General Description

The MIC2039 is a high-side MOSFET power distribution switch providing increased system reliability by using 5% current-limit accuracy.

The MIC2039 has an operating input voltage range from 2.5V to 5.5V, is internally current limited, and has thermal shutdown to protect the device and system. The MIC2039 is offered with either active-high or active-low logic level enable input controls. It has an open drain fault status output flag with a built-in 32ms delay that asserts low during overcurrent or thermal-shutdown conditions.

The MIC2039 switches feature an adjustable output current limit that is resistor programmable from 0.2A to 2.5A. The MIC2039 switch also offers a unique, Kickstart feature that allows momentary high-current surges up to the secondary current limit (\(I_{LIMIT_2nd}\)) during startup or while operating in steady state. This is useful for charging loads with high inrush currents, such as capacitors. After an overcurrent condition is established, these switches enter into a constant current-limit mode unless the die temperature exceeds the thermal-shutdown specification.

The MIC2039 is available in 6-pin SOT-23 and 6-pin 2mm × 2mm thin DFN packages. The MIC2039 has an operating junction temperature range of \(-40°C\) to \(+125°C\).

Data sheets and support documentation are available on Micrel’s web site at: www.micrel.com.

Features

- ±5% current limit accuracy
- Input supply range from 2.5V to 5.5V
- Low quiescent current: 100µA typical (switch ON)
- 75mΩ typical \(R_{DS(ON)}\) at 5.0V
- 0.2A to 2.5A adjustable output current
- Kickstart – momentary secondary current-limit threshold (120ms period)
- Soft-start functionality
- Undervoltage lockout (UVLO)
- Fast 10µs short-circuit response time (non-Kickstart options)
- Fault status output flag
- Logic-controlled enable (active-high, active-low)
- Thermal shutdown
- Pin compatible with the MIC2009/MIC2019
- 6-pin 2mm × 2mm thin DFN and 6-pin SOT-23 packages
- Junction temperature range from \(-40°C\) to \(+125°C\)

Applications

- USB peripherals and USB 2.0/3.0 compatible
- DTV/STB
- Notebooks and consumer electronics
- General-purpose power distribution

Typical Application

![Typical Application Diagram](image-url)
Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Top Mark(1)</th>
<th>Current Limit</th>
<th>Enable</th>
<th>Kickstart</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC2039AYM6</td>
<td>39AA</td>
<td>Adjustable</td>
<td>Active High</td>
<td>No</td>
<td>SOT-23-6L</td>
</tr>
<tr>
<td>MIC2039BYM6</td>
<td>39BB</td>
<td>Adjustable</td>
<td>Active Low</td>
<td>No</td>
<td>SOT-23-6L</td>
</tr>
<tr>
<td>MIC2039AYMT</td>
<td>3A9</td>
<td>Adjustable</td>
<td>Active High</td>
<td>No</td>
<td>6-pin 2mm x 2mm Thin DFN(2)</td>
</tr>
<tr>
<td>MIC2039BYMT</td>
<td>B39</td>
<td>Adjustable</td>
<td>Active Low</td>
<td>No</td>
<td>6-pin 2mm x 2mm Thin DFN(2)</td>
</tr>
<tr>
<td>MIC2039EYM6</td>
<td>39AE</td>
<td>Adjustable</td>
<td>Active High</td>
<td>Yes</td>
<td>SOT-23-6L</td>
</tr>
<tr>
<td>MIC2039EYMT</td>
<td>D39</td>
<td>Adjustable</td>
<td>Active High</td>
<td>Yes</td>
<td>6-pin 2mm x 2mm Thin DFN(2)</td>
</tr>
<tr>
<td>MIC2039FYMT</td>
<td>F39</td>
<td>Adjustable</td>
<td>Active Low</td>
<td>Yes</td>
<td>6-pin 2mm x 2mm Thin DFN(2)</td>
</tr>
</tbody>
</table>

Notes:
1. Under-bar symbol (_) may not be to scale.
2. Thin DFN is a GREEN RoHS-compliant package. Lead finish is NiPdAu. Mold compound is Halogen Free.

Pin Configuration

SOT-23 6-Lead (M6)
Top View

2mm x 2mm 6-pin Thin DFN (MT)(3)
Top View

Notes:
3. Thin DFN ▲ = Pin 1 identifier.
Pin Description

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOT-23-6L</td>
<td>6-pin 2mmx2mm Thin DFN</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>VIN</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>EN</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>FAULT/</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>ILIMIT</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>VOUT</td>
</tr>
<tr>
<td>—</td>
<td>EP</td>
<td>ePad</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings\(^{(4)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN to GND</td>
<td></td>
<td>−0.3V to +6V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOUT to GND</td>
<td></td>
<td>−0.3V to +6V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VENABLE to GND</td>
<td></td>
<td>−0.3V to +6V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VFAULT/ to GND</td>
<td></td>
<td>−0.3V to +6V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAULT/ Current (IFAULT/)</td>
<td></td>
<td>25mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Power Dissipation (PD)</td>
<td>Internally Limited</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature (TS)</td>
<td>−65°C to +150°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD Rating(^{(6)})</td>
<td>HBM</td>
<td>3kV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MM</td>
<td>300V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operating Ratings\(^{(5)}\)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction Temperature (TJ)</td>
<td>−40°C to +125°C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrical Characteristics\(^{(7)}\)

\(V_IN = V_EN = 5V; \ C_IN = 1\mu F; \ C_OUT = 1\mu F\); \(T_J = 25°C\). \textbf{Bold} values indicate \(-40°C ≤ T_J ≤ +125°C\), unless noted otherwise.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_IN</td>
<td>Input Voltage Range</td>
<td>VIN rising</td>
<td>2.0</td>
<td>2.25</td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Input Supply Undervoltage Lockout Threshold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_UVLO</td>
<td>VIN falling</td>
<td>VIN rising or VIN falling</td>
<td>100</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>Input Supply Undervoltage Lockout Threshold Hysteresis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_UVLOHYS</td>
<td>Switch OFF (I_OUT = 0A)</td>
<td>Active-high Enable (A): V_EN = 0V, V_IN = 5V</td>
<td>0.75</td>
<td>5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Switch ON (I_OUT = 0A)</td>
<td>Active-low Enable (B): V_EN = V_IN = 5V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Active-high Enable (A): V_EN = 1.5V, V_IN = 5V</td>
<td>100</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Active-low Enable (B): V_EN = 0V, V_IN = 5V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_DS(ON)</td>
<td>Switch On Resistance</td>
<td>V_IN = 2.5V, I_OUT = 350mA</td>
<td>100</td>
<td>177</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_IN = 3.3V, I_OUT = 350mA</td>
<td>85</td>
<td>145</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_IN = 5V, I_OUT = 350mA</td>
<td>75</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_LKG</td>
<td>Output Leakage Current</td>
<td>Switch Off, V_OUT = 0V</td>
<td>0.22</td>
<td>15</td>
<td></td>
<td>μA</td>
</tr>
</tbody>
</table>

Notes:

4. Exceeding the absolute maximum rating may damage the device.
5. The device is not guaranteed to function properly outside its operating rating.
6. Devices are ESD sensitive. Handling precautions recommended. Human body model (HBM), 1.5kΩ in series with 100pF.
7. Specification for packaged product only.
Electrical Characteristics (Continued)

$V_{IN} = V_{EN} = 5V; \ C_{IN} = 1\mu F; \ C_{OUT} = 1\mu F; \ T_J = 25^\circ C$. **Bold** values indicate $-40^\circ C \leq T_J \leq +125^\circ C$, unless noted otherwise.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{LIMIT}</td>
<td>Current Limit</td>
<td>$R_{LIMIT} = 115\Omega, \ V_{IN} = 5V, \ V_{OUT} = 0.8V \times V_{IN}$</td>
<td>2.35</td>
<td>2.5</td>
<td>2.65</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>(Resistor values are standard 0.1% values)</td>
<td>$R_{LIMIT} = 115\Omega, \ V_{IN} = 2.5V, \ V_{OUT} = 0V \times V_{IN}$</td>
<td>2.6</td>
<td>2.85</td>
<td>3.1</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_{LIMIT} = 145\Omega, \ V_{IN} = 5V, \ V_{OUT} = 0.8V \times V_{IN}$</td>
<td>1.90</td>
<td>2.0</td>
<td>2.10</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_{LIMIT} = 287\Omega, \ V_{IN} = 5V, \ V_{OUT} = 0.8V \times V_{IN}$</td>
<td>0.95</td>
<td>1.0</td>
<td>1.05</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_{LIMIT} = 576\Omega, \ V_{IN} = 5V, \ V_{OUT} = 0.8V \times V_{IN}$</td>
<td>0.475</td>
<td>0.50</td>
<td>0.525</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_{LIMIT} = 1.45k\Omega, \ V_{IN} = 5V, \ V_{OUT} = 0.8V \times V_{IN}$</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>A</td>
</tr>
<tr>
<td>$I_{LIMIT, 2nd}$</td>
<td>Secondary Current Limit</td>
<td>$V_{OUT} = 0V$</td>
<td>2.2</td>
<td>3.2</td>
<td>6</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{EN}</td>
<td>Enable Voltage</td>
<td>Logic Low</td>
<td>0.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Logic High</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{EN}</td>
<td>Enable Input Current</td>
<td>$0V \leq V_{EN} \leq 5V$</td>
<td>1</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>$R_{FAULT/}$</td>
<td>FAULT/ Output Resistance</td>
<td>$I_{OUT} = 10mA$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{FAULT/ _OFF}$</td>
<td>FAULT/ Off Current</td>
<td>$V_{FAULT/} = V_{IN}$</td>
<td>10</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
</tbody>
</table>

Thermal Protection

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{SD}</td>
<td>Thermal-Shutdown Threshold</td>
<td>T_J rising</td>
<td>157</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>T_{SDHYS}</td>
<td>Thermal-Shutdown Hysteresis</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

Timing Specifications (AC Parameters)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{RISE}</td>
<td>Output Turn-on Rise Time</td>
<td>$R_{LOAD} = 10\Omega; \ C_{OUT} = 1\mu F$</td>
<td>700</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>t_{FALL}</td>
<td>Output Turn-off Fall Time</td>
<td>$V_{EN} = OFF; \ R_{LOAD} = 10\Omega; \ C_{OUT} = 1\mu F$</td>
<td>32</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>t_{ON_DLY}</td>
<td>Output Turn-on Delay</td>
<td>$R_{LOAD} = 10\Omega; \ C_{OUT} = 1\mu F$</td>
<td>700</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>t_{OFF_DLY}</td>
<td>Output Turn-off Delay</td>
<td>$R_{LOAD} = 10\Omega; \ C_{OUT} = 1\mu F$</td>
<td>5</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>t_{SC_RESP}</td>
<td>Short Circuit Response Time</td>
<td>$V_{OUT} = 0V$ (short circuit)</td>
<td>10</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>$t_{FAULT/}$</td>
<td>Overcurrent Fault Response Time</td>
<td>Non-Kickstart parts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>32</td>
<td>49</td>
<td>ms</td>
</tr>
<tr>
<td>$t_{KICKSTART}$</td>
<td>Overcurrent Fault Response Delay During Kickstart</td>
<td>Kickstarter parts only</td>
<td>64</td>
<td>120</td>
<td>200</td>
<td>ms</td>
</tr>
</tbody>
</table>

Note:

8. See “Timing Diagrams” (Figures 1 through 4).
Timing Diagrams

Figure 1. Output Rise/Fall Time

Figure 2. Turn-On/Off Delay
Timing Diagrams (Continued)

Figure 3. Short Circuit Response Time and Overcurrent Fault Flag Delay (Non-Kickstart)

Figure 4. Overcurrent Fault Flag Delay (Kickstart)
Typical Characteristics

Input Supply Current vs. Temperature

![Input Supply Current vs. Temperature Graph]

VIN OFF Current vs. Temperature

![VIN OFF Current vs. Temperature Graph]

Undervoltage Lockout vs. Temperature

![Undervoltage Lockout vs. Temperature Graph]

RDS(ON) vs. Temperature

![RDS(ON) vs. Temperature Graph]

RDS(ON) vs. Output Current

![RDS(ON) vs. Output Current Graph]

Fault/Response Time vs. Temperature

![Fault/Response Time vs. Temperature Graph]

Fault/Response Time vs. Output Current

![Fault/Response Time vs. Output Current Graph]
Typical Characteristics (Continued)

Output Leakage Current vs. Temperature

VIN = 5V
VON = OFF
IOUT = 0mA

VIN - VOUT vs. Output Current

VIN = 5V
TA = 25°C

Current Limit Set Resistor vs. Output Current

VIN = 5V
TA = 25°C
Functional Characteristics

- **Soft-Start Turn-On**
 - $V_{IN} = V_{OUT} = V_{FAULT} = 5V$
 - $I_{IN} = I_{LOAD} = 250mA$
 - $I_{LIMIT} = 1A$
 - $C_{OUT} = 1\mu F$

- **Soft-Start Turn-Off**
 - $V_{IN} = V_{OUT} = 5V$
 - $I_{IN} = I_{LOAD} = 250mA$
 - $I_{LIMIT} = 1A$
 - $C_{OUT} = 1\mu F$

- **Enable Turn-On**
 - $V_{EN} = V_{OUT} = V_{FAULT} = 5V$
 - $V_{IN} = 5V$
 - $I_{IN} = I_{LOAD} = 250mA$
 - $I_{LIMIT} = 1A$
 - $C_{OUT} = 1\mu F$
 - **MIC2039AYM6**

- **Enable Turn-Off**
 - $V_{EN} = V_{OUT} = V_{FAULT} = 5V$
 - $V_{IN} = 5V$
 - $I_{IN} = I_{LOAD} = 250mA$
 - $I_{LIMIT} = 1A$
 - $C_{OUT} = 1\mu F$

- **Turn-On Into Short Circuit**
 - $V_{EN} = V_{OUT} = V_{FAULT} = 5V$
 - $V_{IN} = 5V$
 - $I_{IN} = I_{LOAD} = Short Circuit$
 - $I_{LIMIT} = 1A$
 - $C_{OUT} = 1\mu F$

- **Turn-On Into Short (Kickstart)**
 - $V_{EN} = V_{OUT} = V_{FAULT} = 5V$
 - $V_{IN} = 5V$
 - $I_{IN} = I_{LOAD} = Short Circuit$
 - $I_{LIMIT} = 1A$
 - $C_{OUT} = 1\mu F$

Time (2ms/div)

Time (4ms/div)

Time (200\mu s/div)

Time (100\mu s/div)

Time (4ms/div)

Time (40ms/div)
Functional Characteristics (Continued)

Current Limit Response

Output Recovery from Short Circuit

Output Recovery from S.C. - Kickstart

85ms Stepped Load Pulse - Kickstart

160ms Stepped Load Pulse - Kickstart

Output Thermal Shutdown & Recovery

Time (4ms/div)

Time (20ms/div)

Time (40ms/div)

Time (20ms/div)

Time (40ms/div)

Time (40ms/div)
Functional Characteristics (Continued)

Output Thermal Shutdown & Recovery - Kickstart
- V_{OUT} (2V/div)
- $V_{\text{FAULT/ OUT}}$ (5V/div)

1.5A Overload Response
- V_{OUT} (2V/div)
- $V_{\text{FAULT/ OUT}}$ (5V/div)

3A Overload Response - Kickstart
- V_{OUT} (2V/div)
- $V_{\text{FAULT/ OUT}}$ (5V/div)

Turn-On Into 12% Overload - 500mA I_{LIMIT}
- V_{OUT} (2V/div)
- $V_{\text{FAULT/ OUT}}$ (5V/div)

Turn-On Into 25% Overload - 1A I_{LIMIT}
- $V_{\text{FAULT/ OUT}}$ (5V/div)
- V_{OUT} (2V/div)

Turn-On Into Minimal Overload - 1.5A I_{LIMIT}
- V_{IN} = 5V
- V_{OUT} (2V/div)

Time
- (100ms/div) for first three graphs
- (10ms/div) for fourth graph
- (20ms/div) for fifth graph
- (4ms/div) for sixth and seventh graphs
Functional Diagram

![Functional Diagram](image)

Figure 5. MIC2039 Block Diagram
Functional Description

The MIC2039 is a high-side MOSFET power-distribution switch that provides increased system reliability by using 5% current limit accuracy. The MIC2039 is internally current limited and has thermal shutdown, which protects the device and system.

The MIC2039 has a soft-start circuit that minimizes inrush current by slowing the turn-on time. Additionally, the MIC2039 has an optional Kickstart feature, which momentarily overrides the normal current-limiting function to allow higher inrush and/or transient currents.

Soft-Start

Soft-start reduces the power-supply input surge current at startup by controlling the output voltage rise time. The input surge appears while the output capacitor is charged up. A slower output rise time draws a lower input surge current.

KICKSTART Inrush Overcurrent Filter

The MIC2039EYxx and MIC2039FYxx are equipped with a secondary current limit that allows high inrush current transients to pass for a set period before the primary current-limit circuitry becomes active. The FAULT/ status flag does not assert during the Kickstart period (typically 120ms), which eliminates any false (FAULT/) assertions. The Kickstart function is active during initial startup or while operating in steady state.

Input Capacitor

Micrel recommends a 1µF to 10µF ceramic input capacitor for most applications.

Place the input capacitor on the same side of the board and next to the MIC2039 to minimize the voltage ringing during transient and short-circuit conditions. Using two vias for each end of the capacitor to connect to the power and ground plane is also recommended.

Micrel recommends X7R or X5R dielectric ceramic capacitors because of their temperature performance. X7R-type capacitors change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change value by as much as 50% and 60%, respectively, over their operating temperature ranges. To use a ceramic chip capacitor with Y5V dielectric, the value must be much higher than an X7R ceramic or a tantalum capacitor to ensure the same capacitance value over the operating temperature range.

Output Capacitor

The output capacitor type and placement criteria are the same as for the input capacitor. See the “Input Capacitor” section for a detailed description.

Enable

The MIC2039 offers either an active-high or active-low enable input (EN) that allows ON/OFF control of the switch output. The current through the device reduces to near “zero” when the device is shut down, with only microamperes of leakage current. The EN input can be directly tied to VIN or driven by a voltage that is equal to or less than VIN; do not leave this pin floating.

Adjustable Current Limit

The MIC2039 current limit is adjustable from 0.2A to 2.5A by connecting a resistor from the ILIMIT pin to GND. The following equation determines the resistor:

\[R_{LIMIT} \approx \frac{289}{I_{LIMIT}} \]

where \(I_{LIMIT} \) is the typical current limit from the electrical table. If the output current exceeds the set current limit, the MIC2039 switch enters constant current limit mode. The maximum allowable current limit can be less than the full specified and/or expected current if the MIC2039 is not mounted on a circuit board with sufficiently low thermal resistance. Table 1 shows resistor values (1%) for select current limit settings.

<table>
<thead>
<tr>
<th>(I_{LIMIT})</th>
<th>0.2A</th>
<th>0.5A</th>
<th>1.0A</th>
<th>2A</th>
<th>2.5A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{LIMIT})</td>
<td>1.45kΩ</td>
<td>576Ω</td>
<td>287Ω</td>
<td>145Ω</td>
<td>115Ω</td>
</tr>
</tbody>
</table>

Table 1. Resistor Selection for Adjustable Current Limit
Thermal Design
To help reduce the thermal resistance, the ePad (underneath the IC) should be soldered to the PCB ground. The placement of thermal vias either underneath or near the ePad is highly recommended. Thermal design requires the following application-specific parameters:

- Maximum ambient temperature (T_A)
- Output current (I_{OUT})
- Input voltage (V_{IN})
- Current limit (I_{LIMIT})

When the MIC2039 is in constant current limit mode, it may exceed the overtemperature threshold. If this occurs, the overtemperature condition will shut down the MIC2039 switch and the fault status flag will go active (assert low). After the switch cools down, it automatically turns on again. The user can maximize the MIC2039 power dissipation by either lowering the thermal resistance on the exposed pad (only the DFN package has an exposed pad) on the printed circuit board, or by limiting the maximum allowable ambient temperature.

Thermal Measurements
It is always wise to measure the IC’s case temperature to make sure that it is within its operating limits. Although this might seem like an elementary task, it is very easy to get false results. The most common mistake is to use the standard thermal couple that comes with the thermal voltage meter. This thermal couple wire gauge is large, typically 22 gauge, and behaves like a heatsink, resulting in a lower case measurement.

There are two suggested methods for measuring the IC case temperature: a thermal couple or an infrared thermometer. If a thermal couple is used, it must be constructed of 36 gauge wire or higher to minimize the wire heatsinking effect. In addition, the thermal couple tip must be covered in either thermal grease or thermal glue to make sure that the thermal couple junction is making good contact to the case of the IC. Thermal couple 5SC-TT-K-36-36 from Omega is adequate for most applications.

To avoid using messy thermal couple grease or glue, an infrared thermometer is recommended. Most infrared thermometers’ spot size is too large for an accurate reading on small form factor ICs. However, an IR thermometer from Optris has a 1mm spot size, which makes it ideal for the 2mm × 2mm thin DFN package. Also, get the optional stand. The stand makes it easy to hold the beam on the IC for long periods of time.
Evaluation Board Schematic

![Schematic Diagram](image)

Bill of Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
<th>Manufacturer</th>
<th>Description</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2</td>
<td>C1608X5R0J105K</td>
<td>TDK</td>
<td>1µF/6.3V ceramic capacitor, X5R, 0603</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>06036D105KAT2A</td>
<td>AVX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1, R2</td>
<td>CRCW060310K0FKEA</td>
<td>Vishay/Dale</td>
<td>10kΩ, film resistor, 0603, 1%</td>
<td>2</td>
</tr>
<tr>
<td>R3</td>
<td>CRCW06032870FKEA</td>
<td>Vishay/Dale</td>
<td>287Ω film resistor, 0603, 1%</td>
<td>1</td>
</tr>
<tr>
<td>U1</td>
<td>MIC2039xYMT</td>
<td>Micrel</td>
<td>High-accuracy, high-side, adjustable current-limit power switch</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes:

9. TDK: www.tdk.com.
10. AVX: www.avx.com.
11. Vishay: www.vishay.com.
PCB Layout (MIC2039xYMT Evaluation Board)

MIC2039xYMT Evaluation Board – Top Layer

MIC2039xYMT Evaluation Board – Bottom Layer
PCB Layout (MIC2039xYM6 Evaluation Board)

MIC2039xYM6 Evaluation Board – Top Layer

MIC2039xYM6 Evaluation Board – Bottom Layer
Package Information

6-Pin 2mm x 2mm Thin DFN (MT)

Note:
13. Package information is correct as of the publication date. For updates and most current information, go to www.micrel.com.
Package Information\(^{(13)}\) (Continued)

NOTE:
1. Dimensions and tolerances are as per ANSI Y14.5M, 1982.
2. Package surface to be mirror finish.
3. Die is facing up for mold. Die is facing down for trim/form, i.e. reverse trim/form.
4. The foot length measuring is based on the gauge plane method.
△ Dimension are exclusive of mold flash & gate burr.

SOT23-6L (M6)