and rfft2d_fx_fr32 functions.

CrossCore Embedded Studio 1.0 4-245
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

var

Variance

Synopsis

#include <stats.h>

float varf(const float samples[],

int sample_length);

double var(const double samples[],

int sample_length);

long double vard(const long double samples[],

int sample_length);

fract16 var_fr16(const fract16 samples[],

int sample_length);

_Fract var_fx16(const _Fract samples[],

int sample_length);

fract32 var_fr32(const fract32 samples[],

int sample_length);

long _Fract var_fx32(const long _Fract samples[],

int sample_length);

Description

The variance functions return the variance of the elements within the
input vector samples[]. The number of elements in the vector is
sample_length.

DSP Run-Time Library Guide

4-246 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Error Conditions

The var_fr16 and var_fx16 functions can be used to compute the mean
of up to 65535 input data with a value of 0x8000 before the sum ai satu-
rates. The var_fr32 and var_fx32 functions can be used to compute the
mean of up to 4294967295 input data with a value of 0x80000000 before
the sum ai saturates.

Algorithm

The following equation is the basis of the algorithm.

where:
a = samples
n = sample_length

Domain

[–3.4e38 , +3.4e38] for varf()

[–1.7e308 , +1.7e308] for vard()

[–1.0 , +1.0) for var_fr16(), var_fx16(),
var_fr32(), var_fx32()

c

n ai
2

i 0=

n 1–

 a1

i 0=

n 1–

 2

–

n n 1–
---=

CrossCore Embedded Studio 1.0 4-247
C/C++ Compiler and Library Manual for Blackfin Processors

DSP Run-Time Library

zero_cross

Count zero crossings

Synopsis

#include <stats.h>

int zero_crossf (const float samples[],

int samples_length);

int zero_cross (const double samples[],

int samples_length);

int zero_crossd (const long double samples[],

int samples_length);

int zero_cross_fr16 (const fract16 samples[],

int samples_length);

int zero_cross_fx16 (const _Fract samples[],

int samples_length);

int zero_cross_fr32 (const fract32 samples[],

int samples_length);

int zero_cross_fx32 (const long _Fract samples[],

int samples_length);

Description

The zero_cross functions return the number of times that a signal repre-
sented in the input array samples[] crosses over the zero line. If all the
input values are either positive or zero, or they are all either negative or
zero, then the functions return a zero.

DSP Run-Time Library Guide

4-248 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Algorithm

The actual algorithm is different from the one shown below because the
algorithm needs to handle the case where an element of the array is zero.
However, the following example provides a basic understanding.

if (a(i) > 0 && a(i+1) < 0)|| (a(i) < 0 && a(i+1) > 0)

the number of zeros is increased by one

 Domain

[–3.4e38 , +3.4e38] for zero_crossf ()

[–1.7e308 , +1.7e308] for zero_crossd ()

[–1.0 , +1.0) for zero_cross_fr16 (),
zero_cross_fx16 (),
zero_cross_fr32 (),
zero_cross_fx32 ()

CrossCore Embedded Studio 1.0 A-1
C/C++ Compiler and Library Manual for Blackfin Processors

A MULTI-CORE
PROGRAMMING

The Blackfin processor family includes dual-core processors, such as the
ADSP-BF561 processor and the ADSP-BF609 processor. In addition to
other features, dual-core processors add a new dimension to application
development. The dual-core nature of the processor presents additional
challenges to the programmer; this section addresses these challenges
within the context of CCES.

 The documentation for the ADSP-BF561 processor uses “Core A”
and “Core B” nomenclature, while the documentation for the
ADSP-BF609 processor uses “Core 0” and “Core 1”. This chapter
uses the latter.

The appendix contains:

• Dual-Core Blackfin Architecture Overview

• Application Model

• Compiler and Library Support

Dual-Core Blackfin Architecture
Overview

Each dual-core Blackfin processor has two Blackfin cores (core 0 and
core 1), each with its own internal L1 memory. There is a common inter-
nal memory shared between the two cores, and both cores share access to
external memory.

Application Model

A-2 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

Each core functions independently: they have their own reset address,
event vector table, instruction and data caches, and so on. On reset, core 0
starts running from its reset address, while core 1 is disabled. Core 1 starts
running when it is enabled by core 0.

 CCES enables core 1 when it connects to an EZ-Board®, as part of
the program download process.

When core 1 starts running, it runs its own application from its own reset
address.

Applications running on the two cores can use the TESTSET instruction to
serialize access to shared resources. The TESTSET instruction reads and
updates a memory location in an atomic fashion. Applications and librar-
ies can build semaphores and other synchronization mechanisms from this
primitive.

Refer to the appropriate hardware reference for detailed information.

Application Model
Analog Devices recommends the following application model:

• Each core is treated as a separate processor, running its own pro-
gram (i.e. you build a separate .dxe image for each of your
processor’s cores).

• Communication and synchronization between the cores is man-
aged via an appropriate communication protocol; CCES includes
an implementation of the MCAPI protocol for this purpose.

• Physically shared memory locations—memory accessible by both
cores—should be allocated to one core’s memory map or the other
(the same locations should not be mapped into both cores’ memory
spaces, with the exception being those locations required to imple-
ment the communications protocol).

CrossCore Embedded Studio 1.0 A-3
C/C++ Compiler and Library Manual for Blackfin Processors

Multi-Core Programming

• Where the applications on each core need to access the same data,
the communications protocol is used.

• No code is shared between the applications.

This model allows for a predictable development environment, and allows
you freedom to choose different implementation approaches on each core.
For example, you might choose to use an RTOS on core 0, managing sev-
eral control threads, while core 1 does not use an RTOS, instead
repeatedly reading packets of data from one peripheral, processing them,
and writing the results to another peripheral.

Compiler and Library Support
CCES provides some low-level support for multi-core programming,
which are described in this section. Higher-level support is also available
which is documented elsewhere.

Project Creation
When you create new projects for multi-core processors, the IDE’s default
behavior is to create a project for each core, with the following
conveniences:

• Template code for the main() function for each core. The main()
function for Core 0 includes a call of adi_core_1_enable(), to
start Core 1 running.

• A generated .ldf file for each core, partitioning physically-shared
memory between the cores, and reserving some space for the
inter-core communication protocol (the MCAPI implementation
provided with CCES employs this space). You can choose not to
have a generated .ldf file, if you prefer to use the default file, or
provide your own.

Compiler and Library Support

A-4 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• Generated startup code for each core, with memory initialization
where necessary. You can choose not to have generated startup
code, if you prefer to use the default, or provide your own.

When you create your project, you can also choose to add the MCAPI
add-in for communication.

.ldf Files
If you allow the IDE to provide you with generated .ldf files for your
projects, each .ldf file will be configured according to the corresponding
core.

If you elect to use the default .ldf file, instead of having a generated one,
the default .ldf will be used for both cores. The default .ldf file respects
two link-time macros:

• If the CORE0 macro is defined, the .ldf file will define memory
spaces for Core 0.

• If the CORE1 macro is defined, the .ldf file will define memory
spaces for Core 1.

• If neither macro is defined, the .ldf file will behave as though
CORE0 had been defined.

• If both macros are defined, the .ldf file will raise an error message.

Projects created for Core 0 do not define either macro, so they use the
default behavior of building for Core 0, while projects created for Core 1
define the CORE1 macro. If you choose to create your own projects that use
the default .ldf file, ensure you define the appropriate COREx macro at
link-time.

CrossCore Embedded Studio 1.0 A-5
C/C++ Compiler and Library Manual for Blackfin Processors

Multi-Core Programming

Startup Code
If you allow the IDE to create projects with generated startup code, each
project will be created with an appropriate startup file, configured for the
appropriate core. The startup code for Core 1 ensures that the application
on Core 0 has released Core 1, before proceeding with the initialization.
This prevents Core 1’s initialization happening too soon, when the core
has been released by the emulator during the loading process.

If you elect to use the default startup code, the same startup code is used
for both cores; it identifies the executing core at run-time, and ensures
that Core 1 does not initialize too soon.

MCAPI
CCES includes an implementation of the MCAPI protocol. For more
information, refer to the MCAPI API Specification documentation, which
can be found in the CCES online help.

Library Functions
The run-time library provides several low-level functions for multi-core
processors:

• Releasing Core 1. The adi_core_1_enable() function will allow
Core 1 to start running, and also informs Core 1 that the release
command comes from the application running on Core 0, and not
from the emulator. Where the processor supports it,
adi_core_1_disable() is also available. For more information, see
adi_core_1_enable, adi_core_1_disable, adi_core_b_enable.

• Identifying the number of cores in the system. The compiler
defines the __NUM_CORES__ macro, for all processors. This macro
has a value greater than one for all multi-core processors.

Compiler and Library Support

A-6 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

• Identifying the current core. The adi_core_id() function returns
the numeric identifier of the calling core. For more information,
see adi_core_id.

• Acquiring spinlocks. In general, Analog Devices recommends that
a higher-level protocol, such as MCAPI, is used for inter-core com-
munications. However, low-level functions are available. For more
information, see adi_acquire_lock, adi_try_lock, adi_release_lock.

CrossCore Embedded Studio 1.0 I-1
C/C++ Compiler and Library Manual for Blackfin Processors

I INDEX

Numerics
128-bit alignment, 1-301
16-bit fractional built-in functions, 1-222
16-bit fractional ETSI routines, 1-250
2-D convolution (conv2d3x3) function,

4-128
2-D convolution (conv2d) function, 4-125
32-bit alignment, 1-301
32-bit fractional built-in functions, 1-226
32-bit fractional ETSI routines

using 1.31 format, 1-245
using double-precision format, 1-242

64-bit alignment, 1-301
64-bit counter, 4-74

A
A_abs function, 1-270
A_add function, 1-270
A_ashift function, 1-271
-A (assert) compiler switch, 1-30
abend, see abort (abnormal program end)

function
A_bitmux_ASL function, 1-270
A_bitmux_ASR function, 1-270
abs (absolute value) function, 3-65
absfx (absolute value) function, 1-135, 3-66
abs_i2x16 function, 1-266
absolute value, see abs, fabs, labs functions
A_bxor_mask32 function, 1-270
A_bxor_mask40 function, 1-271
A_bxorshift_mask32 function, 1-270

A_bxorshift_mask40 function, 1-271
acc40 type, 1-272
_Accum, 1-115
accum, 1-115, 1-192, 1-417

using, 2-59
accumulator built-in functions

prototypes, 1-269
accumulator registers, 1-63
a_compress (A-law compression) function,

4-76
acos (arc cosine) function, 3-68
acosd function, 3-68
acosf function, 3-68
acos_fr16 function, 3-68
action qualifier, 1-354
-add-debug-libpaths compiler switch, 1-31
add_i2x16 function, 1-266
additional loop annotation information

disabling, 1-53
enabling, 1-33

addresses
alignment, 2-23

adi_acquire_lock function, 3-70
__ADI_COMPILER macro, 1-378
adi_core_id function, 3-73, 3-75
adi_dump_all_heaps function, 3-77
adi_dump_heap function, 3-79
adi_fatal_error function, 3-81
adi_fatal_exception function, 3-83
adi_free_mc_slot function, 3-110
_ADI_FX_LIBIO macro, 1-378
adi_get_mc_value function, 3-110

Index

I-2 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

adi_heap_debug_disable function, 3-85
adi_heap_debug_enable function, 3-86
adi_heap_debug_end function, 2-155,

3-88
adi_heap_debug_flush function, 3-90
adi_heap_debug_pause function, 3-92
adi_heap_debug_resume function, 3-96
adi_heap_debug_set_buffer function, 3-98
adi_heap_debug_set_call_stack_depth

function, 3-100
adi_heap_debug_set_error function, 3-102
adi_heap_debug_set_guard_region

function, 3-104
adi_heap_debug_set_ignore function,

3-106
adi_heap_debug_set_warning function,

3-108
__ADI_LIBEH__ macro, 1-39
_ADI_LIBIO macro, 1-42, 1-44, 1-58
adi_obtain_mc_slot function, 3-110
adi_release_lock function, 3-70
adi_set_mc_value function, 3-110
_ADI_THREADS macro, 1-85, 1-378
adi_try_lock function, 3-70
adi_types.h header file, 3-20
adi_verify_all_heaps function, 2-155,

3-114
adi_verify_heap function, 3-116
__ADSPBF506F_FAMILY__ macro,

1-379
__ADSPBF50x__ macro, 1-378
__ADSPBF518_FAMILY__ macro, 1-379
__ADSPBF51x__ macro, 1-378
__ADSPBF526_FAMILY__ macro, 1-379
__ADSPBF527_FAMILY__ macro, 1-379
__ADSPBF52xLP__ macro, 1-378
__ADSPBF52x__ macro, 1-378
__ADSPBF533_FAMILY__ macro, 1-379
__ADSPBF537_FAMILY__ macro, 1-379
__ADSPBF538_FAMILY__ macro, 1-379

__ADSPBF53x__ macro, 1-378
__ADSPBF548_FAMILY__ macro, 1-380
__ADSPBF548M_FAMILY__ macro,

1-380
__ADSPBF54x__ macro, 1-379
ADSP-BF561 Blackfin processor

architecture overview, A-1
__ADSPBF56x__ macro, 1-379
__ADSPBF5xx__ macro, 1-379
__ADSPBF609_FAMILY__ macro, 1-380
__ADSPBF60x__ macro, 1-379
__ADSPBF6xx__ macro, 1-379
__ADSPBLACKFIN__ macro, 1-73,

1-379
__ADSPLPBLACKFIN__ macro, 1-73,

1-379
A_eq function, 1-270
a_expand (A-law expansion) function, 4-77
aggregate assignment support (compiler),

1-190
aggregate constructor expression, 1-190
aggregate return pointer, 1-389
A-law

compression, 4-76
expansion, 4-77

A_le function, 1-270
algebraic functions, see math functions
algorithm header file, 3-45
aliases, avoiding, 2-31
alignment

data, 1-305
inquiry keyword, 1-373

alignment_region pragma, 1-302
__alignof__ (type-name) construct, 1-372
align pragma, 1-300
all_aligned pragma, 1-309
ALLDATA qualifier, 1-328
alldata section identifier, 1-82
alloca function, 1-281

CrossCore Embedded Studio 1.0 I-3
C/C++ Compiler and Library Manual for Blackfin Processors

Index

allocate memory, see calloc, free, malloc,
realloc functions

alloc pragma, 1-335
alog10 functions, 4-80
alog (anti-log) functions, 4-78
alphanumeric character test, see isalnum

function
A_lshift function, 1-271
alternate heap interface

C run-time library functions, 1-433
C++ run-time library support, 1-435

alternate heap placement, 1-426
alternate keywords, 1-56
alternative operator keywords, 1-31
alternative tokens, 1-31

disabling, 1-53
enabling, 1-31

alternative tokens in C, 1-32
A_lt function, 1-270
-alttok (alternative tokens) compiler switch,

1-31
-always-inline compiler switch, 1-32, 1-178
always_inline pragma, 1-318
A_mac_FU function, 1-270
A_mac function, 1-270
A_mac_IS function, 1-270
A_mac_M function, 1-270
A_mac_MI function, 1-270
A_mad_FU function, 1-271
A_mad function, 1-271
A_madh_FU function, 1-271
A_madh function, 1-271
A_madh_IH function, 1-271
A_madh_IS function, 1-271
A_madh_ISS2 function, 1-271
A_madh_IU function, 1-271
A_madh_S2RND function, 1-271
A_madh_TFU function, 1-271
A_madh_T function, 1-271
A_mad_ISS2 function, 1-271

A_mad_S2RND function, 1-271
A_msu_FU function, 1-270
A_msu function, 1-270
A_msu_IS function, 1-270
A_msu_M function, 1-270
A_msu_MI function, 1-270
A_mult_FU function, 1-270
A_mult function, 1-270
A_mult_IS function, 1-270
A_mult_M function, 1-270
A_mult_MI function, 1-270
-anach (enable C++ anachronisms) C++

mode compiler switch, 1-95, 1-96
anachronisms

default C++ mode, 1-96
disabled C++ mode, 1-98, 1-99

__ANALOG_EXTENSIONS__ macro,
1-380

A_neg function, 1-270
-annotate (enable assembly annotations)

compiler switch, 1-32
-annotate-loop-instr compiler switch, 1-33,

2-115
annotation information, instrumental,

1-33
annotations

assembly code, 2-105
assembly source code position, 2-117
disabling, 1-32, 1-53
loop identification, 2-112
modulo-scheduled instructions, 2-126
modulo scheduling, 2-87
vectorization, 2-124

anomalies
affecting access to MMRs, 1-112
IDs, 1-111
workaround management, 1-109
workarounds, 1-111

anomaly_macros_rtl.h, 1-113

Index

I-4 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

ANSI/ISO 14882
2003 standard C++, 1-29

ANSI standard compiler, 1-40
applications

analyzing, 2-136
enabling and disabling features, 2-168
multi-threaded, 2-147
non-terminating, 2-147

arc cosine, 3-68
arc sine, 3-120
arc tangent, 3-122
arc tangent of quotient, 3-124
argc

support, 1-441
arg (get phase of a complex number)

function, 4-82
argument

and return transfer, 1-397
passing, 1-397

argument list, formatting into an
n-character array, 3-438

argv
support, 1-441

argv/argc arguments, 1-440
arithmetic

data types, 2-21
arithmetic functions, 4-4
arithmetic operators for fixed-point types,

1-123
array indices

use of signed ints, 2-55
arrays

access to, 2-34
defining, 2-29
initializer, 1-187
length, 1-185
multi-dimensional, 1-185
sorting, 3-335
variable-length, 1-184, 1-370
zero-length, 1-370

array writes
avoiding, 2-51

A_sat function, 1-271
asctime (convert broken-down time into a

string) function, 3-38, 3-118, 3-150
A_signbits function, 1-271
asin (arc sine) function, 3-120
asind function, 3-120
asinf function, 3-120
asin_fr16 function, 3-120
asm

compiler keyword, 1-176, 1-192
statement, 1-372, 2-35

asm()
workarounds not applied, 1-110, 1-193

asm() construct
defined, 1-192
flow control operations and, 1-208
operands, 1-198
register names for, 1-203
registers for, 1-198
reordering, 1-206
reordering and optimization, 1-205
syntax, 1-195
syntax rules, 1-196
with compile-time constant, 1-207

asm keyword, for specifying names in
generated assembler, 1-373

asm() operand constraints, 1-199, 1-202
used to specify a long long value, 1-204

Assembler, 1-5
assembler, Blackfin processors, 1-3
assembly

inserting into C code, 2-35
assembly code annotations

disabling, 1-53
enabling with optimization, 1-106
infinite hardware loop wrappers, 2-118
in saved assembly file, 2-104
loop flattening, 2-123

CrossCore Embedded Studio 1.0 I-5
C/C++ Compiler and Library Manual for Blackfin Processors

Index

assembly code annotations (continued)
loop identification, 2-113
procedure statistics, 2-110
providing code optimizations, 2-105
resource definitions, 2-115
vectorization, 2-120

assembly construct
operands, 1-198
reordering and optimization, 1-205
template, 1-195
with multiple instructions in template,

1-205
assembly language support keyword (asm),

1-192
assembly optimizer

annotations, 2-104
global information, 2-109
loop identification annotation, 2-113
messages and warnings, 2-132
modulo scheduling, 2-87
vectorization annotations, 2-124

assembly output annotations
disabling, 1-32
enabling, 1-32
failure messages, 2-132
global information, 2-109
instrumental, 1-33
loop identification, 2-112
modulo scheduling, 2-87
selecting, 2-104
vectorization, 2-120
warnings, 2-132

assembly routine, using function exceptions
table, 1-406

assembly subroutine, calling from C/C++
program, 1-401

assert.h header file, 3-20
assert macro, 3-20
ASTAT register, 1-252
A_sub function, 1-270

atan2 (arc tangent of quotient) function,
3-124

atan2d function, 3-124
atan2f function, 3-124
atan2_fr16 function, 3-124
atan (arc tangent) function, 3-122
atand function, 3-122
atanf function, 3-122
atan_fr16 function, 3-122
atexit function, 1-439, 3-126
atof (convert string to double) function,

3-127
atoi (convert string to integer) function,

3-130
atol (convert string to long integer)

function, 3-131
atoll (convert string to long long integer)

function, 3-132
__attribute__ keyword, 1-374
attributes

file, 1-33, 1-41, 1-54, 1-446
functions, variables and types, 1-374
using, 1-451

-auto-attrs compiler switch, 1-33
autocoh (autocoherence) function, 4-84
autocoherence, 4-84
autocorr (autocorrelation) function, 4-87
autocorrelation, 4-87
autoinit section identifier, 1-82
automatic

inlining, 1-66, 1-107, 1-177, 2-34
loop control variables, 2-55

automatic attributes
disabling, 1-53, 1-54
enabling, 1-33

B
bank_memory_kind pragma, 1-363
bank_optimal_width pragma, 1-365
bank qualifier, 1-209, 2-38, 2-76

Index

I-6 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

bank_read_cycles pragma, 1-363
bank (string) compiler keyword, 1-176
bank_write_cycles pragma, 1-364
Bartlett window, 4-163
base 10

anti-log functions, 4-80
logarithms, 3-308

__BASE_FILE__ macro, 1-380
basic complex arithmetic functions, 4-4
benchmarking C-compiled code, 4-72
biased round-to-nearest rounding, 1-139
big-endian, 1-280
bit-fields, 2-25

signed, 1-83
unsigned, 1-86

bitsfx (bitwise fixed-point to integer
conversion) function, 1-122, 3-133

Blackfin processors
cycle-count registers, 4-74
data types, 1-410
selection, 1-73
setting processor speed, 3-37
system facilities, 1-281

Blackfin-specific functionality
argv/argc arguments, 1-441

Blackman-Harris window, 4-174
Blackman window, 4-166
blank space character, 3-295
Boolean operators, and symbolic names,

3-25
Boolean type support keywords (bool, true,

false), 1-192
broken-down time, 3-36, 3-305, 3-379

converting into a string, 3-118
converting into calendar time, 3-318

bsearch (binary search in sorted array)
function, 3-135

-bss compiler switch, 1-33
BSZ qualifier, 1-328
bsz section identifier, 1-82

buffered output, 3-249
buffers

unfreed file I/O, 2-174
BUFSIZ macro, 3-234, 3-249
-build-lib (build library) compiler switch,

1-33
build tools, 1-42
__builtin_aligned function, 2-19, 2-29,

2-75
__builtin_assert() function, 1-287
__builtin_circptr function, 2-64
built-in functions

16-bit fractional, 1-222
32-bit fractional, 1-226
about, 1-217
accumulator and optimizer, 1-272
accumulator prototypes, 1-269
cache, 1-282
C/C++ compiler, 3-4
circular buffers, 1-277
_clip, 1-221
compiler performance enhancement,

1-285
compiler program behavior and, 1-285,

2-40
complex fract, 1-260
complex fracts in C, 1-260
endian swapping, 1-280
ETSI, 1-222
exceptions, 1-282
expected_false, 1-285
expected_true, 1-285
fract, 1-220, 1-222
fract16, 1-220, 1-222
fract2x16, 1-220, 1-231
fract32, 1-220, 1-226
fractional arithmetic in C, 1-220
fract literals in C, 1-256
full-precision accumulator, 1-269
handling fractional data, 2-57

CrossCore Embedded Studio 1.0 I-7
C/C++ Compiler and Library Manual for Blackfin Processors

Index

built-in functions (continued)
IMASK, 1-282
in code optimization, 2-61
interrupts, 1-282
long fract, 1-220
manipulating 16-bit integers packed in

32-bit type, 1-266
misaligned data, 1-295
MMR accesses, 1-296
naming convention, 1-219
performing fixed-point arithmetic, 2-60
standard math, 3-5
synchronization, 1-282
system, 1-281
system support, 2-61
video operations, 1-288
Viterbi functions, 1-274, 1-275

byteswap2, 1-280
byteswap4, 1-280

C
C

alternative tokens in, 1-32
fractional arithmetic, 1-220
fractional literal values, 1-256
GCC compatibility mode, 1-366
library facilities, 3-43
variable-length arrays, 1-184

C++
abridged library, 3-39
alternative tokens in, 1-31
class constructor functions, 1-82
class instance function, 1-398
comments, 1-191
complex class, 1-264
complex operations, 1-264
constructors, 1-438
delete operator, 3-38
destructors, 1-438

C++ (continued)
exceptions, 1-365
GCC compatibility features not

supported, 1-366
library support, 3-39
new operator, 3-38
support libraries libcpp*.dlb, 3-13
template inclusion control pragma,

1-352
templates, 1-441
virtual lookup tables, 1-82

C++ 2003, 1-4
-c89 (ISO/IEC 98991990 standard),

compiler switch, 1-28
C89 mode, 1-4, 1-189
-c99 (ISO/IEC 9899

1999 standard), compiler switch, 1-28
C99 mode, 1-4, 1-181
cabs (complex absolute value) function,

4-90
cache

built-in functions, 1-282
cacheability protection lookaside buffers

(CPLBs), see CPLB
cadd (complex addition) function, 4-92
calendar time, 3-36, 3-418

converting into a string, 3-150
converting into broken-down time,

3-305
calling

assembly language subroutines, 1-402
library functions, 3-3

CALL instruction, 1-341
calloc (allocate and initialize memory)

function, 3-138
call-preserved registers, 1-388, 1-389

increasing, 2-70
call stack

Reporter Tool, 2-161

Index

I-8 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

C++ anachronisms
disabling, 1-99
enabling, 1-95

C and C++ library files, 3-9
can_instantiate pragma, 1-352
cartesian (Cartesian to polar) function,

4-93
Cartesian coordinates, 4-93
case label, 1-372
case-sensitive switches, 1-8
cassert header file, 3-43
C/C++

calling library functions, 3-3
code optimization, 2-2
language extensions, 1-173
preprocessor features, 1-377
run-time model, 1-385
switch statements, 1-82

cc1462, 1-177
cc1472, 1-74
cc1473, 1-75
cc1738, 1-299
ccblkfn (Blackfin C/C++ compiler), 1-1,

1-3
ccblkfn.h header file, 3-21, 3-57
ccblkfn.h include file, 1-296
C/C++ compiler

common switches, 1-13, 1-29
guide, 1-1, 1-3
overview, 1-1, 1-3

C/C++ compiler mode switches
-c89, 1-28
-c99, 1-28
-c++ (C++ mode), 1-29

__CCESVERSION__ macro, 1-380
C/C++ language extensions

asm keyword, 1-192
bool keyword, 1-176
false keyword, 1-176
inline keyword, 1-177

C/C++ language extensions (continued)
long identifiers, 1-176
restrict, 1-176
section() keyword, 1-176
true keyword, 1-176

C/C++ mode selection
switches, 1-13, 1-28

-C (comments) compiler switch, 1-34
C-compiled code, benchmarking, 4-72
-c (compile only) compiler switch, 1-34
C compiler

MISRA switches, 1-26, 1-92
overview, 1-155

C/C++ run-time environment, defined,
1-385

C/C++ run-time environment, see also
mixed C/C++ assembly programming

C/C++ run-time libraries
defined, 3-2
linking, 3-5

cctype header file, 3-43
C data types, 1-410
cdef*.h files, 1-209
cdiv (complex division) function, 4-95
ceil (ceiling) functions, 3-139
cerrno header file, 3-43
cexp (complex exponential) function, 4-97
cfft2d_fr16 function, 4-105
cfft2d (n x n point 2-D complex input

FFT) function, 4-105
cfftf (fast N-point radix-4 complex input

FFT) function, 4-102
cfftf_fr16 function, 4-102
cfft_fr16 function, 4-98
cfft (n point radix-2 complex FFT)

function, 4-98
cfir (complex FIR filter) function, 4-109
cfir_fr16 function, 4-110
cfir_init macro, 4-110
cfloat header file, 3-43

CrossCore Embedded Studio 1.0 I-9
C/C++ Compiler and Library Manual for Blackfin Processors

Index

character, pushing back into input stream,
3-427

characters in strings, comparing, 3-385
character string search, see strchr function
char storage format, 1-410
-check-init-order C++ mode compiler

switch, 1-97, 1-439
circindex function, 2-64
circptr function, 2-64
circular buffers

automatic generation, 1-277
compiling with the -force-circbuf

compiler switch, 2-63
DAG, 1-388
disabling, 1-55
enabling for use, 1-43
explicit circular buffer generation, 1-278
generating, 1-277
increments of index, 1-278
increments of pointer, 1-279
indexing, 1-277
used in DSP-style code, 2-62

circular pointer references, 1-277
C language extensions

C++ style comments, 1-176
indexed initializers, 1-176
non-constant initializers, 1-176
preprocessor-generated warnings, 1-176
variable-length arrays, 1-176
variable-length automatic arrays, 1-184

class conversion optimization pragmas,
1-347

classes, initializing global instances, 1-438
clearerr function, 3-140
cli function, 1-282
climits header file, 3-43
_clip built-in functions, 1-221
clip (clip) function, 4-113
clobber, of asm() construct, 1-196

clobbered
register definition, 2-78
registers, 1-196, 1-338, 1-340
register sets, 1-340

clocale header file, 3-44
clock

clock_t data type, 3-36
function, 3-142, 4-69, 4-73
time_t data type, 3-36

CLOCKS_PER_SEC macro, 4-69, 4-71
clock_t data type, 3-37, 3-142
cmath header file, 3-44
cmlt (complex multiply) function, 4-115
C mode

compliance, 1-151
C++ mode, 1-181

compiler switches, 1-27, 1-95
compliance, 1-153

C mode compiler switches
-misra, 1-92
-misra-linkdir, 1-93
-misra-no-cross-module, 1-93
-misra-no-runtime, 1-93
-misra-strict, 1-93
-misra-suppress-advisory, 1-94
-misra-testing, 1-94
-Wmis_suppress rule_number, 1-94
-Wmis_warn rule_number, 1-94

C++ mode compiler switches
-anach (enable C++ anachronisms), 1-95
-check-init-order, 1-97, 1-439
-eh (enable exception handling), 1-39
-friend-injection, 1-97
-full-cpplib, 1-98
-full-dependency-inclusion, 1-98
-implicit-include, 1-98
-no-anach (disable C++ anachronisms),

1-98, 1-99
-no-eh (disable exception handling),

1-56

Index

I-10 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

C++ mode compiler switches (continued)
-no-full-cpplib, 1-99
-no-implicit-include, 1-99
-no-rtti (disable run-time type

identification), 1-99
-no-std-templates, 1-100
-rtti (enable run-time type

identification), 1-100
-std-templates, 1-100

C mode MISRA compiler switches, 1-26,
1-92

code
declarations mixed with, 1-189
improving quality of, 2-7
section identifier, 1-82
size, 1-179
storage, 1-422

code_bank pragma, 1-359
Code binary object, 1-448
code coverage report, 2-150

accuracy, 2-150
CodeData binary object, 1-448
code generation annotations, enabling,

1-89
code inlining, controlling, 1-318
CODE memory area, 1-440
code optimization

built-in functions, 2-61
controlling, 1-105, 2-4
disabling, 1-66
enabling, 1-65, 1-272
for maximum performance, 2-65
for size, 1-66, 1-179, 2-64
for speed, 1-66, 1-179
using pragmas in, 2-67
with PGO, 2-9

code placement, compiler-controlled,
1-216

CODE qualifier, 1-328
coeff_iirdf1_fr16 function, 4-117

coeff_iirdf1 function, 4-117
command-line

interface, 1-7
syntax, 1-8

comments
C++ style, 1-191

common compiler switches
-no-cplbs, 1-55
-no-rtcheck-arr-bnd (disable runtime

checking of array boundaries), 1-60
-no-rtcheck (disable runtime checking),

1-60
-no-rtcheck-div-zero (disable runtime

checking for division by zero), 1-61
-no-rtcheck-heap (disable runtime

checking of heap operations), 1-61
-no-rtcheck-null-ptr (disable runtime

checking for NULL pointers), 1-61
-no-rtcheck-shift-check (disable runtime

checking of shift values), 1-62
-no-rtcheck-stack (disable runtime

checking for stack overflow), 1-62
-no-rtcheck-unassigned (disable runtime

checking for unassigned variables),
1-62

-rtcheck-arr-bnd (runtime checking of
array boundaries), 1-77

-rtcheck-div-zero (runtime checking for
division by zero), 1-77

-rtcheck-heap (runtime checking of heap
operations), 1-78

-rtcheck-null-ptr (runtime checking for
NULL pointers), 1-78

-rtcheck (runtime checking), 1-76
-rtcheck-shift-check (runtime checking

of shift values), 1-79
-rtcheck-stack (runtime checking for

stack overflow), 1-79
-rtcheck-unassigned (runtime checking

for unassigned variables), 1-80

CrossCore Embedded Studio 1.0 I-11
C/C++ Compiler and Library Manual for Blackfin Processors

Index

compilation time message, disabling with
-no-progress-rep-timeout compiler
switch, 1-59

compiler
building for a specific hardware revision,

1-84
built-in functions, 1-217, 3-4
C/C++ common switches, 1-13, 1-29
C/C++ language extensions, 1-173
C/C++ mode selection switches, 1-13,

1-28
C++ mode switches, 1-27, 1-95
code generator workarounds, 1-111
code optimization, 1-105, 2-2
command-line interface, overview, 1-7
command-line switch summaries, 1-13
command-line syntax, 1-8
diagnostics, 2-5
disabling GNU compatibility mode,

1-59
disabling hardware anomaly

workarounds, 1-65
enabling GNU compatibility mode, 1-52
enabling hardware anomaly

workarounds, 1-111
generating a label, 1-194
infinite hardware loop wrappers, 2-118
input/output files, 1-11
intrinsics, 1-217, 2-61
keywords, not recognized, 1-56
MISRA switches, 1-26, 1-92
optimizer, 2-4
overview, 1-3
performance enhancement built-in

functions, 1-285
placing symbols in sections, 1-327
producing processor-specified code, 1-73
progress feedback, 1-74
resource usage, 2-116
running from command line, 1-8

compiler (continued)
selecting compilation tool, 1-70
selecting diagnostic messages, 1-354
starting a new optimization pass, 1-75
stopping after compilation, 1-80
undefining macros, 1-86
writing cross-reference listing

information, 1-91
compiler common switches

-A (assert), 1-30
-add-debug-libpaths, 1-31
-alttok (alternative tokens), 1-31
-always-inline, 1-32
-annotate, 1-32
-annotate-loop-instr, 1-33
-auto-attrs, 1-33
-bss, 1-33
-build-lib (build library), 1-33
-C (comments), 1-34
-c (compile only), 1-34
-const-read-write, 1-34
-const-strings, 1-35
-cplbs (CPLBs are active), 1-35
-dcplbs (data CPLBs are active), 1-36
-D (define macro), 1-35
-decls, 1-36
-double-size-{32 | 64}, 1-37
-double-size-any, 1-37
-dry (a verbose dry-run), 1-38
-dryrun (a terse dry-run), 1-38
-ED (run after preprocessing to file),

1-38
-EE (run after preprocessing), 1-39
-enum-is-int, 1-40
-E (stop after preprocessing), 1-38
-expand-symbolic-links, 1-40
-expand-windows-shortcuts, 1-40
-extra-keywords (enable short-form

keywords), 1-40, 1-41
-file-attr, 1-41

Index

I-12 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

compiler common switches (continued)
-@ filename, 1-29
-fixed-point-io, 1-41
-flags (command-line input), 1-42
-force-circbuf, 1-43
-force-link, 1-43
-fp-associative (floating-point associative

operation), 1-43
-full-io, 1-43
-full-version (display version), 1-44
-fx-contract (performance and accuracy),

1-44
-fx-rounding-mode-biased, 1-44
-fx-rounding-mode-truncation, 1-45
-fx-rounding-mode-unbiased, 1-45
-g (generate debug information), 1-45
-glite (lightweight debugging), 1-46
-help (command-line help), 1-47
-HH (list headers and compile), 1-47
-H (list headers), 1-46
-icplbs (instruction CPLBs are active),

1-48
-I (include search directory), 1-47
-i (less includes), 1-48
-include (include file), 1-49
-ipa (interprocedural analysis), 1-49
-I- (start include directory list), 1-48
-jcs21, 1-49
-list-workarounds, 1-50
-L (library search directory), 1-49
-l (link library), 1-50
-map (generate a memory map), 1-52
-MD (generate make rules and compile),

1-51
-mem (invoke memory initializer), 1-52
-M (generate make rules only), 1-51
-MM (generate make rules and compile),

1-51
-Mo (processor output file), 1-51

compiler common switches (continued)
-Mt (output make rule for named file),

1-51
-multiline, 1-52
-never-inline, 1-52
-no-alttok (disable alternative tokens),

1-53
-no-annotate (disable alternative tokens),

1-53
-no-annotate-loop-instr, 1-53
-no-assume-vols-are-mmrs, 1-54
-no-auto-attrs, 1-54
-no-bss, 1-54
-no-circbuf (no circular buffer), 1-55
-no-const-strings, 1-55
-no-defs (disable defaults), 1-55
-no-expand-symbolic-links, 1-56
-no-expand-windows-shortcuts, 1-56
-no-extra-keywords, 1-56
-no-force-link, 1-57
-no-fp-associative, 1-57
-no-full-io, 1-58
-no-fx-contract, 1-58
-no-int-to-fact (disable integer to

fractional conversion), 1-58
-no-int-to-fract, 1-58
-no-jcs2l, 1-59
-no-mem (not invoking memory

initializer), 1-59
-no-multiline, 1-59
-no-progress-rep-timeout, 1-59
-no-sat-associative, 1-63
-no-saturation (no faster operations),

1-63
-no-std-ass (disable standard assertions),

1-64
-no-std-def (disable standard macro

definitions), 1-64
-no-std-inc (disable standard include

search), 1-64

CrossCore Embedded Studio 1.0 I-13
C/C++ Compiler and Library Manual for Blackfin Processors

Index

compiler common switches (continued)
-no-std-lib (disable standard library

search), 1-64
-no-threads (disable thread-safe build),

1-64
-no-workaround workaround_id, 1-65,

1-91, 1-112
-no-zero-loop-counters, 1-65
-O0 (disable optimizations), 1-65
-O1 (enable optimizations), 1-65
-Oa (automatic function inlining), 1-66
-O (enable optimizations), 1-65
-o (output file), 1-69
-Os (enable code size optimizations),

1-66
-overlay, 1-69
-overlay-clobbers, 1-69
-Ov (optimize for speed vs. size), 1-66
-path-install (installation location), 1-71
-path-output (non-temporary files

location), 1-71
-path-temp (temporary files location),

1-71
-path- (tool location), 1-70
-p (generate profiling implementation),

1-70
-pgo-session session-id, 1-71
-pguide (profile-guided optimization),

1-72
-P (omit line numbers), 1-70
-pplist (preprocessor listing), 1-72
-PP (omit line numbers and compile),

1-70
-prof-hw, 1-74
-progress-rep-func, 1-74
-progress-rep-opt, 1-74
-progress-rep-timeout, 1-75
-progress-rep-timeout-secs, 1-75
-R (add source directory), 1-75
-R- (disable source path), 1-76

compiler common switches (continued)
-reserve (reserve register), 1-76
-sat-associative, 1-81
-save-temps (save intermediate files),

1-81
-sdram (SDRAM is active), 1-81
-section (data placement), 1-82, 1-440
-show (display command line), 1-83
-signed-bitfield (make plain bit-fields

signed), 1-83
-signed-char (make char signed), 1-83
-si-revision version (silicon revision),

1-84, 1-110
sourcefile, 1-29
-S (stop after compilation), 1-80
-s (strip debug information), 1-80
-syntax-only (only check syntax), 1-85
-sysdef (system macro definitions), 1-85
-threads (enable thread-safe build), 1-85
-time (tell time), 1-86
-T (linker description file), 1-85
-unsigned-bitfield (make plain bit-fields

unsigned), 1-86
-unsigned-char (make char unsigned),

1-87
-U (undefine macro), 1-86
-verbose (display command line), 1-88
-version (display version), 1-88
-v (version and verbose), 1-87
-warn-protos (warn if incomplete

prototype), 1-90
-w (disable all warnings), 1-90
-Werror-limit (maximum compiler

errors), 1-89
-Werror-warnings (treat warnings as

errors), 1-89
-W{...} number (override error message),

1-88
-workaround workaround_id, 1-91,

1-111

Index

I-14 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

compiler common switches (continued)
-Wremarks (enable diagnostic remarks),

1-89
-Wterse (enable terse warnings), 1-90
-xref (cross-reference list), 1-91
-zero-loop-counters, 1-92

Compiler driver, 1-5
compiler driver, 1-102, 1-111
compiler performance built-in functions

controlling compiler behavior, 2-40
usage example, 2-40

Compiler proper, 1-5
compiler switches

-component, 1-34
-warn-component, 1-90

compile-time constant, 1-207
complex

absolute value, 4-90
addition, 1-261, 4-92
compose, 1-261
conjugate, 1-262, 4-121
division, 4-95
exponential, 4-97
extract real and imaginary parts, 1-261
fract built-ins, 1-260
fractional multiply and accumulate,

1-262, 1-263
fractional multiply and accumulate and

multiply and subtract, 1-262, 1-263
fractional multiply and subtract, 1-260
fractional numbers, 1-260
fractional square, 1-260
functions, 4-4
functions in C++, 1-264
multiply, 4-115
number, 4-82
subtraction, 1-262, 4-141

complex FIR filter, 4-109
complex_fract16 cmac_fr16 function,

1-262, 1-263

complex_fract16 cmsu_fr16 function,
1-262, 1-263

complex_fract16 csqu_fr16 function,
1-260

complex_fract16 type, 1-260
complex_fract32 cadd_fr32 function,

1-261
complex_fract32 ccompose_fr32 function,

1-261
complex_fract32 conj_fr32 function,

1-262
complex_fract32 csub_fr32 function,

1-262
complex_fract32 type, 1-260
complex header file, 1-264, 3-40, 3-41,

3-42
complex header file, see also complex.h file
complex header file, see complex.h header

file
complex.h header file, 1-260, 1-265, 4-4
compliance

language standards, 1-151
-component compiler switch, 1-34
compose_i2x16 function, 1-266
compound literals, 1-190
compound macros, 1-383
compression/expansion, 4-19
conditional code

avoiding in loops, 2-52
improving, 2-39

conditional expressions, with missing
operands, 1-370

conj (complex conjugate) function, 4-121
constants

accessed as read-write data, 1-34
initializing statically, 2-27

ConstData binary object, 1-449
CONSTDATA qualifier, 1-328
constdata section identifier, 1-82
const pointers, 1-34

CrossCore Embedded Studio 1.0 I-15
C/C++ Compiler and Library Manual for Blackfin Processors

Index

const pragma, 1-335
constraint

asm() construct, 1-195
n input, 1-207
operand, 1-198, 1-202

-const-read-write compiler switch, 1-34
constructors, C++ classes, 1-439
constructors and destructors, 1-438

and memory placement, 1-439
for global class instances, 1-438
start routine, 1-438

constructs
flow control, 1-208
input and output operands, 1-206, 1-207
operand description, 1-198
optimization, 1-206
reordering and optimization, 1-205
template, 1-195
template for assembly, 1-195
template operands, 1-198
with multiple instructions, 1-204, 1-205

-const-string compiler switch, 1-35
Content attribute, 1-447, 1-448

values, 1-448
continuation characters, 1-52, 1-59
control character, detecting, 3-285
control character test, see iscntrl function
control code, using 32-bit data types in,

2-66
conv2d (2-D convolution) function, 4-125
conv2d3x3 (2-D convolution) function,

4-128
conversion

fixed-point types, 1-120
conversion of integer to fractional

arithmetic, disabling, 1-58
conversion specifiers, 3-34, 3-228, 3-241

supported by strftime function, 3-379

convert
characters, see tolower, toupper functions
coefficients for DF1 IIR filter, 4-117
implicit type, 3-28
strings, see atof, atoi, atol, strtok, strtol,

strtoul functions
converting

float to fract, 1-256
fract to float, 1-256

convolution, 4-9, 4-18, 4-122
convolve (convolution) function, 4-122
copying

characters from one string to another,
3-386

one string to another, 3-376
copysign (copysign) function, 4-131
core, identifying current, 3-70, 3-73, 3-75
core pragma, 1-320
cos (cosine) function, 3-144
cosd function, 3-144
cosf function, 3-144
cos_fr16 function, 3-144
coshd function, 3-147
coshf function, 3-147
cosh (hyperbolic cosine) functions, 3-147
cosine, 3-144
cosine window, 4-172
cotangent, 4-132
cot (cotangent) function, 4-132
counting one bits in word, 4-133
countlsfx (count leading sign or zero bits)

function, 1-136, 3-148
countones (count one bits in word)

function, 4-133
count_ticks function, 1-361
CPLB

enabling, 1-35
-cplbs (CPLBs are active) compiler switch,

1-35
__cplusplus macro, 1-380

Index

I-16 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

crosscoh (cross-coherence) function, 4-134
CrossCore Embedded Studio

compiler (ccblkfn), 1-3
IDE, 1-4
simulator, 3-35
specifying processor speed, 4-72

crosscorr (cross-correlation) function,
4-138

cross-reference listing information, 1-91
C++ run-time, alternate heap interface

support, 1-435
C run-time, library reference, 3-63 to

3-433
C run-time library functions

calling from ISR, 3-38
interrupt-safe, 3-38
not-interrupt-safe, 3-38

csetjmp header file, 3-44
csignal header file, 3-44
cstdarg header file, 3-44
cstddef header file, 3-44
cstdio header file, 3-44
C++ STL objects, 1-430
cstring header file, 3-44
C++ style comments, 1-191
csub (complex subtraction) function, 4-141
csync function, 1-282
ctime (convert calendar time into a string)

function, 3-118, 3-150
ctor memory section, 1-439
C-type functions

iscntrl, 3-285
isgraph, 3-287
islower, 3-290
isprint, 3-293
ispunct, 3-294
isspace, 3-295

C-type functions (continued)
isupper, 3-297
isxdigit, 3-298
tolower, 3-425
toupper, 3-426

ctype.h header file, 3-21, 3-57, 3-58
custom allocator, 1-430
cycle_count.h header file, 4-8, 4-64
cycle counting, 4-64
cycle-count register, 4-64, 4-72, 4-74
cycle counts

accumulating statistics, 4-66
computing, 2-146
determining processor clock rate, 4-71
measuring, 4-8, 4-63
using time.h header file, 4-69
with statistics, 4-8, 4-66

CYCLES2 register, 4-74
cycles.h header file, 4-8, 4-66, 4-67
CYCLES_INIT(S) macro, 4-66
CYCLES_PRINT(S) macro, 4-67
CYCLES register, 4-74
CYCLES_RESET(S) macro, 4-67
CYCLES_START(S) macro, 4-66
CYCLES_STOP(S) macro, 4-66
cycle_t data type, 4-64
cygdrive folders, 1-104
Cygwin

cygdrive directory, 1-104
environment paths, 1-102
mounted directories, 1-104
path extensions, 1-40
paths, 1-103
symbolic links, 1-103
UNIX-like command-line environment,

1-103

CrossCore Embedded Studio 1.0 I-17
C/C++ Compiler and Library Manual for Blackfin Processors

Index

D
DAG

circular buffers, 1-388
registers, 1-388

data
alignment, misaligned accesses, 1-295,

1-305
alignment pragmas, 1-299, 1-300
fetching with 32-bit loads, 2-28
formatting into a character array, 3-365
fractional, 2-57, 2-61
placement for performance, 2-36
storage, 1-422
storage formats, 1-410
word alignment, 2-28

data_bank pragma, 1-359
Data binary object, 1-448
data buffers

word alignment, 2-28
data memory accesses

validating, 1-36
DATA memory area, 1-440
data placement, compiler-controlled, 1-82,

1-216, 1-440
DATA qualifier, 1-328
data section identifier, 1-82
data type

formats, 1-410
scalar, 2-21
sizes, 1-410

data types
emulated arithmetic, 2-26
fixed-point, 1-114

date
information, 3-36

__DATE__ macro, 1-380
Daylight Saving flag, 3-36
-DCLOCKS_PER_SEC compile-time

switch, 4-71

-D (define macro) compiler switch, 1-35,
1-86

-DDO_CYCLE_COUNTS compile-time
switch, 4-65, 4-66, 4-72

deallocate memory, see free function
debugger

heap, 2-150
debugger, generating debug line

information, 1-194
debugging

heaps, 2-150
debugging, source-level, 1-45
debugging information

generating, 1-45
lightweight, 1-46
removing, 1-80
removing unnecessary, 1-46

Debug subdirectory, 1-31
declarations

mixed with code, 1-189
declarations, mixed with code, 1-189
-decls compiler switch, 1-36
dedicated registers, 1-387
default

heap, 1-427
I/O run-time library, 3-33
.ldf files, 1-425
memory placement, 3-14
names, controlling, 1-82, 1-216
sections, 1-327
target processor, 1-73

default preprocessor macros, disabling,
1-55

default_section pragma, 1-216, 1-327
delete operator

free memory from run-time heap, 1-423
with multiple heaps, 1-435

dependency information, generating, 1-98

Index

I-18 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

dependent name processing
disabling, 1-100
enabling, 1-100

deque header file, 3-45
destructors, C++ classes, 1-439
DF1 IIR filter, 4-117
diagnostic control pragmas, 1-354
diagnostic messages

modifying behavior, 1-355
restoring behavior, 1-356
saving behavior, 1-356
severity of, 1-354

diagnostic pragmas
misra_rules_all, 1-355

diagnostic remarks
enabling, 1-89

diagnostics
described, 2-5
modifying severity of, 1-354
modifying with directives, 1-357
remarks, 2-6
warnings, 2-6

diag pragmas, 1-355
DIAG qualifier, in MISRA-C mode, 1-354
different_banks pragma, 1-309
difftime (difference between two calendar

times) function, 3-152
digraph sequences, 1-31
div (division) function, 3-154
divide primitive instructions, 1-267
divifx (division of integer by fixed-point)

function, 1-131, 3-155
division

handling, 2-26
division, complex, 4-95
division, see div, ldiv functions
division functions, 1-267
divq function, 1-267
divs function, 1-267

DMA
code processed via, 1-390
manager, 1-390

DM qualifier, 1-329
.doj files, 1-10, 1-34
do_not_instantiate pragma, 1-351
double

32-bit data type, 1-37
64-bit data type, 1-37
data type, 1-410, 1-412, 1-413
data type formats, 1-37
representation, 3-391
storage format, 1-410

DOUBLE32 qualifier, 1-329
DOUBLE64 qualifier, 1-329
DOUBLEANY qualifier, 1-329
double-precision format, 1-242
__DOUBLES_ARE_FLOATS__ macro,

1-380
-double-size-32 compiler switch, 1-37,

1-410, 1-413
-double-size-64 compiler switch, 1-37,

1-410, 1-412, 1-413
-double-size-any compiler switch, 1-37,

1-410, 1-413, 1-414
-dry-run (verbose dry-run) compiler switch,

1-38
-dry (terse -dry-run) compiler switch, 1-38
DSP

filters, 4-9
header files, 4-3
run-time library, 4-1
run-time library, source code, 4-2
run-time library attributes, 4-3
run-time library format, 4-75
run-time library functions, 4-75

dual-core applications
architecture overview, A-1
processor, A-1

dyn_AddHeap function, 3-157

CrossCore Embedded Studio 1.0 I-19
C/C++ Compiler and Library Manual for Blackfin Processors

Index

dyn_alloc function, 3-159
dyn_AllocSectionMem function, 3-161
dyn_AllocSectionMemHeap function,

3-164
Dynamically-loadable mdoules

dyn_FreeEntryPointArray function,
3-169

dyn_GetEntryPointArray function,
3-172

Dynamically-loadable mdules

dyn_alloc function, 3-159
dyn_heap_init function, 3-187

Dynamically-loadable modules

dyn_GetHeapForWidth function,
3-177

dyn_RewriteImageToFile function,
3-198

dyn_SetSectionMem function, 3-202
dynamically-loadable modules

allocate section memory, 3-161
allocate section memory from heap,

3-164
copy section contents, 3-167
dyn_RecordRelocOutOfRange

function, 3-192
dyn_RetrieveRelocOutOfRange

function, 3-196
free section memory, 3-170
get number of sections, 3-179
get sections, 3-181
get string table, 3-183
set section address, 3-200
validate image, 3-204

dynamic_cast expressions, 1-100
dynamic scaling, 4-99, 4-187, 4-223
dyn_CopySectionContents function,

3-167
dyn_FreeEntryPointArray function, 3-169

dyn_FreeSectionMem function, 3-170
dyn_GetEntryPointArray function, 3-172
dyn_GetExpSymTab function, 3-175
dyn_GetHeapForWidth function, 3-177
dyn_GetNumSections function, 3-179
dyn_GetSections function, 3-181
dyn_GetStringTable function, 3-183
dyn_GetStringTableSize function, 3-185
dyn_heap_init function, 3-187
dyn_LookupByName function, 3-189
dyn_RecordRelocOutOfRange function,

3-192
dyn_Relocate function, 3-194
dyn_RetrieveRelocOutOfRange function,

3-196
dyn_RewriteImageToFile function, 3-198
dyn_SetSectionAddr function, 3-200
dyn_SetSectionMem function, 3-202
dyn_ValidateImage function, 3-204

E
easmblkfn, 1-5
easmblkfn assembler, 1-3
__ECC__ macro, 1-380
__EDG__ macro, 1-380
__EDG_VERSION__ macro, 1-380
-ED (run after preprocessing to file)

compiler switch, 1-38
-EE (run after preprocessing) compiler

switch, 1-39
-eh (enable exception handling) compiler

switch, 1-39
elfar, 1-6
elfar archive library, 1-3
embedded C++ header files

complex, 3-40, 3-41, 3-42
fract, 3-42
fstream, 3-40, 3-41
iomanip, 3-40, 3-41
ios, 3-40, 3-41

Index

I-20 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

embedded C++ header files (continued)
iosfwd, 3-40, 3-41
iostream, 3-40, 3-41
istream, 3-40, 3-41
new, 3-42
ostream, 3-40, 3-41, 3-42
shortfract, 3-43
sstream, 3-40, 3-42
stdexcept, 3-43
streambuf, 3-40, 3-42
string, 3-41, 3-42
strstream, 3-41, 3-42

embedded C++ library
header files, 3-40, 3-41, 3-42

embedded standard template library, 3-44
Empty binary object, 1-449
emulated arithmetic

avoiding, 2-26
data types, 2-22, 2-26
operators, 2-26

End, see atexit, exit functions
endian-swapping intrinsics, 1-280
enumeration types, 1-40
-enum-is-int compiler switch, 1-40
environment variables

ADI_DSP, 1-101
CCBLKFN_IGNORE_ENV, 1-102
CCBLKFN_OPTIONS, 1-102
PATH, 1-101
TEMP, 1-101
TMP, 1-101

EOF indicator, 3-140
errno global variable, 3-38
errno.h header file, 3-22
error messages

overriding, 1-88
setting severity, 2-162
via diagnostic control pragmas, 1-354

escape character, 1-372
ESTL header files, 3-44

-E (stop after preprocessing) compiler
switch, 1-38

ETSI
built-in functions, 1-417, 1-418, 1-419,

1-420, 1-421
floating-point multiplication using fract

implementation, 1-258
ETSI routines

16-bit fractional, 1-250
32-bit fractional using 1.31 format,

1-245
32-bit fractional using double-precision

format, 1-242
event vector tables

pragmas, 1-307
examples

fixed-point dot product, 1-117
fixed-point type, 1-148

exception handler
disabling, 1-56

exception handling
disabling, 1-56
enabling, 1-39

__EXCEPTIONS macro, 1-39, 1-381
exceptions tables, 1-365

in assembly routine, 1-406
initialization, 1-406

EXECUTABLE_NAME directive, 2-137,
2-155

__executable_name symbol, 2-155
EX_INTERRUPT_HANDLER macro,

1-308
exit library function, 1-439
exit (normal program termination)

function, 3-206
-expand-symbolic-links compiler switch,

1-40
-expand-windows-shortcuts compiler

switch, 1-40

CrossCore Embedded Studio 1.0 I-21
C/C++ Compiler and Library Manual for Blackfin Processors

Index

expected_false built-in function, 1-285,
2-39, 2-40

expected_true built-in function, 1-285,
2-39, 2-40

exp (exponential) functions, 3-207
exponential, see exp, ldexp functions
exponentiation, 4-78, 4-80
EXPRS macro, 2-41
extension keywords, 1-175
-extra-keywords (enable short-form

keywords) compiler switch, 1-40
EZ-KIT Lite system

ADSP-BF561 Blackfin processor, A-2
supporting primitives for open, close,

read, write, and seek operations, 3-35

F
fabs (absolute value) functions, 3-208
far jump return, see longjmp, setjmp

functions
faster operations, disabling, 1-63
Fast Fourier Transforms, 4-9, 4-12
-fast-fp (fast floating point) compiler

switch, 1-410
fatal errors, 3-46

handling, 3-46
FatalError.xlm, 3-47
fclose function, 3-209
feof function, 3-211
ferror function, 3-212
fflush function, 3-213
fgetc function, 3-214
fgetpos function, 3-216
fgets function, 3-218
file

annotation position, 2-117
attributes, 1-330
attributes, adding, 1-41
attributes, disabling, 1-54
automatic attributes, 1-33

file (continued)
buffering, 3-354
current position for, 3-248
extensions, 1-9, 1-11, 1-29
full buffering, 3-350
I/O support, 3-46
multiple attributes, 1-41
opening, 3-223
opening with an existing file descriptor,

3-237
position indicator, 3-245, 3-247
removing, 3-341
renaming, 3-342
searching, 1-11

file attribute
and section qualifiers, 1-450
automatically-applied, 1-447
different values of, 1-451
name, 1-447

file attributes
placement of run-time library functions,

1-446
-file-attr name compiler switch, 1-41
file_attr pragma, 1-330
file descriptor, 3-220, 3-282
file I/O buffers

unfreed, 2-174
__FILE__ macro, 1-381
file name

reading from, 1-29
to be processed, 1-29

-@ filename (command file) compiler
switch, 1-29

fileno function, 3-220
files

.doj, 1-10, 1-34
file-to-device stream, 1-106
filter.h header file, 4-9, 4-154, 4-200,

4-207

Index

I-22 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

filter library, 4-9, 4-10
filters, signal processing, 4-9
finite impulse response (FIR) filter, 4-144
fir_decima (FIR decimation filter)

function, 4-147
FIR decimation filter, 4-147
FIR filter, 4-144
fir (finite impulse response filter) function,

4-142, 4-158
fir_fr16 function, 4-144
fir_interp (FIR interpolation filter)

function, 4-152
fir_interp_fr16 function, 4-154
__FIXED_POINT_ALLOWED macro,

1-381
fixed-point arithmetic

pragmas, 1-315
semantics, 1-119
using built-in functions, 2-60

fixed-point arithmetic pragmas, 1-315
fixed-point constants, 1-117
-fixed-point-io compiler switch, 1-41
fixed-point types

arithmetic operators, 1-123
conversion, 1-120
using, 1-114

-flags (command line input) compiler
switch, 1-42

flash memory, mapping code and data to,
3-15

float
converting to fract, 1-257, 1-258
data type, 1-410, 1-412
storage format, 1-410

float.h header file, 3-22
floating-point

binary formats, 1-414
data size, 1-412
hexadecimal constants, 1-189

floating-point (continued)
multiplication using ETSI fract

implementation, 1-258
numbers, 1-410

floating-point multiplication and addition
as associative operations, 1-43
not as associative operations, 1-57

float_to_fr16 function, 1-257, 1-258
float_to_fr32 function, 1-257, 1-258
floor (integral value) functions, 3-221
flow control operations, 1-208
FLT_MAX macro, 3-22
FLT_MIN macro, 3-22
flush (data cache line flush) built-in

function, 1-283
flushinv (data cache line flush and

invalidate) built-in function, 1-283
flushinvmodup built-in function, 1-283
flushmodup built-in function, 1-284
fmod (floating-point modulus) functions,

3-222
fopen function, 3-223
-force-circbuf (circular buffer) compiler

switch, 1-43, 2-63
-force-link (force stack frame creation)

compiler switch, 1-43
formatted input

converting from stdin, 3-348
converting in a string, 3-370
reading, 3-240

formatted output
of a variable argument list, 3-434
printing, 3-225, 3-329

-fp-associative (floating-point associative)
compiler switch, 1-43

fprintf function, 3-225
fputc function, 3-231
fputs function, 3-232
fr16_to_float function, 1-257, 1-258
fr16_to_fr32 function, 1-257

CrossCore Embedded Studio 1.0 I-23
C/C++ Compiler and Library Manual for Blackfin Processors

Index

fr32_to_float function, 1-257, 1-258
fr32_to_fr16 function, 1-257
_Fract, 1-115
fract, 1-115, 1-192, 1-417

converting to float, 1-257, 1-258
using, 2-59

fract16, 1-256
fract16 built-in functions, 1-222
fract16 data type, 1-220, 1-417, 1-418,

1-419, 1-420, 1-421
fract16 ETSI functions, 1-250
fract2float_conv.h header file, 1-256
fract2x16 built-in functions, 1-231
fract2x16 data type, 1-220, 1-417, 1-418,

1-419, 1-420, 1-421
fract32, 1-226, 1-256
fract32 built-in functions, 1-226
fract32 data type, 1-220, 1-417, 1-418,

1-419, 1-420, 1-421
fract32 Div_32 function, 1-244
fract32 ETSI functions, 1-242, 1-245
fract32 imag_fr32 function, 1-261
fract32 real_fr32 function, 1-261
fract data type, 1-220
fract header file, 3-42
fract.h header file, 1-221
fractional

built-in functions, 1-220, 1-417, 1-418,
1-419, 1-420, 1-421

built-in values, 1-220
complex_fract16 values, 1-260
C type values, 1-220
data, 2-57
literal values in C, 1-256
numbers, 1-417, 1-418, 1-419, 1-420,

1-421
fractional data, 2-61
fractional semantics

using integer arithmetic, 2-58

frame pointer
controlling the run-time stack, 1-391
dedicated register, 1-388
purpose of, 1-394

fread (buffered input) function, 3-33,
3-234

free (deallocate memory) function, 3-236
free list, emptying, 1-435
freopen function, 3-237
frexp (separate fraction and exponent)

function, 3-239
-friend-injection C++ mode compiler

switch, 1-97
fscanf function, 3-240
fseek function, 3-245
fsetpos function, 3-247
fstream header file, 3-40, 3-41
fstream.h header file, 3-45
ftell (current file position) function, 3-248
-full-cpplib C++ mode compiler switch,

1-98
-full-dependency-inclusion C++ mode

compiler switch, 1-98
-full-io compiler switch, 1-43
full-precision accumulator built-in

function, 1-269
-full-version (display version) compiler

switch, 1-44
FuncName attribute, 1-447
function

A_abs, 1-270
A_add, 1-270
A_ashift, 1-271
A_bitmux_ASL, 1-270
A_bitmux_ASR, 1-270
A_bxor_mask32, 1-270
A_bxor_mask40, 1-271
A_bxorshift_mask32, 1-270
A_bxorshift_mask40, 1-271
A_eq, 1-270

Index

I-24 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

function (continued)
A_le, 1-270
A_lshift, 1-271
A_lt, 1-270
A_mac, 1-270
A_mac_FU, 1-270
A_mac_IS, 1-270
A_mac_M, 1-270
A_mac_MI, 1-270
A_mad, 1-271
A_mad_FU, 1-271
A_madh, 1-271
A_madh_FU, 1-271
A_madh_IH, 1-271
A_madh_IS, 1-271
A_madh_ISS2, 1-271
A_madh_IU, 1-271
A_madh_S2RND, 1-271
A_madh_T, 1-271
A_madh_TFU, 1-271
A_mad_ISS2, 1-271
A_mad_S2RND, 1-271
A_msu, 1-270
A_msu_FU, 1-270
A_msu_IS, 1-270
A_msu_M, 1-270
A_msu_MI, 1-270
A_mult, 1-270
A_mult_FU, 1-270
A_mult_IS, 1-270
A_mult_M, 1-270
A_mult_MI, 1-270
A_neg, 1-270
A_sat, 1-271
A_signbits, 1-271
A_sub, 1-270

functional header file, 3-45
function arguments, transferring, 1-397
function calls, 2-53, 2-70

reported statistics, 2-110

function inlining, 1-177
and global asm statements, 1-181
and optimization, 1-180
and out-of-line copies, 1-180
declined (cc1462), 1-177
how to use, 2-34
ignoring section directives, 1-181
stack size, 1-179

function pointer, not used with
regs_clobbered pragma, 1-339

function pragmas, for code optimization,
2-68

functions
arguments/return value transfer, 1-397
arithmetic, 4-4
calling in loop, 2-53
complex, 4-4
division, 1-267
entry (prologue), 1-393
exit (epilogue), 1-393
inlining, 2-34
inlining a call to, 1-32
math, 4-19
matrix, 4-23
non-reentrant, 3-15
out-of-line copy, 1-180
statistical, 4-37
synchronization, 3-70
transformational, 4-9
vector, 4-44

function side-effect pragmas, 1-334
fwrite function, 3-33, 3-249
fxbits (bitwise integer to fixed-point

conversion) function, 1-122, 3-251
FX_CONTRACT

behavior, 1-125
-fx-contract compiler switch, 1-44
FX_CONTRACT pragma, 1-315
fxdivi (division of integer by integer)

function, 1-133, 3-253

CrossCore Embedded Studio 1.0 I-25
C/C++ Compiler and Library Manual for Blackfin Processors

Index

-fx-rounding-mode-biased compiler
switch, 1-44

FX_ROUNDING_MODE pragma,
1-316

-fx-rounding-mode-truncation compiler
switch, 1-45

-fx-rounding-mode-unbiased compiler
switch, 1-45

G
Gaussian window, 4-168
GCC compatibility extensions, 1-366
GCC compatibility mode, 1-366
GCC compiler, 1-368
gen_bartlett (generate Bartlett window)

function, 4-163
gen_blackman (generate Blackman

window) function, 4-166
general optimization pragmas, 1-313
generate_exceptions_tables pragma, 1-365
gen_gaussian (generate Gaussian window)

function, 4-168
gen_hamming (generate Hamming

window) function, 4-170
gen_hanning (generate Hanning window)

function, 4-172
gen_harris (generate Harris window)

function, 4-174
gen_kaiser (generate Kaiser window)

function, 4-176
gen_rectangular (generate rectangular

window) function, 4-178
gen_triangle (generate triangle window)

function, 4-180
gen_vonhann (generate von Hann

window) function, 4-182
getc function, 3-255
getchar function, 3-257
gets function, 3-259

-g (generate debug information) compiler
switch, 1-45

-glite (lightweight debugging) compiler
switch, 1-46

global
asm statements and function call

inlining, 1-181
variable debugging, 1-45
variables, 1-403

global information, 2-109
global symbols, 1-321
global zero-initialized data

keeping in the same data section, 1-54
placing in bsz section, 1-33

globvar global variable, 2-56
gmtime (convert calendar time into

broken-down time as UTC) function,
3-38, 3-118, 3-261, 3-305

GNU C compiler, 1-366
GNU compatibility mode, 1-52

disabling, 1-59
granularity, when attributes are used, 1-450
graphical character test, see isgraph function
guards, 2-73

H
Hamming window, 4-170
Hanning window, 4-172
hard constraints, 1-450
hardware

loop counters, 1-390
loops, 2-118
pipelining, 2-82
workarounds macro, 1-382

hardware loops
trip count, 2-118

hardware revision, building project for,
1-84

Harris window, 4-174
hash_map header file, 3-45

Index

I-26 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

hash_set header file, 3-45
header files

C++, 3-43
control pragmas, 1-352
DSP, list of, 4-3
embedded C++ library, 3-40, 3-41, 3-42
embedded standard template library,

3-44
ESTL, 3-44
search for, 1-64
standard C run-time library, 3-18

header files (embedded C++)
complex, 3-40, 3-41, 3-42
fract, 3-42
fstream, 3-40, 3-41
iomanip, 3-40, 3-41
ios, 3-40, 3-41
iosfwd, 3-40, 3-41
iostream, 3-40, 3-41
istream, 3-40, 3-41
new, 3-42
ostream, 3-40, 3-41, 3-42
shortfract, 3-43
sstream, 3-40, 3-42
stdexcept, 3-43
streambuf, 3-40, 3-42
string, 3-41, 3-42
strstream, 3-41, 3-42

header files (embedded standard template)
algorithm, 3-45
deque, 3-45
fstream.h, 3-45
functional, 3-45
hash_map, 3-45
hash_set, 3-45
iomanip.h, 3-45
iostream.h, 3-45
iterator, 3-45
list, 3-45
map, 3-45

header files (embed std temp) (continued)
memory, 3-45
new.h, 3-45
numeric, 3-45
queue, 3-45
set, 3-45
stack, 3-45
utility, 3-45
vector, 3-45

header files (new form)
cassert, 3-43
cctype, 3-43
cerrno, 3-43
cfloat, 3-43
climits, 3-43
clocale, 3-44
cmath, 3-44
csetjmp, 3-44
csignal, 3-44
cstdarg, 3-44
cstddef, 3-44
cstdio, 3-44
cstdlib, 3-44
cstring, 3-44

header files (standard)
adi_types.h, 3-20
assert.h, 3-20
ccblkfn.h, 3-21
ctype.h, 3-21
errno.h, 3-22
float.h, 3-22
heap_debug.h, 3-23
instrprof.h, 3-25
iso646.h, 3-25
limits.h, 3-26
locale.h, 3-26
math.h, 3-26
mc_data.h, 3-28
misra_types.h, 3-28
pgo_hw.h, 3-28

CrossCore Embedded Studio 1.0 I-27
C/C++ Compiler and Library Manual for Blackfin Processors

Index

header files (standard) (continued)
setjmp.h, 3-28
signal.h, 3-29
stdarg.h, 3-29
stdbool.h, 3-29
stddef.h, 3-29
stdfix.h, 3-29
stdint.h, 3-30
stdio.h, 3-32
stdlib.h, 3-36
string.h, 3-36
time.h, 3-36

heap
addressing, 1-430
base address, 1-430
default, 1-427
defining, 1-428
defining at runtime, 1-429
emptying free list, 1-435
freeing space for, 1-435
index, 1-433, 1-434, 3-271
interface, alternate, 1-433
interface, standard, 1-427
interface, with multiple heaps, 1-435
memory control, 1-425
re-initializing, 1-435, 3-267
section, 1-423
setting up at run-time, 3-269
space unused in, 3-364
system, 1-424

heap_calloc function, 1-433, 3-263
heap debugging

diagnostic message severity, 2-162
finishing, 2-172
getting started, 2-152
libraries, 2-150
pausing, 2-171

heap debugging library, 2-151
allocations and de-allocations, 2-168
behavior, 2-172

heap debugging library (continued)
buffering, 2-170
default behavior, 2-154
detected errors, 2-157
enabling features at build-time, 2-169
enabling features at runtime, 2-168
guard regions, 2-165
linking with, 2-155
stderr diagnostics, 2-159
using, 2-156

heap_debug.h header file, 3-23, 3-57
_HEAP_DEBUG macro, 1-381, 2-153
heap extension routines

alternate heap interface, 1-433
heap_calloc, 1-427
heap_free, 1-427
heap_malloc, 1-427
heap_realloc, 1-427
listed, 1-427

heap_free function, 1-433, 3-265
heap functions

calloc, 1-427
free, 1-427
malloc, 1-427
realloc, 1-427
standard, 1-427

heap index, 3-271
heap_init function, 3-267
heap_install function, 3-269
heap_lookup function, 3-271
heap_malloc function, 1-433, 3-273
heap_realloc function, 1-433, 3-275
heaps

non-default, 1-430
verifying, 2-172

HEAP_SIZE macro, 1-426
heap_space_unused function, 1-434, 3-277
-help (command-line help) compiler

switch, 1-47
hexadecimal digit test, see isxdigit function

Index

I-28 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

hexadecimal floating-point constants,
1-189

hexadecimal floating-point numbers, 1-189
-HH (list *.h and compile) compiler switch,

1-47
high_of_i2x16 function, 1-266
histogram (histogram) function, 4-183
-H (list *.h) compiler switch, 1-46
hoisting, 2-80
__HOSTNAME__ macro, 1-85
HUGE_VAL macro, 3-27
hyperbolic, see cosh, sinh, tanh functions

I
i2x16.h header file, 1-266
-I compiler switch, 1-47
identifier, long, 1-217
__IDENT__ macro, 1-381
idivfx (division of fixed-point by

fixed-point) function, 1-132, 3-278
idivfx functions, 3-278
idle mode, 1-282
IEEE-754 floating-point formats, 1-414
IEEE floating-point support, 1-416
-ieee-fp compiler switch, 1-410
IEEE single/double-precision description,

1-410
ifft2d (n x n point 2-D inverse input FFT)

function, 4-194
ifftf (fast N-point inverse input FFT),

4-191
ifft (n point radix 2 inverse FFT) function,

4-186
iflush built-in function, 1-284
iflushmodup built-in function, 1-284
-I (include search directory) compiler

switch, 1-64
iirdf1 (direct form I impulse response filter)

function, 4-205
iirdf1_fr16 function, 4-207

iirdf1_init macro, 4-207
iir_fr16 function, 4-199
iir (infinite impulse response filter)

function, 4-198
iir_init macro, 4-200
-i (less includes) compiler switch, 1-48
IMASK

value, 1-282
implicit

inclusion, of source files, 1-352
inclusion of .cpp files, 1-98

-implicit-include compiler switch, 1-98
implicit instantiation method, 1-443
include directory list, 1-48
include files, searching, 1-47
-include (include file) compiler switch,

1-49
incomplete prototype warning, 1-90
indexed

array, 2-33
style, 2-34

indexed initializers, 1-186
induction variables

definition, 2-51
infinite hardware loop wrappers, 2-118
infinite impulse response (IIR) filter, 4-198
InitData binary object, 1-448
initialization

memory, 1-52
order, checking, 1-97

initializers
indexed, 1-186

initiation interval
and kernel, 2-88
minimum, 2-87

inline
asm statements, 2-35
assembly language support keyword

(asm), 1-192, 1-195, 1-198, 1-205,
1-206

CrossCore Embedded Studio 1.0 I-29
C/C++ Compiler and Library Manual for Blackfin Processors

Index

inline (continued)
automatic, 2-34
expansion of C/C++ functions, 1-66
functions, 3-4
function support keyword, 1-177
keyword, 1-176, 1-177, 2-34
keyword, avoiding use of, 2-66
qualifier, 1-178, 1-318

inline control pragmas, 1-318
inline functions

advantage of, 2-34
inline pragma, 1-319, 1-336
inline qualifier

enabling, 1-32
ignoring, 1-52

inlining
file position, 2-117
function, 1-177, 2-34
#pragma inline, 1-319
trade-offs, 2-35

inner loops, 2-51
optimizing, 2-51

input operand
of asm() construct, 1-195

installation location, 1-71
instance names, 1-350
instantiate pragma, 1-351
instantiation, template functions, 1-350
instrprof command-line tool

report format, 2-145
instrprof.exe command-line Reporter Tool,

2-142
instrprof.h header file, 3-25
instrprof_request_flush function, 3-280
instruction memory accesses

validating, 1-48
instrumented profiling

generating an application, 2-140
things that affect, 2-148

_INSTRUMENTED_PROFILING
macro, 1-381

int2x16 data type, 1-266
integer arithmetic

encoding fractional semantics, 2-58
integer data type, 1-410
integer to fractional conversion, disabling,

1-58
interfacing C/C++ and assembly, see mixed

C/C++ assembly programming
intermediate files

listing, 1-11
saving, 1-81

interpolation filter, 4-154
interprocedural analysis (IPA)

about, 2-26
described, 1-108
enabling, 1-49, 1-107, 1-108, 2-19
framework, 1-321
generating usage information, 1-109
identifying variables, 2-27
-ipa compiler switch for, 1-49
loop optimization, 1-308
#pragma core used with, 1-320
used for code optimization, 1-108
using the -ipa compiler switch for, 1-108
when to use, 2-19

interprocedural optimizations
described briefly, 1-107
when to use, 2-19

interrupt_level_interrupt pragmas, 1-307
interrupt_level pragmas, 1-307
interrupt pragma, 1-307
interrupt_reentrant pragma, 1-307
interrupts

handler pragmas, 1-307
profiling, 2-148

interrupt-safe functions, 3-38
intrinsic (built-in) functions, 1-217

Index

I-30 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

intrinsics
compiler, 2-61

invariant base pointers, indexing from,
2-33

I/O
buffer, bypassing, 3-234, 3-249
functions, 3-32

I/O conversion specifiers, 1-137
ioctl function, 3-282
I/O library

linking with complete implementation of
ANSI C standard I/O, 1-43

linking with faster implementation of C
standard I/O, 1-41, 1-58

third-party proprietary, 1-43
iomanip header file, 3-40, 3-41
iomanip.h header file, 3-45
iosfwd header file, 3-40, 3-41
ios header file, 3-40, 3-41
iostream header file, 3-40, 3-41
ipa, 1-6
-ipa (interprocedural analysis) compiler

switch, 1-49, 1-108, 2-19
IPA Solver, 1-6
isalnum (detect alphanumeric character)

function, 3-283
isalpha (detect alphabetic character)

function, 3-284
iscntrl (detect control character) function,

3-285
isdigit (detect decimal digit) function,

3-286
isgraph (detect printable character)

function, 3-287
isinf (test for infinity) function, 3-288
islower (detect lowercase character)

function, 3-290
isnan (test for NAN) function, 3-291
iso646.h (Boolean operator) header file,

3-25

ISO/IEC 14882
2003 C++ standard, 1-4

ISO/IEC 9899
1990 C standard, 1-4
1999 C standard, 1-4

isprint (detect printable character)
function, 3-293

ispunct (detect punctuation character)
function, 3-294

isr-imask-check workaround, 1-308
ISRs

library functions called from, 3-38
isspace (detect whitespace character)

function, 3-295
-I (start include directory) compiler switch,

1-47
-I- (start include directory list) compiler

switch, 1-48
istream header file, 3-40, 3-41
isupper (detect uppercase character)

function, 3-297
isxdigit (detect hexadecimal digit) function,

3-298
iteration interval, 2-88
iterator header file, 3-45

J
-jcs2l compiler switch, 1-49

K
Kaiser window, 4-176
kernel time

profiling, 2-148
keywords

compiler, 1-40, 1-175
extensions, 1-40, 1-175
extensions, not recognized, 1-56
not recognized, 1-56

CrossCore Embedded Studio 1.0 I-31
C/C++ Compiler and Library Manual for Blackfin Processors

Index

keywords (compiler)
see also compiler C/C++ extensions

L
L1 instruction memory, 3-299
_l1_memcpy function, 3-299
labs (long integer absolute value) function,

3-301
_LANGUAGE_C macro, 1-381
language extensions (compiler), see

compiler C/C++ extensions)
language standards compliance, 1-151
LC_COLLATE locale category, 3-413
ldexp (exponential, multiply) functions,

3-302
LDF, 1-5
.ldf files, 1-5

heap debugging library, 2-153
ldf_heap_end constant, 1-423
ldf_heap_length constant, 1-423
ldf_heap_space constant, 1-423
ldiv (long division) function, 3-303
ldiv_t type, 3-303
leaf functions, 1-43, 1-57
legacy code, 1-216
length modifiers, 3-227, 3-241
li1151, 1-414
li2040, 1-426
libcpp*.dlb C++

support libraries, 3-13
libfunc.dlb attributes, 3-12
libGroup attribute values, additional, 3-13
libio*_lite.dlb libraries

selecting with -flags-link
-MD__LIBIO_LITE switch, 3-6

___lib_prog_term label, 3-206
Librarian, 1-6

libraries
C/C++ run-time, 3-2
functions, documented, 3-56
heap debugging, 2-150
source code, working with, 4-2
thread-safe, 3-17

library
attribute convention exceptions, 3-13
calling functions, 3-3
C run-time reference, 3-63 to 3-433
format for DSP run-time, 4-75
linking functions, 3-5
optimization, 1-109

LibraryError, 3-47
library files

producing with elfar, 1-33
limits.h header file, 3-26
line breaks, in string literals, 1-371
line debugging, 1-45
__LINE__ macro, 1-381
line numbers, omitting, 1-70
linkage_name pragma, 1-315, 1-320
Linker, 1-5
linker

and IPA framework, 1-321
and mapping requirements, 1-210
discarding weak symbol definition,

1-334
searching the library for functions and

global variables, 1-50
Linker Description File (.ldf), see .ldf

(linker description file)
linking

a project with multiple definitions, 1-321
library functions, 3-5

linking control pragmas, 1-320
list header file, 3-45
-list-workarounds compiler switch, 1-50

Index

I-32 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

literals
compound, 1-190

little-endian, 1-280
live register, 2-78
llabs function, 3-301
llcountones function, 4-133
lldiv function, 3-303
lldiv_t type, 3-303
-L (library search directory) compiler

switch, 1-49
-l (link library) compiler switch, 1-50, 1-64
locale.h header file, 3-26
localtime (convert calendar time into

broken-down time) function, 3-38,
3-118, 3-261, 3-305

locking function, 3-70
log10 (base 10 logarithm) function, 3-308
log (log base e) functions, 3-307
long compilation

disabling progress message for, 1-59
long division, see ldiv
long double

data type, 1-410
representation, 3-404

long fract, 1-226
long fract data type, 1-220
long identifier, 1-217
long int data type, 1-410
longjmp (second return from setjmp)

function, 3-309
long jump, see longjmp, setjmp functions
_LONG keyword, 1-301
_LONG_LONG macro, 1-381
loop-carried dependency, 2-48, 2-49

avoiding, 2-48
loop counters, hardware, 1-390
loop_count pragma, 1-309
loop invariant, 2-80
loop kernel, 2-79

loop optimization
terminology, 2-78

loop optimization pragmas, 1-308
loop rotation, 2-82

avoiding, 2-49
loops

annotations, 2-125
avoiding array writes, 2-51
avoiding conditional code in, 2-52
avoiding function calls in, 2-53
avoiding non-unit strides, 2-53
control variables, 2-55
cycle count, 2-114
epilog, 2-80
exit test, 2-55
flattening, 2-123
identification, 2-112
identification annotation, 2-113
inner vs. outer, 2-51
invariant, 2-80
iteration count, 2-72
kernel, 2-79
optimization, how it works, 2-77
optimization, terminology, 2-78
optimization concepts, 2-81
optimization pragmas, 1-308, 2-72
parallel processing, 1-313
prolog, 2-79
register usage, 2-115
resource usage, 2-114
rotation, defined, 2-82
rotation by hand, 2-49
shortening, 2-47
trip count, 2-53, 2-118, 2-120
unrolling, 2-48
using 16-bit data types and vector

instructions, 2-54
vectorization, 1-308, 2-73, 2-85

loop trip count, 2-53
loop_unroll pragma, 1-309

CrossCore Embedded Studio 1.0 I-33
C/C++ Compiler and Library Manual for Blackfin Processors

Index

loop vectorization, 2-85
lowercase, see islower, tolower functions
low_of_i2x16 function, 1-266
lvalue

GCC generalized, 1-370
generalized, 1-370

M
m3 register, reserved, 1-76
macro guards, 1-98
macros

defining, 1-35
__HOSTNAME__, 1-85
predefined, 1-378
predefined (preprocessor), 1-378
__RTTI, 1-100
__SYSTEM__, 1-85
__USERNAME__, 1-85
variable argument, 1-182, 1-371
writing, 1-382

_main function
unique for each processor/core, 1-321

malloc (allocate memory) function, 1-335,
3-311

map files, 1-52
-map (generate a memory map) compiler

switch, 1-52
map header file, 3-45
_mark_dtors library function, 1-439
math functions

ceil, 3-139
cosh, 3-147
exp, 3-207
fabs, 3-208
floor, 3-221
fmod, 3-222
ldexp, 3-302
library, 4-19
log, 3-307
modf, 3-321

math functions (continued)
sinh, 3-361
summarized, 4-19
tanh, 3-417

math.h header file, 3-26, 3-58, 4-19
matrix functions, 4-23
matrix.h header file, 4-23
max_i2x16 function, 1-266
maximum performance, 2-65
max (maximum) function, 4-211
mc_data.h header file, 3-28, 3-59
-MD (make and compile) compiler switch,

1-51
mean (mean) function, 4-212
memchr (find first occurrence of character)

function, 3-312
memcmp (compare objects) function,

3-313
memcpy (copy characters from one object

to another) function, 1-84, 3-299,
3-314

memcpy_l1 function, 3-299
Meminit, 1-7
-mem (invoke memory initializer) compiler

switch, 1-52
memmove (copy characters between

overlapping objects) function, 1-84,
3-316

memory
allocating and initializing from heap,

3-263
allocating from heap, 3-273
allocation functions, 1-423, 3-36
allocation routines, 3-38
changing object allocation in, 3-339
controlling size of, 1-424
data placement in, 2-36
initialization, 3-15
initialization, enabling, 1-52
initializing from heap, 3-263

Index

I-34 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

memory (continued)
map, generating, 1-52
maximum performance, 2-36
returning to heap, 3-265
see calloc, free, malloc, memcmp,

memcpy, memset, memmove,
memchar, realloc functions

memory bank
maximum transfer width (bits), 1-365

memory bank pragmas, 1-358
memory header file, 3-45
memory initialization

disabling, 1-59
Memory initializer, 1-7
memory initializer, 1-52

initializing code/data from flash memory,
3-15

not invoking after linking, 1-59
memory map files, 1-52
memory-mapped registers (MMRs)

accessing, 1-112, 1-209, 1-296
-no-assume-vols-are-mmrs compiler

switch, 1-54
memory operations

speeding up, 2-36
memory sections

bsz, 1-422
constdata, 1-422
cplb_code, 1-422
cplb_data, 1-422
data1, 1-422
data storage, 1-422
heap, 1-423
program, 1-422
run-time stack, 1-423
using, 1-422

memset (set range of memory to a
character) function, 3-317

min_i2x16 function, 1-266
minimum code size, compiling for, 2-65

min (minimum) function, 4-214
misaligned_load built-in functions, 1-295
misaligned memory access, 1-305
misaligned_store built-in functions, 1-295
MISRA

compiler switches, 1-92
MISRA C

rule 10.5 (required), 1-162
rule 12.12 (required), 1-163
rule 12.4 (required), 1-162
rule 12.8 (required), 1-162
rule 13.2 (advisory), 1-163
rule 13.7 (required), 1-163
rule 1.5 (required), 1-159
rule 16.10 (required), 1-164
rule 16.2 (required), 1-163
rule 16.4 (required), 1-164
rule 17.1 (required), 1-164
rule 17.2 (required), 1-164
rule 17.3 (required), 1-165
rule 17.6 (required), 1-165
rule 18.2 (required), 1-165
rule 19.15 (advisory), 1-165
rule 19.7 (advisory), 1-165
rule 20.10 (required), 1-166, 1-167
rule 20.11 (required), 1-167
rule 20.3 (required), 1-165
rule 20.4 (required), 1-166
rule 20.7 (required), 1-166
rule 20.8 (required), 1-166
rule 20.9 (required), 1-166
rule 21.1 (required), 1-167
rule 2.4 (advisory), 1-159
rule 5.1 (required), 1-159
rule 5.5 (advisory), 1-159
rule 5.7 (advisory), 1-160
rule 6.3 (advisory), 1-160
rule 6.4 (advisory), 1-160
rule 8.10 (required), 1-161
rule 8.1 (required), 1-160

CrossCore Embedded Studio 1.0 I-35
C/C++ Compiler and Library Manual for Blackfin Processors

Index

MISRA C (continued)
rule 8.2 (required), 1-160
rule 8.5 (required), 1-160
rule 8.8 (required), 1-161
rule 9.1 (required), 1-161
rule clarifications, 1-159

MISRA-C
compiler, 1-154
compiler switches, 1-26, 1-92
rule 1.4 (required), 1-159
rules, 1-159

-misra C compiler switch, 1-92
.misra files, 1-93, 1-160, 1-161
misra_func pragma, 1-336
-misra-linkdir C compiler switch, 1-93
-misra-no-cross-module C compiler switch,

1-93
-misra-no-runtime C compiler switch, 1-93
MISRARepository directory, 1-93
misra_rules_all, 1-355
_MISRA_RULES macro, 1-381
-misra-strict C compiler switch, 1-93
-misra-suppress-advisory C compiler

switch, 1-94
misra_types.h header file, 1-163, 3-28
missing operands, in conditional

expressions, 1-370
mixed C/C++ assembly naming

conventions, 1-403
mixed C/C++ assembly programming

arguments and return, 1-397
asm() constructs, 1-192, 1-195, 1-198,

1-205, 1-206
conventions, 1-385
data storage and type sizes, 1-410
scratch registers, 1-389
stack registers, 1-391
stack usage, 1-393

mixed C/C++ assembly reference, 1-385,
1-402

mktime (convert broken-down time into a
calendar) function, 3-318

-M (make only) compiler switch, 1-51
-MM (make and compile) compiler switch,

1-51
mmr_read16 function, 1-296
mmr_read32 function, 1-296
mmr_write16 function, 1-296
mmr_write32 function, 1-296
modf (modulus, float) functions, 3-321
modulo

variable expansion unroll factor, 2-87
modulo-scheduled instructions, 2-126
modulo-scheduled loops, 2-125
modulo scheduling, 2-88

producing scheduled loops with, 2-87
modulo variable expansion factor, 2-98
-Mo (processor output file) compiler

switch, 1-51
move memory range, see memmove

function
-Mt preprocessor switch, 1-51
mu_compress (µ-law compression)

function, 4-215
mu_expand (µ-law expansion) function,

4-216
mulifx functions, 3-322
mulifx (multiplication of integer by

fixed-point) function, 1-134, 3-322
mult_hh_i2x16 function, 1-266
mult_hl_i2x16 function, 1-266
mult_i2x16 function, 1-266
multi-core

environment, storage management in,
3-110

private data, 3-110
processor identification, 3-75
processor support, 1-320

Index

I-36 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

multi-core applications
locking, 3-70
thread-safe libraries, 3-17

multi-dimensional arrays, 1-185
controlling memory accesses, 2-53

multiline asm() C program constructs,
1-205

-multiline switch, 1-52
multiple

heaps, 1-427
heap support, 1-435
lines, spanning, 1-52
pointer types, declaring, 2-76

multiple-instruction asm construct, 1-205
multiprocessor support, 1-320
multi-statement macros, 1-383
multi-threaded applications, 2-147

flushing PGO data, 2-15
thread-safe libraries, 3-17

mult_lh_i2x16 function, 1-266
mult_ll_i2x16 function, 1-266

N
naming conventions, C and assembly,

1-403
NAN test, 3-291
native arithmetic

data types, 2-21
native fixed-point constants, 1-117
native fixed-point types

fract and accum, 1-192
native fixed-point types fract and accum,

1-192
natural logarithm, 3-307
-never-inline compiler switch, 1-52
never_inline pragma, 1-319
new header file, 3-42
new.h header file, 3-45
newline, in string literals, 1-52, 1-59

new operator
allocating and freeing memory, 1-423
with multiple heaps, 1-435

next argument in variable list, 3-429
n input constraint, 1-207
no_alias pragma, 1-312
-no-alttok (disable tokens) compiler switch,

1-53
-no-anach (disable C++ anachronisms)

compiler switch, 1-99
-no-annotate (disable assembly

annotations) compiler switch, 1-53
-no-annotate-loop-instr compiler switch,

1-53
-no-assume-vols-are-mmrs compiler

switch, 1-54, 1-112, 1-296
-no-auto-attrs compiler switch, 1-54
-no-bss compiler switch, 1-54
-no-circbuf (no circular buffer) compiler

switch, 1-55
-no-const-strings compiler switch, 1-55
-no-cplbs compiler switch, 1-55
-no-def (disable definitions) compiler

switch, 1-55
-no-eh (disable exception handling)

compiler switch, 1-56
-no-expand-symbolic-links compiler

switch, 1-56
-no-expand-windows-shortcuts compiler

switch, 1-56
-no-extra-keywords (not quite -ansi)

compiler switch, 1-56
-no-force-link (do not force stack frame

creation) compiler switch, 1-57
-no-fp-associative compiler switch, 1-57
-no-friend-injection compiler switch, 1-99
-no-full-cpplib C++ mode compiler switch,

1-99
-no-full-io compiler switch, 1-58
-no-fx-contract compiler switch, 1-58

CrossCore Embedded Studio 1.0 I-37
C/C++ Compiler and Library Manual for Blackfin Processors

Index

-no-implicit-include C++ mode compiler
switch, 1-99

no implicit inclusion, of source files, 1-99,
1-352

no_implicit_inclusion pragma, 1-352
NO_INIT qualifier, 1-329
-no-int-to-fract (disable integer to

fractional conversion) compiler
switch, 1-58

-no-jcs2l compiler switch, 1-59
-no-mem (not invoking memory initializer)

compiler switch, 1-59
-no-multiline compiler switch, 1-59
noncache_code section, 1-422
non-constant initializer support (compiler),

1-186
non-default heap, 1-430
non-IEEE-754 floating point format,

1-410
non-literal address type accesses, 1-296
non-reentrant functions, 3-15
non-temporary files location, 1-71
non-terminating applications, 2-147

flushing PGO data, 2-15
non-unit strides, avoiding in loops, 2-53
no_partial_initialization pragma, 1-306
-no-progress-rep-timeout compiler switch,

1-59
noreturn pragma, 1-336
norm (normalization) function, 4-217
-no-rtcheck-arr-bnd (disable runtime

checking of array boundaries), 1-60
-no-rtcheck (disable runtime checking),

1-60
-no-rtcheck-div-zero (disable runtime

checking for division by zero), 1-61
-no-rtcheck-heap (disable runtime

checking of heap operations), 1-61
-no-rtcheck-null-ptr (disable runtime

checking for NULL pointers), 1-61

-no-rtcheck-shift-check (disable runtime
checking of shift values), 1-62

-no-rtcheck-stack (disable runtime
checking for stack overflow), 1-62

-no-rtcheck-unassigned (disable runtime
checking for unassigned variables),
1-62

-no-rtti (disable run-time type
identification) C++ mode compiler
switch, 1-99

-no-sat-associative compiler switch, 1-63
-no-saturation (no faster operations)

compiler switch, 1-63
-no-std-ass (disable standard assertions)

compiler switch, 1-64
-no-std-def (disable standard definitions)

compiler switch, 1-64
-no-std-inc (disable standard include

search) compiler switch, 1-64
-no-std-lib (disable standard library search)

compiler switch, 1-64
__NO_STD_LIB macro, 1-64
-no-std-templates compiler switch, 1-100
-no-threads (disable thread-safe build)

compiler switch, 1-64
not-interrupt-safe library functions, 3-38
no_vectorization pragma, 1-313, 1-336
-no-workaround workaround_id compiler

switch, 1-65, 1-91, 1-112
-no-workaround workaround_id compiler

switch, 1-65
-no-zero-loop-counters compiler switch,

1-65
null pointer, 1-430
null-terminated strings, comparing, 3-374
numbers

hexadecimal floating-point, 1-189
__NUM_CORES__ macro, 1-381
numeric header file, 3-45
num variable, 1-67

Index

I-38 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

O
-Oa (automatic function inlining) compiler

switch, 1-66
object files, 1-10
$OBJS_LIBS_INTERNAL macro, 1-453
-O (enable optimization) compiler switch,

1-65, 1-66, 1-272
once pragma, 1-353
-o (output) compiler switch, 1-69
operand constraints

described, 1-198
symbols, 1-199

operating systems
heaps and memory use, 2-175

operator, 1-371
optimization

asm() C program constructs, 1-206
compiler, 2-4
configurations (or levels), 1-105
controlling code, 1-105
default, 1-106
disabling, 1-66
enabling, 1-49, 1-65, 1-108, 1-272
for code size, 1-66, 2-65
for maximum performance, 2-65
for speed, 2-65
inlining process and, 1-180
inner loops, 2-51
interprocedural, 2-19
library, 1-109
loop optimization pragmas, 1-308
pass on the current function, 1-75
pragmas, 2-67
reporting progress, 1-74, 1-75
struct, 2-23
switches, 1-65, 1-272, 2-2, 2-77
using sliding scale for, 1-67
with interprocedural analysis (IPA),

1-108

optimization levels
automatic inlining, 1-107
debug, 1-106
default, 1-106
interprocedural optimizations, 1-107
PGO, 1-106
procedural optimizations, 1-106

optimize_as_cmd_line pragma, 1-314
optimize_for_space pragma, 1-314
optimize_for_speed pragma, 1-314
optimize_off pragma, 1-314
optimizer

accumulator built-in functions, 1-272
optional precision value, 3-226
ostream header file, 3-40, 3-41, 3-42
outer loops, 2-51
out-of-line copy, 1-180
output operands, 1-206

of asm() construct, 1-195
-overlay-clobbers compiler switch, 1-69
overlay pragma, 1-346
-overlay (program may use overlays)

compiler switch, 1-69
overlays

and the overlay pragma, 1-346
loop counters and DMA, 1-390
-overlay compiler switch, 1-69
registers clobbered by overlay manager,

1-69
-Ov num (optimize for speed versus size)

compiler switch, 1-66

P
-p, 2-139
P1 register, 1-341
packed data structures, 1-304
pack pragma, 1-304, 1-306
padding, of struct, 2-23
pad pragma, 1-304, 1-305
param_never_null pragma, 1-347

CrossCore Embedded Studio 1.0 I-39
C/C++ Compiler and Library Manual for Blackfin Processors

Index

passing
arguments, 1-397
arguments to driver, 1-83
parameters, 1-397

-path-install (installation location)
compiler switch, 1-71

-path-output (non-temporary files
location) compiler switch, 1-71

paths
additional path support, 1-102
Cygdrive directories, 1-104
Cygwin mounted directories, 1-104
Cygwin path support, 1-103
Cygwin symbolic links, 1-103
Windows shortcut support, 1-102

-path-temp (temporary files location)
compiler switch, 1-71

-path-tool (tool location) compiler switch,
1-70

PC-relative jumps in asm statements.,
1-209

peeled iterations, 2-121
peeling amount, 2-121
per-file optimizations, 1-106, 1-107
perror (map error number to error message)

function, 3-324
-p (generate profiling implementation)

compiler switch, 1-70
.pgi files, 2-18
PGO

see also profile-guided optimization
(PGO)

collecting data, 1-106
data sets, 2-18
pgo_ignore pragma, 1-337
session identifier, 1-71
supported in the simulator only, 2-9

pgo, 1-6

.pgo files, 1-71, 1-106, 2-11, 2-13
gathering data with -pguide switch, 1-72
in PGO process, 1-107

pgo_hw.h header file, 3-28
_PGO_HW macro, 1-381
pgo_hw_request_flush function, 3-326
pgo_ignore pragma, 1-337
PGO merger, 1-6
-pgo-session session-id compiler switch,

1-71
used to separate profiles, 2-17

.pgt files, 2-13
-pguide (profile-guided optimization)

compiler switch, 1-72
placement

all data, 1-82
constant data, 1-82
C++ virtual lookup table, 1-82
data, 1-82, 1-440
data used to initialize aggregate autos,

1-82
initialized variable data, 1-82
jump tables used to implement C/C++

switch statements, 1-82
machine instructions, 1-82
static C++ class constructor functions,

1-82
string literals, 1-82
zero-initialized variable data, 1-82

placement support keyword (section),
1-215

PM qualifier, 1-329
pointer

class support keyword (restrict), 1-183
pointer class support keyword (restrict),

1-176, 1-183
pointers

and index styles, 2-34
arithmetic action on, 1-372
incrementing, 2-33

Index

I-40 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

pointers (continued)
resolving aliasing, 2-56
to aligned data, 2-29
used in multiple contexts, 2-32

polar (construct from polar coordinates)
functions, 4-218

polar coordinates, 4-218
polar_fr16 function, 4-219
-P (omit line numbers) compiler switch,

1-70
porting code that uses fract16 and fract32,

1-141
power, see exp, pow, functions
pow (raise to a power) function, 3-328
-pplist (preprocessor listing) compiler

switch, 1-72
-PP (omit line numbers and compile)

compiler switch, 1-70
#pragma alignment_region, 1-302
#pragma alignment_region_end, 1-302
#pragma align num, 1-300, 1-309, 2-28
#pragma all_aligned, 2-75
#pragma alloc, 1-335, 2-68
#pragma always_inline, 1-32, 1-178, 1-318
#pragma bank_maximum_width, 1-365
#pragma bank_memory_kind, 1-363
#pragma bank_read_cycles, 1-363
#pragma bank_write_cycles, 1-364
#pragma can_instantiate, 1-352
#pragma code_bank, 1-359
#pragma const, 1-335, 2-68
#pragma core, 1-320
#pragma data_bank, 1-359
#pragma default_code_bank, 1-362
#pragma default_data_bank, 1-362
#pragma default_section, 1-327, 1-440
#pragma default_stack_bank, 1-362
#pragma diag, 1-354, 2-8
#pragma diag(annotations), 1-356
#pragma diag(errors), 1-356

#pragma diag(pop), 1-356
#pragma diag(push), 1-356
#pragma diag(remarks), 1-356
#pragma diag(warnings), 1-356
#pragma different_banks, 1-309, 2-76
#pragma do_not_instantiate instance,

1-351
#pragma file_attr, 1-330
#pragma generate_exceptions_tables,

1-365
#pragma inline, 1-178, 1-179, 1-319,

1-336
#pragma instantiate, 1-351, 1-441
#pragma interrupt_level, 1-307
#pragma linkage_name, 1-315, 1-316,

1-320
#pragma loop_count, 1-309, 2-72
#pragma loop_unroll N, 1-309
#pragma misra_func, 1-336
#pragma never_inline, 1-319
#pragma no_alias, 1-312, 2-76
#pragma no_implicit_inclusion, 1-352
#pragma no_partial_initialization, 1-306
#pragma noreturn, 1-336
#pragma no_vectorization, 1-313, 1-336,

2-73
pragma no_vectorization, 1-336
#pragma once, 1-353
#pragma optimize_as_cmd_line, 1-314,

2-72
#pragma optimize_for_space, 1-314, 2-72
#pragma optimize_for_speed, 1-314, 2-72
#pragma optimize_off, 1-314
#pragma optimize_off|, 2-72
#pragma overlay, 1-346
#pragma pack (alignopt), 1-304
#pragma pack(n) directive, 2-24
#pragma pad (alignopt), 1-305
#pragma param_never_null, 1-347
#pragma pgo_ignore, 1-337

CrossCore Embedded Studio 1.0 I-41
C/C++ Compiler and Library Manual for Blackfin Processors

Index

#pragma pure, 1-337, 2-69
#pragma regs_clobbered, 1-338, 2-70
#pragma regs_clobbered_call, 1-342
#pragma result_alignment, 1-346, 2-69
#pragma retain_name, 1-325
#pragma rtcheck(off), 1-358
#pragma rtcheck(on), 1-358
pragmas

about, 1-297
alignment_region, 1-302
alignment_region_end, 1-302
align num, 1-300, 1-309
all_aligned, 2-75
alloc, 1-335, 2-68
always_inline, 1-178, 1-318
bank_maximum_width, 1-365
bank_memory_kind, 1-363
bank_read_cycles, 1-363
bank_write_cycles, 1-364
can_instantiate, 1-352
code_bank, 1-359
const, 1-335, 2-68
core, 1-320
data alignment, 1-299
data_bank, 1-359
declaration lists, 1-298
default_code_bank, 1-362
default_data_bank, 1-362
default_section, 1-327, 1-440
default_stack_bank, 1-362
described, 1-297
diag, 1-354
diagnostic control, 1-354
different_banks, 1-309, 2-76
do_not_instantiate instance, 1-351
exception, 1-307
exceptions tables, 1-365
file_attr, 1-330
fixed-point arithmetic, 1-315
function side-effect, 1-334

pragmas (continued)
FX_CONTRACT, 1-125, 1-315
FX_ROUNDING_MODE, 1-139,

1-316
general optimization, 1-313
generate_exceptions_tables, 1-365
header file control, 1-352
inline, 1-319, 1-336
inline control, 1-318
inlining, 1-178, 1-179
instantiate, 1-351
interrupt, 1-307
interrupt_level_interrupt, 1-307
interrupt_reentrant, 1-307
linkage_name, 1-315, 1-316, 1-320
linking, 1-320
linking control, 1-320
loop_count, 2-72
loop_count(min, max, modulo), 1-309
loop optimization, 1-308, 2-72
loop_unroll N, 1-309
maximum_width, 1-365
memory bank, 1-358
memory_kind, 1-363
misra_func, 1-336
never_inline, 1-319
nmi, 1-307
no_alias, 1-312, 2-76
no_implicit_inclusion, 1-352
noreturn, 1-336
no_vectorization, 1-313, 2-73
once, 1-353
optimize_as_cmd_line, 1-314, 1-356,

2-72
optimize_for_space, 1-314, 2-72
optimize_for_speed, 1-314, 2-72
optimize_off, 1-314, 2-72
overlay, 1-346
pack (alignopt), 1-304
pad (alignopt), 1-305

Index

I-42 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

pragmas (continued)
param_never_null, 1-347
pgo_ignore, 1-337
pure, 1-337, 2-69
read_cycles, 1-363
regs_clobbered, 1-338, 2-70
regs_clobbered_call, 1-342
regs_clobbered string, 1-338
result_alignment, 1-346, 2-69
retain_name, 1-325
section, 1-327, 1-440
stack_bank, 1-360
STDC FX_ACCUM_OVERFLOW,

1-317
STDC FX_FRACT_OVERFLOW,

1-317
STDC FX_FULL_PRECISION, 1-317
STDC STDC FX_FULL_PRECISION,

1-317
suppress_null_check, 1-348
symbolic_ref, 1-331
system_header, 1-353
template instantiation, 1-350
used for optimization, 2-67
vector_for, 1-313, 2-73
weak_entry, 1-334
write_cycles, 1-364

#pragma section, 1-216, 1-327, 1-440
#pragma stack_bank, 1-360
#pragma suppress_null_check, 1-348
#pragma symbolic_ref, 1-331
#pragma system_header, 1-353
#pragma vector_for, 1-313, 2-73
#pragma weak_entry, 1-334
predefined macros

__ADI_COMPILER, 1-378
_ADI_FX_LIBIO, 1-378
_ADI_THREADS, 1-378
__ADSPBF506F_FAMILY__, 1-379
__ADSPBF50x__, 1-378

predefined macros (continued)
__ADSPBF518_FAMILY__, 1-379
__ADSPBF51x__, 1-378
__ADSPBF526_FAMILY__, 1-379
__ADSPBF527_FAMILY__, 1-379
__ADSPBF52x__, 1-378
__ADSPBF52xLP__, 1-378
__ADSPBF533_FAMILY__, 1-379
__ADSPBF537_FAMILY__, 1-379
__ADSPBF538_FAMILY__, 1-379
__ADSPBF53x__, 1-378
__ADSPBF548_FAMILY__, 1-380
__ADSPBF548M_FAMILY__, 1-380
__ADSPBF54x__, 1-379
__ADSPBF56x__, 1-379
__ADSPBF5xx__, 1-379
__ADSPBF609_FAMILY__, 1-380
__ADSPBF60x__, 1-379
__ADSPBF6xx__, 1-379
__ADSPBLACKFIN__, 1-379
__ADSPLPBLACKFIN__, 1-379
__ANALOG_EXTENSIONS__, 1-380
__BASE_FILE__, 1-380
__CCESVERSION__, 1-380
__cplusplus, 1-380
__DATE__, 1-380
__DOUBLES_ARE_FLOATS__,

1-380
__ECC__, 1-380
__EDG__, 1-380
__EDG_VERSION__, 1-380
__EXCEPTIONS, 1-381
__FILE__, 1-381
__FIXED_POINT_ALLOWED macro,

1-381
_HEAP_DEBUG, 1-381
__IDENT__, 1-381
_INSTRUMENTED_PROFILING,

1-381
_LANGUAGE_C, 1-381

CrossCore Embedded Studio 1.0 I-43
C/C++ Compiler and Library Manual for Blackfin Processors

Index

predefined macros (continued)
__LINE__, 1-381
_LONG_LONG, 1-381
_MISRA_RULES, 1-93, 1-381
__NUM_CORES__, 1-381
_PGO_HW, 1-381
__RTTI, 1-381
__SIGNED_CHARS__, 1-382
__SILICON_REVISION__, 1-382
__STDC__, 1-382
__STDC_VERSION__, 1-382
__TIME__, 1-382
__VERSION__, 1-382
__VERSIONNUM__, 1-382
__WORKAROUNDS_ENABLED,

1-382
prefersMem attribute, 1-449, 1-450
prefersMemNum attribute, 1-449
prefetch (data cache prefetch) built-in

function, 1-284
prefetchmodup built-in function, 1-285
Prelinker, 1-6
prelinker, 1-325, 1-444, 2-18

MISRA-C compiler, 1-161
reinvoking compiler to perform new

optimizations, 1-108
preprocessing, a program, 1-377
preprocessor

generating a warning, 1-377
listing a file, 1-72
macros, 1-378
writing macros for, 1-382

preserved registers, 1-387
printable characters, detecting, 3-287,

3-293
printable character test, see isprint function
PRINT_CYCLES(STRING,T) macro,

4-65
printf (print formatted output) function,

3-329

problematic instance, 2-95
procedural optimizations, 1-106
procedure statistics, 2-110
processing loops, 16-bit data types in, 2-66
processor

clock rate, 4-71
counts, measuring, 4-64
target, 1-73
time, 3-142

-proc (target processor) compiler switch,
1-73

-prof-hw compiler switch, 1-74
profile-guided optimization

code coverage report, 2-150
code coverage reports

profile-guided optimization, 2-149
flushing data, 2-15
multiple source use, 2-17
restrictions for hardware, 2-17
simulators vs. hardware, 2-9

profile-guided optimization (PGO)
about, 1-106
adding instrumentation, 1-72
generating no function profile, 1-337
multiple PGO data sets, 2-18
multiple source uses, 2-17
run-time behavior, 2-9
session identifier, 1-71
specifying PGO session identifier, 1-71
usage example, 2-43
using the -Ov num switch with, 1-68,

2-18, 2-65
when not used, 1-68
when to use, 2-9, 2-18
with hardware, 2-12
with simulator, 2-10

profile instrumentation, and profile-guided
optimization (PGO), 1-72

Index

I-44 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

profiling
Interrupts, 2-148
kernel time, 2-148
things that affect, 2-148
with instrumented code, 2-139

profiling data
flushing, 2-147
storage, 2-146

profiling implementation, generating
information on, 1-70

profiling report
contents of, 2-142

program control functions
calloc, 3-138
malloc, 3-311
realloc, 3-339

program termination, 3-206
-progress-rep-func compiler switch, 1-74
-progress-rep-opt compiler switch, 1-74
progress reporting, 1-74, 1-75
-progress-rep-timeout compiler switch,

1-75
-progress-rep-timeout-secs compiler switch,

1-75
public global variable, 1-331
punctuation character, detecting, 3-294
pure pragma, 1-337
putc function, 3-331
putchar function, 3-332
puts function, 3-334

Q
qsort (quicksort) function, 3-335
_QUAD keyword, 1-301
QUALIFIER keywords, for section

pragma, 1-329
queue header file, 3-45

R
raise (force a signal) function, 3-337
rand function, 3-38
random number generator, see rand, srand

functions
rand (random number generator) function,

3-338
-R- (disable source path) compiler switch,

1-76
read/write registers, 1-281
realloc (change memory allocation)

function, 3-339
reciprocal square root (rsqrt) function,

4-235
rectangular window, 4-178
reductions, 2-49
ref-code characters, 1-91
register

information, disabling propagation of,
1-69, 1-346

registers
accumulator, 1-274
call-preserved, 1-389
clobbered, 1-338
clobbered by overlay manager, 1-69
dedicated, 1-387
for asm() constructs, 1-198
preserved, 1-387
reserved, 1-76
scratch, 1-389
stack, 1-391
user-reserved, 1-341

regs_clobbered_call pragma, 1-342
regs_clobbered pragma, 1-338, 1-341

restrictions, 1-339
regs_clobbered string, 1-339

CrossCore Embedded Studio 1.0 I-45
C/C++ Compiler and Library Manual for Blackfin Processors

Index

remarks
enabling as a class, 2-6
promoting to errors, 2-6
promoting to warnings, 2-6
using in diagnostics, 2-6
via diagnostic control pragmas, 1-354

remove function, 3-341
rename function, 3-342
Reporter Tool

call stack, 2-161
code coverage, 2-149
debugging heaps, 2-151
invoking, 2-141
report format, 2-144
using instrprof.exe command-line, 2-142

-reserve (reserve register) compiler switch,
1-76

restrict
keyword, 2-57
operator keyword, 1-183
qualifier, 2-56

restricted pointers, 2-56
restrict keyword, 1-176
result_alignment pragma, 1-346
.RETAIN_NAME directive, 1-406
retain_name pragma, 1-325
return

long integer absolute value, 3-301
values, 1-399
value transfer, 1-397

rewind function, 3-344
rfft2d (n x n point 2-D real input fft)

function, 4-229
rfftf (fast N-point real input FFT), 4-225
rfft (n point radix 2 real input FFT)

function, 4-221
rms (root mean square) function, see root

mean square (rms) function

RND_MOD bit, 1-223, 1-252, 1-316
built-in functions, 1-262
changing, 1-262

root mean square (rms) function, 4-233
roundfx (round fixed-point value)

function, 1-135, 3-346
rounding, 1-139

behavior, 1-128
biased round-to-nearest, 1-139
setting mode, 1-139
unbiased round-to-nearest, 1-139

-R (search for source files) compiler switch,
1-75

rsqrt (reciprocal square root) function,
4-235

-rtcheck-arr-bnd (runtime checking of
array boundaries), 1-77

-rtcheck-div-zero (runtime checking for
division by zero), 1-77

-rtcheck-heap (runtime checking of heap
operations), 1-78

-rtcheck-null-ptr (runtime checking for
NULL pointers), 1-78

-rtcheck (runtime checking), 1-76
-rtcheck-shift-check (runtime checking of

shift values), 1-79
-rtcheck-stack (runtime checking for stack

overflow), 1-79
-rtcheck-unassigned (runtime checking for

unassigned variables), 1-80
-rtti (enable run-time type identification)

C++ mode compiler switch, 1-100
__RTTI macro, 1-100, 1-381
run-time

checking, 1-167
disabling type identification, 1-99
enabling type identification, 1-100
environment, 1-385
environment, see also mixed C/C++

assembly programming

Index

I-46 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

run-time (continued)
heap storage, 1-423
label, 3-352
libraries, 3-9
library attributes, list of, 3-9
stack, 1-393, 1-423

Run-time checking, 1-167
Command line switches, 1-169
Enabling, 1-168
Limitations, 1-173
Pragmas, 1-170
Response upon detection, 1-172
Supported checks, 1-171

Runtime checking
-no-rtcheck-arr-bnd switch, 1-60
-no-rtcheck-div-zero switch, 1-61
-no-rtcheck-heap switch, 1-61
-no-rtcheck-null-ptr switch, 1-61
-no-rtcheck-shift-check switch, 1-62
-no-rtcheck-stack switch, 1-62
-no-rtcheck switch, 1-60
-no-rtcheck-unassigned switch, 1-62
pragmas, 1-357, 1-358
-rtcheck-arr-bnd switch, 1-77
-rtcheck-div-zero switch, 1-77
-rtcheck-heap switch, 1-78
-rtcheck-null-ptr switch, 1-78
-rtcheck-shift-check switch, 1-79
-rtcheck-stack switch, 1-79
-rtcheck switch, 1-76
-rtcheck-unassigned switch, 1-80

RunTimeError, 3-47
RUNTIME_INIT qualifier, 1-329
run-time type identification

disabling, 1-99
enabling, 1-100

S
_Sat, 1-116
sat, 1-116
-sat-associative compiler switch, 1-81
saturation

disabling associativity, 1-63
enabling associativity, 1-81

-save-temps (save intermediate files)
compiler switch, 1-81

scalar variables, 2-48
scanf function, 3-348
scheduling, of program instructions, 2-79
scratch registers, 1-389

clobbered over the function call, 1-346
SDRAM

activating, 1-81
-sdram (SDRAM is active) compiler switch,

1-81
search

character string, see strchr, strrchr
functions

memory, character, see memchar
function

path for include files, 1-47
path for library files, 1-49

section
elimination, 2-65
qualifiers, 1-327

-section compiler switch, 1-82
.SECTION directive, 1-422
-section id (data placement) compiler

switch, 1-82
controlling default names with, 1-216

section identifiers
compiler-controlled, 1-82

section() keyword, 1-176, 1-215
section pragma, 1-299, 1-327
sections

placing symbols in, 1-327

CrossCore Embedded Studio 1.0 I-47
C/C++ Compiler and Library Manual for Blackfin Processors

Index

SECTKIND keywords, for section pragma,
1-328

SECTSTRING double-quoted string, for
section pragma, 1-328

segment, see placement support keyword
(section)

segment legacy keyword, 1-216
setbuf function, 3-350
set header file, 3-45
setjmp (define run-time label) function,

3-352
setjmp.h header file, 3-28, 3-59
set jump, see longjmp, setjmp functions
setvbuf function, 3-354
short, storage format, 1-410
short-form keywords

disabling, 1-56
enabling, 1-40

shortfract header file, 3-43
short jumps to long jumps conversion

disabling, 1-59
enabling, 1-49
preventing using register P1 for, 1-59
using the P1 register, 1-49

-show (display command line) compiler
switch, 1-83

signal (define signal handling) function,
3-356

signal functions
raise, 3-337
signal, 3-356

signal.h header file, 3-29, 3-59
signals

handling, 3-29
processing transformations, 4-9

SIGNBITS instruction, 1-253
-signed-bitfield (make plain bit-fields

signed) compiler switch, 1-83
-signed-char (make char signed) compiler

switch, 1-83

__SIGNED_CHARS__ macro, 1-83,
1-87, 1-382

silicon revision
enabling, 1-84, 1-110
specifying specific hardware revision,

1-110
__SILICON_REVISION__ macro,

1-111, 1-382
silicon revision management, 1-109
simulator, used with PGO, 2-9
sind function, 3-358
sinf function, 3-358
sin_fr16 function, 3-358
single case range, 1-372
sinh (sine hyperbolic) functions, 3-361
sinking process, 2-80
sin (sine) function, 3-358
-si-revision (silicon revision) compiler

switch, 1-84, 1-110
sizeof operator, 1-372
size qualifiers, additional (third-party),

3-34
sliding scale, between 0 and 100, 1-67
slotID pointer, 3-110, 3-111
small applications, producing, 2-64
snprintf function, 3-362
soft constraints, 1-450
software pipelining, 2-82, 2-85
source code, DSP run-time library, 4-2
source directory, adding, 1-75
source file implicit inclusion, preventing,

1-99, 1-352
sourcefile parameter, 1-29
space allocator, 1-281
space_unused function, 1-427, 3-364
specific diagnostics

modifying severity of, 1-354
modifying with directives, 1-357

spill, to the stack, 2-79
sprintf function, 3-365

Index

I-48 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

sqrtd function, 3-367
sqrtf function, 3-367
sqrt_fr16 function, 3-367
sqrt (square root) function, 3-367
square root, 3-367
srand (random number seed) function,

3-38, 3-369
sscanf function, 3-370
-S (stop after compilation) compiler switch,

1-80
sstream header file, 3-40, 3-42
-s (strip debug information) compiler

switch, 1-80
ssync function, 1-282
stack

managing, 1-393
overflow detection, 2-175
pointer, 1-391, 1-393
pointer dedicated register, 1-388
registers, 1-391
registers listed, 1-391

stack_bank pragma, 1-360
stack frame

creating, 1-43
disabling creation of, 1-57

stack header file, 3-45
stack overflows

debugging, 2-177
detection, 2-176

stack space, allocated to function
arguments, 1-397

stage count (SC), 2-87, 2-93
standard

assertions, disabling, 1-64
assertions, enabling, 1-30
include search, disabling, 1-64
library search, disabling, 1-64
library search, enabling, 1-49
macro definitions, disabling, 1-64

standard C library, 3-43

standard header files
heap_debug.h, 3-23

standard library functions
abs, 3-65, 3-148
absfx, 3-66
acos, 3-68
adi_core_1_disable, 3-73
adi_core_1_enable, 3-73
adi_core_b_enable, 3-73
adi_core_id, 3-75
asin, 3-120
atan2, 3-124
atexit, 3-126
atoi, 3-130
atol, 3-131
atoll, 3-132
bitsfx, 3-133
bsearch, 3-135
calloc, 3-138
countlsfx, 3-148
div, 3-154
divifx, 3-155
exit, 3-206
free, 3-236
frexp, 3-239
fxbits, 3-251
fxdivi, 3-253
heap_calloc, 3-263
heap_free, 3-265, 3-267
heap_install, 3-269
heap_lookup, 3-271
heap_malloc, 3-273
heap_realloc, 3-275
heap_space_unused, 3-277
idivfx, 3-278
isalnum, 3-283
isalpha, 3-284
iscntrl, 3-285
isdigit, 3-286
islower, 3-290

CrossCore Embedded Studio 1.0 I-49
C/C++ Compiler and Library Manual for Blackfin Processors

Index

standard library functions (continued)
isupper, 3-297
labs, 3-301
ldiv, 3-303
log10, 3-308
longjmp, 3-309
malloc, 3-311
memcpy, 3-314
memmove, 3-316
mulifx, 3-322
pow, 3-328
qsort, 3-335
rand, 3-338
realloc, 3-339
roundfx, 3-346
setjmp, 3-352
space_unused, 3-364
sqrt, 3-367
srand, 3-369
strbrk, 3-387
strcmp, 3-374
strcoll, 3-375
strcpy, 3-376
strrchr, 3-388
strstr, 3-390
strtok, 3-400
strtol, 3-402
strtoll, 3-407
strtoul, 3-409
strtoull, 3-411
strxfrm, 3-413
tan, 3-415
va_arg macro, 3-429

standard math functions, 3-5
standards

ISO/IEC 14882
2003 C++ standard, 1-4

ISO/IEC 9899
1990 C standard, 1-4
1999 C standard, 1-4

START_CYCLE_COUNT macro, 4-64
statement expression

definition, 1-367
static scaling, 4-99, 4-187, 4-223
statistical

functions, 4-37
stats.h header file, 4-37
status argument, 3-206
stdard.h header file, 3-29
stdarg.h header file, 3-59, 3-60, 3-429
stdbool.h header file, 3-29
STDC FX_ACCUM_OVERFLOW

pragma, 1-317
STDC FX_FRACT_OVERFLOW

pragma, 1-317
__STDC__ macro, 1-382
STDC STDC FX_FULL_PRECISION

pragma, 1-317
__STDC_VERSION__ macro, 1-382
stddef.h header file, 3-29
stderr diagnostics

heap debugging library, 2-159
stdexcept header file, 3-43
stdfix.h header file, 3-29
stdint.h header file, 3-30
stdio.h header file, 3-32, 3-46, 3-60
stdlib header file, 3-44
stdlib.h header file, 3-36, 3-61
-std-templates C++ mode compiler switch,

1-100
sti function, 1-282
STI memory area, 1-440
STI qualifier, 1-328
sti section identifier, 1-82, 1-327
stop, see atexit, exit functions
STOP_CYCLE_COUNT macro, 4-64
storage formats, short, 1-410
strcat (concatenate strings) function, 3-372
strchr (find first occurrence of character in

string) function, 3-373

Index

I-50 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

strcmp (compare strings) function, 3-374
strcoll (compare strings) function, 3-375
strcpy (copy from one string to another)

function, 3-376
strcspn (compare string span) function,

3-377
streambuf header file, 3-40, 3-42
strerror (get string containing error

message) function, 3-378
strftime (format a broken-down time)

function, 3-379
conversion specifiers, 3-379

strides
loop control variables to be avoided, 2-53

string
containing error message, 3-378
converting to double, 3-391
converting to fixed-point, 3-397
converting to float, 3-394
converting to long double, 3-404
converting to long integer, 3-402
converting to long long integer, 3-407
converting to tokens, 3-400
converting to unsigned long integer,

3-409
converting to unsigned long long integer,

3-411
copying characters from one to another,

3-386
finding character match in, 3-387
length, 3-383
literals with line breaks, 1-371
transforming with LC_COLLATE,

3-413
string conversion, see atof, atoi, atol, strtok,

strtol, strxfrm functions
string functions

memchar, 3-312
memcmp, 3-313
memcpy, 3-314

string functions (continued)
memmove, 3-316
memset, 3-317
strcat, 3-372
strchr, 3-373
strcoll, 3-375
strcpy, 3-376
strcspn, 3-377
strerror, 3-378
strlen, 3-383
strncat, 3-384
strncmp, 3-385
strncpy, 3-386
strpbrk, 3-387
strrchr, 3-388, 3-389
strspn, 3-389
strstr, 3-390
strtok, 3-400
strxfrm, 3-413

string header file, 3-41, 3-42
string.h header file, 3-36, 3-61
string literals

marked as const-qualify strings, 1-35
multiline, 1-52
no-multiline, 1-59
not making const-qualified, 1-55

strings
comparing, 3-374
concatenating, 3-372

strings section identifier, 1-82
string-to-numeric conversions, 3-36
strlen (string length) function, 3-383
strncat (concatenate characters from one

string to another) function, 3-384
strncmp (compare characters in strings)

function, 3-385
strncpy (copy characters from one string to

another) function, 3-386
strong entry, 1-36

CrossCore Embedded Studio 1.0 I-51
C/C++ Compiler and Library Manual for Blackfin Processors

Index

strpbrk (find character match in two
strings) function, 3-387

strrchr (find last occurrence of character in
string) function, 3-388

strspn (length of segment of characters in
both strings) function, 3-389

strstream header file, 3-41, 3-42
strstr (find string within string) function,

3-390
strtod (convert string to double) function,

3-391
strtof (convert string to float) function,

3-394
strtofxfx (convert string to fixed-point)

function, 1-137, 3-397
strtok (convert string to tokens) function,

3-38, 3-400
strtol (convert string to long integer)

function, 3-402
strtold (convert string to long double)

function, 3-404
strtoll (convert string to long long integer)

function, 3-407
strtoul (convert string to unsigned long

integer) function, 3-409
strtoull (convert string to unsigned long

long integer) function, 3-411
struct

assignment, 1-84
copying, 1-84
optimizing, 2-23
packed, 1-305

-structs-do-not-overlap compiler switch,
1-84

struct tm, 3-36
structures

initializing, 1-187
strxfrm (transform string using

LC_COLLATE) function, 3-413

sub_i2x16 function, 1-266
sum_i2x16 function, 1-266
suppress_null_check pragma, 1-348
switches

-Wannotations (enable code generation
annotations), 1-89

SWITCH qualifier, 1-328
switch section identifier, 1-82
symbolic links

expanding, 1-40
not recognizing, 1-56

symbolic_ref pragma, 1-331
symbols

global, 1-321
placing in sections, 1-327

synchronization
functions, 1-282

-syntax-only (only check syntax) compiler
switch, 1-85

-sysdef (system definitions) compiler
switch, 1-85

sysreg_read64 function, 1-281
sysreg_read function, 1-281
sysreg_write64 function, 1-281
sysreg_write function, 1-281
system built-in functions, 1-281

idle mode, 1-282
IMASK, 1-281
interrupts, 1-282
read/write registers, 1-281
stack space allocation, 1-281
synchronization, 1-282
system register values, 1-281

system_header pragma, 1-353
system heap, 1-424
__SYSTEM__ macro, 1-85
system macro definitions, 1-85

Index

I-52 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

system registers
accessing, 1-209
manipulating, 2-61
values, 1-281

system services library
setting CLOCKS_PER_SECOND

macro, 3-37

T
tand function, 3-415
tanf function, 3-415
tan_fr16 function, 3-415
tangent function, 3-415
tanh (hyperbolic tangent) functions, 3-417
tan (tangent) function, 3-415
target processor, specifying, 1-73
technical support, xlvi
template

asm() construct, 1-195
class, 1-441
classes, 1-350
function, 1-441
instantiation, 1-441
instantiation pragmas, 1-350
support in C++, 1-441
un-instantiated, 1-445

Template instantiation, 1-6
template instantiation, 1-442
temporary file, 3-419
temporary file name, 3-422
temporary files location, 1-71
terminate, see atexit, exit functions
termination functions, 3-36
terminology

loop optimization, 2-78
TESTSET instruction, A-2
third-party I/O library, 1-43, 3-32, 3-34
thread-safe

code, 1-86
functions, 3-38

thread-safe build
disabling, 1-64

thread-safe libraries, 3-17
using, 3-17

-threads (enable thread-safe build) compiler
switch, 1-85

time
information, 3-36
zones, 3-36

time (calendar time) function, 3-418
time.h header file, 3-36, 3-62, 4-69, 4-71,

4-73
__TIME__ macro, 1-382
time_t data type, 3-37, 3-418
-time (tell time) compiler switch, 1-86
-T (linker description file) compiler switch,

1-85
tokens, string convert, see strtok function
tolower (convert from uppercase to

lowercase) function, 3-425
toupper (convert characters to uppercase)

function, 3-426
transformational functions, 4-9, 4-12
triangle window, 4-180
trip

count, 2-87
maximum, 2-88
minimum, 2-88
modulo, 2-88

trip count, 2-100, 2-118
loop, 2-120
minimum, 2-72

truncation, 1-139
twiddle tables

initializing, 4-9
twidfft2d_fr16 function, 4-242
twidfft2d function, 4-242
twidfftf_fr16 function, 4-239
twidfftrad2 function, 4-236, 4-239
type cast, 1-372

CrossCore Embedded Studio 1.0 I-53
C/C++ Compiler and Library Manual for Blackfin Processors

Index

typeof construct, 1-368
typeof reference support keyword, 1-368

U
unbiased round-to-nearest rounding, 1-139
unclobbered registers, 1-340
ungetc function, 3-427
uninitialized global variable definitions,

1-36
unnamed struct/union fields, 1-376
-unsigned-bitfield (make plain bit-fields

unsigned) compiler switch, 1-86
-unsigned-char (make char unsigned)

compiler switch, 1-87
uppercase, see isupper, toupper functions
uppercase characters, detecting, 3-297
USE_L1DATA_HEAP macro, 1-426
USE_L2_HEAP macro, 1-426
UserError, 3-47
user identifier, 1-428
__USERNAME__ macro, 1-85
user-reserved registers, 1-341
USE_SCRATCHPAD_HEAP macro,

1-426
USE_SDRAM_HEAP macro, 1-426
utility header file, 3-45
-U (undefine macro) compiler switch, 1-36,

1-86

V
va_arg (get next argument in variable list)

function, 1-398, 3-429
va_end (reset variable list pointer) function,

3-432
validating

data memory accesses, 1-36
instruction memory accesses, 1-48

VarData binary object, 1-448

variable
argument macros, 1-182

variable, statically initialized, 2-27
variable argument list

details of argument passing, 1-398
printing, 3-434
printing to stdout, 3-436

variable argument macros, 1-371
variable expansion and MVE unroll, 2-95
variable-length argument list

finishing, 3-432
initializing, 3-433

variable-length arrays, 1-184, 1-370
variable name length, 1-217
var (variance) functions, 4-245
va_start (set variable list pointer) function,

1-398, 3-433
vector_for pragma, 1-308, 1-313
vector functions, 4-44
vector header file, 3-45
vector.h header file, 4-44
vector instructions, 2-54, 2-66

with 16-bit data types, 2-54
vectorization

annotations, 2-124
avoiding, 2-73
defined, 2-120
factor, 2-120
loop, 2-73, 2-85
transformation, 2-74

vectorized operations, 1-266
-verbose (display command line) compiler

switch, 1-88
-version (display version) compiler switch,

1-88
version information, displaying, 1-44
__VERSION__ macro, 1-382
__VERSIONNUM__ macro, 1-382
vfprintf function, 3-434
video.h header file, 1-288

Index

I-54 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

video operations
accumulator extract with addition, 1-293
align operations, 1-289
built-in functions, 1-288
dual 16-bit add or clip, 1-291
misaligned loads, 1-290
packing, 1-289
quad 8-bit add subtract, 1-290
quad 8-bit average, 1-291
subtract absolute accumulate, 1-293
unpacking, 1-290

virtual function lookup tables, 1-82, 1-217
Viterbi decoder, 1-274
Viterbi functions

described, 1-274
void pointer, 1-279
volatile

about, 2-20
and asm() C program constructs, 1-206
declarations, 2-5
register set, 1-342

volatile, possible MMRs, 1-112
volatile memory, potential MMRs, 1-54
volatile register set, 1-343
von Hann window, 4-182
vprintf function, 3-436
vsnprintf function, 3-438
vsprintf function, 3-440
VTABLE qualifier, 1-328
vtable section identifier, 1-82
vtbl section identifier, 1-82, 1-217
-v (version & verbose) compiler switch,

1-87

W
-warn-component compiler switch, 1-90
warning messages

as type of diagnostic, 2-6
described, 2-6
disabling, 2-6

warning messages (continued)
promoting to errors, 2-6
via diagnostic control pragmas, 1-354
#warning directive, 1-377

-Warn-protos (warn if incomplete
prototype) compiler switch, 1-90

wchar_t data type, 3-33
-w (disable all warnings) compiler switch,

1-90, 2-6
weak entry, 1-36
weak_entry pragma, 1-334
-Werror-limit (maximum compiler errors)

compiler switch, 1-89
-Werror-warnings (treat warnings as errors)

compiler switch, 1-89
white space character test, see isspace

function
window

cosine, 4-172
functions, 4-60
generators, 4-60

window.h header file, 4-60
Windows shortcuts, 1-102

expanding, 1-40
not recognizing, 1-56

-Wmis_suppress rule_number C compiler
switch, 1-94

-Wmis_warn rule_number C compiler
switch, 1-94

-W{...} number (override error message)
compiler switch, 1-88, 2-6

word alignment
data buffer, 2-28

_WORD keyword, 1-301
workarounds

anomaly management, 1-109, 1-111
enabling, 1-111
interaction between -si-revision,

-workaround and -no-workaround,
1-113

CrossCore Embedded Studio 1.0 I-55
C/C++ Compiler and Library Manual for Blackfin Processors

Index

workarounds (continued)
isr-imask-check, 1-308
list of valid workarounds, 1-111
not applied in asm() constructs, 1-110,

1-193
use of the -si-revision switch, 1-110
use of the -workaround switch, 1-111
using the -no-workaround switch, 1-112

__WORKAROUNDS_ENABLED
macro, 1-111, 1-113, 1-382

-workaround workaround_id compiler
switch, 1-91, 1-111

-W (override error message) compiler
switch, 2-6

-Wremarks (enable diagnostic remarks)
compiler switch, 1-89, 2-6

-Wremarks (enable diagnostic warnings)
compiler switch, 1-89

writing
array elements, 2-51
preprocessor macros, 1-382

-Wterse (enable terse warnings) compiler
switch, 1-90

X
.xml files, 1-52
-xref (cross-reference list) compiler switch,

1-91

Z
zero_cross (count zero crossing) function,

4-247
zero crossings, 4-247
ZeroData binary object, 1-448
ZERO_INIT qualifier, 1-329, 1-448
zero-length arrays, 1-370
-zero-loop-counter compiler switch, 1-92
µ-law compression function, 4-215
µ-law expansion function, 4-216

Index

I-56 CrossCore Embedded Studio 1.0
C/C++ Compiler and Library Manual for Blackfin Processors

	C/C++ Compiler and Library Manual
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	EngineerZone

	Notation Conventions

	1 Compiler
	C/C++ Compiler Overview
	Compiler Components

	Compiler Command-Line Interface
	Running the Compiler
	C/C++ Compiler Command-Line Switches
	C/C++ Mode Selection Switch Descriptions
	-c89
	-c99
	-c++

	C/C++ Compiler Common Switch Descriptions
	sourcefile
	-@ filename
	-A name (tokens)
	-add-debug-libpaths
	-alttok
	-always-inline
	-annotate
	-annotate-loop-instr
	-auto-attrs
	-bss
	-build-lib
	-C
	-c
	-component file.xml
	-const-read-write
	-const-strings
	-cplbs
	-D macro[=definition]
	-dcplbs
	-decls-{weak|strong}
	-dependency-add-target target
	-double-size-{32 | 64}
	-double-size-any
	-dry
	-dryrun
	-E
	-ED
	-EE
	-eh
	-enum-is-int
	-expand-symbolic-links
	-expand-windows-shortcuts
	-extra-keywords
	-file-attr name[=value]
	-fixed-point-io
	-flags{-asm | -compiler | -ipa | -lib | -link | -mem | -prelink} switch [,switch2[,...]]
	-force-circbuf
	-force-link
	-fp-associative
	-full-io
	-full-version
	-fx-contract
	-fx-rounding-mode-biased
	-fx-rounding-mode-truncation
	-fx-rounding-mode-unbiased
	-g
	-glite
	-gnu-style-dependencies
	-H
	-HH
	-h[elp]
	-I directory [{,|;} directory...]
	-I-
	-i
	-icplbs
	-include filename
	-ipa
	-jcs2l
	-L directory[{,|;} directory…]
	-l library
	-list-workarounds
	-M
	-MD
	-MM
	-Mo filename
	-Mt name
	-map filename
	-mem
	-multiline
	-never-inline
	-no-alttok
	-no-annotate
	-no-annotate-loop-instr
	-no-assume-vols-are-mmrs
	-no-auto-attrs
	-no-bss
	-no-circbuf
	-no-const-strings
	-no-cplbs
	-no-defs
	-no-eh
	-no-expand-symbolic-links
	-no-expand-windows-shortcuts
	-no-extra-keywords
	-no-force-link
	-no-fp-associative
	-no-full-io
	-no-fx-contract
	-no-int-to-fract
	-no-jcs2l
	-no-mem
	-no-multiline
	-no-progress-rep-timeout
	-no-rtcheck
	-no-rtcheck-arr-bnd
	-no-rtcheck-div-zero
	-no-rtcheck-heap
	-no-rtcheck-null-ptr
	-no-rtcheck-shift-check
	-no-rtcheck-stack
	-no-rtcheck-unassigned
	-no-sat-associative
	-no-saturation
	-no-std-ass
	-no-std-def
	-no-std-inc
	-no-std-lib
	-no-threads
	-no-utility-rom
	-no-workaround workaround_id[,workaround_id…]
	-no-zero-loop-counters
	-O[0|1]
	-Oa
	-Os
	-Ov num
	-o filename
	-overlay
	-overlay-clobbers clobbered-regs
	-P
	-PP
	-p
	-path {-asm | -compiler | -ipa | -lib | -link | -prelink} pathname
	-path-install directory
	-path-output directory
	-path-temp directory
	-pgo-session session-id
	-pguide
	-pplist filename
	-proc processor
	-prof-hw
	-progress-rep-func
	-progress-rep-opt
	-progress-rep-timeout
	-progress-rep-timeout-secs secs
	-R directory[,directory …]
	-R-
	-reserve register[,register …]
	-rtcheck
	-rtcheck-arr-bnd
	-rtcheck-div-zero
	-rtcheck-heap
	-rtcheck-null-ptr
	-rtcheck-shift-check
	-rtcheck-stack
	-rtcheck-unassigned
	-S
	-s
	-sat-associative
	-save-temps
	-sdram
	-section id=section_name[,id=section_name...]
	-show
	-signed-bitfield
	-signed-char
	-si-revision version
	-structs-do-not-overlap
	-syntax-only
	-sysdefs
	-T filename
	-threads
	-time
	-U macro
	-unsigned-bitfield
	-unsigned-char
	-utility-rom
	-v
	-verbose
	-version
	-W{annotation|error|remark|suppress|warn} number[, number...]
	-Wannotations
	-Werror-limit number
	-Werror-warnings
	-Wremarks
	-Wterse
	-w
	-warn-component
	-warn-protos
	-workaround workaround_id[,workaround_id ……]
	-xref filename
	-zero-loop-counters

	C Mode (MISRA) Compiler Switch Descriptions
	-misra
	-misra-linkdir directory
	-misra-no-cross-module
	-misra-no-runtime
	-misra-strict
	-misra-suppress-advisory
	-misra-testing
	-Wmis_suppress rule_number [, rule_number]
	-Wmis_warn rule_number [, rule_number]
	MISRA-C Command-Line Switch Restrictions

	C++ Mode Compiler Switch Descriptions
	-anach
	-check-init-order
	-friend-injection
	-full-cpplib
	-full-dependency-inclusion
	-implicit-inclusion
	-no-anach
	-no-friend-injection
	-no-full-cpplib
	-no-implicit-inclusion
	-no-rtti
	-no-std-templates
	-rtti
	-std-templates

	Environment Variables Used by the Compiler
	Additional Path Support
	Windows Shortcut Support
	Cygwin Path Support
	Cygwin Symbolic Links
	Cygdrive Folders
	Cygwin Mounted Directories

	Optimization Control
	Optimization Levels
	Interprocedural Analysis
	Interaction With Libraries

	Controlling Silicon Revision and Anomaly Workarounds Within the Compiler
	Using the -si-revision Switch
	Using the -workaround Switch
	Using the -no-workaround Switch
	Interactions: Silicon Revision vs. Workaround Switches
	Anomalies in Assembly Sources

	Using Native Fixed-Point Types
	Fixed-Point Type Support
	Native Fixed-Point Types
	Native Fixed-Point Constants
	A Motivating Example
	Fixed-Point Arithmetic Semantics
	Data Type Conversions and Fixed-Point Types
	Bit-Pattern Conversion Functions: bitsfx and fxbits
	Arithmetic Operators for Fixed-Point Types
	FX_CONTRACT
	Rounding Behavior
	Arithmetic Library Functions
	divifx
	idivfx
	fxdivi
	mulifx
	absfx
	roundfx
	countlsfx
	strtofxfx

	I/O Conversion Specifiers
	Setting the Rounding Mode
	Porting Code Written Using fract16 and fract32
	Fixed-Point Type Example

	Language Standards Compliance
	C Mode
	C++ Mode

	MISRA-C Compiler
	MISRA-C Compiler Overview
	MISRA-C Compliance
	Using the Compiler to Achieve Compliance

	Rules Descriptions

	Run-Time Checking
	Enabling Run-Time Checking
	Command-Line Switches for Run-Time Checking
	Pragmas for Run-Time Checking

	Supported Run-Time Checks
	Response When Problems Are Detected
	Limitations of Run-Time Checking

	C/C++ Compiler Language Extensions
	Function Inlining
	Inlining and Optimization
	Inlining and Out-of-Line Copies
	Inlining and Global asm Statements
	Inlining and Sections
	Inlining and Run-Time Checking

	Variable Argument Macros
	Restricted Pointers
	Variable-Length Arrays
	Non-Constant Initializer Support
	Designated Initializers
	Hexadecimal Floating-Point Numbers
	Declarations Mixed With Code
	Compound Literals Support
	C++ Style Comments
	Enumeration Constants That Are Not int Type
	Boolean Type Support Keywords (bool, true, false)
	Native Fixed-Point Types fract and accum
	Inline Assembly Language Support Keyword (asm)
	asm() Construct Syntax
	asm() Construct Syntax Rules
	asm() Construct Template Example

	Assembly Construct Operand Description
	Using long long Types in asm Constraints
	Assembly Constructs With Multiple Instructions
	Assembly Construct Reordering and Optimization
	Assembly Constructs With Input and Output Operands
	Assembly Constructs With Compile-Time Constants
	Assembly Constructs and Flow Control
	Guidelines for Using asm() Statements

	Memory Banks
	Memory Banks Versus Sections
	Pragmas and Qualifiers
	Memory Bank Selection
	Memory Banks for Code
	Memory Banks for Data

	Performance Characteristics
	Memory Bank Kinds
	Predefined Banks
	Defining Additional Banks

	Placement Support Keyword (section)
	Placement of Compiler-Generated Code and Data
	Long Identifiers
	Compiler Built-In Functions
	builtins.h
	Fractional Value Built-In Functions
	16-Bit Fractional Built-In Functions
	32-Bit Fractional Built-In Functions
	fract2x16 Built-In Functions

	ETSI Support
	32-Bit Fractional ETSI Routines Using Double-Precision Format
	32-Bit Fractional ETSI Routines Using 1.31 Format
	16-Bit Fractional ETSI Routines

	fract16 and fract32 Literal Values
	Converting Between Fractional and Floating-Point Values
	Complex Fractional Built-In Functions in C
	Changing the RND_MOD Bit
	Complex Operations in C++
	Packed 16-Bit Integer Built-In Functions
	Division Functions
	Full-Precision Accumulator Built-In Functions
	Accumulator Built-In Function Prototypes
	Accumulator Built-In Functions and the Optimizer

	Viterbi History and Decoding Functions
	Search Built-in Functions
	Circular Buffer Built-In Functions
	Automatic Circular Buffer Generation
	Explicit Circular Buffer Generation
	Circular Buffer Increment of an Index
	Circular Buffer Increment of a Pointer

	Endian-Swapping Intrinsics
	System Built-In Functions
	Cache Built-In Functions
	flush
	flushinv
	flushinvmodup
	flushmodup
	iflush
	iflushmodup
	prefetch
	prefetchmodup

	Compiler Performance Built-In Functions
	Video Operation Built-In Functions
	Function Prototypes
	Example of Use: Sum of Absolute Difference

	Misaligned Data Built-In Functions
	Memory-Mapped Register Access Built-In Functions

	Pragmas
	Pragmas With Declaration Lists
	Data Declaration Pragmas
	#pragma align num
	#pragma alignment_region (alignopt)
	#pragma pack (alignopt)
	#pragma pad (alignopt)
	#pragma no_partial_initialization

	Interrupt Handler Pragmas
	Loop Optimization Pragmas
	#pragma all_aligned
	#pragma different_banks
	#pragma loop_count(min, max, modulo)
	#pragma loop_unroll N
	#pragma no_alias
	#pragma no_vectorization
	#pragma vector_for

	General Optimization Pragmas
	Fixed-Point Arithmetic Pragmas
	#pragma FX_CONTRACT {ON|OFF}
	#pragma FX_ROUNDING_MODE {TRUNCATION|BIASED|UNBIASED}
	#pragma STDC FX_FULL_PRECISION {ON|OFF|DEFAULT}
	#pragma STDC FX_FRACT_OVERFLOW {SAT|DEFAULT}
	#pragma STDC FX_ACCUM_OVERFLOW {SAT|DEFAULT}

	Inline Control Pragmas
	#pragma always_inline
	#pragma inline
	#pragma never_inline

	Linking Control Pragmas
	#pragma linkage_name identifier
	#pragma core
	#pragma retain_name
	#pragma section/#pragma default_section
	#pragma file_attr(“name[=value]” [, “name[=value]” [...]])
	#pragma symbolic_ref
	#pragma weak_entry

	Function Side-Effect Pragmas
	#pragma alloc
	#pragma const
	#pragma inline
	#pragma misra_func(arg)
	#pragma no_vectorization
	#pragma noreturn
	#pragma pgo_ignore
	#pragma pure
	#pragma regs_clobbered string
	#pragma regs_clobbered_call string
	#pragma overlay
	#pragma result_alignment (n)

	Class Conversion Optimization Pragmas
	#pragma param_never_null param_name [...]
	#pragma suppress_null_check

	Template Instantiation Pragmas
	#pragma instantiate instance
	#pragma do_not_instantiate instance
	#pragma can_instantiate instance

	Header File Control Pragmas
	#pragma no_implicit_inclusion
	#pragma once
	#pragma system_header

	Diagnostic Control Pragmas
	Modifying the Severity of Specific Diagnostics
	Modifying the Behavior of an Entire Class of Diagnostics
	Saving or Restoring the Current Behavior of All Diagnostics

	Run-Time Checking Pragmas
	#pragma rtcheck(off)
	#pragma rtcheck(on)

	Memory Bank Pragmas
	#pragma code_bank(bankname)
	#pragma data_bank(bankname)
	#pragma stack_bank(bankname)
	#pragma default_code_bank(bankname)
	#pragma default_data_bank(bankname)
	#pragma default_stack_bank(bankname)
	#pragma bank_memory_kind(bankname, kind)
	#pragma bank_read_cycles(bankname, cycles[, bits])
	#pragma bank_write_cycles(bankname, cycles[, bits])
	#pragma bank_maximum_width(bankname, width)

	Exceptions Tables Pragma

	GCC Compatibility Extensions
	Statement Expressions
	Type Reference Support Keyword (typeof)
	Generalized lvalues
	Conditional Expressions With Missing Operands
	Zero-Length Arrays
	GCC Variable Argument Macros
	Line Breaks in String Literals
	Arithmetic on Pointers to Void and Pointers to Functions
	Cast to Union
	Ranges in Case Labels
	Escape Character Constant
	Alignment Inquiry Keyword (__alignof__)
	(asm) Keyword for Specifying Names in Generated Assembler
	Function, Variable, and Type Attribute Keyword (__attribute__)
	Unnamed struct/union Fields Within struct/unions

	Preprocessor-Generated Warnings

	C/C++ Preprocessor Features
	Predefined Macros
	Writing Preprocessor Macros
	Compound Macros

	C/C++ Run-Time Model and Environment
	Registers
	Dedicated Registers
	Preserved Registers
	Scratch Registers
	Loop Counters, Overlays and DMA’d Code

	Stack Registers
	Event Stack Register
	Call-Expansion Register
	Parameter Registers
	Return Registers
	Aggregate Return Register
	Comparison Return Register
	Reservable Register

	Managing the Stack
	Function Call and Return
	Transferring Function Arguments and Return Value
	Basic Argument Passing
	Passing Parameters for Variable Argument Lists
	Passing a C++ Class Instance
	Return Values
	Parameter and Return Value Examples

	Calling Assembly Subroutines From C/C++ Programs
	Calling C/C++ Functions From Assembly Programs
	Symbol Names in C/C++ and Assembly
	C/C++ and Assembly: Extern Linkage
	C and Assembly: Underscore Prefix
	Other Approaches

	Exceptions Tables in Assembly Routines

	Data Storage Formats
	Floating-Point Data Size
	Floating-Point Binary Formats
	IEEE Floating-Point Format
	IEEE Floating-Point Implementation

	fract and accum Data Representation
	fract16 and fract32 Data Representation

	Memory Section Usage
	Code Storage
	Data Storage
	Run-Time Stack
	Run-Time Heap Storage

	Global Array Alignment
	Controlling System Heap Size and Placement
	Managing the System Heap in the IDE
	Managing the System Heap in the .ldf File
	Standard Heap Interface

	Using Multiple Heaps
	Defining a Heap
	Defining Additional Heaps in the IDE
	Defining Heaps at Runtime
	Tips for Working With Heaps
	Allocating C++ STL Objects to a Non-Default Heap
	Using the Alternate Heap Interface
	C++ Run-Time Support for the Alternate Heap Interface

	Freeing Space

	Startup and Termination
	Memory Initialization
	Global Constructors
	Constructors and Destructors of Global Class Instances
	Constructors, Destructors, and Memory Placement

	Support for argv/argc

	Compiler C++ Template Support
	Template Instantiation
	Exported Templates
	Implicit Instantiation
	Generated Template Files
	Identifying Un-Instantiated Templates

	File Attributes
	Automatically-Applied Attributes
	Default LDF Placement
	Sections Versus Attributes
	Granularity
	Hard Mapping Versus Soft Mapping
	Number of Values

	Using Attributes
	Example 1
	Example 2

	Implementation Defined Behavior
	Enumeration Type Implementation Details
	ISO/IEC 9899:1990 C Standard (C89 Mode)
	G3.1 Translation
	G3.2 Environment
	G3.3 Identifiers
	G3.4 Characters
	G3.5 Integers
	G3.6 Floating-Point
	G3.7 Arrays and Pointers
	G3.8 Registers
	G3.9 Structures, Unions, Enumerations and Bit-Fields
	G3.10 Qualifiers
	G3.11 Declarators
	G3.12 Statements
	G3.13 Preprocessing Directives
	G3.14 Library Functions

	ISO/IEC 9899:1999 C Standard (C99 Mode)
	J3.1 Translation
	J3.2 Environment
	J3.3 Identifiers
	J3.4 Characters
	J3.5 Integers
	J3.6 Floating-Point

	ISO/IEC 14822:2003 C++ Standard (C++ Mode)
	1.7 The C++ Memory Model
	1.9 Program Execution
	2.1 Phases of Translation
	2.2 Character Sets
	2.13.2 Character Literals
	2.13.4 String Literals
	3.6.1 Main Function
	3.6.2 Initialization of Non-Local Objects
	3.9 Types
	3.9.1 Fundamental Types
	3.9.2 Compound Types
	4.7 Integral Conversions
	4.8 Floating-Point Conversions
	4.9 Floating-Integral Conversions
	5.2.8 Type Identification
	5.2.10 Reinterpret Cast
	5.3.3 Sizeof
	5.6 Multiplicative Operators
	5.7 Additive Operators
	5.8 Shift Operators
	7.1.5.2 Simply Type Specifiers
	7.2 Enumeration Declarations
	7.4 The asm Declaration
	7.5 Linkage Specifications
	9.6 Bit-Fields
	14 Templates
	14.7.1 Implicit Instantiation
	15.5.1 The terminate() Function
	15.5.2 The unexpected() Function
	16.1 Conditional Inclusion
	16.2 Source File Inclusion
	16.6 Pragma Directive
	16.8 Predefined Macro Names
	17.4.4.5 Reentrancy
	17.4.4.8 Restrictions on Exception Handling
	18.3 Start and Termination
	18.4.2.1 Class bad_alloc
	18.5.1 Class type_info
	18.5.2 Class bad_cast
	18.5.3 Class bad_typeid
	18.6.1 Class Exception
	18.6.2.1 Class bad_exception
	21 Strings Library
	21.1.3.2 struct char_traits<wchar_t>
	22.1.1.3 Locale Members
	22.2.1.3 ctype Specializations
	22.2.1.3.2 ctype<char> Members
	22.2.5.1.2 time_get Virtual Functions
	22.2.5.3.2 time_put Virtual Functions
	22.2.7.1.2 Messages Virtual Functions
	26.2.8 Complex Transcendentals
	27.1.2 Positioning Type Limitations
	27.4.1 Types
	27.4.2.4 ios_base Static Members
	27.4.4.3 basic_ios iostate Flags Functions
	27.7.1.3 Overridden Virtual Functions
	27.8.1.4 Overridden Virtual Functions
	C.2.2.3 Macro NULL
	D.6 Old iostreams Members

	2 Achieving Optimal Performance From C/C++ Source Code
	General Guidelines
	How the Compiler Can Help
	Using the Compiler Optimizer
	Using Compiler Diagnostics
	Warnings, Annotations and Remarks
	Run-Time Diagnostics
	Steps for Developing Your Application

	Using Profile-Guided Optimization
	Using Profile-Guided Optimization With a Simulator
	Using Profile-Guided Optimization With Hardware
	Profile-Guided Optimization and Multiple Source Uses
	Profile-Guided Optimization and the -Ov num Switch
	Profile-Guided Optimization and Multiple PGO Data Sets
	When to Use Profile-Guided Optimization

	Using Interprocedural Optimization

	The volatile Type Qualifier
	Data Types
	Optimizing a struct
	Bit-Fields
	Avoiding Emulated Arithmetic

	Getting the Most From IPA
	Initializing Constants Statically
	Word-Aligning Your Data
	Using the aligned() built-in
	Avoiding Aliases

	Indexed Arrays Versus Pointers
	Trying Pointer and Indexed Styles

	Using Function Inlining
	Using Inline asm Statements
	Memory Usage
	Using the Bank Qualifier

	Improving Conditional Code
	Using Compiler Performance Built-In Functions
	Using PGO in Function Profiling
	Example of Using Profile-Guided Optimization
	Opening the Project
	Gathering the Profile
	Rebuilding With the Profile

	Loop Guidelines
	Keeping Loops Short
	Avoiding Unrolling Loops
	Avoiding Loop-Carried Dependencies
	Avoiding Loop Rotation by Hand
	Avoiding Complex Array Indexing
	Inner Loops Versus Outer Loops
	Avoiding Conditional Code in Loops
	Avoiding Placing Function Calls in Loops
	Avoiding Non-Unit Strides
	Using 16-Bit Data Types and Vector Instructions
	Loop Control
	Using the Restrict Qualifier

	Manipulating Fixed-Point and Fractional Data
	Using Integer Arithmetic to Encode Fractional Semantics
	Using the Native Fixed-Point Types fract and accum
	Using Built-In Functions to Perform Fixed-Point Arithmetic

	Using Built-In Functions in Code Optimization
	Fractional Data
	Using System Support Built-In Functions
	Using Circular Buffers

	Smaller Applications: Optimizing for Code Size
	Effect of Data Type Size on Code Size

	Using Pragmas for Optimization
	Function Pragmas
	#pragma alloc
	#pragma const
	#pragma pure
	#pragma result_alignment
	#pragma regs_clobbered
	#pragma optimize_{off|for_speed|for_space|as_cmd_line}

	Loop Optimization Pragmas
	#pragma loop_count
	#pragma no_vectorization
	#pragma vector_for
	#pragma all_aligned
	#pragma different_banks
	#pragma no_alias

	Useful Optimization Switches
	How Loop Optimization Works
	Terminology
	Clobbered
	Live
	Spill
	Scheduling
	Loop Kernel
	Loop Prolog
	Loop Epilog
	Loop Invariant
	Hoisting
	Sinking

	Loop Optimization Concepts
	Software Pipelining
	Loop Rotation
	Loop Vectorization
	Modulo Scheduling
	Initiation Interval (II) and the Kernel
	Minimum Initiation Interval Due to Resources (Res MII)
	Minimum Initiation Interval Due to Recurrences (Rec MII)
	Stage Count (SC)
	Variable Expansion and MVE Unroll
	Trip Count

	A Worked Example

	Assembly Optimizer Annotations
	Annotation Examples
	Importing Annotation Examples
	Viewing Annotation Examples in the IDE
	Viewing Annotation Examples in Generated Assembly

	Global Information
	Procedure Statistics
	Instruction Annotations
	Loop Identification
	Loop Identification Annotations
	Resource Definitions
	File Position
	Infinite Hardware Loop Wrappers

	Vectorization
	Unroll and Jam
	Loop Flattening
	Vectorization Annotations

	Modulo Scheduling Information
	Annotations for Modulo-Scheduled Instructions

	Warnings, Failure Messages, and Advice

	Analyzing Your Application
	Application Analysis Configuration
	Application Analysis and File Naming
	Device for Profiling Output
	Frequency of Flushing Profile Data

	Profiling With Instrumented Code
	Generating an Application With Instrumented Profiling
	Running the Executable
	Invoking the Reporter Tool
	Invoking the instrprof.exe Command-Line Reporter
	Contents of the Profiling Report
	Reporter Tool Report Format
	instrprof Command-Line Tool Report Format
	Profiling Data Storage
	Computing Cycle Counts
	Multi-Threaded and Non-Terminating Applications
	Flushing Profile Data
	Profiling of Interrupts and Kernel Time
	Behavior That Interferes With Instrumented Profiling

	Profile-Guided Optimization and Code Coverage
	Code Coverage Report
	Unexpected Line Counts in a Code Coverage Report

	Heap Debugging
	Getting Started With Heap Debugging
	Linking With the Heap Debugging Library
	Heap Debugging Macro
	Default Behavior
	Additional Heap Overheads
	The Heap Debugging Report

	Using the Heap Debugging Library
	Detected Errors
	Viewing Reports
	stderr Diagnostics
	Call Stack
	Setting the Severity of Error Messages
	Default Diagnostic Severities
	Guard Regions
	Enabling and Disabling Features
	Buffering
	Pausing Heap Debugging
	Finishing Heap Debugging
	Verifying Heaps
	Behavior of Heap Debugging Library
	Unfreed File I/O Buffers
	Memory Used by Operating Systems

	Stack Overflow Detection
	About Stack Overflows
	What is Stack Overflow?
	Likely Causes of Stack Overflow
	Difficulties in Diagnosing Stack Overflow

	Compiler’s Stack Overflow Detection Facility
	Limitations on the Compiler’s Stack Detection Capability
	Fixing a Stack Overflow

	3 C/C++ Run-Time Library
	C and C++ Run-Time Library Guide
	Calling Library Functions
	Using the Compiler’s Built-In Functions
	Linking Library Functions
	Functional Breakdown
	Library Location
	Library Selection
	Library Naming
	Library Startup Files

	Library Attributes
	Exceptions to Library Attribute Conventions
	Mapping Objects to Flash Using Attributes

	Library Function Re-Entrancy and Thread Safety
	Non-Reentrant Functions
	Thread-Safe Libraries
	Using the Thread-Safe Libraries

	Working With Library Header Files
	adi_types.h
	assert.h
	ccblkfn.h
	ctype.h
	errno.h
	float.h
	heap_debug.h
	instrprof.h
	iso646.h
	libdyn.h
	limits.h
	locale.h
	math.h
	mc_data.h
	misra_types.h
	pgo_hw.h
	setjmp.h
	signal.h
	stdarg.h
	stdbool.h
	stddef.h
	stdfix.h
	stdint.h
	stdio.h
	stdlib.h
	string.h
	time.h

	Calling a Library Function From an ISR
	C++ Library Support
	Embedded C++ Library Header Files
	Standard C++ Library Header Files
	Common Standard and Embedded C++ Library Header Files
	C++ Header Files for C Library Facilities
	Standard Template Library (STL) Header Files

	File I/O Support
	Fatal Error Handling
	FatalError.xml
	General Codes
	Specific Codes
	Library Errors
	Run-Time Errors
	Unhandled Exceptions
	Parity Errors
	Errno Values

	Documented Library Functions
	C Run-Time Library Reference
	abort
	abs
	absfx
	acos
	adi_acquire_lock, adi_try_lock, adi_release_lock
	adi_core_1_enable, adi_core_1_disable, adi_core_b_enable
	adi_core_id
	adi_dump_all_heaps
	adi_dump_heap
	adi_fatal_error
	adi_fatal_exception
	adi_heap_debug_disable
	adi_heap_debug_enable
	adi_heap_debug_end
	adi_heap_debug_flush
	adi_heap_debug_pause
	adi_heap_debug_reset_guard_region
	adi_heap_debug_resume
	adi_heap_debug_set_buffer
	adi_heap_debug_set_call_stack_depth
	adi_heap_debug_set_error
	adi_heap_debug_set_guard_region
	adi_heap_debug_set_ignore
	adi_heap_debug_set_warning
	adi_obtain_mc_slot, adi_free_mc_slot, adi_set_mc_value, adi_get_mc_value
	adi_verify_all_heaps
	adi_verify_heap
	asctime
	asin
	atan
	atan2
	atexit
	atof
	atoi
	atol
	atoll
	bitsfx
	bsearch
	calloc
	ceil
	clearerr
	clock
	cos
	cosh
	countlsfx
	ctime
	difftime
	div
	divifx
	dyn_AddHeap
	dyn_alloc
	dyn_AllocSectionMem
	dyn_AllocSectionMemHeap
	dyn_CopySectionContents
	dyn_FreeEntryPointArray
	dyn_FreeSectionMem
	dyn_GetEntryPointArray
	dyn_GetExpSymTab
	dyn_GetHeapForWidth
	dyn_GetNumSections
	dyn_GetSections
	dyn_GetStringTable
	dyn_GetStringTableSize
	dyn_heap_init
	dyn_LookupByName
	dyn_RecordRelocOutOfRange
	dyn_Relocate
	dyn_RetrieveRelocOutOfRange
	dyn_RewriteImageToFile
	dyn_SetSectionAddr
	dyn_SetSectionMem
	dyn_ValidateImage
	exit
	exp
	fabs
	fclose
	feof
	ferror
	fflush
	fgetc
	fgetpos
	fgets
	fileno
	floor
	fmod
	fopen
	fprintf
	fputc
	fputs
	fread
	free
	freopen
	frexp
	fscanf
	fseek
	fsetpos
	ftell
	fwrite
	fxbits
	fxdivi
	getc
	getchar
	gets
	gmtime
	heap_calloc
	heap_free
	heap_init
	heap_install
	heap_lookup
	heap_malloc
	heap_realloc
	heap_space_unused
	idivfx
	instrprof_request_flush
	ioctl
	isalnum
	isalpha
	iscntrl
	isdigit
	isgraph
	isinf
	islower
	isnan
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	_l1_memcpy, _memcpy_l1
	labs
	ldexp
	ldiv
	localtime
	log
	log10
	longjmp
	malloc
	memchr
	memcmp
	memcpy
	memmove
	memset
	mktime
	modf
	mulifx
	perror
	pgo_hw_request_flush
	pow
	printf
	putc
	putchar
	puts
	qsort
	raise
	rand
	realloc
	remove
	rename
	rewind
	roundfx
	scanf
	setbuf
	setjmp
	setvbuf
	signal
	sin
	sinh
	snprintf
	space_unused
	sprintf
	sqrt
	srand
	sscanf
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strftime
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtof
	strtofxfx
	strtok
	strtol
	strtold
	strtoll
	strtoul
	strtoull
	strxfrm
	tan
	tanh
	time
	tmpfile
	tmpnam
	tolower
	toupper
	ungetc
	va_arg
	va_end
	va_start
	vfprintf
	vprintf
	vsnprintf
	vsprintf

	4 DSP Run-Time Library
	DSP Run-Time Library Guide
	Working With Library Source Code
	Library Attributes
	DSP Header Files
	complex.h
	cycle_count.h
	cycles.h
	filter.h
	math.h
	matrix.h
	stats.h
	vector.h
	window.h

	Measuring Cycle Counts
	Basic Cycle-Counting Facility
	Cycle-Counting Facility With Statistics
	Using time.h to Measure Cycle Counts
	Determining the Processor Clock Rate
	Considerations When Measuring Cycle Counts

	DSP Run-Time Library Reference
	a_compress
	a_expand
	alog
	alog10
	arg
	autocoh
	autocorr
	cabs
	cadd
	cartesian
	cdiv
	cexp
	cfft
	cfftf
	cfft2d
	cfir
	clip
	cmlt
	coeff_iirdf1
	conj
	convolve
	conv2d
	conv2d3x3
	copysign
	cot
	countones
	crosscoh
	crosscorr
	csub
	fir
	fir_decima
	fir_interp
	fft_magnitude
	gen_bartlett
	gen_blackman
	gen_gaussian
	gen_hamming
	gen_hanning
	gen_harris
	gen_kaiser
	gen_rectangular
	gen_triangle
	gen_vonhann
	histogram
	ifft
	ifftf
	ifft2d
	iir
	iirdf1
	max
	mean
	min
	mu_compress
	mu_expand
	norm
	polar
	rfft
	rfftf
	rfft2d
	rms
	rsqrt
	twidfftrad2
	twidfftf
	twidfft2d
	var
	zero_cross

	A Multi-Core Programming
	Dual-Core Blackfin Architecture Overview
	Application Model
	Compiler and Library Support
	Project Creation
	.ldf Files
	Startup Code
	MCAPI
	Library Functions

	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

