
User’s Manual
v2.13.02

μC/ TCP-IP TM

The Embedded Protocol Stack

Micriμm

1290 Weston Road, Suite 306

Weston, FL 33326

USA

www.Micrium.com

Designations used by companies to distinguish their products are often claimed as

trademarks. In all instances where Micriμm Press is aware of a trademark claim, the product

name appears in initial capital letters, in all capital letters, or in accordance with the

vendor’s capatilization preference. Readers should contact the appropriate companies for

more complete information on trademarks and trademark registrations. All trademarks and

registerd trademarks in this book are the property of their respective holders.

Copyright © 2013 by Micriμm except where noted otherwise. All rights reserved. Printed in

the United States of America. No part of this publication may be reproduced or distributed

in any form or by any means, or stored in a database or retrieval system, without the prior

written permission of the publisher; with the exception that the program listings may be

entered, stored, and executed in a computer system, but they may not be reproduced for

publication.

The programs and code examples in this book are presented for instructional value. The

programs and examples have been carefully tested, but are not guaranteed to any particular

purpose. The publisher does not offer any warranties and does not guarantee the accuracy,

adequacy, or completeness of any information herein and is not responsible for any errors

and ommissions. The publisher assumes no liability for damages resulting from the use of

the information in this book or for any infringement of the intellectual property rights of

third parties that would result from the use of this information.

600-uC-TCP-IP-010

http://www.micrium.com

Table of Contents

Chapter 1 Introduction to µC/TCP-IP .. 21
1-1 Portable ... 21
1-2 Scalable ... 21
1-3 Coding Standards ... 22
1-4 MISRA C .. 22
1-5 Safety Critical Certi�cation ... 22
1-6 RTOS .. 23
1-7 Network Devices ... 23
1-8 µC/TCP-IP Protocols ... 24
1-9 Application Protocols .. 24

Chapter 2 µC/TCP-IP Architecture .. 26
2-1 µC/TCP-IP Module Relationships ... 28
2-1-1 Application ... 28
2-1-2 µC/LIB Libraries ... 28
2-1-3 BSD Socket API Layer ... 29
2-1-4 TCP/IP Layer .. 29
2-1-5 Network Interface (IF) Layer .. 30
2-1-6 Network Device Driver Layer ... 31
2-1-7 Network Physical (PHY) Layer ... 31
2-1-8 Network Wireless Manager ... 31
2-1-9 CPU Layer .. 31
2-1-10 Real-Time Operating System (RTOS) Layer 32
2-2 Task Model .. 33
2-2-1 µC/TCP-IP Tasks and Priorities ... 33
2-2-2 Receiving a Packet .. 35
2-2-3 Transmitting a Packet .. 38
3

Chapter 3 Directories and Files ... 41
3-1 Block Diagram ... 42
3-2 Application Code ... 43
3-3 CPU .. 45
3-4 Board Support Package (BSP) ... 46
3-5 Network Board Support Package (NET_BSP) 47
3-6 μC/OS-III, CPU Independent Source Code .. 49
3-7 μC/OS-III, CPU Specific Source Code ... 50
3-8 μC/CPU, CPU Specific Source Code ... 51
3-9 μC/LIB, Portable Library Functions .. 53
3-10 μC/TCP-IP Network Devices .. 54
3-11 μC/TCP-IP Network Interface ... 56
3-12 μC/TCP-IP Network File System abstraction layer 57
3-13 μC/TCP-IP Network OS Abstraction Layer .. 58
3-14 μC/TCP-IP Network CPU Specific Code .. 59
3-15 μC/TCP-IP Network CPU Independent Source Code 60
3-16 μC/TCP-IP Network Security Manager CPU Independent Source Code .. 61
3-17 Summary .. 62

Chapter 4 Getting Started with μC/TCP-IP ... 67
4-1 Installing μC/TCP-IP .. 67
4-2 μC/TCP-IP Example Project ... 68
4-3 Application Code ... 69

Chapter 5 Network Interface Configuration .. 77
5-1 Buffer Management .. 77
5-1-1 Network Buffers ... 77
5-1-2 Receive Buffers .. 77
5-1-3 Transmit Buffers ... 78
5-1-4 Network Buffer Architecture .. 78
5-1-5 Network Buffer Sizes ... 80
5-2 μC/TCP-IP Network Interface configuration .. 85
5-2-1 Memory Configuration ... 85
5-2-2 μC/TCP-IP Memory Management ... 89
5-3 Ethernet Interface Configuration .. 90
5-3-1 Ethernet Device Configuration .. 90
5-3-2 Ethernet PHY Configuration .. 92
5-3-3 Adding an Ethernet Interface ... 94
4

5-4 Wireless Interface Configuration .. 98
5-4-1 Wireless Device Configuration .. 98
5-4-2 Adding a Wireless Interface ... 100
5-5 LoopBack Interface Configuration ... 104
5-5-1 Loopback Configuration .. 104
5-5-2 Adding a Loopback Interface .. 107
5-6 Network Interface API ... 108
5-6-1 Configuring an IP Address ... 108
5-6-2 Starting Network Interfaces ... 110
5-6-3 Stopping Network Interfaces ... 111
5-6-4 Getting Network Interface MTU .. 112
5-6-5 Setting Network Interface MTU ... 112
5-6-6 Getting Network Interface Hardware Addresses 113
5-6-7 Setting Network Interface Hardware Address 114
5-6-8 Getting Link State .. 115
5-6-9 Scanning for a Wireless Access Point .. 116
5-6-10 Joining Wireless Access Point .. 117
5-6-11 Creating Wireless Ad Hoc Access Point ... 119
5-6-12 Leaving Wireless Access Point ... 120

Chapter 6 Network Board Support Package .. 121
6-1 Ethernet BSP Layer ... 122
6-1-1 Description of the Ethernet BSP API .. 122
6-1-2 Configuring Clocks for an Ethernet Device 125
6-1-3 Configuring General I/O for an Ethernet Device 125
6-1-4 Configuring the Interrupt Controller for an Ethernet Device 126
6-1-5 Getting a Device Clock Frequency .. 127
6-2 Wireless BSP Layer ... 127
6-2-1 Description of the Wireless BSP API .. 127
6-2-2 Configuring General-Purpose I/O for a Wireless Device 133
6-2-3 Starting a Wireless Device ... 133
6-2-4 Stopping a Wireless Device ... 133
6-2-5 Configuring the Interrupt Controller for a Wireless Device 134
6-2-6 Enabling and Disabling Wireless Interrupt .. 134
6-2-7 Configuring the SPI Interface .. 135
6-2-8 Setting SPI Controller for a Wireless device 135
6-2-9 Locking and Unlocking SPI Bus .. 136
6-2-10 Enabling and Disabling SPI Chip select .. 136
5

6-2-11 Writing and Reading to the SPI Bus .. 136
6-3 Specifying the Interface Number of the Device ISR 137
6-4 Miscellaneous Network BSP .. 138

Chapter 7 Device Driver Implementation .. 139
7-1 Concepts ... 140
7-2 Overview of the μC/TCP-IP Interface Layers 142
7-2-1 Configuration Structures and APIs interactions 142
7-2-2 μC/TCP-IP Memory Management ... 146
7-2-3 Interrupt Handling .. 149
7-2-4 Network Packet Reception Overview ... 151
7-2-5 Network Packet Transmission Overview .. 152
7-3 Ethernet Layers Interactions ... 154
7-4 Ethernet PHY API Implementation ... 155
7-4-1 Description of the Ethernet PHY API .. 155
7-4-2 How to Initialize the PHY ... 156
7-4-3 How Enable Or Disable the PHY ... 156
7-4-4 How to Get the Network Link State ... 156
7-4-5 How to Set the Link Speed and Duplex .. 157
7-4-6 How to Specify the Address of the PHY ISR 157
7-4-7 NetPhy_ISR_Handler() .. 157
7-5 Ethernet Device Driver Implementation ... 158
7-5-1 Description of the Ethernet Device Driver API 158
7-5-2 Initializing a network device .. 161
7-5-3 Starting a Network Device ... 162
7-5-4 Stopping a Network Device ... 163
7-5-5 NetDev_ISR_Handler() ... 164
7-5-6 Receiving Packets on a Network Device .. 165
7-5-7 Transmitting Packets on a Network Device 166
7-5-8 Adding an Address to Multicast Address Filter of a Network Device 166
7-5-9 Removing an Address from Multicast Address Filter of a Network Device .. 170
7-5-10 Setting the MAC Link, Duplex and Speed Settings 171
7-5-11 Reading PHY Registers ... 171
7-5-12 Writing to PHY Registers ... 171
7-6 Ethernet - Transmitting & Receiving using DMA 172
7-6-1 Driver Data & Control Using DMA ... 174
7-6-2 Reception using DMA .. 174
7-6-3 Reception Using DMA with Lists ... 185
6

7-6-4 Transmission using DMA ... 196
7-7 Ethernet - Transmitting and Receiving using Memory Copy 204
7-7-1 Reception using Memory Copy ... 204
7-7-2 Transmission using Memory Copy .. 209
7-8 Wireless Layers Interaction .. 211
7-9 Wireless Manager API Implementation .. 212
7-10 Wireless Device Driver Implementation ... 216
7-10-1 Description of the Wireless Device Driver API 216
7-10-2 How to Access the SPI Bus ... 217
7-10-3 Initializing a Network Device ... 218
7-10-4 Starting a Network Device .. 219
7-10-5 Stopping a Network Device ... 221
7-10-6 Handling a Wireless Device ISR .. 221
7-10-7 Receiving Packets and Management Frames 222
7-10-8 Transmitting Packets ... 225
7-10-9 Adding an Address to Multicast Address Filter of a Network Device 226
7-10-10 Removing an Address from Multicast Address Filter of a Network Device .. 226
7-10-11 How to Demultiplex Management Frames 226
7-10-12 How to Execute Management Command ... 227
7-10-13 How to Process Management Response ... 228

Chapter 8 Device Driver Validation .. 229
8-1 Checklist .. 230
8-2 Test Management Interface .. 230
8-2-1 NDIT Main Window .. 232
8-2-2 General Options Tab .. 234
8-3 Validating a Device Driver ... 234
8-3-1 Files Needed .. 235
8-3-2 Project Example ... 236
8-3-3 Hardware Address configuration .. 237
8-3-4 IF Start / Stop ... 239
8-3-5 ICMP Echo Request (Ping) Tests .. 241
8-3-6 Target Board Configuration ... 242
8-4 Using IPerf ... 242
8-4-1 Getting Started with IPerf .. 243
8-4-2 IPerf Tools .. 244
8-5 IPerf Test Case .. 253
8-5-1 Testing UDP Transmission .. 257
7

8-5-2 Testing UDP Reception ... 260
8-5-3 Testing TCP Transmission ... 264
8-5-4 Testing TCP Reception .. 265
8-6 Multicast .. 268
8-6-1 Multicast Test Setup .. 268
8-6-2 Multicast Test Using NDIT ... 269
8-6-3 Analyzing the Results .. 270

Chapter 9 Socket Programming .. 273
9-1 Network Socket Data Structures .. 273
9-2 Complete send() Operation ... 276
9-3 Socket Applications .. 277
9-3-1 Datagram Socket (UDP Socket) .. 278
9-3-2 Stream Socket (TCP Socket) ... 283
9-4 Socket Configuration .. 289
9-4-1 Socket Options .. 290
9-5 Secure Sockets ... 291
9-6 2MSL .. 291
9-7 μC/TCP-IP Socket Error Codes .. 292
9-7-1 Fatal Socket Error Codes .. 292
9-7-2 Socket Error Code List .. 292

Chapter 10 Timer Management ... 293

Chapter 11 Debug Management .. 296
11-1 Network Debug Information Constants ... 296
11-2 Network Debug Monitor Task ... 297

Chapter 12 Statistics and Error Counters ... 298
12-1 Statistics .. 298
12-2 Error Counters ... 300

Appendix A μC/TCP-IP Ethernet Device Driver APIs ... 301
A-1 Device Driver Functions for MAC ... 302
A-1-1 NetDev_Init() ... 302
A-1-2 NetDev_Start() .. 305
8

A-1-3 NetDev_Stop() .. 308
A-1-4 NetDev_Rx() .. 310
A-1-5 NetDev_Tx() .. 312
A-1-6 NetDev_AddrMulticastAdd() .. 314
A-1-7 NetDev_AddrMulticastRemove() ... 318
A-1-8 NetDev_ISR_Handler() ... 320
A-1-9 NetDev_IO_Ctrl() ... 322
A-1-10 NetDev_MII_Rd() .. 324
A-1-11 NetDev_MII_Wr() ... 326
A-2 Device Driver Functions for PHY .. 328
A-2-1 NetPhy_Init() ... 328
A-2-2 NetPhy_EnDis() ... 330
A-2-3 NetPhy_LinkStateGet() ... 331
A-2-4 NetPhy_LinkStateSet() ... 333
A-2-5 NetPhy_ISR_Handler() .. 335
A-3 Device Driver BSP Functions .. 336
A-3-1 NetDev_CfgClk() ... 336
A-3-2 NetDev_CfgGPIO() ... 338
A-3-3 NetDev_CfgIntCtrl() .. 340
A-3-4 NetDev_ClkGetFreq() ... 344
A-3-5 NetDev_ISR_Handler() ... 346

Appendix B μC/TCP-IP Wireless Device Driver APIs ... 349
B-1 Device Driver Functions for Wireless Module 350
B-1-1 NetDev_Init() ... 350
B-1-2 NetDev_Start() .. 352
B-1-3 NetDev_Stop() .. 355
B-1-4 NetDev_Rx() .. 357
B-1-5 NetDev_Tx() .. 360
B-1-6 NetDev_AddrMulticastAdd() .. 362
B-1-7 NetDev_AddrMulticastRemove() ... 366
B-1-8 NetDev_ISR_Handler() ... 368
B-1-9 NetDev_MgmtDemux() ... 370
B-1-10 NetDev_MgmtExecuteCmd() ... 372
B-1-11 NetDev_MgmtProcessResp() .. 374
B-2 Wireless Manager API ... 376
B-2-1 NetWiFiMgr_Init() .. 376
B-2-2 NetWiFiMgr_Start() ... 377
9

B-2-3 NetWiFiMgr_Stop() ... 378
B-2-4 NetWiFiMgr_AP_Scan() .. 379
B-2-5 NetWiFiMgr_AP_Join() ... 381
B-2-6 NetWiFiMgr_AP_Leave() .. 382
B-2-7 NetWiFiMgr_IO_Ctrl() ... 383
B-2-8 NetWiFiMgr_Mgmt() ... 385
B-3 Device Driver BSP Functions .. 387
B-3-1 NetDev_WiFi_Start() ... 387
B-3-2 NetDev_WiFi_Stop() ... 389
B-3-3 NetDev_WiFi_CfgGPIO() .. 391
B-3-4 NetDev_WiFi_CfgIntCtrl() ... 393
B-3-5 NetDev_WiFi_IntCtrl() ... 397
B-3-6 NetDev_WiFi_SPI_Init() .. 399
B-3-7 NetDev_WiFi_SPI_Lock() ... 401
B-3-8 NetDev_WiFi_SPI_Unlock() .. 403
B-3-9 NetDev_WiFi_SPI_WrRd() .. 405
B-3-10 NetDev_WiFi_SPI_ChipSelEn() .. 407
B-3-11 NetDev_WiFi_SPI_ChipSelDis() ... 409
B-3-12 NetDev_WiFi_SPI_Cfg() .. 411
B-3-13 NetDev_WiFi_ISR_Handler() .. 414

Appendix C μC/TCP-IP API Reference ... 417
C-1 General Network Functions .. 418
C-1-1 Net_Init() ... 418
C-1-2 Net_InitDflt() .. 419
C-1-3 Net_VersionGet() .. 420
C-2 Network Application Interface Functions ... 422
C-2-1 NetApp_SockAccept() (TCP) ... 422
C-2-2 NetApp_SockBind() (TCP/UDP) ... 424
C-2-3 NetApp_SockClose() (TCP/UDP) ... 426
C-2-4 NetApp_SockConn() (TCP/UDP) .. 428
C-2-5 NetApp_SockListen() (TCP) ... 430
C-2-6 NetApp_SockOpen() (TCP/UDP) ... 432
C-2-7 NetApp_SockRx() (TCP/UDP) .. 434
C-2-8 NetApp_SockTx() (TCP/UDP) .. 437
C-2-9 NetApp_TimeDly_ms() .. 440
C-3 ARP Functions ... 441
C-3-1 NetARP_CacheCalcStat() .. 441
10

C-3-2 NetARP_CacheGetAddrHW() ... 442
C-3-3 NetARP_CachePoolStatGet() .. 444
C-3-4 NetARP_CachePoolStatResetMaxUsed() ... 445
C-3-5 NetARP_CfgCacheAccessedTh() .. 446
C-3-6 NetARP_CfgCacheTimeout() ... 447
C-3-7 NetARP_CfgReqMaxRetries() .. 448
C-3-8 NetARP_CfgReqTimeout() ... 449
C-3-9 NetARP_IsAddrProtocolConflict() ... 450
C-3-10 NetARP_ProbeAddrOnNet() ... 451
C-4 Network ASCII Functions .. 453
C-4-1 NetASCII_IP_to_Str() .. 453
C-4-2 NetASCII_MAC_to_Str() ... 455
C-4-3 NetASCII_Str_to_IP() .. 457
C-4-4 NetASCII_Str_to_MAC() ... 459
C-5 Network Buffer Functions ... 461
C-5-1 NetBuf_PoolStatGet() ... 461
C-5-2 NetBuf_PoolStatResetMaxUsed() ... 462
C-5-3 NetBuf_RxLargePoolStatGet() ... 463
C-5-4 NetBuf_RxLargePoolStatResetMaxUsed() 464
C-5-5 NetBuf_TxLargePoolStatGet() ... 465
C-5-6 NetBuf_TxLargePoolStatResetMaxUsed() .. 466
C-5-7 NetBuf_TxSmallPoolStatGet() ... 467
C-5-8 NetBuf_TxSmallPoolStatResetMaxUsed() .. 468
C-6 Network Connection Functions .. 469
C-6-1 NetConn_CfgAccessedTh() ... 469
C-6-2 NetConn_PoolStatGet() .. 470
C-6-3 NetConn_PoolStatResetMaxUsed() .. 471
C-7 Network Debug Functions .. 472
C-7-1 NetDbg_CfgMonTaskTime() ... 472
C-7-2 NetDbg_CfgRsrcARP_CacheThLo() .. 473
C-7-3 NetDbg_CfgRsrcBufThLo() .. 474
C-7-4 NetDbg_CfgRsrcBufRxLargeThLo() .. 475
C-7-5 NetDbg_CfgRsrcBufTxLargeThLo() ... 476
C-7-6 NetDbg_CfgRsrcBufTxSmallThLo() ... 477
C-7-7 NetDbg_CfgRsrcConnThLo() ... 478
C-7-8 NetDbg_CfgRsrcSockThLo() ... 479
C-7-9 NetDbg_CfgRsrcTCP_ConnThLo() .. 480
C-7-10 NetDbg_CfgRsrcTmrThLo() ... 481
11

C-7-11 NetDbg_ChkStatus() .. 482
C-7-12 NetDbg_ChkStatusBufs() ... 484
C-7-13 NetDbg_ChkStatusConns() .. 485
C-7-14 NetDbg_ChkStatusRsrcLost() / NetDbg_MonTaskStatusGetRsrcLost() .. 488
C-7-15 NetDbg_ChkStatusRsrcLo() / NetDbg_MonTaskStatusGetRsrcLo() .. 490
C-7-16 NetDbg_ChkStatusTCP() ... 492
C-7-17 NetDbg_ChkStatusTmrs() .. 494
C-7-18 NetDbg_MonTaskStatusGetRsrcLost() ... 496
C-7-19 NetDbg_MonTaskStatusGetRsrcLo() .. 496
C-8 ICMP Functions ... 497
C-8-1 NetICMP_CfgTxSrcQuenchTh() ... 497
C-9 Network Interface Functions .. 498
C-9-1 NetIF_Add() ... 498
C-9-2 NetIF_AddrHW_Get() .. 501
C-9-3 NetIF_AddrHW_IsValid() ... 503
C-9-4 NetIF_AddrHW_Set() .. 505
C-9-5 NetIF_CfgPerfMonPeriod() ... 507
C-9-6 NetIF_CfgPhyLinkPeriod() ... 508
C-9-7 NetIF_GetRxDataAlignPtr() .. 509
C-9-8 NetIF_GetTxDataAlignPtr() .. 512
C-9-9 NetIF_IO_Ctrl() .. 515
C-9-10 NetIF_IsEn() .. 517
C-9-11 NetIF_IsEnCfgd() .. 518
C-9-12 NetIF_ISR_Handler() ... 519
C-9-13 NetIF_IsValid() ... 521
C-9-14 NetIF_IsValidCfgd() ... 522
C-9-15 NetIF_LinkStateGet() .. 523
C-9-16 NetIF_LinkStateWaitUntilUp() .. 524
C-9-17 NetIF_MTU_Get() .. 526
C-9-18 NetIF_MTU_Set() .. 527
C-9-19 NetIF_Start() ... 528
C-9-20 NetIF_Stop() .. 529
C-10 Wireless Network Interface Function ... 530
C-10-1 NetIF_WiFi_Scan() .. 530
C-10-2 NetIF_WiFi_Join() ... 532
C-10-3 NetIF_WiFi_CreateAdhoc() ... 535
C-10-4 NetIF_WiFi_Leave() .. 538
C-11 IGMP Functions ... 539
12

C-11-1 NetIGMP_HostGrpJoin() .. 539
C-11-2 NetIGMP_HostGrpLeave() ... 541
C-12 IP Functions ... 542
C-12-1 NetIP_CfgAddrAdd() .. 542
C-12-2 NetIP_CfgAddrAddDynamic() .. 544
C-12-3 NetIP_CfgAddrAddDynamicStart() .. 546
C-12-4 NetIP_CfgAddrAddDynamicStop() .. 548
C-12-5 NetIP_CfgAddrRemove() .. 549
C-12-6 NetIP_CfgAddrRemoveAll() ... 551
C-12-7 NetIP_CfgFragReasmTimeout() ... 552
C-12-8 NetIP_GetAddrDfltGateway() ... 553
C-12-9 NetIP_GetAddrHost() ... 554
C-12-10 NetIP_GetAddrHostCfgd() ... 556
C-12-11 NetIP_GetAddrSubnetMask() .. 557
C-12-12 NetIP_IsAddrBroadcast() ... 558
C-12-13 NetIP_IsAddrClassA() ... 559
C-12-14 NetIP_IsAddrClassB() ... 560
C-12-15 NetIP_IsAddrClassC() .. 561
C-12-16 NetIP_IsAddrHost() .. 562
C-12-17 NetIP_IsAddrHostCfgd() .. 563
C-12-18 NetIP_IsAddrLocalHost() ... 564
C-12-19 NetIP_IsAddrLocalLink() .. 565
C-12-20 NetIP_IsAddrsCfgdOnIF() .. 566
C-12-21 NetIP_IsAddrThisHost() .. 567
C-12-22 NetIP_IsValidAddrHost() ... 568
C-12-23 NetIP_IsValidAddrHostCfgd() .. 569
C-12-24 NetIP_IsValidAddrSubnetMask() ... 571
C-13 Network Socket Functions ... 572
C-13-1 NetSock_Accept() / accept() (TCP) .. 572
C-13-2 NetSock_Bind() / bind() (TCP/UDP) ... 574
C-13-3 NetSock_CfgBlock() (TCP/UDP) .. 577
C-13-4 NetSock_CfgIF() ... 579
C-13-5 NetSock_CfgConnChildQ_SizeGet() (TCP) 580
C-13-6 NetSock_CfgConnChildQ_SizeSet() (TCP) .. 582
C-13-7 NetSock_CfgSecure() (TCP) ... 584
C-13-8 NetSock_CfgServerCertKeyInstall() (TCP) .. 586
C-13-9 NetSock_CfgSecureClientCommonName() (TCP) 588
C-13-10 NetSock_CfgSecureClientTrustCallBack() (TCP) 590
13

C-13-11 NetSock_CfgRxQ_Size() (TCP/UDP) ... 592
C-13-12 NetSock_CfgTxQ_Size() (TCP/UDP) .. 594
C-13-13 NetSock_CfgTxIP_TOS() (TCP/UDP) ... 596
C-13-14 NetSock_CfgTxIP_TTL() (TCP/UDP) .. 598
C-13-15 NetSock_CfgTxIP_TTL_Multicast() (TCP/UDP) 600
C-13-16 NetSock_CfgTimeoutConnAcceptDflt() (TCP) 602
C-13-17 NetSock_CfgTimeoutConnAcceptGet_ms() (TCP) 604
C-13-18 NetSock_CfgTimeoutConnAcceptSet() (TCP) 606
C-13-19 NetSock_CfgTimeoutConnCloseDflt() (TCP) 608
C-13-20 NetSock_CfgTimeoutConnCloseGet_ms() (TCP) 610
C-13-21 NetSock_CfgTimeoutConnCloseSet() (TCP) 612
C-13-22 NetSock_CfgTimeoutConnReqDflt() (TCP) 614
C-13-23 NetSock_CfgTimeoutConnReqGet_ms() (TCP) 616
C-13-24 NetSock_CfgTimeoutConnReqSet() (TCP) .. 618
C-13-25 NetSock_CfgTimeoutRxQ_Dflt() (TCP/UDP) 620
C-13-26 NetSock_CfgTimeoutRxQ_Get_ms() (TCP/UDP) 622
C-13-27 NetSock_CfgTimeoutRxQ_Set() (TCP/UDP) 624
C-13-28 NetSock_CfgTimeoutTxQ_Dflt() (TCP) .. 626
C-13-29 NetSock_CfgTimeoutTxQ_Get_ms() (TCP) 628
C-13-30 NetSock_CfgTimeoutTxQ_Set() (TCP) ... 630
C-13-31 NetSock_Close() / close() (TCP/UDP) .. 632
C-13-32 NetSock_Conn() / connect() (TCP/UDP) .. 634
C-13-33 NET_SOCK_DESC_CLR() / FD_CLR() (TCP/UDP) 637
C-13-34 NET_SOCK_DESC_COPY() (TCP/UDP) ... 639
C-13-35 NET_SOCK_DESC_INIT() / FD_ZERO() (TCP/UDP) 640
C-13-36 NET_SOCK_DESC_IS_SET() / FD_IS_SET() (TCP/UDP) 641
C-13-37 NET_SOCK_DESC_SET() / FD_SET() (TCP/UDP) 643
C-13-38 NetSock_GetConnTransportID() .. 644
C-13-39 NetSock_IsConn() (TCP/UDP) ... 646
C-13-40 NetSock_Listen() / listen() (TCP) .. 648
C-13-41 NetSock_Open() / socket() (TCP/UDP) .. 650
C-13-42 NetSock_OptGet() .. 653
C-13-43 NetSock_OptSet() ... 655
C-13-44 NetSock_PoolStatGet() .. 657
C-13-45 NetSock_PoolStatResetMaxUsed() ... 658
C-13-46 NetSock_RxData() / recv() (TCP) NetSock_RxDataFrom() / recvfrom() (UDP) .. 659
C-13-47 NetSock_Sel() / select() (TCP/UDP) ... 663
C-13-48 NetSock_TxData() / send() (TCP) NetSock_TxDataTo() / sendto() (UDP) .. 666
14

C-14 TCP Functions ... 671
C-14-1 NetTCP_ConnCfgIdleTimeout() ... 671
C-14-2 NetTCP_ConnCfgMaxSegSizeLocal() ... 673
C-14-3 NetTCP_ConnCfgReTxMaxTh() ... 675
C-14-4 NetTCP_ConnCfgReTxMaxTimeout() ... 677
C-14-5 NetTCP_ConnCfgRxWinSize() ... 679
C-14-6 NetTCP_ConnCfgTxWinSize() ... 681
C-14-7 NetTCP_ConnCfgTxAckImmedRxdPushEn() 683
C-14-8 NetTCP_ConnCfgTxNagleEn() ... 685
C-14-9 NetTCP_ConnCfgTxKeepAliveEn() .. 687
C-14-10 NetTCP_ConnCfgTxKeepAliveTh() .. 689
C-14-11 NetTCP_ConnCfgTxKeepAliveRetryTimeout() 691
C-14-12 NetTCP_ConnCfgTxAckDlyTimeout() ... 693
C-14-13 NetTCP_ConnCfgMSL_Timeout() .. 695
C-14-14 NetTCP_ConnPoolStatGet() .. 697
C-14-15 NetTCP_ConnPoolStatResetMaxUsed() ... 698
C-14-16 NetTCP_InitTxSeqNbr() .. 699
C-15 Network Timer Functions .. 700
C-15-1 NetTmr_PoolStatGet() .. 700
C-15-2 NetTmr_PoolStatResetMaxUsed() .. 701
C-16 UDP Functions .. 702
C-16-1 NetUDP_RxAppData() .. 702
C-16-2 NetUDP_RxAppDataHandler() ... 704
C-16-3 NetUDP_TxAppData() .. 706
C-17 General Network Utility Functions .. 709
C-17-1 NET_UTIL_HOST_TO_NET_16() ... 709
C-17-2 NET_UTIL_HOST_TO_NET_32() ... 710
C-17-3 NET_UTIL_NET_TO_HOST_16() ... 711
C-17-4 NET_UTIL_NET_TO_HOST_32() ... 712
C-17-5 NetUtil_TS_Get() ... 713
C-17-6 NetUtil_TS_Get_ms() .. 714
C-18 BSD Functions ... 715
C-18-1 accept() (TCP) ... 715
C-18-2 bind() (TCP/UDP) .. 715
C-18-3 close() (TCP/UDP) .. 716
C-18-4 connect() (TCP/UDP) .. 716
C-18-5 FD_CLR() (TCP/UDP) ... 717
C-18-6 FD_ISSET() (TCP/UDP) ... 717
15

C-18-7 FD_SET() (TCP/UDP) .. 718
C-18-8 FD_ZERO() (TCP/UDP) ... 718
C-18-9 getsockopt() (TCP/UDP) .. 719
C-18-10 htonl() .. 721
C-18-11 htons() ... 721
C-18-12 inet_addr() (IPv4) .. 722
C-18-13 inet_aton() (IPv4) ... 724
C-18-14 inet_ntoa() (IPv4) ... 727
C-18-15 listen() (TCP) ... 729
C-18-16 ntohl() .. 729
C-18-17 ntohs() ... 730
C-18-18 recv() / recvfrom() (TCP/UDP) .. 730
C-18-19 select() (TCP/UDP) ... 731
C-18-20 send() / sendto() (TCP/UDP) .. 731
C-18-21 setsockopt() (TCP/UDP) ... 732
C-18-22 socket() (TCP/UDP) .. 734

Appendix D μC/TCP-IP Configuration and Optimization ... 735
D-1 Network Configuration .. 736
D-1-1 NET_CFG_INIT_CFG_VALS .. 736
D-1-2 NET_CFG_OPTIMIZE ... 740
D-1-3 NET_CFG_OPTIMIZE_ASM_EN ... 740
D-1-4 NET_CFG_BUILD_LIB_EN ... 741
D-2 Debug Configuration ... 742
D-2-1 NET_DBG_CFG_INFO_EN ... 742
D-2-2 NET_DBG_CFG_STATUS_EN ... 742
D-2-3 NET_DBG_CFG_MEM_CLR_EN .. 743
D-2-4 NET_DBG_CFG_TEST_EN ... 743
D-3 Argument Checking Configuration ... 744
D-3-1 NET_ERR_CFG_ARG_CHK_EXT_EN ... 744
D-3-2 NET_ERR_CFG_ARG_CHK_DBG_EN .. 744
D-4 Network Counter Configuration .. 745
D-4-1 NET_CTR_CFG_STAT_EN .. 745
D-4-2 NET_CTR_CFG_ERR_EN ... 745
D-5 Network Timer Configuration .. 746
D-5-1 NET_TMR_CFG_NBR_TMR ... 746
D-5-2 NET_TMR_CFG_TASK_FREQ .. 747
D-6 Network Buffer Configuration ... 747
16

D-7 Network Interface Layer Configuration .. 748
D-7-1 NET_IF_CFG_MAX_NBR_IF ... 748
D-7-2 NET_IF_CFG_LOOPBACK_EN ... 748
D-7-3 NET_IF_CFG_ETHER_EN ... 748
D-7-4 NET_IF_CFG_WIFI_EN ... 748
D-7-5 NET_IF_CFG_ADDR_FLTR_EN .. 749
D-7-6 NET_IF_CFG_TX_SUSPEND_TIMEOUT_MS 749
D-8 ARP (Address Resolution Protocol) Configuration 750
D-8-1 NET_ARP_CFG_HW_TYPE .. 750
D-8-2 NET_ARP_CFG_PROTOCOL_TYPE .. 750
D-8-3 NET_ARP_CFG_NBR_CACHE ... 750
D-8-4 NET_ARP_CFG_ADDR_FLTR_EN .. 751
D-9 IP (Internet Protocol) Configuration .. 752
D-9-1 NET_IP_CFG_IF_MAX_NBR_ADDR ... 752
D-9-2 NET_IP_CFG_MULTICAST_SEL .. 752
D-10 ICMP (Internet Control Message Protocol) Configuration 753
D-10-1 NET_ICMP_CFG_TX_SRC_QUENCH_EN .. 753
D-10-2 NET_ICMP_CFG_TX_SRC_QUENCH_NBR 753
D-11 IGMP (Internet Group Management Protocol) Configuration 754
D-11-1 NET_IGMP_CFG_MAX_NBR_HOST_GRP ... 754
D-12 Transport Layer Configuration .. 755
D-12-1 NET_CFG_TRANSPORT_LAYER_SEL ... 755
D-13 UDP (User Datagram Protocol) Configuration 756
D-13-1 NET_UDP_CFG_APP_API_SEL ... 756
D-13-2 NET_UDP_CFG_RX_CHK_SUM_DISCARD_EN 757
D-13-3 NET_UDP_CFG_TX_CHK_SUM_EN .. 757
D-14 TCP (Transport Control Protocol) Configuration 758
D-14-1 NET_TCP_CFG_NBR_CONN ... 758
D-14-2 NET_TCP_CFG_RX_WIN_SIZE_OCTET .. 758
D-14-3 NET_TCP_CFG_TX_WIN_SIZE_OCTET ... 758
D-14-4 NET_TCP_CFG_TIMEOUT_CONN_MAX_SEG_SEC 758
D-14-5 NET_TCP_CFG_TIMEOUT_CONN_FIN_WAIT_2_SEC 759
D-14-6 NET_TCP_CFG_TIMEOUT_CONN_ACK_DLY_MS 759
D-14-7 NET_TCP_CFG_TIMEOUT_CONN_RX_Q_MS 759
D-14-8 NET_TCP_CFG_TIMEOUT_CONN_TX_Q_MS 759
D-15 Network Socket Configuration ... 760
D-15-1 NET_SOCK_CFG_FAMILY .. 760
D-15-2 NET_SOCK_CFG_NBR_SOCK ... 760
17

D-15-3 NET_SOCK_CFG_BLOCK_SEL ... 761
D-15-4 NET_SOCK_CFG_SEL_EN ... 761
D-15-5 NET_SOCK_CFG_SEL_NBR_EVENTS_MAX 762
D-15-6 NET_SOCK_CFG_CONN_ACCEPT_Q_SIZE_MAX 762
D-15-7 NET_SOCK_CFG_PORT_NBR_RANDOM_BASE 762
D-15-8 NET_SOCK_CFG_RX_Q_SIZE_OCTET ... 762
D-15-9 NET_SOCK_CFG_TX_Q_SIZE_OCTET .. 763
D-15-10 NET_SOCK_CFG_TIMEOUT_RX_Q_MS .. 763
D-15-11 NET_SOCK_CFG_TIMEOUT_CONN_REQ_MS 763
D-15-12 NET_SOCK_CFG_TIMEOUT_CONN_ACCEPT_MS 763
D-15-13 NET_SOCK_CFG_TIMEOUT_CONN_CLOSE_MS 763
D-16 Network Security Manager Configuration .. 764
D-16-1 NET_SECURE_CFG_EN ... 764
D-16-2 NET_SECURE_CFG_FS_EN ... 764
D-16-3 NET_SECURE_CFG_MAX_NBR_SOCK_SERVER 764
D-16-4 NET_SECURE_CFG_MAX_NBR_SOCK_CLIENT 765
D-16-5 NET_SECURE_CFG_MAX_CERT_LEN .. 765
D-16-6 NET_SECURE_CFG_MAX_KEY_LEN .. 765
D-16-7 NET_SECURE_CFG_MAX_NBR_CA .. 765
D-16-8 NET_SECURE_CFG_MAX_CA_CERT_LEN 766
D-17 BSD Sockets Configuration .. 767
D-17-1 NET_BSD_CFG_API_EN .. 767
D-18 Network Application Interface Configuration 768
D-18-1 NET_APP_CFG_API_EN ... 768
D-19 Network Connection Manager Configuration 769
D-19-1 NET_CONN_CFG_FAMILY ... 769
D-19-2 NET_CONN_CFG_NBR_CONN .. 769
D-20 Application-Specific Configuration .. 770
D-20-1 Operating System Configuration ... 770
D-20-2 μC/TCP-IP Configuration ... 771
D-21 μC/TCP-IP Optimization ... 773
D-21-1 Optimizing μC/TCP-IP for Additional Performance 773

Appendix E μC/TCP-IP Error Codes ... 775
E-1 Network Error Codes .. 776
E-2 ARP Error Codes ... 776
E-3 Network ASCII Error Codes .. 777
E-4 Network Buffer Error Codes ... 777
18

E-5 ICMP Error Codes ... 778
E-6 Network Interface Error Codes ... 778
E-7 IP Error Codes ... 778
E-8 IGMP Error Codes ... 779
E-9 OS Error Codes ... 779
E-10 UDP Error Codes ... 780
E-11 Network Socket Error Codes .. 780
E-12 Network Security Manager Error Codes .. 782
E-13 Network security Error Codes .. 782

Appendix F μC/TCP-IP Typical Usage ... 783
F-1 μC/TCP-IP Configuration and Initialization .. 783
F-1-1 μC/TCP-IP Stack Configuration .. 783
F-1-2 μC/LIB Memory Heap Initialization ... 783
F-1-3 μC/TCP-IP Task Stacks ... 786
F-1-4 μC/TCP-IP Task Priorities .. 787
F-1-5 μC/TCP-IP Queue Sizes ... 787
F-1-6 μC/TCP-IP Initialization .. 788
F-2 Network Interfaces, Devices, and Buffers ... 791
F-2-1 Network Interface Configuration ... 791
F-2-2 Network and Device Buffer Configuration .. 792
F-2-3 Ethernet MAC Address .. 798
F-2-4 Ethernet PHY Link State .. 801
F-3 IP Address Configuration .. 803
F-3-1 Converting IP Addresses to / from Their Dotted Decimal Representation .. 803
F-3-2 Assigning Static IP Addresses to an Interface 803
F-3-3 Removing Statically Assigned IP Addresses from an Interface 804
F-3-4 Getting a Dynamic IP Address .. 804
F-3-5 Getting all the IP Addresses Configured on a Specific Interface 804
F-4 Socket Programming .. 804
F-4-1 Using μC/TCP-IP Sockets ... 804
F-4-2 Joining and Leaving an IGMP Host Group 805
F-4-3 Transmitting to a Multicast IP Group Address 805
F-4-4 Receiving from a Multicast IP Group .. 806
F-4-5 The Application Receives Socket Errors Immediately After Reboot 807
F-4-6 Reducing the Number of Transitory Errors (NET_ERR_TX) 807
F-4-7 Controlling Socket Blocking Options .. 807
F-4-8 Detecting if a Socket is Still Connected to a Peer 808
19

F-4-9 Receiving -1 Instead of 0 When Calling recv() for a Closed Socket .. 808
F-4-10 Determine the Interface for Received UDP Datagram 808
F-5 μC/TCP-IP Statistics and Debug .. 809
F-5-1 Performance Statistics During Run-Time ... 809
F-5-2 Viewing Error and Statistics Counters .. 810
F-5-3 Using Network Debug Functions to Check Network Status Conditions .. 810
F-6 Using Network Security Manager ... 810
F-6-1 Keying material installation ... 811
F-6-2 Securing a socket .. 813
F-7 Miscellaneous .. 814
F-7-1 Sending and Receiving ICMP Echo Requests from the Target 814
F-7-2 TCP Keep-Alives .. 814
F-7-3 Using μC/TCP-IP for Inter-Process Communication 814

Appendix G Bibliography .. 815

Index .. 816
20

Chapter

1

Introduction to μC/TCP-IP

μC/TCP-IP is a compact, reliable, high-performance TCP/IP protocol stack. Built from the

ground up with Micrium’s unique combination of quality, scalability and reliability,

μC/TCP-IP, the result of many man-years of development, enables the rapid configuration of

required network options to minimize time to market.

The source code for μC/TCP-IP contains over 100,000 lines of the cleanest, most consistent

ANSI C source code available in a TCP/IP stack implementation. C was chosen since C is the

predominant language in the embedded industry. Over 50% of the code consists of

comments and most global variables and all functions are described. References to RFC

(Request For Comments) are included in the code where applicable.

1-1 PORTABLE

μC/TCP-IP is ideal for resource-constrained embedded applications. The code was designed

for use with nearly any CPU, RTOS, and network device. Although μC/TCP-IP can work on

some 8 and 16-bit processors, μC/TCP-IP is optimized for use with 32 or 64-bit CPUs.

1-2 SCALABLE

The memory footprint of μC/TCP-IP can be adjusted at compile time depending on the

features required, and the desired level of run-time argument checking appropriate for the

design at hand. SinceμC/TCP-IP is rich in its ability to provide statistics computation,

unnecessary statistics computation can be disabled to further reduce the footprint.
21

Coding Standards
1-3 CODING STANDARDS

Coding standards were established early in the design of μC/TCP-IP. They include:

■ C coding style

■ Naming convention for #define constants, macros, variables and functions

■ Commenting

■ Directory structure

These conventions make μC/TCP-IP the preferred TCP/IP stack implementation in the

industry, and result in the ability to attain third party certification more easily as outlined in

the next section.

1-4 MISRA C

The source code for μC/TCP-IP follows Motor Industry Software Reliability Association

(MISRA) C Coding Standards. These standards were created by MISRA to improve the

reliability and predictability of C programs in safety-critical automotive systems. Members of

the MISRA consortium include such companies as Delco Electronics, Ford Motor Company,

Jaguar Cars Ltd., Lotus Engineering, Lucas Electronics, Rolls-Royce, Rover Group Ltd., and

universities dedicated to improving safety and reliability in automotive electronics. Full

details of this standard can be obtained directly from the MISRA web site at:

www.misra.org.uk.

1-5 SAFETY CRITICAL CERTIFICATION

μC/TCP-IP was designed from the ground up to be certifiable for use in avionics, medical

devices, and other safety-critical products. Validated Software’s Validation Suite™ for

μC/TCP-IP will provide all of the documentation required to deliver μC/TCP-IP as a

pre-certifiable software component for avionics RTCA DO-178B and EUROCAE ED-12B,

medical FDA 510(k), IEC 61508 industrial control systems, and EN-50128 rail transportation

and nuclear systems. The Validation Suite, available through Validated Software, will be
22

RTOS
immediately certifiable for DO-178B Level A, Class III medical devices, and SIL3/SIL4

IEC-certified systems. For more information, check out the μC/TCP-IP page on the Validated

Software web site at: www.ValidatedSoftware.com.

If your product is not safety critical, however, the presence of certification should be

viewed as proof that μC/TCP-IP is very robust and highly reliable.

1-6 RTOS

μC/TCP-IP assumes the presence of an RTOS, yet there are no assumptions as to which

RTOS to use with μC/TCP-IP. The only requirements are that it must:

■ Be able to support multiple tasks

■ Provide binary and counting semaphore management services

■ Provide message queue services

μC/TCP-IP contains an encapsulation layer that allows for the use of almost any commercial

or open source RTOS. Details regarding the RTOS are hidden from μC/TCP-IP. μC/TCP-IP

includes the encapsulation layer for μC/OS-II and μC/OS-III real-time kernels.

1-7 NETWORK DEVICES

μC/TCP-IP may be configured with multiple-network devices and network (IP) addresses.

Any device may be used as long as a driver with appropriate API and BSP software is

provided. The API for a specific device (i.e., chip) is encapsulated in a couple of files and it

is quite easy to adapt devices to μC/TCP-IP (see Chapter 12, “Statistics and Error Counters”

on page 298).

Although Ethernet devices are supported today, Micrium is currently working on adding

Point-to-Point Protocol (PPP) support to μC/TCP-IP.
23

μC/TCP-IP Protocols
1-8 μC/TCP-IP PROTOCOLS

μC/TCP-IP consists of the following protocols:

■ Device drivers

■ Network interfaces (e.g., Ethernet, PPP (TBA), etc.)

■ Address Resolution Protocol (ARP)

■ Internet Protocol (IP)

■ Internet Control Message Protocol (ICMP)

■ Internet Group Management Protocol (IGMP)

■ User Datagram Protocol (UDP)

■ Transport Control Protocol (TCP)

■ Sockets (Micrium and BSD v4)

1-9 APPLICATION PROTOCOLS

Micrium offers application layer protocols as add-ons to μC/TCP-IP. A list of these network

services and applications includes:

■ μC/DCHPc, DHCP Client

■ μC/DNSc, DNS Client

■ μC/HTTPs, HTTP Server (web server)

■ μC/TFTPc, TFTP Client

■ μC/TFTPs, TFTP Server
24

Application Protocols
■ μC/FTPc, FTP Client

■ μC/FTPs, FTP Server

■ μC/SMTPc, SMTP Client

■ μC/POP3, POP3 Client

■ μC/SNTPc, Network Time Protocol Client

Any well known application layer protocols following the BSD socket API standard can be

used with μC/TCP-IP.
25

Chapter

2

μC/TCP-IP Architecture

μC/TCP-IP was written to be modular and easy to adapt to a variety of Central Processing

Units (CPUs), Real-Time Operating Systems (RTOSs), network devices, and compilers.

Figure 2-1 shows a simplified block diagram of μC/TCP-IP modules and their relationships.

Notice that all μC/TCP-IP files start with ‘net_’. This convention allows us to quickly identify

which files belong to μC/TCP-IP. Also note that all functions and global variables start with

‘Net’, and all macros and #defines start with ‘net_’.
26

Figure 2-1 Module Relationships

Application

app_cfg.h
net_cfg.h

net_dev_cfg.*

μC/LIB

lib_def.h
lib_mem.*

lib_mem_a.*
lib_math.*

Socket API Layer

net_app.*
net_bsd.*
net_sock.*

IF Layer

net_if.*
net_if_802x.*
net_if_ether.*
net_if_wifi.*

net_if_loopback.*

Device Layer

net_dev_???.*

PHY Layer

net_phy.*

Wireless Manager
Layer

net_wifi_mgr.*

BSP Layer

net_bsp.*

Interface Specific

Device/
Chip Specific

Hardware/
CPU Specific

MAC

Wireless
Module

SPI

PHY

μC/CPU

cpu.*
cpu_def.*

cpu_core.*
cpu_a.*

CPU

RTOS Layer

net_os.*

RTOS

NNeettwwoorrkkNetwork

TCP/IP Layers

et_arp.*
net_icmp.*
net_igmp.*

net_ip.*
net_tcp.*
net_udp.*

net_arp.*
net_icmp.*
net_igmp.*

net_ip.*
net_tcp.*
net_udp.*

net_ascii.*
net_buf.*

net_conn.*
net_ctr.*
net_stat.*
net_tmr.*
net_util.*

net_ascii.*
net_buf.*

net_conn.*
net_ctr.*
net_stat.*
net_tmr.*
net_util.*

net.*
net_cfg_net.h

net_dbg.*
net_def.h
net_err.*

net_type.h
net_mgr.*

net.*
net_cfg_net.h

net_dbg.*
net_def.h
net_err.*

net_type.h
net_mgr.*
27

μC/TCP-IP Module Relationships
2-1 μC/TCP-IP MODULE RELATIONSHIPS

2-1-1 APPLICATION

An application provides configuration information to μC/TCP-IP in the form of four C files:

app_cfg.h, net_cfg.h, net_dev_cfg.c and net_dev_cfg.h.

app_cfg.h is an application-specific configuration file that must be present in the

application. app_cfg.h contains #defines to specify the task priorities of each of the tasks

within the application (including those of μC/TCP-IP), and the stack size for those tasks.

Task priorities are placed in a file to make it easier to “see” task priorities for the entire

application in one place.

Configuration data in net_cfg.h consists of specifying the number of timers to allocate to

the stack, whether or not statistic counters will be maintained, the number of ARP cache

entries, how UDP checksums are computed, and more. One of the most important

configurations necessary is the size of the TCP Receive Window. In all, there are

approximately 50 #define to set. However, most of the #define constants can be set to

their recommended default value.

Finally, net_dev_cfg.c consists of device-specific configuration requirements such as the

number of buffers allocated to a device, the MAC address for that device, and necessary

physical layer device configuration including physical layer device bus address and link

characteristics. Each μC/TCP-IP-compatible device requires that its configuration be

specified within net_dev_cfg.c.

2-1-2 μC/LIB LIBRARIES

Given that μC/TCP-IP is designed for use in safety critical applications, all “standard” library

functions such as strcpy(), memset(), etc. have been rewritten to conform to the same

quality as the rest as the protocol stack.
28

μC/TCP-IP Module Relationships
2-1-3 BSD SOCKET API LAYER

The application interfaces to μC/TCP-IP uses the BSD socket Application Programming

Interface (API). The software developer can either write their own TCP/IP applications

using the BSD socket API or, purchase a number of off-the-shelf TCP/IP components

(Telnet, Web server, FTP server, etc.),for use with the BSD socket interface. Note that the

BSD socket layer is shown as a separate module but is actually part of μC/TCP-IP.

Alternatively, the software developer can use μC/TCP-IP’s own socket interface functions

(net_sock.*). net_bsd.* is a layer of software that converts BSD socket calls to μC/TCP-IP

socket calls. Of course, a slight performance gain is achieved by interfacing directly to

net_sock.* functions. Micrium network products use μC/TCP-IP socket interface functions.

2-1-4 TCP/IP LAYER

The TCP/IP layer contains most of the CPU, RTOS and compiler-independent code for

μC/TCP-IP. There are three categories of files in this section:

1 TCP/IP protocol specific files include:

ARP (net_arp.*),

ICMP (net_icmp.*),

IGMP (net_igmp.*),

IP (net_ip.*),

TCP (net_tcp.*),

UDP (net_udp.*)

2 Support files are:

ASCII conversions (net_ascii.*),

Buffer management (net_buf.*),
29

μC/TCP-IP Module Relationships
TCP/UDP connection management (net_conn.*),

Counter management (net_ctr.*),

Statistics (net_stat.*),

Timer Management (net_tmr.*),

Other utilities (net_util.*).

3 Miscellaneous header files include:

Master μC/TCP-IP header file (net.h)

File containing error codes (net_err.h)

Miscellaneous μC/TCP-IP data types (net_type.h)

Miscellaneous definitions (net_def.h)

Debug (net_dbg.h)

Configuration definitions (net_cfg_net.h)

2-1-5 NETWORK INTERFACE (IF) LAYER

The IF Layer involves several types of network interfaces (Ethernet, Token Ring, etc.).

However, the current version of μC/TCP-IP only supports Ethernet interfaces, wired and

wireless. The IF layer is split into two sub-layers.

net_if.* is the interface between higher Network Protocol Suite layers and the link layer

protocols. This layer also provides network device management routines to the application.

net_if_*.* contains the link layer protocol specifics independent of the actual device (i.e.,

hardware). In the case of Ethernet, net_if_ether.* understands Ethernet frames, MAC

addresses, frame de-multiplexing, and so on, but assumes nothing regarding actual Ethernet

hardware.
30

μC/TCP-IP Module Relationships
2-1-6 NETWORK DEVICE DRIVER LAYER

As previously stated, μC/TCP-IP works with just nearly any network device. This layer

handles the specifics of the hardware, e.g., how to initialize the device, how to enable and

disable interrupts from the device, how to find the size of a received packet, how to read a

packet out of the frame buffer, and how to write a packet to the device, etc.

In order for device drivers to have independent configuration for clock gating, interrupt controller,

and general purpose I/O, an additional file, net_bsp.c, encapsulates such details.

net_bsp.c contains code for the configuration of clock gating to the device, an internal or

external interrupt controller, necessary IO pins, as well as time delays, getting a time stamp

from the environment, and so on. This file is assumed to reside in the user application.

2-1-7 NETWORK PHYSICAL (PHY) LAYER

Often, devices interface to external physical layer devices, which may need to be initialized

and controlled. This layer is shown in Figure 2-1 asa “dotted” area indicating that it is not

present with all devices. In fact, some devices have PHY control built-in. Micrium provides

a generic PHY driver which controls most external (R)MII compliant Ethernet physical layer

devices.

2-1-8 NETWORK WIRELESS MANAGER

Often, wireless device may need to initialize a command and wait to receive the result (i.e.

Scan). This layer manages specific wireless management commands. Micrium provides a

generic Wireless Manager which should be able to controls most wireless module.

2-1-9 CPU LAYER

μC/TCP-IP can work with either an 8, 16, 32 or even 64-bit CPU, but it must have

information about the CPU used. The CPU layer defines such information as the C data type

corresponding to 16-bit and 32-bit variables, whether the CPU is little or big endian, and

how interrupts are disabled and enabled on the CPU.

CPU-specific files are found in the ...\uC-CPU directory and are used to adapt μC/TCP-IP

to a different CPU, modify either the cpu*.* files or, create new ones based on the ones

supplied in the uC-CPU directory. In general, it is much easier to modify existing files.
31

μC/TCP-IP Module Relationships
2-1-10 REAL-TIME OPERATING SYSTEM (RTOS) LAYER

μC/TCP-IP assumes the presence of an RTOS, but the RTOS layer allows μC/TCP-IP to be

independent of a specific RTOS. μC/TCP-IP consists of three tasks. One task is responsible

for handling packet reception, another task for asynchronous transmit buffer de-allocation,

and the last task for managing timers. Depending on the configuration, a fourth task may be

present to handle loopback operation.

As a minimum, the RTOS:

1 Must be able to create at least three tasks (a Receive task, a Transmit De-allocation task,

and a Timer task)

2 Provide semaphore management (or the equivalent) and the μC/TCP-IP needs to be

able to create at least two semaphores for each socket and an additional four

semaphores for internal use.

3 Provides timer management services

4 Port must also include support for pending on multiple OS objects if BSD socket

select() is required.

μC/TCP-IP is provided with a μC/OS-II and μC/OS-III interface. If a different RTOS is used,

the net_os.* for μC/OS-II or μC/OS-III can be used as templates to interface to the RTOS

chosen.
32

Task Model
2-2 TASK MODEL

The user application interfaces to μC/TCP-IP via a well known API called BSD sockets (or

μC/TCP-IP’s internal socket interface). The application can send and receive data to/from

other hosts on the network via this interface.

The BSD socket API interfaces to internal structures and variables (i.e., data) that are

maintained by μC/TCP-IP. A binary semaphore (the global lock in Figure 2-2) is used to

guard access to this data to ensure exclusive access. In order to read or write to this data, a

task needs to acquire the binary semaphore before it can access the data and release it

when finished. Of course, the application tasks do not have to know anything about this

semaphore nor the data since its use is encapsulated by functions within μC/TCP-IP.

Figure 2-2 shows a simplified task model of μC/TCP-IP along with application tasks.

2-2-1 μC/TCP-IP TASKS AND PRIORITIES

μC/TCP-IP defines three internal tasks: a Receive task, a Transmit De-allocation task, and a

Timer task. The Receive task is responsible for processing received packets from all devices.

The Transmit De-allocation task frees transmit buffer resources when they are no longer

required. The Timer task is responsible for handling all timeouts related to TCP/IP protocols

and network interface management.

When setting up task priorities, we generally recommend that tasks that use μC/TCP-IP’s

services be configured with higher priorities than μC/TCP-IP’s internal tasks. However,

application tasks that use μC/TCP-IP should voluntarily relinquish the CPU on a regular

basis. For example, they can delay or suspend the tasks or wait on μC/TCP-IP services. This

is to reduce starvation issues when an application task sends a substantial amount of data.

We recommend that you configure the network interface Transmit De-allocation task with a

higher priority than all application tasks that use μC/TCP-IP network services; but configure

the Timer task and network interface Receive task with lower priorities than almost other

application tasks.

See also section D-20-1 “Operating System Configuration” on page 770.
33

Task Model
Figure 2-2 μC/TCP-IP Task model

BSD Sockets API

App
Task

App
Task

App
Task

Timer
Task

Tx
De-allocation

Task

Global Lock

µC/TCP-IP
Rx

Task

Dev

Network
34

Task Model
2-2-2 RECEIVING A PACKET

Figure 2-3 shows a simplified task model of μC/TCP-IP when packets are received from the

device.

Figure 2-3 μC/TCP-IP Receiving a Packet

F2-3(1) A packet is sent on the network and the device recognizes its address as the

destination for the packet. The device then generates an interrupt and the BSP

global ISR handler is called for non-vectored interrupt controllers. Either the global

ISR handler or the vectored interrupt controller calls the Net BSP device specific

µC/TCP-IP
DataRx

Task

Device

Network

Sockets

TCP

IP

IF

Rx ISR

Rx Queue

(1)

(2)

(3)

Global
Lock

(5)

(4)

(6)

(7)

(6)

(8)
35

Task Model
ISR handler, which in turn indirectly calls the device ISR handler using a predefined

Net IF function call. The device ISR handler determines that the interrupt comes

from a packet reception (as opposed to the completion of a transmission).

F2-3(2) Instead of processing the received packet directly from the ISR, it was decided

to pass the responsibility to a task. The Rx ISR therefore simply “signals” the

Receive task by posting the interface number to the Receive task queue. Note

that further Rx interrupts are generally disabled while processing the interrupt

within the device ISR handler.

F2-3(3) The Receive task does nothing until a signal is received from the Rx ISR.

F2-3(4) When a signal is received from an Ethernet device, the Receive task wakes up

and extracts the packet from the hardware and places it in a receive buffer. For

DMA based devices, the receive descriptor buffer pointer is updated to point to

a new data area and the pointer to the receive packet is passed to higher layers

for processing.

μC/TCP-IP maintains three types of device buffers: small transmit, large

transmit, and large receive. For a common Ethernet configuration, a small

transmit buffer typically holds up to 256 bytes of data, a large transmit buffer

up to 1500 bytes of data, and a large receive buffer 1500 bytes of data. Note

that the large transmit buffer size is generally specified within the device

configuration as 1594 or 1614 bytes (see Chapter 9, “Buffer Management” on

page 277 for a precise definition). The additional space is used to hold

additional protocol header data. These sizes as well as the quantity of these

buffers are configurable for each interface during either compile time or run

time.

F2-3(5) Buffers are shared resources and any access to those or any other μC/TCP-IP

data structures is guarded by the binary semaphore that guards the data. This

means that the Receive task will need to acquire the semaphore before it can

receive a buffer from the pool.
36

Task Model
F2-3(6) The Receive task gets a buffer from the buffer pool. The packet is removed

from the device and placed in the buffer for further processing. For DMA, the

acquired buffer pointer replaces the descriptor buffer pointer that received the

current frame. The pointer to the received frame is passed to higher layers for

further processing.

F2-3(7) The Receive task examines received data via the appropriate link layer protocol

and determines whether the packet is destined for the ARP or IP layer, and

passes the buffer to the appropriate layer for further processing. Note that the

Receive task brings the data all the way up to the application layer and

therefore the appropriate μC/TCP-IP functions operate within the context of the

Receive task.

F2-3(8) When the packet is processed, the lock is released and the Receive task waits

for the next packet to be received.
37

Task Model
2-2-3 TRANSMITTING A PACKET

Figure 2-4 shows a simplified task model of μC/TCP-IP when packets are transmitted

through the device.

Figure 2-4 μC/TCP-IP Sending a Packet

µC/TCP-IP
Data

Device

Network

Sockets

TCP

IP

IF

Tx ISR

Tx
De-allocation
Task Queue

(6)

(7)

(4)

Global
Lock

(2)

(5)

(8)

Application
Task

Application
Task

Tx Ready
Semaphore

(1)

(3)

(9)

(10)

(11)

Note: There is one Tx Ready
semaphore per device
38

Task Model
F2-4(1) A task (assuming an application task) that wants to send data interfaces to

μC/TCP-IP through the BSD socket API.

F2-4(2) A function within μC/TCP-IP acquires the binary semaphore (i.e., the global

lock) in order to place the data to send into μC/TCP-IP’s data structures.

F2-4(3) The appropriate μC/TCP-IP layer processes the data, preparing it for

transmission.

F2-4(4) The task (via the IF layer) then waits on a counting semaphore, which is used

to indicate that the transmitter in the device is available to send a packet. If the

device is not able to send the packet, the task blocks until the semaphore is

signaled by the device. Note that during device initialization, the semaphore is

initialized with a value corresponding to the number of packets that can be

sent at one time through the device. If the device has sufficient buffer space to

be able to queue up four packets, then the counting semaphore is initialized

with a count of 4. For DMA-based devices, the value of the semaphore is

initialized to the number of available transmit descriptors.

F2-4(5) When the device is ready, the driver either copies the data to the device

internal memory space or configures the DMA transmit descriptor. When the

device is fully configured, the device driver issues a transmit command.

F2-4(6) After placing the packet into the device, the task releases the global data lock

and continues execution.

F2-4(7) When the device finishes sending the data, the device generates an interrupt.

F2-4(8) The Tx ISR signals the Tx Available semaphore indicating that the device is able

to send another packet. Additionally, the Tx ISR handler passes the address of

the buffer that completed transmission to the Transmit De-allocation task via a

queue which is encapsulated by an OS port function call.

F2-4(9) The Transmit De-allocation task wakes up when a device driver posts a

transmit buffer address to its queue.
39

Task Model
F2-4(10) The global data lock is acquired. If the global data lock is held by another task,

the Transmit De-allocation task must wait to acquire the global data lock. Since

it is recommended that the Transmit De-allocation task be configured as the

highest priority μC/TCP-IP task, it will run following the release of the global

data lock, assuming the queue has at least one entry present.

F2-4(11) The lock is released when transmit buffer de-allocation is finished. Further

transmission and reception of additional data by application and μC/TCP-IP

tasks may resume.
40

Chapter

3

Directories and Files

This chapter will discuss the modules available for μC/TCP-IP, and how they all fit together.

A Windows®-based development platform is assumed. The directories and files make

references to typical Windows-type directory structures. However, since μC/TCP-IP is

available in source form, it can also be used with any ANSI-C compatible compiler/linker

and any Operating System.

The names of the files are shown in upper case to make them stand out. However, file

names are actually lower case.
41

Block Diagram
3-1 BLOCK DIAGRAM

Figure 3-1 is a block diagram of the modules found in μC/TCP-IP and their relationship.

Also included are the names of the files that are related to μC/TCP-IP.

Figure 3-1 μC/TCP-IP Block Diagram

Application
app_cfg.h
net_cfg.h

net_dev_cfg.*

Sockets
net_app.*
net_bsd.*
net_sock.*

TCP
net_tcp.*

Sockets
net_app.*
net_bsd.*
net_sock.*

UDP
net_udp.*

ICMP
net_icmp.*

IGMP
net_igmp.*

TCP
net_tcp.*

UDP
net_udp.*

ICMP
net_icmp.*

IGMP
net_igmp.*

IP
net_ip.*

ARP
net_arp.*

IF
net_if.*

IF 802x
net_if_802x.*

Dev
net_dev_???.*

BSP
net_bsp.*

IF Specific
net_if_ether.*
net_if_wifi.*

net_if_loopback.*

IP
net_ip.*

ARP
net_arp.*

IF
net_if.*

IF 802x
net_if_802x.*

Dev
net_dev_???.*

IF Specific
net_if_ether.*
net_if_wifi.*

net_if_loopback.*

RX TX

Hardware

NNetworkNetwork

Buf
net_buf.*

Tmr
net_tmr.*

Misc
net.*

net_ascii.*
net_cfg_net.h

net_conn.*
net_ctr.*
net_dbg.*
net_def.*
net_err.*
net_stat.*
net_type.*
net_util.*

μC/CPU
cpu*.*

cpu_def.h

μC/LIB
lib_def.h

lib_mem.*
lib_str.*

lib_math.*
42

Application Code
3-2 APPLICATION CODE

When Micrium provides example projects, they are placed in a directory structure shown

below. Of course, a directory structure that suits a particular project/product can be used.

\Micrium
\Software

\EvalBoards
\<manufacturer>

\<board_name>
\<compiler>

\<project name>
.

\Micrium
This is where we place all software components and projects provided by Micrium. This

directory generally starts from the root directory of the computer.

\Software
This sub-directory contains all software components and projects.

\EvalBoards
This sub-directory contains all projects related to evaluation boards supported by Micrium.

\<manufacturer>
This is the name of the manufacturer of the evaluation board. The ‘<’ and ‘>’ are not part of

the actual name.

\<board name>
This is the name of the evaluation board. A board from Micrium will typically be called

uC-Eval-xxxx where xxxx represents the CPU or MCU used on the board. The ‘<’ and ‘>’
are not part of the actual name.

\<compiler>
This is the name of the compiler or compiler manufacturer used to build the code for the

evaluation board. The ‘<’ and ‘>’ are not part of the actual name.
43

Application Code
\<project name>
The name of the project that will be demonstrated. For example a simple μC/TCP-IP project

might have a project name of ‘OS-Ex1’. The ‘-Ex1’ represents a project containing only

μC/OS-III. A project name of OS-Probe-Ex1 contains μC/TCP-IP and μC/Probe. The ‘<’ and

‘>’ are not part of the actual name.

.
These are the source files for the project. Main files can optionally be called APP*.*. This

directory also contains configuration files app_cfg.h, net_cfg.h, net_decv_cfg.h,
net_dev_cfg.c,os_cfg.h, os_cfg_app.h and other project-required source files.

includes.h is the application-specific master include header file. Almost all Micrium

products require this file.

net_cfg.h is a configuration file used to configure such μC/TCP-IP parameters as the

number of network timers, sockets, and connections created; default timeout values,

and more. net_cfg.h must be included in the application as μC/TCP-IP requires this

file. See Chapter 16, “Network Interface Layer” on page 361 for more information.

net_dev_cfg.c and net_dev_cfg.h are configuration files used to configure

μC/TCP-IP interface parameters such as the number of transmit and receive buffers. See

Chapter 5, “Network Interface Configuration” on page 77 for more details.

os_cfg.h is a configuration file used to configure μC/OS-III parameters such as the

maximum number of tasks, events, and objects; which μOS-III services are enabled

(semaphores, mailboxes, queues); etc. os_cfg.his a required file for any μC/OS-III

application. See μC/OS-III documentation and books for further information.

app.c contains the application code for the Processor example project. As with most C

programs, code execution starts at main() which is shown in Listing 4-1 on page 69.

The application code starts μC/TCP-IP.
44

CPU
3-3 CPU

The directory shown below contains semiconductor manufacturer peripheral interface

source files. Any directory structure that suits the project/product may be used.

\Micrium
\Software

\CPU
\<manufacturer>

\<architecture>
.

\Micrium
The location of all software components and projects provided by Micrium.

\Software
This sub-directory contains all software components and projects.

\CPU
This sub-directory is always called CPU.

\<manufacturer>
Is the name of the semiconductor manufacturer providing the peripheral library. The

< and > are not part of the actual name.

\<architecture>
The name of the specific library, generally associated with a CPU name or an architecture.

.
Indicates library source files. The semiconductor manufacturer names the files.
45

Board Support Package (BSP)
3-4 BOARD SUPPORT PACKAGE (BSP)

The Board Support Package (BSP) is generally found with the evaluation or target board,

and it is specific to that board. In fact, when well written, the BSP should be used for

multiple projects.

\Micrium
\Software

\EvalBoards
\<manufacturer>

\<board name>
\<compiler>

\BSP
.

\Micrium
Contains all software components and projects provided by Micrium.

\Software
This sub-directory contains all software components and projects.

\EvalBoards
This sub-directory contains all projects related to evaluation boards.

\<manufacturer>
The name of the manufacturer of the evaluation board. The < and > are not part of the

actual name.

\<board name>
The name of the evaluation board. A board from Micrium will typically be called

uC-Eval-xxxx where xxxx is the name of the CPU or MCU used on the evaluation board.

The < and > are not part of the actual name.

\<compiler>
The name of the compiler or compiler manufacturer used to build code for the evaluation

board. The < and > are not part of the actual name.
46

Network Board Support Package (NET_BSP)
\BSP
This directory is always called BSP.

.
The source files of the BSP. Typically all of the file names start with BSP. It is therefore

normal to find bsp.c and bsp.h in this directory. BSP code should contain such functions

as LED control functions, initialization of timers, interface to Ethernet controllers, and more.

BSP stands for Board Support Package and the 'services' the board provides are placed in

such a file. In this case, bsp.c contains I/O, timer initialization code, LED control code, and

more. The I/Os used on the board are initialized when BSP_Init() is called.

The concept of a BSP is to hide the hardware details from the application code. It is

important that functions in a BSP reflect the function and do not make references to any

CPU specifics. For example, the code to turn on an LED is called LED_On() and not

MCU_led(). If LED_On() is used in the code, it can be easily ported to another processor (or

board) by simply rewriting LED_On() to control the LEDs on a different board. The same is

true for other services. Also notice that BSP functions are prefixed with the function’s group.

LED services start with LED_, timer services start with Tmr_, etc. In other words, BSP

functions do not need to be prefixed by BSP_.

3-5 NETWORK BOARD SUPPORT PACKAGE (NET_BSP)

In addition to the general (BSP) there are specific network initialization and configuration

requirements. This additional file is generally found with the evaluation or target board as it

is specific to that board.

\Micrium
\Software

\EvalBoards
\<manufacturer>

\<board name>
\<compiler>

\BSP
\TCPIP-V2

.
47

Network Board Support Package (NET_BSP)
\Micrium
Contains all software components and projects provided by Micrium.

\Software
This sub-directory contains all software components and projects.

\EvalBoards
This sub-directory contains all projects related to evaluation boards.

\<manufacturer>
The name of the manufacturer of the evaluation board. The ‘<’ and ‘>’ are not part of the

actual name.

\<board name>
The name of the evaluation board. A board from Micrium will typically be called

uC-Eval-xxxx where xxxx is the name of the CPU or MCU used on the evaluation board.

The ‘<’ and ‘>’ are not part of the actual name.

\<compiler>
The name of the compiler or compiler manufacturer used to build code for the evaluation

board. The ‘<’ and ‘>’ are not part of the actual name.

\BSP
This directory is always called BSP.

\TCPIP-V2
This directory is always called TCPIP-V2 as it is the directory for the network related BSP

files.

.
The net_bsp.* files contain hardware-dependent code specific to the network device(s)

and other μC/TCP-IP functions. Specifically, these files may contain code to read data from

and write data to network devices, handle hardware-level device interrupts, provide delay

functions, and get time stamps, etc.
48

μC/OS-III, CPU Independent Source Code
3-6 μC/OS-III, CPU INDEPENDENT SOURCE CODE

The files in these directories are available to μC/OS-III licensees (see Appendix X,

“Licensing Policy”).

\Micrium
\Software

\uCOS-III
\Cfg\Template
\Source

\Micrium
Contains all software components and projects provided by Micrium.

\Software
This sub-directory contains all software components and projects.

\uCOS-III
This is the main μC/OS-III directory.

\Cfg\Template
This directory contains examples of configuration files to copy to the project directory.

These files can be modified to suit the needs of the application.

\Source
The directory contains the CPU-independent source code for μC/OS-III. All files in this

directory should be included in the build (assuming the presence of the source code).

Features that are not required will be compiled out based on the value of #define constants

in os_cfg.h and os_cfg_app.h.
49

μC/OS-III, CPU Specific Source Code
3-7 μC/OS-III, CPU SPECIFIC SOURCE CODE

The μC/OS-III port developer provides these files. See Chapter 17 in the μC/OS-III book.

\Micrium
\Software

\uCOS-III
\Ports

\<architecture>
\<compiler>

\Micrium
Contains all software components and projects provided by Micrium.

\Software
This sub-directory contains all software components and projects.

\uCOS-III
The main μC/OS-III directory.

\Ports
The location of port files for the CPU architecture(s) to be used.

\<architecture>
This is the name of the CPU architecture that μC/OS-III was ported to. The ‘<’ and ‘>’ are

not part of the actual name.

\<compiler>
The name of the compiler or compiler manufacturer used to build code for the port. The

< and > are not part of the actual name.

The files in this directory contain the μC/OS-III port, see Chapter 17 “Porting μC/OS-III” in

the μC/OS-III book for details on the contents of these files.
50

μC/CPU, CPU Specific Source Code
3-8 μC/CPU, CPU SPECIFIC SOURCE CODE

μC/CPU consists of files that encapsulate common CPU-specific functionality and CPU and

compiler-specific data types.

\Micrium
 \Software
 \uC-CPU
 \cpu_core.c
 \cpu_core.h
 \cpu_def.h
 \Cfg\Template
 \cpu_cfg.h
 \<architecture>
 \<compiler>
 \cpu.h
 \cpu_a.asm
 \cpu_c.c

\Micrium
Contains all software components and projects provided by Micrium.

\Software
This sub-directory contains all software components and projects.

\uC-CPU
This is the main μC/CPU directory.

cpu_core.c contains C code that is common to all CPU architectures. Specifically, this

file contains functions to measure the interrupt disable time of the

CPU_CRITICAL_ENTER() and CPU_CRITICAL_EXIT() macros, a function that emulates a

count leading zeros instruction and a few other functions.

cpu_core.h contains function prototypes for the functions provided in cpu_core.c
and allocation of the variables used by the module to measure interrupt disable time.

cpu_def.h contains miscellaneous #define constants used by the μC/CPU module.
51

μC/CPU, CPU Specific Source Code
\Cfg\Template
This directory contains a configuration template file (cpu_cfg.h) that is required to be

copied to the application directory to configure the μC/CPU module based on application

requirements.

cpu_cfg.h determines whether to enable measurement of the interrupt disable time,

whether the CPU implements a count leading zeros instruction in assembly language, or

whether it will be emulated in C, and more.

\<architecture>
The name of the CPU architecture that μC/CPU was ported to. The ‘<’ and ‘>’ are not part of

the actual name.

\<compiler>
The name of the compiler or compiler manufacturer used to build code for the μC/CPU

port. The ‘<’ and ‘>’ are not part of the actual name.

The files in this directory contain the μC/CPU port, see Chapter 17 of the μC/OS-III book,

“Porting μC/OS-III” for details on the contents of these files.

cpu.h contains type definitions to make μC/OS-III and other modules independent of

the CPU and compiler word sizes. Specifically, one will find the declaration of the

CPU_INT16U, CPU_INT32U, CPU_FP32 and many other data types. This file also specifies

whether the CPU is a big or little endian machine, defines the CPU_STK data type used

by μC/OS-III, defines the macros OS_CRITICAL_ENTER() and OS_CRITICAL_EXIT(),
and contains function prototypes for functions specific to the CPU architecture, etc.

cpu_a.asm contains the assembly language functions to implement code to disable and

enable CPU interrupts, count leading zeros (if the CPU supports that instruction), and

other CPU specific functions that can only be written in assembly language. This file

may also contain code to enable caches, and setup MPUs and MMU. The functions

provided in this file are accessible from C.

cpu_c.c contains the C code of functions that are based on a specific CPU architecture

but written in C for portability. As a general rule, if a function can be written in C then

it should be, unless there is significant performance benefits available by writing it in

assembly language.
52

μC/LIB, Portable Library Functions
3-9 μC/LIB, PORTABLE LIBRARY FUNCTIONS

μC/LIB consists of library functions meant to be highly portable and not tied to any specific

compiler. This facilitates third-party certification of Micrium products. μC/OS-III does not

use any μC/LIB functions, however the μC/CPU assumes the presence of lib_def.h for

such definitions as: DEF_YES, DEF_NO, DEF_TRUE, DEF_FALSE, etc.

\Micrium
 \Software
 \uC-LIB
 \lib_ascii.c
 \lib_ascii.h
 \lib_def.h
 \lib_math.c
 \lib_math.h
 \lib_mem.c
 \lib_mem.h
 \lib_str.c
 \lib_str.h
 \Cfg\Template
 \lib_cfg.h
 \Ports
 \<architecture>
 \<compiler>
 \lib_mem_a.asm

\Micrium
Contains all software components and projects provided by Micrium.

\Software
This sub-directory contains all software components and projects.

\uC-LIB
This is the main μC/LIB directory.
53

μC/TCP-IP Network Devices
\Cfg\Template
This directory contains a configuration template file (lib_cfg.h) that is required to be

copied to the application directory to configure the μC/LIB module based on application

requirements.

lib_cfg.h determines whether to enable assembly language optimization (assuming

there is an assembly language file for the processor, i.e., lib_mem_a.asm) and a few

other #defines.

3-10 μC/TCP-IP NETWORK DEVICES

The files in these directories are

\Micrium
\Software

\uC-TCPIP-V2
\Dev

\Ether
\PHY

\Generic
\<Controller>

\WiFi
\Manager

\Generic
\<Controller>

\Micrium
Contains all software components and projects provided by Micrium.

\Software
This sub-directory contains all software components and projects.

\uC-TCPIP-V2
This is the main directory for the μC/TCP-IP code. The name of the directory contains a

version number to differentiate it from previous versions of the stack.
54

μC/TCP-IP Network Devices
\Dev
This directory contains device drivers for different interfaces. Currently, μC/TCP-IP only

supports one type of interface, Ethernet. μC/TCP-IP is tested with many types of Ethernet

devices.

\Ether
Ethernet controller drivers are placed under the Ether sub-directory. Note that device drivers

must also be called net_dev_<controller>.*.

\WiFi
Wireless controller drivers are placed under the WiFi sub-directory. Note that device drivers

must also be called net_dev_<controller>.*.

\PHY
This is the main directory for Ethernet Physical layer drivers.

\Generic
This is the directory for the Micrium provided generic PHY driver. Micrium’s generic

Ethernet PHY driver provides sufficient support for most (R)MII compliant Ethernet physical

layer devices. A specific PHY driver may be developed in order to provide extended

functionality such as link state interrupt support.

net_phy.h is the network physical layer header file.

net_phy.c provides the (R)MII interface port that is assumed to be part of the host

Ethernet MAC. Therefore, (R)MII reads/writes must be performed through the network

device API interface via calls to function pointers Phy_RegRd() and Phy_RegWr().

\Manager
This is the main directory for Wireless Manager layer.

\Generic
This is the directory for the Micriμm provided generic Wireless Manager layer. Micriμm's

generic Wireless Manager layer provides sufficient support for most wireless devices that

embed a wireless supplicant. A specific Wireless Manager may be developed in order to

provide extended functionality.

net_wifi_mgr.h is the network Wireless Manager layer header file.
55

μC/TCP-IP Network Interface
net_wifi_mgr.c provides functionality to access the device for management

command that could required asynchronous response such as scan for available

network.

\<controller>
The name of the Ethernet or wireless controller or chip manufacturer used in the project.

The ‘<’ and ‘>’ are not part of the actual name. This directory contains the network device

driver for the Network Controller specified.

net_dev_<controller>.h is the header file for the network device driver.

net_dev_<controller>.c contains C code for the network device driver API.

3-11 μC/TCP-IP NETWORK INTERFACE

This directory contains interface-specific files. Currently, μC/TCP-IP only supports three type

of interfaces, Ethernet, wireless and loopback. The Ethernet and wireless interface-specific

files are found in the following directories:

\Micrium
\Software

\uC-TCPIP-V2
\IF

\Micrium
Contains all software components and projects provided by Micrium.

\Software
This sub-directory contains all software components and projects.

\uC-TCPIP-V2
This is the main μC/TCP-IP directory.

\IF
This is the main directory for network interfaces.
56

μC/TCP-IP Network File System abstraction layer
net_if.* presents a programming interface between higher μC/TCP-IP layers and the

link layer protocols. These files also provide interface management routines to the

application.

net_if_802x.* contains common code to receive and transmit 802.3 and Ethernet

packets. This file should not need to be modified.

net_if_ether.* contains the Ethernet interface specifics. This file should not need to

be modified.

net_if_wifi.* contains the wireless interface specifics. This file should not need to be

modified.

net_if_loopback.* contains loopback interface specifics. This file should not need to

be modified.

3-12 μC/TCP-IP NETWORK FILE SYSTEM ABSTRACTION LAYER

This directory contains the file system abstraction layer which allows the TCP-IP application

such as μC/HTTPs, μC/FTPc, μC/FTPs, etc. with nearly any commercial or in-house file

system. The abstraction layer for the selected file system is placed in a sub-directory under

FS as follows:

\Micrium
\Software

\uC-TCPIP-V2
\FS

\<file_system_name>

\Micrium
Contains all software components and projects provided by Micrium.

\Software
This sub-directory contains all software components and projects.

\uC-TCPIP-V2
This is the main μC/TCP-IP directory.
57

μC/TCP-IP Network OS Abstraction Layer
\FS
This is the main FS directory that contain generic file system port header file. This file must

be included if one or more application that required a file system such as μC/HTTPs,

μC/FTPc, μC/FTPs, etc. are present in the project.

\<file_system_name>
This is the directory that contains the files to perform file system abstraction.

μC/TCP-IP has been tested with μC/FS-V4 and the file system layer files for this file system

are found in the following directories:

\Micrium\Software\uC-TCPIP-V2\FS\uC-FS-V4\net_fs_v4.*

3-13 μC/TCP-IP NETWORK OS ABSTRACTION LAYER

This directory contains the RTOS abstraction layer which allows the use of μC/TCP-IP with

nearly any commercial or in-house RTOS. The abstraction layer for the selected RTOS is

placed in a sub-directory under OS as follows:

\Micrium
\Software

\uC-TCPIP-V2
\OS

\<rtos_name>

\Micrium
Contains all software components and projects provided by Micrium.

\Software
This sub-directory contains all software components and projects.

\uC-TCPIP-V2
This is the main μC/TCP-IP directory.

\OS
This is the main OS directory.
58

μC/TCP-IP Network CPU Specific Code
\<rtos_name>
This is the directory that contains the files to perform RTOS abstraction. Note that files for

the selected RTOS abstraction layer must always be named net_os.*.

μC/TCP-IP has been tested with μC/OS-II, μC/OS-III and the RTOS layer files for these

RTOS are found in the following directories:

\Micrium\Software\uC-TCPIP-V2\OS\uCOS-II\net_os.*

\Micrium\Software\uC-TCPIP-V2\OS\uCOS-III\net_os.*

3-14 μC/TCP-IP NETWORK CPU SPECIFIC CODE

Some functions can be optimized in assembly to improve the performance of the network

protocol stack. An easy candidate is the checksum function. It is used at multiple levels in

the stack, and a checksum is generally coded as a long loop.

\Micrium
\Software

\uC-TCPIP-V2
\Ports

\<architecture>
\<compiler>

\net_util_a.asm

\Micrium
Contains all software components and projects provided by Micrium.

\Software
This sub-directory contains all software components and projects.

\uC-TCPIP-V2
This is the main μC/TCP-IP directory.

\Ports
This is the main directory for processor specific code.
59

μC/TCP-IP Network CPU Independent Source Code
\<architecture>
The name of the CPU architecture that was ported to. The ‘<’ and ‘>’ are not part of the

actual name.

\<compiler>
The name of the compiler or compiler manufacturer used to build code for the optimized

function(s). The ‘<’ and ‘>’ are not part of the actual name.

net_util_a.asm contains assembly code for the specific CPU architecture. All

functions that can be optimized for the CPU architecture are located here.

3-15 μC/TCP-IP NETWORK CPU INDEPENDENT SOURCE CODE

This directory contains all the CPU and RTOS independent files for μC/TCP-IP. Nothing

should be changed in this directory in order to use μC/TCP-IP.

\Micrium
\Software

\uC-TCPIP-V2
\Source

\Micrium
Contains all software components and projects provided by Micrium.

\Software
This sub-directory contains all software components and projects.

\uC-TCPIP-V2
This is the main μC/TCP-IP directory.

\Source
This is the directory that contains all the CPU and RTOS independent source code files.
60

μC/TCP-IP Network Security Manager CPU Independent Source Code
3-16 μC/TCP-IP NETWORK SECURITY MANAGER CPU
INDEPENDENT SOURCE CODE

This directory contains all the CPU independent files for μC/TCP-IP Network Security

Manager. Nothing should be changed in this directory in order to use μC/TCP-IP.

\Micrium
\Software

\uC-TCPIP-V2
\Secure

\<security_suite_name>

\Micrium
Contains all software components and projects provided by Micrium.

\Software
This sub-directory contains all software components and projects.

\uC-TCPIP-V2
This is the main μC/TCP-IP directory.

\Secure
This is the main Secure directory that contains the generic secure port header file. This file

should be included in the project only if a security suite is available and is to be used by the

application.

\Secure\<security_suite_name>
This is the directory that contains the files to perform security suite abstraction. These files

should only be included in the project if a security suite (i.e Mocana - NanoSSL) is available

and is to be used by the application.
61

Summary
3-17 SUMMARY

Below is a summary of all directories and files involved in a μC/TCP-IP-based project. The

‘<-Cfg’ on the far right indicates that these files are typically copied into the application

(i.e., project) directory and edited based on project requirements.

\Micrium
 \Software
 \EvalBoards
 \<manufacturer>
 \<board name>
 \<compiler>
 \<project name>
 \app.c
 \app.h
 \other
 \BSP
 \bsp.c
 \bsp.h
 \others
 \TCPIP-V2
 \net_bsp.c
 \net_bsp.h
 \CPU
 \<manufacturer>
 \<architecture>
 .
 \uCOS-III
 \Cfg\Template
 \os_app_hooks.c
 \os_cfg.h <-Cfg
 \os_cfg_app.h <-Cfg
 \Source
 \os_cfg_app.c
 \os_core.c
 \os_dbg.c
 \os_flag.c
 \os_int.c
62

Summary
 \os_mem.c
 \os_msg.c
 \os_mutex.c
 \os_pend_multi.c
 \os_prio.c
 \os_q.c
 \os_sem.c
 \os_stat.c
 \os_task.c
 \os_tick.c
 \os_time.c
 \os_tmr.c
 \os_var.c
 \os.h
 \os_type.h <-Cfg
 \Ports
 \<architecture>
 \<compiler>
 \os_cpu.h
 \os_cpu_a.asm
 \os_cpu_c.c
 \uC-CPU
 \cpu_core.c
 \cpu_core.h
 \cpu_def.h
 \Cfg\Template
 \cpu_cfg.h <-Cfg
 \<architecture>
 \<compiler>
 \cpu.h
 \cpu_a.asm
 \cpu_c.c
 \uC-LIB
 \lib_ascii.c
 \lib_ascii.h
 \lib_def.h
 \lib_math.c
 \lib_math.h
63

Summary
 \lib_mem.c
 \lib_mem.h
 \lib_str.c
 \lib_str.h
 \Cfg\Template
 \lib_cfg.h <-Cfg
 \Ports
 \<architecture>
 \<compiler>
 \lib_mem_a.asm
 \uC-TCPIP-V2
 \BSP
 Template
 \net_bsp.c <-Cfg
 \net_bsp.h <-Cfg
 OS
 \<rtos_name>
 \net_bsp.c <-Cfg
 \CFG
 \Template
 \net_cfg.h <-Cfg
 \net_dev_cfg.c <-Cfg
 \net_dev_cfg.h <-Cfg
 \Dev
 \Ether
 \<controller>
 \net_dev_<controller>.c
 \net_dev_<controller>.h
 \PHY
 \controller>
 \net_phy_<controller>.c
 \net_phy_<controller>.h
 \Generic
 \net_phy.c
 \net_phy.h
 \WiFi
 \<controller>
 \net_dev_<controller>.c
64

Summary
 \net_dev_<controller>.h
 \Manager
 \Generic
 \net_wifi_mgr.c
 \net_wifi_mgr.h
 \IF
 \net_if.c
 \net_if.h
 \net_if_802x.c
 \net_if_802x.h
 \net_if_ether.c
 \net_if_ether.h
 \net_if_wifi.c
 \net_if_wifi.h
 \net_if_loopback.c
 \net_if_loopback.h
 \OS
 \<template>
 \net_os.c <-Cfg
 \net_os.h <-Cfg
 \<rtos_name>
 \net_os.c
 \net_os.h
 \Ports
 \<architecture>
 \<compiler>
 \net_util_a.asm
 \Secure
 net_secure.h
 \<security_suite_name>
 \net_secure_<suite_name>.c
 \net_secure_<suite_name>.h
 \Source
 \net.c
 \net.h
 \net_app.c
 \net_app.h
 \net_arp.c
65

Summary
 \net_arp.h
 \net_ascii.c
 \net_ascii.h
 \net.bsd.c
 \net.bsd.h
 \net.buf.c
 \net.buf.h
 \net.cfg_net.h
 \net.conn.c
 \net.conn.h
 \net.ctr.c
 \net.ctr.h
 \net.dbg.c
 \net.dbg.h
 \net.def.h
 \net.err.c
 \net.err.h
 \net.icmp.c
 \net.icmp.h
 \net.igmp.c
 \net.igmp.h
 \net.ip.c
 \net.ip.h
 \net.mgr.c
 \net.mgr.h
 \net.sock.c
 \net.sock.h
 \net.stat.c
 \net.stat.h
 \net.tcp.c
 \net.tcp.h
 \net.tmr.c
 \net.tmr.h
 \net.type.h
 \net.udp.c
 \net.udp.h
 \net.util.c
 \net.util.h
66

Chapter

4

Getting Started with μC/TCP-IP

As previously stated, the Directories and Files structure used herein assumes you have

access to the μC/TCP-IP source code. The samples and examples in Part II of this book,

however, use μC/TCP-IP as a library. The project structure is therefore different.

μC/TCP-IP requires an RTOS and, for the purposes of this book, μC/OS-III has been chosen.

First, because it is the latest kernel from Micrium, and second, because all the examples in

this book were developed with the evaluation board that is available with the μC/OS-III

book. This way there is no need for an additional evaluation board.

4-1 INSTALLING μC/TCP-IP

Distribution of μC/TCP-IP is performed through release files. The release archive files

contain all of the source code and documentation for μC/TCP-IP. Additional support files

such as those located within the CPU directory may or may not be required depending on

the target hardware and development tools. Example startup code, if available, may be

delivered upon request. Example code is located in the Evalboards directory when

applicable.

Figure 4-1 Directory tree for μC/TCP-IP
67

μC/TCP-IP Example Project
4-2 μC/TCP-IP EXAMPLE PROJECT

The following example project is used to show the basic architecture of μC/TCP-IP and to

build an empty application. The application also uses μC/OS-III as the RTOS. Figure 4-1

shows the project test setup. A Windows-based PC and the target system were connected to

a 100 Mbps Ethernet switch or via an Ethernet cross-over cable. The PC’s IP address is set to

10.10.10.111 and one of the target’s addresses is configured to 10.10.10.64.

Figure 4-2 Test setup

This example contains enough code to be able to ping the board.The IP address of the

board is forced to be 10.10.10.64. With a similar setup, the following command from a

command-prompt is issued:

ping 10.10.10.64

Ping (on the PC) should reply back with the ping time to the target. μC/TCP-IP target

projects connected to the test PC on the same Ethernet switch or Ethernet cross-over cable

achieve ping times of less than 2 milliseconds.

The next sections show the directory tree of different components required to build a

μC/TCP-IP example project.

��
���
�

�	
��

��������������
	����	���	���������

������������ �����������

��	
������������
68

Application Code
4-3 APPLICATION CODE

File app.c contains the application code for the Processor example project. As with most

C programs, code execution starts at main() which is shown in Listing 4-1. The application

code starts μC/TCP-IP.

Listing 4-1 Code execution starts at main()

L4-1(1) Start main() by calling a BSP function that disables all interrupts. On most

processors, interrupts are disabled at startup until explicitly enabled by application

code. However, it is safer to turn off all peripheral interrupts during startup.

void main (void)
{
 OS_ERR err_os;

 BSP_IntDisAll(); (1)

 OSInit(&err_os); (2)
 APP_TEST_FAULT(err_os, OS_ERR_NONE);

 OSTaskCreate((OS_TCB *)&AppTaskStartTCB, (3)
 (CPU_CHAR *)”App Task Start”, (4)
 (OS_TASK_PTR) AppTaskStart, (5)
 (void *) 0, (6)
 (OS_PRIO) APP_OS_CFG_START_TASK_PRIO, (7)
 (CPU_STK *)&AppTaskStartStk[0], (8)
 (CPU_STK_SIZE) APP_OS_CFG_START_TASK_STK_SIZE / 10u, (9)
 (CPU_STK_SIZE) APP_OS_CFG_START_TASK_STK_SIZE, (10)
 (OS_MSG_QTY) 0u,
 (OS_TICK) 0u,
 (void *) 0,
 (OS_OPT) (OS_OPT_TASK_STK_CHK | OS_OPT_TASK_STK_CLR), (11)
 (OS_ERR *)&err_os); (12)
 APP_TEST_FAULT(err_os, OS_ERR_NONE);

 OSStart(&err_os); (13)
 APP_TEST_FAULT(err_os, OS_ERR_NONE);
}

69

Application Code
L4-1(2) Call OSInit(), which is responsible for initializing μC/OS-III internal variables

and data structures, and also creates two (2) to five (5) internal tasks. At minimum,

μC/OS-III creates the idle task (OS_IdleTask()), which executes when no other

task is ready to run. μC/OS-III also creates the tick task, responsible for

keeping track of time.

Depending on the value of #define constants, μC/OS-III will create the statistic

task (OS_StatTask()), the timer task (OS_TmrTask()), and interrupt handler

queue management task (OS_IntQTask()).

Most μC/OS-III’s functions return an error code via a pointer to an OS_ERR
variable, err in this case. If OSInit() was successful, err will be set to

OS_ERR_NONE. If OSInit() encounters a problem during initialization, it will

return immediately upon detecting the problem and set err accordingly. If this

occurs, look up the error code value in os.h. All error codes start with

OS_ERR_.

Note that OSInit() must be called before any other μC/OS-III function.

L4-1(3) Create a task by calling OSTaskCreate(). OSTaskCreate() requires 13

arguments. The first argument is the address of the OS_TCB that is declared for

this task.

L4-1(4) OSTaskCreate() allows a name to be assigned to each of the tasks. μC/OS-III

stores a pointer to the task name inside the OS_TCB of the task. There is no

limit on the number of ASCII characters used for the name.

L4-1(5) The third argument is the address of the task code. A typical μC/OS-III task is

implemented as an infinite loop as shown:

void MyTask (void *p_arg)
{
 /* Do something with ‘p_arg’.
 while (1) {
 /* Task body */
 }
}

70

Application Code
The task receives an argument when at inception. The task resembles any

C function that can be called by code. However, the code must not

call MyTask().

L4-1(6) The fourth argument of OSTaskCreate() is the argument that the task receives

when it first begins. In other words, the p_arg of MyTask(). In the example a

NULL pointer is passed, and thus p_arg for AppTaskStart() will be a NULL

pointer.

The argument passed to the task can actually be any pointer. For example, you

may pass a pointer to a data structure containing parameters for the task.

L4-1(7) The next argument to OSTaskCreate() is the priority of the task. The priority

establishes the relative importance of this task with respect to other tasks in the

application. A low-priority number indicates a high priority (or more important

task). Set the priority of the task to any value between 1 and

OS_CFG_PRIO_MAX-2, inclusively. Avoid using priority #0, and priority

OS_CFG_PRIO_MAX-1, because these are reserved for μC/OS-III.

OS_CFG_PRIO_MAX is a compile time configuration constant, which is declared

in os_cfg.h.

L4-1(8) The sixth argument to OSTaskCreate() is the base address of the stack

assigned to this task. The base address is always the lowest memory location of

the stack.

L4-1(9) The next argument specifies the location of a “watermark” in the task’s stack

that can be used to determine the allowable stack growth of the task. In the

code above, the value represents the amount of stack space (in CPU_STK
elements) before the stack is empty. In other words, in the example, the limit is

reached when 10% of the stack is left.

L4-1(10) The eighth argument to OSTaskCreate() specifies the size of the task’s stack in

number of CPU_STK elements (not bytes). For example, if allocating 1 Kbytes of

stack space for a task and the CPU_STK is a 32-bit word, pass 256.
71

Application Code
L4-1(11) The next three arguments are skipped as they are not relevant to the current

discussion. The next argument to OSTaskCreate() specifies options. In this

example, it is specified that the stack will be checked at run time (assuming the

statistic task was enabled in os_cfg.h), and that the contents of the stack will

be cleared when the task is created.

L4-1(12) The last argument of OSTaskCreate() is a pointer to a variable that will

receive an error code. If OSTaskCreate() is successful, the error code will be

OS_ERR_NONE otherwise, the value of the error code can be looked up in os.h
(see OS_ERR_xxxx) to determine the problem with the call.

L4-1(13) The final step in main() is to call OSStart(), which starts the multitasking

process. Specifically, μC/OS-III will select the highest-priority task that was

created before calling OSStart(). The highest-priority task is always

OS_IntQTask() if that task is enabled in os_cfg.h (through the

OS_CFG_ISR_POST_DEFERRED_EN constant). If this is the case, OS_IntQTask()
will perform some initialization of its own and then μC/OS-III will switch to the

next most important task that was created.

A few important points are worth noting. You can create as many tasks as you want before

calling OSStart(). However, it is recommended to only create one task as shown in the

example. Notice that interrupts are not enabled. μC/OS-III and μC/OS-II always start a task

with interrupts enabled. As soon as the first task executes, the interrupts are enabled. The

first task is AppTaskStart() and its contents is examined in can Listing 4-2.

static void AppTaskStart (void *p_arg) (1)
{
 CPU_INT32U cpu_clk_freq;
 CPU_INT32U cnts;
 OS_ERR err_os;

 (void)&p_arg;

 BSP_Init(); (2)
 CPU_Init(); (3)
 cpu_clk_freq = BSP_CPU_ClkFreq(); (4)
 cnts = cpu_clk_freq / (CPU_INT32U)OSCfg_TickRate_Hz;
 OS_CPU_SysTickInit(cnts);
72

Application Code
Listing 4-2 AppTaskStart

L4-2(1) As previously mentioned, a task looks like any other C function. The argument

p_arg is passed to AppTaskStart() by OSTaskCreate().

L4-2(2) BSP_Init() is a BSP function responsible for initializing the hardware on an

evaluation or target board. The evaluation board might have General Purpose

Input Output (GPIO) lines that need to be configured, relays, and sensors,

etc. This function is found in a file called bsp.c.

L4-2(3) Cuprite() initializes μC/CPU services. μC/CPU provides services to measure

interrupt latency, receive time stamps, and provide emulation of the count leading

zeros instruction if the processor used does not have that instruction.

L4-2(4) BSP_CPU_ClkFreq() determines the system tick reference frequency of this

board. The number of system ticks per OS tick is calculated using

OSCfg_TickRate_Hz, which is defined in os_cfg_app.h. Finally,

OS_CPU_SysTickInit() sets up the μC/OS-III tick interrupt. For this, the

function needs to initialize one of the hardware timers to interrupt the CPU at

the OSCfg_TickRate_Hz rate calculated previously.

L4-2(5) Mem_Init() initializes the memory management module. μC/TCP-IP object

creation uses this module. This function is part of μC/LIB. The memory module

must be initialized by calling Mem_Init() prior to calling Net_Init(). It is
recommended to initialize the memory module before calling OSStart(), or

 Mem_Init(); (5)
 AppInit_TCPIP(&net_err); (6)
 (7)
 BSP_LED_Off(0u); (8)
 while (1) { (9)
 BSP_LED_Toggle(0u); (10)
 OSTimeDlyHMSM((CPU_INT16U) 0u, (11)
 (CPU_INT16U) 0u,
 (CPU_INT16U) 0u,
 (CPU_INT16U) 100u,
 (OS_OPT) OS_OPT_TIME_HMSM_STRICT,
 (OS_ERR *)&err_os);
 }
}

73

Application Code
near the top of the startup task. The application developer must enable and

configure the size of the μC/LIB memory heap available to the system.

LIB_MEM_CFG_HEAP_SIZE should be defined from within app_cfg.h and set to

match the application requirements.

L4-2(6) AppInit_TCPIP() initializes the TCP/IP stack and the initial parameters to

configure it. See section F-1-6 “μC/TCP-IP Initialization” on page 788 for a

description of AppInit_TCPIP().

L4-2(7) If other IP applications are required this is where they are initialized

L4-2(8) BSP_LED_Off() is a function that will turn off all LEDs because the function is

written so that a zero argument refers to all LEDs.

L4-2(9) Most μC/OS-III tasks will need to be written as an infinite loop.

L4-2(10) This BSP function toggles the state of the specified LED. Again, a zero indicates

that all the LEDs should be toggled on the evaluation board. Simply change the

zero to 1 causing LED #1 to toggle. Exactly which LED is LED #1? That depends

on the BSP developer. Encapsulate access to LEDs through such functions as

BSP_LED_On(), BSP_LED_Off() and BSP_LED_Toggle(). Also, LEDs are

assigned logical values (1, 2, 3, etc.) instead of specifying a port and specific bit

on each port.

L4-2(11) Finally, each task in the application must call one of the μC/OS-III functions

that will cause the task to “wait for an event.” The task can wait for time to

expire (by calling OSTimeDly(), or OSTimeDlyHMSM()), or wait for a signal or a

message from an ISR or another task.

AppTaskStart() calls the AppInit_TCPIP() to initialize and start the TCP/IP stack. This

function is shown in:
74

Application Code
Listing 4-3 AppInit_TCPIP()

L4-3(1) Net_Init() is the Network Protocol stack initialization function.

L4-3(2) NetIF_Add() is a network interface function responsible for initializing a

Network Device driver. The first parameter is the address of the Ethernet

API function. if_nbr is the interface index number. The first interface is index

number 1. If the loopback interface is configured it has interface index number 0.

L4-3(3) The second parameter is the address of the device API function.

static void AppInit_TCPIP (NET_ERR *perr)
{
 NET_IF_NBR if_nbr;
 NET_IP_ADDR ip;
 NET_IP_ADDR msk;
 NET_IP_ADDR gateway;
 NET_ERR err_net;

 err_net = Net_Init(); (1)
 APP_TEST_FAULT(err_net, NET_ERR_NONE);

 if_nbr = NetIF_Add((void *)&NetIF_API_Ether, (2)
 (void *)&NetDev_API_<controller>, (3)
 (void *)&NetDev_BSP_<controller>, (4)
 (void *)&NetDev_Cfg_<controller>, (5)
 (void *)&NetPhy_API_Generic, (6)
 (void *)&NetPhy_Cfg_<controller>, (7)
 (NET_ERR *)&err_net); (8)
 APP_TEST_FAULT(err_net, NET_ERR_NONE);

 NetIF_Start(if_nbr, perr); (9)
 APP_TEST_FAULT(err_net, NET_IF_ERR_NONE);

 ip = NetASCII_Str_to_IP((CPU_CHAR *)"10.10.1.65", (10)
 (NET_ERR *)&err_net);
 msk = NetASCII_Str_to_IP((CPU_CHAR *)"255.255.255.0", (11)
 (NET_ERR *)&err_net);
 gateway = NetASCII_Str_to_IP((CPU_CHAR *)"10.10.1.1", (12)
 (NET_ERR *)&err_net);

 NetIP_CfgAddrAdd(if_nbr, ip, msk, gateway, &err_net); (13)
 APP_TEST_FAULT(err_net, NET_IP_ERR_NONE);

}

75

Application Code
L4-3(4) The third parameter is the address of the device BSP data structure.

L4-3(5) The third parameter is the address of the device configuration data structure.

L4-3(6) The fourth parameter is the address of the PHY API function

L4-3(7) The fifth and last parameter is the address of the PHY configuration data

structure.

L4-3(8) The error code is used to validate the result of the function execution.

L4-3(9) NetIF_Start() makes the network interface ready to receive and transmit.

L4-3(10) Definition of the IP address to be used by the network interface. The

NetASCII_Str_to_IP() converts the human readable address into a format

required by the protocol stack. In this example the 10.10.1.65 address out of

the 10.10.1.0 network with a subnet mask of 255.255.255.0 is used. To match

different network, this address, the subnet mask and the default gateway IP

address have to be customized.

L4-3(11) Definition of the subnet mask to be used by the network interface. The

NetASCII_Str_to_IP() converts the human readable subnet mask into the

format required by the protocol stack.

L4-3(12) Definition of the default gateway address to be used by the network interface.

The NetASCII_Str_to_IP() converts the human readable default gateway

address into the format required by the protocol stack.

L4-3(13) NetIP_CfgAddrAdd() configures the network parameters (IP address, subnet

mask and default gateway IP address) required for the interface. More than one

set of network parameters can be configured per interface. Lines from (10) to

(13) can be repeated for as many network parameter sets as need to be

configured for an interface.

Once the source code is built and loaded into the target, the target will respond to ICMP

Echo (ping) requests.
76

Chapter

5

Network Interface Configuration

This chapter describes how to configure a network interface for μC/TCP-IP.

5-1 BUFFER MANAGEMENT

This section describe how μC/TCP-IP uses buffers to receive and transmit application data

and network protocol control information. You should understand how network buffers are

used by μC/TCP-IP to correctly configure your interface(s).

5-1-1 NETWORK BUFFERS

μC/TCP-IP stores transmitted and received data in data structures known as Network

Buffers. Each Network Buffer consists of two parts: the Network Buffer header and the

Network Buffer Data Area pointer. Network Buffer headers contain information about the

data pointed to via the data area pointer. Data to be received or transmitted is stored in the

Network Buffer Data Area.

μC/TCP-IP is designed with the inherent constraints of an embedded system in mind, the

most important being the restricted RAM space. μC/TCP-IP defines network buffers for the

Maximum Transmission Unit (MTU) of the Data Link technology used, which is most of the

time Ethernet. Default Ethernet’s maximum transmit unit (MTU) size is 1500 bytes.

5-1-2 RECEIVE BUFFERS

Network Buffers used for reception for a Data Link technology are buffers that can hold one

maximum frame size. Because it is impossible to predict how much data will be received,

only large buffers can be configured. Even if the packet does not contain any payload, a

large buffer must be used, as worst case must always be assumed.
77

Buffer Management
5-1-3 TRANSMIT BUFFERS

On transmission, the number of bytes to transmit is always known, so it is possible to use a

Network Buffer size smaller than the maximum frame size. μC/TCP-IP allows you to reduce

the RAM usage of the system by defining small buffers. When the application does not

require a full size frame to transmit, it is possible to use smaller Network Buffers.

Depending on the configuration, up to eight pools of Network Buffer related objects may

be created per network interface. Only four pools are shown below and the remaining

pools are used for maintaining Network Buffer usage statistics for each of the pools shown.

In transmission, the situation is different. The TCP/IP stack knows how much data is being

transmitted. In addition to RAM being limited in embedded systems, another feature is the

small amount of data that needs to be transmitted. For example, in the case of sensor data

to be transmitted periodically, a few hundred bytes every second can be transferred. In this

case, a small buffer can be used and save RAM instead of waste a large transmit buffer.

Another example is the transmission of TCP acknowledgment packets, especially when they

are not carrying any data back to the transmitter. These packets are also small and do not

require a large transmit buffer. RAM is also saved.

5-1-4 NETWORK BUFFER ARCHITECTURE

μC/TCP-IP uses both small and large network buffers:

■ Network buffers

■ Small transmit buffers

■ Large transmit buffers

■ Large receive buffers

A single network buffer is allocated for each small transmit, large transmit and large receive

buffer. Network buffers contain the control information for the network packet data in the

network buffer data area. Currently, network buffers consume approximately 200 bytes

each. The network buffers’ data areas are used to buffer the actual transmit and receive

packet data. Each network buffer is connected to the data area via a pointer to the network
78

Buffer Management
buffer data area, and both move through the network protocol stack layers as a single entity.

When the data area is no longer required, both the network buffer and the data area are

freed. Figure 5-1 depicts the network buffer and data area objects.

Figure 5-1 Network Buffer Architecture

All transmit data areas contain a small region of reserved space located at the top of the

data area address space. The reserved space is used for network protocol header data and is

currently fixed to 134 bytes in length. In general, not all of this space is required. However,

the network protocol header region has been sized according to the maximum network

protocol header usage for TCP/IP Ethernet packets.

First, μC/TCP-IP copies application-specified data from the application buffer into the

application data region before writing network protocol header data to the protocol header

region. After that, depending on the type of the packet being sent, each required layers will

add its own protocol headers in the Protocols Headers Region of the Data Area. Starting from

the highest layer to the lowest layer, all required headers are stacked on top of each other.

 Data Area Pointer

Network
Buffer
Header

Protocols
Headers
Region

Application or
Protocol Data

Region

Data Area
(Network buffer size)

Network Buffer
Header Pool

Small Transmit
Buffer Pool

Large Transmit
Buffer Pool

Large Receive
Buffer Pool
79

Buffer Management
5-1-5 NETWORK BUFFER SIZES

μC/TCP-IP requires that network buffer sizes configured in net_dev_cfg.c satisfy the

minimum and maximum packet frame sizes of network interfaces/devices.

Assuming an Ethernet interface (with non-jumbo or VLAN-tagged frames), the minimum

frame packet size is 64 bytes (including its 4-byte CRC). If an Ethernet frame is created

such that the frame length is less than 60 bytes (before its 4-byte CRC is appended), frame

padding must be appended by the network driver or the Ethernet network interface layer

to the application data area to meet Ethernet’s minimum packet size. For example, the

ARP protocol typically creates packets of 42 bytes and therefore 18 bytes of padding must

be added. The additional padding must fit within the network buffer’s data area.

Ethernet’s maximum transmit unit (MTU) size is 1500 bytes. When TCP is used as the

transport protocol, TCP and IP protocol header sizes are subtracted from Ethernet’s

1500-byte MTU. A maximum of 1460 bytes of TCP application data may be sent in a

full-sized Ethernet frame.

In addition, the variable size of network packet protocol headers must also be considered

when configuring buffer sizes. The following computations demonstrate how to configure

network buffer sizes to transmit and receive maximum sized network packets.

For transmit buffer size configuration, each layer’s maximum header sizes must be

assumed/included to achieve the maximum payload for each layer. The maximum header

sizes for each layer are:

Max Ethernet header : 14 bytes (this is a fixed size w/o CRC)
Max ARP header : 28 bytes (this is a fixed size for Ethernet/IPv4)
Max IP header : 60 bytes (with maximum length IP options)
Max TCP header : 60 bytes (with maximum length TCP options)
Max UDP header : 8 bytes (this is a fixed size)

Assuming both TCP and UDP are available as transport layer protocols, TCP’s maximum

header size is the value used as the maximum transport layer header size since it is greater

than UDP’s header size. Thus, the total maximum header size can then be computed as:
80

Buffer Management
 Max Hdr Size = Interface Max Header (Ethernet hdr is 14 bytes)
 + Network Max Header (IP max hdr is 60 bytes)
 + Transport Max Header (TCP max hdr is 60 bytes)
 = 14 + 60 + 60 = 134 bytes

μC/TCP-IP configures NET_BUF_DATA_PROTOCOL_HDR_SIZE_MAX with this value in

net_cfg_net.h to use as the starting data area index for transmit buffers’ application data.

The next step is to define transmit buffers’ total data area size. The issue is that we used the

maximum header size for the transport and network layers. However, most of the time, the

network and transport layer headers typically do not have any options:

Typical IP header : 20 bytes (without IP options)
Typical TCP header : 20 bytes (without TCP options)

These header values are used to determine the maximum payload a Data Link frame can

carry. Since a TCP header is larger than UDP headers, the following compares the TCP

maximum payload, also known as TCP’s Maximum Segment Size (MSS), over an Ethernet

data link:

 TCP payload (max) = Interface Max (Ethernet 1514 bytes w/o CRC)
 - Interface Header (Ethernet 14 bytes w/o CRC)
 - Min IP Header (IP min hdr is 20 bytes)
 - Min TCP Header (TCP min hdr is 20 bytes)
 = 1514 - 14 - 20 - 20 = 1460 bytes

When TCP is used in a system, it is recommended to configure the large buffer size to at

least this size in order to transmit maximum size TCP MSS:

 TCP Max Buf Size = Max TCP payload (1460 bytes)
 + Max Hdr sizes (134 bytes)
 = 1460 + 134 = 1594 bytes

If any IP or TCP options are used, it is possible that the payload must be reduced, but

unfortunately, that cannot be known by the application when transmitting. It is possible

that, when the packet is at the network layer and because the TCP or IP headers are larger

than usual because an option is enabled, a packet is too large and needs to be fragmented
81

Buffer Management
to be transmitted. However, μC/TCP-IP does not yet support fragmentation; but since

options are seldom used and the standard header sizes for TCP and IP are the ones

supported, this is generally not a problem.

For UDP, the UDP header has no options and the size does not change – it is always

8 bytes. Thus, UDP’s maximum payload is calculated as follows:

 UDP payload (max) = Interface Max (Ethernet 1514 bytes w/o CRC)
 - Interface Header (Ethernet 14 bytes w/o CRC)
 - Min IP Header (IP min hdr is 20 bytes)
 - Min UDP Header (UDP hdr is 8 bytes)
 = 1514 - 14 - 20 - 8 = 1472 bytes

So to transmit maximum-sized UDP packets, configure large buffer sizes to at least:

 Max UDP Buf Size = Max UDP payload (1472 bytes)
 + Max Hdr sizes (134 bytes)
 = 1472 + 134 = 1606 bytes

ICMP packets which are encapsulated within IP datagrams also have variable-length header

sizes from 8 to 20 bytes. However, for certain design reasons, ICMP headers are included in

an IP datagram’s data area and are not included in the maximum header size calculation.

(IGMP packets have a fixed header size of 8 bytes but are also included in an IP datagram’s

data area.) Thus, ICMP’s maximum payload is calculated as follows:

 ICMP payload (max) = Interface Max (Ethernet 1514 bytes w/o CRC)
 - Interface Header (Ethernet 14 bytes w/o CRC)
 - Min IP Header (IP min hdr is 20 bytes)
 = 1514 - 14 - 20 = 1480 bytes

And to transmit maximum-sized ICMP packets, configure large buffer sizes to at least:

 Max ICMP Buf Size = Max ICMP payload (1480 bytes)
 + Max Hdr sizes (134 bytes)
 = 1480 + 134 = 1614 bytes
82

Buffer Management
Small transmit buffer sizes must also be appropriately configured to at least the minimum

packet frame size for the network interface/device. This means configuring a buffer size that

supports sending a minimum sized packet for each layer’s minimum header sizes. The

minimum header sizes for each layer are:

Min Ethernet header : 14 bytes (this is a fixed size w/o CRC)
Min ARP header : 28 bytes (this is a fixed size for Ethernet/IPv4)
Min IP header : 20 bytes (with minimum length IP options)
Min TCP header : 20 bytes (with minimum length TCP options)
Min UDP header : 8 bytes (this is a fixed size)

For Ethernet frames, the following computation shows that both ARP packets and UDP/IP

packets share the smallest minimum header sizes of 42 bytes:

 ARP packet (min) = Interface Min Header (Ethernet 14 bytes w/o CRC)
 + ARP Min Header (ARP min hdr is 28 bytes)
 = 14 + 28 = 42 bytes

 UDP packet (min) = Interface Min Header (Ethernet 14 bytes w/o CRC)
 + IP Min Header (IP min hdr is 20 bytes)
 + UDP Min Header (UDP min hdr is 8 bytes)
 = 14 + 20 + 8 = 42 bytes

And since Ethernet packets must be at least 60 bytes in length (not including 4-byte CRC),

small transmit buffers must be minimally configured to at least 152 bytes to receive the

smallest payload for each layer:

 Min Tx Pkt Size = Interface Min Size (Ethernet 60 bytes w/o CRC)
 + Max Hdr Sizes (134 bytes)
 - Min Pkt Size (42 bytes)
 = 60 + 134 - 42 = 152 bytes

Figure 5-2 shows transmit buffers with reserved space of 134 bytes/octets for the maximum

protocol header sizes, application data sizes from 0 to 1472 bytes/octets, and the valid

range of configured buffer data area sizes for Ethernet of 152 to 1614 bytes/octets.
83

Buffer Management
:

Figure 5-2 Transmit Buffer Data Areas

Note that the application data size range plus the maximum header sizes of 134 bytes do

not exactly add up to the small or large transmit data area configuration total. This is due to

certain protocols (e.g., ICMP) whose protocol headers are not included in the typical

network protocol header region but start at index 134.

Also note that if no small transmit buffer data areas are available, a data area from the large

transmit data area pool is allocated if both small and large transmit data areas are

configured.

μC/TCP-IP does not require receive buffer data areas to reserve space for maximum

header sizes but does require that each receive buffer data area be configured to the

maximum expected packet frame size for the network interface/device. For Ethernet

interfaces, receive buffers must be configured to at least 1514 bytes, assuming the interface’s

Ethernet device is configured to discard and not buffer the packet’s 4-byte CRC, or

1518 bytes, if the device does buffer the CRC. Although network buffers may require

additional bytes to properly align each buffer, μC/TCP-IP creates the buffers with the

appropriate alignment specified in net_dev_cfg.c so no additional bytes need be added to

the receive buffer size.

The following table shown how each network buffer should be configured to handle most

of the worst cases.

Type of network buffer Size

Receive Large Buffer 1518 + Alignment

Transmit Large Buffer 1618 + Alignment

Transmit Small Buffer 156 + Alignment

�������	
�������	
�����	����	������

�����	��	�����
��������	����	����

������� 	!�����
�""��������
����	������

�# 	!�����

$�� %�
!�����
84

μC/TCP-IP Network Interface configuration
5-2 μC/TCP-IP NETWORK INTERFACE CONFIGURATION

All μC/TCP-IP device drivers require a configuration structure for each device that must be

compiled into your driver. You must place all device configuration structures and

declarations within a pair of files named net_dev_cfg.c and net_dev_cfg.h.

Micrium provides sample configuration code free of charge; however, most sample code

will likely require modification depending on the combination of compiler, processor,

evaluation board, and device hardware used.

5-2-1 MEMORY CONFIGURATION

The first step in creating a device driver configuration for μC/TCP-IP begins with the

memory configuration structure. This section describes the memory configuration settings

for most device drivers, and should provide you an in-depth understanding of memory

configuration. You will also discover which settings to modify in order to enhance the

performances of the driver.

Listing 5-1 shows a sample memory configuration structure.

Listing 5-1 Sample memory configuration

const NET_DEV_CFG NetDev_Cfg_Dev1 = {
 /* Structure member: */
 NET_IF_MEM_TYPE_MAIN, /* .RxBufPoolType */ (1)
 1518u, /* .RxBufLargeSize */ (2)
 9u, /* .RxBufLargeNbr */ (3)
 16u, /* .RxBufAlignOctets */ (4)
 0u, /* .RxBufIxOffset */ (5)

 NET_IF_MEM_TYPE_MAIN, /* .TxBufPoolType */ (6)
 1606u, /* .TxBufLargeSize */ (7)
 4u, /* .TxBufLargeNbr */ (8)
 256u, /* .TxBufSmallSize */ (9)
 2u, /* .TxBufSmallNbr */ (10)
 16u, /* .TxBufAlignOctets */ (11)
 0u, /* .TxBufIxOffset */ (12)

 0x00000000u, /* .MemAddr */ (13)
 0u, /* .MemSize */ (14)

 NET_DEV_CFG_FLAG_NONE, /* .Flag */ (15)
};
85

μC/TCP-IP Network Interface configuration
L5-1(1) .RxBufPoolType specifies the memory location for the receive data buffers.

Buffers may located either in main memory or in a dedicated memory region.

This setting is used by the IF layer to initialize the Rx memory pool. This field

must be set to one of two macros: NET_IF_MEM_TYPE_MAIN or

NET_IF_MEM_TYPE_DEDICATED. You may want to set this field when DMA with

dedicated memory is used. It is possible that you might have to store

descriptors within the dedicated memory if your device requires it.

L5-1(2) .RxBufLargeSize specifies the size of all receive buffers. Specifying a value is

required. The buffer length is set to 1518 bytes which corresponds to the

Maximum Transmission Unit (MTU) of an Ethernet network. For DMA-based

Ethernet controllers, you must set the receive data buffer size to be greater or

equal to the size of the largest receivable frame. If the size of the total buffer

allocation is greater than the amount of available memory in the chosen memory

region, a run-time error will be generated when the device is initialized.

L5-1(3) .RxBufLargeNbr specifies the number of receive buffers that will be allocated

to the device. There should be at least one receive buffer allocated, and it is

recommended to have at least ten receive buffers. The optimal number of

receive buffers depends on your application.

L5-1(4) .RxBufAlignOctets specifies the required alignment of the receive buffers, in

bytes. Some devices require that the receive buffers be aligned to a specific byte

boundary. Additionally, some processor architectures do not allow multi-byte

reads and writes across word boundaries and therefore may require buffer

alignment. In general, it is probably a best practice to align buffers to the data

bus width of the processor, which may improve performance. For example, a

32-bit processor may benefit from having buffers aligned on a four-byte

boundary.

L5-1(5) .RxBufIxOffset specifies the receive buffer offset in bytes. Most devices

receive packets starting at base index zero in the network buffer data areas.

However, some devices may buffer additional bytes prior to the actual received

Ethernet packet. This setting configures an offset to ignore these additional

bytes. If a device does not buffer any additional bytes ahead of the received

Ethernet packet, then an offset of 0 must be specified. However, if a device
86

μC/TCP-IP Network Interface configuration
does buffer additional bytes ahead of the received Ethernet packet, then you

should configure this offset with the number of additional bytes. Also, the

receive buffer size must also be adjusted by the number of additional bytes.

L5-1(6) .TxBufPoolType specifies the memory placement of the transmit data buffers.

Buffers may be placed either in main memory or in a dedicated memory

region. This field is used by the IF layer, and it should be set to one of two

macros: NET_IF_MEM_TYPE_MAIN or NET_IF_MEM_TYPE_DEDICATED. When

DMA descriptors are used, they may be stored into the dedicated memory.

L5-1(7) .TxBufLargeSize specifies the size of the large transmit buffers in bytes. This

field has no effect if the number of large transmit buffers is configured to zero.

Setting the size of the large transmit buffers below 1594 bytes may hinder the

μC/TCP-IP module’s ability to transmit full sized IP datagrams since IP transmit

fragmentation is not yet supported. We recommend setting this field between

1594 and 1614 bytes in order to accommodate the maximum transmit packet

sizes all μC/TCP-IP’s protocols.

You can optimize the transmit buffer if you know in advance what will be the

maximum size of the packets the user will want to transmit through the device.

L5-1(8) .TxBufLargeNbr specifies the number of large transmit buffers allocated to the

device. You may set this field to zero to make room for additional small

transmit buffers, however, the size of the maximum transmittable packet will

then depend on the size of the small transmit buffers.

L5-1(9) .TxBufSmallSize specifies the small transmit buffer size. For devices with a

minimal amount of RAM, it is possible to allocate small transmit buffers as well

as large transmit buffers. In general, we recommend a 152 byte small transmit

buffer size, however, you may adjust this value according to the application

requirements. This field has no effect if the number of small transmit buffers is

configured to zero.

L5-1(10) .TxBufSmallNbr specifies the numbers of small transmit buffers. This field

controls the number of small transmit buffers allocated to the device. You may

set this field to zero to make room for additional large transmit buffers if

required.
87

μC/TCP-IP Network Interface configuration
L5-1(11) .TxBufAlignOctets specifies the transmit buffer alignment in bytes. Some

devices require that the transmit buffers be aligned to a specific byte boundary.

Additionally, some processor architectures do not allow multi-byte reads and

writes across word boundaries and therefore may require buffer alignment. In

general, it probably a best practice to align buffers to the data bus width of the

processor which may improve performance. For example, a 32-bit processor

may benefit from having buffers aligned on a four-byte boundary.

L5-1(12) .TxBufIxOffset specifies the transmit buffer offset in bytes. Most devices only

need to transmit the actual Ethernet packets as prepared by the higher network

layers. However, some devices may need to transmit additional bytes prior to

the actual Ethernet packet. This setting configures an offset to prepare space for

these additional bytes. If a device does not transmit any additional bytes ahead

of the Ethernet packet, the default offset of zero should be configured.

However, if a device does transmit additional bytes ahead of the Ethernet

packet then configure this offset with the number of additional bytes. Also, the

transmit buffer size must be adjusted by the number of additional bytes.

L5-1(13) .MemAddr specifies the starting address of the dedicated memory region for

devices with such memory. For devices with non-dedicated memory, you can

initialize this field to zero. You may use this setting to put DMA descriptors into

the dedicated memory.

L5-1(14) .MemSize specifies the size of the dedicated memory region in bytes for

devices with such memory. For devices with non-dedicated memory, you can

initialize this field to zero. You may use this setting to put DMA descriptors into

the dedicated memory.

L5-1(15) .Flags specify the optional configuration flags. Configure (optional) device

features by logically OR’ing bit-field flags:

NET_DEV_CFG_FLAG_NONE No device configuration flags selected.

NET_DEV_CFG_FLAG_SWAP_OCTETS Swap data bytes (i.e., swap data words’

high-order bytes with data words’

low-order bytes, and vice-versa) if

required by device-to-CPU data bus

wiring and/or CPU endian word order.
88

μC/TCP-IP Network Interface configuration
5-2-2 μC/TCP-IP MEMORY MANAGEMENT

Memory is allocated to μC/TCP-IP device drivers through the μC/LIB memory module. You

must enable and configure the size of the μC/LIB memory heap available to the system. The

following configuration constants should be defined from within app_cfg.h and set to

match the application requirements.

#define LIB_MEM_CFG_ALLOC_EN DEF_ENABLED
#define LIB_MEM_CFG_HEAP_SIZE 58000

The heap size is specified in bytes. If the heap size is not configured large enough, an error

will be returned during the Network Protocol Stack initialization, or during interface

addition.

Since the needed heap size is related to the stack configuration (net_cfg.h) and is specific

to each device driver, it’s not possible to provide an exact formula to calculate it. Thus to

optimize the heap size, you should try different heap size until no error is returned for all

interfaces added.

Note: The memory module must be initialized by the application by calling Mem_Init()
prior to calling Net_Init(). We recommend initializing the memory module before calling

OSStart(), or near the top of the startup task.
89

Ethernet Interface Configuration
5-3 ETHERNET INTERFACE CONFIGURATION

5-3-1 ETHERNET DEVICE CONFIGURATION

Listing 5-2 shows a sample Ethernet configuration structure for Ethernet devices.

Listing 5-2 Memory configuration for Ethernet device

L5-2(1) Memory configuration of the Ethernet Device. See “Memory Configuration” on

page 85. for further information about how to configure the memory of your

Ethernet interface.

L5-2(2) .RxDescNbr specifies the number of receive descriptors. For DMA-based

devices, this value is used by the device driver during initialization in order to

allocate a fixed-size pool of receive descriptors to be used by the device. The

number of descriptors must be less than the number of configured receive

const NET_DEV_CFG_ETHER NetDev_Cfg_Dev1_0 = {
 /* Structure member: */
 NET_IF_MEM_TYPE_MAIN, /* .RxBufPoolType */ (1)
 1518u, /* .RxBufLargeSize */
 9u, /* .RxBufLargeNbr */
 16u, /* .RxBufAlignOctets */
 0u, /* .RxBufIxOffset */

 NET_IF_MEM_TYPE_MAIN, /* .TxBufPoolType */
 1606u, /* .TxBufLargeSize */
 4u, /* .TxBufLargeNbr */
 256u, /* .TxBufSmallSize */
 2u, /* .TxBufSmallNbr */
 16u, /* .TxBufAlignOctets */
 0u, /* .TxBufIxOffset */

 0x00000000u, /* .MemAddr */
 0u, /* .MemSize */

 NET_DEV_CFG_FLAG_NONE, /* .Flag */

 4u, /* .RxDescNbr */ (2)
 4u, /* .TxDescNbr */ (3)
 0x40028000u, /* .BaseAddr */ (4)
 0u, /* .DataBusSizeNbrBits */ (5)
 "00:50:C2:25:61:00", /* .HW_AddrStr */ (6)
};
90

Ethernet Interface Configuration
buffers. We recommend setting this value to something within 40% and 70% of

the number of receive buffers. Non-DMA based devices may configure this

value to zero. You must use this setting with DMA based devices and he must

set at least two descriptors. The Device driver could

L5-2(3) .TxDescNbr specifies the number of transmit descriptors. For DMA based

devices, this value is used by the device driver during initialization to allocate a

fixed size pool of transmit descriptors to be used by the device. For best

performance, the number of transmit descriptors it’s recommended to set equal

to the number of small, plus the number of large transmit buffers configured

for the device. Non-DMA based devices may configure this value to zero. You

must use this setting with DAM based devices and must set at least two

descriptors.

L5-2(4) .BaseAddr specifies the base address of device’s hard ware/registers.

L5-2(5) .DataBusSizeNbrBits specifies the size of device's data bus (in bits), if

available.

L5-2(6) .HW_AddrStr specifies the desired device hardware address; may be NULL

address or string if the device hardware address is configured or set at

run-time.Depending of the driver, if this value is kept NULL or invalid, most of

device driver will automatically try to load and use the hardware address

located in the memory of the device.
91

Ethernet Interface Configuration
5-3-2 ETHERNET PHY CONFIGURATION

Listing 5-3 shows a typical Ethernet PHY configuration structure.

Listing 5-3 Sample Ethernet PHY Configuration

L5-3(1) PHY Address. This field represents the address of the PHY on the (R)MII bus.

The value configured depends on the PHY and the state of the PHY pins

during power-up. Developers may need to consult the schematics for their

board to determine the configured PHY address. Alternatively, the PHY address

may be detected automatically by specifying NET_PHY_ADDR_AUTO; however,

this will increase the initialization latency of μC/TCP-IP and possibly the rest of

the application depending on where the application places the call to

NetIF_Start().

L5-3(2) PHY bus mode. This value should be set to one of the following values

depending on the hardware capabilities and schematics of the development

board. The network device BSP should configure the Phy-level hardware based

on this configuration value.

NET_PHY_BUS_MODE_MII
NET_PHY_BUS_MODE_RMII
NET_PHY_BUS_MODE_SMII

L5-3(3) PHY bus type. This field represents the type of electrical attachment of the PHY

to the Ethernet controller. In some cases, the PHY may be internal to the

network controller, while in other cases, it may be attached via an external MII

or RMII bus. It is desirable to specify which attachment method is in use so that

NET_PHY_CFG_ETHER NetPhy_Cfg_FEC_0= {
 NET_PHY_ADDR_AUTO, (1)
 NET_PHY_BUS_MODE_MII, (2)
 NET_PHY_TYPE_EXT (3)
 NET_PHY_SPD_AUTO, (4)
 NET_PHY_DUPLEX_AUTO, (5)
};
92

Ethernet Interface Configuration
a device driver can initialize additional hardware resources if an external PHY

is attached to a device that also has an internal PHY. Available settings for this

field are:

NET_PHY_TYPE_INT
NET_PHY_TYPE_EXT

L5-3(4) Initial PHY link speed. This configuration setting will force the PHY to link to

the specified link speed. Optionally, auto-negotiation may be enabled. This

field must be set to one of the following values:

NET_PHY_SPD_AUTO
NET_PHY_SPD_10
NET_PHY_SPD_100
NET_PHY_SPD_1000

L5-3(5) Initial PHY link duplex. This configuration setting will force the PHY to link

using the specified duplex. This setting must be set to one of the following

values:

NET_PHY_DUPLEX_AUTO
NET_PHY_DUPLEX_HALF
NET_PHY_DUPLEX_FULL
93

Ethernet Interface Configuration
5-3-3 ADDING AN ETHERNET INTERFACE

Once μC/TCP-IP is initialized, each network interface must be added to the stack via

NetIF_Add() function. NetIF_Add() validates the network interface arguments, initializes

the interface, and adds it to the interface list of the TCP/IP stack. μC/TCP-IP uses a structure

that contains pointers to API functions which are used to access the interface layer, and

configuration structures are used to initialize resources needed by the network interface.

You must pass the following arguments to the NetIF_Add() function:

Listing 5-4 NetIF_Add() arguments

L5-4(1) The first argument specifies the link layer API pointers structure that will

receive data from the hardware device. For an Ethernet interface, this value will

always be defined as NetIF_API_Ether. This symbol is defined by μC/TCP-IP

and it can be used to add as many Ethernet network interface’s as necessary.

This API should always be provided with the TCP-IP stack which can be find

under the interface folder (/IF/net_if_ether.*).

L5-4(2) The second argument represents the hardware device driver API pointers

structure which is defined as a fixed structure of function pointers of the type

specified by Micrium for use with μC/TCP-IP. If Micrium supplies the device

driver, the symbol name of the device API will be defined within the device

driver at the top of the device driver source code file. You can find the device

driver under the device folder (/Dev/Ether/<controller>). Otherwise, the

driver developer is responsible for creating the device driver and the API

structure should start from the device driver template which can be find under

the device folder (/Dev/Ether/Template).

L5-4(3) The third argument specifies the specific device’s board-specific (BSP)

interface functions which is defined as a fixed structure of function pointers.

The application developer must define both the BSP interface structure of

NET_IF_NBR NetIF_Add (void *if_api, (1)
 void *dev_api, (2)
 void *dev_bsp, (3)
 void *dev_cfg, (4)
 void *ext_api, (5)
 void *ext_cfg, (6)
 NET_ERR *perr) (7)
94

Ethernet Interface Configuration
function pointers and the actual BSP functions referenced by the BSP interface

structure and should start from the BSP template provided with the stack which

you can find under the BSP folder (/BSP/Template). Micrium may be able to

supply example BSP interface structures and functions for certain evaluation

boards. For more information about declaring BSP interface structures and BSP

functions device, see Chapter 6, “Network Board Support Package” on

page 121 for further information about the BSP API.

L5-4(4) The fourth argument specifies the device driver configuration structure that will

be used to configure the device hardware for the interface being added. The

device configuration structure format has been specified by Micrium and must

be provided by the application developer since it is specific to the selection of

device hardware and design of the evaluation board. Micrium may be able to

supply example device configuration structures for certain evaluation boards.

For more information about declaring a device configuration structure, See

“Ethernet Device Configuration” on page 90..

L5-4(5) The fifth argument represents the physical layer hardware device API. In most

cases, when Ethernet is the link layer API specified in the first argument, the

physical layer API may be defined as NetPHY_API_Generic. This symbol has

been defined by the generic Ethernet physical layer device driver which can be

supplied by Micrium. If a custom physical layer device driver is required, then the

developer would be responsible for creating the API structure. Often Ethernet

devices have built-in physical layer devices which are not (R)MII compliant. In

this circumstance, the physical layer device driver API field may be left NULL and

the Ethernet device driver may implement routines for the built-in PHY.

L5-4(6) The sixth argument represents the physical layer hardware device configuration

structure. This structure is specified by the application developer and contains such

information as the physical device connection type, address, and desired link state

upon initialization. For devices with built in non (R)MII compliant physical layer

devices, this field may be left NULL. However, it may be convenient to declare a

physical layer device configuration structure and use some of the members for

physical layer device initialization from within the Ethernet device driver. For more

information about declaring a physical layer hardware configuration structure, see

Chapter 5, “Ethernet PHY Configuration” on page 92.
95

Ethernet Interface Configuration
L5-4(7) The last argument is a pointer to a NET_ERR variable that contains the return

error code for NetIF_Add(). This variable should be checked by the

application to ensure that no errors have occurred during network interface

addition. Upon success, the return error code will be NET_IF_ERR_NONE.

Note: If an error occurs during the call to NetIF_Add(), the application may

attempt to call NetIF_Add() a second time for the same interface but unless a

temporary hardware fault occured, the application developer should observe

the error code, determine and resolve the cause of the error, rebuild the

application and try again. If a hardware failure occurred, the application may

attempt to add an interface as many times as necessary, but a common problem

to watch for is a μC/LIB Memory Manager heap out-of-memory condition. This

may occur when adding network interfaces if there is insufficient memory to

complete the operation. If this error occurs, the configured size of the μC/LIB

heap within app_cfg.h must be increased.

Once an interface is added successfully, the next step is to configure the

interface with one or more network layer protocol addresses.

For a thorough description of the μC/TCP-IP files and directory structure, see Chapter 3,

“Directories and Files” on page 41.

When the network interface is added without error, it must be started via NetIF_Start()
function to be available and be used by the μC/TCP-IP. The following code example shows

how to initialize μC/TCP-IP, add an interface, configure the IP address and start it:
96

Ethernet Interface Configuration
Listing 5-5 Ethernet interface initialization example

#include <net.h>
#include <net_dev_dev1.h>
#include <net_bsp.h>
#include <net_phy.h>

void App_InitTCPIP (void)
{
 NET_IF_NBR if_nbr;
 NET_IP_ADDR ip;
 NET_IP_ADDR msk;
 NET_IP_ADDR gateway;
 CPU_BOOLEAN cfg_success;
 NET_ERR err;

 err = Net_Init();
 if (err != NET_ERR_NONE) {
 return;
 }

 if_nbr = NetIF_Add((void *)&NetIF_API_Ether
 (void *)&NetDev_API_Etherxxx,
 (void *)&NetDev_BSP_API,
 (void *)&NetDev_Cfg_Ether_0,
 (void *)&NetPhy_API_Generic,
 (void *)&NetPhy_Cfg_0,
 (NET_ERR *)&err);
 if (err != NET_IF_ERR_NONE) {
 return;
 }

 ip = NetASCII_Str_to_IP((CPU_CHAR *)"192.168.1.65", perr);
 msk = NetASCII_Str_to_IP((CPU_CHAR *)"255.255.255.0", perr);
 gateway = NetASCII_Str_to_IP((CPU_CHAR *)"192.168.1.1", perr);

 cfg_success = NetIP_CfgAddrAdd(if_nbr, ip, msk, gateway, perr);
 (void)&cfg_success;

 NetIF_Start(if_nbr, &err);
 if (err != NET_IF_ERR_NONE) {
 return;
 }
}

97

Wireless Interface Configuration
5-4 WIRELESS INTERFACE CONFIGURATION

5-4-1 WIRELESS DEVICE CONFIGURATION

Listing 5-6 shows a sample wireless configuration structure for wireless devices.

Listing 5-6 Wireless device memory configuration

L5-6(1) Memory configuration of the wireless device. See “Memory Configuration” on

page 85. for further information about how to configure the memory of your

wireless interface.

const NET_DEV_CFG_WIFI NetDev_Cfg_WiFi_0 = {
 /* Structure member: */
 NET_IF_MEM_TYPE_MAIN, /* .RxBufPoolType */ (1)
 1518u, /* .RxBufLargeSize */
 9u, /* .RxBufLargeNbr */
 16u, /* .RxBufAlignOctets */
 0u, /* .RxBufIxOffset */

 NET_IF_MEM_TYPE_MAIN, /* .TxBufPoolType */
 1606u, /* .TxBufLargeSize */
 4u, /* .TxBufLargeNbr */
 256u, /* .TxBufSmallSize */
 2u, /* .TxBufSmallNbr */
 16u, /* .TxBufAlignOctets */
 0u, /* .TxBufIxOffset */

 0x00000000u, /* .MemAddr */
 0u, /* .MemSize */

 NET_DEV_CFG_FLAG_NONE, /* .Flag */

 NET_DEV_BAND_DUAL, /* .Band */ (2)

 25000000L, /* .SPI_ClkFreq */ (3)
 NET_DEV_SPI_CLK_POL_INACTIVE_HIGH, /* .SPI_ClkPol */ (4)
 NET_DEV_SPI_CLK_PHASE_FALLING_EDGE, /* .SPI_ClkPhase */ (5)
 NET_DEV_SPI_XFER_UNIT_LEN_8_BITS, /* .SPI_XferUnitLen */ (6)
 NET_DEV_SPI_XFER_SHIFT_DIR_FIRST_MSB, /* .SPI_XferShiftDir */ (7)

 "00:50:C2:25:60:02", /* .HW_AddrStr */ (8)
};
98

Wireless Interface Configuration
L5-6(2) .Band specifies the desired wireless band enabled and used by the wireless

device. This value should be set to one of the following values depending on

the hardware capabilities and the application requirements.

NET_DEV_BAND_2_4_GHZ

NET_DEV_BAND_5_0_GHZ

NET_DEV_BAND_DUAL

L5-6(3) .SPI_ClkFreq specifies the SPI controller’s clock frequency (in Hertz)

configuration for writing and reading on the wireless device.

L5-6(4) .SPI_ClkPol specifies the SPI controller’s clock polarity configuration for

writing and reading on the wireless device. The network device BSP should

configure the SPI controller’s clock polarity based on this configuration value.

NET_DEV_SPI_CLK_POL_INACTIVE_LOW

NET_DEV_SPI_CLK_POL_INACTIVE_HIGH

L5-6(5) .SPI_ClkPhase specifies the SPI controller’s clock phase configuration for

writing and reading on the wireless device. The network device BSP should

configure the SPI controller’s clock phase based on this configuration value.

NET_DEV_SPI_CLK_PHASE_FALLING_EDGE

NET_DEV_SPI_CLK_PHASE_RAISING_EDGE

L5-6(6) .SPI_XferUnitLen specifies the SPI controller’s transfer unit length

configuration for writing and reading on the wireless device. The network

device BSP should configure the SPI controller’s transfer unit length based on

this configuration value.

NET_DEV_SPI_XFER_UNIT_LEN_8_BITS

NET_DEV_SPI_XFER_UNIT_LEN_16_BITS
99

Wireless Interface Configuration
NET_DEV_SPI_XFER_UNIT_LEN_32_BITS

NET_DEV_SPI_XFER_UNIT_LEN_64_BITS

L5-6(7) .SPI_XferShiftDir specifies the SPI controller’s shift direction configuration

for writing and reading on the wireless device. The network device BSP should

configure the SPI controller’s transfer unit length based on this configuration

value.

NET_DEV_SPI_XFER_SHIFT_DIR_FIRST_MSB

NET_DEV_SPI_XFER_SHIFT_DIR_FIRST_LSB

L5-6(8) .HW_AddrStr specifies the desired device hardware address; may be NULL

address or string if the device hardware address is configured or set at run-time.

Depending of the driver, if this value is kept NULL or invalid, most of device

driver will automatically try to load and use the hardware address located in

the memory of the device.

5-4-2 ADDING A WIRELESS INTERFACE

Once μC/TCP-IP is initialized each network interface must be added to the stack via

NetIF_Add() function which validates the network interface arguments, initializes the

interface and adds it to the interface list. μC/TCP-IP uses a structure that contains pointers to

API functions which are used to access the interface layer and configuration structures are

used to initialize resources needed by the network interface. You must pass the following

arguments to the NetIF_Add() function:

Listing 5-7 NetIF_Add() arguments

NET_IF_NBR NetIF_Add (void *if_api, (1)
 void *dev_api, (2)
 void *dev_bsp, (3)
 void *dev_cfg, (4)
 void *ext_api, (5)
 void *ext_cfg, (6)
 NET_ERR *perr) (7)
100

Wireless Interface Configuration
L5-7(1) The first argument specifies the link layer API pointers structure that will

receive data from the hardware device. For an wireless interface, this value will

always be defined as NetIF_API_WiFi. This symbol is defined by μC/TCP-IP

and it can be used to add as many wireless network interfaces as necessary.

This API should always be provided with the TCP-IP stack which can be find

under the interface folder (/IF/net_if_wifi.*).

L5-7(2) The second argument represents the hardware device driver API which is

defined as a fixed structure of function pointers of the type specified by

Micrium for use with μC/TCP-IP. If Micrium supplies the device driver, the

symbol name of the device API will be defined within the device driver at the

top of the device driver source code file. You can find the device driver under

the device folder (/Dev/WiFi/<device>). Otherwise, the driver developer is

responsible for creating the device driver and the API structure should start

from the device driver template which can be find under the device folder

(/Dev/WiFi/Template).

L5-7(3) The third argument specifies the specific device’s board-specific (BSP)

interface functions which is defined as a fixed structure of function pointers.

The application developer must define both the BSP interface structure of

function pointers and the actual BSP functions referenced by the BSP interface

structure and should start from the BSP template provided with the stack which

you can find under the BSP folder (/BSP/Template). Micrium may be able to

supply example BSP interface structures and functions for certain evaluation

boards. For more information about declaring BSP interface structures and BSP

functions device, see Chapter 6, “Network Board Support Package” on

page 121 for further information about the BSP API.

L5-7(4) The fourth argument specifies the device driver configuration structure that will

be used to configure the device hardware for the interface being added. The

device configuration structure format has been specified by Micrium and must

be provided by the application developer since it is specific to the selection of

device hardware and design of the evaluation board. Micrium may be able to

supply example device configuration structures for certain evaluation boards.

For more information about declaring a device configuration structure, See

“Wireless Device Configuration” on page 98.
101

Wireless Interface Configuration
L5-7(5) The fifth argument represents the extension layer device API. In most cases,

when wireless is the Wireless Manager layer API specified in the first argument,

the Wireless Manager layer API may be defined as NetWiFiMgr_API_Generic.
This symbol has been defined by the generic Wireless Manager layer which can

be supplied by Micrium. If a custom Wireless Manager layer is required, then the

developer would be responsible for creating the API structure.

L5-7(6) The sixth argument represents the extension layer configuration structure. This

structure is specified by the application developer. For devices which uses the

generic Wireless Manager this field should be left NULL. However, it may be

convenient to declare a Wireless Manager layer device configuration structure and

use some of the members for Wireless Manager layer initialization from within the

wireless device driver or a custom Wireless Manager.

L5-7(7) The last argument is a pointer to a NET_ERR variable that contains the return

error code for NetIF_Add(). This variable should be checked by the

application to ensure that no errors have occurred during network interface

addition. Upon success, the return error code will be NET_IF_ERR_NONE.

Note: If an error occurs during the call to NetIF_Add(), the application may

attempt to call NetIF_Add() a second time for the same interface but unless a

temporary hardware fault occured, the application developer should observe

the error code, determine and resolve the cause of the error, rebuild the

application and try again. If a hardware failure occurred, the application may

attempt to add an interface as many times as necessary, but a common problem

to watch for is a μC/LIB Memory Manager heap out-of-memory condition. This

may occur when adding network interfaces if there is insufficient memory to

complete the operation. If this error occurs, the configured size of the μC/LIB

heap within app_cfg.h must be increased.

Once an interface is added successfully, the next step is to configure the

interface with one or more network layer protocol addresses.

For a thorough description of the μC/TCP-IP files and directory structure, see Chapter 3,

“Directories and Files” on page 41.
102

Wireless Interface Configuration
Once a network interface is added without error, it must be started via NetIF_Start()
function to be see as available and to be use by the μC/TCP-IP. The following code example

shows how to initialize μC/TCP-IP, add an interface, add an IP address and start the interface:

Listing 5-8 Wireless interface initialization example

#include <net.h>
#include <net_dev_rs9110n2x.h>
#include <net_bsp.h>
#include <net_phy.h>

void App_InitTCPIP (void)
{
 NET_IF_NBR if_nbr;
 NET_IP_ADDR ip;
 NET_IP_ADDR msk;
 NET_IP_ADDR gateway;
 CPU_BOOLEAN cfg_success;
 NET_ERR err;

 err = Net_Init();
 if (err != NET_ERR_NONE) {
 return;
 }

 if_nbr = NetIF_Add((void *)&NetIF_API_WiFi
 (void *)&NetDev_API_RS9110N2x,
 (void *)&NetDev_BSP_SPI_API,
 (void *)&NetDev_Cfg_WiFi_0,
 (void *)&NetWiFiMgr_API_Generic,
 (void *) 0,
 (NET_ERR *)&err);
 if (err != NET_IF_ERR_NONE) {
 return;
 }

 ip = NetASCII_Str_to_IP((CPU_CHAR *)"192.168.1.65", perr);
 msk = NetASCII_Str_to_IP((CPU_CHAR *)"255.255.255.0", perr);
 gateway = NetASCII_Str_to_IP((CPU_CHAR *)"192.168.1.1", perr);

 cfg_success = NetIP_CfgAddrAdd(if_nbr, ip, msk, gateway, perr);
 (void)&cfg_success;

 NetIF_Start(if_nbr, &err);
 if (err != NET_IF_ERR_NONE) {
 return;
 }
}

103

LoopBack Interface Configuration
5-5 LOOPBACK INTERFACE CONFIGURATION

5-5-1 LOOPBACK CONFIGURATION

Configuring the loopback interface requires only a memory configuration, as described in

section 5-2-1 on page 85.

Listing 5-9 shows a sample configuration structure for the loopback interface.

Listing 5-9 Sample loopback interface configuration

L5-9(1) Receive buffer pool type. This configuration setting controls the memory

placement of the receive data buffers. Buffers may either be placed in main

memory or in a dedicated, possibly higher speed, memory region (see

L5-9(13)). This field should be set to one of the two macros:

NET_IF_MEM_TYPE_MAIN
NET_IF_MEM_TYPE_DEDICATED

const NET_IF_CFG_LOOPBACK NetIF_Cfg_Loopback = {

 NET_IF_MEM_TYPE_MAIN, (1)
 1518, (2)
 10, (3)
 4, (4)
 0, (5)

 NET_IF_MEM_TYPE_MAIN, (6)
 1594, (7)
 5, (8)
 134, (9)
 5, (10)
 4, (11)
 0, (12)

 0x00000000, (13)
 0, (14)

 NET_DEV_CFG_FLAG_NONE (15)
};
104

LoopBack Interface Configuration
L5-9(2) Receive buffer size. This field sets the size of the largest receivable packet, and

can be set to match the application’s requirements.

Note: If packets are sent from a socket bound to a non local-host address, to

the local host address (127.0.0.1), then the receive buffer size must be

configured to match the maximum transmit buffer size, or maximum expected

data size, that could be generated from a socket bound to any other interface.

L5-9(3) Number of receive buffers. This setting controls the number of receive buffers

that will be allocated to the loopback interface. This value must be set greater

than or equal to one buffer if loopback is receiving only UDP. If TCP data is

expected to be transferred across the loopback interface, then there must be a

minimum of four receive buffers.

L5-9(4) Receive buffer alignment. This setting controls the alignment of the receive

buffers in bytes. Some processor architectures do not allow multi-byte reads

and writes across word boundaries and therefore may require buffer alignment.

In general, it is probably best practice to align buffers to the data bus width of

the processor which may improve performance. For example, a 32-bit

processor may benefit from having buffers aligned on a 4-byte boundary.

L5-9(5) Receive buffer offset. The loopback interface receives packets starting at base

index 0 in the network buffer data areas. This setting configures an offset from

the base index of 0 to receive loopback packets. The default offset of 0 should

be configured. However, if loopback receive packets are configured with an

offset, the receive buffer size must also be adjusted by the additional number of

offset bytes.

L5-9(6) Transmit buffer pool type. This configuration setting controls the memory

placement of the transmit data buffers for the loopback interface. Buffers may

either be placed in main memory or in a dedicated, possibly higher speed,

memory region (see L5-9(13)). This field should be set to one of two macros:

NET_IF_MEM_TYPE_MAIN
NET_IF_MEM_TYPE_DEDICATED
105

LoopBack Interface Configuration
L5-9(7) Large transmit buffer size. At the time of this writing, transmit fragmentation is

not supported; therefore this field sets the size of the largest transmittable

buffer for the loopback interface when the application sends from a socket that

is bound to the local-host address.

L5-9(8) Number of large transmit buffers. This field controls the number of large

transmit buffers allocated to the loopback interface. The developer may set this

field to zero to make room for additional large transmit buffers, however, the

number of large plus the number of small transmit buffers must be greater than

or equal to one for UDP traffic and three for TCP traffic.

L5-9(9) Small transmit buffer size. For devices with a minimal amount of RAM, it is

possible to allocate small transmit buffers as well as large transmit buffers. In

general, we recommend 152 byte small transmit buffers, however, the

developer may adjust this value according to the application requirements. This

field has no effect if the number of small transmit buffers is configured to zero.

L5-9(10) Number of small transmit buffers. This field controls the number of small

transmit buffers allocated to the device. The developer may set this field to zero

to make room for additional large transmit buffers, however, the number of

large plus the number of small transmit buffers must be greater than or equal to

one for UDP traffic and three for TCP traffic.

L5-9(11) Transmit buffer alignment. This setting controls the alignment of the receive

buffers in bytes. Some processor architectures do not allow multi-byte reads

and writes across word boundaries and therefore may require buffer alignment.

In general, it is probably best practice to align buffers to the data bus width of

the processor which may improve performance. For example, a 32-bit

processor may benefit from having buffers aligned on a 4-byte boundary.

L5-9(12) Transmit buffer offset. This setting configures an offset from the base transmit

index to prepare loopback packets. The default offset of 0 should be

configured. However, if loopback transmit packets are configured with an

offset, the transmit buffer size must also be adjusted by the additional number

of offset bytes.
106

LoopBack Interface Configuration
L5-9(13) Memory address. By default, this field is configured to 0x00000000. A value of 0

tells μC/TCP-IP to allocate buffers for the loopback interface from the μC/LIB

Memory Manager default heap. If a faster, more specialized memory is

available, the loopback interface buffers may be allocated into an alternate

region if desired.

L5-9(14) Memory size. By default, this field is configured to 0. A value of 0 tells

μC/TCP-IP to allocate as much memory as required from the μC/LIB Memory

Manager default heap. If an alternate memory region is specified in the

‘Memory Address’ field above, then the maximum size of the specified memory

segment must be specified.

L5-9(15) Optional configuration flags. Configure (optional) loopback features by

logically OR’ing bit-field flags:

NET_DEV_CFG_FLAG_NONE No loopback configuration flags selected

5-5-2 ADDING A LOOPBACK INTERFACE

Basically to enable and add the loopback interface you only have to enable the loopback

interface within the network configuration (net_cfg.h) as follow:

#define NET_IF_CFG_LOOPBACK_EN DEF_ENABLED
107

Network Interface API
5-6 NETWORK INTERFACE API

5-6-1 CONFIGURING AN IP ADDRESS

Each network interface must be configured with at least one IP address. This may be

performed using μC/DHCPc or manually during run-time. If run-time configuration is

chosen, the following functions may be utilized to set the IP, network mask, and gateway

addresses for a specific interface. More than one set of addresses may be configured for a

specific network interface by calling the functions below. Note that on the default interface,

the first IP address added will be the default address used for all default communication.

NetASCII_Str_to_IP()
NetIP_CfgAddrAdd()

The first function aids the developer by converting a string format IP address such as

“192.168.1.2” to its hexadecimal equivalent. The second function is used to configure an

interface with the specified IP, network mask and gateway addresses. An example of each

function call is shown below.

Listing 5-10 Calling NetASCII_Str_to_IP()

L5-10(1) NetASCII_Str_to_IP() requires two arguments. The first function argument is

a string representing a valid IP address, and the second argument is a pointer to

a NET_ERR to contain the return error code. Upon successful conversion, the

return error will contain the value NET_ASCII_ERR_NONE and the function will

return a variable of type NET_IP_ADDR containing the hexadecimal equivalent

of the specified address.

ip = NetASCII_Str_to_IP((CPU_CHAR*)”192.168.1.2”, &err); (1)
msk = NetASCII_Str_to_IP((CPU_CHAR*)”255.255.255.0”, &err);
gateway = NetASCII_Str_to_IP((CPU_CHAR*)”192.168.1.1”, &err);
108

Network Interface API
Listing 5-11 Calling NetIP_CfgAddrAdd()

L5-11(1) The first argument is the number representing the network interface that is to

be configured. This value is obtained as the result of a successful call to

NetIF_Add().

L5-11(2) The second argument is the NET_IP_ADDR value representing the IP address to

be configured.

L5-11(3) The third argument is the NET_IP_ADDR value representing the subnet mask

address that is to be configured.

L5-11(4) The fourth argument is the NET_IP_ADDR value representing the default

gateway IP address that is to be configured.

L5-11(5) The fifth argument is a pointer to a NET_ERR variable containing the return

error code for the function. If the interface address information is configured

successfully, then the return error code will contain the value

NET_IP_ERR_NONE. Additionally, function returns a Boolean value of DEF_OK or

DEF_FAIL depending on the result. Either the return value or the NET_ERR
variable may be checked for return status; however, the NET_ERR contains more

detailed information and should therefore be the preferred check.

Note: The application may configure a network interface with more than one

set of IP addresses. This may be desirable when a network interface and its

paired device are connected to a switch or HUB with more than one network

present. Additionally, an application may choose to not configure any interface

addresses, and thus may only receive packets and should not attempt to

transmit.

cfg_success = NetIP_CfgAddrAdd(if_nbr, (1)
 ip, (2)
 msk, (3)
 gateway, (4)
 &err); (5)
109

Network Interface API
Additionally, addresses may be removed from an interface by calling

NetIP_CfgAddrRemove() (see section C-12-5 “NetIP_CfgAddrRemove()” on

page 549 and section C-12-6 “NetIP_CfgAddrRemoveAll()” on page 551).

Once a network interface has been successfully configured with IP address

information, the next step is to start the interface.

5-6-2 STARTING NETWORK INTERFACES

When a network interface is started, it becomes an active interface that is capable of

transmitting and receiving data assuming an operational link to the network medium. A

network interface may be started any time after the network interface has been successfully

“added” to the system. A successful call to NetIF_Start() marks the end of the

initialization sequence of μC/TCP-IP for a specific network interface. Recall that the first

interface added and started will be the default interface.

The application developer may start a network interface by calling the NetIF_Start() API

function with the necessary parameters. A call to NetIF_Start() is shown below.

Listing 5-12 Calling NetIF_Start()

L5-12(1) NetIF_Start() requires two arguments. The first function argument is the

interface number that the application wants to start, and the second argument

is a pointer to a NET_ERR to contain the return error code. The interface

number is acquired upon successful addition of the interface and upon the

successful start of the interface; the return error variable will contain the value

NET_IF_ERR_NONE.

There are very few things that could cause a network interface to not start

properly. The application developer should always inspect the return error

code and take the appropriate action if an error occurs. Once the error is

resolved, the application may again attempt to call NetIF_Start().

NetIF_Start(if_nbr, &err); (1)
110

Network Interface API
5-6-3 STOPPING NETWORK INTERFACES

Under some circumstances, it may be desirable to stop a network interface. A network

interface may be stopped any time after it has been successfully “added” to the system.

Stopping an interface may be performed by calling NetIF_Stop() with the appropriate

arguments shown below.

Listing 5-13 Calling NetIF_Stop()

L5-13(1) NetIF_Stop() requires two arguments. The first function argument is the

interface number that the application wants to stop, and the second argument is a

pointer to a NET_ERR to contain the return error code. The interface number is

acquired upon the successful addition of the interface and upon the successful

stop of the interface; the return error variable will contain the value

NET_IF_ERR_NONE.

There are very few things that may cause a network interface to not stop

properly. The application developer should always inspect the return error

code and take the appropriate action if an error occurs. Once the error is

resolved, the application may attempt to call NetIF_Stop() again.

NetIF_Stop(if_nbr, &err); (1)
111

Network Interface API
5-6-4 GETTING NETWORK INTERFACE MTU

On occasion, it may be desirable to have the application aware of an interface’s Maximum

Transmission Unit. The MTU for a particular interface may be acquired by calling

NetIF_MTU_Get() with the appropriate arguments.

Listing 5-14 Calling NetIF_MTU_Get()

L5-14(1) NetIF_MTU_Get() requires two arguments. The first function argument is the

interface number to get the current configured MTU, and the second argument is

a pointer to a NET_ERR to contain the return error code. The interface number is

acquired upon the successful addition of the interface, and upon the successful

return of the function, the return error variable will contain the value

NET_IF_ERR_NONE. The result is returned into a local variable of type NET_MTU.

5-6-5 SETTING NETWORK INTERFACE MTU

Some networks prefer to operate with a non-standard MTU. If this is the case, the

application may specify the MTU for a particular interface by calling NetIF_MTU_Set() with

the appropriate arguments.

Listing 5-15 Calling NetIF_MTU_Set()

L5-15(1) NetIF_MTU_Set() requires three arguments. The first function argument is the

interface number of the interface to set the specified MTU. The second

argument is the desired MTU to set, and the third argument is a pointer to a

NET_ERR variable that will contain the return error code. The interface number

is acquired upon the successful addition of the interface, and upon the

successful return of the function, the return error variable will contain the value

NET_IF_ERR_NONE and the specified MTU will be set.

mtu = NetIF_MTU_Get(if_nbr, &err); (1)

NetIF_MTU_Set(if_nbr, mtu, &err); (1)
112

Network Interface API
Note: The configured MTU cannot be greater than the largest configured

transmit buffer size associated with the specified interfaces’ device minus

overhead. Transmit buffer sizes are specified in the device configuration

structure for the specified interface. For more information about configuring

device buffer sizes, refer to section 9-3 “Network Buffer Sizes” on page 279.

5-6-6 GETTING NETWORK INTERFACE HARDWARE
ADDRESSES

Many types of network interface hardware require the use of a link layer protocol address.

In the case of Ethernet, this address is sometimes known as the hardware address or MAC

address. In some applications, it may be desirable to get the current configured hardware

address for a specific interface. This may be performed by calling NetIF_AddrHW_Get()
with the appropriate arguments.

Listing 5-16 Calling NetIF_AddrHW_Get()

L5-16(1) The first argument specifies the interface number from which to get the

hardware address. The interface number is acquired upon the successful

addition of the interface.

L5-16(2) The second argument is a pointer to a CPU_INT08U array used to provide

storage for the returned hardware address. This array must be sized large

enough to hold the returned number of bytes for the given interface’s hardware

address. The lowest index number in the hardware address array represents the

most significant byte of the hardware address.

L5-16(3) The third function is a pointer to a CPU_INT08U variable that the function

returns the length of the specified interface’s hardware address.

L5-16(4) The fourth argument is a pointer to a NET_ERR variable containing the return

error code for the function. If the hardware address is successfully obtained,

then the return error code will contain the value NET_IF_ERR_NONE.

NetIF_AddrHW_Get((NET_IF_NBR) if_nbr, (1)
 (CPU_INT08U *)&addr_hw_sender[0], (2)
 (CPU_INT08U *)&addr_hw_len, (3)
 (NET_ERR *) perr); (4)
113

Network Interface API
5-6-7 SETTING NETWORK INTERFACE HARDWARE ADDRESS

Some applications prefer to configure the hardware device’s hardware address via software

during run-time as opposed to a run-time auto-loading EEPROM as is common for many

Ethernet devices. If the application is to set or change the hardware address during

run-time, this may be performed by calling NetIF_AddrHW_Set() with the appropriate

arguments. Alternatively, the hardware address may be statically configured via the device

configuration structure and later changed during run-time.

Listing 5-17 Calling NetIF_AddrHW_Set()

L5-17(1) The first argument specifies the interface number to set the hardware address.

The interface number is acquired upon the successful addition of the interface.

L5-17(2) The second argument is a pointer to a CPU_INT08U array which contains the

desired hardware address to set. The lowest index number in the hardware

address array represents the most significant byte of the hardware address.

L5-17(3) The third function is a pointer to a CPU_INT08U variable that specifies the

length of the hardware address being set. In most cases, this can be specified

as sizeof(addr_hw) assuming addr_hw is declared as an array of CPU_INT08U.

L5-17(4) The fourth argument is a pointer to a NET_ERR variable containing the return

error code for the function. If the hardware address is successfully obtained,

then the return error code will contain the value NET_IF_ERR_NONE.

Note: In order to set the hardware address for a particular interface, it must first

be stopped. The hardware address may then be set, and the interface

re-started.

NetIF_AddrHW_Set((NET_IF_NBR) if_nbr, (1)
 (CPU_INT08U *)&addr_hw[0], (2)
 (CPU_INT08U *)&addr_hw_len, (3)
 (NET_ERR *) perr); (4)
114

Network Interface API
5-6-8 GETTING LINK STATE

Some applications may wish to get the physical link state for a specific interface. Link state

information may be obtained by calling NetIF_IO_Ctrl() or NetIF_LinkStateGet() with

the appropriate arguments.

Calling NetIF_IO_Ctrl() will poll the hardware for the current link state. Alternatively,

NetIF_LinkStateGet() gets the approximate link state by reading the interface link state

flag. Polling the Ethernet hardware for link state takes significantly longer due to the

speed and latency of the MII bus. Consequently, it may not be desirable to poll the

hardware in a tight loop. Reading the interface flag is fast, but the flag is only periodically

updated by the Net IF every 250mS (default) when using the generic Ethernet PHY driver.

PHY drivers that implement link state change interrupts may change the value of the

interface flag immediately upon link state change detection. In this scenario, calling

NetIF_LinkStateGet() is ideal for these interfaces.

Listing 5-18 Calling NetIF_IO_Ctrl()

L5-18(1) The first argument specifies the interface number from which to get the

physical link state.

L5-18(2) The second argument specifies the desired function that NetIF_IO_Ctrl() will

perform. In order to get the current interfaces’ link state, the application should

specify this argument as either:

NET_IF_IO_CTRL_LINK_STATE_GET

NET_IF_IO_CTRL_LINK_STATE_GET_INFO

L5-18(3) The third argument is a pointer to a link state variable that must be declared by

the application and passed to NetIF_IO_Ctrl().

NetIF_IO_Ctrl((NET_IF_NBR) if_nbr, (1)
 (CPU_INT08U) NET_IF_IO_CTRL_LINK_STATE_GET_INFO, (2)
 (void *)&link_state, (3)
 (NET_ERR *)&err); (4)
115

Network Interface API
5-6-9 SCANNING FOR A WIRELESS ACCESS POINT

When a wireless network interface is started, it becomes an active interface that is not yet

capable of transmitting and receiving data since no operational link to a network medium is

configured. The first step to join a network to have an operational link is the scan operation

which consists to find the wireless network available in the range of the wireless module.

A wireless network interface should be able to scan any time after the network interface has

been successfully started. A successful call to NetIF_WiFi_Scan() return the wireless

network available to join which can be joined by the wireless network interface. See section

C-10-1 “NetIF_WiFi_Scan()” on page 530 for more information.

You can scan for a wireless network by calling the NetIF_WiFi_Scan() API function with

the necessary parameters. A call to NetIF_WiFi_Scan() is shown below.

Listing 5-19 Calling NetIF_Start()

L5-19(1) NetIF_WiFi_Scan() requires six arguments. The first function argument is the

interface number that the application wants to scan with. The interface number

is acquired upon successful addition of the interface and upon the successful

start of the interface.

L5-19(2) The second argument is a pointer to a wireless access point buffer to contain

the wireless network found in the range of the interface.

L5-19(3) The third argument is the number of wireless access point that can be

contained in the wireless access point buffer.

NET_IF_WIFI_AP ap_buf[NB_AP_MAX]
CPU_INT16U ap_ctn;
NET_ERR err;

ap_ctn = NetIF_WiFi_Scan(if_nbr, (1)
 ap_buf, (2)
 NB_AP_MAX, (3)
 0, (4)
 NET_IF_WIFI_CH_ALL, (5)
 &err); (6)
116

Network Interface API
L5-19(4) The fourth argument is a pointer to a string that can contains the SSID of an

hidden wireless access point to find.

L5-19(5) The fifth argument is the wireless channel to scan.

L5-19(6) The last argument is a pointer to a NET_ERR to contain the return error code.

The return error variable will contain the value NET_IF_WIFI_ERR_NONE if the

scan process has been completed successfully.

There are very few things that could cause a network interface to not scan

properly. The application developer should always inspect the return error

code and take the appropriate action if an error occurs. Once the error is

resolved, the application may again attempt to call NetIF_WiFi_Scan().

5-6-10 JOINING WIRELESS ACCESS POINT

When a wireless network interface is started, it becomes an active interface that is not yet

capable of transmitting and receiving data, since no operational link to a network medium

is configured. Once once the interface has found a wireless network, it must be joined to

get an operational link. A wireless network interface should be able to join any time after

the network interface has been successfully started and before a wireless access point has

been joined. See section C-10-2 “NetIF_WiFi_Join()” on page 532 for more information.

The application developer may join a wireless network by calling the NetIF_WiFi_Join()
API function with the necessary parameters. A call to NetIF_WiFi_Join() is shown below.

Listing 5-20 Calling NetIF_Start()

NET_ERR err;

ap_ctn = NetIF_WiFi_Join(if_nbr, (1)
 NET_IF_WIFI_NET_TYPE_INFRASTRUCTURE, (2)
 NET_IF_WIFI_DATA_RATE_AUTO, (3)
 NET_IF_WIFI_SECURITY_WPA2, (4)
 NET_IF_WIFI_PWR_LEVEL_HI, (5)
 “network_ssid”, (6)
 “network_password”, (7)
 &err); (8)
117

Network Interface API
L5-20(1) NetIF_WiFi_Join() requires height arguments. The first function argument is

the interface number that the application wants to join with. The interface

number is acquired upon successful addition of the interface and upon the

successful start of the interface.

L5-20(2) The second argument is wireless network type.

L5-20(3) The third argument is data rate use to communicate on the wireless network.

L5-20(4) The fourth argument is the wireless security configured for the wireless

network to join.

L5-20(5) The fifth argument is the wireless radio power level use to communicate on the

wireless network.

L5-20(6) The sixth argument is a pointer to a string that contains the SSID of the wireless

access point to join.

L5-20(7) The seventh argument is a pointer to a string that contains the pre shared key

of the wireless access point to join.

L5-20(8) The last argument is a pointer to a NET_ERR to contain the return error code.

The return error variable will contain the value NET_IF_WIFI_ERR_NONE if the

join process has been completed successfully.

There are very few things that could cause a network interface to not join

properly. The application developer should always inspect the return error

code and take the appropriate action if an error occurs. Once the error is

resolved, the application may again attempt to call NetIF_WiFi_Join().
118

Network Interface API
5-6-11 CREATING WIRELESS AD HOC ACCESS POINT

Some applications may need to create an wireless ad hoc access point that can be accessed

by other devices. Wireless ad hoc access points can be created by calling the

NetIF_WiFi_CreateAdhoc() API function with the necessary parameters. See section

C-10-3 “NetIF_WiFi_CreateAdhoc()” on page 535 for more information.

A call to NetIF_WiFi_CreateAdhoc() is shown below:

Listing 5-21 Call to NetIF_WiFi_CreateAdhoc()

L5-21(1) NetIF_WiFi_CreateAdhoc() requires height arguments. The first argument is

the interface number, which is acquired upon successful addition and

successful start of the interface.

L5-21(2) The second argument is the data rate used on the wireless network.

L5-21(3) The third argument is the wireless security type of wireless network.

L5-21(4) The fourth argument is the radio power level use to communicate on the

wireless network.

L5-21(5) The fifth argument is the wireless channel for the ad hoc network.

L5-21(6) The sixth argument is a pointer to a string that contains the SSID of the wireless

access point.

NET_ERR err;

ap_ctn = NetIF_WiFi_CreateAdhoc(if_nbr, (1)
 NET_IF_WIFI_DATA_RATE_AUTO, (2)
 NET_IF_WIFI_SECURITY_WEP, (3)
 NET_IF_WIFI_PWR_LEVEL_HI, (4)
 NET_IF_WIFI_CH_1 (5)
 “adhoc_ssid”, (6)
 “adhoc_password”, (7)
 &err); (8)
119

Network Interface API
L5-21(7) The seventh argument is a pointer to a string that contains the pre-shared key

of the wireless access point.

L5-21(8) The last argument is a pointer to a NET_ERR to contain the return error code.

The return error variable will contain the value NET_IF_WIFI_ERR_NONE if the

create process has been completed successfully.

If an error occurs, you should always inspect the return error code and take the appropriate

action. There are very few things that could cause a failure to create an ad hoc network

properly. Once the error is resolved, the application may again attempt to call

NetIF_WiFi_CreateAdhoc().

5-6-12 LEAVING WIRELESS ACCESS POINT

When an application needs to leave a wireless access point, it can do so by calling the

NetIF_WiFi_Leave() API function with the necessary parameters.

A call to NetIF_WiFi_Leave() is shown below.

Listing 5-22 Call to NetIF_WiFi_Leave()

L5-22(1) NetIF_WiFi_Leave() requires two arguments. The first function argument is

the interface number. The interface number is acquired upon successful

addition of the interface and upon the successful start of the interface.

L5-22(2) The last argument is a pointer to a NET_ERR to contain the return error code.

The return error variable will contain the value NET_IF_WIFI_ERR_NONE if the

leave process has been completed successfully.

There are very few things that could cause a network interface to leave

improperly. You should always inspect the return error code and take the

appropriate action if an error occurs. Once the error is resolved, the application

may again attempt to call NetIF_WiFi_Leave().

NET_ERR err;

ap_ctn = NetIF_WiFi_Leave(if_nbr, (1)
 &err); (2)
120

Chapter

6

Network Board Support Package

This chapter describes all board-specific functions that you may need to implement.

In order for a device driver to be platform independent, it is necessary to provide a layer of

code that abstracts details such as configuring clocks, interrupt controllers, general-purpose

input/ouput (GPIO) pins, direct-memory access (DMA) modules, and other such hardware

modules. The board support package (BSP) code layer enables you to implement certain

high-level functionality in μC/TCP-IP that is independent of any specific hardware. It also

allows you to reuse device drivers from various architectures and bus configurations

without having to customize μC/TCP-IP or the device driver source code for each

architecture or hardware platform.

To understand the concepts discussed in this guide, you should be familiar with networking

principles, the TCP/IP stack, real-time operating systems, microcontrollers and processors.

Micrium provides sample BSP code free of charge; however, most sample code will likely

require modification depending on the combination of compiler, processor, board, and

device hardware used.
121

Ethernet BSP Layer
6-1 ETHERNET BSP LAYER

6-1-1 DESCRIPTION OF THE ETHERNET BSP API

This section describes the BSP API functions that you should implement during the

integration of an Ethernet interface for μC/TCP-IP.

For each Ethernet interface/device, an application must implement in net_bsp.c, a unique

device-specific implementation of each of the following BSP functions:

void NetDev_CfgClk (NET_IF *p_if,
 NET_ERR *p_err);
void NetDev_CfgIntCtrl(NET_IF *p_if,
 NET_ERR *p_err);
void NetDev_CfgGPIO (NET_IF *p_if,
 NET_ERR *p_err);
CPU_INT32U NetDev_ClkFreqGet(NET_IF *p_if,
 NET_ERR *p_err);

Since each of these functions is called from a unique instantiation of its corresponding

device driver, a pointer to the corresponding network interface (p_if) is passed in order to

access the specific interface’s device configuration or data.

Network device driver BSP functions may be arbitrarily named but since development

boards with multiple devices require unique BSP functions for each device, it is

recommended that each device’s BSP functions be named using the following convention:

NetDev_[Device]<Function>[Number]()

[Device] Network device name or type. For example, MACB. (Optional if the

development board does not support multiple devices.)

<Function> Network device BSP function. For example, CfgClk.

[Number] Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)
122

Ethernet BSP Layer
For example, the NetDev_CfgClk() function for the #2 MACB Ethernet controller on an

Atmel AT91SAM9263-EK should be named NetDev_MACB_CfgClk2(), or

NetDev_MACB_CfgClk_2() with additional underscore optional.

Similarly, network devices’ BSP-level interrupt service routine (ISR) handlers should be

named using the following convention:

NetDev_[Device]ISR_Handler[Type][Number]()

[Device] Network device name or type. For example, MACB. (Optional if the

development board does not support multiple devices.)

[Type] Network device interrupt type. For example, receive interrupt. (Optional if

interrupt type is generic or unknown.)

[Number] Network device number for each specific instance of device (optional if the

development board does not support multiple instances of a specific device).

For example, the receive ISR handler for the #2 MACB Ethernet controller on an Atmel

AT91SAM9263-EK should be named NetDev_MACB_ISR_HandlerRx2(), or

NetDev_MACB_ISR_HandlerRx_2(), with additional underscore optional.

Next, the BSP functions for each device/interface must be organized into an interface

structure. This structure is used by the device driver to call specific devices’ BSP functions

via function pointer instead of by name. It allows applications to add, initialize, and

configure any number of instances of various devices and drivers by creating similar but

unique BSP functions and interface structures for each network device/interface. (See

Appendix C, “NetIF_Add()” on page 498 for details on how applications add interfaces to

μC/TCP-IP.)

The BSP for each device or interface must be declared in the BSP source file (net_bsp.c)
for each application or development board. The BSP must also be externally declared in the

network BSP header file (net_bsp.h) with exactly the same name and type as declared in

net_bsp.c. These BSP interface structures and their corresponding functions must have

unique names, and should clearly identify the development board, device name, function

name, and possibly the specific device number (assuming the development board supports

multiple instances of any given device). BSP interface structures may be given arbitrary

names, but it is recommended that they be named using the following convention:
123

Ethernet BSP Layer
NetDev_BSP_<Board><Device>[Number]{}

<Board> Development board name. For example, Atmel AT91SAM9263-EK).

<Device> Network device name or type. For example, MACB.

[Number] Network device number for each specific instance of the device (optional if

the development board does not support multiple instances of the device).

For example, a BSP interface structure for the #2 MACB Ethernet controller on an Atmel

AT91SAM9263-EK board should be named NetDev_BSP_AT91SAM9263-EK_MACB_2{} and

declared in the AT91SAM9263-EK board’s net_bsp.c:

 /* AT91SAM9263-EK MACB #2's BSP fnct ptrs : */
const NET_DEV_BSP_ETHER NetDev_BSP_AT91SAM9263-EK_MACB_2 = {
 NetDev_MACB_CfgClk_2, /* Cfg MACB #2's clk(s) */
 NetDev_MACB_CfgIntCtrl_2, /* Cfg MACB #2's int ctrl(s) */
 NetDev_MACB_CfgGPIO_2, /* Cfg MACB #2's GPIO */
 NetDev_MACB_ClkFreqGet_2 /* Get MACB #2's clk freq */
};

In order for the application to configure an interface with this BSP interface structure, the

structure must also be externally declared in the AT91SAM9263-EK board’s net_bsp.h :

extern const NET_DEV_BSP_ETHER NetDev_BSP_AT91SAM9263-EK_MACB_2;

Lastly, the AT91SAM9263-EK board’s MACB #2 BSP functions must also be declared in

net_bsp.c:

static void NetDev_MACB_CfgClk_2 (NET_IF *pif,
 NET_ERR *perr);
static void NetDev_MACB_CfgIntCtrl_2(NET_IF *pif,
 NET_ERR *perr);
static void NetDev_MACB_CfgGPIO_2 (NET_IF *pif,
 NET_ERR *perr);
static CPU_INT32U NetDev_MACB_ClkFreqGet_2(NET_IF *pif,
 NET_ERR *perr);
124

Ethernet BSP Layer
Note that since all network device BSP functions are accessed only by function pointer via

their corresponding BSP interface structure, they don’t need to be globally available and

should therefore be declared as static.

Also note that although certain device drivers may not need to implement or call all of the

above network device BSP function, we recommend that each device’s BSP interface

structure define all device BSP functions, and not assign any of its function pointers to NULL.
Instead, for any device’s unused BSP functions, create empty functions that return

NET_DEV_ERR_NONE. This way, if the device driver is ever modified to start using a

previously-unused BSP function, there will at least be an empty function for the BSP

function pointer to execute.

Details for these functions may be found in their respective sections in Appendix A, “Device

Driver BSP Functions” on page 336 and templates for network device BSP functions and

BSP interface structures are available in the

\Micrium\Software\uC-TCPIP-V2\BSP\Template\ directories.

6-1-2 CONFIGURING CLOCKS FOR AN ETHERNET DEVICE

NetDev_CfgClk() sets a specific network device’s clocks to a specific interface.

Each network device’s NetDev_CfgClk() should configure and enable all required clocks

for the specified network device. For example, on some devices it may be necessary to

enable clock gating for an embedded Ethernet MAC, as well as various GPIO modules in

order to configure Ethernet PHY pins for (R)MII mode and interrupts. See section A-3-1

“NetDev_CfgClk()” on page 336 for more information.

6-1-3 CONFIGURING GENERAL I/O FOR AN ETHERNET DEVICE

NetDev_CfgGPIO() configures a specific network device’s general-purpose input/output

(GPIO) on a specific interface. This function is called by a device driver’s NetDev_Init().

Each network device’s NetDev_CfgGPIO() should configure all required GPIO pins for the

network device. For Ethernet devices, this function is necessary to configure the (R)MII bus

pins, depending on whether the user has configured an Ethernet interface to operate in the

RMII or MII mode, and optionally the Ethernet PHY interrupt pin.

See section A-3-2 “NetDev_CfgGPIO()” on page 338 for more information.
125

Ethernet BSP Layer
6-1-4 CONFIGURING THE INTERRUPT CONTROLLER FOR AN
ETHERNET DEVICE

NetDev_CfgIntCtrl() is called by a device driver’s NetDev_Init() to configure a specific

network device’s interrupts and/or interrupt controller on a specific interface.

Each network device’s NetDev_CfgIntCtrl() function must configure and enable all

required interrupt sources for the network device. This means it must configure the

interrupt vector address of each corresponding network device BSP interrupt service routine

(ISR) handler and enable its corresponding interrupt source.

For NetDev_CfgIntCtrl(), the following actions should be performed:

1 Configure/store each device’s network interface number to be available for all necessary

NetDev_ISR_Handler() functions (see section 6-3 on page 137 for more information).

Even though devices are added dynamically, the device’s interface number must be

saved in order for each device’s ISR handlers to call NetIF_ISR_Handler() with the

device’s network interface number.

2 Configure each of the device’s interrupts on an interrupt controller (either an external or

CPU-integrated interrupt comptroller). However, vectored interrupt controllers may not

require higher-level interrupt controller sources to be explicitly configured and enabled.

In this case, you may need to configure the system’s interrupt vector table with the

name of the ISR handler functions declared in net_bsp.c.

NetDev_CfgIntCtrl() should enable only each devices’ interrupt sources, but not the

local device-level interrupts themselves, which are enabled by the device driver only

after the device has been fully configured and started.

See section A-3-3 “NetDev_CfgIntCtrl()” on page 340 for more information.
126

Wireless BSP Layer
6-1-5 GETTING A DEVICE CLOCK FREQUENCY

NetDev_ClkFreqGet() return a specific network device’s clock frequency for a specific

interface. This function is called by a device driver’s NetDev_Init().

Each network device’s NetDev_ClkFreqGet() should return the device’s clock frequency

(in Hz). For Ethernet devices, this is the clock frequency of the device’s (R)MII bus. The

device driver’s NetDev_Init() uses the returned clock frequency to configure an

appropriate bus divider to ensure that the (R)MII bus logic operates within an allowable

range. In general, the device driver should not configure the divider such that the (R)MII

bus operates faster than 2.5MHz.

See section A-3-4 “NetDev_ClkGetFreq()” on page 344 for more information.

6-2 WIRELESS BSP LAYER

6-2-1 DESCRIPTION OF THE WIRELESS BSP API

This section describes the BSP API functions that you should implement during the

integration of a wireless interface for μC/TCP-IP.

For each wireless interface/device, an application must implement (in net_bsp.c) a unique

device-specific implementation of each of the following BSP functions:

void NetDev_WiFi_Start (NET_IF *p_if,
 NET_ERR *p_err);

void NetDev_WiFi_Stop (NET_IF *p_if,
 NET_ERR *p_err);

void NetDev_WiFi_CfgGPIO (NET_IF *p_if,
 NET_ERR *p_err);

void NetDev_WiFi_CfgIntCtrl (NET_IF *p_if,
 NET_ERR *p_err);
127

Wireless BSP Layer
void NetDev_WiFi_IntCtrl (NET_IF *p_if,
 CPU_BOOLEAN en,
 NET_ERR *p_err);
void NetDev_WiFi_SPI_Init (NET_IF *p_if,
 NET_ERR *p_err);

void NetDev_WiFi_SPI_Lock (NET_IF *p_if,
 NET_ERR *p_err);

void NetDev_WiFi_SPI_Unlock (NET_IF *p_if);
void NetDev_WiFi_SPI_WrRd (NET_IF *p_if,
 CPU_INT08U *p_buf_wr,
 CPU_INT08U *p_buf_rd,
 CPU_INT16U len,
 NET_ERR *p_err);

void NetDev_WiFi_SPI_ChipSelEn (NET_IF *p_if,
 NET_ERR *p_err);

void NetDev_WiFi_SPI_ChipSelDis(NET_IF *p_if);

void NetDev_WiFi_SPI_Cfg(NET_IF *p_if,
 NET_DEV_CFG_SPI_CLK_FREQ freq,
 NET_DEV_CFG_SPI_CLK_POL pol,
 NET_DEV_CFG_SPI_CLK_PHASE phase,
 NET_DEV_CFG_SPI_XFER_UNIT_LEN xfer_unit_len,
 NET_DEV_CFG_SPI_XFER_SHIFT_DIR xfer_shift_dir,
 NET_ERR *p_err);

Since each of these functions is called from a unique instantiation of its corresponding

device driver, a pointer to the corresponding network interface (p_if) is passed in order to

access the specific interface's device configuration or data.

Network device driver BSP functions may be arbitrarily named but since development

boards with multiple devices require unique BSP functions for each device, it is

recommended that each device’s BSP functions be named using the following convention:
128

Wireless BSP Layer
NetDev_[Device]<Function>[Number]()

[Device] Network device name or type. For example, MACB (optional if the

development board does not support multiple devices).

<Function> Network device BSP function. For example, CfgClk

[Number] Network device number for each specific instance of device (optional if the

development board does not support multiple instances of a specific device)

For example, the NetDev_CfgGPIO() function for the #2 RS9110-N-21 wireless module on

an Atmel AT91SAM9263-EK should be named NetDev_RS9110N21_CfgGPIO2(), or

NetDev_RS9110N21_CfgGPIO_2() with additional underscore optional.

Similarly, network devices’ BSP-level interrupt service routine (ISR) handlers should be

named using the following convention:

NetDev_[Device]ISR_Handler[Type][Number]()

[Device] Network device name or type. For example, MACB. (Optional if the

development board does not support multiple devices.)

[Type] Network device interrupt type. For example, receive interrupt. (Optional if

interrupt type is generic or unknown.)

[Number] Network device number for each specific instance of device (optional if the

development board does not support multiple instances of a specific device).

For example, the receive ISR handler for the #2 RS9110-N-21 wireless module on an

Atmel AT91SAM9263-EK should be named NetDev_RS9110N21_ISR_HandlerRx2(), or

NetDev_RS9110N21_ISR_HandlerRx_2() with additional underscore optional.

Next, each device’s/interface’s BSP functions must be organized into an interface structure

used by the device driver to call specific devices’ BSP functions via function pointer instead

of by name. This allows applications to add, initialize, and configure any number of

instances of various devices and drivers by creating similar but unique BSP functions and

interface structures for each network device/interface. (See Appendix C, “NetIF_Add()” on

page 498 for details on how applications add interfaces to μC/TCP-IP.)
129

Wireless BSP Layer
Each device’s/interface’s BSP interface structure must be declared in the application’s/

development board’s network BSP source file, net_bsp.c, as well as externally declared in

network BSP header file, net_bsp.h, with the exact same name and type as declared in

net_bsp.c. These BSP interface structures and their corresponding functions must be

uniquely named and should clearly identify the development board, device name, function

name, and possibly the specific device number (assuming the development board supports

multiple instances of any given device). BSP interface structures may be arbitrarily named

but it is recommended that they be named using the following convention:

NetDev_BSP_<Board><Device>[Number]{}

<Board> Development board name. For example, Atmel AT91SAM9263-EK.

<Device> Network device name (or type). For example, RS9110-N-21.

[Number] Network device number for each specific instance of the device (optional if

the development board does not support multiple instances of the device).

For example, a BSP interface structure for the #2 RS9110-N21 wireless module on an Atmel

AT91SAM9263-EK board should be named NetDev_BSP_AT91SAM9263-EK_RS9110N21_2{}
and declared in the AT91SAM9263-EK board’s net_bsp.c:

 /* AT91SAM9263-EK RS9110-N21 #2's BSP fnct ptrs : */
const NET_DEV_BSP_WIFI_SPI NetDev_BSP_AT91SAM9263-EK_RS9110N21_2 = {
 NetDev_RS9110N21_Start_2
 NetDev_RS9110N21_Stop_2,
 NetDev_RS9110N21_CfgGPIO_2,
 NetDev_RS9110N21_CfgExtIntCtrl_2
 NetDev_RS9110N21_ExtIntCtrl_2,
 NetDev_RS9110N21_SPI_Cfg_2,
 NetDev_RS9110N21_SPI_Lock_2,
 NetDev_RS9110N21_SPI_Unlock_2,
 NetDev_RS9110N21_SPI_WrRd_2,
 NetDev_RS9110N21_SPI_ChipSelEn_2,
 NetDev_RS9110N21_SPI_ChipSelDis_2,
 NetDev_RS9110N21_SetCfg_2
};
130

Wireless BSP Layer
And in order for the application to configure an interface with this BSP interface structure,

the structure must be externally declared in the AT91SAM9263-EK board’s net_bsp.h:

extern const NET_DEV_BSP_WIFI_SPI NetDev_BSP_AT91SAM9263-EK_RS9110N21_2;

Lastly, the board’s RS9110-N-21 #2 BSP functions must also be declared in net_bsp.c:

static void NetDev_RS9110N21_Start_2 (NET_IF *p_if,
 NET_ERR *p_err);

static void NetDev_RS9110N21_Stop_2 (NET_IF *p_if,
 NET_ERR *p_err);

static void NetDev_RS9110N21_CfgGPIO_2 (NET_IF *p_if,
 NET_ERR *p_err);

static void NetDev_RS9110N21_CfgIntCtrl_2 (NET_IF *p_if,
 NET_ERR *p_err);

static void NetDev_RS9110N21_IntCtrl_2 (NET_IF *p_if,
 CPU_BOOLEAN en,
 NET_ERR *p_err);

static void NetDev_RS9110N21_SPI_Init_2 (NET_IF *p_if,
 NET_ERR *p_err);

static void NetDev_RS9110N21_SPI_Lock_2 (NET_IF *p_if,
 NET_ERR *p_err);

static void NetDev_RS9110N21_SPI_Unlock_2 (NET_IF *p_if);

static void NetDev_RS9110N21_SPI_WrRd_2 (NET_IF *p_if,
 CPU_INT08U *p_buf_wr,
 CPU_INT08U *p_buf_rd,
 CPU_INT16U len,
 NET_ERR *p_err);
131

Wireless BSP Layer
static void NetDev_RS9110N21_SPI_ChipSelEn_2 (NET_IF *p_if,
 NET_ERR *p_err);

static void NetDev_RS9110N21_SPI_ChipSelDis_2(NET_IF *p_if);

static void NetDev_RS9110N21_SPI_Cfg_2(
 NET_IF *p_if,
 NET_DEV_CFG_SPI_CLK_FREQ freq,
 NET_DEV_CFG_SPI_CLK_POL pol,
 NET_DEV_CFG_SPI_CLK_PHASE phase,
 NET_DEV_CFG_SPI_XFER_UNIT_LEN xfer_unit_len,
 NET_DEV_CFG_SPI_XFER_SHIFT_DIR xfer_shift_dir,
 NET_ERR *p_err);

Note that since all network device BSP functions are accessed only by function pointer via

their corresponding BSP interface structure, they don’t need to be globally available and

should therefore be declared as static.

Also note that although certain device drivers may not need to implement or call all of the

above network device BSP function, we recommend that each device’s BSP interface

structure define all device BSP functions and not assign any of its function pointers to NULL.
Instead, for any device’s unused BSP functions, create empty functions that return

NET_DEV_ERR_NONE. This way, if the device driver is ever modified to start using a

previously-unused BSP function, there will at least be an empty function for the BSP

function pointer to execute.

Details for these functions may be found in their respective sections in section A-3 “Device

Driver BSP Functions” on page 336. Templates for network device BSP functions and BSP

interface structures can be found in the directory

\Micrium\Software\uC-TCPIP-V2\BSP\Template\.
132

Wireless BSP Layer
6-2-2 CONFIGURING GENERAL-PURPOSE I/O FOR A WIRELESS
DEVICE

NetDev_WiFi_CfgGPIO() configures a specific network device's general-purpose

input/ouput (GPIO) on a specific interface. This function is called by a device driver's

NetDev_Init().

Each network device's NetDev_WiFi_CfgGPIO() should configure all required GPIO pins

for the network device. For wireless devices, this function is necessary to configure the

power, reset and interrupt pins.

See section B-3-3 “NetDev_WiFi_CfgGPIO()” on page 391 for more information.

6-2-3 STARTING A WIRELESS DEVICE

NetDev_WiFi_Start() is used to power up the wireless chip. This function is called by a

device driver’s NetDev_WiFi_Start() each time the interface is started.

Each network device’s NetDev_WiFi_Start() must set GPIO pins to power up and reset

the wireless device. For wireless devices, this function is necessary to configure the power

pin and other required pins to power up the wireless chip. Note that some wireless device

could require a toggle on the Reset pin to be started or restarted correctly.

See section B-3-1 “NetDev_WiFi_Start()” on page 387 for more information.

6-2-4 STOPPING A WIRELESS DEVICE

NetDev_WiFi_Stop() is used to power down a wireless chip. This function is called by a

device driver's NetDev_WiFi_Stop() each time the interface is stopped.

Each network device's NetDev_WiFi_Start() must set GPIO pins to power down the

wireless chip to reduce the power consumption. For wireless devices, this function is

necessary to configure the power pin and other required pins to power down the wireless

chip.

See section B-3-2 “NetDev_WiFi_Stop()” on page 389 for more information.
133

Wireless BSP Layer
6-2-5 CONFIGURING THE INTERRUPT CONTROLLER FOR A
WIRELESS DEVICE

NetDev_WiFi_CfgIntCtrl() is called by a device driver’s NetDev_WiFi_Init() to

configure a specific wireless device’s external interrupts a specific wireless interface.

Each network device’s NetDev_WiFi_CfgIntCtrl() function must configure without

enabling all required interrupt sources for the network device. This means it must configure

the interrupt vector address of each corresponding network device BSP interrupt service

routine (ISR) handler and disable its corresponding interrupt source. For

NetDev_WiFi_CfgIntCtrl(), the following actions should be performed:

1 Configure/store each device’s network interface number to be available for all necessary

NetDev_WiFi_ISR_Handler() functions (see section 6-3 on page 137 for more

information). Even though devices are added dynamically, the device’s interface

number must be saved in order for each device’s ISR handlers to call

NetIF_WiFi_ISR_Handler() with the device’s network interface number.

2 Configure each of the device’s interrupts on an interrupt controller (either an external or

CPU-integrated interrupt comptroller). However, vectored interrupt controllers may not

require higher-level interrupt controller sources to be explicitly configured and enabled.

In this case, you may need to configure the system’s interrupt vector table with the

name of the ISR handler functions declared in net_bsp.c.

NetDev_WiFi_CfgIntCtrl() should disable only each devices’ interrupt sources. See

section B-3-4 “NetDev_WiFi_CfgIntCtrl()” on page 393 for more information.

6-2-6 ENABLING AND DISABLING WIRELESS INTERRUPT

Each network device’s NetDev_WiFi_IntCtrl() function must enable or disable all

external required interrupt sources for the wireless device. This means enable or disable its

corresponding interrupt source following the enable argument received.

See section B-3-5 “NetDev_WiFi_IntCtrl()” on page 397 for more information.
134

Wireless BSP Layer
6-2-7 CONFIGURING THE SPI INTERFACE

NetDev_WiFi_SPI_Init() initializes a specific network device’s SPI controller. This

function will be called by a device driver’s NetDev_WiFi_SPI_Init() when the interface is

added.

Each network device’s NetDev_WiFi_SPI_Init() should configure all required SPI

controllers register for the network device. Since more than one device may share the same

SPI bus, this function could be empty if the SPI controller is already configured.

If the SPI bus is not shared with other devices, it is recommended that

NetDev_WiFi_SPI_Init() configures the SPI controller following the SPI device’s

communication settings and keep NetDev_WiFi_SPI_Cfg() empty.

See section B-3-12 “NetDev_WiFi_SPI_Cfg()” on page 411 for more information.

6-2-8 SETTING SPI CONTROLLER FOR A WIRELESS DEVICE

NetDev_WiFi_SPI_Cfg() configure a specific network device’s SPI communication setting.

This function is called by a device driver after the SPI’s bus lock has been acquired and

before starting to write and read to the SPI bus.

Each network device’s NetDev_WiFi_SPI_Cfg() should configure all required SPI

controllers register for the SPI’s communication setting of the network wireless device.

Several aspects of SPI communication may need to be configured, including:

■ Clock frequency

■ Clock polarity

■ Clock phase

■ Transfer unit length

■ Shift direction

Since more than one device with different SPI’s communication setting may share the same

SPI bus, this function must reconfigure the SPI controller following the device’s SPI

communication setting each time the device driver must access the SPI bus. If the SPI bus is
135

Wireless BSP Layer
not shared with other devices, it’s recommended that NetDev_SPI_Cfg() configures SPI

controller following the SPI’s communication setting of the wireless device and to keep this

function empty.

See section B-3-12 “NetDev_WiFi_SPI_Cfg()” on page 411 for more information.

6-2-9 LOCKING AND UNLOCKING SPI BUS

NetDev_WiFi_SPI_Lock() acquires a specific network device's SPI bus access. This

function will be called before the device driver begins to access the SPI. The application

should not use the same bus to access another device until the matching call to

NetDev_WiFI_SPI_Unlock() has been made. If no other SPI device shares the same SPI

bus, it's recommended to keep this function empty.

See section B-3-7 “NetDev_WiFi_SPI_Lock()” on page 401 for more information.

6-2-10 ENABLING AND DISABLING SPI CHIP SELECT

NetDev_WiFi_SPI_ChipSelEn() enables the chip select pin of the wireless device. This

function is called before the device driver begins to access the SPI. The chip select pin

should stay enabled until the matching call to NetDev_WiFi_SPI_ChipSelDis() has been

made. The chip select pin is typically “active low.” To enable the device, the chip select pin

should be cleared; to disable the device, the chip select pin should be set.

See section B-3-10 “NetDev_WiFi_SPI_ChipSelEn()” on page 407 for more information.

6-2-11 WRITING AND READING TO THE SPI BUS

NetDev_WiFi_SPI_WrRd() writes and reads data to and from the SPI bus. This function is

called each time the device driver accesses the SPI bus. NetDev_WiFi_SPI_WrRd() must

not return until the write/read operation is complete. Writing and reading to the SPI bus by

using DMA is possible, but the BSP layer must implement a notification mechanism to

return from this function only when the write and read operations are entirely completed.

See section B-3-9 “NetDev_WiFi_SPI_WrRd()” on page 405 for more information.
136

Specifying the Interface Number of the Device ISR
6-3 SPECIFYING THE INTERFACE NUMBER OF THE DEVICE ISR

NetDev_ISR_Handler() handles a network device’s interrupts on a specific interface.

Each network device’s interrupt, or set of device interrupts, must be handled by a unique

BSP-level interrupt service routine (ISR) handler, NetDev_ISR_Handler(), which maps

each specific device interrupt to its corresponding network interface ISR handler,

NetIF_ISR_Handler(). For some CPUs, this may be a first- or second-level interrupt

handler. The application must configure the interrupt controller to call every network

device’s unique NetDev_ISR_Handler() when the device’s interrupt occurs (see section

A-3-3 “NetDev_CfgIntCtrl()” on page 340). Every unique NetDev_ISR_Handler() must then

perform the following actions:

1 Call NetIF_ISR_Handler() with the device’s unique network interface number and

appropriate interrupt type. The network interface number should be available in the

device’s NetDev_CfgIntCtrl() function after configuration (see section A-3-3 on

page 340). NetIF_ISR_Handler() in turn calls the appropriate device driver’s interrupt

handler.

In most cases, each device requires only a single NetDev_ISR_Handler(). This is

possible when the device’s driver is able determine the device’s interrupt type via

internal device registers or the interrupt controller. In this case, NetDev_ISR_Handler()
calls NetIF_ISR_Handler() with interrupt type code NET_DEV_ISR_TYPE_UNKNOWN.

However, some devices cannot determine the interrupt type when an interrupt occurs

and may therefore require multiple, unique NetDev_ISR_Handler()’s, each of which

calls NetIF_ISR_Handler() with the appropriate interrupt type code.

Ethernet physical layer (PHY) interrupts should call NetIF_ISR_Handler() with

interrupt type code NET_DEV_ISR_TYPE_PHY.

2 Clear the device’s interrupt source, possibly via an external or CPU-integrated interrupt

controller source.

See section B-3-13 “NetDev_WiFi_ISR_Handler()” on page 414 for more information.
137

Miscellaneous Network BSP
6-4 MISCELLANEOUS NETWORK BSP

μC/TCP-IP also implements hardware abstraction code other than the device driver BSP. The

following functions must be declared and implemented in net_bsp.c:

NET_TS NetUtil_TS_Get (void);
NET_TS_MS NetUtil_TS_Get_ms (void);
void NetTCP_InitTxSeqNbr(void);

The first two functions provide internal timestamp μC/TCP-IP functionality (although

NetUtil_TS_Get() is not absolutely required), while the latter function is only necessary if

μC/TCP-IP is configured to include the TCP module. Details for these functions can be

found in their respective sections in Appendix C, “μC/TCP-IP API Reference” on page 417,

and templates for these BSP functions are available in the

\Micrium\Software\uC-TCPIP-V2\BSP\Template\ directories.
138

Chapter

7

Device Driver Implementation

This chapter describes the hardware (device) driver architecture for μC/TCP-IP. In order to

understand the concepts discussed in this guide, you should be familiar with networking

principles, the TCP/IP stack, real-time operating systems, and microcontrollers and

processors.

μC/TCP-IP operates with a variety of network devices. Currently, μC/TCP-IP supports

Ethernet type interface controllers wired and wireless, and will support serial, PPP, USB, and

other popular interfaces in future releases.

There are many Ethernet controllers available on the market and each requires a driver to

work with μC/TCP-IP. The amount of code needed to port a specific device to μC/TCP-IP

greatly depends on device complexity.

If a driver for your hardware is not already available, you can develop a driver as described

in this book. The best approach is to modify an already device driver with your device’s

specific code, following the Micrium coding convention for consistency. It is also possible to

adapt drivers written for other TCP/IP stacks, especially if the driver code is short and it is a

matter of simply copying data to and from the device.
139

Concepts
7-1 CONCEPTS

Several aspects of the μC/TCP-IP driver architecture that are discussed in this chapter

include:

NETWORK INTERFACE

The network interface is the physical and logical implementation. Currently only network

interface which use the IEEE 802.3 and/or Ethernet standards are supported.

DEVICE DRIVER

A device driver is an interface between the common API of the μC/TCP-IP stack and the

device specific architecture and available resources (RAM, DMA, IO, Peripheral Registers,

etc…).

ETHERNET DEVICE LAYER

The device layer of the Ethernet device driver implements functions to control the Media

Access Controller (MAC). μC/TCP-IP supports internal and external wired Ethernet

controller and connected to an Ethernet PHY. This layer implements functionality required

by other network interface layers which are specific to the device and not to the board such

as initializing, receiving and transmitting. This layer may implement functionally by setting

and using controller register, DMA, or memory copy.

ETHERNET PHY LAYER

PHY is the physical layer of the TCP/IP stack model between the Media Access Controller

(MAC) and physical medium of the network (copper, optical fiber or RF). The PHY

accomplishes two tasks: the first is to encode the transmitted data and decode received data;

the second is to drive and read the medium with respect to bit timing, signal level and

modulation.

WIRELESS DEVICE LAYER

The device layer of the wireless device driver implements functions to control the Media

Access Controller (MAC) a wireless module. μC/TCP-IP supports only wireless modules that

include an integrated wireless supplicant (which is responsible for making login requests)

and which communicate via SPI. Also the packet format used by the module must be 802.3

or Ethernet. This layer implements functionality required by other network interface layers
140

Concepts
which are specific to the device and not to the board such as initializing, receiving and

transmitting. This layer may implement functionally by writing and reading in the wireless

device register through SPI.

WIRELESS MANAGER

The Wireless Manager is a set of internal mechanisms to perform management operations

on the wireless module such as scan, join, leave, and so on.

DIRECT MEMORY ACCESS (DMA)

Direct Memory Access controller is a common hardware feature of processors and

microcontrollers. DMA allows copying memory blocks from peripherals and internal

memory while offloading the processor. An interrupt is generated when the transfer is

completed to notify the CPU when a data transfer is completed.

MEMORY COPY

In the case where the processor doesn’t have DMA controllers, all memory transfers have to

be executed by the processor. This method is called Memory Copy. It is less efficient than

DMA transfers because the CPU has to move each element of the data, whereas it could do

other tasks if a DMA was available to perform the data transfer.

SPI

SPI (Serial Peripheral Interface) is a synchronous serial data link used by peripherals

commonly built-in to CPUs. Since the communication can easily be accomplished by

software control of GPIO pins (“software SPI” also known as “bit-banging”), SPI devices can

be connected to almost any platform. Any SPI device uses four signals, which are used to

communicate with the host (CS, DataIn, CLK and DataOut).

The four signals connecting the host and device (also known as master and slave) are

named variously in different manuals and documents. The MOSI pin (Master Out Slave In)

may be called DI on device pinouts; similarly, MISO pin (Master In Slave Out) may be called

DO on device pinouts. The CS and CLK pins (also known as SSEL and SCK) are the chip

select and clock pins. The host selects the slave by asserting CS, potentially allowing it to

choose a single peripheral among several that are sharing the bus (i.e., by sharing the CLK,

MOSI and MISO signals).
141

Overview of the μC/TCP-IP Interface Layers
7-2 OVERVIEW OF THE μC/TCP-IP INTERFACE LAYERS

This section describe several aspects which are common to all Network interface type,

wired or wireless.

7-2-1 CONFIGURATION STRUCTURES AND APIS
INTERACTIONS

Once μC/TCP-IP is initialized each type of network interface, wired or wireless, must be

added to the stack via NetIF_Add() the same function as shown previously in section 5-3-3

“Adding an Ethernet Interface” on page 94 and section 5-4-2 “Adding a Wireless Interface”

on page 100.

μC/TCP-IP uses API functions to access the interface layer and configuration structures are

used to initialize resources needed by the network interface. When writing a device drive

you may have to create device driver and extension APIs and uses configurations structures

in your implementation. Thus you must understand what is the interaction between each

layer and API.

This is the NetIF_Add() prototype with the argument that you must pass:

Listing 7-1 NetIF_Add() arguments

L7-1(1) Pointer to specific network interface API. This API should always be provided

with the TCP-IP stack, you must only pass the API of your interface type. You

can find the API under the interface folder (/IF).

L7-1(2) Pointer to specific network device driver API. If you want to develop your own

driver you must implement this API and you should start from the device driver

template which can be find under the device folder (/Dev/Template). APIs for

Ethernet and wireless have some differences; see section 7-5 “Ethernet Device

NET_IF_NBR NetIF_Add (void *if_api, (1)
 void *dev_api, (2)
 void *dev_bsp, (3)
 void *dev_cfg, (4)
 void *ext_api, (5)
 void *ext_cfg, (6)
 NET_ERR *perr) (7)
142

Overview of the μC/TCP-IP Interface Layers
Driver Implementation” on page 158 and section 7-10 “Wireless Device Driver

Implementation” on page 216 for further information about each type of

Interface’s API.

L7-1(3) Pointer to specific network device board-specific API. This API is used by the

device driver initialization to configure several device aspect which are specific

to the board and the application. Thus you must implements the API needed

by your network interface. You should start from the BSP template provided

with the stack which you can find under the BSP folder (/BSP/Template). For

further information about the BSP layer to implement, section 6-1 “Ethernet

BSP Layer” on page 122 and section 6-2 “Wireless BSP Layer” on page 127.

L7-1(4) Pointer to specific network device hardware configuration. This configuration

structure is used by the interface and the device driver initialize resources

needed by the interface. Each interface type has their own configuration

structure which always starts with the standard memory configuration. You

should start from the interface configuration template which you can find

under the configuration template (CFG/Template/net_dev_cfg.*). See

section 5-3 “Ethernet Interface Configuration” on page 90 and section 5-4

“Wireless Interface Configuration” on page 98 for further information about

configurations structures. The device driver should validate the configuration

structure before initializing registers and peripherals.

L7-1(5) Pointer to specific network extension layer API. This API is used by the

interface to accomplish some operation specific to the physical type. For an

Ethernet interface the extension layer is the PHY API. Micrium provides a

generic Ethernet PHY which are compatible with the (R)MII standard, if your

PHY is not compatible, you may have to implement an API for it. For further

information about the Ethernet PHY API, see section 7-4 “Ethernet PHY API

Implementation” on page 155.

For a wireless interface, the extension layer is the Wireless Manager API which

can be found under (Dev/WiFi/Manager). If you write your own driver you

may have to implement the extension API if the provided Wireless Manager

doesn’t provide the functionality needed by your device driver.
143

Overview of the μC/TCP-IP Interface Layers
L7-1(6) Pointer to specific network extension layer configuration. This configuration

structure is used by the extension layer to initialize by the interface. For an

Ethernet interface you should pass the PHY configuration. This configuration

structure might be null for a Wireless Manager.

L7-1(7) Pointer to variable that will receive the return error code from this function.

For a thorough description of the μC/TCP-IP files and directory structure, see Chapter 3,

“Directories and Files” on page 41.

Figure 7-1 shows where these API are used by μC/TCP-IP and also the interaction between

each interface layers and API passed to NetIF_Add():

Figure 7-1 Overview of μC/TCP-IP

F7-1(1) NetIF_API_Ether and NetIF_API_WiFi specify the address of the link layer

API structure used by the μC/TCPIP module to transmit and receive data from

the hardware device. For an Ethernet interface, this value is always defined as

μC/TCP-IP

μC/App
μC/DHCPc
μC/DNSc
μC/IPerf

μC/HTTPs
μC/FTPc | s
μC/POP3c
μC/SNTPc
μC/SMTPc

μC/TELNETs
μC/TFTPc | s

Core
Socket, BSD, TCP, UDP,
IP, IGMP, ICMP, etc...

IF

Device DriverPHY

BSP
(I/O, Clk, Timer,

etc...)

Device Driver
Configuration

PHY
Configuration

Get Free IF buffer

Socket or BSD
API

NetIF_API_Ether

NetPhy_API_<PHY>

NetPhy_Cfg_<PHY>

NetDev_Cfg_<controller>

NetDev_API_<controller>

NetPhy_API_<PHY> &
NetDev_API_<controller>

ISR

NetDev_BSP_<controller>

4

5

6

3

2

1

144

Overview of the μC/TCP-IP Interface Layers
NetIF_API_Ether. For an wireless interface, this value is always defined as

NetIF_API_WiFi. So, all you need to do is to add to your project the files

contained in the IF folder.

F7-1(2) NetDev_API_<controller> is the address of the API structure used by the IF

layer to initialize the controller and control transmissions/reception, multicast,

controller speed, and so on.

F7-1(3) NetDev_Cfg_<controller> is a configuration structure used by the IF and

driver layers to configure memory, reserve buffers, reserve descriptor area, and

so on. You have to update this structure following your application

requirements. Refer to section 5-3 “Ethernet Interface Configuration” on

page 90 and section 5-4 “Wireless Interface Configuration” on page 98 for more

information about how to configure an interface.

F7-1(4) For an Ethernet interface, a PHY API should be used. NetPhy_API_<phy> is the

address of the API structure used by the IF and controller layers to control the

PHY speed and to get the link state. If a generic (R)MII PHY provides the

features you need, you do not have to implement this layer yourself; you can

use the generic PHY. However, if the PHY does not support the MII or RMII

standard, or necessary features are not provided by the generic (R)MII PHY,

you will have to implement a new PHY.

For an wireless interface a Wireless Manager API should be used.

NetWiFiMgr_API_Generic is the address of the API structure used by the IF

and controller layers to control the wireless connection state.

F7-1(5) NetDev_BSP_<controller> is the address of the API structure used by the

device driver to initialize interfaces specific to the board and the processor.

F7-1(6) For an Ethernet interface, a PHY configuration must be passed.

NetPhy_Cfg_<phy> is the address of the API structure where the initial PHY

configuration settings (such as link speed and link dupex) are defined. More

details are provided on that structure in section 5-3 “Ethernet Interface

Configuration” on page 90

For an wireless interface no configuration structure is needed.
145

Overview of the μC/TCP-IP Interface Layers
7-2-2 μC/TCP-IP MEMORY MANAGEMENT

One of the most important aspect when writing a device driver is the memory management

since each type of device driver should at least validate the interface memory configuration

as shown in section 5-2-1 “Memory Configuration” on page 85. The device driver developer

could use the memory configuration of the interface during the initialization to allocate

memory uses uniquely within the device driver.

See section 5-2 “μC/TCP-IP Network Interface configuration” on page 85 for further

information about the memory management and it’s configuration.

For non-DMA based devices, additional memory allocation from within the device driver

may not be necessary. However, DMA based devices should allocate memory from the

μC/LIB memory module for descriptors. By using the μC/LIB memory module instead of

declaring arrays, the driver developer can easily align descriptors to any required boundary

and benefit from the run-time flexibility of the device configuration structure.

If you have access to the source code, see the μC/LIB documentation for additional

information and usage notes.

Net_dev_cfg_<controller>.c/.h is used to specify how much memory should be

reserved by the μC/TCP-IP module for the device buffer and where to map it. As Figure 7-4

shows, the memory regions are managed by the core (NetBuf layer) which uses the μC/LIB

memory module. The IF layer creates the memory pools for all configured buffers as per the

information in Net_dev_cfg_<controller>.c.

When the driver requires additional memory, it is the responsibility of the developer to create

the additional memory pools. For example, when your device supports DMA access, you

have to reserve memory for the Receive/Transmit descriptors. As all memory pools are

managed using μC/LIB, when you increase some device configuration value, the heap size of

μC/LIB must follow the value modification. If not done properly, the μC/TCP-IP module will

run out of memory during the initialization or too much memory will be reserved by μC/LIB.
146

Overview of the μC/TCP-IP Interface Layers
Figure 7-2 Memory management

μC/TCP-IP has been designed to operate with several device driver memory configurations.

There are four possible memory configuration arrangements which are shown below:

CPU WITH AN INTERNAL MEDIA ACCESS CONTROLLER (MAC)

When a packet is received by the MAC, a DMA

transfer from the MAC’s internal buffer into

main memory is initiated by the MAC. This

method generally provides for shortened

development time and excellent performance.

μC/TCP-IP

net_if*.c/.h

net_dev_<controller>*.c/.h

μC/LIB

Memory

app_cfg.h

LIB_MEM_CFG_HEAP_SIZE

Core

NetBuf

NetDev_cfg_<controller>

RxBufPoolType
RxBufLargeSize
RxBufLargeNbr

RxBufAlignOctets
RxBufIxOffset

TxBufPoolType
TxBufLargeSize
TxBufLargeNbr
TxBufSmallSize
TxBufSmallNbr

TxBufAlignOctets
TxBufIxOffset

MemAddr
MemSize

Flags
RxDescNbr
TxDescNbr

BaseAddr
DataBusSizeNbrBits

HW_AddrStr

Manage memory pools

Reserve memory for
Rx/Tx buffers

Reserve memory for
Rx/Tx descriptors

Reserve memory

Get free
Rx buffers
147

Overview of the μC/TCP-IP Interface Layers
CPU WITH AN INTERNAL MAC BUT WITH DEDICATED MEMORY

COOPERATIVE DMA SOLUTION WHERE BOTH THE CPU AND MAC TAKE
PART IN THE DMA OPERATION

When a packet is received, the MAC initiates a

DMA transfer into dedicated memory.

Generally, most configurations of this type

allow for transmission from main memory

while reserving dedicated memory for either

receive or transmit operations. Both the MAC

and the CPU can read and write from

dedicated memory and so the stack can

process packets directly from dedicated

memory.

Porting to this architecture is generally not

difficult and provides for excellent

performance. However, performance may be

limited by the size of the dedicated memory;

especially in cases where transmit and receive

operations share the dedicated memory space.

This configuration is generally found on

external devices that are either connected

directly to the processor bus or connected via

the ISA or PCI standard. This method requires

that the CPU contain a DMA peripheral that

can be configured to work within the

architectural limitations of the external device.

This method is more difficult to port to, but

generally offers excellent performance.

148

Overview of the μC/TCP-IP Interface Layers
EXTERNAL DEVICE ATTACHED VIA THE CPU’S EXTERNAL BUS

These settings are likely to be influenced by the size of the available memory on the device.

You will have to find these specific configuration values for the device driver and provides

them to the stack user. An example of a typical device and buffer configuration is available in

section F-2-2 “Network and Device Buffer Configuration” on page 792. The size and number

of receive and transmit buffers depends on many factors, including, but not limited to:

■ The desired level of performances

■ The bandwidth required for the application

■ CPU utilization

7-2-3 INTERRUPT HANDLING

This section provides an overview of interrupt handling, which is necessary to understand

the reception and transmission of network packets. After reading this section, you should be

ready to understand the description and explanations of the follow section of this chapter

Interrupt handling is accomplished using the following multi-level scheme.

1 Processor level interrupt handler

2 μC/TCP-IP BSP interrupt handler (Network BSP)

3 Device driver interrupt handler

Data is moved between main memory and the

external device’s internal memory via bus read

and write cycles. The amount of data

transferred in a given bus operation depends

on the width of the data bus. This method

requires additional CPU intervention in order

to copy all of the data to and from the device

when necessary. This method is generally easy

to port and offers average performance.

149

Overview of the μC/TCP-IP Interface Layers
During initialization, the device driver registers all necessary interrupt sources with the BSP

interrupt management code. This may also be accomplished by plugging an interrupt vector

table during compile time. Once the global interrupt vector sources are configured and an

interrupt occurs, the system will call the first-level interrupt handler. The first-level handler

then calls the network device’s BSP handler which in turn calls NetIF_ISR_Handler() with

the interface number and ISR type. The ISR type may be known if a dedicated interrupt vector

is assigned to the source, or it may be de-multiplexed from the device driver by reading a

register. If the interrupt type is unknown, then the BSP interrupt handler should call

NetIF_ISR_Handler() with the appropriate interface number and

NET_IF_ISR_TYPE_UNKNOWN.

The following ISR types have been defined from within μC/TCP-IP, however, additional type

codes may be defined within each device’s net_dev.h:

NET_DEV_ISR_TYPE_UNKNOWN
NET_DEV_ISR_TYPE_RX
NET_DEV_ISR_TYPE_RX_RUNT
NET_DEV_ISR_TYPE_RX_OVERRUN
NET_DEV_ISR_TYPE_TX_RDY
NET_DEV_ISR_TYPE_TX_COMPLETE
NET_DEV_ISR_TYPE_TX_COLLISION_LATE
NET_DEV_ISR_TYPE_TX_COLLISION_EXCESS
NET_DEV_ISR_TYPE_JABBER
NET_DEV_ISR_TYPE_BABBLE
NET_DEV_ISR_TYPE_TX_DONE
NET_DEV_ISR_TYPE_PHY

Depending on the architecture, there may be a network device BSP interrupt handler for

each implemented device interrupt type (see also Chapter 6, “Network Board Support

Package” on page 121 and section A-3-5 “NetDev_ISR_Handler()” on page 346). PHY

interrupts should call NetIF_ISR_Handler() with a type code equal to

NET_DEV_ISR_TYPE_PHY.

F7-2(1) The device driver must call the network device BSP during initialization in

order to configure any module clocks, GPIO, or external interrupt controllers

that require configuration. Note: Network device BSP is processor- and

device-specific and must be supplied by the application developer. See

Chapter 6, “Network Board Support Package” on page 121 for more details.
150

Overview of the μC/TCP-IP Interface Layers
7-2-4 NETWORK PACKET RECEPTION OVERVIEW

This section is a quick overview of the mechanism put in place to handle the reception of

network packets within the device driver, the μC/TCP-IP module and the OS.

A device’s receive interrupt signals the μC/TCP-IP module for each packet received so that

each receive is queued and later handled by μC/TCP-IP’s network interface Receive task.

Processing devices’ received packets is deferred to the network interface Receive task to

keep device ISRs as short as possible and make the driver easier to write.

Figure 7-3 Device Receive interrupt and network receive signaling

F7-3(1) The μC/TCP-IP’s network interface Receive task calls NetOS_IF_RxTaskWait()
to wait for device receive packets to arrive by waiting (ideally without timeout)

for the Device Rx Signal to be signaled.

F7-3(2) When a device packet is received, the device generates a receive interrupt

which calls the device’s BSP-level ISR handler.

F7-3(3) The device’s BSP-level ISR handler determines which network interface number

the specific device’s interrupt is signaling and then calls NetIF_ISR_Handler()
to handle the device’s receive interrupt.

Net OS

BSP

IF

NetIF Rx

NetIF ISR Handler NetBSP ISR Handler

Core

Device
RxPktFrameDemux

NetIF Rx Task

NetDev_DATA

NetDev Rx

NetDev ISR Handler

OS

Network

NetOS_IF_RxTaskWait()

NetIF_ISR_Handler()

ISR

Get & Update

NetOS_IF_RxTaskSignal()

Get & Update

1

23

4

5

151

Overview of the μC/TCP-IP Interface Layers
F7-3(4) NetIF_Ether_ISR_Handler() and NetDev_ISR_Handler()) (the network

interface and device ISR handlers) call NetOS_IF_RxTaskSignal() to signal

the Device Rx Signal for each received packet.

F7-3(5) μC/TCP-IP’s network interface Receive task’s call to NetOS_IF_RxTaskWait()
is made ready for each received packet that signals the Device Rx Signal. The

network interface Receive task then calls the specific network interface and

device receive handler functions to retrieve the packet from the device. If the

packet was not already received directly into a network buffer (e.g., via DMA),

it is copied into a network buffer data. The network buffer is then

de-multiplexed to higher-layer protocol(s) for further processing.

7-2-5 NETWORK PACKET TRANSMISSION OVERVIEW

A device’s transmit complete interrupt signals μC/TCP-IP that another transmit packet is

available to be transmitted or be queued for transmit by the device.

Figure 7-3 shows the relationship between a device’s transmit complete interrupt, its

transmit complete ISR handling and μC/TCP-IP’s network interface transmit.

Figure 7-4 Device transmit complete interrupt and transmit ready signal

Net OS

BSP

IF

NetIF Tx

NetIF ISR Handler NetBSP ISR Handler

Core

Device
Transmit Packet

NetIF Tx Task

NetDev_DATA

NetDev Tx

NetDev ISR Handler

OS

Network

NetOS_Dev_TxRdyWait()

NetIF_ISR_Handler()

ISR

Get & Update

NetOS_Dev_TxRdySignal()

Get & Update

1

23

4

6

MAC

5

152

Overview of the μC/TCP-IP Interface Layers
F7-4(1) The μC/TCP-IP’s Network Interface Transmit calls NetOS_Dev_TxRdyWait() to
wait for a specific network interface device semaphore to become ready and/or

available to transmit a packet by waiting (with or without timeout) for the

specific network interface’s Device Tx Ready Signal to be signaled.

F7-4(2) When a device is ready and/or available to transmit a packet, the device

generates an interrupt which calls the device’s BSP-level ISR handler.

F7-4(3) The device’s BSP-level ISR handler determines which network interface number

the specific device’s interrupt is signaling and then calls NetIF_ISR_Handler()
to handle the transmit complete interrupt.

F7-4(4) The specific device ISR handlers NetDev_ISR_Handler() calls

NetOS_Dev_TxRdySignal() to signal the Device Tx Ready Signal for each

packet or descriptor that is now available to transmit by the device.

F7-4(5) μC/TCP-IP’s Network Interface Transmit’s call to NetOS_Dev_TxRdyWait()
returns since the semaphore is made ready by each available device transmit

complete that signals the Device Tx Ready Signal.

F7-4(6) The Network Interface Transmit then calls the specific network interface and

device transmit handler functions to prepare the packet for transmission by the

device.
153

Ethernet Layers Interactions
7-3 ETHERNET LAYERS INTERACTIONS

This sections that follow describe the interactions between the IF layer, the Ethernet device

driver API functions, the BSP API functions and the Ethernet PHY API functions. Since the

device driver is made of not only logic but also from interactions with the parts on the

board, you'll need to understand the calls made to the these layers of the μC/TCP-IP module

and to the CPU and board-dependent layers.

Figure 7-5 shows the logical path between the physical layer and the device driver through

the function calls and interruptions.

Figure 7-5 PHY, device driver & BSP interactions

net_dev_<controller>.c/.h

NetDev_Init()

μC/TCP-IP
Core

IF

Add() |
Start() |
Stop() |
Rx() |
Tx() |

AddMulticast() |
RemoveMulticast() |

GetLinkState()

net_phy_<name>.c/.h

NetPhy_LinkStateGet()

NetPhy_EnDis()

NetPhy_AutoNegStart()

NetPhy_Init()

NetPhy_LinkStateSet()

NetPhy_ISR_Handler()

NetDev_Rx()

NetDev_ISR_Handler()

NetDev_Start()

NetDev_Stop()

NetDev_Tx()

NetDev_AddrMulticastAdd()

NetDev_AddrMulticastRemove()

NetDev_MII_Wr()

NetDev_IO_Ctrl()

NetDev_MII_Rd()

net_bsp.c/.h

NetDev_CfgClk()

NetDev_CfgIntCtrl()

NetDev_CfgGPIO()

NetDev_ClkFreqGet()

Phy_Init()

Phy_EnDis()

StartAutoNeg()

GetLinkState()

SetLinkState()

ISR_Handler()

NetIF_ISR_Handler()

NetBuf_GetDataPtr()

NetOS_IF_TxDeallocTaskPost() |
NetOS_Dev_TxRdySignal() |

NetOS_IF_RxTaskSignal()

AddrMulticastRemove()

Rx()

ISR_Handler()

Start()

Stop()

Tx()

AddrMulticastAdd()

Init()

IO_Ctrl()

Phy_RegRd()

Phy_RegWr()

NetBSP_ISR_Handler() ISR
154

Ethernet PHY API Implementation
7-4 ETHERNET PHY API IMPLEMENTATION

7-4-1 DESCRIPTION OF THE ETHERNET PHY API

Many Ethernet devices use external (R)MII compliant physical layers (PHYs) to attach

themselves to the Ethernet wire. However, some MACs use embedded PHYs and do not have

a MII-compliant communication interface. In this case, it may acceptable to merge the PHY

functionality with the MAC device driver, in which case a separate PHY API and configuration

structure may not be required. But in the event that an external (R)MII-compliant device is

attached to the MAC, the PHY driver must implement the PHY API as follows:

Listing 7-2 PHY interface API

L7-2(1) PHY initialization function pointer

L7-2(2) PHY enable/disable function pointer

L7-2(3) PHY link get status function pointer

L7-2(4) PHY link set status function pointer

L7-2(5) PHY interrupt service routine (ISR) handler function pointer

μC/TCP-IP provides code that is compatible with most (R)MII compliant PHYs. However,

extended functionality, such as link state interrupts, must be implemented on a per-PHY

basis. If additional functionality is required, it may be necessary to create an application

specific PHY driver.

Note: It is the PHY driver developers’ responsibility to ensure that all of the functions listed

within the API are properly implemented and that the order of the functions within the API

structure is correct. The NetPhy_ISR_Handler field is optional and may be populated as

(void *)0 if interrupt functionality is not required.

const NET_PHY_API_ETHER NetPHY_API_DeviceName = { NetPhy_Init, (1)
 NetPhy_EnDis, (2)
 NetPhy_LinkStateGet, (3)
 NetPhy_LinkStateSet, (4)
 0 (5)
};
155

Ethernet PHY API Implementation
7-4-2 HOW TO INITIALIZE THE PHY

NetPhy_Init() initializes the PHY driver. It is called by the Ethernet network interface

layer after the MAC device driver, if the latter initialized without error.

The PHY initialization function is responsible of the following actions:

1 Reset the PHY and wait with timeout for reset to complete. If a timeout occurs, return

perr set to NET_PHY_ERR_RESET_TIMEOUT.

2 Start the auto-negotiation process. This should configure the PHY registers such that the

desired link speed and duplex specified within the PHY configuration are respected. It

is not required to wait until the auto-negotiation process has completed, as this can take

upwards of many seconds. This action is performed by calling the PHY’s

NetPhy_AutoNegStart() function.

3 If no errors occur, return perr set to NET_PHY_ERR_NONE.

7-4-3 HOW ENABLE OR DISABLE THE PHY

NetPhy_EnDis() is called by the Ethernet network interface layer when an interface is

started or stopped.

Disabling the PHY will causes the PHY to power down which will causes the link state to

be disconnected.

7-4-4 HOW TO GET THE NETWORK LINK STATE

The NetPhy_LinkStateGet() function returns the current Ethernet link state. Results are

passed back to the caller in a NET_DEV_LINK_ETHER structure which contains fields for link

speed and duplex. This function is called periodically by the μC/TCP-IP module.

The generic PHY driver does not return a link state. Instead, in order to avoid access to

extended registers which are PHY specific, the driver attempts to determine link state by

analyzing the PHY and PHY partner capabilities. The best combination of auto-negotiated

link state is selected as the current link state.
156

Ethernet PHY API Implementation
7-4-5 HOW TO SET THE LINK SPEED AND DUPLEX

NetPhy_LinkStateSet() function sets the current Ethernet link state. Results are passed

back to the caller within a NET_DEV_LINK_ETHER structure which contains fields for link

speed and duplex. This function is called by NetIF_Start().

7-4-6 HOW TO SPECIFY THE ADDRESS OF THE PHY ISR

NetPhy_ISR_Handler() handles PHY’s interrupts. See section 7-4-7 on page 157 for more

details on how to handle PHY interrupts. μC/TCP-IP does not require PHY drivers to enable

or handle PHY interrupts. The generic PHY drivers does not even define a PHY interrupt

handler function but instead handles all events by either periodic or event-triggered calls to

other PHY API functions.

7-4-7 NETPHY_ISR_HANDLER()

NetPhy_ISR_Handler() is the physical layer interrupt handier. The PHY ISR handler is

called though the network device BSP in a similar manner to that of the device ISR handler.

The network device BSP is used to initialize the host interrupt controller, clocks, and any

necessary I/O pins that are required for configuring and recognizing PHY interrupt sources.

When an interrupt occurs, the first level interrupt handler calls the network device BSP

interrupt handler which in turn calls NetIF_ISR_Handler() with the interface number and

interrupt type set to NET_IF_ISR_TYPE_PHY. The PHY ISR handler should execute the

necessary instructions, clear the PHY interrupt flag and exit.

Note: Link state interrupts must call both the Ethernet device driver and Net IF in order to

inform both layers of the current link status. This is performed by calling

pdev_api->IO_Ctrl() with the option NET_IF_IO_CTRL_LINK_STATE_UPDATE as well as a

pointer to a NET_DEV_LINK_ETHER structure containing the current link state speed and

duplex. Additionally, the PHY device driver must call NetIF_LinkStateSet() with a

pointer to the interface and a Boolean value set to either NET_IF_LINK_DOWN or

NET_IF_LINK_UP.

Note: The Generic PHY driver provided with μC/TCP-IP does not support interrupts. PHY

interrupt support requires use of the extended PHY registers which are PHY-specific.

However, link state is polled periodically by μC/TCP-IP and you can configure the period

during compile time.
157

Ethernet Device Driver Implementation
7-5 ETHERNET DEVICE DRIVER IMPLEMENTATION

7-5-1 DESCRIPTION OF THE ETHERNET DEVICE DRIVER API

All device drivers must declare an instance of the appropriate device driver API structure as

a global variable within the source code. The API structure is an ordered list of function

pointers utilized by μC/TCP-IP when device hardware services are required.

A sample Ethernet interface API structure is shown below.

Listing 7-3 Ethernet interface API

Note: It is the device driver developers’ responsibility to ensure that all of the functions

listed within the API are properly implemented and that the order of the functions within

the API structure is correct.

L7-3(1) Device initialization/add function pointer

L7-3(2) Device start function pointer

L7-3(3) Device stop function pointer

L7-3(4) Device Receive function pointer

L7-3(5) Device transmit function pointer

L7-3(6) Device multicast address add function pointer

const NET_DEV_API_ETHER NetDev_API_<controler> = { NetDev_Init, (1)
 NetDev_Start, (2)
 NetDev_Stop, (3)
 NetDev_Rx, (4)
 NetDev_Tx, (5)
 NetDev_AddrMulticastAdd, (6)
 NetDev_AddrMulticastRemove, (7)
 NetDev_ISR_Handler, (8)
 NetDev_IO_Ctrl, (9)
 NetDev_MII_Rd, (10)
 NetDev_MII_Wr (11)
 };
158

Ethernet Device Driver Implementation
L7-3(7) Device multicast address remove function pointer

L7-3(8) Device interrupt service routine (ISR) handler function pointer

L7-3(9) Device I/O control function pointer

L7-3(10) Physical layer (PHY) register read function pointer

L7-3(11) Physical layer (PHY) register write function pointer

Note: μC/TCP-IP device driver API function names may not be unique. Name clashes

between device drivers are avoided by never globally prototyping device driver functions

and ensuring that all references to functions within the driver are obtained by pointers

within the API structure. The developer may arbitrarily name the functions within the source

file so long as the API structure is properly declared. The user application should never

need to call API functions by name. Unless special care is taken, calling device driver

functions by name may lead to unpredictable results due to reentrancy.

The following figure describes the call path from the application layer through the Core,

Interface and Controller layers.
159

Ethernet Device Driver Implementation
Figure 7-6 Call path of controller functions

Application

Core IF Controller

NetIF_Add()
Add()

NetDev_Init()

Err

NetIF_Start()
Start()

NetDev_Init()

Err

NetIF_Start()
Add()

NetDev_Init()

Err

ISR
NetDev_ISR_Handler()

NetOS_IF_RxTaskSignal()

NetDev_Rx()

NetBuf_GetDataPtr()

Data |& Err

NetSock_Rx()

NetDev_Tx()

ISR

NetOS_IF_TxDeallocTaskPost() +
NetOS_Dev_TxRdySignal()

NetSock_Tx()

Data |& Err

Tx()

NetIGMP_HostGrpJoin()
JoinGroup()

NetDev_AddrMulticastAdd()

Err

NetIGMP_HostGrpLeave()
LeaveGroup()

NetDev_AddrMulticastRemove()

Err

NetIF_LinkStateGet()
Link() NetDev_IO_Ctrl()

Via Phy
Err
160

Ethernet Device Driver Implementation
7-5-2 INITIALIZING A NETWORK DEVICE

NetDev_Init() is called by NetIF_Add() exactly once for each specific network device

added by the application. If multiple instances of the same network device are present on

the board, then this function is called for each instance of the device. However, applications

should not try to add the same specific device more than once. If a network device fails to

initialize, we recommend debugging to find and correct the cause of the failure.

NetDev_Init() performs the following operations. However, depending on the device

being initialized, functionality may need to be added or removed:

1 Configure clock gating to the MAC device, if applicable. This is performed via the

network device’s BSP function pointer, NetDev_CfgClk(), implemented in net_bsp.c
(see section A-3-1 “NetDev_CfgClk()” on page 336).

2 Configure all necessary I/O pins for both an internal or external MAC and PHY, if

present. This is performed via the network device’s BSP function pointer,

NetDev_CfgGPIO(), implemented in net_bsp.c.

Configure the host interrupt controller for receive and transmit complete interrupts.

Additional interrupt services may be initialized depending on the device and driver

requirements. This is performed via the network device’s BSP function pointer,

NetDev_CfgIntCtrl(), implemented in net_bsp.c.

3 For DMA devices: Allocate memory for all necessary descriptors. This is performed via

calls to μC/LIB’s memory module.

4 For DMA devices: Initialize all descriptors to their ready states. This may be performed

via calls to locally-declared, static functions.

5 Initialize the (R)MII bus interface, if applicable. This entails configuring the (R)MII bus

frequency which is dependent on the system clock. Static values for clock frequencies

should never be used when determining clock dividers. Instead, the driver should

reference the associated clock function(s) for getting the system clock or peripheral bus

frequencies, and use these values to compute the correct (R)MII bus clock divider(s).

This is performed via the network device’s BSP function pointer,

NetDev_ClkFreqGet(), implemented in net_bsp.c.
161

Ethernet Device Driver Implementation
6 Disable the transmitter and receiver (should already be disabled).

7 Disable and clear pending interrupts (should already be cleared).

8 Set perr to NET_DEV_ERR_NONE if initialization proceeded as expected. Otherwise, set

perr to an appropriate network device error code.

7-5-3 STARTING A NETWORK DEVICE

NetDev_Start() is called once each time an interface is started. It performs the following

actions:

1 Call the NetOS_Dev_CfgTxRdySignal() function to configure the transmit ready

semaphore count. This function call is optional and is performed if the hardware device

supports queuing multiple transmit frames. By default, the semaphore count is

initialized to one. However, DMA devices should set the semaphore count equal to the

number of configured transmit descriptors for optimal performance. Non-DMA devices

that support queuing more than one transmit frame may also benefit from a non-default

value.

2 Initialize the device MAC address, if applicable. For Ethernet devices, this step is

mandatory. The MAC address data may come from one of three sources and should be

set using the following priority scheme:

■ Configure the MAC address using the string found within the device configuration

structure. This is a form of static MAC address configuration and may be performed

by calling NetASCII_Str_to_MAC() and NetIF_AddrHW_SetHandler(). If the

device configuration string has been left empty, or is specified as all 0’s, an error

will be returned and the next method should be attempted.

■ Check if the application developer has called NetIF_AddrHW_Set() by making a

call to NetIF_AddrHW_GetHandler() and NetIF_AddrHW_IsValidHandler() in

order to check if the specified MAC address is valid. This method may be used as a

static method for configuring the MAC address during run-time, or a dynamic

method should a pre-programmed external memory device exist. If the acquired

MAC address does not pass the check function, then:
162

Ethernet Device Driver Implementation
■ Call NetIF_AddrHW_SetHandler() using the data found within the individual MAC

address registers. If an auto-loading EEPROM is attached to the MAC, the registers

will contain valid data. If not, then a configuration error has occurred. This method

is often used with a production process where the MAC supports automatically

loading individual address registers from a serial EEPROM. When using this

method, you should specify an empty string for the MAC address within the device

configuration, and refrain from calling NetIF_AddrHW_Set() from within the

application.

3 Initialize additional MAC registers required by the MAC for proper operation.

4 Clear all interrupt flags.

5 Locally enable interrupts on the hardware device. The host interrupt controller should

have already been configured within the device driver NetDev_Init() function.

6 Enable the receiver and transmitter.

7 Set perr equal to NET_DEV_ERR_NONE if no errors have occurred. Otherwise, set perr to

an appropriate network device error code

7-5-4 STOPPING A NETWORK DEVICE

NetDev_Stop() is called once each time an interface is stopped.

NetDev_Stop() must perform the following operations:

1 Disable the receiver and transmitter.

2 Disable all local MAC interrupt sources.

3 Clear all local MAC interrupt status flags.

4 For DMA devices, re-initialize all receive descriptors.

5 For DMA devices, free all transmit descriptors by calling

NetOS_IF_DeallocTaskPost() with the address of the transmit descriptor data areas.
163

Ethernet Device Driver Implementation
6 For DMA devices, re-initialize all transmit descriptors.

7 Set perr to NET_DEV_ERR_NONE if no error occurs. Otherwise, set perr to an

appropriate network device error code.

7-5-5 NETDEV_ISR_HANDLER()

NetDev_ISR_Handler() is the device interrupt handler. In general, the device interrupt

handler must perform the following functions:

1 Determine which type of interrupt event occurred by switching on the ISR type

argument, or reading an interrupt status register if the event type is unknown.

2 If a receive event has occurred, the driver must post the interface number to the

μC/TCP-IP Receive task by calling NetOS_IF_RxTaskSignal() for each new frame

received.

3 If a transmit complete event has occurred, the driver must perform the following items

for each transmitted packet.

aPost the address of the data area that has completed transmission to the transmit buffer

de-allocation task by calling NetOS_IF_TxDeallocTaskPost() with the pointer to the

data area that has completed transmission.

bCall NetOS_Dev_TxRdySignal() with the interface number that has just completed

transmission.

4 Clear local interrupt flags.

External or CPU’s integrated interrupt controllers should be cleared from within the network

device’s BSP-level ISR after NetDev_ISR_Handler() returns. Additionally, it is highly

recommended that device driver ISR handlers be kept as short as possible to reduce the

amount of interrupt latency in the system.

Each device’s NetDev_ISR_Handler() should check all applicable interrupt sources to see

if they are active. This additional checking is necessary because multiple interrupt sources

may be set within the interrupt response time and will reduce the number and overhead of

handling interrupts. NetDev_ISR_Handler() should never return early.
164

Ethernet Device Driver Implementation
7-5-6 RECEIVING PACKETS ON A NETWORK DEVICE

NetDev_Rx() is called by μC/TCP-IP’s Receive task after the Interrupt Service Routine

handler has signaled to the Receive task that a receive event has occurred. NetDev_Rx()
requires that the device driver return a pointer to the data area containing the received data

and return the size of the received frame via pointer.

NetDev_Rx() should perform the following actions:

1 Check for receive errors, if applicable. If an error should occur during reception, the

driver should set *size to 0 and *p_data to (CPU_INT08U *)0 and return. Additional

steps may be necessary depending on the device being serviced.

2 For Ethernet devices, get the size of the received frame and subtract four bytes for the

CRC. It's recommended to first check the frame size to ensure that it is larger than four

bytes before performing the subtraction, to ensure that an underflow does not occur.

Set *size to the adjusted frame size.

3 Get a new data buffer area by calling NetBuf_GetDataPtr(). If memory is not

available, an error will be returned and the device driver should set *size to 0 and

*p_data to (CPU_INT08U *)0.

4 If an error does not occur while getting a new data area, *p_data must be set to the

address of the data area.

5 Set perr to NET_DEV_ERR_NONE and return from the receive function. Otherwise, set

perr to an appropriate network device error code.
165

Ethernet Device Driver Implementation
7-5-7 TRANSMITTING PACKETS ON A NETWORK DEVICE

NetDev_Tx() is used to notify the Ethernet device that a new packet is available to be

transmitted. It performs the following actions:

1 For DMA-based hardware, the driver should select the next available transmit descriptor

and set the pointer to the data area equal to the address pointer to by p_data.

2 For non-DMA hardware, the driver should call Mem_Copy() to copy the data stored in

the buffer to the device’s internal memory. The address of the buffer is specified by

p_data.

3 Once completed, the driver must configure the device with the number of bytes to

transmit. This value contained in the size argument. DMA-based devices have a size

field within the transmit descriptor. Non-DMA devices have a transmit size register that

must be configured.

4 The driver then takes all necessary steps to initiate transmission of the data.

5 NetDev_Tx() sets perr to NET_DEV_ERR_NONE and return from the transmit function.

7-5-8 ADDING AN ADDRESS TO THE MULTICAST ADDRESS
FILTER OF A NETWORK DEVICE

NetDev_AddrMulticastAdd() is used to configure a device with an (IP-to-Ethernet)

multicast hardware address.

Since many network controllers’ documentation fails to properly indicate how to

add/configure an Ethernet MAC device with a multicast address, the following method is

recommended for determining and testing the correct multicast hash bit algorithm.

1 Configure a packet capture program or multicast application to broadcast a multicast

packet with Ethernet destination address of 01:00:5E:00:00:01 (which is an IPv4 Ethernet

multicast address). This MAC address corresponds to the multicast group IP address of

224.0.0.1 which will be converted to a MAC address by higher layers and passed to this

function.
166

Ethernet Device Driver Implementation
2 Set a break point in the receive ISR handler, and transmit one Send packet to the target.

The break point should not be reached as the result of the transmitted packet. Use

caution to ensure that other network traffic is not the source of the interrupt when the

button is pressed. Sometimes asynchronous network events happen very close in time

and the end result can be deceiving. Ideally, these tests should be performed on an

isolated network, but if that is not an option, disconnect as many other hosts from the

network as possible.

3 Use the debugger to stop the application and program the MAC multicast hash register

low bits to 0xFFFFFFFF. Go to step 2. Repeat for the hash bit high register if necessary.

The goal is to bracket off which bit in either the high or low hash bit register causes the

device to be interrupted when the broadcast frame is received by the target. Once the

correct bit is known, the hash algorithm can be easily written and tested.

4 Update the device driver’s NetDev_AddrMulticastAdd() function to calculate and

configure the correct CRC. The sample code in Listing 7-4 can be adjusted as per the

network controller’s documentation in order to get the hash from the correct subset of

CRC bits. Most of the code is similar between various devices and is thus reusable. The

hash algorithm is the exclusive OR of every 6th bit of the destination address:

hash[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
hash[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
hash[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
hash[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
hash[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
hash[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]

Where da[0] represents the least significant bit of the first byte of the Ethernet

destination address (da) received and where da[47] represents the most significant bit of

the last byte of the Ethernet destination address received.

5 Test the device driver’s NetDev_AddrMulticastAdd() function by ensuring that the

group address 224.0.0.1, when joined from the application correctly configures the

device to receive multicast packets destined to the 224.0.0.1 address. Then broadcast to

224.0.0.1 to test if the device receives the multicast packet.
167

Ethernet Device Driver Implementation
Listing 7-4 Explicit multicast hash code

ALTERNATE HASH CODE

Alternatively, Figure 7-7 shows how the CRC hash can be computed with a call to

NetUtil_32BitCRC_CalcCpl() followed by an optional call to NetUtil_32BitReflect(),
with four possible combinations:

■ CRC without complement, without reflection

■ CRC without complement, with reflection

■ CRC with complement, without reflection

■ CRC with complement, with reflection

 /* ---------- CALCULATE HASH CODE ---------- */
hash = 0;
for (i = 0; i < 6; i++) { /* For each row in the bit hash table: */
 bit_val = 0; /* Clear initial xor value for each row. */
 for (j = 0; j < 8; j++) { /* For each bit in each octet: */
 bit_nbr = (j * 6) + i; /* Determine which bit in stream, 0-47. */
 octet_nbr = bit_nbr / 8; /* Determine which octet bit belongs to. */
 octet = paddr_hw[octet_nbr]; /* Get octet value. */
 /* Check if octet’s bit is set. */
 bit = octet & (1 << (bit_nbr % 8));
 bit_val ^= (bit > 0) ? 1 : 0; /* Calculate table row’s XOR hash value. */
 }
 hash |= (bit_val << i); /* Add row’s XOR hash value to final hash. */
}
 /* ---- ADD MULTICAST ADDRESS TO DEVICE ---- */
reg_sel = (hash >> 5) & 0x01; /* Determine hash register to configure. */
reg_bit = (hash >> 0) & 0x1F; /* Determine hash register bit to configure. */
 /* (Substitute ‘0x01’/‘0x1F’ with device’s ..*/
 /* .. actual hash register bit masks/shifts.)*/
 paddr_hash_ctrs = &pdev_data->MulticastAddrHashBitCtr[hash];
(*paddr_hash_ctrs)++; /* Increment hash bit reference counter. */
if (reg_sel == 0) { /* Set multicast hash register bit. */
 pdev->MCAST_REG_LO |= (1 << reg_bit); /* (Substitute ‘MCAST_REG_LO/HI’ with .. */
} else { /* .. device’s actual multicast registers.) */
 pdev->MCAST_REG_HI |= (1 << reg_bit);
}

168

Ethernet Device Driver Implementation
Listing 7-5 CRC Multicast Hash Code

Unfortunately, the network controller's documentation will likely not tell you which

combination of complement and reflection is needed to properly compute the hash value.

The documentation will likely state ‘Standard Ethernet CRC’, which when compared to other

documents, means any of the four combinations above; different than the actual frame CRC.

Fortunately, if the code is written to perform both the complement and reflection, then you

can use the debugger to repeat the code block over and over, skipping either the line that

performs the complement or the function call to the reflection, until the output hash bit is

computed correctly.

 /* ---------- CALCULATE HASH CODE ---------- */
 /* Calculate CRC. */
crc = NetUtil_32BitCRC_Calc((CPU_INT08U *)paddr_hw,
 (CPU_INT32U) addr_hw_len,
 (NET_ERR *)perr);
if (*perr != NET_UTIL_ERR_NONE) {
 return;
}
 /* ---- ADD MULTICAST ADDRESS TO DEVICE ---- */
crc = NetUtil_32BitReflect(crc); /* Optionally, complement CRC. */
hash = (crc >> 23u) & 0x3F; /* Determine hash register to configure. */
reg_bit = (hash % 32u); /* Determine hash register bit to configure. */
 /* (Substitute ‘23u’/‘0x3F’ with device’s .. */
 /* .. actual hash register bit masks/shifts.)*/
 paddr_hash_ctrs = &pdev_data->MulticastAddrHashBitCtr[hash];
(*paddr_hash_ctrs)++; /* Increment hash bit reference counter. */
if (hash <= 31u) { /* Set multicast hash register bit. */
 pdev->MCAST_REG_LO |= (1 << reg_bit); /* (Substitute ‘MCAST_REG_LO/HI’ with .. */
} else { /* .. device’s actual multicast registers.) */
 pdev->MCAST_REG_HI |= (1 << reg_bit);
}

169

Ethernet Device Driver Implementation
7-5-9 REMOVING AN ADDRESS FROM THE MULTICAST
ADDRESS FILTER OF A NETWORK DEVICE

NetDev_AddrMulticastRemove() is used to remove an (IP-to-Ethernet) multicast hardware

address from a device.

You can use exactly the same code as in NetDev_AddrMulticastAdd() to calculate the

device’s CRC hash, but instead remove a multicast address by decrementing the device’s

hash bit reference counters and clearing the appropriate bits in the device’s multicast

registers. See Figure 7-8 below.

Listing 7-6 Removing Multicast Address

 /* ---------- CALCULATE HASH CODE ---------- */
/* Use NetDev_AddrMulticastAdd()’s algorithm to calculate CRC hash. */
 /* - REMOVE MULTICAST ADDRESS FROM DEVICE -- */
paddr_hash_ctrs = &pdev_data->MulticastAddrHashBitCtr[hash];
if (*paddr_hash_ctrs > 1u) { /* If multiple multicast addresses hashed, ..*/
 (*paddr_hash_ctrs)--; /* .. decrement hash bit reference counter ..*/
 perr = NET_DEV_ERR_NONE; / .. but do NOT unconfigure hash register. */
 return;
}
paddr_hash_ctrs = 0u; / Clear hash bit reference counter. */
if (hash <= 31u) { /* Clear multicast hash register bit. */
 pdev->MCAST_REG_LO &= ~(1u << reg_bit); /* (Substitute ‘MCAST_REG_LO/HI’ with .. */
} else { /* .. device’s actual multicast registers.) */
 pdev->MCAST_REG_HI &= ~(1u << reg_bit);
}

170

Ethernet Device Driver Implementation
7-5-10 SETTING THE MAC LINK, DUPLEX AND SPEED
SETTINGS

NetDev_IO_Ctrl() is used to implement miscellaneous functionality such as setting and

getting the PHY link state, as well as updating the MAC link state registers when the PHY

link state has changed. An optional void pointer to a data variable is passed into the

function and may be used to get device parameters from the caller, or to return device

parameters to the caller. μC/TCP-IP defines the following default options:

NET_DEV_LINK_STATE_GET_INFO and NET_DEV_LINK_STATE_UPDATE.

The NET_DEV_LINK_STATE_GET_INFO option expects p_data to point to a variable of type

NET_DEV_LINK_ETHER for the case of an Ethernet driver. This variable has two fields, Speed

and Duplex, which are filled in by the PHY device driver via a call through the PHY API.

μC/TCP-IP internally uses this option code in order to periodically poll the PHYs for link

state. The NET_DEV_LINK_STATE_UPDATE option is used by the PHY driver to communicate

with the MAC when either μC/TCP-IP polls the PHY for link status, or when a PHY interrupt

occurs. Not all MAC’s require PHY link state synchronization. Should this be the case, then

the device driver may not need to implement this option.

7-5-11 READING PHY REGISTERS

NetDev_MII_Rd() is implemented within the Ethernet device driver file, since (R)MII bus

reads are associated with the MAC device. In the case that the PHY communication

mechanism is separate from the MAC, then a handler function may be provided within the

net_bsp.c file and called from the device driver file instead. Note: This function must be

implemented with a timeout and should not block indefinitely should the PHY fail to

respond.

7-5-12 WRITING TO PHY REGISTERS

NetDev_MII_Wr() is implemented within the Ethernet device driver file since (R)MII bus

writes are associated with the MAC device. In the case that the PHY communication

mechanism is separate from the MAC, a handler function may be provided within the

net_bsp.c file and called from the device driver file instead.

Note: This function must be implemented with a timeout and not block indefinitely should

the PHY fail to respond.
171

Ethernet - Transmitting & Receiving using DMA
7-6 ETHERNET - TRANSMITTING & RECEIVING USING DMA

A DMA controller is a device that moves data through a system independently of the

CPU/MCU. It connects internal and peripheral memories via a set of dedicated buses. A

DMA controller can also be considered a peripheral itself in the sense that the processor

programs it to perform data transfers.

In general, a DMA controller includes an address bus, a data bus, and control registers. An

efficient DMA controller possesses the ability to request access to any resource it needs,

without involving the CPU. It must have the capability to generate interrupts and to

calculate addresses.

A processor might contain multiple DMA controllers, multiple DMA channels, and multiple

buses that link the memory banks and peripherals directly. Processors with an integrated

Ethernet controller typically have a DMA controller for their Ethernet hardware.

Generally, the processor should need to respond to DMA interrupts only after the data

transfers are completed. The DMA controller is programmed by the processor to move data

in parallel while the processor is doing its regular processing tasks.

Since the DMA controller has the capability to interface with memory, it can get its own

instruction from memory. Picture a DMA controller as a simple processor with a simple

instruction set. DMA channels have a finite number of registers that need to be filled with

values, each of which gives a description of how to transfer the data.

There are two main classes of DMA transfer: Register Mode and Descriptor Mode. In

Register mode, the DMA controller is programmed by the CPU by writing the required

parameters in the DMA registers. In Descriptor mode, the DMA can use its read memory

circuitry to fetch the register values itself rather than burdening the CPU to write the values.

The blocks of memory containing the required register parameters are called descriptors.

When the DMA runs in Register Mode, the DMA controller simply uses the values contained

in the registers.

Descriptor Mode provides the best results, and is mostly found in microprocessor/

microcontroller DMA controllers with integrated Ethernet controller. This is the mode

described in detail below.
172

Ethernet - Transmitting & Receiving using DMA
DESCRIPTOR MODE

In Descriptor Mode, the formatting of the descriptor information is provided by the DMA

controller. The descriptor contains all of the same parameters that the CPU (operating in

Register Mode) would program into the DMA control registers.

Descriptor Mode allows multiple DMA sequences to be chained together so the controller

be programmed to automatically set up and start another DMA transfer after the current

sequence completes. The descriptor-based model provides the most flexible configuration

to manage a system’s memory.

The DMA controller provides a main descriptor model method; normally called a Descriptor

List. Depending on the DMA controller, the descriptor list may reside in consecutive

memory locations, but this is not mandatory. μC/TCP-IP reserves consecutive memory

blocks for descriptors and both models can be used.

Figure 7-7 Descriptor link list

In the μC/TCP-IP device driver, a linked list of descriptors is created, as shown in Figure 7-7.

The term linked implies that one descriptor points to the next descriptor, which is loaded

automatically. To complete the chain, the last descriptor points back to the first descriptor,

and the process repeats. This mechanism is used for Ethernet frame reception.

The vast majority of processors that include Ethernet support come with a Direct Memory

Access Controller (DMAC). This has the advantage reducing the load on the CPU, as the

DMAC handles data transfers from the CPU internal memory to the Ethernet controller

memory area or vice versa. If a DMAC is present on your device, we encourage you to take

advantage of it.

��

����������

��

����������

��

����������
173

Ethernet - Transmitting & Receiving using DMA
7-6-1 DRIVER DATA & CONTROL USING DMA

Each driver should have their own data structure NET_DEV_DATA, which contains status

information about data reception, transmission and statistics. The driver’s state structure is

stored by the core and can be retrieving within any driver API functions. Figure 7-8

illustrates the structure to track and control Receive & Transmit descriptors.

Figure 7-8 NET_DEV_DATA data structure

7-6-2 RECEPTION USING DMA

INITIALIZATION

When μC/TCP-IP is initialized, the Network Device Driver allocates a memory block for all

Receive descriptors; this is performed via calls to μC/LIB.

Then, the network device driver must allocate a list of descriptors and configure each

address field to point to the start address of a Receive buffer. At the same time, the network

device driver initializes three pointers: one to track the current descriptor, which is expected

to contain the next received frame; a second to remember the descriptor list boundaries;

and a third for the descriptor list starting address.

The DMA controller is initialized and the hardware is informed of the address of descriptor

list.

Rx Descriptor List

Tx Descriptor List

Other Custom
Stat Variables
174

Ethernet - Transmitting & Receiving using DMA
Figure 7-9 Allocation of buffers

F7-9(1) The result of Mem_Init() and the first step in the intialization of the Network

Device Driver is the allocation of buffers.

��
�������

�
�
�

��
�����

�	�� ���

�

175

Ethernet - Transmitting & Receiving using DMA
Figure 7-10 Descriptor allocation

F7-10(1) μC/TCP-IP allocates a list of descriptors based on the network device driver

configuration and sets each address field to point to the start address of a

receive buffer.

��
�������

�
�
�

��
�����

�	�� ���

������	
�������
������	
� ����

������	
�������
������	
� ����

������	
�������
������	
� ����

�
�
�

���
�����������

���
���������������

�

176

Ethernet - Transmitting & Receiving using DMA
Figure 7-11 Reception descriptor pointers initialization

F7-11(1) The network device driver initializes three pointers. One to track the current

descriptor which is expected to contain the next received frame

F7-11(2) A second pointer to remember the descriptor list boundaries.

F7-11(3) Finally, the DMA controller is initialized and hardware is informed of the

descriptor list starting address.

��
�������

�
�
�

��
�����

�	�� ���

�������	
��
�

��������	
��
�
�� ���� �

������	
�������
������	
� ����

������	
�������
������	
� ����

������	
�������
������	
� ����

�
�
�

���
�����������

���
���������������

����������
���	����

��������������

�������������

�������������

�

�

�

177

Ethernet - Transmitting & Receiving using DMA
RECEPTION

Figure 7-12 Receiving an Ethernet frame with DMA

F7-12(1) With each new received frame, the network device driver increments

BufDescPtrCur by 1 and wraps around the descriptor list as necessary

F7-12(2) The hardware applies the same logic to an internal descriptor pointer.

When a received frame is processed, the driver gets a pointer to a new data buffer and

updates the current descriptor address field. The previous buffer address is passed to the

protocol stack for processing. If a buffer pointer cannot be obtained, the existing pointer

remains in place and the frame is dropped.

��
�������

�
�
�

��
�����

�	�� ���

�������	
��
�

��������	
��
�
�� ���� �

������	
�������
������	
� ����

������	
�������
������	
� ����

������	
�������
������	
� ����

�
�
�

���
�����������

���
���������������

����������
���	����

��������������

�������������

�������������

�����������
���������������

�

�

178

Ethernet - Transmitting & Receiving using DMA
ISR HANDLER

When a frame is received, the DMA controller will generate an interrupt. The ISR handler

must signal the network interface. The network interface will automatically call the receive

function.

DMA are using a control data structure that indicates the transfer configuration. These data

structure are called descriptors and to be able to receive multiple packets at the same time,

we need multiple descriptors that we arrange in a list.

We use three pointers to manage and keep track of the Rx descriptors:

RxBufDescPtrStart This pointer doesn’t move, it always points to the first descriptor.

RxBufDescPtrCur This pointer must track the current descriptor which data is

ready to be processed.

RxBufDescPtrEnd This pointer doesn’t move, it always points to the last descriptor.

INITIALIZING DEVICE RECEPTION DESCRIPTORS

NetDev_Start() starts the network interface hardware by initializing the receive and transmit

descriptors, enabling the transmitter and receiver and starting and enabling the DMA.

Initialization the Rx DMA descriptors list can done in a sub-function NetDev_RxDescInit().
The memory needed by the descriptors must be reserved by the function NetDev_Init().
Initialization of the Rx descriptor list consist of setting the descriptors pointers of the

NET_DEV_DATA and fill all Receive descriptors with a Receive buffer.

The descriptors should be organized in a ring configuration. This means that each

descriptor contains a pointer to the next descriptor and the last descriptor's next pointer

refers to the first descriptor of the list.

You also have to initialize each descriptor. You must initialize descriptor field according to

the controller documentation. Note that the descriptor must be configured to be owned by

the DMA and not the software. Here is the pseudo code of the descriptor ring initialization:
179

Ethernet - Transmitting & Receiving using DMA
Listing 7-7 Descriptor Ring Initialization

L7-7(1) Initialize the descriptor pointer to the first Rx buffer descriptor of pdev_data.

L7-7(2) Initialize current descriptor pointer of pdev_data to the first Rx buffer

descriptor of pdev_data.

L7-7(3) Initialize last descriptor pointer of pdev_data to the last descriptor declared

using pointer arithmetic and the Rx descriptor number defined by RxDescNbr
in NET_DEV_CFG_ETHER.

L7-7(4) Repeat for each descriptor defined in .RxDescNbr in NET_DEV_CFG_ETHER.

L7-7(5) Initialize the description fields to their initial value as defined by the DMA

Descriptor's documentation in the device data sheet. There might be more than

a single field to define depending of the specifications of the DMA used (a field

describing the size of associated data buffer might be present and require to be

initialized to the length of the requested buffer area below.)

L7-7(6) Initialize the status bit of the descriptor to specify that it is owned by the DMA

engine (not by the software).

pdesc = (DEV_DESC *)pdev_data->RxBufDescPtrStart; (1)
pdev_data->RxBufDescPtrCur = (DEV_DESC *)pdesc; (2)
pdev_data->RxBufDescPtrEnd = (DEV_DESC *)pdesc + (pdev_cfg->RxDescNbr - 1); (3)
for (i = 0; i < pdev_cfg->RxDescNbr; i++) { (4)
 pdesc->Field = value; (5)
 pdesc->Status = ETH_DMA_RX_DESC_OWN; (6)
 pdesc->Buf = NetBuf_GetDataPtr((NET_IF *)pif, (7)
 (NET_TRANSACTION)NET_TRANSACTION_RX,
 (NET_BUF_SIZE)NET_IF_ETHER_FRAME_MAX_SIZE,
 (NET_BUF_SIZE)NET_IF_IX_RX,
 (NET_BUF_SIZE *)0,
 (NET_BUF_SIZE *)0,
 (NET_TYPE *)0,
 (NET_ERR *)perr);
 if (*perr != NET_BUF_ERR_NONE) { (8)
 return;
 }
 pdesc->Next = (DEV_DESC *)(pdesc + 1); (9)
 pdesc++; (10)
}
180

Ethernet - Transmitting & Receiving using DMA
L7-7(7) Call NetBuf_GetDataPtr() to get a buffer area and initialize the descriptor's

buffer start address to the address of the buffer area.

L7-7(8) If an error occurred during the allocation of a buffer area, return as it might

mean that there is an issue with the values declared in NET_DEV_CFG_ETHER
and the available device memory or heap size.

L7-7(9) Initialize the next descriptor location of the current descriptor to the next

descriptor using pointer arithmetic.

L7-7(10) Increment the descriptor using pointer arithmetics.

Once the Rx descriptor ring is ready, you have to configure controller register to enable the

controller reception. Controller's interrupt generation should be enabled for the following

events: reception of a packet with and without errors and completed transmission of a

packet with and without errors.

WHAT NEEDS TO BE DONE IN THE ISR FOR RECEPTION

NetDev_ISR_Handler() is the function called by the IF layer when a Ethernet related ISR is

generated and handled by the BSP layer. When Rx ISR occur, only

NetOS_IF_RxTaskSignal() has to be called. Nothing has to be done on

RxBufDescPtrCur. The complete receive process is delayed in order to have the fastest ISR

handler as possible. If an error occurred on RX, you can increment driver statistic into the

ISR handler or into NetDev_Rx(), it’s up to you to determine which of the cases is best. You

must always signal the core that a packet is received using NetOS_IF_RxTaskSignal(). If
you fail to notify the core for each packet, a buffer leak will occur and performance will

degrade. NetDev_Rx() will discard the packet and it will say to the μC/TCP-IP module that

the packet is received with an error.

MOVING BUFFERS FROM THE DEVICE TO THE TCP-IP STACK USING DMA

NetDev_Rx() is called by core once a NetOS_IF_RxTaskSignal() call has been made to

recover the received packet. If data received is valid, this function must replace the buffer of

the current descriptor with a free buffer. Also, the current descriptor must be restarted

(owned by the DMA) to be able to receive again. RxBufDescPtrCur must be moved to

point on the next descriptor. The sub-function NetDev_RxDescPtrCurInc() is called to

restart the current descriptor and to move the pointer to the next descriptor. If an error has

occurred, you have to set data and length pointers to 0 and return an error. If there is no
181

Ethernet - Transmitting & Receiving using DMA
free Rx buffer available, the packet must be discarded by leaving the current data buffer

assigned to the DMA, increment the current descriptor and return an error to the μC/TCP-IP

module. Here is a pseudo code of NetDev_Rx():

static void NetDev_Rx (NET_IF *pif,
 CPU_INT08U **p_data,
 CPU_INT16U *size,
 NET_ERR *perr)
{
 pdesc = (DEV_DESC *)pdev_data->RxBufDescPtrStart; (1)

 if (pdesc owned by DMA) { (2)
 *perr = NET_DEV_ERR_RX;
 *size = 0;
 *p_data = (CPU_INT08U *)0;
 return;
 }

 if (is Rx error) { (3)
 if needed, restart DMA;
 if needed, NetDev_RxDescPtrCurInc();
 *perr = NET_DEV_ERR_RX;
 *size = 0;
 *p_data = (CPU_INT08U *)0;
 return;
 }

 if (is Data length valid) { (4)
 if needed, NetDev_RxDescPtrCurInc();
 *perr = NET_DEV_ERR_INVALID_SIZE;
 *size = 0;
 *p_data = (CPU_INT08U *)0;
 return;
 }
182

Ethernet - Transmitting & Receiving using DMA
Listing 7-8 Packet Reception

L7-8(1) Obtain pointer to the next ready descriptor.

L7-8(2) If this descriptor is owned by the DMA (e.g., the DMA is currently receiving

data or hasn't started receiving data yet). The descriptor has to be owned by

the software to be processed. If owned by the DMA, set *perr to

NET_DEV_ERR_RX signaling that the interrupt that there was an error within the

reception. Set *size to 0, *p_data to (CPU_INT08U*)0 and return.

L7-8(3) If a reception error is reported in the descriptor set *perr to NET_DEV_ERR_RX
notifying that an error occured within the reception. Set *size to 0, *p_data to
(CPU_INT08U*)0 and return.

L7-8(4) If the frame length is either runt or overrun set *perr to

NET_DEV_ERR_INVALID_SIZE signaling that the size of the received frame is

invalid. Set *size to 0, *p_data to (CPU_INT08U*)0 and return.

L7-8(5) Once every error has been handled, acquire a new data buffer to replace the

one we're about to take from the descriptor. If no buffers are available set

*size to 0, *p_data to (CPU_INT08U*)0, increment pdev_data current

descriptor and return.

L7-8(6) Set *size to the value of the Length field of the current descriptor. This field

should specify how many bytes of data were received by the descriptor.

 pbuf_new = NetBuf_GetDataPtr(…, perr); (5)
 if (*perr != NET_BUF_ERR_NONE) {
 NetDev_RxDescPtrCurInc();
 *size = 0;
 *p_data = (CPU_INT08U *)0;
 return;
 }

 *size = pdesc->Length; (6)
 *p_data = (CPU_INT08U *)pdesc->Buf; (7)
 pdesc->Buf = pbuf_new; (8)
 NetDev_RxDescPtrCurInc(); (9)
 *perr = NET_DEV_ERR_NONE; (10)
}

183

Ethernet - Transmitting & Receiving using DMA
L7-8(7) Set *p_data to the value of the data buffer of the descriptor.

L7-8(8) Set the value of the descriptor’s data buffer to the newly allocated data area.

L7-8(9) Increment the current descriptor to the next descriptor.

L7-8(10) Set *perr to NET_DEV_ERR_NONE to notify that no errors were found.

The following is the pseudo code for NetDev_RxDescPtrCurInc():

Listing 7-9 Descriptor Increment

L7-9(1) Get current pdev_data current descriptor.

L7-9(2) Set pdev_data current descriptor to the next descriptor in the current one.

STOPPING THE RECEPTION OF PACKETS

NetDev_Stop() is called to shutdown a network interface hardware by disabling the

receiver and transmitter, disabling receive and transmit interrupts, free all receive descriptors

and deallocate all transmit buffers. When the interface is stopped, you must deallocate the

DMA descriptor ring. To do that, a sub-function is called NetDev_RxDescFreeAll() where

each descriptor’s buffer is freed and the DMA controller control is disabled:

Listing 7-10 Deallocation of Descriptor Ring

 pdesc = pdev_data->RxBufDescPtrCur; (1)
 pdev_data->RxBufDescPtrCur = pdesc->Next; (2)

pdesc = pdev_data->RxBufDescPtrStart; (1)
for (i = 0; i < pdev_cfg->RxDescNbr; i++) { (2)
 pdesc_data = (CPU_INT08U *)(pdesc->Addr); (3)
 NetBuf_FreeBufDataAreaRx(pif->Nbr, pdesc_data); (4)
 pdesc->Status = Not owned by the controller (5)
 pdesc++; (6)
}

184

Ethernet - Transmitting & Receiving using DMA
L7-10(1) Get pdev_data's first descriptor.

L7-10(2) For each descriptor defined in .RxDescNbr in NET_DEV_CFG_ETHER:

L7-10(3) Get the address of the descriptor's buffer.

L7-10(4) Deallocate the buffer area.

L7-10(5) Set the status of the descriptor to be owned by the software (to disable

reception on that descriptor).

L7-10(6) Increment the current descriptor using pointer arithmetic.

7-6-3 RECEPTION USING DMA WITH LISTS

Micrium provides an alternate method for executing DMA transfers: DMA with Lists. The

goal of this implementation is to reduce the number of controller errors (overrun, underrun,

etc.), and increase driver performance. The typical implementation of the DMA descriptor

initialization still applies here.

In order to keep the interrupt time short as possible, you cannot call the μC/TCP-IP module

to get a free buffer from within the ISR. In order manage buffers, you must maintain a list of

buffers within the device driver.

To implement the list method, create three lists: the Buffer List, the Ready List and the Free

List. The three lists contain nodes which are moved from one list to another. A node is a

memory space where you store pointers to the buffer address and the location of the next

node.

The device driver data NET_DEV_DATA must contain three pointers which point to the first

node of each list. The following is a description of the three lists:

Buffers List This list contains empty nodes. Once a node is filled with the location of a

free buffer, you must add this node to the Free List. If a node cannot be filled

with the location of a free buffer, or a buffer ready to be processed, you must

move the node back into the Buffers List.
185

Ethernet - Transmitting & Receiving using DMA
Ready List This list contains buffers which are ready to be processed (i.e., used by the

application). When no resources are available to fill a node because they are

occupied by the μC/TCP-IP module or by a DMA descriptor, the node must

be moved into Buffer List.

Free List This list contains nodes that point to free buffers. When a buffer is no longer

in use by the stack, a node from the Buffer List is moved to the Free List and

the pointer in that node set to the free buffer. When a pointer in a node in

the Free List is used to replace a pointer to a descriptor buffer, you must

move the node from the Free List to the Ready List.

Figure 7-13 Buffers in lists

Tx Descriptor List

Rx Descriptor List

Other Custom
Stat Variables
186

Ethernet - Transmitting & Receiving using DMA
ALLOCATION OF BUFFER LIST NODES

NetDev_Init() is called to allocate memory for the device DMA's descriptors, among other

things. You must reserve some memory for each node within the device driver initialization.

Since the device is not yet started after the initialization, and no resources are available for

the driver, all created nodes must be assigned to the Free List.

Listing Figure 7-13 shows the pseudo code for memory allocation for nodes, and list

initialization. These steps should be performed during the device initialization.

Listing 7-11 Descriptor List Initialization

L7-11(1) Initialize RxReadyListPtr, RxBufferListPtr and RxFreeListPtr of

pdev_data to (LIST_ITEM *)0.

L7-11(2) The initial number of LIST_ITEMs in RxFreeListPtr is calcuated as the

number of .RxBufLargeNbr minus .RxDescNbr. From the pool of Receive

buffers, only that number of buffers needs to be placed in the RxFreeListPtr
since the rest of the buffers are initially assigned to a descriptor.

L7-11(3) Allocate a LIST_ITEM object from the heap.

pdev_data->RxReadyListPtr = (LIST_ITEM *)0; (1)
pdev_data->RxBufferListPtr = (LIST_ITEM *)0;
pdev_data->RxFreeListPtr = (LIST_ITEM *)0;
cnt = pdev_cfg->RxBufLargeNbr - pdev_cfg->RxDescNbr; (2)
for (ix = 0; ix < cnt; ix++) {
 plist = (LIST_ITEM *)Mem_HeapAlloc((CPU_SIZE_T) sizeof(LIST_ITEM), (3)
 (CPU_SIZE_T) 4,
 (CPU_SIZE_T *)&reqd_octets,
 (LIB_ERR *)&lib_err);
 if (plist == (LIST_ITEM *)0) { (4)
 *perr = NET_DEV_ERR_MEM_ALLOC;
 return;
 }
 plist->Buffer = (void *)0; (5)
 plist->Len = 0;
 plist->Next = pdev_data->RxFreeListPtr; (6)
 pdev_data->RxFreeListPtr = plist; (7)
}

187

Ethernet - Transmitting & Receiving using DMA
L7-11(4) If an error occurred during the allocation of a LIST_ITEM set *perr to

NET_DEV_ERR_MEM_ALLOC to notify that there was an error during memory

allocation and then return.

L7-11(5) Set the .Buffer field to (void *)0 and the .Len field to 0 since no buffer is

associated with the list nodes yet.

L7-11(6) Set the .Next field of the list node to the current node of RxFreeListPtr

L7-11(7) Insert the newly allocated node to the single ended list of RxFreeListPtr.

Thus after the device initialization, all nodes are added into the Free List. The buffers and

the ready lists pointers are null.

INITIALIZATION OF BUFFER LIST NODES

NetDev_Start() is used to initialize the reception buffer list. Nodes in the Free List are

used to assign a buffer to each of the Receive descriptors, and then removed from the Free

List. Any nodes remaining in the Free List should be moved to the Buffer List. Nodes in the

Buffer List will be used to replace a descriptor buffer when the ISR handler signals that a

new packet has been received. Listing 7-12 shows pseudocode for the Buffer list

initialization:

Listing 7-12 Buffer List initialization

cnt = pdev_cfg->RxBufLargeNbr - pdev_cfg->RxDescNbr; (1)
for (i = 0; i < cnt; i++) {
 plist = pdev_data->RxFreeListPtr; (2)
 pdev_data->RxFreeListPtr = plist->Next;
 plist->Buffer = NetBuf_GetDataPtr(perr);
 if (*perr != NET_BUF_ERR_NONE) {
 plist->Next = pdev_data->RxFreeListPtr; (3)
 pdev_data->RxFreeListPtr = plist;
 break;
 }
 plist->Next = pdev_data->RxBufferListPtr; (4)
 pdev_data->RxBufferListPtr = plist;
}

188

Ethernet - Transmitting & Receiving using DMA
L7-12(1) Get the number of available Receive buffers to put into the .RxBufferListPtr.
Of the RxBufLargeNbr buffers, RxDescNbr will be assigned to Receive

descriptors; the rest will be put into the .RxBufferListPtr.

L7-12(2) Get the list element pointer from free list.

L7-12(3) Return the list element pointer to free list in case of error.

L7-12(4) Store the list element pointer on Buffer list.

Thus after the device start, all nodes should be added into the Buffer List. So the Free and

the Ready Lists should be null.

DEALLOCATION OF BUFFER LIST NODES

As with typical DMA implementation, you must remove the DMA descriptor ring and free

the buffers. Also, you must move all nodes into the Free List. Listing 7-12 shows

pseudocode for the node deallocation:

plist = pdev_data->RxBufferListPtr;
while (plist != (LIST_ITEM *)0) { (1)
 plist_next = plist->Next;
 pdesc_data = plist->Buffer;
 NetBuf_FreeBufDataAreaRx(pif->Nbr, pdesc_data); (2)
 plist->Buffer = (void *)0;
 plist->Len = 0;
 plist->Next = pdev_data->RxFreeListPtr; (3)
 pdev_data->RxFreeListPtr = plist;
 plist = plist_next;
}

189

Ethernet - Transmitting & Receiving using DMA
Listing 7-13 Descriptor and Buffer List deallocation

L7-13(1) Repeat deallocation process for the nodes in RxBufferListPtr the until the

.Next field of the node is null.

L7-13(2) Return data area to Receive data area pool.

L7-13(3) Remove the node from RxBufferListPtr.

L7-13(4) Set .RxBufferListPtr of pdev_data to null.

L7-13(5) Repeat deallocation process for the nodes in RxFreeListPtr until the .Next
field of the node is null.

L7-13(6) Return data area to Rx data area pool.

L7-13(7) Remove the node from RxFreeListPtr.

L7-13(8) Set .RxFreeListPtr of pdev_data to null.

pdev_data->RxBufferListPtr = (LIST_ITEM *)0; (4)
plist = pdev_data->RxReadyListPtr;
while (plist != (LIST_ITEM *)0) { (5)
 plist_next = plist->Next;
 pdesc_data = plist->Buffer;
 NetBuf_FreeBufDataAreaRx(pif->Nbr, pdesc_data); (6)
 plist->Buffer = (void *)0;
 plist->Len = 0;
 plist->Next = pdev_data->RxFreeListPtr; (7)
 pdev_data->RxFreeListPtr = plist;
 plist = plist_next;
}
pdev_data->RxReadyListPtr = (LIST_ITEM *)0; (8)
190

Ethernet - Transmitting & Receiving using DMA
BUFFER NODE PROCESSING DURING ISR

In order to process received packets, you must call the function NetDev_ISR_Handler().

If there are errors associated with the received packet, the packet must be discarded by

returning the control of the descriptor back to the Direct Memory Access Controller. If the

Buffer List is empty (meaning that there is no available buffer to exchange with a received

DMA buffer) the packet must also be discarded.

On the other hand, if a buffer is available in the Buffer List, you must replace the buffer

assigned to the DMAC with the available buffer. You must then move the received buffer

from the DMAC to the Ready List in order to be processed by the Receive task. We suggest

you to put the ISR Receive task in a separate sub-function. Note that you must call your

sub-function for each individual Receive descriptor that is owned by the software, since you

might receive only a single interrupt signal for a multiple DMA Receive completions.

Pseudo code of what should be put into the NetDev_ISR_Handler() is described below:

Listing 7-14 ISR Handling

L7-14(1) If the interrupt register indicates a completed reception, or a reception error,

proceed with handling of the interrupt.

L7-14(2) Obtain the pointer to the next ready descriptor.

if ((interrupt source == Receive) || (1)
 (interrupt source == Receive error)) {
 valid = DEF_TRUE;
 while (valid == DEF_TRUE) {
 pdesc = (DEV_DESC *)pdev_data->RxBufDescCurPtr; (2)

 if (pdesc->status indicates desc' is owned by soft.) { (3)
 valid = NetDev_ISR_Rx(pif, pdesc); (4)

 pdev_data->RxBufDescCurPtr = pdesc->next; (5)
 } else {
 valid = DEF_FALSE;
 }
 }
}

191

Ethernet - Transmitting & Receiving using DMA
L7-14(3) The descriptor is ready to be processed (reception is complete and descriptor is

owned by the software).

L7-14(4) Call NetDev_ISR_Rx() to execute the buffer, and list element manipulation

required to exchange the buffer of the descriptor with an available buffer.

L7-14(5) Move to the next descriptor in order to repeat the process with that descriptor,

if it is owned by the software.

Your sub-function (NetDev_ISR_Rx()) must replace the current descriptor buffer with a

buffer from a node into the Buffer List, and then signal the μC/TCP-IP module to process

received packets and refill the Buffer list. You must also make sure that the Buffer List is not

null (i.e., there is a buffer available). If no buffers are available, you must discard the packet.

The pseudo code for the Receive ISR sub-function is described below:

static CPU_BOOLEAN NetDev_ISR_Rx (NET_IF *pif,
 DEV_DESC *pdesc)
{
 NET_DEV_DATA *pdev_data;
 LIST_ITEM *plist_buf;
 LIST_ITEM *plist_ready;
 void *p_buf;
 CPU_BOOLEAN valid;
 CPU_BOOLEAN signal;
 NET_ERR err;
 pdev_data = (NET_DEV_DATA *)pif->Dev_Data; (1)
 valid = DEF_TRUE;
 signal = DEF_FALSE;

 if (Frame error) { (2)
 valid = DEF_FALSE;
 }
 if (Frame data spans over multiple buffers) { (3)
 valid = DEF_FALSE;
 }

 if (pdev_data->RxBufferListPtr == (LIST_ITEM *)0) { (4)
 valid = DEF_FALSE;
 signal = DEF_TRUE;
 }
192

Ethernet - Transmitting & Receiving using DMA
Listing 7-15 Rx ISR Handling

L7-15(1) Obtain pointer to NET_DEV_DATA object.

L7-15(2) If there is an error with the received frame, discard it.

L7-15(3) If the frame doesn't hold in a single buffer, discard it.

L7-15(4) If there is no node in RxBufferListPtr it means that there is no buffer to

exchange with the descriptor's buffer and the received frame must be

discarded.

 Clear Interrupt source;
 if (valid == DEF_TRUE) {
 plist_buf = pdev_data->RxBufferListPtr; (5)
 pdev_data->RxBufferListPtr = plist_buf->Next;
 p_buf = plist_buf->Buffer;
 plist_buf->Buffer = pdesc->p_buf;
 plist_buf->Len = pdesc->size;
 plist_buf->Next = (LIST_ITEM *)0;
 if (pdev_data->RxReadyListPtr == (LIST_ITEM *)0) { (6)
 pdev_data->RxReadyListPtr = plist_buf;
 } else {
 plist_ready = pdev_data->RxReadyListPtr;
 while (plist_ready != (LIST_ITEM *)0) { (7)
 if (plist_ready->Next == (LIST_ITEM *)0) {
 break;
 }
 plist_ready = plist_ready->Next;
 }
 plist_ready->Next = plist_buf;
 }
 pdesc->p_buf = p_buf; (8)
 pdesc->size = 0;
 }

 if ((valid == DEF_TRUE) ||
 (signal == DEF_TRUE)) {
 NetOS_IF_RxTaskSignal(pif->Nbr, &err); (9)
 }
 Reset Descriptor;
 return (valid);
}

193

Ethernet - Transmitting & Receiving using DMA
L7-15(5) Remove a node from the RxBufferListPtr. Exchange the buffer of that node

with the buffer of the descriptor.

L7-15(6) If the RxReadyListPtr is empty, move the node removed from

RxBufferListPtr to the RxReadyListPtr.

L7-15(7) If the RxReadyListPtr is not empty, move the node removed from

RxBufferListPtr to the end of RxReadyListPtr.

L7-15(8) Assign the buffer removed from RxBufferListPtr to the descriptor.

L7-15(9) Signal the Receive task that there is a new frame available.

MOVING THE NODE'S BUFFER TO THE TCP-IP STACK

NetDev_Rx() is called by the Receive task of the μC/TCP-IP module to return a buffer to the

application if there is one that is available. This function must return the oldest packet

received which should be added into the Ready list by the ISR handler. If the list is empty,

you must return an error. If the list is not empty, you must set the p_data pointer argument

to the current node buffer, set the node buffer to null and move the node to the Free list.

Then you have to try to move Free list node to the Buffer list. To do so, you must to get a

free buffer from the μC/TCP-IP module, fill a node buffer from the Free List and move the

node to the Buffer List.

The following is the pseudo code describing this process:

if ((interrupt source == Receive) ||
static void NetDev_Rx (NET_IF *pif,
 CPU_INT08U **p_data,
 CPU_INT16U *size,
 NET_ERR *perr)
{
 NET_DEV_DATA *pdev_data;
 NET_DEV_CFG_ETHER *pdev_cfg;
 LIST_ITEM *plist;
 CPU_INT08U *pbuf;
 CPU_BOOLEAN valid;
 NET_ERR net_err;
 CPU_SR_ALLOC();
 pdev_cfg = (NET_DEV_CFG_ETHER *)pif->Dev_Cfg;
 pdev_data = (NET_DEV_DATA *)pif->Dev_Data;
194

Ethernet - Transmitting & Receiving using DMA
Listing 7-16 Packet Reception

 CPU_CRITICAL_ENTER(); (1)
 plist = pdev_data->RxReadyListPtr; (2)
 if (plist != (LIST_ITEM *)0) {
 pdev_data->RxReadyListPtr = plist->Next;
 *size = plist->Len; (3)
 *p_data = (CPU_INT08U *)plist->Buffer; (4)
 plist->Len = 0;
 plist->Buffer = (void *)0;
 (5)
 plist->Next = pdev_data->RxFreeListPtr;
 pdev_data->RxFreeListPtr = plist;
 CPU_CRITICAL_EXIT(); (6)

 *perr = NET_DEV_ERR_NONE;
 } else {
 CPU_CRITICAL_EXIT(); (7)

 *size = (CPU_INT16U)0;
 *p_data = (CPU_INT08U *)0;

 *perr = NET_DEV_ERR_RX;
 }
 valid = DEF_TRUE;
 while (valid == DEF_TRUE) {
 pbuf = NetBuf_GetDataPtr((NET_IF *)pif,
 (NET_TRANSACTION)NET_TRANSACTION_RX,
 (NET_ERR *)&net_err);
 if (net_err != NET_BUF_ERR_NONE) {
 valid = DEF_FALSE;
 } else {
 CPU_CRITICAL_ENTER(); (1)
 plist = pdev_data->RxFreeListPtr;
 if (plist != (LIST_ITEM *)0) {
 pdev_data->RxFreeListPtr = plist->Next;
 plist->Buffer = pbuf;
 plist->Next = pdev_data->RxBufferListPtr;
 pdev_data->RxBufferListPtr = plist;
 CPU_CRITICAL_EXIT();
 } else {
 CPU_CRITICAL_EXIT();
 valid = DEF_FALSE;

 NetBuf_FreeBufDataAreaRx(pif->Nbr, pbuf); (8)
 }
 }
 }
}

195

Ethernet - Transmitting & Receiving using DMA
L7-16(1) Disable interrupts to alter shared data.

L7-16(2) Get the next ready buffer.

L7-16(3) Return the size of the received frame.

L7-16(4) Return a pointer to the received data area.

L7-16(5) Move the list header into free list.

L7-16(6) Restore interrupts.

L7-16(7) Restore interrupts and mark the received frame as invalid.

L7-16(8) Return data to received data area pool.

7-6-4 TRANSMISSION USING DMA

When μC/TCP-IP has a packet to transmit, it updates an available descriptor in memory and

then writes to a DMA register to start the stalled DMA channel. On transmissions, it is

simpler to setup the descriptors. The number and length of the packets to transmit is well

defined. This information determines the number of transmit descriptors required and the

number of bytes to transmit on each descriptor. The transmit descriptor list is often used in

a non-circular fashion. The initial descriptors in the descriptor list are setup for transmission,

when the transmission is completed they are cleared, and the process starts over in the next

transmission.

INITIALIZATION

Similarly to the receive descriptors, the Network Device Driver should allocate a memory

block for all transmit buffers and descriptors shown in Figure 7-9.
196

Ethernet - Transmitting & Receiving using DMA
Figure 7-14 Transmission descriptor pointers initialization

F7-14(1) The Network Device Driver must allocate a list of descriptors and configure

each address field to point to a null location.

F7-14(2) The Network Device Driver can initialize three pointers. One to track the

current descriptor which is expected to contain the next buffer to transmit. A

second points to the beginning of the descriptor list. The last pointer may point

to the last descriptor in the list or depending on the implementation, it can also

point to the last descriptor to transmit. Another method, depending on the

DMA controller used, is to configure a parameter containing the number of

descriptors to transmit in one of the DMA controller registers.

Finally, the DMA controller is initialized and hardware is informed of the descriptor list

starting address.

��
�������

�
�
�

��
����� �������	
��
�

������	
�������
������	
� ����

������	
�������
������	
� ����

������	
�������
������	
� ����

�
�
�

���
�����������

���
���������������

����������
���	����

��������������

�������������

�������������

�

�

�

197

Ethernet - Transmitting & Receiving using DMA
TRANSMISSION

Figure 7-15 Moving a buffer to the Ethernet controller with DMA

F7-15(1) With each new transmit buffer, the current descriptor address is set to the

buffer address.

F7-15(2) DMA transfer is enabled.

F7-15(3) The current descriptor pointer is set to the next descriptor for the next

transmission.

If no descriptor is free an error should be returned to the Network Protocol stack.

��
�������

�
�
�

��
����� �������	
��
�

������	
�������
������	
� ����

������	
�������
������	
� ����

������	
�������
������	
� ����

�
�
�

���
�����������

���
���������������

����������
���	����

��������������

�������������

�������������

�

�

198

Ethernet - Transmitting & Receiving using DMA
ISR HANDLER

When the ISR handler receives a DMA interrupt after the transmission completion, a list of

descriptors for the completed transmit buffers is determined. Each completed transmit

buffer address is passed to the Network Transmit De-allocation task, where the

correspondent buffer gets released if it is not referenced by any other part of the Network

stack. The Network interface is also signaled for each one of the completed transmit buffers

to allow the Network stack to continue transmission of subsequent packets. To complete the

operation, the transmit descriptors are cleared to make room for subsequent transmissions.

Transmission of packets can also benefit from a DMA implementation. Similar to the

reception of packets, the DMA can be used to move the packet data from the application

memory space to the memory location of the Ethernet controller. By using the DMA, the

CPU can work on other tasks and driver performances can be increased.

DESCRIPTION OF THE TRANSMISSION POINTERS

We use three pointers to manage the transmission of buffers:

TxBufDescPtrStart This pointer points to the first descriptor and should not take

any other value.

TxBufDescPtrComp This pointer tracks the current descriptor which completed its

transmission.

TxBufDescPtrCur This pointer tracks the current descriptor available for

transmission.

INITIALIZATION OF THE TRANSMISSION DESCRIPTORS

The function NetDev_Start() initializes the Transmit buffer descriptor pointers and the

DMA Transmit descriptors. The sub-function NetDev_TxDescInit() initializes the Transmit

descriptors ring. The descriptors must not filled with buffers and they must be owned by the

software. Your code should activate the current Transmit descriptor only when

NetDev_Tx() is called.
199

Ethernet - Transmitting & Receiving using DMA
The following is the pseudo code for this initialization:

Listing 7-17 Descriptor Initialization

L7-17(1) Initialize descriptor, .TxBufDescPtrComp and .TxBufDescPtrCur to

.TxBufDescPtrStart of pdev_data

L7-17(2) For every .TxDescNbr in pdev_cfg: Set the Transmit Buffer address to null, set

the Len field to 0, and set the status to “not started” and “owned by the

software”. Then set the current descriptor's next descriptor to the location of

the next descriptor (using pointer arithmetic).

L7-17(3) Increment descriptor using pointer arithmetic.

L7-17(4) Decrement descriptor to compensate for over-incrementation in the while loop.

L7-17(5) Set the .Next field of the descriptor to .TxBufDescPtrStart.

pdesc = (DEV_DESC *)pdev_data->TxBufDescPtrStart; (1)
pdev_data->TxBufDescPtrComp = (DEV_DESC *)pdev_data->TxBufDescPtrStart;
pdev_data->TxBufDescPtrCur = (DEV_DESC *)pdev_data->TxBufDescPtrStart;
for (i = 0; i < pdev_cfg->TxDescNbr; i++) { (2)
 pdesc->Addr = 0;
 pdesc->Len = 0;
 pdesc->Status = (not started) & (owned by software)
 pdesc->Next = (DEV_DESC *)(pdesc + 1);
 pdesc++; (3)
}
pdesc--; (4)
pdesc->Next = (DEV_DESC *)pdev_data->TxBufDescPtrStart; (5)
200

Ethernet - Transmitting & Receiving using DMA
MOVING PACKETS FROM THE TCP-IP STACK TO THE NETWORK DEVICE

The function NetDev_Tx() is called by the μC/TCP-IP module when a packet must be

transmitted over the network. This function resets and activates a DMA Transmit descriptor

for the packet to transmit. It must first make sure that a Transmit descriptor is available to

initialize a transmission. Once the buffer has been assigned to the current Transmit

descriptor, an interrupt will be generated to signal that the packet has been transmitted.

The following is the pseudo code for the NetDev_Tx() function.

Listing 7-18 Packet Transmission

L7-18(1) If current Transmit Descriptor is still owned by the DMA engine, set *perr to
NET_DEV_ERR_TX_BUSY indicating that the DMA engine is still occupied at

transmitting that frame.

L7-18(2) Configure the descriptor with the transmit data area address.

static void NetDev_Tx (NET_IF *pif,
 CPU_INT08U *p_data,
 CPU_INT16U size,
 NET_ERR *perr)
{
 NET_DEV_CFG_ETHER *pdev_cfg;
 NET_DEV_DATA *pdev_data;
 NET_DEV *pdev;
 DEV_DESC *pdesc;
 pdev_cfg = (NET_DEV_CFG_ETHER *)pif->Dev_Cfg;
 pdev_data = (NET_DEV_DATA *)pif->Dev_Data;
 pdev = (NET_DEV *)pdev_cfg->BaseAddr;
 pdesc = (DEV_DESC *)pdev_data->TxBufDescPtrCur;
 if ((pdesc->Status & Hardware) != 0) { (1)
 *perr = NET_DEV_ERR_TX_BUSY;
 return;
 }
 pdesc->Addr = p_data; (2)
 pdesc->Len = size; (3)

 pdesc->Status = Hardware; (4)
 pdev->REGISTER = Inform harware that a Tx desc has been made avail;
 pdev_data->TxBufDescPtrCur = pdesc->Next; (5)

 *perr = NET_DEV_ERR_NONE;
}
201

Ethernet - Transmitting & Receiving using DMA
L7-18(3) Configure the descriptor frame length.

L7-18(4) Give the descriptor ownership to hardware.

L7-18(5) Move the pointer of the current transmit descriptor to the next one.

DEALLOCATING PACKETS AFTER TRANSMISSION

NetDev_ISR_Handler() is called when the transmission is completed. Within the ISR

handler, you must signal the μC/TCP-IP module for each packet transmitted successfully.

Figure 7-16 ISR handling

L7-18(6) Record the current state of the interrupt register.

L7-18(7) Verify if there is a transmission interrupt triggered.

L7-18(8) Cycle through the Transmit descriptor while the working descriptor is not

pointing on .TxBufFescPtrCur and that the working descriptor pointer is

owned by the software (transmission done).

It is possible that some packets may be transmitted or received during the

ISR handler. As a result, sometimes only one ISR is generated for multiple

packets transmitted. You must make sure that all descriptors not owned by

the hardware and completed have been signaled the μC/TCP-IP module.

 int_status = pdev->REGISTER; (1)

 clear active int;
 if ((int_status & TX_INTERRUPT) > 0) { (2)

 while(p_desc != TxBufDescPtrCur ||
 pdev->REGISTER == Owned by software) { (3)
 pdesc = pdev_data->TxBufDescPtrComp;
 pdev_data->TxBufDescPtrComp = pdesc->Next;
 NetOS_IF_TxDeallocTaskPost(pdesc->Addr, &err);
 NetOS_Dev_TxRdySignal(pif->Nbr); (4)
 }
 pdesc = pdev_data->TxBufDescPtrComp;
 pdev_data->TxBufDescPtrComp = pdesc->Next; (5)
 }
202

Ethernet - Transmitting & Receiving using DMA
L7-18(9) Deallocate the transmission buffer used by the descriptor.

L7-18(10) Signal NetIF that the Transmit resources are now available.

L7-18(11) Move the .TxBufDescPtrComp descriptor pointer to the .Next one of that

descriptor.

DEALLOCATING THE TRANSMIT BUFFERS

NetDev_Stop() is called to free the receive descriptors ring and to deallocate all transmit

buffers. To do that, a sub-function is called NetDev_TxDescFreeAll() where each

descriptor’s buffer is freed:

Listing 7-19 Transmit descriptor deallocation

L7-19(1) Set the current pointer descriptor to .TxBufDescPtrStart of NET_DEV_DATA.

L7-19(2) For each descriptor defined in the configuration, deallocate the network buffer

associated with the descriptor.

L7-19(3) Any error returned by NetOS_IF_TxDeallocTaskPost() should be ignored

since we are doing a best effort to deallocate the buffer and carry on with the

rest of the device stopping procedure.

pdesc = pdev_data->TxBufDescPtrStart; (1)
for (i = 0; i < pdev_cfg->TxDescNbr; i++) {
 NetOS_IF_TxDeallocTaskPost((CPU_INT08U *)pdesc->Addr, &err); (2)
 (void)&err; (3)
 pdesc++;
}

203

Ethernet - Transmitting and Receiving using Memory Copy
7-7 ETHERNET - TRANSMITTING AND RECEIVING USING
MEMORY COPY

7-7-1 RECEPTION USING MEMORY COPY

On some devices, the MAC is not part of processor peripherals, and is connected through a

serial or a parallel communication scheme. You will have to create specific data transfer

functions for writing and reading the data structures of the MAC.

PROCESSING RECEPTION BUFFERS IN THE ISR

The following a list of the actions that must be performed in NetDev_ISR_Handler() to
receive packets using Memory Copy.

■ Read MAC Status Register

■ Handle Receive ISR:

■ Signal Net IF Receive task

■ Clear Interrupt

■ Handle any other reported interrupts by MAC controller.

Listing 7-20 shows a template for the NetDev_ISR_Handle() function:
204

Ethernet - Transmitting and Receiving using Memory Copy
Listing 7-20 ISR Handler function template

L7-20(1) Prevent “variable unused” compiler warning.

L7-20(2) Obtain pointer to the device configuration structure.

L7-20(3) Obtain pointer to device data area.

static void NetDev_ISR_Handler (NET_IF *pif,
 NET_DEV_ISR_TYPE type)
{
 NET_DEV_CFG_ETHER *pdev_cfg;
 NET_DEV_DATA *pdev_data;
 NET_DEV *pdev;
 CPU_DATA reg_val;
 CPU_INT08U *p_data;
 NET_ERR err;
 (void)&type; (1)
 pdev_cfg = (NET_DEV_CFG_ETHER *)pif->Dev_Cfg; (2)
 pdev_data = (NET_DEV_DATA *)pif->Dev_Data; (3)
 pdev = (NET_DEV *)pdev_cfg->BaseAddr; (4)
 reg_val = pdev->ISR; (5)
 if ((reg_val & RX_ISR_EVENT_MSK) > 0) { (6)
 NetOS_IF_RxTaskSignal(pif->Nbr, &err); (7)
 switch (err) {
 case NET_IF_ERR_NONE:
 No error during signalling.
 break;
 case NET_IF_ERR_RX_Q_FULL:
 case NET_IF_ERR_RX_Q_SIGNAL_FAULT:
 default:
 An error occurred during signalling.
 break;
 }
 pdev->ISR |= RX_ISR_EVENT_MSK; (8)
 }
 (9)
 if ((reg_val & TX_ISR_EVENT_MSK) > 0) {
 (10)
 p_data = (CPU_INT08U *)pdev_data->TxBufCompPtr;
 NetOS_IF_TxDeallocTaskPost(p_data, &err);
 NetOS_Dev_TxRdySignal(pif->Nbr); (11)
 pdev->ISR |= TX_ISR_EVENT_MSK; (12)
 }
 pdev->ISR |= UNHANDLED_ISR_EVENT_MASK; (13)
}

205

Ethernet - Transmitting and Receiving using Memory Copy
L7-20(4) Overlay device register structure on top of device base address.

L7-20(5) Determine interrupt type.

L7-20(6) Handle reception interrupts.

L7-20(7) Signal NetIF reception queue task for each new ready descriptor.

L7-20(8) Clear device’s reception interrupt event flag.

L7-20(9) Handle transmission interrupts.

L7-20(10) Increment transmission packet counter.

L7-20(11) Signal NetIF that transmission resources are now available.

L7-20(12) Clear device’s transmission interrupt event flag.

L7-20(13) Clear unhandled interrupt event flag.

MOVING BUFFERS FROM THE DEVICE TO THE TCP-IP STACK USING
MEMORY COPY

The following a list of the actions that must be performed in NetDev_Rx() to receive

packets using Memory Copy.

■ Disable interrupts

■ Read the length of the received frame

■ Obtain pointer to new data area

■ Copy frame to new data area

■ Set return values. Pointer to received data area and size

■ Re-Enable interrupts

■ Check for additional ready frames, and signal Net IF receive task
206

Ethernet - Transmitting and Receiving using Memory Copy
Listing 7-21 shows a template for the NetDev_Rx() function:

static void NetDev_Rx (NET_IF *pif,
 CPU_INT08U **p_data,
 CPU_INT16U *size,
 NET_ERR *perr)
{
 NET_DEV_CFG_ETHER *pdev_cfg;
 NET_DEV_DATA *pdev_data;
 NET_DEV *pdev;
 CPU_INT08U *pbuf_new;
 CPU_INT16S length;
 CPU_INT16U cnt;
 CPU_INT16U i;
 pdev_cfg = (NET_DEV_CFG_ETHER *)pif->Dev_Cfg; (1)
 pdev_data = (NET_DEV_DATA *)pif->Dev_Data; (2)
 pdev = (NET_DEV *)pdev_cfg->BaseAddr; (3)

 if ((pdev->RSTAT & RX_STATUS_ERR_MSK) > 0) { (4)
 *size = (CPU_INT16U)0;
 *p_data = (CPU_INT08U *)0;
 *perr = (NET_ERR)NET_DEV_ERR_RX;
 return;
 }

 length = (pdev->STATUS & RX_STATUS_SIZE_MSK) - NET_IF_ETHER_FRAME_CRC_SIZE; (5)
 if (length < NET_IF_ETHER_FRAME_MIN_SIZE) {
 *size = (CPU_INT16U)0;
 *p_data = (CPU_INT08U *)0;
 *perr = (NET_ERR)NET_DEV_ERR_INVALID_SIZE;
 return;
 }

 pbuf_new = NetBuf_GetDataPtr((NET_IF *)pif, (6)
 (NET_TRANSACTION)NET_TRANSACTION_RX,
#if (NET_VERSION >= 21000u)
 (NET_BUF_SIZE)NET_IF_ETHER_FRAME_MAX_SIZE,
 (NET_BUF_SIZE)NET_IF_IX_RX,
 (NET_BUF_SIZE *)0,
#else
 (NET_BUF_SIZE)pdev_cfg->RxBufLargeSize,
 (NET_BUF_SIZE)0u,
#endif
 (NET_BUF_SIZE *)0,
 (NET_TYPE *)0,
 (NET_ERR *)perr);
207

Ethernet - Transmitting and Receiving using Memory Copy
Listing 7-21 NetDev_Rx() function template

F7-16(1) Obtain pointer to the device configuration structure.

F7-16(2) Obtain pointer to device data area.

F7-16(3) Overlay device register structure on top of device base address.

F7-16(4) If the frame contains reception errors, discard the frame by setting *size to 0,

*p_data to null. Set *perr to NET_DEV_ERR_RX to indicate a reception error.

F7-16(5) If frame is a runt, discard the frame.

F7-16(6) Request an empty buffer.

F7-16(7) If unable to get a buffer, discard the frame.

F7-16(8) Return the size of the received frame.

F7-16(9) Determine the number of device memory or FIFO reads that are required to

complete the memory copy.

F7-16(10) Read data from device.

F7-16(11) Return a pointer to the received data.

 if (*perr != NET_BUF_ERR_NONE) { (7)
 *size = (CPU_INT16U)0;
 *p_data = (CPU_INT08U *)0;
 return;
 }

 *size = length; (8)
 cnt = length / pdev_cfg->DataBusSizeNbrBits; (9)

 for (i = 0; i < cnt; i++) {
 Read data from device using Memcopy. (10)
 }

 *p_data = pbuf_new; (11)
 *perr = NET_DEV_ERR_NONE;
}

208

Ethernet - Transmitting and Receiving using Memory Copy
7-7-2 TRANSMISSION USING MEMORY COPY

The following a list of the actions that must be done in NetDev_Tx() in order to implement

transmission using Memory Copy:

■ Disable interrupts.

■ Prepare device to receive the transmit frame in memory.

■ Copy frame to transmit to MAC buffer.

■ If no frames are queued for transmission, issue a transmission request to the MAC.

■ Update the device’s list of transmit pointers

■ Re-enable interrupts

Listing 7-22 shows a template for the NetDev_Tx() function:

Listing 7-22 NetDev_Tx() function template

static void NetDev_Tx (NET_IF *pif,
 CPU_INT08U *p_data,
 CPU_INT16U size,
 NET_ERR *perr)
{
 NET_DEV_CFG_ETHER *pdev_cfg;
 NET_DEV_DATA *pdev_data;
 NET_DEV *pdev;
 CPU_INT16U cnt;
 CPU_INT16U i;
 pdev_cfg = (NET_DEV_CFG_ETHER *)pif->Dev_Cfg; (1)
 pdev_data = (NET_DEV_DATA *)pif->Dev_Data; (2)
 pdev = (NET_DEV *)pdev_cfg->BaseAddr; (3)
 if ((pdev->STATUS & TX_STATUS_BUSY) > 0) { (4)
 *perr = NET_DEV_ERR_TX_BUSY;
 return;
 }
 cnt = size / pdev_cfg->DataBusSizeNbrBits; (5)
 for (i = 0; i < cnt; i++) {
 Copy data to device using Memcopy (6)
 }
 pdev->CTRL = 1; (7)
 pdev_data->TxBufCompPtr = p_data;
}

209

Ethernet - Transmitting and Receiving using Memory Copy
L7-22(1) Obtain pointer to the device configuration structure.

L7-22(2) Obtain pointer to device data area.

L7-22(3) Overlay device register structure on top of the device base address.

L7-22(4) Check if the device is ready to transmit.

L7-22(5) Determine the number of device memory or FIFO writes that are required to

complete the transfer.

L7-22(6) Copy data to device using memory copy.

L7-22(7) Initiate transmission of the packet.

PROCESSING TRANSMISSION BUFFER IN THE ISR

The following is a list of actions that must be performed in NetDev_ISR_Handler() to

transmit packets using Memory Copy.

■ Setup next frame to transmit if any

■ Signal already transmitted frame for deallocation

■ Signal that Transmit resources have become available

■ Clear interrupt

For the template of NetDev_ISR_Handler() refer to the template in Listing 7-20 on

page 205.
210

Wireless Layers Interaction
7-8 WIRELESS LAYERS INTERACTION

This sections that follow describe the interactions between the IF layer, the wireless device

driver API functions, the BSP API functions and the Wireless Manager API functions. Since

the device driver is made of not only logic but also from interactions with the parts on the

board, you'll need to understand the calls made to the these layers of the μC/TCP-IP module

and to the CPU and board-dependent layers.

Figure 7-17 shows the logical path between the Wireless Manager layer, BSP APIs functions

and the device driver through the function calls and interruptions.

Figure 7-17 Wireless Manager, device driver & BSP interactions

net_wifi_mgr.c/.h

NetWiFiMgr_Init()

NetWiFiMgr_Start()

NetWiFiMgr_Stop()

NetWiFiMgr_AP_Scan()

NetWiFiMgr_AP_Join()

NetWiFiMgr_AP_Leave()

NetWiFiMgr_IO_Ctrl()

NetWiFiMgr_Mgmt()

NetWiFiMgr_Signal()

net_dev_<controller>.c/.h

NetDev_Init()

NetDev_Start()

NetDev_Stop()

NetDev_Rx()

NetDev_Tx()

NetDev_AddrMulticastAdd()

NetDev_AddrMulticastRemove()

NetDev_ISR_Handler()

NetDev_MgmtDemux()

NetDev_MgmtExecuteCmd()

NetDev_MgmtProcessResp()

μC/TCP-IP
Core

IF

Init()

Start()

Stop()

Rx()

Tx()

AddrMulticastAdd()

AddrMulticastRemove

ISR_Handler

Init()

Start()

Stop()

Scan()

Join()

Leave()

IO_Ctrl()

Signal()

Mgmt()

MgmrProcessResp()

NetBuf_GetDataPtr()

NetOS_IF_TxDeallocTaskPost() |
NetOS_Dev_TxRdySignal() |

NetOS_IF_RxTaskSignal()

NetIF_ISR_Handler()

MgmtExecureCmd()

net_bsp.c/.h

NetDev_WiFi_Start()

NetDev_WiFi_Stop()

NetDev_WiFi_CfgGPIO()

NetDev_WiFi_CfgIntCtrl()

NetDev_WiFi_IntCtrl()

NetDev_WiFi_SPI_Init()

NetDev_WiFi_SPI_Lock()

NetDev_WiFi_SPI_Unlock()

NetDev_WiFi_SPI_WrRd()

NetDev_WiFi_SPI_ChipSelEn()

NetDev_WiFi_SPI_ChipSelDis()

NetDev_WiFi_SPI_Cfg()

NetDev_WiFi_ISR_Handler()

ISR
211

Wireless Manager API Implementation
7-9 WIRELESS MANAGER API IMPLEMENTATION

μC/TCP-IP supports only wireless devices which include an integrated wireless supplicant

(i.e., the client-side software that performs scan and login requests). This kind of hardware

requires to send management command to device to accomplish some operation such as

scan, join, set MAC address, etc. Some of these management command may take a while to

be completed. For those command most of wireless device return the command result via a

management frame which must be received like a packet. So, the Wireless Manager must

provide mechanisms to send management commands, and then return once the

management command is completed.

The Wireless Manager API should be implemented as follows:

Listing 7-23 Wireless Manager

L7-23(1) Wireless Manager initialization function pointer

L7-23(2) Wireless Manager start function pointer

L7-23(3) Wireless Manager stop function pointer

L7-23(4) Wireless Manager access point scan pointer

L7-23(5) Wireless Manager access point join pointer

L7-23(6) Wireless Manager access point leave pointer

L7-23(7) Wireless Manager IO control pointer

const NET_WIFI_MGR_API NetWiFiMgr_API_Generic = {
 &NetWiFiMgr_Init, (1)
 &NetWiFiMgr_Start, (2)
 &NetWiFiMgr_Stop, (3)
 &NetWiFiMgr_AP_Scan, (4)
 &NetWiFiMgr_AP_Join, (5)
 &NetWiFiMgr_AP_Leave, (6)
 &NetWiFiMgr_IO_Ctrl, (7)
 &NetWiFiMgr_Mgmt, (8)
 &NetWiFiMgr_Signal (9)
 };
212

Wireless Manager API Implementation
L7-23(8) Wireless Manager device driver management pointer

L7-23(9) Wireless Manager signal response signal pointer

μC/TCP-IP provides code that is compatible with most wireless device that embed the

wireless supplicant. However, extended functionality must be implemented on a per

wireless device basis. If additional functionality is required, it may be necessary to create an

application specific Wireless Manager.

Note: It is the Wireless Manager developers’ responsibility to ensure that all of the functions

listed within the API are properly implemented and that the order of the functions within

the API structure is correct.

This sections that follow describe the interactions between the device driver and the

Wireless Manager layer provided with μC/TCP-IP.

Figure 7-18 Interactions between the device driver and the Wireless Manager layer

IF WiFi Device

WiFi Manager

NetIF_WiFi_Rx

NetDev_MgmtDemux

NetWiFiMgr_Signal

NetWiFiMgr_MgmtHandler NetDev_MgmtExecuteCmd

NetDev_MgmtProcessRespp_ctx

p_ctx

IF
NetDev_RxNetIF_RxPkt

NetIF_WiFi_RxPktHandler
IF 802x

NetIF_WiFi_RxMgmtFrameHandlerFrameType

NetIF_802x_Rx

NetIF_WiFi_Scan

NetIF_WiFi_Join

NetIF_WiFi_CreateAdhoc

NetIF_WiFi_Leave

NetWiFiMgr_AP_Join

NetWiFiMgr_AP_Scan

NetWiFiMgr_AP_Leave

NetWiFiMgr_Mgmt

NetWiFiMgr_IO_Ctrl

NetDev_Start

NetDev_Stop

NetIF_WiFi_IO_CtrlHandlerNetIF_IO_CtrlHandler

OS

NetOS_WiFiMgr_RespSignal

NetOS_WiFiMgr_RespWait

ctx.WaitResp
ctx.WaitRespTimeout_ms

6

8

9

7

11

10

12

3
2

4

1

5

213

Wireless Manager API Implementation
F7-18(1) All management functionality present in the Wireless Manager API uses a

simple state machine that uses a state machine context set and updated by the

device driver. The state machine context contains some fields use by the state

machine to know what it should be done after the call. Basically, the state

machine is implemented in NetWiFiMgr_MgmtHadler() that calls

NetDev_MgmtExecuteCmd() to start and execute the management command,

following the state machine context, the state machine can wait to receive the

response and then calls NetDev_MgmtProcessResp() to analyze the response

data and rearrange the data.

F7-18(2) NetDev_MgmtExecuteCmd() can executes a management command directly if

it doesn’t require to received a response or just initialize the management

command when a response is needed to complete the command. The function

let know to the state machine of what should be done after by setting the state

machine context that is passed as pointer argument to the function.

F7-18(3) If no response is needed to complete the command then the

NetWiFiMgr_MgmtHanlder() returns immediately. If the management

command requires a response to complete the command then it returns only if

the timeout has expired (i.e. the response not received) or if the Wireless

Manager has been signalled and the response is analyzed and translated.

F7-18(4) When the response of the management command is received

NetDev_MgmtProcessResp() is called to analyze and to translate the data for

upper layers. Also this function must update the state machine context to let

know if the management command is completed or if more data must be send

to complete the current management command.

F7-18(5) The device driver can also uses the Wireless Manager to send management

command defined within the driver during start and stop of the interface

especially when a response is needed to complete the management command

such as updating the wireless device firmware. Note that it’s not possible to use

the Wireless Manager during the initialization since it’s not possible to receive

packet and management frame before the initialization is completed.

F7-18(6) When data ready ISR occurs and the interface is signalled, the function

NetIF_RxPkt() calls the driver to read the data from the wireless device no

matter if its management frame or data packet.
214

Wireless Manager API Implementation
F7-18(7) NetDev_Rx() must determine if the data received is a management frame or a

packet and must set at least the frame type within the offset of the network

buffer. See “Receiving Packets and Management Frames” on page 222. If the

data read is a management frame that it’s not a response, the processing must

be done in NetDev_DemuxMgmt() to let the stack increment his statistics.

F7-18(8) Once the data is read and the frame type set by the device driver then the

buffer is passing to the wireless interface layer to be processed.

F7-18(9) NetIF_WiFi_Rx() uses the frame type within the buffer offset and set

previously by the device driver to know which layer to call and pass the

network buffer.

F7-18(10) If the data received is a packet then the 802x layer is called to process the

packet as it’s should done for an Ethernet packet.

F7-18(11) If the data received is a management frame then 8 is called to determine what

to do with the data. If it’s a response for a management command initialized

previously then the Wireless Manager must be signalled. If it’s information

about the wireless device state, then some operation on the stack could be

done such as updating the link state of the interface. Note that the buffer offset

section could be used by the device driver to help to determine what kind of

data is contained in the data section of the buffer.

F7-18(12) When the data is a management response previously initialized then the

Wireless Manager must be signalled by using the Wireless Manager API.
215

Wireless Device Driver Implementation
7-10 WIRELESS DEVICE DRIVER IMPLEMENTATION

7-10-1 DESCRIPTION OF THE WIRELESS DEVICE DRIVER API

All device drivers must declare an instance of the appropriate device driver API structure as

a global variable within the source code. The API structure is an ordered list of function

pointers utilized by μC/TCP-IP when device hardware services are required.

A sample Ethernet interface API structure is shown below.

Listing 7-24 Ethernet interface API

Note: It is the device driver developers’ responsibility to ensure that all of the functions

listed within the API are properly implemented and that the order of the functions within

the API structure is correct.

L7-24(1) Device initialization/add function pointer

L7-24(2) Device start function pointer

L7-24(3) Device stop function pointer

L7-24(4) Device Receive function pointer

L7-24(5) Device transmit function pointer

L7-24(6) Device multicast address add function pointer

const NET_DEV_API_WIFI NetDev_API_<controler> = { NetDev_Init, (1)
 NetDev_Start, (2)
 NetDev_Stop, (3)
 NetDev_Rx, (4)
 NetDev_Tx, (5)
 NetDev_AddrMulticastAdd, (6)
 NetDev_AddrMulticastRemove, (7)
 NetDev_ISR_Handler, (8)
 NetDev_MgmtDemux, (9)
 NetDev_MgmtExcuteCmd, (10)
 NetDev_mgmtProcessResp (11)
 };
216

Wireless Device Driver Implementation
L7-24(7) Device multicast address remove function pointer

L7-24(8) Device interrupt service routine (ISR) handler function pointer

L7-24(9) Device demultiplex management frame function pointer.

L7-24(10) Device execute management command function pointer.

L7-24(11) Device process management response function pointer.

Note: μC/TCP-IP device driver API function names may not be unique. Name clashes

between device drivers are avoided by never globally prototyping device driver functions

and ensuring that all references to functions within the driver are obtained by pointers

within the API structure. The developer may arbitrarily name the functions within the source

file so long as the API structure is properly declared. The user application should never

need to call API functions by name. Unless special care is taken, calling device driver

functions by name may lead to unpredictable results due to reentrancy.

7-10-2 HOW TO ACCESS THE SPI BUS

μC/TCP-IP currently supports only wireless devices that communicate with the host via SPI.

Also, many other devices/hardware can share the same SPI bus, so each time the device

driver need to access the SPI bus it must acquire the access and set the SPI controller

following the wireless device’s SPI requirement. This procedure must be followed each time

the device driver needs to access the SPI:

1 Acquire the SPI lock by calling network device’s BSP function pointer,

NetDev_WiFi_SPI_Lock().

2 Enable chip select of the wireless device via network device’s BSP function pointer,

NetDev_WiFi_SPI_ChipSelEn().

3 Configure the SPI controller by calling network device’s BSP function pointer,

NetDev_WiFi_SPI_SetCfg().

4 Write data and read data from the SPI with appropriate buffer pointer to write buffer

and read buffer to the network device’s BSP function pointer, Net_Dev_SPI_WrRd().
217

Wireless Device Driver Implementation
5 Disable the device’s chip select via network device’s BSP function pointer,

NetDev_WiFi_SPI_ChipSelDis().

6 Release the SPI lock by calling network device’s BSP function pointer,

NetDev_WiFi_SPI_Unlock().

7-10-3 INITIALIZING A NETWORK DEVICE

NetDev_Init() is called by NetIF_Add() exactly once for each specific network device

added by the application. If multiple instances of the same network device are present on

the board, then this function is called for each instance of the device. However, applications

should not try to add the same specific device more than once. If a network device fails to

initialize, we recommend debugging to find and correct the cause of the failure.

NetDev_Init() performs the following operations. However, depending on the device

being initialized, functionality may need to be added or removed:

1 Perform device configuration validation. Since some devices require special

configuration, the configuration structure received should be examined at the

initialization of the device and set *p_err if and unacceptable value have been

specified to NET_DEV_ERR_INVALID_CFG must be returned.

2 Configure all necessary I/O pins for SPI, external interrupt, power pin, reset pin. This is

performed via the network device’s BSP function pointer, NetDev_WiFi_CfgGPIO(),
implemented in net_bsp.c.

Configure the host interrupt controller for receive and transmit complete interrupts.

Additional interrupt services may be initialized depending on the device and driver

requirements. This is performed via the network device’s BSP function pointer,

NetDev_WiFi_CfgIntCtrl(), implemented in net_bsp.c. However, receive interrupt

should not be enabled before starting the interface.

3 Allocate memory for all necessary local buffers. This is performed via calls to μC/LIB’s

memory module.
218

Wireless Device Driver Implementation
4 Initialize the SPI controller. This is performed via the network device’s BSP function

pointer, NetDev_WiFi_SPI_Init(). The communication between the host and the

wireless module should not be initialized, the wireless device should be powered down

during and after the initialization.

5 Set p_err to NET_DEV_ERR_NONE if initialization proceeded as expected. Otherwise, set

p_err to an appropriate network device error code.

7-10-4 STARTING A NETWORK DEVICE

NetDev_Start() is called each time an interface is started. It performs the following

actions:

1 Call the NetOS_Dev_CfgTxRdySignal() function to configure the transmit ready

semaphore count. This function call is optional and is performed if the hardware device

supports queuing multiple transmit frames. By default, the semaphore count is

initialized to one. However, wireless devices should set the semaphore count equal to

the number of configured transmit queues size for optimal performance.

2 Power up the wireless module, this is performed via the network device’s BSP function

pointer, NetDev_WiFi_Start().

3 The wireless device driver must initializes and start the communication between the

host and the wireless module.

4 The device driver should validate the current firmware loaded in the wireless device

and upgrade the device firmware if required.

Note: After a firmware upgrade, most of the time the wireless device requires to be

reset, reinitialized and restarted.

5 Initialize the device MAC address, if applicable. For wireless devices, this step is

mandatory. The MAC address data may come from one of three sources and should be

set using the following priority scheme:

NetDev_Init() can access the SPI bus for command that doesn’t requires

to receive the command result via a response. Since it’s not possible to

receive Network packet and management frame before the interface has

been started.
219

Wireless Device Driver Implementation
■ Configure the MAC address using the string found within the device configuration

structure. This is a form of static MAC address configuration and may be performed

by calling NetASCII_Str_to_MAC() and NetIF_AddrHW_SetHandler(). If the

device configuration string has been left empty, or is specified as all 0’s, an error

will be returned and the next method should be attempted.

■ Check if the application developer has called NetIF_AddrHW_Set() by making a

call to NetIF_AddrHW_GetHandler() and NetIF_AddrHW_IsValidHandler() in

order to check if the specified MAC address is valid. This method may be used as a

static method for configuring the MAC address during run-time, or a dynamic

method should a pre-programmed external memory device exist. If the acquired

MAC address does not pass the check function, then:

■ Call NetIF_AddrHW_SetHandler() using the data found within the individual MAC

address registers. If an auto-loading EEPROM is attached to the MAC, the registers

will contain valid data. If not, then a configuration error has occurred. This method

is often used with a production process where the MAC supports automatically

loading individual address registers from a serial EEPROM. When using this

method, you should specify an empty string for the MAC address within the device

configuration, and refrain from calling NetIF_AddrHW_Set() from within the

application.

6 Initialize additional MAC registers required by the MAC for proper operation.

7 Clear all interrupt flags.

8 Locally enable interrupts on the hardware device. This is performed via the network

device’s BSP function pointer, NetDev_WiFi_IntCtrl(). The host interrupt controller

should have already been configured within the device driver NetDev_Init() function.

9 Enable the receiver and transmitter.

10 Set perr equal to NET_DEV_ERR_NONE if no errors have occurred. Otherwise, set perr
to an appropriate network device error code

Some wireless module return result of commands via a response. The

device’s Wireless Manager function pointer, NetWiFiMgr_Mgmt() should

be used to perform these type of command since it will return only when

the response is received and processed.
220

Wireless Device Driver Implementation
7-10-5 STOPPING A NETWORK DEVICE

NetDev_Stop() is called once each time an interface is stopped.

NetDev_Stop() must perform the following operations:

1 Disable the receiver and transmitter.

2 Disable all local MAC interrupt sources.

3 Clear all local MAC interrupt status flags.

4 Power down the wireless device via network device’s BSP function pointer,

NetDev_WiFi_Stop().

5 For wireless devices which can queued up packet to transmit, free all transmit buffer

not yet transmitted by calling NetOS_IF_DeallocTaskPost() with the address of the

transmit buffer data areas.

6 Set perr to NET_DEV_ERR_NONE if no error occurs. Otherwise, set perr to an appropriate

network device error code.

7-10-6 HANDLING A WIRELESS DEVICE ISR

NetDev_ISR_Handler() is the device interrupt handler. In general, the device interrupt

handler must perform the following functions:

1 Determine which type of interrupt event occurred by switching on the ISR type

argument. The ISR handler should not access the SPI bus for reading an interrupt status

register.

2 If a receive event has occurred, the driver must post the interface number to the

μC/TCP-IP Receive task by calling NetOS_IF_RxTaskSignal() for each new frame

received (management or packet).

Some wireless module return result of commands via a response. The

device’s Wireless Manager function pointer, NetWiFiMgr_Mgmt() should

be used to perform these type of command since it will return only when

the response is received and processed.
221

Wireless Device Driver Implementation
3 If a transmit complete event has occurred and it is specified in the ISR type argument,

the driver must perform the following items for each transmitted packet.

aPost the address of the data area that has completed transmission to the transmit buffer

de-allocation task by calling NetOS_IF_TxDeallocTaskPost() with the pointer to the

data area that has completed transmission.

bCall NetOS_Dev_TxRdySignal() with the interface number that has just completed

transmission.

4 Interrupt flags on the wireless device should not be cleared. CPU’s integrated interrupt

controllers should be cleared from within the network device’s BSP-level ISR after

NetDev_WiFi_ISR_Handler() returns.

Additionally, it is highly recommended that device driver ISR handlers be kept as short as

possible to reduce the amount of interrupt latency in the system.

7-10-7 RECEIVING PACKETS AND MANAGEMENT FRAMES

NetDev_Rx() is called by μC/TCP-IP’s Receive task after the Interrupt Service Routine

handler has signaled to the Receive task that a receive event has occurred. NetDev_Rx()
requires that the device driver return a pointer to the data area containing the received data

and return the size of the received frame via pointer.

RECEIVE BUFFER STRUCTURE

Since NetDev_Rx() can be called to receive management frames and data packets, all

wireless receive buffers must contain an offset before the data area to specify the frame type.

So to understand data reception, you first need to understand the structure of receive buffers.

If the wireless module support transmit complete event, but reading an

interrupt status register is required to know it, the receive task must be

signaled and in NetDev_Rx() should return a management frame which

will be passed to NetDev_MgmtDemux() and then you can perform the

transmit complete operations.
222

Wireless Device Driver Implementation
Figure 7-19 Wireless receive buffer structure

F7-19(1) The buffer offset is specified within the device’s Memory configuration. The

offset must be at least equal to one octet to handle the Frame type. The offset

can include option control data for demultiplex and or to respect the buffer

alignment.

F7-19(2) The frame type space is always the first octet of the buffer. If receiving data

packet, set the frame type equal to NET_IF_WIFI_DATA_PKT and the packet will

be processed by the stack. For a management frame the byte must be set equal

to NET_IF_WIFI_MGMT_FRAME, in this case NetDev_MgmtDemux() will be called

after return to analyses the management frame and signal the Wireless Manager

or update the driver data’s state.

F7-19(3) The receive buffer can include extra space to help to demultiplex a

management frame or to respect buffer alignment required by the device’s BSP

function.

F7-19(4) The pointer passed to the network device’s BSP function pointer,

NetDev_WiFi_SPI_WrRd(), must point to the frame data area.

Rx Buffer

Data PacketFrame Type

Offset

Optional
Management
Demux Data

1

2

3
4

p_buf_rd
223

Wireless Device Driver Implementation
RECEIVING FRAMES

NetDev_Rx() should perform the following actions:

1 Read the interrupt register which should be done by writing and reading on the SPI

bus. This is performed by following the procedure to access the SPI bus. Also, the

frame to receive must be know (Management frame or data packet). You should use

small local buffer to write and read to complete that step.

2 Check for errors, if applicable. If an error occurs during reception, the driver should set

*size to 0 and *p_data to (CPU_INT08U *)0 and return. Additional steps may be

necessary depending on the device being serviced.

3 Get the size of the received frame and get a new data buffer area by calling

NetBuf_GetDataPtr(). If memory is not available, an error will be returned and the

device driver should set *size to 0 and *p_data to (CPU_INT08U *)0.

4 If an error does not occur while getting a new data area, *p_data must be set to the

address of the data area.

5 Set the frame type within the receive buffer equal to NET_IF_WIFI_DATA_PKT for a

packet which must be processed by the stack and equal to NET_IF_WIFI_MGMT_FRAME
for any management frame which will be passed to NetDev_MgmtDemux() to

demultiplex the management frame.

6 Read from the device to the receive buffer data area by calling the network device’s BSP

function pointer, NetDev_WiFi_SPI_WrRd(), with an appropriate pointer to the data

area of the receive buffer.

7 Set p_err to NET_DEV_ERR_NONE and return from the receive function. Otherwise, set

p_err to an appropriate network device error code.
224

Wireless Device Driver Implementation
TRANSMIT COMPLETED NOTIFICATION

Since the SPI cannot be accessed within the ISR handler most of time all interrupts type are

read in NetDev_Rx(). Also, when the ISR type is for a transmit completed notification, it is

not recommended to notify the stack by the function and return an error since the reception

statistics and errors counter will be affected. Instead it is recommended to return a

management frame that contains the address of the data area successfully transmitted. Since

all management frame are processed by NetDev_MgmtDemux(), the step to notify the stack

should be done into it.

7-10-8 TRANSMITTING PACKETS

NetDev_Tx() is used to notify the wireless device that a new packet is available to be

transmitted. It performs the following actions:

1 The driver follow the procedure to access the SPI bus, and it takes all necessary steps to

initiate transmission of the data by writing to the wireless device’s register using

appropriate device’s BSP functions. The driver must configure the device with the

number of bytes to transmit. This value contained in the size argument.

2 The driver must write the data stored in the network buffer to the device’s memory. The

address of the buffer is specified by p_data which can be passed directly to ‘Write

Read’ device’s BSP function pointer.

3 For wireless devices that do not support transmit completed notifications, the packet is

assumed to be transmitted successfully, and the driver must perform the following

actions.

aPost the address of the just-used network buffer to the transmit buffer de-allocation

task by calling NetOS_IF_TxDeallocTaskPost() with the pointer p_data.

bCall NetOS_Dev_TxRdySignal() with the number of the interface that had just

completed transmission.

4 For wireless devices that do support transmit completed notifications, the previous

transmit complete steps should be performed by NetDev_MgmtDemux().

5 NetDev_Tx() sets p_err to NET_DEV_ERR_NONE and return from the transmit function.
225

Wireless Device Driver Implementation
7-10-9 ADDING AN ADDRESS TO THE MULTICAST ADDRESS
FILTER OF A NETWORK DEVICE

NetDev_AddrMulticastAdd() is used to configure a device with an (IP-to-Ethernet)

multicast hardware address.

You should follow the same steps described in section 7-5-8 “Adding an Address to the

Multicast Address Filter of a Network Device” on page 166, except that the device’s registers

must be accessed through SPI.

7-10-10 REMOVING AN ADDRESS FROM THE MULTICAST
ADDRESS FILTER OF A NETWORK DEVICE

NetDev_AddrMulticastRemove() is used to remove an (IP-to-Ethernet) multicast hardware

address from a device.

You should follow the same steps described in section 7-5-9 “Removing an Address from the

Multicast Address Filter of a Network Device” on page 170 should be followed, except that

the device’s registers must be accessed through SPI.

7-10-11 HOW TO DEMULTIPLEX MANAGEMENT FRAMES

NetDev_MgmtDemux() is called by μC/TCP-IP’s Receive task after the device’s receive

function has returned a management frame. NetDev_MgmtDemux() requires that the device

driver analyses management frames received and it must performs all necessary operations.

It performs the following actions:

1 Determine if the management frame is a response of a previous management command

sent or if it is a management frame which require the driver to update driver’s state.

If the wireless device return the result through a response,

NetDev_AddrMulticastAdd() should calls the device’s Wireless Manager

function pointer, NetWiFiMgr_Mgmt(), to complete the operation.

If the wireless device return the result through a response,

NetDev_AddrMulticastAdd() should calls the device’s Wireless Manager

function pointer, NetWiFiMgr_Mgmt(), to complete the operation.
226

Wireless Device Driver Implementation
2 If the management frame is a response, the device’s Wireless Manager must be signaled

using the function pointer NetWiFiMgr_Signal(). No other steps are required in that

case.

3 If the management frame is a state update, the driver should update device’s data or

interface’s link state or perform transmit complete operations.

4 NetDev_MgmtDemux() sets p_err to NET_DEV_ERR_NONE and return from the

demultiplex function.

7-10-12 HOW TO EXECUTE MANAGEMENT COMMAND

NetDev_MgmtExcuteCmd() is used to notify the wireless device that a new management

command must be executed. It performs the following actions:

1 The driver follow the procedure to access the SPI bus and it takes all necessary steps to

initiate the management command by writing to the wireless device’s register using

appropriate device’s BSP functions. The driver must use the command data argument to

send the data needed by the wireless device to perform the management command.

2 Update the pointer to the device’s Wireless Manager context state argument following

how the command result must be handled by the Wireless Manager.

 a) If the management command requires multiple calls to NetDev_MgmtExecuteCmd()
before completion, MgmtCompleted should be set to false. By doing this,

NetDev_MgmtExecuteCmd is called in loop until MgmtCompleted comes equal to true or

an error is returned.

b) If the management command requires to wait a response before completing the

management command process, WaitResp must be set equal to true. In this case, once

the response is received NetDev_MgmtProcessResp will be called. Also,

WaitRespTimeout_ms should be set to let the Wireless Manager return an error when

the response is not received.

If the management frame is only used within NetDev_MgmtDemux() (i.e.,

device’s Wireless Manager not signaled), the network buffer must be freed

by calling NetBuf_Free().
227

Wireless Device Driver Implementation
3 If the result is not sent via a response, NetDev_MgmtProcessCmd() must fill the return

buffer with appropriate data following the stack format.

4 NetDev_MgmtExecuteCmd() sets p_err to NET_DEV_ERR_NONE and returns from the

execute management command function.

7-10-13 HOW TO PROCESS MANAGEMENT RESPONSE

NetDev_MgmtProcessResp() is called when the response of the current management

command is received which means that NetDev_Demux() has signaled the device’s Wireless

Manager and the response must be analyzed and translated. NetDev_MgmtProcessResp()
performs the following actions:

1 The function must translate the response and it must fills the return buffer with

appropriate data following the stack format.

2 Update the device’s Wireless Manager context state argument pointer following how the

command result must be handled by the Wireless Manager.

a) If the management command is completed, MgmtCompleted must be set to true.

b) If the management command is not completed and more calls to

NetDev_MgmtExecuteCmd() are required before completing the current management

command, MgmtCompleted should be set to false. NetDev_MgmtExecuteCmd will be

called and the management command will not return until MgmtCompleted comes

equal to true.

3 NetDev_MgmtProcessResp() sets p_err to NET_DEV_ERR_NONE and return from the

Process management response function.
228

Chapter

8

Device Driver Validation

To help in the development of the Ethernet driver, Micrium provides a Windows-based tool

called the Network Driver Integrated Tester (NDIT). The NDIT encapsulates many of the

performance tests that you perform on your driver during development. It handles

synchronisation between the test station and the target device, and parses and displays test

results, all in one interface.

Tools that may help you during the design or tuning phase are presented in this chapter.

These tools test and exercise different parts of the Ethernet device driver and can help

uncovering flaws in the implementation of the driver. A set of test procedures is also

provided in order to validate the proper behavior of the driver.
229

Checklist
8-1 CHECKLIST

It is strongly suggested that you use the following checklist when writing a new device

driver or when an existing driver is modified. You can fill it out as you develop your device

driver and perform the tests described in the document.

8-2 TEST MANAGEMENT INTERFACE

NDIT requires a connection with the target to configure the tests. There are two connection

protocols available: RS-232 or TCP/IP (Ethernet). The use of TCP/IP requires a functional

Ethernet driver and TCP/IP stack. It is common to start with RS-232, when a UART is

available.

Upon starting NDIT, the following dialog box appears:

Element of Validation
Directly

connected
Networked

Hardware Address configuration q q

Answer to all received ping q q

Answer to all received ping via fping q q

Transmit UDP Test 1 (transmit UDP packet of 1472 bytes) q q

Receive UDP Test 1 (Receive UDP packet of 1472 bytes) q q

Receive UDP Test 2 (Receive UDP packet with different length) q q

Transmit TCP Test 1 q q

Receive TCP Test 1 (Receive with default RX windows size) q q

Receive TCP Test 2 (Receive with optimized RX windows size) q q

No buffers leak q q

Configuration & Performance results are logged q q

Multicast q q

IF Start/Stop q q
230

Test Management Interface

Figure 8-1 Test management interface setup dialog

The connection setup options are as followed:

Connection type RS-232
COM port (ex: COM1).

Baud rate (8 bits, no parity, 1 stop bit and no flow control)

TCP/IP
Command port (UDP or TCP port)

The test station and target exchange commands and return

results on this port. It must match the port number defined in

app_cfg.h (#define NDIT_PORT).

Transport protocol TCP or UDP. Either one of the protocol can be chosen as long as

the target’s TCP/IP implementation supports it.

Target IP The target IP address must be the one used by

App_TCPIP_Init() in app.c in order for the test station to

reach the target board. This parameter is also used when the

NDIT is setup for RS-232 communication.

Network The network interface used to communicate with the target. By

default, the first IPv4 network interface found is used. In order

for the tests to work, the target has to be reachable via the

selected network interface.

Once you click ‘OK’ the NDIT main window (see next section) appears, and your chosen

connection settings are stored and will be reloaded at the next startup of NDIT.
231

Test Management Interface
8-2-1 NDIT MAIN WINDOW

The features of the main window are described in the following section. Below is a screen

shot of the main window:

Figure 8-2 NDIT Main Window

F8-2(1) The target’s communication log: The target received data is displayed in this

scrollable text box.

F8-2(2) Test tabs: Each tab contains tests and test options:

1 IF Start/Stop: The network interface of the device is turned off and on

again after a specified delay.

2 Ping: The target receives an ICMP echo request.

3 UDPs (UDP server): The target receives UDP frames from the test station at

a specified bandwidth.

4 UDPc (UDP client): The target transmits UDP frames to the test station

computer at the highest possible bandwidth achievable by the target.

5 TCPs (TCP server): The target receives TCP frames from the test station

computer.

1

2

3

4

5

6

232

Test Management Interface
6 TCPc (TCP client): The target transmits TCP frames to the test station

computer.

7 Multicast: The test station computer sends multicast packets to the target.

8 General Options: Common parameters for all the tests.

F8-2(3) Test results table: Each tab has its own test results table that displays the input

information and the output results for each test ,along with the date and time at

which that test was executed. When the NDIT is launched, it loads the test

results logs from previous tests and displays them in the test results table.

F8-2(4) Tests and test options: This section contains the different tests and test options

that can be performed from the selected tab.

In addition to the options specified in the current test tab, there is another set

of options located in the General Option tab. These options, like test duration

and target IP address, are common to more than one test.

F8-2(5) Cancel button: When an iterative or a parameter sweep test is launched, it can

be cancelled by clicking the Cancel button. The current test will finish and the

results will be displayed in the test result table.

F8-2(6) Exit button: Upon clicking the Exit button, the test results will be saved, and

connections, if any, will be closed with the target.
233

Validating a Device Driver
8-2-2 GENERAL OPTIONS TAB

The General Options tab contains common test properties that are used throughout the test

cases.

Figure 8-3 General Options tab

This tab contains three options:

■ Duration (s): Used for IPerf testing. Specifies the duration of the data transfer between

the test station and the target.

■ Target IP: The target IP address as specified in app.c.

■ Test Station IP: The test station IP address to which the target will reply when using

IPerf.

8-3 VALIDATING A DEVICE DRIVER

This section describes how a driver should be validated. These tests must be performed for

each new driver and any modifications to an existing driver. The tests provided have been

chosen to highlight potential flaws that may be present in the device driver.
234

Validating a Device Driver
8-3-1 FILES NEEDED

The required source files needed to validate a device driver are as follows:

$/Micrium/Software/uC-IPerf/Source/iperf.c
$/Micrium/Software/uC-IPerf/Source/iperf.h
$/Micrium/Software/uC-IPerf/Source/iperf-c.c
$/Micrium/Software/uC-IPerf/Source/iperf-s.c
$/Micrium/Software/uC-IPerf/Reporter/Terminal/iperf_rep.c
$/Micrium/Software/uC-IPerf/Reporter/Terminal/iperf_rep.h
$/Micrium/Software/uC-TCPIP-V2/App/NDIT/Source/ndit.c
$/Micrium/Software/uC-TCPIP-V2/App/NDIT/Source/ndit.h
$/Micrium/Software/uC-TCPIP-V2/App/NDIT/Source/ndit_ifss.c
$/Micrium/Software/uC-TCPIP-V2/App/NDIT/Source/ndit_ifss.h
$/Micrium/Software/uC-TCPIP-V2/App/NDIT/Source/ndit_mcast.c
$/Micrium/Software/uC-TCPIP-V2/App/NDIT/Source/ndit_mcast.h

When using μC/OS-II:

$/Micrium/Software/uC-IPerf/Source/uCOS-II.c
$/Micrium/Software/uC-TCPIP-V2/App/NDIT/OS/uCOS-II/ndit_os.c
$/Micrium/Software/uC-TCPIP-V2/App/NDIT/OS/uCOS-II/ndit_mcast_os.c

Or when using μC/OS-III:

$/Micrium/Software/uC-IPerf/Source/uCOS-III.c
$/Micrium/Software/uC-TCPIP-V2/App/NDIT/OS/uCOS-III/ndit_os.c
$/Micrium/Software/uC-TCPIP-V2/App/NDIT/OS/uCOS-III/ndit_mcast_os.c

Copy the contents of

$/Micrium/Software/uC-IPerf/Cfg/Template/iperf_cfg.h

and

$/Micrium/Software/uC-TCPIP-V2/App/NDIT/Cfg/Template/ndit_cfg.h

into your app_cfg.h.
235

Validating a Device Driver
8-3-2 PROJECT EXAMPLE

Figure 8-4 shows the workspace with groups expanded for a development board with NDIT

and IPerf modules included.

The APP group is where the actual code for the example is located.

The BSP group contains the 'Board Support Package' code to use for several of the

Input/Output (I/O) devices on the development board.

The NDIT group contains the necessary files to interact with the NDIT software on the test

station host. In hold the executive code for the test procedures describes in Section 10 of

this document.

The μC/CPU group contains source and header files for the μC/CPU module. Header files

contain definitions and declaration that are required by some of the application code.

The μC/IPerf group contains the source and header for the μC/IPerf module. It also

contains the IPerf Reporter module which formats and displays IPerf's test results.

The μC/LIB group contains the source and header for the μC/LIB module. Again, the

header files are needed as some of the application code requires definitions and

declarations found in these files.

The μC/OS-III group contains the source and header files for the μC/OS-III module.

The μC/TCP-IP group contains the source and header files for the μC/TCP-IP module.
236

Validating a Device Driver
Figure 8-4 Project Workspace with NDIT and IPerf modules highlighted

8-3-3 HARDWARE ADDRESS CONFIGURATION

It is important to validate the configuration of the Ethernet interface’s hardware address. The

physical hardware address should be configured from within NetDev_Start() to allow for

the proper use of NetIF_Ether_HW_AddrSet(), hard coded hardware addresses from the

device configuration structure, or auto-loading EEPROM's. Changes to the physical address

only take effect when the device transitions from the NET_IF_LINK_DOWN to

NET_IF_LINK_UP state. These states are defined in net_if.h, and the current state of the

controller can be found by calling NetIF_LinkStateGet() from your application.
237

Validating a Device Driver
The device hardware address is set from one of the data sources below, listed in the order

of precedence.

1 From the device configuration structure (NET_DEV_CFG_ETHER) defined in

net_dev_cfg.c. Configure a valid hardware address (i.e., not null) for .HW_AddrStr[]
in NetDev_Cfg_<device>_<Nbr> in net_dev_cfg.c at compilation time.

2 From a call to NetIF_Ether_HW_AddrSet():

The value of .HW_AddrStr[] must be set to "00:00:00:00:00:00", or an empty string.

NetIF_Ether_HW_AddrSet() must be called with the desired hardware address before

calling NetIF_Start().

3 From Auto-Loading via EEPROM

If .HW_AddrStr[] is set to "00:00:00:00:00:00", and NetIF_Ether_HW_AddrSet() is not

called, then NetDev_Start() will attempt to configure the hardware address with the

network hardware address registers. These registers are the low and high hardware

address register from the MAC device registers.

Note that this test is not available in NDIT since automatic source code compilation and

binary download to the target are not supported by NDIT.

TESTING

In order to verify that the three hardware address configuration methods work, there are a

few steps that you will have to perform:

1 Set the value of .HW_AddrStr[] in NetDev_Cfg_<device>_<Nbr> in net_dev_cfg.c
to a valid unicast MAC address. Then set up Wireshark to capture the ARP and ICMP

traffic on the network interface used by your target. Send an ICMP echo request to the

IP address of the target and verify that the device responds with the hardware address

specified by .HW_AddrStr[] in the Wireshark trace.

2 Set the value of .HW_AddrStr[] in NetDev_Cfg_<device>_<Nbr> in net_dev_cfg.c
to "00:00:00:00:00:00", before calling NetIF_Start() in your application code call

NetIF_AddrHW_Set() with a valid unicast MAC address (i.e., not null) Then set up

Wireshark to capture the ARP and ICMP traffic on the network interfece on which your
238

Validating a Device Driver
target is connected. Send an ICMP echo request to the IP address of the target and

verify that the device responds with the hardware address specified with

NetIF_AddrHW_Set() in the Wireshark trace.

3 The third method can be tested if the MAC on your device stores the MAC address

registers in an EEPROM. If the EEPROM is accessible from the program loader, you can

configure the high and low address registers with a valid HW address. Then setup

Wireshark to capture the ARP and ICMP traffic on the network interface on which your

target is connected. Send an ICMP echo request to the IP address of the target and

verify, in the Wireshark trace, that the device responds with the hardware address

specified.

8-3-4 IF START / STOP

The purpose of the Interface Start / Stop test is to validate that the driver can successfully

stop a network interface and restart it again. Testing the driver’s ability to stop the network

interface is often skipped, but it is an essential function. Stopping and starting the network

interface of your device is one of the ways to detect buffer leaks since stopping the device

will deallocate all the network buffers and descriptors. If restarting the network interface

fails, it might indicate that you have a buffer leak situation.

IF START / STOP TEST USING NDIT

To validate the start/stop function, the NDIT verifies tthat the network device should:

■ Respond to an echo request (ping) before stopping the network interface.

■ Ignore an echo request after the network interface has been stopped.

■ Respond again to an echo request after restarting the network interface.
239

Validating a Device Driver
Figure 8-5 Interface Start / Stop test tab

There is a single option for the Interface Start / Stop test:

Delay The time between the Interface Stops and the Interface Starts (in seconds).

IF # The Interface number to Start / Stop.

ANALYZING THE RESULTS

If the Test Result column does not indicate a PASS, it will show a FAIL followed by three

echo request results. The first result should be 1 and represents a 100% echo reply success

rate before the interface is stopped. The second result should be 0 and represents a 0%

echo reply success rate while the interface is stopped. The final result should be 1 and

represents a 100% echo reply success rate after the interface is restarted.

In the example shown in Figure 8-5, the test result that shows "FAIL – 1 1 1" indicates that

the Interface continued replying to the test station host after it has sent the ifss stop

command. Since all commands sent by the NDIT are acknowledged by the target, it is

unlikely that the command wasn't received and processed by the target. Furthermore, the

100% success rate for the ICMP echo shows that the target is responsive. Therefore the error

should be in the implementation of the NetDev_Stop() function.
240

Validating a Device Driver
8-3-5 ICMP ECHO REQUEST (PING) TESTS

The ping can be used as a starting point to validate the driver. But keep in mind that if your

target answers to a ping request, it doesn't mean that your work is done. Since a ping

request sends only a small payload to the target, and the device sends back an equally small

payload to the test station, it is not a test for reliability or performance. The goal of this test

is only to quickly determine whether or not the basic mechanism for receiving and

transmitting a packet are implemented in your device driver.

ping <target.ip.address>

The μC/TCP-IP module needs a heavier load to see if the device driver is robust and stable.

Your device driver must be able to answer (for a of minimum 15 seconds) this command:

ping <target.ip.address> -n 15 -l 1472

Once your driver is able to handle the previous ping command, you can increase the load

by using fping.

A Windows version of fping can be found under the folder

‘\Micrium\Software\uC-TCPIP-V2\App\NDIT\Tool\Release’. Additional download sites are

available for Linux and other operating systems. Note that NDIT is a Windows-only tool.

Your driver must be able to handle these fping commands:

fping <target.ip.address> -t 1 –c –i

–t 1 Sets the interval between two subsequent ICMP echo request to 1 ms

–c Send the request indefinitely

–i Disables an annoying fping warning

A good result would be if your device can sustain that rate of request without ever stalling.

Otherwise, you might have a buffer leak issue or a device configuration issue you should fix

first before continuing with the subsequent tests.

fping <target.ip.address> -t 1 -S 1/1464
241

Using IPerf
8-3-6 TARGET BOARD CONFIGURATION

The following sections require interactions between the NDIT on the test station and the

code in your target. To be able to communicate with the test station, both the target and the

test station must share the same configuration.

The first thing to configure is the communication protocol. The NDIT supports either serial

port RS-232 communication or network TCP-IP communication. The communication

protocol is configured in app_cfg.h.

FOR RS-232 COMMUNICATION

#define NDIT_COM NDIT_SERIAL_COM

The data rate of the serial communication has to be defined to one of the available bit rates

supported by the NDIT: 1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600 or 115200

bits/sec. If your device has a serial port, the bit rate parameter should be defined in the BSP

layer of the software architecture of the device. Your device must also implement a framing

of 8 data bits, no parity and 1 stop bit. Also, flow control should not be used with NDIT.

FOR TCP/IP CONNECTION

#define NDIT_COM NDIT_NETWORK_COM

The command port can be changed in app_cfg.h to any available port number:

#define NDIT_PORT 50177u

8-4 USING IPERF

Perf is a tool designed to perform performance tests and to measure various variables of a

network. IPerf is a benchmaring tool for measuring performance between two systems. It

can be used as a server or a client for both the TCP and UDP protocols. Many IPerf

applications are available for different operating systems. IPerf applications for the PC are

easily found on the web. However, we suggest to use the IPerf function integrated in the

Network Driver Integrated Tester for version compatibility purposes with the target

software.
242

Using IPerf
It is strongly recommended that you use IPerf to validate your driver and find the best target

configuration. Perform four tests (Receive and Transmit are from the target point of view):

■ TCP Server (Receive)

■ TCP Client (Transmit)

■ UDP Server (Receive)

■ UDP Client (Transmit)

You have to test your driver with different TCP/IP stack configuration (net_cfg.h). Tests

must be performed with the target directly connected to the test station and on a network

and you it is recommended to log all performances results and configurations into a device

drivers test result document.

You can find more information on IPerf at http://sourceforge.net/projects/iperf/.

8-4-1 GETTING STARTED WITH IPERF

Mircium’s implementation of IPerf is called μC/IPerf. It can be used in many ways, the most

practical being to launch a test on the target using the NDIT test management interface via

a string command. μC/IPerf doesn’t generate output by itself. Rather, statistics are compiled

by IPerf for your test. To get the results, you must query IPerf using your own application or

an existing tool. μC/IPerf comes with two built-in applications to query test status and

output test results.

IPerf is available within the NDIT. It allows you to test the performance of your driver

quickly, since the NDIT tests are using predefined IPerf commands. The results are logged

and displayed in a table which makes it easier to track the driver’s performances.
243

Using IPerf
8-4-2 IPERF TOOLS

TERMINAL REPORTER ON THE TARGET

If your target board has a serial interface, you should use the Terminal Reporter. You must

create a function which will transmit a string buffer via the serial interface. The NDIT

module must be able to use this function to send back the menu or any command errors.

Listing 8-1 shows an example.

Listing 8-1 Terminal reporter output function

L8-1(1) Prevent “variable unused” compiler warning.

L8-1(2) Validate that the pointer to the string is not null.

/*

* NDIT_OutputFnct()
*
* Description : Output a string on the display.
*
* Argument(s) : p_buf Pointer to buffer to output.
*
* p_param Pointer to IPerf output parameters. (unused)
*
* Return(s) : none.
*
* Caller(s) : various.
*
* Note(s) : (1) The string pointed to by p_buf has to be NUL ('\0') terminated.

*/
#if (NDIT_COM == NDIT_SERIAL_COM)
void NDIT_OutputFnct (CPU_CHAR *p_buf,
 IPERF_OUT_PARAM *p_param)
{
 (void)&p_param; (1)

 if (p_buf == (CPU_CHAR *)0) { (2)
 return;
 }
 APP_TRACE_INFO((p_buf)); (3)
}
#endif
244

Using IPerf
L8-1(3) Display the string on the serial port of the board. BSP_Ser_WrStr() is a

BSP-specific function that outputs each character of the string passed in the

parameter until it reaches the NULL character (“\0”). It terminates the string

with the Carriage Return symbol (“\r”) followed by the Line Feed symbol

(“\n”). The null is not transmitted.

You will also need to implement the task NDIT_TaskTerminal() which performs

Terminal I/O. It must be able to:

1 Receive a string from the serial interface.

2 Launch IPerf or other NDIT commands with the string received on the serial interface.

Listing 8-2 shows a Terminal I/O task example.

/*
**
* NDIT_TaskTerminal()
*
* Description : Task that reads the serial port input, processes the commands and verifies
* that the cmd has been correctly executed.
*
* Argument(s) : p_arg Pointer to task input parameter (unused).
*
* Return(s) : none.
*
* Caller(s) : AppTaskCreateTerminal().
*
* Note(s) : none.
**
*/
#if (NDIT_COM == NDIT_SERIAL_COM)
void NDIT_TaskTerminal (void *p_arg)
{
 CPU_CHAR cmd_str[TASK_TERMINAL_CMD_STR_MAX_LEN];
 CPU_SIZE_T cmd_len;
 NDIT_ERR err;

#if (IPERF_REPORTER == DEF_ENABLED)
 APP_TRACE_INFO(("\r\nTerminal I/O\r\n\r\n"));
 while (DEF_ON) {
 APP_TRACE(("\r\n> "));
 BSP_Ser_RdStr((CPU_CHAR *)&cmd_str[0], (1)
 (CPU_INT16U) TASK_TERMINAL_CMD_STR_MAX_LEN);
245

Using IPerf
Listing 8-2 Terminal I/O task

L8-2(1) Read string command from serial port.

L8-2(2) The command read from the serial port is processed and executed by the

NDIT_ProcessCommand() function.

L8-2(3) Verify test executed correctly based on the return error from the

NDIT_ProcessCommand() function.

L8-2(4) An error occurred during an IPerf test.

L8-2(5) An error occurred during a Multicast test.

 cmd_len = Str_Len(&cmd_str[0]);

 NDIT_ProcessCommand((CPU_CHAR *)&cmd_str[0], (2)
 (CPU_INT16U) cmd_len,
 (NDIT_OUT_FNCT)&NDIT_Output,
 (IPERF_OUT_FNCT)&NDIT_OutputFnct,
 (NDIT_ERR *)&err);

 switch(err) { (3)
 case NDIT_NO_ERR:
 case NDIT_ERR_NO_CMD:
 break;
 case NDIT_ERR_IPERF: (4)
 NDIT_Output(("Error in IPerf Test\r\n\r\n"));
 break;
 case NDIT_ERR_MCAST: (5)
 NDIT_Output(("Error in Mcast Test\r\n\r\n"));
 break;
 case NDIT_ERR_IFSS: (6)
 NDIT_Output(("Error in IFSS Test\r\n\r\n"));
 break;
 case NDIT_ERR_NO_MATCH: (7)
 NDIT_Output(("Command not recognized\r\n\r\n"));
 break;
 }
 }
#endif
}
#endif
246

Using IPerf
L8-2(6) An error occurred during an Interface Start/Stop test.

L8-2(7) The provided command was neither recognized by the IPerf, Multicast or

Interface Start/Stop test modules.

Note that you must initialize μC/IPerf before using the “Terminal Reporter.”

SERVER REPORTER ON THE TARGET

You can also use the network interface of your device to send commands to the NDIT. This

way, if you don't have a Serial Port on your device, you can still send commands and

receive results through the NDIT_TaskServer() task and NDIT_NetOutputFnct() display

function.

The source of NDIT_NetOutputFnct() is displayed in Listing 8-3:

/*
**
* NDIT_NetOutputFnct()
*
* Description : Outputs a string to the test host application.
*
* Argument(s) : p_buf Pointer to buffer to output.
*
* p_param Pointer to IPERF_OUT_PARAM object.
*
* Return(s) : none.
*
* Caller(s) : various.
*
* Note(s) : (1) The string pointed to by p_buf has to be NUL ('\0') terminated.
**
*/
#if (NDIT_COM == NDIT_NETWORK_COM)
void NDIT_NetOutputFnct (CPU_CHAR *p_buf,
 IPERF_OUT_PARAM *p_param)
{
 CPU_INT16U tx_len;
 NET_ERR net_err;

 (void)&p_param; (1)
247

Using IPerf
Listing 8-3 NDIT_NetOutputFnct display function

L8-3(1) Prevent “variable unused” compiler warning.

L8-3(2) Verify that the pointer is not null.

L8-3(3) Calculate buffer length.

L8-3(4) Send the buffer to the test station host using the test station host information

found in the DIS_TS_SockInfo global variable.

Listing 8-4 shows the NDIT_TaskServer() function, which reads the commands from the

test station host, processes them, and gives back the results to the test station host.

 if (p_buf == (CPU_CHAR *)0) { (2)
 return;
 }

 if (NDIT_TS_SockInfo.NetSockID != NET_SOCK_BSD_ERR_OPEN) {

 tx_len = (CPU_INT16U)Str_Len(p_buf); (3)

 (void)NetApp_SockTx ((NET_SOCK_ID) NDIT_TS_SockInfo.NetSockID, (4)
 (void *) p_buf,
 (CPU_INT16U) tx_len,
 (CPU_INT16S) NET_SOCK_FLAG_NONE,
 (NET_SOCK_ADDR *)&NDIT_TS_SockInfo.NetSockAddr,
 (NET_SOCK_ADDR_LEN) NDIT_TS_SockInfo.NetSockAddrLen,
 (CPU_INT16U) NDIT_SERVER_RETRY_MAX,
 (CPU_INT32U) NDIT_SERVER_DELAY_MS,
 (CPU_INT32U) NDIT_SERVER_DELAY_MS,
 (NET_ERR *)&net_err); }
 }
}
#endif
248

Using IPerf
typedef struct host_sock_info { (1)
 NET_SOCK_ID NetSockID;
 NET_SOCK_ADDR NetSockAddr;
 NET_SOCK_ADDR_LEN NetSockAddrLen;
} HOST_SOCK_INFO;
static HOST_SOCK_INFO NDIT_TS_SockInfo; (2)
/*
**
* NDIT_TaskServer()
*
* Description: This function creates a input/output ethernet communication link to use iPerf.
*
* Argument(s) : p_arg Pointer to arg. (unused)
*
* Return(s) : none.
*
* Caller(s) : NDIT_TaskCreateServer().
*
* Note(s) : (1) NDIT_COM must be defined to NDIT_NETWORK_COM in app_cfg.h for this function
to be used.
*
**
*/
#if (NDIT_COM == NDIT_NETWORK_COM)
void NDIT_TaskServer (void *p_arg)
{
 NET_SOCK_ID net_sock_id;
 NET_SOCK_ADDR_IP server_addr_port;
 NET_SOCK_ADDR client_addr_port;
 NET_SOCK_ADDR_LEN client_addr_port_len;
 CPU_CHAR buf[TASK_TERMINAL_CMD_STR_MAX_LEN];
 CPU_INT16S rx_len;
 CPU_BOOLEAN socket_connected;
 NET_ERR net_err;
 NDIT_ERR test_err;

 (void)&p_arg; (3)

 Mem_Clr((void *)&server_addr_port, (4)
 (CPU_SIZE_T) sizeof(server_addr_port));

 server_addr_port.AddrFamily = NET_SOCK_ADDR_FAMILY_IP_V4;
 server_addr_port.Port = NET_UTIL_HOST_TO_NET_16(NDIT_PORT);
 server_addr_port.Addr = NET_SOCK_ADDR_IP_WILDCARD;
249

Using IPerf
 while (DEF_TRUE){
 socket_connected = DEF_YES;

 net_sock_id = NetApp_SockOpen((NET_SOCK_PROTOCOL_FAMILY) NET_SOCK_FAMILY_IP_V4, (5)
 (NET_SOCK_TYPE) NET_SOCK_TYPE_DATAGRAM,
 (NET_SOCK_PROTOCOL) NET_SOCK_PROTOCOL_UDP,
 (CPU_INT16U) NDIT_SERVER_RETRY_MAX,
 (CPU_INT32U) NDIT_SERVER_DELAY_MS,
 (NET_ERR *)&net_err);

 if (net_err != NET_APP_ERR_NONE) {
 APP_TRACE_INFO(("\r\nFail to open socket.\r\n\r\n")); (6)
 socket_connected = DEF_NO;
 } else {

 (void)NetApp_SockBind((NET_SOCK_ID) net_sock_id, (7)
 (NET_SOCK_ADDR *)&server_addr_port,
 (NET_SOCK_ADDR_LEN) NET_SOCK_ADDR_SIZE,
 (CPU_INT16U) NDIT_SERVER_RETRY_MAX,
 (CPU_INT32U) NDIT_SERVER_DELAY_MS,
 (NET_ERR *)&net_err);

 if (net_err != NET_APP_ERR_NONE) {

 (void)NetApp_SockClose((NET_SOCK_ID) net_sock_id, (8)
 (CPU_INT32U) 0u,
 (NET_ERR *)&net_err);

 socket_connected = DEF_NO;
 }
 }

 while(socket_connected == DEF_YES) { (9)

 rx_len = NetApp_SockRx ((NET_SOCK_ID) net_sock_id, (10)
 (void *)&buf[0],
 (CPU_INT16U) TASK_TERMINAL_CMD_STR_MAX_LEN,
 (CPU_INT16U) 0,
 (CPU_INT16S) NET_SOCK_FLAG_NONE,
 (NET_SOCK_ADDR *)&client_addr_port,
 (NET_SOCK_ADDR_LEN *)&client_addr_port_len,
 (CPU_INT16U) 1,
 (CPU_INT32U) 0,
 (CPU_INT32U) 0,
 (NET_ERR *)&net_err);
250

Using IPerf
Listing 8-4 NDIT_TaskServer() task

 switch (net_err) {
 case NET_APP_ERR_CONN_CLOSED: (11)
 socket_connected = DEF_NO;
 break;
 case NET_APP_ERR_NONE:
 default:
 break;
 }

 NDIT_TS_SockInfo.NetSockID = net_sock_id; (12)
 NDIT_TS_SockInfo.NetSockAddr = client_addr_port;
 NDIT_TS_SockInfo.NetSockAddrLen = client_addr_port_len;

 buf[rx_len] = '\0';
 NDIT_NetOutput(&buf[0]); (13)
 NDIT_NetOutput(NEW_LINE);

 NDIT_ProcessCommand((CPU_CHAR *)&buf[0], (14)
 (CPU_INT16U) rx_len,
 (NDIT_OUT_FNCT)&NDIT_NetOutput,
 (IPERF_OUT_FNCT)&NDIT_NetOutputFnct,
 (NDIT_ERR *)&test_err);
 switch(test_err) { (15)
 case NDIT_NO_ERR:
 case NDIT_ERR_NO_CMD:
 break;
 case NDIT_ERR_IPERF:
 NDIT_NetOutput("\r\nError in IPerf Test\r\n\r\n"); (16)
 break;
 case NDIT_ERR_MCAST:
 NDIT_NetOutput("\r\nError in Mcast Test\r\n\r\n"); (17)
 break;
 case NDIT_ERR_IFSS:
 NDIT_NetOutput("\r\nError in IFSS Test\r\n\r\n"); (18)
 break;
 case NDIT_ERR_NO_MATCH:
 default:
 NDIT_NetOutput("\r\nCommand not recognized\r\n\r\n"); (19)
 break;
 }

 NDIT_Delay (0, 0, 0, 100);
 }
 }
}
#endif
251

Using IPerf
L8-4(1) Structure that contains the test station host socket id, socket address and socket

address length.

L8-4(2) The global variable that hold the necessary information for the NDIT display

function to return the test results and information messages to the test station

host.

L8-4(3) Prevent the “variable unused” warning from the compiler.

L8-4(4) Initialize NDIT Server Address and Port.

L8-4(5) Open socket for receiving host commands and publish results.

L8-4(6) An error has occurred during the opening of the socket.

L8-4(7) Bind the socket to a local port.

L8-4(8) If binding fails, close the socket.

L8-4(9) Server reading and command processing loop.

L8-4(10) Read the incoming command from the test station host.

L8-4(11) If socket is closed, then exit the while loop and restart connection process.

L8-4(12) Update remote host socket information for displaying test results and messages

to the test station host.

L8-4(13) Reply to test station for acknowledgement.

L8-4(14) The command read from the serial port is processed and executed by the

NDIT_ProcessCommand() function.

L8-4(15) Verify test executed correctly based on the return error from the

NDIT_ProcessCommand() function.

L8-4(16) An error occurred during an IPerf test.
252

IPerf Test Case
L8-4(17) An error occurred during a Multicast test.

L8-4(18) An error occurred during an Interface Start/Stop test.

L8-4(19) The provided command was neither recognized by the IPerf, Multicast or

Interface Start/Stop test modules.

8-5 IPERF TEST CASE

Once the target answers to ping requests on a switched network, you should perform

additional IPerf tests with the target connected directly to the test station, and on a network.

It is best to perform standard tests, and log the results into a device driver test result

document.

BUFFER LEAKS

For each IPerf test, make sure that your driver does not have any buffer leaks. If the driver

performance decrease over time, or if the driver suddenly stops, you might have a buffer

leak.

Buffer leaks can happen in many cases. The root cause of a buffer leak is when the

program loses track of memory allocation pointers. Assigning a newly allocated buffer to a

pointer without deallocating the previous memory block that the pointer associated with

will also cause a buffer leak. If no other pointer refers to that memory location, then there is

no way it can be deallocated in the future, and that memory block will remain unusable

unless the system is reset.

Transmit buffer leaks can be detected by having the target transmit a large buffer to the test

station using TCP. A good example would be an FTP test. If a given buffer is not transmitted

because it has leaked, the test station will request its retransmission by the target. This

operation should fail since the leaked buffer is lost.

In Figure 8-6, the test station (192.168.5.110) requests the retransmission of a lost segment

and the target (192.168.5.217) fails to retransmit it:
253

IPerf Test Case
Figure 8-6 Transmission Buffer Leak Example

NO RETRANSMISSION

Retransmissions should never happen unless they are requested by the communication

protocol. Erroneous retransmissions can happen if a transmitted buffer remains assigned to

a descriptor, and the buffer is not deallocated.

While performing performance tests on the target, you should use Wireshark or another

packet capture tool to monitoring the trafic. Unrequested packets retransmission can be

detected by searching for frames marked with “[This frame is a (suspected) retransmission]”

in Wireshark.

ADVERTISED WINDOW SIZE

The total memory available for the reception buffer should always be equal to or greater

than the window size advertised by the target. If it is not the case, the test station might

send too many packets before waiting for an acknowledge message, and the target might

lose packets. Loosing those packets will trigger a retransmission of the lost packets, and

thus slow down the data transfer.

PERFORMANCE RESULTS

You should log your driver performance in the driver document. This document is used as a

reference for support requests, so it’s very important to log performance when you write or

update a driver. The performance data that you should log is described in the following

sections.

Certain TCP/IP features reduce performance, so you should disable these features before

logging the results. The μC/TCP-IP configuration switches for these features are shown in

Listing 8-5, and can be found in net_cfg.h.
254

IPerf Test Case
Listing 8-5 Net Configuration for optimal performances

TASK PRIORITIES

In order to obtain the best possible performance for your tests, you should use appropriate

task priorities.

When setting up task priorities, we recommend that tasks that use μC/TCP-IP’s services be

given higher priorities than μC/TCP-IP’s internal tasks. However, application tasks that use

μC/TCP-IP should voluntarily relinquish the CPU on a regular basis. For example, they can

delay or suspend the tasks, or wait on μC/TCP-IP services. The purpose is to reduce

starvation issues when an application task sends a substantial amount of data.

We recommend that you configure the network interface Transmit De-allocation task with a

higher priority than all application tasks that use μC/TCP-IP network services; but configure

the Timer task and network interface Receive task with lower priorities than almost other

application tasks.

Listing 8-6 shows an example of task priorities and stack sizes for a typical device

performance measurement application.

Net Configuration:
#define NET_DBG_CFG_INFO_EN DEF_DISABLED
#define NET_DBG_CFG_STATUS_EN DEF_DISABLED
#define NET_DBG_CFG_MEM_CLR_EN DEF_DISABLED
#define NET_DBG_CFG_TEST_EN DEF_DISABLED
#define NET_ERR_CFG_ARG_CHK_EXT_EN DEF_DISABLED
#define NET_ERR_CFG_ARG_CHK_DBG_EN DEF_DISABLED
#define NET_CTR_CFG_STAT_EN DEF_DISABLED
#define NET_CTR_CFG_ERR_EN DEF_DISABLED
#define NET_IF_CFG_LOOPBACK_EN DEF_DISABLED
#define NET_ICMP_CFG_TX_SRC_QUENCH_EN DEF_DISABLED
255

IPerf Test Case
Listing 8-6 Example of task priorities and stack sizes

*
**
* TASK PRIORITIES
**
*/
#define IPERF_OS_CFG_TASK_PRIO 11u
#define APP_TASK_START_PRIO 13u
#define NDIT_TASK_TERMINAL_PRIO 15u
#define NDIT_TASK_MULTICAST_PRIO 12u
#define NDIT_TASK_SERVER_PRIO 16u
#define NET_OS_CFG_IF_TX_DEALLOC_TASK_PRIO 2u
#define NET_OS_CFG_TMR_TASK_PRIO 15u
#define NET_OS_CFG_IF_RX_TASK_PRIO 18u
#define NDIT_MCAST_TASK_PRIO 20u
/*
**
* TASK STACK SIZES
* Size of the task stacks (# of OS_STK entries)
**
*/
#define APP_TASK_START_STK_SIZE 128u
#define NDIT_TASK_TERMINAL_STK_SIZE 512u
#define IPERF_OS_CFG_TASK_STK_SIZE 512u
#define NDIT_TASK_SERVER_STK_SIZE 512u
#define NDIT_MCAST_TASK_STK_SIZE 512u
#define NET_OS_CFG_TMR_TASK_STK_SIZE 512u
#define NET_OS_CFG_IF_TX_DEALLOC_TASK_STK_SIZE 128u
#define NET_OS_CFG_IF_RX_TASK_STK_SIZE 512u
256

IPerf Test Case
8-5-1 TESTING UDP TRANSMISSION

The first IPerf test you should perform is UDP transmission. Your target must be able to

transmit UDP packets reliably and with acceptable throughput. Also, your target must be

able to transmit packets that have the maximum UDP packet length, which is 1472 bytes

(make sure to have the correct Transmit buffer size).

TEST: TRANSMIT UDP PACKET (1472 BYTES) USING NDIT

Selecting the UDPc test tab in the main NDIT window. The UDPc test tab appears:

Figure 8-7 UDPc test tab

There are three options for this test. The first is the size of the datagram (either a single 1472

or a sweep of multiple packets that are 64, 128, 256, 512, 1024 and 1472 bytes in size). The

second option is the number of times the test is repeated. The third is the test duration (in

seconds), which is located in the General Options tab.

EXPECTED RESULTS

■ Highest throughput possible.

Although it is difficult to estimate the achievable throughput with a particular device, it

is possible to compare with other drivers sharing roughly the same quantity of network

buffers or processor speed.

Table 8-1 shows an example of performance results for different devices and

configurations:
257

IPerf Test Case
Table 8-1 UDPc Performance Example

Tweaking the task priorities might help increasing the throughput out the network

driver.

■ Few transitory errors.

Transitory errors are errors that temporarily prevent the transmission of packets.

Transitory errors are often recoverable. These errors include:

■ Trying to receive on a socket where the host has disconnected prematurely.

■ Trying to receive on a socket before the network initialization is completed.

■ Trying to receive on a socket that is in use by another process.

To solve these issues, make sure that you use valid parameters for your tests. Make sure

that the resources you use are still valid, and not already used by another task.

Development Board Device 1 Device 2

CPU Speed 72 MHz 70 MHz

CPU Architecture ARM® Cortex-M3™ ARM® Cortex-M4™

Tx Buffers 4 3

Tx Descr. 4 3

64 byte Datagram

Socket Call 44253 29994

Throughput (Mbps) 2.265 1.535

1472 byte Datagram

Socket Call 31245 29991

Throughput (Mbps) 36.794 35.317
258

IPerf Test Case
■ Ability to send packets with a size equal to the MTU.

To find out the MTU size for your network type, enter the following command in the

command shell in Windows:

netsh interface ipv4 show subinterfaces

The results you should get is something like this:

In the above example, the MTU size is set to 1500 for all the network interfaces. For this

reason, we use 1472 bytes as the length for the payload in our UDP test. Since the

MAC-IP-UDP headers account for 28 bytes that leaves 1472 bytes left for the payload.

In subsequent TCP tests, we use a value of 1460 or multiple of that value to set buffer

sizes, window sizes, and so on. Since the size of the TCP header is slightly larger than

the UDP header, this yields a smaller payload.

■ Comparable results for the target directly connected, or on a network.

■ No buffer leaks.

See section “Buffer leaks” on page 253 for more details.

■ Logging performance results (with the target directly connected, and networked).

Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:\Users\user01>netsh interface ipv4 show subinterfaces
 MTU MediaSenseState Bytes In Bytes Out Interface
---------- --------------- --------- --------- -------------
 1500 5 0 0 Wireless Network Connection
 1500 5 0 0 Local Area Connection
 1500 1 693970658 90284509 Local Area Connection 2
259

IPerf Test Case
8-5-2 TESTING UDP RECEPTION

Your target must be able to receive UDP packets reliably and with acceptable throughput.

It must also be able to receive UDP packets with a size equal to the MTU.

TEST 1: MAXIMUM BANDWIDTH RECEIVE UDP TEST USING NDIT

Select the UDPs test tab in the NDIT main window. The UDP test tab appears

The first test we suggest you to run is a 100 Mbps, 1472-byte payload test. It is the most

demanding test in terms of data reception, as UDP is a light transport protocol and the CPU

will be strained with a flood of UDP datagrams.

Figure 8-8 shows the UDPs test tab.

Figure 8-8 UDPs test tab

There are four options for the UDP receive test:

Input Bandwidth To test at a single bandwidth, set the Start and Stop values to the

same bandwidth value. Values are in megabits per seconds.

If the Start and Stop values are different, a UDP receive test will

be launch with the Start bandwidth. The bandwidth of the

subsequent tests will increase by the value of Increment until the

Stop bandwidth is reached.

Iterations NDIT will repeat the UDP receive test and its conditions for the

specified number of times.
260

IPerf Test Case
Payload Size 1472 bytes is maximum value for the payload size, and will

maximize throughput.

Multi Size Sweep will repeat the test with payloads of 64, 128,

256, 512, 1024 and 1472 bytes.

Test Duration This option can be found in the General Options tab.

EXPECTED RESULTS

■ Highest throughput possible

Although it is difficult to estimate the achievable throughput with a particular device, it

is possible to compare with other drivers sharing roughly the same quantity of network

buffers or processor speed.

Listing 8-7 UDPs Performance Example

There is also a practical limit at which the network driver can operate. At one point, as

you increase the input data rate, the network driver will be overwhelmed and will start

dropping the excess of packets it cannot handle.

Development Board Device 1 Device 2

CPU Speed 72 MHz 70 MHz

CPU Architecture ARM® Cortex-M3™ ARM® Cortex-M4™

Rx Buffers 4 3

Rx Descr. 4 3

64 byte Datagram

Socket Call 33144 58652

Throughput (Mbps) 1.695 3.002

1472 byte Datagram

Socket Call 27915 31788.91

Throughput (Mbps) 32.866 37.433
261

IPerf Test Case
As shown in Figure 8-9, there is a point where the rate of increase in throughput will

slow down, and the error rate will increase until the throughput reaches its limit.

Depending on the driver’s architecture, increasing the input data rate will decrease the

performances of the driver. This is due to an increase in the number of receive

interrupts that have to be handled.

Figure 8-9 Throughput and Error Rate

■ Few transitory errors.

See the section on transitory errors on page 258 for more information.

■ Low packet loss.

Packet loss should begin to happen only near or after the driver reached maximum

throughput (close to 32 Mbps as in the example in Figure 8-9). If there is a constant

packet loss throughout the input data rate range, than something is wrong.

■ Ability to receive packets with a size equal to the MTU.

See the section on sending packets on page 259 for more information.

■ Similar results with target directly connected and on a network.

Unless there is a heavy broadcasting of packets on the real network, the results should

be fairly similar.
262

IPerf Test Case
■ No buffer leaks.

See section “Buffer leaks” on page 253 for more details.

■ Logging performance results (with the target directly connected, and networked).

TEST 2: PAYLOAD SIZE SWEEP RECEIVE UDP TEST USING NDIT

This test is similar to the previous one, except that we are modifying the size of the payload

received by the target. We will set the payload size to 64, 128, 256, 512 and 1024 bytes. By

reducing the size of the packet, we can increase the number of packets processed by the

target in the same amount of time. By using a payload size of 64 bytes (the smallest payload

for a Ethernet frame) you can get the maximum packet rate that you driver can handle.

EXPECTED RESULTS

■ Highest throughput possible

Once again predicting the achievable throughput might be difficult. As the length of the

payload decreases, the packet rate increases to sustain the required data rate. This

decrease is likely due to the fact that it is more time consuming to execute the

μC/TCP-IP module operation than the transfer the packet from the network device to

the processor memory.

■ Few transitory errors

See the section on transitory errors on page 258 for more information.

■ Ability to send packets with a size equal to the MTU.

See the section on sending packets on page 259 for more information.

■ Similar results with the target directly connected and on a network.

■ No buffer leaks

See section “Buffer leaks” on page 253 for more details.

■ Logging performance results (with the target directly connected, and networked).
263

IPerf Test Case
8-5-3 TESTING TCP TRANSMISSION

Your target must be able to transmit TCP packets reliably, and with acceptable throughput.

You should also validate the driver with various TCP window sizes.

TRANSMIT TCP TEST USING NDIT

This test measures the capacity of the target to send packets to a server located on the test

station. To optimize performance, the value of NET_TCP_CFG_TX_WIN_SIZE_OCTET in

net_cfg.h should be set to the number of transmit descriptors multiplied by 1460 bytes.

The TCP Transmit Window Size should be set to the target's number of transmit buffers

multiplied by 1460 bytes.

Select the TCPc test tab in the NDIT main window. The TCP transmit test panel appears.

Figure 8-10 TCPc test tab

There are four options for the TCP transmit test:

Buffer Size The length of the buffer to transmit.

Tx Window Size The size of the transmit socket window on the target host.

Rx Window Size The size of the receive socket window on the test station.

Test Duration Located in the General Options tab.
264

IPerf Test Case
EXPECTED RESULTS

■ Highest throughput possible

Although it is difficult to estimate the achievable throughput with a particular device, it

is possible to compare with other drivers sharing roughly the same quantity of network

buffers or processor speed. Tweaking the task priorities might help increasing the

throughput out the network driver.

■ Few transitory errors. See the section on transitory errors on page 258 for more

information.

■ No retransmission. See the section on retransmission on page 254 for more details.

■ No buffer leaks. See section “Buffer leaks” on page 253 for more details.

■ Logging performance results (with the target directly connected, and networked).

8-5-4 TESTING TCP RECEPTION

Along with the reception of UDP traffic, you should test your device driver for TCP traffic.

The following are two tests that measure the driver performance under different conditions.

TEST 1: RECEIVE TCP TEST WITH USING NDIT

To achieve the best possible throughput, you might have to increase the number of receive

descriptors and receive buffers. On the other hand, it is also possible to reserve too many

buffers for reception. To find out the ideal number of descriptors and buffers, there are two

things you need to measure.

First, you must determine the rate at which the target can receive data. This value, in bits

per second, will be referred to as the bandwidth. You can obtain this value by running the

receive UDP test.

Second, you must determine the round trip time (RTT) of a message between the test

station and the target. This is achieved by sending an ICMP echo request to the target and

measuring the RTT of the reply. You can use ping (or preferably fping) to acquire this value.
265

IPerf Test Case
Then take these two value and multiply them to determine the Bandwidth-Delay Product.

BDP (bytes) = total_available_bandwidth (KBytes/sec) • round_trip_time (ms)

The BDP is approximately equal to the Receive TCP Window Size. It is recommended to

round up the calculated value to a multiple of the Maximum Segment Size (MSS), typically

1460 bytes.

For example, the bandwidth of a test station-target link is 32.461 Mbps as found by the

Receive UDP test. The measured RTT is 0.9 millisecond. It gives us a BDP of 28315 bits

(32.461 Mbps x 0.9 ms) or 3539 bytes. Rounding up this result to a multiple of the MSS

value gives us 4380 bytes. If the combined size of the receive buffers cannot hold the BDP,

the receive buffers must be increased in order to have optimal performances. It is important

to increase the number of receive descriptors (RxDescNbr) accordingly.

Figure 8-11 TCPs test tab

There are four options for the TCP receive test:

Rx Window Size The size of the receive socket window on the target host.

Buffer Size The length of the buffer to transmit to the target.

Tx Window Size The size of the transmit socket window on the test station.

Test Duration Located in the General Options tab.
266

IPerf Test Case
The TCPs test parameters must be adjusted to the following: both Buffer Size and

Tx Window Size should be set to 65500. These settings will minimize the overhead of

socket creation on the test station, and make full use of the available processing power of

the target. The Receive Window Size must be set to the value of the BDP, rounded up to a

multiple of the MSS.

You should set the TCP Receive Window size in net_cfg.h as follows:

#define NET_TCP_CFG_RX_WIN_SIZE_OCTET (RxDescNbr * 1460)u

EXPECTED RESULTS

■ Driver throughput should be optimized.

■ Few transitory errors.

See the section on transitory errors on page 258 for more information.

■ No retransmission.

See the section on retransmission on page 254 for more details.

■ The messages “Window update”, “Zero window” and “Window probe” are acceptable.

These messages are part of a flow control mechanism that prevents the receiver from

getting more packets that it can actually handle, or for the transmitter to wait

indefinitely for acknowledgement to resume the transmission.

■ No buffer leaks.

See section “Buffer leaks” on page 253 for more details.

■ Logging performance results (with the target directly connected, and networked).
267

Multicast
8-6 MULTICAST

Multicast is a routing scheme that enables data delivery to a group of hosts. Multicast allows

the source to transmit the data once, while routers in the network take care of duplicating

the data and transmitting it to the registered hosts. Multicast requires UDP support. TCP is

not designed to work with Multicast, but there are some reliable Multicast protocols that can

replace TCP such as Pragmatic General Multicast (PGM).

8-6-1 MULTICAST TEST SETUP

In order for multicast to work, the source and the destination must be linked by

multicast-enabled routers. Multicast cannot operate when the target is directly connected to

the test station. Moreover, the router(s) between the target and the test station must support

the IGMP protocol.

The goal of this test is to validate that the driver properly configures the MAC filter to allow

the multicast packets to be passed by the μC/TCP-IP module when the target is registered to

a multicast group. Also, the test ensures that, when the target is unregistered from the

multicast group, multicast packets are dropped by the MAC filter.

The following steps are performed by NDIT to validate the behavior of the driver:

■ Register the target to an IP multicast group.

■ Have the test station send a packet to the IP multicast group.

■ Upon reception of the multicast packet, the target replies to the test station to

acknowledge the reception of the multicast packet.

■ Unregister the target from the IP multicast group.

■ Have the test station to send a packet to the IP multicast group.

■ Verify that, after a certain timeout, no reply was received by the test station.
268

Multicast
8-6-2 MULTICAST TEST USING NDIT

This section describes how to run a multicast test using NDIT. Select the Multicast test tab in

the NDIT main window. The Multicast test panel appears.

Figure 8-12 Multicast test tab

There are two options for the multicast test:

Group Address The Group IP multicast address at which the test station will

send the packets.

UDP Port The UDP port at which the packets will be delivered.

To run a multicast test, click either the Single or IP Range button in the Launch Text box.

Clicking the Single button will send a command to the target to create an IGMP Join request

for the specified Group Address, and create a UDP socket that listens for incoming traffic on

the specified UDP port. Upon receiving a packet on the specified UDP port, the target will

reply to the packet source with the received payload. In return, NDIT will listen to the target

reply, and determine if the multicast test was successful.

Clicking the IP Range button will do the exact same test as the Single button, but will do the

test for the IP address range from xxx.xxx.xxx.0 to xxx.xxx.xxx.255
269

Multicast
8-6-3 ANALYZING THE RESULTS

The Mcast Reply column contains two results. The first one refers to the success of the

reception of a multicast message while it is registered to the specified IP multicast group.

The second one refers to the success of the multicast message being not received while the

target is unregistered from the specified IP multicast group.

ROUND-TRIP TIME

PING RESULTS

Payload size
Average Round-Trip

Time (ms)

32

64

128

256

512

1024

1464

ICMP Payload Size
Round Trip

Time (ms)
270

Multicast
UDP SERVER

UDP CLIENT

TCP SERVER

Payload size Socket Calls Packets Lost Throughput (Mbps)

64

128

256

512

1024

1472

Payload size Socket Calls Throughput (Mbps)

64

128

256

512

1024

1472

Buffer size Socket Calls Throughput (Mbps)

1460

2920

4380

5840

7300

8192
271

Multicast
TCP CLIENT

Buffer size Socket Calls Throughput (Mbps)

1460

2920

4380

5840

7300

8192
272

Chapter

9

Socket Programming

The two network socket interfaces supported by μC/TCP-IP were previously introduced.

Now, in this chapter, we will discuss socket programming, data structures, and API

functions calls.

9-1 NETWORK SOCKET DATA STRUCTURES

Communication using sockets requires configuring or reading network addresses from

network socket address structures. The BSD socket API defines a generic socket address

structure as a blank template with no address-specific configuration…

Listing 9-1 Generic (non-address-specific) address structures

…as well as specific socket address structures to configure each specific protocol address

family’s network address configuration (e.g., IPv4 socket addresses):

struct sockaddr { /* Generic BSD socket address structure */
 CPU_INT16U sa_family; /* Socket address family */
 CPU_CHAR sa_data[14]; /* Protocol-specific address informatio */
};

typedef struct net_sock_addr { /* Generic µC/TCP-IP socket address structure */
 NET_SOCK_ADDR_FAMILY AddrFamily;
 CPU_INT08U Addr[NET_SOCK_BSD_ADDR_LEN_MAX = 14];
} NET_SOCK_ADDR;
273

Network Socket Data Structures
Listing 9-2 Internet (IPv4) address structures

A socket address structure’s AddrFamily/sa_family/sin_family value must be

read/written in host CPU byte order, while all Addr/sa_data values must be read/written in

network byte order (big endian).

Even though socket functions – both μC/TCP-IP and BSD – pass pointers to the generic

socket address structure, applications must declare and pass an instance of the specific

protocol’s socket address structure (e.g., an IPv4 address structure). For microprocessors

that require data access to be aligned to appropriate word boundaries, this forces compilers

to declare an appropriately-aligned socket address structure so that all socket address

members are correctly aligned to their appropriate word boundaries.

Caution: Applications should avoid, or be cautious when, declaring and configuring a

generic byte array as a socket address structure, since the compiler may not correctly align

the array to or the socket address structure’s members to appropriate word boundaries.

Figure 9-1 shows an example IPv4 instance of the μC/TCP-IP NET_SOCK_ADDR_IP
(sockaddr_in) structure overlaid on top of NET_SOCK_ADDR (sockaddr) the structure.

struct in_addr {
 NET_IP_ADDR s_addr; /* IPv4 address (32 bits) */
};

struct sockaddr_in { /* BSD IPv4 socket address structure */
 CPU_INT16U sin_family; /* Internet address family (e.g. AF_INET) */
 CPU_INT16U sin_port; /* Socket address port number (16 bits) */
 struct in_addr sin_addr; /* IPv4 address (32 bits) */
 CPU_CHAR sin_zero[8]; /* Not used (all zeroes) */
};

typedef struct net_sock_addr_ip { /* µC/TCP-IP socket address structure */
 NET_SOCK_ADDR_FAMILY AddrFamily;
 NET_PORT_NBR Port;
 NET_IP_ADDR Addr;
 CPU_INT08U Unused[NET_SOCK_ADDR_IP_NBR_OCTETS_UNUSED = 8];
} NET_SOCK_ADDR_IP;
274

Network Socket Data Structures
Figure 9-1 NET_SOCK_ADDR_IP is the IPv4 specific instance of the generic NET_SOCK_ADDR data structure

A socket could configure the example socket address structure in Figure 9-1 to bind on IP

address 10.10.1.65 and port number 49876 with the following code:

Listing 9-3 Bind on 10.10.1.65

† The address of the specific IPv4 socket address structure is cast to a pointer to the generic socket address structure.

NET_SOCK_ADDR_IP addr_local;
NET_IP_ADDR addr_ip;
NET_PORT_NBR addr_port;
NET_SOCK_RTN_CODE rtn_code;
NET_ERR err;

addr_ip = NetASCII_Str_to_IP(“10.10.1.65”, &err);
addr_port = 49876;
Mem_Clr((void *)&addr_local,
 (CPU_SIZE_T) sizeof(addr_local));
addr_local.AddrFamily = NET_SOCK_ADDR_FAMILY_IP_V4; /* = AF_INET†† Figure 9-1 */
addr_local.Addr = NET_UTIL_HOST_TO_NET_32(addr_ip);
addr_local.Port = NET_UTIL_HOST_TO_NET_16(addr_port);
rtn_code = NetSock_Bind((NET_SOCK_ID) sock_id,
 (NET_SOCK_ADDR *)&addr_local, /* Cast to generic addr† */
 (NET_SOCK_ADDR_LEN) sizeof(addr_local),
 (NET_ERR *)&err);

� !"#$�%"����"��

� !"#$�%"����

������� ������� ������� �������

�������	
��� �����������
������

����

�����
�!�"# ����� ��$%�$%��#& ������� ��''�(�����

�������	
��� ������
�����������

������ ����
�������

������������������
�

275

Complete send() Operation
9-2 COMPLETE SEND() OPERATION

send() returns the number of bytes actually sent out. This might be less than the number

that are available to send. The function will send as much of the data as it can. The

developer must make sure that the rest of the packet is sent later.

Listing 9-4 Completing a send()

L9-4(1) Send as many bytes as there are transmit network buffers available.

L9-4(2) Increase the number of bytes sent.

L9-4(3) Calculate how many bytes are left to send.

This is another example that, for a TCP/IP stack to operate smoothly, sufficient memory to

define enough buffers for transmission and reception is a design decision that requires

attention if optimum performance for the given hardware is desired.

{
 int total = 0; /* how many bytes we've sent */
 int bytesleft = *len; /* how many we have left to send */
 int n;

 while (total < *len) {
 n = send(s, buf + total, bytesleft, 0); (1)
 if (n == -1) {
 break;
 }
 total += n; (2)
 bytesleft -= n; (3)
 }
}
276

Socket Applications
9-3 SOCKET APPLICATIONS

Two socket types are identified: Datagram sockets and Stream sockets. The following

sections provide sample code describing how these sockets work.

In addition to the BSD 4.x sockets application interface (API), the μC/TCP-IP stack gives the

developer the opportunity to use Micrium’s own socket functions with which to interact.

Although there is a great deal of similarity between the two APIs, the parameters of the two

sets of functions differ slightly. The purpose of the following sections is o give developers a

first look at Micrium’s functions by providing concrete examples of how to use the API.

For those interested in BSD socket programming, there are plenty of books, online

references, and articles dedicated to this subject.

The examples have been designed to be as simple as possible. Hence, only basic error

checking is performed. When it comes to building real applications, those checks should be

extended to deliver a product that is as robust as possible.
277

Socket Applications
9-3-1 DATAGRAM SOCKET (UDP SOCKET)

Figure 9-2 reproduces a diagram that introduces sample code using the typical socket

functions for a UDP client-server application. The example uses the Micrium proprietary

socket API function calls. A similar example could be written using the BSD socket API.

Figure 9-2 μC/TCP-IP Socket calls used in a typical UDP client-server application

The code in Listing 9-5 implements a UDP server. It opens a socket and binds an IP address,

listens and waits for a packet to arrive at the specified port. See Appendix C, “μC/TCP-IP

API Reference” on page 417 for a list of all μC/TCP-IP socket API functions.

&�� ����	� &�� #��'��

)����*�+,��-.)����*�+,��-.

)����*��/��-.

)����*��0����1��2()

)����*�30����3�()

)����*��0����1��2()

)����*�30����3�()

)����*��'���()

���������*����+��������,��*������	�

-����	��� .�
�, ��������'�.
���(��+��������#��'��)

���(����/��������	�)

��	�

#��'���
����
��+�����

����
��+�����
278

Socket Applications
DATAGRAM SERVER (UDP SERVER)

#define UDP_SERVER_PORT 10001
#define RX_BUF_SIZE 15
CPU_BOOLEAN TestUDPServer (void)
{
 NET_SOCK_ID sock;
 NET_SOCK_ADDR_IP server_sock_addr_ip;
 NET_SOCK_ADDR_LEN server_sock_addr_ip_size;
 NET_SOCK_ADDR_IP client_sock_addr_ip;
 NET_SOCK_ADDR_LEN client_sock_addr_ip_size;
 NET_SOCK_RTN_CODE rx_size;
 CPU_CHAR rx_buf[RX_BUF_SIZE];
 CPU_BOOLEAN attempt_rx;
 NET_ERR err;

 sock = NetSock_Open(NET_SOCK_ADDR_FAMILY_IP_V4, (1)
 NET_SOCK_TYPE_DATAGRAM,
 NET_SOCK_PROTOCOL_UDP,
 &err);
 if (err != NET_SOCK_ERR_NONE) {
 return (DEF_FALSE);
 }

 server_sock_addr_ip_size = sizeof(server_sock_addr_ip); (2)
 Mem_Clr((void *)&server_sock_addr_ip,
 (CPU_SIZE_T) server_sock_addr_ip_size);
 server_sock_addr_ip.AddrFamily = NET_SOCK_ADDR_FAMILY_IP_V4;
 server_sock_addr_ip.Addr = NET_UTIL_HOST_TO_NET_32(NET_SOCK_ADDR_IP_WILD_CARD);
 server_sock_addr_ip.Port = NET_UTIL_HOST_TO_NET_16(UDP_SERVER_PORT);

 NetSock_Bind((NET_SOCK_ID) sock, (3)
 (NET_SOCK_ADDR *)&server_sock_addr_ip,
 (NET_SOCK_ADDR_LEN) NET_SOCK_ADDR_SIZE,
 (NET_ERR *)&err);
 if (err != NET_SOCK_ERR_NONE) {
 NetSock_Close(sock, &err);
 return (DEF_FALSE);
 }
279

Socket Applications
Listing 9-5 Datagram Server

L9-5(1) Open a datagram socket (UDP protocol).

L9-5(2) Populate the NET_SOCK_ADDR_IP structure for the server address and port, and

convert it to network order.

L9-5(3) Bind the newly created socket to the address and port specified by

server_sock_addr_ip.

 do {
 client_sock_addr_ip_size = sizeof(client_sock_addr_ip);

 rx_size = NetSock_RxDataFrom((NET_SOCK_ID) sock, (4)
 (void *) rx_buf,
 (CPU_INT16S) RX_BUF_SIZE,
 (CPU_INT16S) NET_SOCK_FLAG_NONE,
 (NET_SOCK_ADDR *)&client_sock_addr_ip,
 (NET_SOCK_ADDR_LEN *)&client_sock_addr_ip_size,
 (void *) 0,
 (CPU_INT08U) 0,
 (CPU_INT08U *) 0,
 (NET_ERR *)&err);
 switch (err) {
 case NET_SOCK_ERR_NONE:
 attempt_rx = DEF_NO;
 break;
 case NET_SOCK_ERR_RX_Q_EMPTY:
 case NET_OS_ERR_LOCK:
 attempt_rx = DEF_YES;
 break;
 default:
 attempt_rx = DEF_NO;
 break;
 }
 } while (attempt_rx == DEF_YES);

 NetSock_Close(sock, &err); (5)

 if (err != NET_SOCK_ERR_NONE) {
 return (DEF_FALSE);
 }

 return (DEF_TRUE);
}

280

Socket Applications
L9-5(4) Receive data from any host on port DATAGRAM_SERVER_PORT.

L9-5(5) Close the socket.

DATAGRAM CLIENT (UDP CLIENT)

The code in Listing 9-6 implements a UDP client. It sends a ‘Hello World!’ message to a

server that listens on the UDP_SERVER_PORT.

#define UDP_SERVER_IP_ADDR "192.168.1.100"
#define UDP_SERVER_PORT 10001
#define UDP_SERVER_TX_STR "Hello World!"

CPU_BOOLEAN TestUDPClient (void)
{
 NET_SOCK_ID sock;
 NET_IP_ADDR server_ip_addr;
 NET_SOCK_ADDR_IP server_sock_addr_ip;
 NET_SOCK_ADDR_LEN server_sock_addr_ip_size;
 CPU_CHAR *pbuf;
 CPU_INT16S buf_len;
 NET_SOCK_RTN_CODE tx_size;
 NET_ERR err;
 pbuf = UDP_SERVER_TX_STR;
 buf_len = Str_Len(UDP_SERVER_TX_STR);

 sock = NetSock_Open(NET_SOCK_ADDR_FAMILY_IP_V4, (1)
 NET_SOCK_TYPE_DATAGRAM,
 NET_SOCK_PROTOCOL_UDP,
 &err);
 if (err != NET_SOCK_ERR_NONE) {
 return (DEF_FALSE);
 }

 server_ip_addr = NetASCII_Str_to_IP(UDP_SERVER_IP_ADDR, &err); (2)
 if (err != NET_ASCII_ERR_NONE) {
 NetSock_Close(sock, &err);
 return (DEF_FALSE);
 }
281

Socket Applications
Listing 9-6 Datagram Client

L9-6(1) Open a datagram socket (UDP protocol).

L9-6(2) Convert an IPv4 address from ASCII dotted-decimal notation to a network

protocol IPv4 address in host-order.

L9-6(3) Populate the NET_SOCK_ADDR_IP structure for the server address and port, and

convert it to network order.

L9-6(4) Transmit data to host DATAGRAM_SERVER_IP_ADDR on port

DATAGRAM_SERVER_PORT.

L9-6(5) Close the socket.

 server_sock_addr_ip_size = sizeof(server_sock_addr_ip); (3)
 Mem_Clr((void *)&server_sock_addr_ip,
 (CPU_SIZE_T) server_sock_addr_ip_size);
 server_sock_addr_ip.AddrFamily = NET_SOCK_ADDR_FAMILY_IP_V4;
 server_sock_addr_ip.Addr = NET_UTIL_HOST_TO_NET_32(server_ip_addr);
 server_sock_addr_ip.Port = NET_UTIL_HOST_TO_NET_16(UDP_SERVER_PORT);

 tx_size = NetSock_TxDataTo((NET_SOCK_ID) sock,
(4)
 (void *) pbuf,
 (CPU_INT16S) buf_len,
 (CPU_INT16S) NET_SOCK_FLAG_NONE,
 (NET_SOCK_ADDR *)&server_sock_addr_ip,
 (NET_SOCK_ADDR_LEN) sizeof(server_sock_addr_ip),
 (NET_ERR *)&err);

 NetSock_Close(sock, &err); (5)
 if (err != NET_SOCK_ERR_NONE) {
 return (DEF_FALSE);
 }
 return (DEF_TRUE);
}

282

Socket Applications
9-3-2 STREAM SOCKET (TCP SOCKET)

Figure 9-3 reproduces Figure 8-8, which introduced sample code using typical socket

functions for a TCP client-server application. The example uses the Micrium proprietary socket

API function calls. A similar example could be written using the BSD socket API.

Typically, after a TCP server starts, TCP clients can connect and send requests to the server.

A TCP server waits until client connections arrive and then creates a dedicated TCP socket

connection to process the client’s requests and reply back to the client (if necessary). This

continues until either the client or the server closes the dedicated client-server connection.

Also while handling multiple, simultaneous client-server connections, the TCP server can

wait for new client-server connections

Figure 9-3 μC/TCP-IP Socket calls used in a typical TCP client-server application

!�� ����	� !�� #��'��

)����*�+,��-.)����*�+,��-.

)����*��/��-.

)����*��0����())����*�30����()

)����*��0����()

)����*�30����()

)����*��'���()

���������*����+��������,��*������	�

-����	����.����������'�.

���(��+��������#��'��)

���(����/��������	�)

��	�

#��'���
����
��+�����

����
��+�����

)����*�4/����-.

)����*�����,�-.)����*�����-.

-����	����.����������'�.

)����*��'���()
��	�

#��'��������	�����
��*�����		�����	

��0����1��������.���
*	.����*����		�����	

 �
�2
���
*��
�	
	�
���
�	

!�
���
*��
�30
/
�*
	.
�*
1
�

-����	��������	�
��		�����	����
���2���*�.
283

Socket Applications
STREAM SERVER (TCP SERVER)

This example presents a very basic client-server application over a TCP connection. The

server presented is simply waits for a connection and send the string ‘Hello World!’. See

section “μC/TCP-IP API Reference” on page 417 for a list of all μC/TCP-IP socket

API functions.

#define TCP_SERVER_PORT 10000
#define TCP_SERVER_CONN_Q_SIZE 1
#define TCP_SERVER_TX_STR "Hello World!"

CPU_BOOLEAN TestTCPServer (void)
{
 NET_SOCK_ID sock_listen;
 NET_SOCK_ID sock_req;
 NET_SOCK_ADDR_IP server_sock_addr_ip;
 NET_SOCK_ADDR_LEN server_sock_addr_ip_size;
 NET_SOCK_ADDR_IP client_sock_addr_ip;
 NET_SOCK_ADDR_LEN client_sock_addr_ip_size;
 CPU_BOOLEAN attempt_conn;
 CPU_CHAR *pbuf;
 CPU_INT16S buf_len;
 NET_SOCK_RTN_CODE tx_size;
 NET_ERR err;
 pbuf = TCP_SERVER_TX_STR;
 buf_len = Str_Len(TCP_SERVER_TX_STR);

 sock_listen = NetSock_Open(NET_SOCK_ADDR_FAMILY_IP_V4, (1)
 NET_SOCK_TYPE_STREAM,
 NET_SOCK_PROTOCOL_TCP,
 &err);
 if (err != NET_SOCK_ERR_NONE) {
 return (DEF_FALSE);
 }

 server_sock_addr_ip_size = sizeof(server_sock_addr_ip); (2)
 Mem_Clr((void *)&server_sock_addr_ip,
 (CPU_SIZE_T) server_sock_addr_ip_size);
 server_sock_addr_ip.AddrFamily = NET_SOCK_ADDR_FAMILY_IP_V4;
 server_sock_addr_ip.Addr = NET_UTIL_HOST_TO_NET_32(NET_SOCK_ADDR_IP_WILD_CARD);
 server_sock_addr_ip.Port = NET_UTIL_HOST_TO_NET_16(TCP_SERVER_PORT);
284

Socket Applications
 NetSock_Bind((NET_SOCK_ID) sock_listen, (3)
 (NET_SOCK_ADDR *)&server_sock_addr_ip,
 (NET_SOCK_ADDR_LEN) NET_SOCK_ADDR_SIZE,
 (NET_ERR *)&err);
 if (err != NET_SOCK_ERR_NONE) {
 NetSock_Close(sock_listen, &err);
 return (DEF_FALSE);
}

 NetSock_Listen(sock_listen, (4)
 TCP_SERVER_CONN_Q_SIZE,
 &err);
 if (err != NET_SOCK_ERR_NONE) {
 NetSock_Close(sock_listen, &err);
 return (DEF_FALSE);
 }

 do {
 client_sock_addr_ip_size = sizeof(client_sock_addr_ip);

 sock_req = NetSock_Accept((NET_SOCK_ID) sock_listen, (5)
 (NET_SOCK_ADDR *)&client_sock_addr_ip,
 (NET_SOCK_ADDR_LEN *)&client_sock_addr_ip_size,
 (NET_ERR *)&err);
 switch (err) {
 case NET_SOCK_ERR_NONE:
 attempt_conn = DEF_NO;
 break;
 case NET_ERR_INIT_INCOMPLETE:
 case NET_SOCK_ERR_NULL_PTR:
 case NET_SOCK_ERR_NONE_AVAIL:
 case NET_SOCK_ERR_CONN_ACCEPT_Q_NONE_AVAIL:
 case NET_SOCK_ERR_CONN_SIGNAL_TIMEOUT:
 case NET_OS_ERR_LOCK:
 attempt_conn = DEF_YES;
 break;

 default:
 attempt_conn = DEF_NO;
 break;
 }
 } while (attempt_conn == DEF_YES);

 if (err != NET_SOCK_ERR_NONE) {
 NetSock_Close(sock_req, &err);
 return (DEF_FALSE);
 }
285

Socket Applications
Listing 9-7 Stream Server

L9-7(1) Open a stream socket (TCP protocol).

L9-7(2) Populate the NET_SOCK_ADDR_IP structure for the server address and port, and

convert it to network order.

L9-7(3) Bind the newly created socket to the address and port specified by

server_sock_addr_ip.

L9-7(4) Set the socket to listen for a connection request coming on the specified port.

L9-7(5) Accept the incoming connection request, and return a new socket for this

particular connection. Note that this function call is being called from inside a

loop because it might timeout (no client attempts to connect to the server).

L9-7(6) One the connection has been established between the server and a client,

transmit the message. Note that the return value of this function is not used

here, but a real application should make sure all the message has been sent by

comparing that value with the length of the message.

L9-7(7) Close both listen and request sockets. When the server need to stay active, the

listen socket stays open so that I can accept additional connection requests.

Usually, the server will wait for a connection, accept() it, and

OSTaskCreate() a task to handle it.

 tx_size = NetSock_TxData(sock_req, (6)
 pbuf,
 buf_len,
 NET_SOCK_FLAG_NONE,
 &err);

 NetSock_Close(sock_req, &err); (7)
 NetSock_Close(sock_listen, &err);

 return (DEF_TRUE);
}

286

Socket Applications
STREAM CLIENT (TCP CLIENT)

The client of Listing 9-8 connects to the specified server and receives the string the server

sends.

#define TCP_SERVER_IP_ADDR "192.168.1.101"
#define TCP_SERVER_PORT 10000
#define RX_BUF_SIZE 15

CPU_BOOLEAN TestTCPClient (void)
{
 NET_SOCK_ID sock;
 NET_IP_ADDR server_ip_addr;
 NET_SOCK_ADDR_IP server_sock_addr_ip;
 NET_SOCK_ADDR_LEN server_sock_addr_ip_size;
 NET_SOCK_RTN_CODE conn_rtn_code;
 NET_SOCK_RTN_CODE rx_size;
 CPU_CHAR rx_buf[RX_BUF_SIZE];
 NET_ERR err;

 sock = NetSock_Open(NET_SOCK_ADDR_FAMILY_IP_V4, (1)
 NET_SOCK_TYPE_STREAM,
 NET_SOCK_PROTOCOL_TCP,
 &err);
 if (err != NET_SOCK_ERR_NONE) {
 return (DEF_FALSE);
 }

 server_ip_addr = NetASCII_Str_to_IP(TCP_SERVER_IP_ADDR, &err); (2)
 if (err != NET_ASCII_ERR_NONE) {
 NetSock_Close(sock, &err);
 return (DEF_FALSE);
 }

 server_sock_addr_ip_size = sizeof(server_sock_addr_ip); (3)
 Mem_Clr((void *)&server_sock_addr_ip,
 (CPU_SIZE_T) server_sock_addr_ip_size);
 server_sock_addr_ip.AddrFamily = NET_SOCK_ADDR_FAMILY_IP_V4;
 server_sock_addr_ip.Addr = NET_UTIL_HOST_TO_NET_32(server_ip_addr);
 server_sock_addr_ip.Port = NET_UTIL_HOST_TO_NET_16(TCP_SERVER_PORT);
287

Socket Applications
Listing 9-8 Stream Client

L9-8(1) Open a stream socket (TCP protocol).

L9-8(2) Convert an IPv4 address from ASCII dotted-decimal notation to a network

protocol IPv4 address in host-order.

L9-8(3) Populate the NET_SOCK_ADDR_IP structure for the server address and port, and

convert it to network order.

L9-8(4) Connect the socket to a remote host.

L9-8(5) Receive data from the connected socket. Note that the return value for this

function is not used here.However, a real application should make sure

everything has been received.

L9-8(6) Close the socket.

 conn_rtn_code = NetSock_Conn((NET_SOCK_ID) sock, (4)
 (NET_SOCK_ADDR *)&server_sock_addr_ip,
 (NET_SOCK_ADDR_LEN) sizeof(server_sock_addr_ip),
 (NET_ERR *)&err);
 if (err != NET_SOCK_ERR_NONE) {
 NetSock_Close(sock, &err);
 return (DEF_FALSE);
 }

 rx_size = NetSock_RxData(sock, (5)
 rx_buf,
 RX_BUF_SIZE,
 NET_SOCK_FLAG_NONE,
 &err);
 if (err != NET_SOCK_ERR_NONE) {
 NetSock_Close(sock, &err);
 return (DEF_FALSE);
 }

 NetSock_Close(sock, &err); (6)
 return (DEF_TRUE);
}

288

Socket Configuration
TCP CONNECTION CONFIGURATION

μC/TCP-IP provides a set of APIs to configure TCP connections on an individual basis.

These APIs are listed below and detailed in section C-14 “TCP Functions” on page 671:

■ NetTCP_ConnCfgIdleTimeout()

■ NetTCP_ConnCfgMaxSegSizeLocal()

■ NetTCP_ConnCfgReTxMaxTh()

■ NetTCP_ConnCfgReTxMaxTimeout()

■ NetTCP_ConnCfgRxWinSize()

■ NetTCP_ConnCfgTxWinSize()

■ NetTCP_ConnCfgTxAckImmedRxdPushEn()

■ NetTCP_ConnCfgTxNagleEn()

■ NetTCP_ConnCfgTxKeepAliveEn()

■ NetTCP_ConnCfgTxKeepAliveTh()

■ NetTCP_ConnCfgTxAckDlyTimeout()

9-4 SOCKET CONFIGURATION

μC/TCP-IP provides a set of APIs to configure sockets on an individual basis. These APIs are

listed below and detailed in section C-13 “Network Socket Functions” on page 572:

■ NetSock_CfgBlock() (TCP/UDP)

■ NetSock_CfgSecure() (TCP)

■ NetSock_CfgRxQ_Size() (TCP/UDP)

■ NetSock_CfgTxQ_Size() (TCP/UDP)

■ NetSock_CfgTxIP_TOS() (TCP/UDP)

■ NetSock_CfgTxIP_TTL() (TCP/UDP)

■ NetSock_CfgTxIP_TTL_Multicast() (TCP/UDP)
289

Socket Configuration
■ NetSock_CfgTimeoutConnAcceptDflt() (TCP)

■ NetSock_CfgTimeoutConnAcceptGet_ms() (TCP)

■ NetSock_CfgTimeoutConnAcceptSet() (TCP)

■ NetSock_CfgTimeoutConnCloseDflt() (TCP)

■ NetSock_CfgTimeoutConnCloseGet_ms() (TCP)

■ NetSock_CfgTimeoutConnCloseSet() (TCP)

■ NetSock_CfgTimeoutConnReqDflt() (TCP)

■ NetSock_CfgTimeoutConnReqGet_ms() (TCP)

■ NetSock_CfgTimeoutConnReqSet() (TCP)

■ NetSock_CfgTimeoutRxQ_Dflt() (TCP/UDP)

■ NetSock_CfgTimeoutRxQ_Get_ms() (TCP/UDP)

■ NetSock_CfgTimeoutRxQ_Set() (TCP/UDP)

■ NetSock_CfgTimeoutTxQ_Dflt() (TCP)

■ NetSock_CfgTimeoutTxQ_Get_ms() (TCP)

■ NetSock_CfgTimeoutTxQ_Set() (TCP)

9-4-1 SOCKET OPTIONS

μC/TCP-IP provides two APIs to read and configure socket option values. These APIs are

listed below and detailed in section C-13 “Network Socket Functions” on page 572:

■ NetSock_OptGet()

■ NetSock_OptSet()

Their BSD equivalent are listed below. See also section C-18 “BSD Functions” on page 715.

■ getsockopt() (TCP/UDP)

■ setsockopt() (TCP/UDP)
290

Secure Sockets
9-5 SECURE SOCKETS

If a network security module (such as Mocana - NanoSSL) is available, μC/TCP-IP socket

security option APIs can be used to secure sockets. Basically, it provides APIs to install the

required keying material and to set the secure flag on a specific socket. These APIs are

listed below and detailed in section F-6 “Using Network Security Manager” on page 810:

■ NetSock_CfgSecureServerCertKeyInstall()

■ NetSock_CfgSecureClientCommonName()

■ NetSock_CfgSecureClientTrustCallBack()

9-6 2MSL

Maximum Segment Lifetime (MSL) is the time a TCP segment can exist in the network, and

is defined as two minutes. 2MSL is twice this lifetime. It is the maximum lifetime of a TCP

segment on the network because it supposes segment transmission and acknowledgment.

Currently, Micrium does not support multiple sockets with identical connection information.

This prevents new sockets from binding to the same local addresses as other sockets. Thus,

for TCP sockets, each close() incurs the TCP 2MSL timeout and prevents the next bind()
from the same client from occurring until after the timeout expires. This is why the 2MSL

value is used. This can lead to a long delay before the socket resource is released and

reused. μC/TCP-IP configures the TCP connection's default maximum segment lifetime

(MSL) timeout value, specified in integer seconds. A starting value of 3 seconds is

recommended.

If TCP connections are established and closed rapidly, it is possible that this timeout may

further delay new TCP connections from becoming available. Thus, an even lower timeout

value may be desirable to free TCP connections and make them available for new

connections as rapidly as possible. However, a 0 second timeout prevents μC/TCP-IP from

performing the complete TCP connection close sequence and will instead send TCP reset

(RST) segments.

For UDP sockets, the sockets close() without delay. Thus, the next bind() is not blocked.
291

μC/TCP-IP Socket Error Codes
9-7 μC/TCP-IP SOCKET ERROR CODES

When socket functions return error codes, the error codes should be inspected to determine

if the error is a temporary, non-fault condition (such as no data to receive) or fatal (such as

the socket has been closed).

9-7-1 FATAL SOCKET ERROR CODES

Whenever any of the following fatal error codes are returned by any μC/TCP-IP socket

function, that socket must be immediately closed()’d without further access by any other

socket functions:

NET_SOCK_ERR_INVALID_FAMILY
NET_SOCK_ERR_INVALID_PROTOCOL
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_STATE
NET_SOCK_ERR_FAULT

Whenever any of the following fatal error codes are returned by any μC/TCP-IP socket

function, that socket must not be accessed by any other socket functions but must also not

be closed()’d:

NET_SOCK_ERR_NOT_USED

9-7-2 SOCKET ERROR CODE LIST

See section E-7 “IP Error Codes” on page 778 for a brief explanation of all μC/TCP-IP socket

error codes.
292

Chapter

10

Timer Management

μC/TCP-IP manages software timers used to keep track of various network-related timeouts.

Timer management functions are found in net_tmr.*. Timers are required for:

■ Network interface/device driver link-layer monitor 1 total

■ Network interface performance statistics 1 total

■ ARP cache management 1 per ARP cache entry

■ IP fragment reassembly 1 per fragment chain

■ Various TCP connection timeouts up to 7 per TCP connection

■ Debug monitor task 1 total

■ Performance monitor task 1 total

Of the three mandatory μC/TCP-IP tasks, one of them, the timer task, is used to manage and

update timers. The timer task updates timers periodically. NET_TMR_CFG_TASK_FREQ
determines how often (in Hz) network timers are to be updated. This value must not be

configured as a floating-point number. This value is typically set to 10 Hz.

See section D-5-1 on page 746 for more information on timer usage and configuration.
293

Figure 10-1 Timer List

L10-0(1) Timer types are either NONE or TMR, meaning unused or used. This field is

defined as ASCII representations of network timer types. Memory displays of

network timers will display the timer TYPEs with their chosen ASCII name.

L10-0(2) To manage the timers, the head of the timer list is identified by

NetTmr_TaskListHead, a pointer to the head of the Timer List.

L10-0(3) PrevPtr and NextPtr doubly link each timer to form the Timer List.

The flags field is currently unused.

Network timers are managed by the Timer task in a doubly-linked Timer List. The function

that executes these operation is the NetTmr_TaskHandler() function. This function is an

operating system (OS) function and should be called only by appropriate network-operating

system port function(s). NetTmr_TaskHandler() is blocked until network initialization

completes.

NetTmr_TaskHandler() handles the network timers in the Timer List by acquiring the

global network lock first. This function blocks all other network protocol tasks by pending

on and acquiring the global network lock. Then it handles every network timer in Timer List

!�,���!/��

$24���
��+�����	

!�,��

5�.

���'�����!�,��

��6��!�,��

$24���

���2�1
7�	����	

!�,���8���

7�
�

!�,���!/��

���'�����!�,��

��6��!�,��

$24���

���2�1
7�	����	

!�,���8���

7�
�

!�,���!/��

���'�����!�,��

��6��!�,��

$24���

���2�1
7�	����	

!�,���8���

7�
�

$24���
��+�����	

!�,��

$24���
��+�����	

!�,��

8��.

�

9

:

294

by decrementing the network timer(s) and for any timer that expires, execute the timer's

callback function and free the timer from Timer List. When a network timer expires, the

timer is be freed prior to executing the timer callback function. This ensures that at least

one timer is available if the timer callback function requires a timer. Finally,

NetTmr_TaskHandler() releases the global network lock.

New timers are added at the head of the Timer List. As timers are added into the list, older

timers migrate to the tail of the Timer List. Once a timer expires or is discarded, it is

removed.

NetTmr_TaskHandler() handles of all the valid timers in the Timer List, up to the first

corrupted timer. If a corrupted timer is detected, the timer is discarded/unlinked from the

List. Consequently, any remaining valid timers are unlinked from Timer List and are not

handled. Finally, the Timer task is aborted.

Since NetTmr_TaskHandler() is asynchronous to ANY timer Get/Set, one additional tick is

added to each timer's count-down so that the requested timeout is always satisfied. This

additional tick is added by NOT checking for zero ticks after decrementing; any timer that

expires is recognized at the next tick.

A timer value of 0 ticks/seconds is allowed. The next tick will expire the timer.

The NetTmr_***() functions are internal functions and should not be called by application

functions. This is the reason they are not described here or in Appendix C, “μC/TCP-IP API

Reference” on page 417. For more details on these functions, please refer to the net_tmr.*
files.
295

Chapter

11

Debug Management

μC/TCP-IP contains debug constants and functions that may be used by applications to

determine network RAM usage, check run-time network resource usage, and check network

error or fault conditions. These constants and functions are found in net_dbg.*. Most of

these debug features must be enabled by appropriate configuration constants (see

Appendix D, “μC/TCP-IP Configuration and Optimization” on page 735).

11-1 NETWORK DEBUG INFORMATION CONSTANTS

Network debug information constants provide the developer with run-time statistics on

μC/TCP-IP configuration, data type and structure sizes, and data RAM usage. The list of

debug information constants can be found in net_dbg.c, sections GLOBAL NETWORK
MODULE DEBUG INFORMATION CONSTANTS & GLOBAL NETWORK MODULE DATA SIZE
CONSTANTS. These debug constants are enabled by configuring NET_DBG_CFG_DBG_INFO_EN
to DEF_ENABLED.

For example, these constants can be used as follows:

CPU_INT16U net_version;
CPU_INT32U net_data_size;
CPU_INT32U net_data_nbr_if;

net_version = Net_Version;
net_data_size = Net_DataSize;
net_data_nbr_if = NetIF_CfgMaxNbrIF;
printf(“µC/TCP-IP Version : %05d\n”, net_version);
printf(“Total Network RAM Used : %05d\n”, net_data_size);
printf(“Number Network Interfaces : %05d\n”, net_data_nbr_if);
296

Network Debug Monitor Task
11-2 NETWORK DEBUG MONITOR TASK

The Network Debug Monitor task periodically checks the current run-time status of certain

μC/TCP-IP conditions and saves that status to global variables which may be queried by

other network modules.

Currently, the Network Debug Monitor task is only enabled when ICMP Transmit Source

Quenches are enabled (see section D-10-1 on page 753) because this is the only network

functionality that requires a periodic update of certain network status conditions.

Applications do not need Debug Monitor task functionality since applications have access to

the same debug status functions that the Monitor task calls and may call them

asynchronously.
297

Chapter

12

Statistics and Error Counters

μC/TCP-IP maintains counters and statistics for a variety of expected or unexpected error

conditions. Some of these statistics are optional since they require additional code and

memory and are enabled only if NET_CTR_CFG_STAT_EN or NET_CTR_CFG_ERR_EN is

enabled (see section D-4 “Network Counter Configuration” on page 745).

12-1 STATISTICS

μC/TCP-IP maintains run-time statistics on interfaces and most μC/TCP-IP object pools. If

desired, an application can thus query μC/TCP-IP to find out how many frames have been

processed on a particular interface, transmit and receive performance metrics, buffer

utilization and more. An application can also reset the statistic pools back to their

initialization values (see net_stat.h).

Applications may choose to monitor statistics for various reasons. For example, examining

buffer statistics allows you to better manage the memory usage. Typically, more buffers can

be allocated than necessary and, by examining buffer usage statistics, adjustments can be

made to reduce their number.

Network protocol and interface statistics are kept in an instance of a data structure named

Net_StatCtrs. This variable may be viewed within a debugger or referenced externally by

the application for run-time analysis.

Unlike network protocol statistics, object pool statistics have functions to get a copy of the

specified statistic pool and functions for resetting the pools to their default values. These

statistics are kept in a data structure called NET_STAT_POOL which can be declared by the

application and used as a return variable from the statistics API functions.

The data structure is shown below:
298

Statistics
:

NET_STAT_POOL_QTY is a data type currently set to CPU_INT16U and thus contains a

maximum count of 65535.

Access to buffer statistics is obtained via interface functions that the application can call

(described in the next sections). Most likely, only the following variables in NET_STAT_POOL
need to be examined, because the .Type member is configured at initialization time as

NET_STAT_TYPE_POOL :

.EntriesAvail
This variable indicates how many buffers are available in the pool.

.EntriesUsed
This variable indicates how many buffers are currently used by the TCP/IP stack.

.EntriesUsedMax
This variable indicates the maximum number of buffers used since it was last reset.

.EntriesAllocatedCtr
This variable indicates the total number of times buffers were allocated (i.e., used by the

TCP/IP stack).

.EntriesDeallocatedCtr
This variable indicates the total number of times buffers were returned back to the buffer

pool.

In order to enable run-time statistics, the macro NET_CTR_CFG_STAT_EN located within

net_cfg.h must be defined to DEF_ENABLED.

typedef struct net_stat_pool {
 NET_TYPE Type;
 NET_STAT_POOL_QTY EntriesInit;
 NET_STAT_POOL_QTY EntriesTotal;
 NET_STAT_POOL_QTY EntriesAvail;
 NET_STAT_POOL_QTY EntriesUsed;
 NET_STAT_POOL_QTY EntriesUsedMax;
 NET_STAT_POOL_QTY EntriesLostCur;
 NET_STAT_POOL_QTY EntriesLostTotal;
 CPU_INT32U EntriesAllocatedCtr;
 CPU_INT32U EntriesDeallocatedCtr;
} NET_STAT_POOL;
299

Error Counters
12-2 ERROR COUNTERS

μC/TCP-IP maintains run-time counters for tracking error conditions within the Network

Protocol Stack. If desired, the application may view the error counters in order to debug

run-time problems such as low memory conditions, slow performance, packet loss, etc.

Network protocol error counters are kept in an instance of a data structure named

Net_ErrCtrs. This variable may be viewed within a debugger or referenced externally by

the application for run-time analysis (see net_stat.h).

In order to enable run-time error counters, the macro NET_CTR_CFG_ERR_EN located within

net_cfg.h must be defined to DEF_ENABLED.
300

Appendix

A

μC/TCP-IP Ethernet Device Driver APIs

This appendix provides a reference to the μC/TCP-IP Device Driver API. Each

user-accessible service is presented in alphabetical order. The following information is

provided for each of the services:

■ A brief description

■ The function prototype

■ The filename of the source code

■ A description of the arguments passed to the function

■ A description of the returned value(s)

■ Specific notes and warnings on the use of the service
301

A-1 DEVICE DRIVER FUNCTIONS FOR MAC

A-1-1 NetDev_Init()

The first function within the Ethernet API is the device driver initialization/Init() function.

This function is called by NetIF_Add() exactly once for each specific network device added

by the application. If multiple instances of the same network device are present on the

development board, then this function is called for each instance of the device. However,

applications should not try to add the same specific device more than once. If a network

device fails to initialize, we recommend debugging to find and correct the cause of failure.

Note: This function relies heavily on the implementation of several network device board

support package (BSP) functions. See Chapter 6, “Network Board Support Package” on

page 121 and Appendix A, “Device Driver BSP Functions” on page 336 for more

information on network device BSP functions.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s Init() function is accessed only by function pointer

via the device driver’s API structure, it doesn’t need to be globally available and should

therefore be declared as ‘static’.

static void NetDev_Init (NET_IF *pif,
 NET_ERR *perr);
302

ARGUMENTS

pif Pointer to the interface to initialize a network device.

perr Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

The Init() function generally performs the following operations, however, depending on

the device being initialized, functionality may need to be added or removed:

1 Configure clock gating to the MAC device, if applicable. This is generally performed via

the network device’s BSP function pointer, CfgClk(), implemented in net_bsp.c (see

section A-3-1 on page 336).

2 Configure all necessary I/O pins for both an internal or external MAC and PHY, if

present. This is generally performed via the network device’s BSP function pointer,

CfgGPIO(), implemented in net_bsp.c (see section A-3-2 on page 338).

Configure the host interrupt controller for receive and transmit complete interrupts.

Additional interrupt services may be initialized depending on the device and driver

requirements. This is generally performed via the network device’s BSP function

pointer, CfgIntCtrl(), implemented in net_bsp.c (see section A-3-3 on page 340).

3 For DMA devices: Allocate memory for all necessary descriptors. This is performed via

calls to μC/LIB’s memory module.

4 For DMA devices: Initialize all descriptors to their ready states. This may be performed

via calls to locally-declared, ‘static’ functions.
303

5 Initialize the (R)MII bus interface, if applicable. This generally entails configuring the

(R)MII bus frequency which is dependent on the system clock. Static values for clock

frequencies should never be used when determining clock dividers. Instead, the driver

should reference the associated clock function(s) for getting the system clock or

peripheral bus frequencies, and use these values to compute the correct (R)MII bus

clock divider(s). This is generally performed via the network device’s BSP function

pointer, ClkFreqGet(), implemented in net_bsp.c (see section A-3-4 on page 344).

6 Disable the transmitted and receiver (should already be disabled).

7 Disable and clear pending interrupts (should already be cleared).

8 Set perr to NET_DEV_ERR_NONE if initialization proceeded as expected. Otherwise, set

perr to an appropriate network device error code.
304

A-1-2 NetDev_Start()

The second function is the device driver Start() function. This function is called once

each time an interface is started.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s Start() function is accessed only by function pointer

via the device driver’s API structure, it doesn’t need to be globally available and should

therefore be declared as ‘static’.

ARGUMENTS

pif Pointer to the interface to start a network device.

perr Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static void NetDev_Start (NET_IF *pif,
 NET_ERR *perr);
305

NOTES / WARNINGS

The Start() function performs the following items:

1 Configure the transmit ready semaphore count via a call to

NetOS_Dev_CfgTxRdySignal(). This function call is optional and is generally

performed when the hardware device supports the queuing of multiple transmit frames.

By default, the count is initialized to one. However, DMA devices should set the

semaphore count equal to the number of configured transmit descriptors for optimal

performance. Non-DMA devices that support the queuing of more than one transmit

frame may also benefit from a non-default value.

2 Initialize the device MAC address if applicable. For Ethernet devices, this step is

mandatory. The MAC address data may come from one of three sources and should be

set using the following priority scheme:

a. Configure the MAC address using the string found within the device configuration

structure. This is a form of static MAC address configuration and may be performed by

calling NetASCII_Str_to_MAC() and NetIF_AddrHW_SetHandler(). If the device

configuration string has been left empty, or is specified as all 0’s, an error will be

returned and the next method should be attempted.

b. Check if the application developer has called NetIF_AddrHW_Set() by making a call

to NetIF_AddrHW_GetHandler() and NetIF_AddrHW_IsValidHandler() in order to

check if the specified MAC address is valid. This method may be used as a static

method for configuring the MAC address during run-time, or a dynamic method should

a pre-programmed external memory device exist. If the acquired MAC address does not

pass the check function, then:

c. Call NetIF_AddrHW_SetHandler() using the data found within the MAC individual

address registers. If an auto-loading EEPROM is attached to the MAC, the registers will

contain valid data. If not, then a configuration error has occurred. This method is often

used with a production process where the MAC supports the automatic loading of

individual address registers from a serial EEPROM. When using this method, the

developer should specify an empty string for the MAC address within the device

configuration and refrain from calling NetIF_AddrHW_Set() from within the

application.
306

3 Initialize additional MAC registers required by the MAC for proper operation.

4 Clear all interrupt flags.

5 Locally enable interrupts on the hardware device. The host interrupt controller should

have already been configured within the device driver Init() function.

6 Enable the receiver and transmitter.

7 Set perr equal to NET_DEV_ERR_NONE if no errors have occurred. Otherwise, set perr
to an appropriate network device error code.
307

A-1-3 NetDev_Stop()

The next function within the device API structure is the device Stop() function. This

function is called once each time an interface is stopped.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s Stop() function is accessed only by function pointer

via the device driver’s API structure, it doesn’t need to be globally available and should

therefore be declared as ‘static’.

ARGUMENTS

pif Pointer to the interface to start a network device.

perr Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

The Stop() function must perform the following operations:

1 Disable the receiver and transmitter.

2 Disable all local MAC interrupt sources.

static void NetDev_Stop (NET_IF *pif,
 NET_ERR *perr);
308

3 Clear all local MAC interrupt status flags.

4 For DMA devices, re-initialize all receive descriptors.

5 For DMA devices, free all transmit descriptors by calling

NetOS_IF_DeallocTaskPost() with the address of the transmit descriptor data areas.

6 For DMA devices, re-initialize all transmit descriptors.

7 Set perr to NET_DEV_ERR_NONE if no error occurs. Otherwise, set perr to an

appropriate network device error code.
309

A-1-4 NetDev_Rx()

The receive/Rx() function is called by μC/TCP-IP’s Receive task after the Interrupt Service

Routine handler has signaled to the Receive task that a receive event has occurred. The

Receive function requires that the device driver return a pointer to the data area containing

the received data and return the size of the received frame via pointer.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s Rx() function is accessed only by function pointer via

the device driver’s API structure, it doesn’t need to be globally available and should

therefore be declared as ‘static’.

ARGUMENTS

pif Pointer to the interface to receive data from a network device.

p_data Pointer to return the address of the received data.

size Pointer to return the size of the received data.

perr Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static void NetDev_Rx (NET_IF *pif,
 CPU_INT08U **p_data,
 CPU_INT16U *size,
 NET_ERR *perr);
310

NOTES / WARNINGS

The receive function should perform the following actions:

1 Check for receive errors if applicable. If an error should occur during reception, the

driver should set *size to 0 and *p_data to (CPU_INT08U *)0 and return. Additional

steps may be necessary depending on the device being serviced.

2 For Ethernet devices, get the size of the received frame and subtract 4 bytes for the

CRC. It it always recommended that the frame size is checked to ensure that it is greater

than 4 bytes before performing the subtraction to ensure that an underflow does not

occur. Set *size equal to the adjusted frame size.

3 Get a new data buffer area by calling NetBuf_GetDataPtr(). If memory is not

available, an error will be returned and the device driver should set *size to 0 and

*p_data to (CPU_INT08U *)0. For DMA devices, the current receive descriptor should

be marked as available or owned by hardware. The device driver should then return

from the receive function.

4 If an error does not occur while getting a new data area, DMA devices should perform

the following operations:

a. Set *p_data equal to the address of the data area within the descriptor being

serviced.

b. Set the data area pointer within the receive descriptor to the address of the data area

obtained by calling NetBuf_GetDataPtr().

c. Update any descriptor ring pointers if applicable.

5 Non DMA devices should Mem_Copy() the data stored within the device to the address

of the buffer obtained by calling NetBuf_GetDataPtr() and set *p_data equal to the

address of the obtained data area.

6 Set perr to NET_DEV_ERR_NONE and return from the receive function. Otherwise, set

perr to an appropriate network device error code.
311

A-1-5 NetDev_Tx()

The next function in the device API structure is the transmit/Tx() function.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s Tx() function is accessed only by function pointer via

the device driver’s API structure, it doesn’t need to be globally available and should

therefore be declared as ‘static’.

ARGUMENTS

pif Pointer to the interface to start a network device.

p_data Pointer to address of the data to transmit.

size Size of the data to transmit.

perr Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static void NetDev_Tx (NET_IF *pif,
 CPU_INT08U *p_data,
 CPU_INT16U size,
 NET_ERR *perr);
312

NOTES / WARNINGS

The transmit function should perform the following actions:

1 For DMA-based hardware, the driver should select the next available transmit descriptor

and set the pointer to the data area equal to the address pointer to by p_data.

2 Non-DMA hardware should Mem_Copy() the data stored within the buffer pointed to by

p_data to the device’s internal memory.

3 Once completed, the driver must configure the device with the number of bytes to

transmit. This is passed directly by value within the size argument. DMA-based devices

generally have a size field within the transmit descriptor. Non-DMA devices generally

have a transmit size register that needs to be configured.

4 The driver should then take all necessary steps to initiate transmission of the data.

5 Set perr to NET_DEV_ERR_NONE and return from the transmit function.
313

A-1-6 NetDev_AddrMulticastAdd()

The next API function is the AddrMulticastAdd() function used to configure a device with

an (IP-to-Ethernet) multicast hardware address.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s AddrMulticastAdd() function is accessed only by

function pointer via the device driver’s API structure, it doesn’t need to be globally available

and should therefore be declared as ‘static’.

ARGUMENTS

pif Pointer to the interface to add/configure a multicast address.

paddr_hw Pointer to multicast hardware address to add.

addr_hw_len Length of multicast hardware address.

perr Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

Necessary only if NET_IP_CFG_MULTICAST_SEL is configured for transmit and receive

multicasting (see section D-9-2 on page 752).

static void NetDev_AddrMulticastAdd (NET_IF *pif,
 CPU_INT08U *paddr_hw,
 CPU_INT08U addr_hw_len,
 NET_ERR *perr);
314

NOTES / WARNINGS

Since many network controllers’ documentation fail to properly indicate how to

add/configure an Ethernet MAC device with a multicast address, the following methodology

is recommended for determining and testing the correct multicast hash bit algorithm.

1 Configure a packet capture program or multicast application to broadcast a multicast

packet with Ethernet destination address of 01:00:5E:00:00:01. This MAC address

corresponds to the multicast group IP address of 224.0.0.1 which will be converted to a

MAC address by higher layers and passed to this function.

2 Set a break point in the receive ISR handler and transmit one send packet to the target.

The break point should not be reached as the result of the transmitted packet. Use

caution to ensure that other network traffic is not the source of the interrupt when the

button is pressed. Sometimes asynchronous network events happen very close in time

and the end result can be deceiving. Ideally, these tests should be performed on an

isolated network but disconnect as many other hosts from the network as possible.

3 Use the debugger to stop the application and program the MAC multicast hash register

low bits to 0xFFFFFFFF. Go to step 2. Repeat for the hash bit high register if necessary.

The goal is to bracket off which bit in either the high or low hash bit register causes the

device to be interrupted when the broadcast frame is received by the target. Once the

correct bit is known, the hash algorithm can be easily written and tested.

4 The following hash bit algorithm code below could be adjusted per the network

controller’s documentation in order to get the hash from the correct subset of CRC bits.

Most of the code is similar between various devices and is thus reusable. The hash

algorithm is the exlusive OR of every 6th bit of the destination address:

hash[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
hash[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
hash[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
hash[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
hash[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
hash[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]

Where da0 represents the least significant bit of the first byte of the destination address

received and where da47 represents the most significant bit of the last byte of the

destination address received.
315

Listing A-1 Example device multicast address configuration using CRC hash code algorithm

Alternatively, you may be able to compute the CRC hash with a call to

NetUtil_32BitCRC_CalcCpl() followed by an optional call to

NetUtil_32BitReflect(), with four possible combinations:

a. CRC without complement and without reflection

b. CRC without complement and with reflection

c. CRC with complement and without reflection

d. CRC with complement and with reflection

 /* ---------- CALCULATE HASH CODE ---------- */
hash = 0;
for (i = 0; i < 6; i++) { /* For each row in the bit hash table: */
 bit_val = 0; /* Clear initial xor value for each row. */
 for (j = 0; j < 8; j++) { /* For each bit in each octet: */
 bit_nbr = (j * 6) + i; /* Determine which bit in stream, 0-47. */
 octet_nbr = bit_nbr / 8; /* Determine which octet bit belongs to. */
 octet = paddr_hw[octet_nbr]; /* Get octet value. */
 bit = octet & (1 << (bit_nbr % 8)); /* Check if octet’s bit is set. */
 bit_val ^= (bit > 0) ? 1 : 0; /* Calculate table row’s XOR hash value. */
 }
 hash |= (bit_val << i); /* Add row’s XOR hash value to final hash. */
}
 /* ---- ADD MULTICAST ADDRESS TO DEVICE ---- */
reg_sel = (hash >> 5) & 0x01; /* Determine hash register to configure. */
reg_bit = (hash >> 0) & 0x1F; /* Determine hash register bit to configure. */
 /* (Substitute ‘0x01’/‘0x1F’ with device’s ..*/
 /* .. actual hash register bit masks/shifts.)*/

 paddr_hash_ctrs = &pdev_data->MulticastAddrHashBitCtr[hash];
(*paddr_hash_ctrs)++; /* Increment hash bit reference counter. */

if (reg_sel == 0) { /* Set multicast hash register bit. */
 pdev->MCAST_REG_LO |= (1 << reg_bit); /* (Substitute ‘MCAST_REG_LO/HI’ with .. */
} else { /* .. device’s actual multicast registers.) */
 pdev->MCAST_REG_HI |= (1 << reg_bit);
}
 /* ---------- CALCULATE HASH CODE ---------- */
 /* Calculate CRC. */
crc = NetUtil_32BitCRC_Calc((CPU_INT08U *)paddr_hw,
 (CPU_INT32U) addr_hw_len,
 (NET_ERR *)perr);
316

Listing A-2 Example device multicast address configuration using CRC and reflection functions

Unfortunately, the product documentation will not likely tell you which combination of

complement and reflection is necessary in order to properly compute the hash value.

Most likely, the documentation will simply state ‘Standard Ethernet CRC’ which when

compared to other documents, means any of the four combinations above; different

than the actual frame CRC.

Fortunately, if the code is written to perform both the complement and reflection, then

the debugger may be used to repeat the code block over and over skipping either the

line that performs the complement or the function call to the reflection until the output

hash bit is computed correctly.

5 Update the device driver’s AddrMulticastAdd() function to calculate and configure the

correct CRC.

6 Test the device driver’s AddrMulticastAdd() function by ensuring that the group

address 224.0.0.1, when joined from the application (see section C-11-1 on page 539),

correctly configures the device to receive multicast packets destined to the 224.0.0.1

address. Then broadcast the 224.0.0.1 (see step 1) to test if the device receives the

multicast packet.

if (*perr != NET_UTIL_ERR_NONE) {
 return;
}
 /* ---- ADD MULTICAST ADDRESS TO DEVICE ---- */
crc = NetUtil_32BitReflect(crc); /* Optionally, complement CRC. */
hash = (crc >> 23u) & 0x3F; /* Determine hash register to configure. */
reg_bit = (hash % 32u); /* Determine hash register bit to configure. */
 /* (Substitute ‘23u’/‘0x3F’ with device’s .. */
 /* .. actual hash register bit masks/shifts.)*/

 paddr_hash_ctrs = &pdev_data->MulticastAddrHashBitCtr[hash];
(*paddr_hash_ctrs)++; /* Increment hash bit reference counter. */

if (hash <= 31u) { /* Set multicast hash register bit. */
 pdev->MCAST_REG_LO |= (1 << reg_bit); /* (Substitute ‘MCAST_REG_LO/HI’ with .. */
} else { /* .. device’s actual multicast registers.) */
 pdev->MCAST_REG_HI |= (1 << reg_bit);
}

317

A-1-7 NetDev_AddrMulticastRemove()

The next API function is the AddrMulticastRemove() function used to remove an

(IP-to-Ethernet) multicast hardware address from a device.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s AddrMulticastRemove() function is accessed only by

function pointer via the device driver’s API structure, it doesn’t need to be globally available

and should therefore be declared as ‘static’.

ARGUMENTS

pif Pointer to the interface to remove a multicast address.

paddr_hw Pointer to multicast hardware address to remove.

addr_hw_len Length of multicast hardware address.

perr Pointer to variable that will receive the return error code from

this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

Necessary only if NET_IP_CFG_MULTICAST_SEL is configured for transmit and receive

multicasting (see section D-9-2 on page 752).

static void NetDev_AddrMulticastRemove (NET_IF *pif,
 CPU_INT08U *paddr_hw,
 CPU_INT08U addr_hw_len,
 NET_ERR *perr);
318

NOTES / WARNINGS

Use same exact code as in NetDev_AddrMulticastAdd() to calculate the device’s CRC hash

(see section A-1-6 on page 314), but remove a multicast address by decrementing the

device’s hash bit reference counters and clearing the appropriate bits in the device’s

multicast registers.

Listing A-3 Example device multicast address removal

 /* ---------- CALCULATE HASH CODE ---------- */
/* Use NetDev_AddrMulticastAdd()’s algorithm to calculate CRC hash. */
 /* - REMOVE MULTICAST ADDRESS FROM DEVICE -- */
paddr_hash_ctrs = &pdev_data->MulticastAddrHashBitCtr[hash];
if (*paddr_hash_ctrs > 1u) { /* If multiple multicast addresses hashed, ..*/
 (*paddr_hash_ctrs)--; /* .. decrement hash bit reference counter ..*/
 perr = NET_DEV_ERR_NONE; / .. but do NOT unconfigure hash register. */
 return;
}
paddr_hash_ctrs = 0u; / Clear hash bit reference counter. */

if (hash <= 31u) { /* Clear multicast hash register bit. */
 pdev->MCAST_REG_LO &= ~(1u << reg_bit); /* (Substitute ‘MCAST_REG_LO/HI’ with .. */
} else { /* .. device’s actual multicast registers.) */
 pdev->MCAST_REG_HI &= ~(1u << reg_bit);
}

319

A-1-8 NetDev_ISR_Handler()

A device’s ISR_Handler() function is used to handle each device’s interrupts. See section

7-5-5 on page 164 for more details on how to handle each device’s interrupts.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s ISR_Handler() function is accessed only by function

pointer via the device driver’s API structure, it doesn’t need to be globally available and

should therefore be declared as ‘static’.

ARGUMENTS

pif Pointer to the interface to handle network device interrupts.

type Device’s interrupt type:

NET_DEV_ISR_TYPE_UNKNOWN
NET_DEV_ISR_TYPE_RX
NET_DEV_ISR_TYPE_RX_RUNT
NET_DEV_ISR_TYPE_RX_OVERRUN
NET_DEV_ISR_TYPE_TX_RDY
NET_DEV_ISR_TYPE_TX_COMPLETE
NET_DEV_ISR_TYPE_TX_COLLISION_LATE
NET_DEV_ISR_TYPE_TX_COLLISION_EXCESS
NET_DEV_ISR_TYPE_JABBER
NET_DEV_ISR_TYPE_BABBLE
NET_DEV_ISR_TYPE_PHY

RETURNED VALUE

None.

static void NetDev_ISR_Handler (NET_IF *pif,
 NET_DEV_ISR_TYPE type);
320

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

Each device’s NetDev_ISR_Handler() should never return early but check all applicable

interrupt sources to see if they are active. This additional checking is necessary because

multiple interrupt sources may be set within the interrupt response time and will reduce the

number and overhead of handling interrupts.
321

A-1-9 NetDev_IO_Ctrl()

A device’s input/output control/IO_Ctrl() function is used to implement miscellaneous

functionality such as setting and getting the PHY link state, as well as updating the MAC link

state registers when the PHY link state has changed. An optional void pointer to a data

variable is passed into the function and may be used to get device parameters from the

caller, or to return device parameters to the caller.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s IO_Ctrl() function is accessed only by function

pointer via the device driver’s API structure, it doesn’t need to be globally available and

should therefore be declared as ‘static’.

ARGUMENTS

pif Pointer to the interface to handle network device I/O operations.

opt I/O operation to perform.

p_data A pointer to a variable containing the data necessary to perform the

operation or a pointer to a variable to store data associated with the result of

the operation.

perr Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

static void NetDev_IO_Ctrl (NET_IF *pif,
 CPU_INT08U opt,
 void *p_data,
 NET_ERR *perr);
322

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

μC/TCP-IP defines the following default options:

NET_DEV_LINK_STATE_GET_INFO
NET_DEV_LINK_STATE_UPDATE

The NET_DEV_LINK_STATE_GET_INFO option expects p_data to point to a variable of type

NET_DEV_LINK_ETHER for the case of an Ethernet driver. This variable has two fields, Spd
and Duplex, which are filled in by the PHY device driver via a call through the PHY API.

μC/TCP-IP internally uses this option code in order to periodically poll the PHYs for link

state.

The NET_DEV_LINK_STATE_UPDATE option is used by the PHY driver to communicate with

the MAC when either μC/TCP-IP polls the PHY for link status, or when a PHY interrupt

occurs. Not all MAC’s require PHY link state synchronization. Should this be the case, then

the device driver may not need to implement this option.
323

A-1-10 NetDev_MII_Rd()

The next function to implement is the (R)MII read/Phy_RegRd() function. This function is

generally implemented within the Ethernet device driver file, since (R)MII bus reads are

generally associated with the MAC device. In the case that the PHY communication

mechanism is separate from the MAC, then a handler function may be provided within the

net_bsp.c file and called from the device driver file instead.

Note: This function must be implemented with a timeout and should not block indefinitely

should the PHY fail to respond.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s Phy_RegRd()/MII_Rd() function is accessed only by

function pointer via the device driver’s API structure, it doesn’t need to be globally available

and should therefore be declared as ‘static’.

ARGUMENTS

pif Pointer to the interface to read a (R)MII PHY register.

phy_addr The bus address of the PHY.

reg_addr The MII register number to read.

p_data Pointer to a address to store the content of the PHY register being read.

perr Pointer to variable that will receive the return error code from this function.

static void NetDev_MII_Rd (NET_IF *pif,
 CPU_INT08U phy_addr,
 CPU_INT08U reg_addr,
 CPU_INT16U *p_data,
 NET_ERR *perr);
324

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES/WARNINGS

None.
325

A-1-11 NetDev_MII_Wr()

Next is the (R)MII write/Phy_RegWr() function. This function is generally implemented

within the Ethernet device driver file since (R)MII bus writes are generally associated with

the MAC device. In the case that the PHY communication mechanism is separate from the

MAC, a handler function may be provided within the net_bsp.c file and called from the

device driver file instead.

Note: This function must be implemented with a timeout and not block indefinitely should

the PHY fail to respond.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s Phy_RegWr()/MII_Wr() function is accessed only by

function pointer via the device driver’s API structure, it doesn’t need to be globally available

and should therefore be declared as ‘static’.

ARGUMENTS

pif Pointer to the interface to read a (R)MII PHY register.

phy_addr The bus address of the PHY.

reg_addr The MII register number to write to.

p_data Pointer to the data to write to the specified PHY register.

perr Pointer to variable that will receive the return error code from this function.

static void NetDev_MII_Wr (NET_IF *pif,
 CPU_INT08U phy_addr,
 CPU_INT08U reg_addr,
 CPU_INT16U data,
 NET_ERR *perr);
326

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES/WARNINGS

None.
327

A-2 DEVICE DRIVER FUNCTIONS FOR PHY

A-2-1 NetPhy_Init()

The first function within the Ethernet PHY API is the PHY driver initialization/Init()
function which is called by the Ethernet network interface layer after the MAC device driver

is initialized without error.

FILES

Every physical layer driver’s net_phy.c

PROTOTYPE

Note that since every PHY driver’s Init() function is accessed only by function pointer via

the PHY driver’s API structure, it doesn’t need to be globally available and should therefore

be declared as ‘static’.

ARGUMENTS

pif Pointer to the interface to initialize a PHY.

perr Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static void NetPhy_Init (NET_IF *pif,
 NET_ERR *perr)
328

NOTES/WARNINGS

The PHY initialization function is responsible for the following actions:

1 Reset the PHY and wait with timeout for reset to complete. If a timeout occurs, return

perr set to NET_PHY_ERR_RESET_TIMEOUT.

2 Start the auto-negotiation process. This should configure the PHY registers such that the

desired link speed and duplex specified within the PHY configuration are respected. It

is not necessary to wait until the auto-negotiation process has completed, as this can

take upwards of many seconds. Generally, this action is performed by calling the PHY’s

NetPhy_AutoNegStart() function.

3 If no errors occur, return perr set to NET_PHY_ERR_NONE.
329

A-2-2 NetPhy_EnDis()

The next Ethernet PHY function is the enable-disable/EnDis() function. This function is

called by the Ethernet network interface layer when an interface is started or stopped.

FILES

Every physical layer driver’s net_phy.c

PROTOTYPE

Note that since every PHY driver’s EnDis() function is accessed only by function pointer

via the PHY driver’s API structure, it doesn’t need to be globally available and should

therefore be declared as ‘static’.

ARGUMENTS

pif Pointer to the interface to enable/disable a PHY.

en A flag representing the next desired state of the PHY:

DEF_ENABLED
DEF_DISABLED

perr Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES/WARNINGS

Disabling the PHY will generally cause the PHY to power down which will cause link state

to be disconnected.

static void NetPhy_EnDis (NET_IF *pif,
 CPU_BOOLEAN en,
 NET_ERR *perr);
330

A-2-3 NetPhy_LinkStateGet()

The Ethernet PHY’s LinkStateGet() function determines the current Ethernet link state.

Results are passed back to the caller in a NET_DEV_LINK_ETHER structure which contains

fields for link speed and duplex. This function is called periodically by μC/TCP-IP.

FILES

Every physical layer driver’s net_phy.c

PROTOTYPE

Note that since every PHY driver’s LinkStateGet() function is accessed only by function

pointer via the PHY driver’s API structure, it doesn’t need to be globally available and

should therefore be declared as ‘static’.

ARGUMENTS

pif Pointer to the interface to get a PHY’s current link state.

plink_state Pointer to a link state structure to return link state information. The

NET_DEV_LINK_ETHER structure contains two fields for link speed and

duplex. Link speed is returned via plink_state->Spd :

NET_PHY_SPD_0
NET_PHY_SPD_10
NET_PHY_SPD_100

And link duplex is returned via plink_state->Duplex :

NET_PHY_DUPLEX_UNKNOWN
NET_PHY_DUPLEX_HALF
NET_PHY_DUPLEX_FULL

static void NetPhy_LinkStateGet (NET_IF *pif,
 NET_DEV_LINK_ETHER *plink_state,
 NET_ERR *perr);
331

NET_PHY_SPD_0 and NET_PHY_DUPLEX_UNKNOWN represent an unlinked or

unknown link state if an error occurs.

perr Pointer to variable that will receive the return error code from this function.

RETURNED VALUES

None.

REQUIRED CONFIGURATION

None.

NOTES/WARNINGS

The generic PHY driver does not return a link state. Instead, in order to avoid access to

extended registers which are PHY specific, the driver attempts to determine link state by

analyzing the PHY and PHY partner capabilities. The best combination of auto-negotiated

link state is selected as the current link state.
332

A-2-4 NetPhy_LinkStateSet()

The Ethernet PHY’s LinkStateSet() function determines the current Ethernet link state.

Results are passed back to the caller within a NET_DEV_LINK_ETHER structure which

contains fields for link speed and duplex. This function is called periodically by μC/TCP-IP.

FILES

Every physical layer driver’s net_phy.c

PROTOTYPE

Note that since every PHY driver’s LinkStateSet() function is accessed only by function

pointer via the PHY driver’s API structure, it doesn’t need to be globally available and

should therefore be declared as ‘static’.

ARGUMENTS

pif Pointer to the interface to set a PHY’s current link state.

plink_state Pointer to a link state structure with link state information to configure. The

NET_DEV_LINK_ETHER structure contains two fields for link speed and

duplex. Link speed is set via plink_state->Spd :

NET_PHY_SPD_10
NET_PHY_SPD_100

And link duplex is set via plink_state->Duplex :

NET_PHY_DUPLEX_HALF
NET_PHY_DUPLEX_FULL

perr Pointer to variable that will receive the return error code from this function.

static void NetPhy_LinkStateSet (NET_IF *pif,
 NET_DEV_LINK_ETHER *plink_state,
 NET_ERR *perr);
333

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES/WARNINGS

None.
334

A-2-5 NetPhy_ISR_Handler()

An Ethernet PHY’s ISR_Handler() function is used to handle a PHY’s interrupts. See

section 7-4-7 “NetPhy_ISR_Handler()” on page 157 for more details on how to handle PHY

interrupts. μC/TCP-IP does not require PHY drivers to enable or handle PHY interrupts. The

generic PHY drivers does not even define a PHY interrupt handler function but instead

handles all events by either periodic or event-triggered calls to other PHY API functions.

FILES

Every physical layer driver’s net_phy.c

PROTOTYPE

Note that since every PHY driver’s ISR_Handler() function is accessed only by function

pointer via the PHY driver’s API structure, it doesn’t need to be globally available and

should therefore be declared as ‘static’.

ARGUMENTS

pif Pointer to the interface to handle PHY interrupts.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES/WARNINGS

None.

static void NetPhy_ISR_Handler (NET_IF *pif);
335

A-3 DEVICE DRIVER BSP FUNCTIONS

A-3-1 NetDev_CfgClk()

This function is called by a device driver’s NetDev_Init() to configure a specific network

device’s clocks on a specific interface.

FILES

net_bsp.c

PROTOTYPE

Note: since NetDev_CfgClk() is accessed only by function pointer via a BSP interface

structure, it doesn’t need to be globally available and should therefore be declared as

‘static’.

ARGUMENTS

pif Pointer to specific interface to configure device’s clocks.

perr Pointer to variable that will receive the return error code from this function:

NET_DEV_ERR_NONE
NET_DEV_ERR_FAULT

This is not an exclusive list of return errors and specific network device’s or device BSP

functions may return any other specific errors as required.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static void NetDev_CfgClk (NET_IF *pif,
 NET_ERR *perr);
336

NOTES / WARNINGS

Each network device’s NetDev_CfgClk() should configure and enable all required clocks

for the network device. For example, on some devices it may be necessary to enable clock

gating for an embedded Ethernet MAC as well as various GPIO modules in order to

configure Ethernet Phy pins for (R)MII mode and interrupts.

Since each network device requires a unique NetDev_CfgClk(), it is recommended that

each device’s NetDev_CfgClk() function be named using the following convention:

NetDev_[Device]CfgClk[Number]()

[Device] Network device name or type, e.g. MACB (optional if the development board

does not support multiple devices)

[Number] Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)

For example, the NetDev_CfgClk() function for the #2 MACB Ethernet controller on an

Atmel AT91SAM9263-EK should be named NetDev_MACB_CfgClk2(), or

NetDev_MACB_CfgClk_2() with additional underscore optional.

See also Chapter 6, “Network Board Support Package” on page 121.
337

A-3-2 NetDev_CfgGPIO()

This function is called by a device driver’s NetDev_Init() to configure a specific network

device’s general-purpose input/ouput (GPIO) on a specific interface.

FILES

net_bsp.c

PROTOTYPE

Note that since NetDev_CfgGPIO() is accessed only by function pointer via a BSP interface

structure, it doesn’t need to be globally available and should therefore be declared as

‘static’.

ARGUMENTS

pif Pointer to specific interface to configure device’s GPIO.

perr Pointer to variable that will receive the return error code from this function:

NET_DEV_ERR_NONE
NET_DEV_ERR_FAULT

This is not an exclusive list of return errors and specific network device’s or device BSP

functions may return any other specific errors as required.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static void NetDev_CfgGPIO (NET_IF *pif,
 NET_ERR *perr);
338

NOTES / WARNINGS

Each network device’s NetDev_CfgGPIO() should configure all required GPIO pins for the

network device. For Ethernet devices, this function is usually necessary to configure the

(R)MII bus pins, depending on whether you have configured an Ethernet interface to

operate in the RMII or MII mode, and optionally the Ethernet Phy interrupt pin.

Since each network device requires a unique NetDev_CfgGPIO(), it is recommended that

each device’s NetDev_CfgGPIO() function be named using the following convention:

NetDev_[Device]CfgGPIO[Number]()

[Device] Network device name or type, e.g. MACB (optional if the development board

does not support multiple devices)

[Number] Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)

For example, the NetDev_CfgGPIO() function for the #2 MACB Ethernet controller on an

Atmel AT91SAM9263-EK should be named NetDev_MACB_CfgGPIO2(), or

NetDev_MACB_CfgGPIO_2() with additional underscore optional.

See also Chapter 6, “Network Board Support Package” on page 121.
339

A-3-3 NetDev_CfgIntCtrl()

This function is called by a device driver’s NetDev_Init() to configure a specific network

device’s interrupts and/or interrupt controller on a specific interface.

FILES

net_bsp.c

PROTOTYPE

Note that since NetDev_CfgIntCtrl() is accessed only by function pointer via a BSP

interface structure, it doesn’t need to be globally available and should therefore be declared

as ‘static’.

ARGUMENTS

pif Pointer to specific interface to configure device’s interrupts.

perr Pointer to variable that will receive the return error code from this function:

NET_DEV_ERR_NONE
NET_DEV_ERR_FAULT

This is not an exclusive list of return errors and specific network device’s or device BSP

functions may return any other specific errors as required.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static void NetDev_CfgIntCtrl (NET_IF *pif,
 NET_ERR *perr);
340

NOTES / WARNINGS

Each network device’s NetDev_CfgIntCtrl() should configure and enable all required

interrupt sources for the network device. This usually means configuring the interrupt

vector address of each corresponding network device BSP interrupt service routine (ISR)

handler and enabling its corresponding interrupt source. Thus, for most

NetDev_CfgIntCtrl(), the following actions should be performed:

1 Configure/store each device’s network interface number to be available for all necessary

NetDev_ISR_Handler() functions (see section A-3-5 on page 346). Even though

devices are added dynamically, the device’s interface number must be saved in order for

each device’s ISR handlers to call NetIF_ISR_Handler() with the device’s network

interface number.

Since each network device maps to a unique network interface number, it is

recommended that each instance of network devices’ interface numbers be named

using the following convention:

<Board><Device>[Number]_IF_Nbr

<Board> Development board name

<Device>Network device name (or type)

[Number]Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)

For example, the network device interface number variable for the #2 MACB

Ethernet controller on an Atmel AT91SAM9263-EK should be named

AT91SAM9263-EK_MACB_2_IF_Nbr.

Network device interface number variables should be initialized to NET_IF_NBR_NONE at

system initialization prior to being configured by their respective devices.
341

2 Configure each of the device’s interrupts on either an external or CPU’s integrated

interrupt controller. However, vectored interrupt controllers may not require the explicit

configuration and enabling of higher-level interrupt controller sources. In this case, the

application developer may need to configure the system’s interrupt vector table with the

name of the ISR handler functions declared in net_bsp.c.

NetDev_CfgIntCtrl() should only enable each devices’ interrupt sources but not the

local device-level interrupts themselves, which are enabled by the device driver only

after the device has been fully configured and started.

Since each network device requires a unique NetDev_CfgIntCtrl(), it is

recommended that each device’s NetDev_CfgIntCtrl() function be named using the

following convention:

NetDev_[Device]CfgIntCtrl[Number]()

[Device]Network device name or type, e.g. MACB (optional if the development board

does not support multiple devices)

[Number]Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)

For example, the NetDev_CfgIntCtrl() function for the #2 MACB Ethernet controller

on an Atmel AT91SAM9263-EK should be named NetDev_MACB_CfgIntCtrl2(), or

NetDev_MACB_CfgIntCtrl_2() with additional underscore optional.

See also Chapter 6, “Network Board Support Package” on page 121.
342

EXAMPLES

static void NetDev_MACB_CfgIntCtrl (NET_IF *pif,
 NET_ERR *perr)
{
 /* Configure AT91SAM9263-EK MACB #2's specific IF number. */
 AT91SAM9263-EK_MACB_2_IF_Nbr = pif->Nbr;
 /* Configure AT91SAM9263-EK MACB #2's interrupts: */
 BSP_IntVectSet(BSP_INT, &NetDev_MACB_ISR_Handler_2);/* Configure interrupt vector. */
 BSP_IntEn(BSP_INT); /* Enable interrupts. */

 *perr = NET_DEV_ERR_NONE;
}

static void NetDev_MACB_CfgIntCtrlRx_2 (NET_IF *pif,
 NET_ERR *perr)
{
 /* Configure AT91SAM9263-EK MACB #2's specific IF number. */
 AT91SAM9263-EK_MACB_2_IF_Nbr = pif->Nbr;
 /* Configure AT91SAM9263-EK MACB #2's receive interrupt: */
 BSP_IntVectSet(BSP_INT_RX, &NetDev_MACB_ISR_HandlerRx_2); /* Configure interrupt vector. */
 BSP_IntEn(BSP_INT_RX); /* Enable interrupt. */

 *perr = NET_DEV_ERR_NONE;
}

343

A-3-4 NetDev_ClkGetFreq()

This function is called by a device driver’s NetDev_Init() to return a specific network

device’s clock frequency for a specific interface.

FILES

net_bsp.c

PROTOTYPE

Note that since NetDev_ClkFreqGet() is accessed only by function pointer via a BSP

interface structure, it doesn’t need to be globally available and should therefore be declared

as ‘static’.

ARGUMENTS

pif Pointer to specific interface to return device’s clock frequency.

perr Pointer to variable that will receive the return error code from this function:

NET_DEV_ERR_NONE
NET_DEV_ERR_FAULT

This is not an exclusive list of return errors and specific network device’s or device BSP

functions may return any other specific errors as required.

RETURNED VALUE

Network device’s clock frequency (in Hz).

REQUIRED CONFIGURATION

None.

static CPU_INT32U NetDev_ClkGetFreq (NET_IF *pif,
 NET_ERR *perr);
344

NOTES / WARNINGS

Each network device’s NetDev_ClkFreqGet() should return the device’s clock frequency

(in Hz). For Ethernet devices, this is usually the clock frequency of the device’s (R)MII bus.

The device driver’s NetDev_Init() uses the returned clock frequency to configure an

appropriate bus divider to ensure that the (R)MII bus logic operates within an allowable

range. In general, the device driver should not configure the divider such that the (R)MII

bus operates faster than 2.5MHz.

Since each network device requires a unique NetDev_ClkFreqGet(), it is recommended

that each device’s NetDev_ClkFreqGet() function be named using the following

convention:

NetDev_[Device]ClkGetFreq[Number]()

[Device] Network device name or type, e.g. MACB (optional if the development board

does not support multiple devices)

[Number] Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)

For example, the NetDev_ClkFreqGet() function for the #2 MACB Ethernet controller on

an Atmel AT91SAM9263-EK should be named NetDev_MACB_ClkGetFreq2(), or

NetDev_MACB_ClkGetFreq_2() with additional underscore optional.

See also Chapter 6, “Network Board Support Package” on page 121.
345

A-3-5 NetDev_ISR_Handler()

Handle a network device’s interrupts on a specific interface.

FILES

net_bsp.c

PROTOTYPE

Note that since NetDev_ISR_Handler() is accessed only by function pointer usually via an

interrupt vector table, it doesn’t need to be globally available and should therefore be

declared as ‘static’.

ARGUMENTS

None.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

Each network device’s interrupt, or set of device interrupts, must be handled by a unique

BSP-level interrupt service routine (ISR) handler, NetDev_ISR_Handler(), which maps

each specific device interrupt to its corresponding network interface ISR handler,

NetIF_ISR_Handler(). For some CPUs this may be a first- or second-level interrupt

handler. Generally, the application must configure the interrupt controller to call every

network device’s unique NetDev_ISR_Handler() when the device’s interrupt occurs (see

section A-3-3 on page 340). Every unique NetDev_ISR_Handler() must then perform the

following actions:

static void NetDev_ISR_Handler (void);
346

1 Call NetIF_ISR_Handler() with the device’s unique network interface number and

appropriate interrupt type. The device’s network interface number should be available

after configuration in the device’s NetDev_CfgIntCtrl() function (see section A-3-3

“NetDev_CfgIntCtrl()” on page 340). NetIF_ISR_Handler() in turn calls the

appropriate device driver’s interrupt handler.

In most cases, each device requires only a single NetDev_ISR_Handler() which calls

NetIF_ISR_Handler() with interrupt type code NET_DEV_ISR_TYPE_UNKNOWN. This is

possible when the device’s driver can determine the device’s interrupt type to via

internal device registers or the interrupt controller. However, some devices cannot

generically determine the interrupt type when an interrupt occurs and may therefore

require multiple, unique NetDev_ISR_Handler()’s each of which calls

NetIF_ISR_Handler() with the appropriate interrupt type code.

Ethernet Physical layer (Phy) interrupts should call NetIF_ISR_Handler() with

interrupt type code NET_DEV_ISR_TYPE_PHY.

See also section C-9-12 “NetIF_ISR_Handler()” on page 519.

2 Clear the device’s interrupt source, possibly via an external or CPU-integrated interrupt

controller source.

Since each network device requires a unique NetDev_ISR_Handler() for each device

interrupt, it is recommended that each device’s NetDev_ISR_Handler() function be named

using the following convention:

NetDev_[Device]ISR_Handler[Type][Number]()

[Device] Network device name or type, e.g., MACB (optional if the development

board does not support multiple devices)

[Type] Network device interrupt type, e.g., receive interrupt (optional if interrupt

type is generic or unknown)

[Number] Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)
347

For example, the receive ISR handler for the #2 MACB Ethernet controller on an Atmel

AT91SAM9263-EK should be named NetDev_MACB_ISR_HandlerRx2().

See also Chapter 6, “Network Board Support Package” on page 121.

EXAMPLES

static void NetDev_MACB_ISR_Handler_2 (void)
{
 NET_ERR err;

 NetIF_ISR_Handler(AT91SAM9263-EK_MACB_2_IF_Nbr, NET_DEV_ISR_TYPE_UNKNOWN, &err);
 /* Clear external or CPU’s integrated interrupt controller. */
}

static void NetDev_MACB_ISR_HandlerRx_2 (void)
{
 NET_ERR err;

 NetIF_ISR_Handler(AT91SAM9263-EK_MACB_2_IF_Nbr, NET_DEV_ISR_TYPE_RX, &err);
 /* Clear external or CPU’s integrated interrupt controller. */
}

348

Appendix

B

μC/TCP-IP Wireless Device Driver APIs

This appendix provides a reference to the μC/TCP-IP Device Driver API. Each

user-accessible service is presented in alphabetical order. The following information is

provided for each of the services:

■ A brief description

■ The function prototype

■ The filename of the source code

■ A description of the arguments passed to the function

■ A description of the returned value(s)

■ Specific notes and warnings on the use of the service
349

B-1 DEVICE DRIVER FUNCTIONS FOR WIRELESS MODULE

B-1-1 NetDev_Init()

The first function within the wireless API is the device driver initialization/Init() function.

This function is called by NetIF_Add() exactly once for each specific network device added

by the application. If multiple instances of the same network device are present on the

development board, then this function is called for each instance of the device. However,

applications should not try to add the same specific device more than once. If a network

device fails to initialize, we recommend debugging to find and correct the cause of failure.

Note: This function relies heavily on the implementation of several network device board

support package (BSP) functions. See Chapter 6, “Network Board Support Package” on

page 121 and Appendix B, “Device Driver BSP Functions” on page 387 for more

information on network device BSP functions.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s Init() function is accessed only by function pointer

via the device driver’s API structure, it doesn’t need to be globally available and should

therefore be declared as ‘static’.

ARGUMENTS

p_if Pointer to the interface to initialize a network device.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

static void NetDev_Init (NET_IF *p_if,
 NET_ERR *p_err);
350

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

The Init() function generally performs the following operations, however, depending on

the device being initialized, functionality may need to be added or removed:

1 Validate all wireless configuration values.

2 Configure all necessary I/O pins for the wireless device such as power enable or reset

pin. This is generally performed via the network device’s BSP function pointer,

CfgGPIO(), implemented in net_bsp.c (see section A-3-2 on page 338).

3 Initialize SPI controller for writing and reading from the wireless module.

4 Configure the host interrupt controller for receive and transmit complete interrupts.

Additional interrupt services may be initialized depending on the device and driver

requirements. This is generally performed via the network device’s BSP function

pointer, CfgIntCtrl(), implemented in net_bsp.c (see section B-3-4 on page 393).

5 Allocate memory for all necessary driver buffers that will be reuse only by the driver

such as a read buffer to validate the command sent. This is performed via calls to

μC/LIB’s memory module.

6 Disable the transmitted and receiver (should already be disabled).

7 Set p_err to NET_DEV_ERR_NONE if initialization proceeded as expected. Otherwise, set

p_err to an appropriate network device error code.
351

B-1-2 NetDev_Start()

The second function is the device driver Start() function. This function is called once

each time an interface is started.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s Start() function is accessed only by function pointer

via the device driver’s API structure, it doesn’t need to be globally available and should

therefore be declared as ‘static’.

ARGUMENTS

p_if Pointer to the interface to start a network device.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static void NetDev_Start (NET_IF *p_if,
 NET_ERR *p_err);
352

NOTES / WARNINGS

The Start() function performs the following items:

1 Configure the transmit ready semaphore count via a call to

NetOS_Dev_CfgTxRdySignal(). This function call is optional and is generally

performed when the hardware device supports the queuing of multiple transmit frames.

By default, the count is initialized to one.

2 Send command to start and initialize wireless device. If a specific firmware must be

loaded on the device, the firmware should be validated and updated if necessary.

3 Initialize the device MAC address if applicable. For Ethernet devices, this step is

mandatory. The MAC address data may come from one of three sources and should be

set using the following priority scheme:

a. Configure the MAC address using the string found within the device configuration

structure. This is a form of static MAC address configuration and may be performed by

calling NetASCII_Str_to_MAC() and NetIF_AddrHW_SetHandler(). If the device

configuration string has been left empty, or is specified as all 0’s, an error will be

returned and the next method should be attempted.

b. Check if the application developer has called NetIF_AddrHW_Set() by making a call

to NetIF_AddrHW_GetHandler() and NetIF_AddrHW_IsValidHandler() in order to

check if the specified MAC address is valid. This method may be used as a static

method for configuring the MAC address during run-time, or a dynamic method should

a pre-programmed external memory device exist. If the acquired MAC address does not

pass the check function, then:

c. Call NetIF_AddrHW_SetHandler() using the data found within the MAC individual

address registers. If an auto-loading EEPROM is attached to the MAC, the registers will

contain valid data. If not, then a configuration error has occurred. This method is often

used with a production process where the MAC supports the automatic loading of

individual address registers from a serial EEPROM. When using this method, the

developer should specify an empty string for the MAC address within the device

configuration and refrain from calling NetIF_AddrHW_Set() from within the application.
353

4 Initialize additional MAC registers required by the MAC for proper operation.

5 Clear all interrupt flags.

6 Locally enable interrupts on the hardware device. The host interrupt controller should

have already been configured within the device driver Init() function.

7 Enable the receiver and transmitter.

8 Set p_err equal to NET_DEV_ERR_NONE if no errors have occurred. Otherwise, set p_err
to an appropriate network device error code.
354

B-1-3 NetDev_Stop()

The next function within the device API structure is the device Stop() function. This

function is called once each time an interface is stopped.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s Stop() function is accessed only by function pointer

via the device driver’s API structure, it doesn’t need to be globally available and should

therefore be declared as ‘static’.

ARGUMENTS

p_if Pointer to the interface to start a network device.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

The Stop() function must perform the following operations:

1 Disable the receiver and transmitter.

2 Disable all local MAC interrupt sources.

static void NetDev_Stop (NET_IF *p_if,
 NET_ERR *p_err);
355

3 Clear all local MAC interrupt status flags.

4 Power down the wireless device.

5 Set p_err to NET_DEV_ERR_NONE if no error occurs. Otherwise, set p_err to an

appropriate network device error code.
356

B-1-4 NetDev_Rx()

The receive/Rx() function is called by μC/TCP-IP’s Receive task after the Interrupt Service

Routine handler has signaled to the Receive task that a receive event has occurred. The

Receive function requires that the device driver return a pointer to the data area containing

the received data and return the size of the received frame via pointer.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s Rx() function is accessed only by function pointer via

the device driver’s API structure, it doesn’t need to be globally available and should

therefore be declared as ‘static’.

ARGUMENTS

p_if Pointer to the interface to receive data from a network device.

p_data Pointer to return the address of the received data.

p_size Pointer to return the size of the received data.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static void NetDev_Rx (NET_IF *p_if,
 CPU_INT08U **p_data,
 CPU_INT16U *p_size,
 NET_ERR *p_err);
357

NOTES / WARNINGS

The receive function should perform the following actions:

1 For SPI wireless device, get the access to the SPI bus by performing the following

operation:

a. Acquire the SPI lock by calling p_dev_bsp->SPI_Lock().

b. Enable the chip select by calling p_dev_bsp->SPI_ChipSelEn().

c. Configure the SPI controller for the wireless device by calling

p_dev_bsp->SPI_SetCfg().

2 Check for receive errors if applicable. If an error should occur during reception, the

driver should set *size to 0 and *p_data to (CPU_INT08U *)0 and return. Additional

steps may be necessary depending on the device being serviced.

3 For wireless devices, get the size of the received frame and subtract 4 bytes for the CRC.

It is always recommended that the frame size is checked to ensure that it is greater than

4 bytes before performing the subtraction to ensure that an underflow does not occur.

Set *size equal to the adjusted frame size.

4 Get a new data buffer area by calling NetBuf_GetDataPtr(). If memory is not

available, an error will be returned and the device driver should set *size to 0 and

*p_data to (CPU_INT08U *)0.

5 If an error does not occur while getting a new data area, the function should perform

the following operations:

a. Set the frame type of the data received (NET_IF_WIFI_MGMT_FRAME or

NET_IF_WIFI_DATA_PKT) at the beginning of the network buffer.

b. The data stored within the device should be transferred to the address of the data

section (after the frame type) of the network buffer by calling p_dev_bsp->SPI_WrRd()

and by using a global buffer to write data and set *p_data equal to the address of the

obtained data area.
358

6 Sidable the device chip select by calling p_dev_bsp->SPI_ChipSelDis() and unlock

the SPI bus access by calling p_dev_bsp->SPI_Unlock().

7 Set p_err to NET_DEV_ERR_NONE and return from the receive function. Otherwise, set

p_err to an appropriate network device error code.
359

B-1-5 NetDev_Tx()

The next function in the device API structure is the transmit/Tx() function.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s Tx() function is accessed only by function pointer via

the device driver’s API structure, it doesn’t need to be globally available and should

therefore be declared as ‘static’.

ARGUMENTS

p_if Pointer to the interface to start a network device.

p_data Pointer to address of the data to transmit.

size Size of the data to transmit.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static void NetDev_Tx (NET_IF *p_if,
 CPU_INT08U *p_data,
 CPU_INT16U size,
 NET_ERR *p_err);
360

NOTES / WARNINGS

The transmit function should perform the following actions:

1 For SPI wireless device, get the access to the SPI bus by performing the following

operation:

a. Acquire the SPI lock by calling p_dev_bsp->SPI_Lock().

b. Enable the chip select by calling p_dev_bsp->SPI_ChipSelEn().

c. Configure the SPI controller for the wireless device by calling

p_dev_bsp->SPI_SetCfg().

2 Write data to the device by calling p_dev_bsp->SPI_WrRd() and by using the network

buffer passed as argument and by using a global buffer to read data.

3 The driver should then take all necessary steps to initiate transmission of the data.

4 Set perr to NET_DEV_ERR_NONE and return from the transmit function.
361

B-1-6 NetDev_AddrMulticastAdd()

The next API function is the AddrMulticastAdd() function used to configure a device with

an (IP-to-Ethernet) multicast hardware address.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s AddrMulticastAdd() function is accessed only by

function pointer via the device driver’s API structure, it doesn’t need to be globally available

and should therefore be declared as ‘static’.

ARGUMENTS

p_if Pointer to the interface to add/configure a multicast address.

p_addr_hw Pointer to multicast hardware address to add.

addr_hw_len Length of multicast hardware address.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

Necessary only if NET_IP_CFG_MULTICAST_SEL is configured for transmit and receive

multicasting (see section D-9-2 on page 752).

static void NetDev_AddrMulticastAdd (NET_IF *p_if,
 CPU_INT08U *p_addr_hw,
 CPU_INT08U addr_hw_len,
 NET_ERR *p_err);
362

NOTES / WARNINGS

Since many network controllers’ documentation fail to properly indicate how to

add/configure an MAC device with a multicast address, the following methodology is

recommended for determining and testing the correct multicast hash bit algorithm.

1 Configure a packet capture program or multicast application to broadcast a multicast

packet with destination address of 01:00:5E:00:00:01. This MAC address corresponds to

the multicast group IP address of 224.0.0.1 which will be converted to a MAC address

by higher layers and passed to this function.

2 Set a break point in the receive ISR handler and transmit one send packet to the target.

The break point should not be reached as the result of the transmitted packet. Use

caution to ensure that other network traffic is not the source of the interrupt when the

button is pressed. Sometimes asynchronous network events happen very close in time

and the end result can be deceiving. Ideally, these tests should be performed on an

isolated network but disconnect as many other hosts from the network as possible.

3 Use the debugger to stop the application and program the MAC multicast hash register

low bits to 0xFFFFFFFF. Go to step 2. Repeat for the hash bit high register if necessary.

The goal is to bracket off which bit in either the high or low hash bit register causes the

device to be interrupted when the broadcast frame is received by the target. Once the

correct bit is known, the hash algorithm can be easily written and tested.

4 The following hash bit algorithm code below could be adjusted per the network

controller’s documentation in order to get the hash from the correct subset of CRC bits.

Most of the code is similar between various devices and is thus reusable. The hash

algorithm is the exlusive OR of every 6th bit of the destination address:

hash[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
hash[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
hash[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
hash[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
hash[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
hash[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]

Where da0 represents the least significant bit of the first byte of the destination address

received and where da47 represents the most significant bit of the last byte of the

destination address received.
363

Listing B-1 Example device multicast address configuration using CRC hash code algorithm

Alternatively, you may be able to compute the CRC hash with a call to

NetUtil_32BitCRC_CalcCpl() followed by an optional call to

NetUtil_32BitReflect(), with four possible combinations:

a. CRC without complement and without reflection

b. CRC without complement and with reflection

c. CRC with complement and without reflection

d. CRC with complement and with reflection

 /* ---------- CALCULATE HASH CODE ---------- */
hash = 0;
for (i = 0; i < 6; i++) { /* For each row in the bit hash table: */
 bit_val = 0; /* Clear initial xor value for each row. */
 for (j = 0; j < 8; j++) { /* For each bit in each octet: */
 bit_nbr = (j * 6) + i; /* Determine which bit in stream, 0-47. */
 octet_nbr = bit_nbr / 8; /* Determine which octet bit belongs to. */
 octet = paddr_hw[octet_nbr]; /* Get octet value. */
 bit = octet & (1 << (bit_nbr % 8)); /* Check if octet’s bit is set. */
 bit_val ^= (bit > 0) ? 1 : 0; /* Calculate table row’s XOR hash value. */
 }
 hash |= (bit_val << i); /* Add row’s XOR hash value to final hash. */
}
 /* ---- ADD MULTICAST ADDRESS TO DEVICE ---- */
reg_sel = (hash >> 5) & 0x01; /* Determine hash register to configure. */
reg_bit = (hash >> 0) & 0x1F; /* Determine hash register bit to configure. */
 /* (Substitute ‘0x01’/‘0x1F’ with device’s ..*/
 /* .. actual hash register bit masks/shifts.)*/

 paddr_hash_ctrs = &pdev_data->MulticastAddrHashBitCtr[hash];
(*paddr_hash_ctrs)++; /* Increment hash bit reference counter. */

if (reg_sel == 0) { /* Set multicast hash register bit. */
 pdev->MCAST_REG_LO |= (1 << reg_bit); /* (Substitute ‘MCAST_REG_LO/HI’ with .. */
} else { /* .. device’s actual multicast registers.) */
 pdev->MCAST_REG_HI |= (1 << reg_bit);
}
 /* ---------- CALCULATE HASH CODE ---------- */
 /* Calculate CRC. */
crc = NetUtil_32BitCRC_Calc((CPU_INT08U *)paddr_hw,
 (CPU_INT32U) addr_hw_len,
 (NET_ERR *)perr);
364

Listing B-2 Example device multicast address configuration using CRC and reflection functions

Unfortunately, the product documentation will not likely tell you which combination of

complement and reflection is necessary in order to properly compute the hash value.

Most likely, the documentation will simply state ‘Standard Ethernet CRC’ which when

compared to other documents, means any of the four combinations above; different

than the actual frame CRC.

Fortunately, if the code is written to perform both the complement and reflection, then

the debugger may be used to repeat the code block over and over skipping either the

line that performs the complement or the function call to the reflection until the output

hash bit is computed correctly.

5 Update the device driver’s AddrMulticastAdd() function to calculate and configure the

correct CRC.

6 Test the device driver’s AddrMulticastAdd() function by ensuring that the group

address 224.0.0.1, when joined from the application (see section C-11-1 on page 539),

correctly configures the device to receive multicast packets destined to the 224.0.0.1

address. Then broadcast the 224.0.0.1 (see step 1) to test if the device receives the

multicast packet.

if (*perr != NET_UTIL_ERR_NONE) {
 return;
}
 /* ---- ADD MULTICAST ADDRESS TO DEVICE ---- */
crc = NetUtil_32BitReflect(crc); /* Optionally, complement CRC. */
hash = (crc >> 23u) & 0x3F; /* Determine hash register to configure. */
reg_bit = (hash % 32u); /* Determine hash register bit to configure. */
 /* (Substitute ‘23u’/‘0x3F’ with device’s .. */
 /* .. actual hash register bit masks/shifts.)*/

 paddr_hash_ctrs = &pdev_data->MulticastAddrHashBitCtr[hash];
(*paddr_hash_ctrs)++; /* Increment hash bit reference counter. */

if (hash <= 31u) { /* Set multicast hash register bit. */
 pdev->MCAST_REG_LO |= (1 << reg_bit); /* (Substitute ‘MCAST_REG_LO/HI’ with .. */
} else { /* .. device’s actual multicast registers.) */
 pdev->MCAST_REG_HI |= (1 << reg_bit);
}

365

B-1-7 NetDev_AddrMulticastRemove()

The next API function is the AddrMulticastRemove() function used to remove an

(IP-to-Ethernet) multicast hardware address from a device.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s AddrMulticastRemove() function is accessed only by

function pointer via the device driver’s API structure, it doesn’t need to be globally available

and should therefore be declared as ‘static’.

ARGUMENTS

p_if Pointer to the interface to remove a multicast address.

p_addr_hw Pointer to multicast hardware address to remove.

addr_hw_len Length of multicast hardware address.

p_err Pointer to variable that will receive the return error code from

this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

Necessary only if NET_IP_CFG_MULTICAST_SEL is configured for transmit and receive

multicasting (see section D-9-2 on page 752).

static void NetDev_AddrMulticastRemove (NET_IF *p_if,
 CPU_INT08U *p_addr_hw,
 CPU_INT08U addr_hw_len,
 NET_ERR *p_err);
366

NOTES / WARNINGS

Use same exact code as in NetDev_AddrMulticastAdd() to calculate the device’s CRC hash

(see section B-1-6 on page 362), but remove a multicast address by decrementing the

device’s hash bit reference counters and clearing the appropriate bits in the device’s

multicast registers.

Listing B-3 Example device multicast address removal

 /* ---------- CALCULATE HASH CODE ---------- */
/* Use NetDev_AddrMulticastAdd()’s algorithm to calculate CRC hash. */
 /* - REMOVE MULTICAST ADDRESS FROM DEVICE -- */
paddr_hash_ctrs = &pdev_data->MulticastAddrHashBitCtr[hash];
if (*paddr_hash_ctrs > 1u) { /* If multiple multicast addresses hashed, ..*/
 (*paddr_hash_ctrs)--; /* .. decrement hash bit reference counter ..*/
 perr = NET_DEV_ERR_NONE; / .. but do NOT unconfigure hash register. */
 return;
}
paddr_hash_ctrs = 0u; / Clear hash bit reference counter. */

if (hash <= 31u) { /* Clear multicast hash register bit. */
 pdev->MCAST_REG_LO &= ~(1u << reg_bit); /* (Substitute ‘MCAST_REG_LO/HI’ with .. */
} else { /* .. device’s actual multicast registers.) */
 pdev->MCAST_REG_HI &= ~(1u << reg_bit);
}

367

B-1-8 NetDev_ISR_Handler()

A device’s ISR_Handler() function is used to handle each device’s interrupts. See section

7-5-5 “NetDev_ISR_Handler()” on page 164 for more details on how to handle each device’s

interrupts.

FILES

Every device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s ISR_Handler() function is accessed only by function

pointer via the device driver’s API structure, it doesn’t need to be globally available and

should therefore be declared as ‘static’.

ARGUMENTS

pif Pointer to the interface to handle network device interrupts.

type Device’s interrupt type:

NET_DEV_ISR_TYPE_UNKNOWN
NET_DEV_ISR_TYPE_RX
NET_DEV_ISR_TYPE_RX_RUNT
NET_DEV_ISR_TYPE_RX_OVERRUN
NET_DEV_ISR_TYPE_TX_RDY
NET_DEV_ISR_TYPE_TX_COMPLETE
NET_DEV_ISR_TYPE_TX_COLLISION_LATE
NET_DEV_ISR_TYPE_TX_COLLISION_EXCESS
NET_DEV_ISR_TYPE_JABBER
NET_DEV_ISR_TYPE_BABBLE
NET_DEV_ISR_TYPE_PHY

static void NetDev_ISR_Handler (NET_IF *pif,
 NET_DEV_ISR_TYPE type);
368

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

Each device’s NetDev_ISR_Handler() should never return early but check all applicable

interrupt sources to see if they are active. This additional checking is necessary because

multiple interrupt sources may be set within the interrupt response time and will reduce the

number and overhead of handling interrupts.
369

B-1-9 NetDev_MgmtDemux()

A device’s management demultiplex function is used to demultiplex a management frame to

signal the Wireless Manager the response or to implement miscellaneous functionality such

as updating the link state when the wireless network is out of the range and the connection

is lost.

FILES

Every wireless device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s MgmtDemux() function is accessed only by function

pointer via the device driver’s API structure, it doesn’t need to be globally available and

should therefore be declared as ‘static’.

ARGUMENTS

p_if Pointer to the interface to handle network device I/O operations.

p_buf Pointer to the network buffer that contains the management frame.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

static void NetDev_MgmtDemux (NET_IF *p_if,
 NET_BUF *p_buf,
 NET_ERR *p_err);
370

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

When a management command has been sent and the Wireless Manager is waiting for the

response, the Wireless Manager must be signaled by calling p_mgr_api->Signal().

The network buffer must be freed by the function if the Wireless Manager is not signaled

and no error are returned by calling NetBuf_Free().
371

B-1-10 NetDev_MgmtExecuteCmd()

A device’s execute management command function is used to implement miscellaneous

wireless management functionality such as scanning for available wireless network.

FILES

Every wireless device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s MgmtDemux() function is accessed only by function

pointer via the device driver’s API structure, it doesn’t need to be globally available and

should therefore be declared as ‘static’.

ARGUMENTS

p_if Pointer to the interface to handle network device I/O operations.

cmd Management command to execute:

NET_IF_WIFI_CMD_SCAN
NET_IF_WIFI_CMD_JOIN
NET_IF_WIFI_CMD_LEAVE
NET_IF_IO_CTRL_LINK_STATE_GET
NET_IF_IO_CTRL_LINK_STATE_GET_INFO
NET_IF_IO_CTRL_LINK_STATE_UPDATE
Others management commands defined by the driver.

static CPU_INT32U NetDev_MgmtExecuteCmd (NET_IF *p_if,
 NET_IF_WIFI_CMD cmd,
 NET_WIFI_MGR_CTX *p_ctx,
 void *p_cmd_data,
 CPU_INT16U cmd_data_len,
 CPU_INT08U *p_buf_rtn,
 CPU_INT08U buf_rtn_len_max,
 NET_ERR *p_err);
372

p_ctx Pointer to the Wireless Manager context.

p_cmd_data Pointer to a buffer that contains data to be used by the driver to

execute the command.

cmd_data_len Command data length.

p_buf_rtn Pointer to buffer that will receive return data.

buf_rtn_len_max Return maximum data length.

p_err Pointer to variable that will receive the return error code from

this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

The state machine context is used by the Wireless Manager to know what it MUST do after

the call such as waiting for a management response.
373

B-1-11 NetDev_MgmtProcessResp()

A device’s process management response function is used to analyse the response, set the

state machine context of the Wireless Manager and fill the return buffer.

FILES

Every wireless device driver’s net_dev.c

PROTOTYPE

Note that since every device driver’s MgmtDemux() function is accessed only by function

pointer via the device driver’s API structure, it doesn’t need to be globally available and

should therefore be declared as ‘static’.

ARGUMENTS

p_if Pointer to the interface to handle network device I/O operations.

cmd Management command to execute:

NET_IF_WIFI_CMD_SCAN
NET_IF_WIFI_CMD_JOIN
NET_IF_WIFI_CMD_LEAVE
NET_IF_IO_CTRL_LINK_STATE_GET
NET_IF_IO_CTRL_LINK_STATE_GET_INFO
NET_IF_IO_CTRL_LINK_STATE_UPDATE

Others management commands defined by the driver.

static CPU_INT32U NetDev_MgmtProcessResp (NET_IF *p_if,
 NET_IF_WIFI_CMD cmd,
 NET_WIFI_MGR_CTX *p_ctx,
 CPU_INT08U *p_buf_rxd,
 CPU_INT16U buf_rxd_len,
 CPU_INT08U *p_buf_rtn,
 CPU_INT16U buf_rtn_len_max,
 NET_ERR *p_err);
374

p_ctx Pointer to the Wireless Manager context.

p_buf_rxd Pointer to a network buffer that contains the command response

cmd_data_len Length of the data response.

p_buf_rtn Pointer to buffer that will receive return data.

buf_rtn_len_max Return maximum data length.

p_err Pointer to variable that will receive the return error code from

this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.
375

B-2 WIRELESS MANAGER API

B-2-1 NetWiFiMgr_Init()

The first function within the Wireless Manager API is the manager initialization/Init()
function which is called by the wireless network interface layer.

FILES

Every Wireless Manager layer net_wifi_mgr.c

PROTOTYPE

Note that since every Wireless Manager’s Init() function is accessed only by function

pointer via the Wireless Manager’s API structure, it doesn’t need to be globally available and

should therefore be declared as ‘static’.

ARGUMENTS

pif Pointer to the interface to initialize a Wireless Manager.

perr Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES/WARNINGS

None.

static void NetWiFiMgr_Init (NET_IF *p_if,
 NET_ERR *p_err)
376

B-2-2 NetWiFiMgr_Start()

The next Wireless Manager function is the Start() function. This function is called by the

wireless network interface layer when an interface is started.

FILES

Every Wireless Manager layer net_wifi_mgr.c

PROTOTYPE

Note that since every Wireless Manager’s Start() function is accessed only by function

pointer via the Wireless Manager’s API structure, it doesn’t need to be globally available and

should therefore be declared as ‘static’.

ARGUMENTS

p_if Pointer to the interface to start the Wireless Manager.

perr Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES/WARNINGS

None.

static void NetWiFiMgr_Start (NET_IF *p_if,
 NET_ERR *p_err);
377

B-2-3 NetWiFiMgr_Stop()

The Wireless Manager function Stop() function is called by the wireless network interface

layer when an interface is stopped.

FILES

Every Wireless Manager layer net_wifi_mgr.c

PROTOTYPE

Note that since every Wireless Manager’s Stop() function is accessed only by function

pointer via the Wireless Manager’s API structure, it doesn’t need to be globally available and

should therefore be declared as ‘static’.

ARGUMENTS

p_if Pointer to the interface to stop the Wireless Manager.

perr Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES/WARNINGS

None.

static void NetWiFiMgr_Stop (NET_IF *p_if,
 NET_ERR *p_err);
378

B-2-4 NetWiFiMgr_AP_Scan()

The Wireless Manager’s AP_Scan() function start the scan process. Results are passed back

to the caller in a table of NET_IF_WIFI_AP structure which contains fields for link network

SSID, channel, network type, Security type and signal strength.

FILES

Every Wireless Manager layer net_wifi_mgr.c

PROTOTYPE

Note that since every Wireless Manager’s AP_Scan() function is accessed only by function

pointer via the Wireless Manager’s API structure, it doesn’t need to be globally available and

should therefore be declared as ‘static’.

ARGUMENTS

p_if Pointer to the interface to scan with.

p_buf_scan Pointer to table that will receive the return network found.

scan_len_max Length of the scan buffer (i.e., number of network that can be found).

p_ssid Pointer to variable that contains the SSID to find.

ch The wireless channel to scan:

NET_IF_WIFI_CH_ALL
NET_IF_WIFI_CH_1
NET_IF_WIFI_CH_2
NET_IF_WIFI_CH_3
NET_IF_WIFI_CH_4

static void NetWiFiMgr_AP_Scan (NET_IF *p_if,
 NET_IF_WIFI_AP *p_buf_scan,
 CPU_INT16U scna_len_max,
 const NET_IF_WIFI_SSID *p_ssid,
 NET_IF_WIFI_CH ch,
 NET_ERR *perr);
379

NET_IF_WIFI_CH_5
NET_IF_WIFI_CH_6
NET_IF_WIFI_CH_7
NET_IF_WIFI_CH_8
NET_IF_WIFI_CH_9
NET_IF_WIFI_CH_10
NET_IF_WIFI_CH_11
NET_IF_WIFI_CH_12
NET_IF_WIFI_CH_13
NET_IF_WIFI_CH_14

perr Pointer to variable that will receive the return error code from this function.

RETURNED VALUES

None.

REQUIRED CONFIGURATION

None.

NOTES/WARNINGS

None.
380

B-2-5 NetWiFiMgr_AP_Join()

The Wireless Manager’s AP_Join() function completes the join process.

FILES

Every Wireless Manager layer net_wifi_mgr.c

PROTOTYPE

Note that since every Wireless Manager’s AP_Join() function is accessed only by function

pointer via the Wireless Manager’s API structure, it doesn’t need to be globally available and

should therefore be declared as ‘static’.

ARGUMENTS

p_if Pointer to the interface to join with.

p_join Pointer to variable that contains the wireless network to join.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUES

None.

REQUIRED CONFIGURATION

None.

NOTES/WARNINGS

None.

static void NetWiFiMgr_AP_Join (NET_IF *p_if,
 const NET_IF_WIFI_AP_JOIN *p_join,
 NET_ERR *p_err);
381

B-2-6 NetWiFiMgr_AP_Leave()

The Wireless Manager’s AP_Leave() function completes the disconnect.

FILES

Every Wireless Manager layer net_wifi_mgr.c

PROTOTYPE

Note that since every Wireless Manager’s AP_Leace() function is accessed only by function

pointer via the Wireless Manager’s API structure, it doesn’t need to be globally available and

should therefore be declared as ‘static’.

ARGUMENTS

p_if Pointer to the interface to join with.

p_join Pointer to variable that contains the wireless network to join.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUES

None.

REQUIRED CONFIGURATION

None.

NOTES/WARNINGS

None.

static void NetWiFiMgr_AP_Leave (NET_IF *p_if,
 NET_ERR *p_err);
382

B-2-7 NetWiFiMgr_IO_Ctrl()

A device’s input/output control/IO_Ctrl() function is used to implement miscellaneous

functionality such as setting and getting the link state. An optional void pointer to a data

variable is passed into the function and may be used to get device parameters from the

caller, or to return device parameters to the caller.

FILES

Every Wireless Manager layer net_wifi_mgr.c

PROTOTYPE

Note that since every Wireless Manager’s IO_Ctrl() function is accessed only by function

pointer via the Wireless Manager’s API structure, it doesn’t need to be globally available and

should therefore be declared as ‘static’.

ARGUMENTS

p_if Pointer to the interface to handle network device I/O operations.

opt I/O operation to perform.

p_data A pointer to a variable containing the data necessary to perform the

operation or a pointer to a variable to store data associated with the result of

the operation.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUES

None.

static void NetWiFiMgr_IO_Ctrl (NET_IF *p_if,
 CPU_INT08U opt,
 void *p_data,
 NET_ERR *p_err);
383

REQUIRED CONFIGURATION

None.

NOTES/WARNINGS

μC/TCP-IP defines the following default options:

■ NET_DEV_LINK_STATE_GET_INFO

■ NET_DEV_LINK_STATE_UPDATE

The NET_DEV_LINK_STATE_GET_INFO option expects p_data to point to a variable of type

NET_DEV_LINK_WIFI for the case of an Ethernet driver. This variable has one field, link

state, which are filled in by the device driver API. μC/TCP-IP internally uses this option code

in order to periodically poll the driver for linkstate.
384

B-2-8 NetWiFiMgr_Mgmt()

A wireless management/Mgmt() function is used to implement miscellaneous functionality

needed by the driver such as command that need response.

FILES

Every Wireless Manager layer net_wifi_mgr.c

PROTOTYPE

Note that since every Wireless Manager’s Mgmt() function is accessed only by function

pointer via the Wireless Manager’s API structure, it doesn’t need to be globally available and

should therefore be declared as ‘static’.

ARGUMENTS

p_if Pointer to the interface to wireless device to manage.

cmd Management command to send.

The driver can define and implement its own management commands which

need a response by calling the Wireless Manager api (p_mgr_api->Mgmt()) to

send the management command and to receive the response.

Driver management command code '100' series reserved for driver.

p_buf_cmd Pointer to variable that contains the data to send.

buf_cmd_len Length of the command buffer.

static void NetWiFiMgr_Mgmt (NET_IF p_if,
 NET_IF_WIFI_CMD cmd,
 CPU_INT08U *p_buf_cmd,
 CPU_INT16U buf_cmd_len,
 CPU_INT08U *p_buf_rtn,
 CPU_INT16U buf_rtn_len_max,
 NET_ERR *p_err);
385

p_buf_rtn Pointer to variable that will receive the return data.

buf_rtn_len_max Length of the return buffer.

p_err Pointer to variable that will receive the return error code from

this function.

RETURNED VALUES

None.

REQUIRED CONFIGURATION

None.

NOTES/WARNINGS

Prior calling this function, the network lock must be acquired.
386

B-3 DEVICE DRIVER BSP FUNCTIONS

B-3-1 NetDev_WiFi_Start()

This function is called by a device driver’s NetDev_Start() to start and power up the

wireless hardware.

FILES

net_bsp.c

PROTOTYPE

Note: since NetDev_WiFi_Start() is accessed only by function pointer via a BSP interface

structure, it doesn’t need to be globally available and should therefore be declared as

‘static’.

ARGUMENTS

p_if Pointer to specific interface to start device’s hardware.

p_err Pointer to variable that will receive the return error code from this function:

NET_DEV_ERR_NONE
NET_DEV_ERR_FAULT

This is not an exclusive list of return errors and specific network device’s or device BSP

functions may return any other specific errors as required.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static void NetDev_WiFi_Start (NET_IF *p_if,
 NET_ERR *p_err);
387

NOTES / WARNINGS

Since each network device requires a unique NetDev_WiFi_Start(), it is recommended

that each device’s NetDev_WiFi_Start() function be named using the following

convention:

NetDev_WiFi_[Device]_Start[Number]()

[Device] Network device name or type, e.g. RS9110 (optional if the development

board does not support multiple devices)

[Number] Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)

For example, the NetDev_WiFi_Start() function for the #2 RS9110 wireless devie should

be named NetDev_WiFi_RS9110_Start2(), or NetDev_WiFI_RS9110_Start_2() with

additional underscore optional.
388

B-3-2 NetDev_WiFi_Stop()

This function is called by a device driver’s NetDev_Stop() to stop &/or power down the

wireless hardware.

FILES

net_bsp.c

PROTOTYPE

Note: since NetDev_WiFi_Stop() is accessed only by function pointer via a BSP interface

structure, it doesn’t need to be globally available and should therefore be declared as

‘static’.

ARGUMENTS

p_if Pointer to specific interface to stop device’s hardware.

p_err Pointer to variable that will receive the return error code from this function:

NET_DEV_ERR_NONE
NET_DEV_ERR_FAULT

This is not an exclusive list of return errors and specific network device’s or device BSP

functions may return any other specific errors as required.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static void NetDev_WiFi_Stop (NET_IF *p_if,
 NET_ERR *p_err);
389

NOTES / WARNINGS

Since each network device requires a unique NetDev_WiFi_Stop(), it is recommended that

each device’s NetDev_WiFi_Stop() function be named using the following convention:

NetDev_WiFi_[Device]_Stop[Number]()

[Device] Network device name or type, e.g. RS9110 (optional if the development

board does not support multiple devices)

[Number] Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)

For example, the NetDev_WiFi_Stop() function for the #2 RS9110 wireless devie should be

named NetDev_WiFi_RS9110_Stop2(), or NetDev_WiFI_RS9110_Stop_2() with

additional underscore optional.
390

B-3-3 NetDev_WiFi_CfgGPIO()

This function is called by a device driver’s NetDev_Init() to configure a specific network

device’s general-purpose input/ouput (GPIO) on a specific interface such as SPI, external

interrupt, power & reset pins.

FILES

net_bsp.c

PROTOTYPE

Note that since NetDev_WiFi_CfgGPIO() is accessed only by function pointer via a BSP

interface structure, it doesn’t need to be globally available and should therefore be declared

as ‘static’.

ARGUMENTS

p_if Pointer to specific interface to configure device’s GPIO.

p_err Pointer to variable that will receive the return error code from this function:

NET_DEV_ERR_NONE
NET_DEV_ERR_FAULT

This is not an exclusive list of return errors and specific network device’s or device BSP

functions may return any other specific errors as required.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static void NetDev_WiFi_CfgGPIO (NET_IF *p_if,
 NET_ERR *p_err);
391

NOTES / WARNINGS

Since each network device requires a unique NetDev_WiFi_CfgGPIO(), it is recommended

that each device’s NetDev_WiFi_CfgGPIO() function be named using the following

convention:

NetDev_WiFi_[Device]_CfgGPIO[Number]()

[Device] Network device name or type, e.g. RS9110 (optional if the development

board does not support multiple devices)

[Number] Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)

For example, the NetDev_WiFi_CfgGPIO() function for the #2 RS9110 wireless device should be

named NetDev_WiFi_RS9110_CfgGPIO2(), or NetDev_WiFI_RS9110_CfgGPIO_2() with

additional underscore optional.

See also Chapter 6, “Network Board Support Package” on page 121.
392

B-3-4 NetDev_WiFi_CfgIntCtrl()

This function is called by a device driver’s NetDev_Init() to configure a specific network

device’s interrupts and/or interrupt controller on a specific interface.

FILES

net_bsp.c

PROTOTYPE

Note that since NetDev_WiFi_CfgIntCtrl() is accessed only by function pointer via a BSP

interface structure, it doesn’t need to be globally available and should therefore be declared

as ‘static’.

ARGUMENTS

p_if Pointer to specific interface to configure device’s interrupts.

p_err Pointer to variable that will receive the return error code from this function:

NET_DEV_ERR_NONE
NET_DEV_ERR_FAULT

This is not an exclusive list of return errors and specific network device’s or device BSP

functions may return any other specific errors as required.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static void NetDev_CfgIntCtrl (NET_IF *pif,
 NET_ERR *perr);
393

NOTES / WARNINGS

Each network device’s NetDev_WiFi_CfgIntCtrl() should configure and enable all

required interrupt sources for the network device. This usually means configuring the

interrupt vector address of each corresponding network device BSP interrupt service routine

(ISR) handler and enabling its corresponding interrupt source. Thus, for most

NetDev_WiFi_CfgIntCtrl(), the following actions should be performed:

1 Configure/store each device’s network interface number to be available for all necessary

NetDev_WiFi_ISR_Handler() functions (see section B-3-13 on page 414). Even

though devices are added dynamically, the device’s interface number must be saved in

order for each device’s ISR handlers to call NetIF_ISR_Handler() with the device’s

network interface number.

Since each network device maps to a unique network interface number, it is

recommended that each instance of network devices’ interface numbers be named

using the following convention:

<Board><Device>[Number]_IF_Nbr

<Board> Development board name

<Device>Network device name (or type)

[Number]Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)

For example, the network device interface number variable for the #2 RS9110 wireless

device on an Atmel AT91SAM9263-EK should be named

AT91SAM9263-EK_RS9110_2_IF_Nbr.

Network device interface number variables should be initialized to NET_IF_NBR_NONE at

system initialization prior to being configured by their respective devices.
394

2 Configure each of the device’s interrupts on either an external or CPU’s integrated

interrupt controller. However, vectored interrupt controllers may not require the explicit

configuration and enabling of higher-level interrupt controller sources. In this case, the

application developer may need to configure the system’s interrupt vector table with the

name of the ISR handler functions declared in net_bsp.c.

NetDev_WiFi_CfgIntCtrl() should only enable each devices’ interrupt sources but

not the local device-level interrupts themselves, which are enabled by the device driver

only after the device has been fully configured and started.

Since each network device requires a unique NetDev_WiFi_CfgIntCtrl(), it is

recommended that each device’s NetDev_WiFi_CfgIntCtrl() function be named

using the following convention:

NetDev_WiFi_[Device]CfgIntCtrl[Number]()

[Device]Network device name or type, e.g. RS9110 (optional if the development

board does not support multiple devices)

[Number]Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)

For example, the NetDev_CfgIntCtrl() function for the #2 RS9110 wireless device on

an Atmel AT91SAM9263-EK should be named NetDev_WiFi_RS9110_CfgIntCtrl2(),
or NetDev_WiFi_RS9110_CfgIntCtrl_2() with additional underscore optional.

See also Chapter 6, “Network Board Support Package” on page 121.
395

EXAMPLES

static void NetDev_WiFi_RS9110_CfgIntCtrl (NET_IF *p_if,
 NET_ERR *p_err)
{
 /* Configure AT91SAM9263-EK RS9110 #2's specific IF number. */
 AT91SAM9263-EK__WiFi_RS9110_2_IF_Nbr = pif->Nbr;
 /* Configure AT91SAM9263-EK RS9110 #2's interrupts: */
 /* Configure interrupt vector. */
 BSP_IntVectSet(BSP_INT, &NetDev_WiFi_RS9110_ISR_Handler_2);
 BSP_IntEn(BSP_INT); /* Enable interrupts. */

 *perr = NET_DEV_ERR_NONE;
}

static void NetDev_WiFi_RS9110_CfgIntCtrlRx_2 (NET_IF *p_if,
 NET_ERR *p_err)
{
 /* Configure AT91SAM9263-EK RS9110 #2's specific IF number. */
 AT91SAM9263-EK_WiFi_RS9110_2_IF_Nbr = pif->Nbr;
 /* Configure AT91SAM9263-EK RS9110 #2's receive interrupt: */
 /* Configure interrupt vector. */
 BSP_IntVectSet(BSP_INT_RX, &NetDev_WiFi_RS9100_ISR_HandlerRx_2);
 BSP_IntEn(BSP_INT_RX); /* Enable interrupt. */

 *perr = NET_DEV_ERR_NONE;
}

396

B-3-5 NetDev_WiFi_IntCtrl()

This function is called by a device driver to enable or disable interface’s/device’s interrupt.

FILES

net_bsp.c

PROTOTYPE

Note that since NetDev_WiFi_IntCtrl() is accessed only by function pointer via a BSP

interface structure, it doesn’t need to be globally available and should therefore be declared

as ‘static’.

ARGUMENTS

p_if Pointer to specific interface to enable or disable the interrupt.

en Enable or disable the interrupt.

p_err Pointer to variable that will receive the return error code from this function:

NET_DEV_ERR_NONE
NET_DEV_ERR_FAULT

This is not an exclusive list of return errors and specific network device’s or device BSP

functions may return any other specific errors as required.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static CPU_INT32U NetDev_WiFi_IntCtrl (NET_IF *p_if,
 CPU_BOOLEAN en,
 NET_ERR *p_err);
397

NOTES / WARNINGS

Since each network device requires a unique NetDev_WiFi_IntCtrl(), it is recommended

that each device’s NetDev_WiFi_IntCtrl() function be named using the following

convention:

NetDev_WiFi_[Device]IntCtrl[Number]()

[Device] Network device name or type, e.g. RS9110 (optional if the development

board does not support multiple devices)

[Number] Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)

For example, the NetDev_WiFi_IntCtrl() function for the #2 RS9110 wireless device on

an Atmel AT91SAM9263-EK should be named NetDev_WiFi_RS9110_IntCtrl2(), or

NetDev_WiFi_RS9110_IntCtrl_2() with additional underscore optional.

See also Chapter 6, “Network Board Support Package” on page 121.
398

B-3-6 NetDev_WiFi_SPI_Init()

This function is called by a device driver to initialize interface’s/device’s SPI bus.

FILES

net_bsp.c

PROTOTYPE

Note that since NetDev_WiFi_SPI_Init() is accessed only by function pointer via a BSP

interface structure, it doesn’t need to be globally available and should therefore be declared

as ‘static’.

ARGUMENTS

p_if Pointer to specific interface to initialize the SPI.

p_err Pointer to variable that will receive the return error code from this function:

NET_DEV_ERR_NONE
NET_DEV_ERR_FAULT

This is not an exclusive list of return errors and specific network device’s or device BSP

functions may return any other specific errors as required.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static CPU_INT32U NetDev_WiFi_SPI_Init (NET_IF *p_if,
 NET_ERR *p_err);
399

NOTES / WARNINGS

1 This function can configure the SPI mode by accessing the device configuration if no

other device’s hardware sahre the same SPI bus.

2 Since each network device requires a unique NetDev_WiFi_SPI_Init(), it is

recommended that each device’s NetDev_WiFi_SPI_Init() function be named using

the following convention:

NetDev_WiFi_[Device]SPI_Init[Number]()

[Device]Network device name or type. For example, RS9110 (optional if the

development board does not support multiple devices)

[Number]Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)

For example, the NetDev_WiFi_SPI_Init() function for the #2 RS9110 wireless device

on an Atmel AT91SAM9263-EK should be named NetDev_WiFi_RS9110_SPI_Init2(),
or NetDev_WiFi_RS9110_SPI_Init_2() with additional underscore optional.

See also Chapter 6, “Network Board Support Package” on page 121.
400

B-3-7 NetDev_WiFi_SPI_Lock()

This function is called by a device driver to acquire the SPI lock and restrict the access to

the SPI bus only to the wireless driver.

FILES

net_bsp.c

PROTOTYPE

Note that since NetDev_WiFi_SPI_Lock() is accessed only by function pointer via a BSP

interface structure, it doesn’t need to be globally available and should therefore be declared

as ‘static’.

ARGUMENTS

p_if Pointer to specific interface to lock.

p_err Pointer to variable that will receive the return error code from this function:

NET_DEV_ERR_NONE
NET_DEV_ERR_FAULT

This is not an exclusive list of return errors and specific network device’s or device BSP

functions may return any other specific errors as required.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static CPU_INT32U NetDev_WiFi_SPI_Lock (NET_IF *p_if,
 NET_ERR *p_err);
401

NOTES / WARNINGS

1 NetDev_WiFi_SPI_Lock must be implemented if more than one device’s hardware

share the same SPI bus.

2 Since each network device requires a unique NetDev_WiFi_SPI_Lock(), it is

recommended that each device’s NetDev_WiFi_SPI_Lock() function be named using

the following convention:

NetDev_WiFi_[Device]SPI_Lock[Number]()

[Device]Network device name or type, e.g. RS9110 (optional if the development

board does not support multiple devices)

[Number]Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)

For example, the NetDev_WiFi_SPI_Lock() function for the #2 RS9110 wireless device

on an Atmel AT91SAM9263-EK should be named NetDev_WiFi_RS9110_SPI_Lock2(),
or NetDev_WiFi_RS9110_SPI_Lock_2() with additional underscore optional.

See also Chapter 6, “Network Board Support Package” on page 121.
402

B-3-8 NetDev_WiFi_SPI_Unlock()

This function is called by a device driver to release the SPI lock and give the access to the

SPI bus to other device’s hardware.

FILES

net_bsp.c

PROTOTYPE

Note that since NetDev_WiFi_SPI_Unlock() is accessed only by function pointer via a BSP

interface structure, it doesn’t need to be globally available and should therefore be declared

as ‘static’.

ARGUMENTS

p_if Pointer to specific interface to unlock.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static CPU_INT32U NetDev_WiFi_SPI_Unlock (NET_IF *p_if);
403

NOTES / WARNINGS

1 NetDev_WiFi_SPI_Unlock must be implemented if more than one hardware device

share the same SPI bus.

2 Since each network device requires a unique NetDev_WiFi_SPI_Unlock(), it is

recommended that each device’s NetDev_WiFi_SPI_Unlock() function be named

using the following convention:

NetDev_WiFi_[Device]SPI_Unlock[Number]()

[Device]Network device name or type, e.g. RS9110 (optional if the development

board does not support multiple devices)

[Number]Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)

For example, the NetDev_WiFi_SPI_Unlock() function for the #2 RS9110 wireless

device on an Atmel AT91SAM9263-EK should be named

NetDev_WiFi_RS9110_SPI_Unlock2(), or NetDev_WiFi_RS9110_SPI_Unlock_2()
with additional underscore optional.

See also Chapter 6, “Network Board Support Package” on page 121.
404

B-3-9 NetDev_WiFi_SPI_WrRd()

This function is called by a device driver each time some data must be written &/or
read from the wireless device/interface.

FILES

net_bsp.c

PROTOTYPE

Note that since NetDev_WiFi_SPI_Unlock() is accessed only by function pointer via a BSP

interface structure, it doesn’t need to be globally available and should therefore be declared

as ‘static’.

ARGUMENTS

p_if Pointer to specific interface to write and read data to SPI bus.

p_buf_wr Pointer to a buffer that contains the data to write.

p_buf_rd Pointer to a buffer that will receive the data read.

wr_rd_len Number of octet to write and read.

p_err Pointer to variable that will receive the return error code from this function:

NET_DEV_ERR_NONE
NET_DEV_ERR_FAULT

This is not an exclusive list of return errors and specific network device’s or device BSP

functions may return any other specific errors as required.

static CPU_INT32U NetDev_WiFi_SPI_WrRd (NET_IF *p_if,
 CPU_INT08U *p_buf_wr,
 CPU_INT08U *p_buf_rd,
 CPU_INT16U wr_rd_len,
 NET_ERR *p_err);
405

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

1 NetDev_WiFi_SPI_ChipSelEn() should be called only after the SPI lock has
been acquired by calling NetDev_WiFi_SPI_Lock().

2 Since each network device requires a unique NetDev_WiFi_SPI_WrRd(), it is

recommended that each device’s NetDev_WiFi_SPI_WrRd() function be named using

the following convention:

NetDev_WiFi_[Device]SPI_WrRd[Number]()

[Device]Network device name or type, e.g. RS9110 (optional if the development

board does not support multiple devices)

[Number]Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)

For example, the NetDev_WiFi_SPI_WrRd() function for the #2 RS9110 wireless device

on an Atmel AT91SAM9263-EK should be named NetDev_WiFi_RS9110_SPI_WrRd2(),
or NetDev_WiFi_RS9110_SPI_WrRd_2() with additional underscore optional.

See also Chapter 6, “Network Board Support Package” on page 121.
406

B-3-10 NetDev_WiFi_SPI_ChipSelEn()

This function is called by a device driver to enable the SPI chip select of the wireless

device.

FILES

net_bsp.c

PROTOTYPE

Note that since NetDev_WiFi_SPI_ChipSelEn() is accessed only by function pointer via a

BSP interface structure, it doesn’t need to be globally available and should therefore be

declared as ‘static’.

ARGUMENTS

p_if Pointer to specific interface to enable the chip select.

p_err Pointer to variable that will receive the return error code from this function:

NET_DEV_ERR_NONE
NET_DEV_ERR_FAULT

This is not an exclusive list of return errors and specific network device’s or device BSP

functions may return any other specific errors as required.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static CPU_INT32U NetDev_WiFi_SPI_ChipSelEn (NET_IF *p_if,
 NET_ERR *p_err);
407

NOTES / WARNINGS

1 NetDev_WiFi_SPI_ChipSelEn() should be called only after the SPI lock has
been acquired by calling NetDev_WiFi_SPI_Lock().

2 Since each network device requires a unique NetDev_WiFi_SPI_ChipSelEn(), it is

recommended that each device’s NetDev_WiFi_SPI_ChipSelEn() function be named

using the following convention:

NetDev_WiFi_[Device]SPI_ChipSelEn[Number]()

[Device]Network device name or type, e.g. RS9110 (optional if the development

board does not support multiple devices)

[Number]Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)

For example, the NetDev_WiFi_SPI_ChipSelEn() function for the #2 RS9110 wireless device

on an Atmel AT91SAM9263-EK should be named NetDev_WiFi_RS9110_SPI_ChipSelEn2(),

or NetDev_WiFi_RS9110_SPI_ChipSelEn_2() with additional underscore optional.

See also Chapter 6, “Network Board Support Package” on page 121.
408

B-3-11 NetDev_WiFi_SPI_ChipSelDis()

This function is called by a device driver to disable the SPI chip select of the wireless

device.

FILES

net_bsp.c

PROTOTYPE

Note that since NetDev_WiFi_SPI_ChipSelDis() is accessed only by function pointer via a

BSP interface structure, it doesn’t need to be globally available and should therefore be

declared as ‘static’.

ARGUMENTS

p_if Pointer to specific interface to enable the chip select.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

static CPU_INT32U NetDev_WiFi_SPI_ChipSelDis (NET_IF *p_if);
409

NOTES / WARNINGS

1 NetDev_WiFi_SPI_ChipSelDis() should be called only after the SPI lock
has been acquired by calling NetDev_WiFi_SPI_Lock().

2 Since each network device requires a unique NetDev_WiFi_SPI_ChipSelDis(), it is
recommended that each device’s NetDev_WiFi_SPI_ChipSelDis() function be named

using the following convention:

NetDev_WiFi_[Device]SPI_ChipSelDis[Number]()

[Device]Network device name or type, e.g. RS9110 (optional if the development

board does not support multiple devices)

[Number]Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)

For example, the NetDev_WiFi_SPI_ChipSelDis() function for the #2 RS9110 wireless

device on an Atmel AT91SAM9263-EK should be named

NetDev_WiFi_RS9110_SPI_ChipSelDis2(), or

NetDev_WiFi_RS9110_SPI_ChipSelDis_2() with additional underscore optional.

See also Chapter 6, “Network Board Support Package” on page 121.
410

B-3-12 NetDev_WiFi_SPI_Cfg()

This function is called by a device driver to configure the SPI controller accordingly with

device’s SPI setting.

FILES

net_bsp.c

PROTOTYPE

Note that since NetDev_WiFi_SPI_Cfg() is accessed only by function pointer via a BSP

interface structure, it doesn’t need to be globally available and should therefore be declared

as ‘static’.

ARGUMENTS

p_if Pointer to specific interface to configure the SPI controller.

freq SPI system clock frequency in hertz.

pol SPI clock polarity:

NET_DEV_SPI_CLK_POL_INACTIVE_LOW
NET_DEV_SPI_CLK_POL_INACTIVE_HIGH

phase SPI clock phase:

NET_DEV_SPI_CLK_PHASE_FALLING_EDGE
NET_DEV_SPI_CLK_PHASE_RASING_EDGE

static CPU_INT32U NetDev_WiFi_SPI_Cfg (NET_IF *p_if,
 NET_DEV_CFG_SPI_CLK_FREQ freq,
 NET_DEV_CFG_SPI_CLK_POL pol,
 NET_DEV_CFG_SPI_CLK_PHASE phase,
 NET_DEV_CFG_SPI_XFER_UNIT_LEN xfer_unit_len,
 NET_DEV_CFG_SPI_XFER_SHIFT_DIR xfer_shift_dir,
 NET_ERR *p_err);
411

xfer_unit_len SPI Transfer unit length:

NET_DEV_SPI_XFER_UNIT_LEN_8_BITS
NET_DEV_SPI_XFER_UNIT_LEN_16_BITS
NET_DEV_SPI_XFER_UNIT_LEN_32_BITS
NET_DEV_SPI_XFER_UNIT_LEN_64_BITS

xfer_shift_dir SPI transfer shift direction:

NET_DEV_SPI_XFER_SHIFT_DIR_FIRST_MSB
NET_DEV_SPI_XFER_SHIFT_DIR_FIRST_LSB

p_err Pointer to variable that will receive the return error code from this function:

NET_DEV_ERR_NONE
NET_DEV_ERR_FAULT

This is not an exclusive list of return errors and specific network device’s or device BSP

functions may return any other specific errors as required.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

1 NetDev_WiFi_SPI_Cfg() should be called only after the SPI lock has been
acquired by calling NetDev_WiFi_SPI_Lock().

2 If no other device’s hardware share the same SPI controller, the configuration can be

applied only at the initialization when NetDev_WiFi_SPI_Init() is called.
412

3 Since each network device requires a unique NetDev_WiFi_SPI_ChipSelEn(), it is

recommended that each device’s NetDev_WiFi_SPI_ChipSelEn() function be named

using the following convention:

NetDev_WiFi_[Device]SPI_ChipSelEn[Number]()

[Device]Network device name or type, e.g. RS9110 (optional if the development

board does not support multiple devices)

[Number]Network device number for each specific instance of device (optional if the

development board does not support multiple instances of the specific

device)

For example, the NetDev_WiFi_SPI_ChipSelEn() function for the #2 RS9110 wireless

device on an Atmel AT91SAM9263-EK should be named

NetDev_WiFi_RS9110_SPI_ChipSelEn2(), or

NetDev_WiFi_RS9110_SPI_ChipSelEn_2() with additional underscore optional.

See also Chapter 6, “Network Board Support Package” on page 121.
413

B-3-13 NetDev_WiFi_ISR_Handler()

Handle a network device’s interrupts on a specific interface.

FILES

net_bsp.c

PROTOTYPE

Note that since NetDev_ISR_Handler() is accessed only by function pointer usually via an

interrupt vector table, it doesn’t need to be globally available and should therefore be

declared as ‘static’.

ARGUMENTS

None.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

Each network device’s interrupt, or set of device interrupts, must be handled by a unique

BSP-level interrupt service routine (ISR) handler, NetDev_WiFi_ISR_Handler(), which

maps each specific device interrupt to its corresponding network interface ISR handler,

NetIF_ISR_Handler(). For some CPUs this may be a first- or second-level interrupt

handler. Generally, the application must configure the interrupt controller to call every

network device’s unique NetDev_WiFi_ISR_Handler() when the device’s interrupt occurs

(see section B-3-4 on page 393). Every unique NetDev_WiFi_ISR_Handler() must then

perform the following actions:

static void NetDev_ISR_Handler (void);
414

1 Call NetIF_ISR_Handler() with the device’s unique network interface number and

appropriate interrupt type. The device’s network interface number should be available

after configuration in the device’s NetDev_WiFi_CfgIntCtrl() function (see section

B-3-4 “NetDev_WiFi_CfgIntCtrl()” on page 393). NetIF_ISR_Handler() in turn calls the

appropriate device driver’s interrupt handler.

In most cases, each device requires only a single NetDev_WiFi_ISR_Handler() which

calls NetIF_ISR_Handler() with interrupt type code NET_DEV_ISR_TYPE_UNKNOWN.
This is possible when the device’s driver can determine the device’s interrupt type to via

the interrupt controller. However, some devices cannot generically determine the

interrupt type when an interrupt occurs and may therefore require multiple, unique

NetDev_WiFi_ISR_Handler()’s each of which calls NetIF_ISR_Handler() with the

appropriate interrupt type code.

See also section C-9-12 “NetIF_ISR_Handler()” on page 519.

2 Clear the device’s interrupt source, possibly via an external or CPU-integrated interrupt

controller source.

Since each network device requires a unique NetDev_WiFi_ISR_Handler() for each device

interrupt, it is recommended that each device’s NetDev_WiFi_ISR_Handler() function be

named using the following convention:

NetDev_WiFi_[Device]ISR_Handler[Type][Number]()

[Device] Network device name or type, e.g., RS9110 (optional if the development

board does not support multiple devices)

[Type] Network device interrupt type, e.g., receive interrupt (optional if interrupt

type is generic or unknown)

[Number] Network device number for each specific instance of device (optional if the

development board does not support multiple instances of a specific device)

For example, the receive ISR handler for the #2 RS9110 wireless device on an Atmel

AT91SAM9263-EK should be named NetDev_WiFi_RS9110_ISR_HandlerRx2().

See also Chapter 6, “Network Board Support Package” on page 121.
415

EXAMPLES

static void NetDev_WiFi_RS9110_ISR_Handler_2 (void)
{
 NET_ERR err;

 NetIF_ISR_Handler(AT91SAM9263-EK_RS9110_2_IF_Nbr, NET_DEV_ISR_TYPE_UNKNOWN, &err);
 /* Clear external or CPU’s integrated interrupt controller. */
}

static void NetDev_WiFi_RS9110_ISR_HandlerRx_2 (void)
{
 NET_ERR err;

 NetIF_ISR_Handler(AT91SAM9263-EK_RS9110_2_IF_Nbr, NET_DEV_ISR_TYPE_RX, &err);
 /* Clear external or CPU’s integrated interrupt controller. */
}

416

Appendix

C

μC/TCP-IP API Reference

The application programming interfaces (APIs) to μC/TCP-IP using any of the functions or

macros are described in this appendix. The functions/macros in this appendix are organized

alphabetically with the exception of alphabetizing all BSD functions/macros in their own

section, section C-18 on page 715.
417

C-1 GENERAL NETWORK FUNCTIONS

C-1-1 Net_Init()

Initializes μC/TCP-IP and must be called prior to calling any other μC/TCP-IP API functions.

FILES

net.h/net.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

NET_ERR_NONE, if successful;

Specific initialization error code, otherwise.

Return value should be inspected to determine whether or not μC/TCP-IP successfully

initialized. If μC/TCP-IP did not successfully initialize, search for the returned error code in

net_err.h and source files to locate where the μC/TCP-IP initialization failed.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

μC/LIB memory management function Mem_Init() must be called prior to calling

Net_Init().

NET_ERR Net_Init(void);
418

C-1-2 Net_InitDflt()

Initialize default values for all μC/TCP-IP configurable parameters.

FILES

net.h/net.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

Some default parameters are specified in net_cfg.h (see Appendix D, “μC/TCP-IP

Configuration and Optimization” on page 735).

void Net_InitDflt(void);
419

C-1-3 Net_VersionGet()

Get the μC/TCP-IP software version.

FILES

net.h/net.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

μC/TCP-IP software version.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

μC/TCP-IP’s software version is denoted as follows:

Vx.yy.zz

where

V denotes Version label

x denotes major software version revision number

yy denotes minor software version revision number

zz denotes sub-minor software version revision number

CPU_INT16U Net_VersionGet(void);
420

The software version is returned as follows:

ver = x.yyzz * 100 * 100

where

ver denotes software version number scaled as an integer value

x.yyzz denotes software version number, where the unscaled integer portion

denotes the major version number and the unscaled fractional portion denotes the

(concatenated) minor version numbers

For example, (version) V2.11.01 would be returned as 21101.
421

C-2 NETWORK APPLICATION INTERFACE FUNCTIONS

C-2-1 NetApp_SockAccept() (TCP)

Return a new application socket accepted from a listen application socket, with error

handling. See section C-13-1 on page 572 for more information.

FILES

net_app.h/net_app.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetApp_SockOpen()/
NetSock_Open()/socket() when the socket was created. This

socket is assumed to be bound to an address and listening for

new connections (see section C-13-40 on page 648).

paddr_remote Pointer to a socket address structure (see section 9-1 “Network

Socket Data Structures” on page 273) to return the remote host

address of the new accepted connection.

paddr_len Pointer to the size of the socket address structure which must be

passed the size of the socket address structure [e.g.,

sizeof(NET_SOCK_ADDR_IP)]. Returns size of the accepted

connection’s socket address structure, if no errors; returns 0,
otherwise.

retry_max Maximum number of consecutive socket accept retries.

NET_SOCK_ID NetApp_SockAccept (NET_SOCK_ID sock_id,
 NET_SOCK_ADDR *paddr_remote,
 NET_SOCK_ADDR_LEN *paddr_len,
 CPU_INT16U retry_max,
 CPU_INT32U timeout_ms,
 CPU_INT32U time_dly_ms,
 NET_ERR *perr);
422

timeout_ms Socket accept timeout value per attempt/retry.

time_dly_ms Socket accept delay value, in milliseconds.

perr Pointer to variable that will receive the error code from this function:

NET_APP_ERR_NONE
NET_APP_ERR_NONE_AVAIL
NET_APP_ERR_INVALID_ARG
NET_APP_ERR_INVALID_OP
NET_APP_ERR_FAULT
NET_APP_ERR_FAULT_TRANSITORY

RETURNED VALUE

Socket descriptor/handle identifier of new accepted socket, if no errors.

NET_SOCK_BSD_ERR_ACCEPT, otherwise.

REQUIRED CONFIGURATION

Available only if NET_APP_CFG_API_EN is enabled (see section D-18-1 on page 768) and

NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1 on page 755).

NOTES / WARNINGS

Some socket arguments and/or operations are validated only if validation code is enabled

(see section D-3-1 on page 744).

If a non-zero number of retries is requested (retry_max) and socket blocking is configured

for non-blocking operation (see section D-15-3 on page 761); then a non-zero timeout

(timeout_ms) and/or a non-zero time delay (time_dly_ms) should also be requested.

Otherwise, all retries will most likely fail immediately since no time will elapse to wait for

and allow socket operations to successfully complete.
423

C-2-2 NetApp_SockBind() (TCP/UDP)

Bind an application socket to a local address, with error handling. See section C-13-2 on

page 574 for more information.

FILES

net_app.h/net_app.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetApp_SockOpen()/ NetSock_Open()/
socket() when the socket was created.

paddr_local Pointer to a socket address structure (see section 8-2 “Socket Interface” on

page 212) which contains the local host address to bind the socket to.

addr_len Size of the socket address structure which must be passed the size of the

socket address structure [for example, sizeof(NET_SOCK_ADDR_IP)].

retry_max Maximum number of consecutive socket bind retries.

time_dly_ms Socket bind delay value, in milliseconds.

perr Pointer to variable that will receive the error code from this function:

NET_APP_ERR_NONE
NET_APP_ERR_NONE_AVAIL
NET_APP_ERR_INVALID_ARG
NET_APP_ERR_INVALID_OP
NET_APP_ERR_FAULT

CPU_BOOLEAN NetApp_SockBind (NET_SOCK_ID sock_id,
 NET_SOCK_ADDR *paddr_local,
 NET_SOCK_ADDR_LEN addr_len,
 CPU_INT16U retry_max,
 CPU_INT32U time_dly_ms,
 NET_ERR *perr);
424

RETURNED VALUE

DEF_OK, Application socket successfully bound to a local address.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_APP_CFG_API_EN is enabled (see section D-18-1 on page 768) and

either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1 on

page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see section D-13-1

on page 756).

NOTES / WARNINGS

Some socket arguments and/or operations are validated only if validation code is enabled

(see section D-3-1 on page 744).

If a non-zero number of retries is requested (retry_max) then a non-zero time delay

(time_dly_ms) should also be requested. Otherwise, all retries will most likely fail

immediately since no time will elapse to wait for and allow socket operations to

successfully complete.
425

C-2-3 NetApp_SockClose() (TCP/UDP)

Close an application socket, with error handling. See section C-13-31 on page 632 for more

information.

FILES

net_app.h/net_app.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetApp_SockOpen()/ NetSock_Open()/
socket() when the socket was created or by NetApp_SockAccept()/
NetSock_Accept()/accept() when a connection was accepted.

timeout_ms Socket close timeout value per attempt/retry.

perr Pointer to variable that will receive the error code from this function:

NET_APP_ERR_NONE
NET_APP_ERR_INVALID_ARG
NET_APP_ERR_FAULT
NET_APP_ERR_FAULT_TRANSITORY

RETURNED VALUE

DEF_OK, Application socket successfully closed.

DEF_FAIL, otherwise.

CPU_BOOLEAN NetApp_SockClose (NET_SOCK_ID sock_id,
 CPU_INT32U timeout_ms,
 NET_ERR *perr);
426

REQUIRED CONFIGURATION

Available only if NET_APP_CFG_API_EN is enabled (see section D-18-1 on page 768) and

either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1 on

page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see section D-13-1

on page 756).

NOTES / WARNINGS

Some socket arguments and/or operations are validated only if validation code is enabled

(see section D-3-1 on page 744).
427

C-2-4 NetApp_SockConn() (TCP/UDP)

Connect an application socket to a remote address, with error handling. See section C-13-32

on page 634 for more information.

FILES

net_app.h/net_app.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetApp_SockOpen()/
NetSock_Open()/socket() when the socket was created.

paddr_remote Pointer to a socket address structure (see section 8-2 “Socket

Interface” on page 212) which contains the remote socket

address to connect the socket to.

addr_len Size of the socket address structure which must be passed the

size of the socket address structure [e.g.,

sizeof(NET_SOCK_ADDR_IP)].

retry_max Maximum number of consecutive socket connect retries.

timeout_ms Socket connect timeout value per attempt/retry.

time_dly_ms Socket connect delay value, in milliseconds.

CPU_BOOLEAN NetApp_SockConn (NET_SOCK_ID sock_id,
 NET_SOCK_ADDR *paddr_remote,
 NET_SOCK_ADDR_LEN addr_len,
 CPU_INT16U retry_max,
 CPU_INT32U timeout_ms,
 CPU_INT32U time_dly_ms,
 NET_ERR *perr);
428

perr Pointer to variable that will receive the error code from this function:

NET_APP_ERR_NONE
NET_APP_ERR_NONE_AVAIL
NET_APP_ERR_INVALID_ARG
NET_APP_ERR_INVALID_OP
NET_APP_ERR_FAULT
NET_APP_ERR_FAULT_TRANSITORY

RETURNED VALUE

DEF_OK, Application socket successfully connected to a remote address.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_APP_CFG_API_EN is enabled (see section D-18-1 on page 768) and

either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1 on

page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see section D-13-1

on page 756).

NOTES / WARNINGS

Some socket arguments and/or operations are validated only if validation code is enabled

(see section D-3-1 on page 744).

If a non-zero number of retries is requested (retry_max) and socket blocking is configured

for non-blocking operation (see section D-15-3 on page 761); then a non-zero timeout

(timeout_ms) and/or a non-zero time delay (time_dly_ms) should also be requested.

Otherwise, all retries will most likely fail immediately since no time will elapse to wait for

and allow socket operations to successfully complete.
429

C-2-5 NetApp_SockListen() (TCP)

Set an application socket to listen for connection requests, with error handling. See section

C-13-40 on page 648 for more information.

FILES

net_app.h/net_app.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetApp_SockOpen()/ NetSock_Open()/
socket() when the socket was created.

sock_q_size Maximum number of new connections allowed to be waiting. In other words,

this argument specifies the maximum queue length of pending connections

while the listening socket is busy servicing the current request.

perr Pointer to variable that will receive the error code from this function:

NET_APP_ERR_NONE
NET_APP_ERR_INVALID_ARG
NET_APP_ERR_INVALID_OP
NET_APP_ERR_FAULT
NET_APP_ERR_FAULT_TRANSITORY

RETURNED VALUE

DEF_OK, Application socket successfully set to listen.

DEF_FAIL, otherwise.

CPU_BOOLEAN NetApp_SockListen (NET_SOCK_ID sock_id,
 NET_SOCK_Q_SIZE sock_q_size,
 NET_ERR *perr);
430

REQUIRED CONFIGURATION

Available only if NET_APP_CFG_API_EN is enabled (see section D-18-1 on page 768) and

NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1 on page 755).

NOTES / WARNINGS

Some socket arguments and/or operations are validated only if validation code is enabled

(see section D-3-1 on page 744).
431

C-2-6 NetApp_SockOpen() (TCP/UDP)

Open an application socket, with error handling. See section C-13-41 on page 650 for more

information.

FILES

net_app.h/net_app.c

PROTOTYPE

ARGUMENTS

protocol_family This field establishes the socket protocol family domain. Always

use NET_SOCK_FAMILY_IP_V4/PF_INET for TCP/IP sockets.

sock_type Socket type:

NET_SOCK_TYPE_DATAGRAM/PF_DGRAM for datagram sockets (i.e., UDP)

NET_SOCK_TYPE_STREAM/PF_STREAM for stream sockets (i.e., TCP)

NET_SOCK_TYPE_DATAGRAM sockets preserve message boundaries.

Applications that exchange single request and response messages are

examples of datagram communication.

NET_SOCK_TYPE_STREAM sockets provides a reliable byte-stream connection,

where bytes are received from the remote application in the same order as

they were sent. File transfer and terminal emulation are examples of

applications that require this type of protocol.

NET_SOCK_ID NetApp_SockOpen (NET_SOCK_PROTOCOL_FAMILY protocol_family,
 NET_SOCK_TYPE sock_type,
 NET_SOCK_PROTOCOL protocol,
 CPU_INT16U retry_max,
 CPU_INT32U time_dly_ms,
 NET_ERR *perr);
432

protocol Socket protocol:

NET_SOCK_PROTOCOL_UDP/IPPROTO_UDP for UDP

NET_SOCK_PROTOCOL_TCP/IPPROTO_TCP for TCP

0 for default-protocol:

UDP for NET_SOCK_TYPE_DATAGRAM/PF_DGRAM
TCP for NET_SOCK_TYPE_STREAM/PF_STREAM

retry_max Maximum number of consecutive socket open retries.

time_dly_ms Socket open delay value, in milliseconds.

perr Pointer to variable that will receive the error code from this function:

NET_APP_ERR_NONE
NET_APP_ERR_NONE_AVAIL
NET_APP_ERR_INVALID_ARG
NET_APP_ERR_FAULT

RETURNED VALUE

Socket descriptor/handle identifier of new socket, if no errors.

NET_SOCK_BSD_ERR_OPEN, otherwise.

REQUIRED CONFIGURATION

Available only if NET_APP_CFG_API_EN is enabled (see section D-18-1 on page 768) and

either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1 on

page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see section D-13-1

on page 756).

NOTES / WARNINGS

Some socket arguments and/or operations are validated only if validation code is enabled

(see section D-3-1 on page 744).

If a non-zero number of retries is requested (retry_max) then a non-zero time delay

(time_dly_ms) should also be requested. Otherwise, all retries will likely fail immediately

since no time will elapse to wait for and allow socket operations to successfully complete.
433

C-2-7 NetApp_SockRx() (TCP/UDP)

Receive application data via socket, with error handling. See section C-13-46 on page 659

for more information.

FILES

net_app.h/net_app.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetApp_SockOpen()/ NetSock_Open()/
socket() when the socket was created or by NetApp_SockAccept()/
NetSock_Accept()/accept() when a connection was accepted.

pdata_buf Pointer to the application memory buffer to receive data.

data_buf_len Size of the destination application memory buffer (in bytes).

data_rx_th Application data receive threshold:

0, no minimum receive threshold; i.e. receive any amount of data.

Recommended for datagram sockets;

Minimum amount of application data to receive (in bytes) within maximum

number of retries, otherwise.

CPU_INT16U NetApp_SockRx (NET_SOCK_ID sock_id,
 void *pdata_buf,
 CPU_INT16U data_buf_len,
 CPU_INT16U data_rx_th,
 CPU_INT16S flags,
 NET_SOCK_ADDR *paddr_remote,
 NET_SOCK_ADDR_LEN *paddr_len,
 CPU_INT16U retry_max,
 CPU_INT32U timeout_ms,
 CPU_INT32U time_dly_ms,
 NET_ERR *perr);
434

flags Flag to select receive options; bit-field flags logically OR’d:

NET_SOCK_FLAG_NONE/0 No socket flags selected

NET_SOCK_FLAG_RX_DATA_PEEK/
MSG_PEEK Receive socket data without consuming it

NET_SOCK_FLAG_RX_NO_BLOCK/
MSG_DONTWAIT Receive socket data without blocking

In most cases, this flag would be set to NET_SOCK_FLAG_NONE/0.

paddr_remote Pointer to a socket address structure (see section 8-2 “Socket Interface” on

page 212) to return the remote host address that sent the received data.

paddr_len Pointer to the size of the socket address structure which must be passed the

size of the socket address structure [e.g., sizeof(NET_SOCK_ADDR_IP)].

Returns size of the accepted connection’s socket address structure, if no errors;

returns 0, otherwise.

retry_max Maximum number of consecutive socket receive retries.

timeout_ms Socket receive timeout value per attempt/retry.

time_dly_ms Socket receive delay value, in milliseconds.

perr Pointer to variable that will receive the error code from this function:

NET_APP_ERR_NONE
NET_APP_ERR_INVALID_ARG
NET_APP_ERR_INVALID_OP
NET_APP_ERR_FAULT
NET_APP_ERR_FAULT_TRANSITORY
NET_APP_ERR_CONN_CLOSED
NET_APP_ERR_DATA_BUF_OVF
NET_ERR_RX
435

RETURNED VALUE

Number of data bytes received, if no errors.

0, otherwise.

REQUIRED CONFIGURATION

Available only if NET_APP_CFG_API_EN is enabled (see section D-18-1 on page 768) and

either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1 on

page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see section D-13-1

on page 756).

NOTES / WARNINGS

Some socket arguments and/or operations are validated only if validation code is enabled

(see section D-3-1 on page 744).

If a non-zero number of retries is requested (retry_max) and socket blocking is configured

for non-blocking operation (see section D-15-3 on page 761); then a non-zero timeout

(timeout_ms) and/or a non-zero time delay (time_dly_ms) should also be requested.

Otherwise, all retries will most likely fail immediately since no time will elapse to wait for

and allow socket operations to successfully complete.
436

C-2-8 NetApp_SockTx() (TCP/UDP)

Transmit application data via socket, with error handling. See section C-13-48 on page 666

for more information.

FILES

net_app.h/net_app.c

PROTOTYPE

ARGUMENTS

sock_id The socket ID returned by NetApp_SockOpen()/NetSock_Open()/socket()
when the socket was created or by NetApp_SockAccept()/
NetSock_Accept()/accept() when a connection was accepted.

p_data Pointer to the application data memory buffer to send.

data_len Size of the application data memory buffer (in bytes).

flags Flag to select transmit options; bit-field flags logically OR’d:

NET_SOCK_FLAG_NONE/0
NET_SOCK_FLAG_TX_NO_BLOCK/ No socket flags selected

MSG_DONTWAIT Send socket data without blocking

In most cases, this flag would be set to NET_SOCK_FLAG_NONE/0.

CPU_INT16U NetApp_SockTx (NET_SOCK_ID sock_id,
 void *p_data,
 CPU_INT16U data_len,
 CPU_INT16S flags,
 NET_SOCK_ADDR *paddr_remote,
 NET_SOCK_ADDR_LEN addr_len,
 CPU_INT16U retry_max,
 CPU_INT32U timeout_ms,
 CPU_INT32U time_dly_ms,
 NET_ERR *perr);
437

paddr_remote Pointer to a socket address structure (see section 8-2 “Socket Interface” on

page 212) which contains the remote socket address to send data to.

addr_len Size of the socket address structure which must be passed the size of

the socket address structure [e.g., sizeof(NET_SOCK_ADDR_IP)].

retry_max Maximum number of consecutive socket transmit retries.

timeout_ms Socket transmit timeout value per attempt/retry.

time_dly_ms Socket transmit delay value, in milliseconds.

perr Pointer to variable that will receive the error code from this function:

NET_APP_ERR_NONE
NET_APP_ERR_INVALID_ARG
NET_APP_ERR_INVALID_OP
NET_APP_ERR_FAULT
NET_APP_ERR_FAULT_TRANSITORY
NET_APP_ERR_CONN_CLOSED
NET_ERR_TX

RETURNED VALUE

Number of data bytes transmitted, if no errors.

0, otherwise.

REQUIRED CONFIGURATION

Available only if NET_APP_CFG_API_EN is enabled (see section D-18-1 on page 768) and

either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1 on

page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see section D-13-1

on page 756).
438

NOTES / WARNINGS

Some socket arguments and/or operations are validated only if validation code is enabled

(see section D-3-1 on page 744).

If a non-zero number of retries is requested (retry_max) and socket blocking is configured

for non-blocking operation (see section D-15-3 on page 761); then a non-zero timeout

(timeout_ms) and/or a non-zero time delay (time_dly_ms) should also be requested.

Otherwise, all retries will most likely fail immediately since no time will elapse to wait for

and allow socket operations to successfully complete.
439

C-2-9 NetApp_TimeDly_ms()

Delay for specified time, in milliseconds.

FILES

net_app.h/net_app.c

PROTOTYPE

ARGUMENTS

time_dly_ms Time delay value, in milliseconds.

perr Pointer to variable that will receive the error code from this function:

NET_APP_ERR_NONE
NET_APP_ERR_INVALID_ARG
NET_APP_ERR_FAULT

RETURNED VALUE

None.

REQUIRED CONFIGURATION

Available only if NET_APP_CFG_API_EN is enabled (see section D-18-1 on page 768).

NOTES / WARNINGS

Time delay of 0 milliseconds allowed. Time delay limited to the maximum possible time

delay supported by the system/OS.

void NetApp_TimeDly_ms (CPU_INT32U time_dly_ms,
 NET_ERR *perr);
440

C-3 ARP FUNCTIONS

C-3-1 NetARP_CacheCalcStat()

Calculate ARP cache found percentage statistics.

FILES

net_arp.h/net_arp.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

ARP cache found percentage, if no errors.

NULL cache found percentage, otherwise.

REQUIRED CONFIGURATION

Available only if an appropriate network interface layer is present (e.g., Ethernet; see

section D-7-3 on page 748).

NOTES / WARNINGS

None.

CPU_INT08U NetARP_CacheCalcStat(void);
441

C-3-2 NetARP_CacheGetAddrHW()

Get the hardware address corresponding to a specific ARP cache’s protocol address.

FILES

net_arp.h/net_arp.c

PROTOTYPE

ARGUMENTS

paddr_hw Pointer to a memory buffer that will receive the hardware

address:

Hardware address that corresponds to the desired protocol

address, if no errors; hardware address cleared to all zeros,

otherwise.

addr_hw_len_buf Size of hardware address memory buffer (in bytes).

paddr_protocol Pointer to the specific protocol address.

addr_protocol_len Length of protocol address (in bytes).

perr Pointer to variable that will receive the error code from this function:

NET_ARP_ERR_NONE
NET_ARP_ERR_NULL_PTR
NET_ARP_ERR_INVALID_HW_ADDR_LEN
NET_ARP_ERR_INVALID_PROTOCOL_ADDR_LEN
NET_ARP_ERR_CACHE_NOT_FOUND
NET_ARP_ERR_CACHE_PEND

NET_ARP_ADDR_LEN NetARP_CacheGetAddrHW (CPU_INT08U *paddr_hw
 NET_ARP_ADDR_LEN addr_hw_len_buf,
 CPU_INT08U *paddr_protocol,
 NET_ARP_ADDR_LEN addr_protocol_len,
 NET_ERR *perr);
442

RETURNED VALUE

Length of returned hardware address, if available;

0, otherwise.

REQUIRED CONFIGURATION

Available only if an appropriate network interface layer is present (e.g., Ethernet; see

section D-7-3 on page 748).

NOTES / WARNINGS

NetARP_CacheGetAddrHW() may be used in conjunction with NetARP_ProbeAddrOnNet()
to determine if a specific protocol address is available on the local network.
443

C-3-3 NetARP_CachePoolStatGet()

Get ARP caches’ statistics pool.

FILES

net_arp.h/net_arp.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

ARP caches’ statistics pool, if no errors.

NULL statistics pool, otherwise.

REQUIRED CONFIGURATION

Available only if an appropriate network interface layer is present (e.g., Ethernet; see

section D-7-3 on page 748).

NOTES / WARNINGS

None.

NET_STAT_POOL NetARP_CachePoolStatGet(void);
444

C-3-4 NetARP_CachePoolStatResetMaxUsed()

Reset ARP caches’ statistics pool’s maximum number of entries used.

FILES

net_arp.h/net_arp.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

Available only if an appropriate network interface layer is present (e.g., Ethernet; see

section D-7-3 on page 748).

NOTES / WARNINGS

None.

void NetARP_CachePoolStatResetMaxUsed(void);
445

C-3-5 NetARP_CfgCacheAccessedTh()

Configure ARP cache access promotion threshold.

FILES

net_arp.h/net_arp.c

PROTOTYPE

ARGUMENTS

nbr_access Desired number of ARP cache accesses before ARP cache entry

is promoted.

RETURNED VALUE

DEF_OK, ARP cache access promotion threshold successfully configured;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if an appropriate network interface layer is present (e.g., Ethernet; see

section D-7-3 on page 748).

NOTES / WARNINGS

None.

CPU_BOOLEAN NetARP_CfgCacheAccessedTh(CPU_INT16U nbr_access);
446

C-3-6 NetARP_CfgCacheTimeout()

Configure ARP cache timeout for ARP Cache List. ARP cache entries will be retired if they

are not used within the specified timeout.

FILES

net_arp.h/net_arp.c

PROTOTYPE

ARGUMENTS

timeout_sec Desired value for ARP cache timeout (in seconds)

RETURNED VALUE

DEF_OK, ARP cache timeout successfully configured;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if an appropriate network interface layer is present (e.g., Ethernet; see

section D-7-3 on page 748).

NOTES / WARNINGS

None.

CPU_BOOLEAN NetARP_CfgCacheTimeout(CPU_INT16U timeout_sec);
447

C-3-7 NetARP_CfgReqMaxRetries()

Configure maximum number of ARP request retries.

FILES

net_arp.h/net_arp.c

PROTOTYPE

ARGUMENTS

max_nbr_retries Desired maximum number of ARP request retries.

RETURNED VALUE

DEF_OK, maximum number of ARP request retries configured.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if an appropriate network interface layer is present (e.g., Ethernet; see

section D-7-3 on page 748).

NOTES / WARNINGS

None.

CPU_BOOLEAN NetARP_CfgReqMaxRetries(CPU_INT08U max_nbr_retries);
448

C-3-8 NetARP_CfgReqTimeout()

Configure timeout between ARP request timeouts.

FILES

net_arp.h/net_arp.c

PROTOTYPE

ARGUMENTS

timeout_sec Desired value for ARP request pending ARP reply timeout (in

seconds).

RETURNED VALUE

DEF_OK, ARP request timeout successfully configured,

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if an appropriate network interface layer is present (e.g., Ethernet; see

section D-7-3 on page 748).

NOTES / WARNINGS

None.

CPU_BOOLEAN NetARP_CfgReqTimeout(CPU_INT08U timeout_sec);
449

C-3-9 NetARP_IsAddrProtocolConflict()

Check interface’s protocol address conflict status between this interface’s ARP host protocol

address(es) and any other host(s) on the local network.

FILES

net_arp.h/net_arp.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to get protocol address conflict status.

perr Pointer to variable that will receive the return error code from this function:

NET_ARP_ERR_NONE
NET_IF_ERR_INVALID_IF
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_YES if address conflict detected;

DEF_NO otherwise.

REQUIRED CONFIGURATION

Available only if an appropriate network interface layer is present (e.g., Ethernet; see

section D-7-3 on page 748).

NOTES / WARNINGS

None.

CPU_BOOLEAN NetARP_IsAddrProtocolConflict (NET_IF_NBR if_nbr,
 NET_ERR *perr);
450

C-3-10 NetARP_ProbeAddrOnNet()

Transmit an ARP request to probe the local network for a specific protocol address.

FILES

net_arp.h/net_arp.c

PROTOTYPE

ARGUMENTS

protocol_type Address protocol type.

paddr_protocol_sender Pointer to protocol address to send probe from.

paddr_protocol_target Pointer to protocol address to probe local network.

addr_protocol_len Length of protocol address (in bytes).

perr Pointer to variable that will receive the return error code from this function:

NET_ARP_ERR_NONE
NET_ARP_ERR_NULL_PTR
NET_ARP_ERR_INVALID_PROTOCOL_ADDR_LEN
NET_ARP_ERR_CACHE_INVALID_TYPE
NET_ARP_ERR_CACHE_NONE_AVAIL
NET_MGR_ERR_INVALID_PROTOCOL
NET_MGR_ERR_INVALID_PROTOCOL_ADDR
NET_MGR_ERR_INVALID_PROTOCOL_ADDR_LEN
NET_TMR_ERR_NULL_OBJ
NET_TMR_ERR_NULL_FNCT
NET_TMR_ERR_NONE_AVAIL
NET_TMR_ERR_INVALID_TYPE
NET_OS_ERR_LOCK

void NetARP_ProbeAddrOnNet(NET_PROTOCOL_TYPE protocol_type,
 CPU_INT08U *paddr_protocol_sender,
 CPU_INT08U *paddr_protocol_target
 NET_ARP_ADDR_LEN addr_protocol_len,
 NET_ERR *perr);
451

RETURNED VALUE

None.

REQUIRED CONFIGURATION

Available only if an appropriate network interface layer is present (e.g., Ethernet; see

section D-7-3 on page 748).

NOTES / WARNINGS

NetARP_ProbeAddrOnNet() may be used in conjunction with NetARP_CacheGetAddrHW()
to determine if a specific protocol address is available on the local network.
452

C-4 NETWORK ASCII FUNCTIONS

C-4-1 NetASCII_IP_to_Str()

Convert an IPv4 address in host-order into an IPv4 dotted-decimal notation ASCII string.

FILES

net_ascii.h/net_ascii.c

PROTOTYPE

ARGUMENTS

addr_ip IPv4 address (in host-order).

paddr_ip_ascii Pointer to a memory buffer of size greater than or equal to

NET_ASCII_LEN_MAX_ADDR_IP bytes to receive the IPv4 address

string. Note that the first ASCII character in the string is the most

significant nibble of the IP address’s most significant byte and

that the last character in the string is the least significant nibble

of the IP address’s least significant byte. Example: “10.10.1.65” =

0x0A0A0141

lead_zeros Select formatting the IPv4 address string with leading zeros (‘0’) prior to the

first non-zero digit in each IP address byte. The number of leading zeros

added is such that each byte’s total number of decimal digits is equal to the

maximum number of digits for each byte (i.e., 3).

DEF_NO Do not prepend leading zeros to each IP

address byte

DEF_YES Prepend leading zeros to each IP address

byte

void NetASCII_IP_to_Str(NET_IP_ADDR addr_ip,
 CPU_CHAR *paddr_ip_ascii,
 CPU_BOOLEAN lead_zeros,
 NET_ERR *perr);
453

perr Pointer to variable that will receive the return error code from this function:

NET_ASCII_ERR_NONE
NET_ASCII_ERR_NULL_PTR
NET_ASCII_ERR_INVALID_CHAR_LEN

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

RFC 1983 states that “dotted-decimal notation... refers [to] IP addresses of the form A.B.C.D;

where each letter represents, in decimal, one byte of a four-byte IP address.” In other

words, the dotted-decimal notation separates four decimal byte values by the dot, or period,

character (‘.’). Each decimal value represents one byte of the IP address starting with the

most significant byte in network order.

IPv4 Address Examples:

MSB Most Significant Byte in Dotted-Decimal IP Address

LSB Least Significant Byte in Dotted-Decimal IP Address

DOTTED DECIMAL NOTATION HEXADECIMAL EQUIVALENT

127.0.0.1 0x7F000001

192.168.1.64 0xC0A80140

255.255.255.0 0xFFFFFF00

MSB ….…… LSB MSB …. LSB
454

C-4-2 NetASCII_MAC_to_Str()

Convert a Media Access Control (MAC) address into a hexadecimal address string.

FILES

net_ascii.h/net_ascii.c

PROTOTYPE

ARGUMENTS

paddr_mac Pointer to a memory buffer of NET_ASCII_NBR_OCTET_ADDR_MAC
bytes in size that contains the MAC address.

paddr_mac_ascii Pointer to a memory buffer of size greater than or equal to

NET_ASCII_LEN_MAX_ADDR_MAC bytes to receive the MAC

address string. Note that the first ASCII character in the string is

the most significant nibble of the MAC address’s most significant

byte and that the last character in the string is the least

significant nibble of the MAC address’s least significant address

byte.

Example: “00:1A:07:AC:22:09” = 0x001A07AC2209

hex_lower_case Select formatting the MAC address string with upper- or lower-

case ASCII characters:

DEF_NO Format MAC address string with upper-

case characters

DEF_YES Format MAC address string with lower-

case characters

void NetASCII_MAC_to_Str(CPU_INT08U *paddr_mac,
 CPU_CHAR *paddr_mac_ascii,
 CPU_BOOLEAN hex_lower_case,
 CPU_BOOLEAN hex_colon_sep,
 NET_ERR *perr);
455

hex_colon_sep Select formatting the MAC address string with colon (‘:’) or dash

(‘-’) characters to separate the MAC address hexadecimal bytes:

DEF_NO Separate MAC address bytes with hyphen

characters

DEF_YES Separate MAC address bytes with colon

characters

perr Pointer to variable that will receive the return error code from this function:

NET_ASCII_ERR_NONE
NET_ASCII_ERR_NULL_PTR

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.
456

C-4-3 NetASCII_Str_to_IP()

Convert a string of an IPv4 address in dotted-decimal notation to an IPv4 address in host-

order.

FILES

net_ascii.h/net_ascii.c

PROTOTYPE

ARGUMENTS

paddr_ip_ascii Pointer to an ASCII string that contains a dotted-decimal IPv4

address. Each decimal byte of the IPv4 address string must be

separated by a dot, or period, character (‘.’). Note that the first

ASCII character in the string is the most significant nibble of the

IP address’s most significant byte and that the last character in

the string is the least significant nibble of the IP address’s least

significant byte.

Example: “10.10.1.65” = 0x0A0A0141

perr Pointer to variable that will receive the return error code from this function:

NET_ASCII_ERR_NONE
NET_ASCII_ERR_NULL_PTR
NET_ASCII_ERR_INVALID_STR_LEN
NET_ASCII_ERR_INVALID_CHAR
NET_ASCII_ERR_INVALID_CHAR_LEN
NET_ASCII_ERR_INVALID_CHAR_VAL
NET_ASCII_ERR_INVALID_CHAR_SEQ

NET_IP_ADDR NetASCII_Str_to_IP(CPU_CHAR *paddr_ip_ascii,
 NET_ERR *perr);
457

RETURNED VALUE

Returns the IPv4 address, represented by the IPv3 address string, in host-order, if no errors.

NET_IP_ADDR_NONE, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

RFC 1983 states that “dotted decimal notation… refers [to] IP addresses of the form A.B.C.D;

where each letter represents, in decimal, one byte of a four-byte IP address”. In other

words, the dotted-decimal notation separates four decimal byte values by the dot, or period,

character (‘.’). Each decimal value represents one byte of the IP address starting with the

most significant byte in network order.

IPv4 Address Examples

MSB Most Significant Byte in Dotted-Decimal IP Address

LSB Least Significant Byte in Dotted-Decimal IP Address

The IPv4 dotted-decimal ASCII string must include only decimal values and the dot, or

period, character (‘.’); all other characters are trapped as invalid, including any leading or

trailing characters. The ASCII string must include exactly four decimal values separated by

exactly three dot characters. Each decimal value must not exceed the maximum byte value

(i.e., 255), or exceed the maximum number of digits for each byte (i.e., 3) including any

leading zeros.

DOTTED DECIMAL NOTATION HEXADECIMAL EQUIVALENT

127.0.0.1 0x7F000001

192.168.1.64 0xC0A80140

255.255.255.0 0xFFFFFF00

MSB ….…… LSB MSB …. LSB
458

C-4-4 NetASCII_Str_to_MAC()

Convert a hexadecimal address string to a Media Access Control (MAC) address.

FILES

net_ascii.h/net_ascii.c

PROTOTYPE

ARGUMENTS

paddr_mac_ascii Pointer to an ASCII string that contains hexadecimal bytes

separated by colons or dashes that represents the MAC address.

Each hexadecimal byte of the MAC address string must be

separated by either the colon (‘:’) or dash (‘-’) characters. Note

that the first ASCII character in the string is the most significant

nibble of the MAC address’s most significant byte and that the

last character in the string is the least significant nibble of the

MAC address’s least significant address byte.

Example: “00:1A:07:AC:22:09” = 0x001A07AC2209

paddr_mac Pointer to a memory buffer of size greater than or equal to

NET_ASCII_NBR_OCTET_ADDR_MAC bytes to receive the MAC address.

perr Pointer to variable that will receive the return error code from this function:

NET_ASCII_ERR_NONE
NET_ASCII_ERR_NULL_PTR
NET_ASCII_ERR_INVALID_STR_LEN
NET_ASCII_ERR_INVALID_CHAR
NET_ASCII_ERR_INVALID_CHAR_LEN
NET_ASCII_ERR_INVALID_CHAR_SEQ

void NetASCII_Str_to_MAC(CPU_CHAR *paddr_mac_ascii,
 CPU_INT08U *paddr_mac,
 NET_ERR *perr);
459

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.
460

C-5 NETWORK BUFFER FUNCTIONS

C-5-1 NetBuf_PoolStatGet()

Get an interface’s Network Buffers’ statistics pool.

FILES

net_buf.h/net_buf.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to get Network Buffer statistics.

RETURNED VALUE

Network Buffers’ statistics pool, if no errors.

NULL statistics pool, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

NET_STAT_POOL NetBuf_PoolStatGet(NET_IF_NBR if_nbr);
461

C-5-2 NetBuf_PoolStatResetMaxUsed()

Reset an interface’s Network Buffers’ statistics pool’s maximum number of entries used.

FILES

net_buf.h/net_buf.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to reset Network Buffer statistics.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

void NetBuf_PoolStatResetMaxUsed(NET_IF_NBR if_nbr);
462

C-5-3 NetBuf_RxLargePoolStatGet()

Get an interface’s large receive buffers’ statistics pool.

FILES

net_buf.h/net_buf.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to get Network Buffer statistics.

RETURNED VALUE

Large receive buffers’ statistics pool, if no errors.

NULL statistics pool, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

NET_STAT_POOL NetBuf_RxLargePoolStatGet(NET_IF_NBR if_nbr);
463

C-5-4 NetBuf_RxLargePoolStatResetMaxUsed()

Reset an interface’s large receive buffers’ statistics pool’s maximum number of entries used.

FILES

net_buf.h/net_buf.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to reset Network Buffer statistics.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

void NetBuf_RxLargePoolStatResetMaxUsed(NET_IF_NBR if_nbr);
464

C-5-5 NetBuf_TxLargePoolStatGet()

Get an interface’s large transmit buffers’ statistics pool.

FILES

net_buf.h/net_buf.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to get Network Buffer statistics.

RETURNED VALUE

Large transmit buffers’ statistics pool, if no errors.

NULL statistics pool, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

NET_STAT_POOL NetBuf_TxLargePoolStatGet(NET_IF_NBR if_nbr);
465

C-5-6 NetBuf_TxLargePoolStatResetMaxUsed()

Reset an interface’s large transmit buffers’ statistics pool’s maximum number of entries used.

FILES

net_buf.h/net_buf.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to reset Network Buffer statistics.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

void NetBuf_TxLargePoolStatResetMaxUsed(NET_IF_NBR if_nbr);
466

C-5-7 NetBuf_TxSmallPoolStatGet()

Get an interface’s small transmit buffers’ statistics pool.

FILES

net_buf.h/net_buf.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to get Network Buffer statistics.

RETURNED VALUE

Small transmit buffers’ statistics pool, if no errors.

NULL statistics pool, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

NET_STAT_POOL NetBuf_TxSmallPoolStatGet(NET_IF_NBR if_nbr);
467

C-5-8 NetBuf_TxSmallPoolStatResetMaxUsed()

Reset an interface’s small transmit buffers’ statistics pool’s maximum number of entries used.

FILES

net_buf.h/net_buf.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to reset Network Buffer statistics.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

void NetBuf_TxSmallPoolStatResetMaxUsed(NET_IF_NBR if_nbr);
468

C-6 NETWORK CONNECTION FUNCTIONS

C-6-1 NetConn_CfgAccessedTh()

Configure network connection access promotion threshold.

FILES

net_conn.h/net_conn.c

PROTOTYPE

ARGUMENTS

nbr_access Desired number of accesses before network connection is promoted.

RETURNED VALUE

DEF_OK, network connection access promotion threshold configured.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section

D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see

section D-13-1 on page 756).

NOTES / WARNINGS

None.

CPU_BOOLEAN NetConn_CfgAccessedTh(CPU_INT16U nbr_access);
469

C-6-2 NetConn_PoolStatGet()

Get Network Connections’ statistics pool.

FILES

net_conn.h/net_conn.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

Network Connections’ statistics pool, if no errors.

NULL statistics pool, otherwise.

REQUIRED CONFIGURATION

Available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section

D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see

section D-13-1 on page 756).

NOTES / WARNINGS

None.

NET_STAT_POOL NetConn_PoolStatGet(void);
470

C-6-3 NetConn_PoolStatResetMaxUsed()

Reset Network Connections’ statistics pool’s maximum number of entries used.

FILES

net_conn.h/net_conn.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

Available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section

D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see

section D-13-1 on page 756).

NOTES / WARNINGS

None.

void NetConn_PoolStatResetMaxUsed(void);
471

C-7 NETWORK DEBUG FUNCTIONS

C-7-1 NetDbg_CfgMonTaskTime()

Configure Network Debug Monitor time.

FILES

net_dbg.h/net_dbg.c

PROTOTYPE

ARGUMENTS

time_sec Desired value for Network Debug Monitor task time (in seconds).

RETURNED VALUE

DEF_OK, Network Debug Monitor task time successfully configured.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if the Network Debug Monitor task is enabled (see section 11-2 “Network

Debug Monitor Task” on page 297).

NOTES / WARNINGS

None.

CPU_BOOLEAN NetDbg_CfgMonTaskTime(CPU_INT16U time_sec);
472

C-7-2 NetDbg_CfgRsrcARP_CacheThLo()

Configure ARP caches’ low resource threshold.

FILES

net_dbg.h/net_dbg.c

PROTOTYPE

ARGUMENTS

th_pct Desired percentage of ARP caches available to trip low resources.

hyst_pct Desired percentage of ARP caches freed to clear low resources.

RETURNED VALUE

DEF_OK, ARP caches’ low resource threshold successfully configured.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_DBG_CFG_DBG_STATUS_EN is enabled (see section D-2-2 on page 742)

and/or if the Network Debug Monitor task is enabled (Se section 11-2 on page 297) and if

an appropriate network interface layer is present (e.g., Ethernet; see section D-7-3 on

page 748).

NOTES / WARNINGS

None.

CPU_BOOLEAN NetDbg_CfgRsrcARP_CacheThLo(CPU_INT08U th_pct,
 CPU_INT08U hyst_pct);
473

C-7-3 NetDbg_CfgRsrcBufThLo()

Configure an interface’s network buffers’ low resource threshold.

FILES

net_dbg.h/net_dbg.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to configure low threshold and hysteresis.

th_pct Desired percentage of network buffers available to trip low resources.

hyst_pct Desired percentage of network buffers freed to clear low resources.

RETURNED VALUE

DEF_OK, Network buffers’ low resource threshold successfully configured.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_DBG_CFG_DBG_STATUS_EN is enabled (see section D-2-2 on page 742)

and/or if the Network Debug Monitor task is enabled (see section 11-2 on page 297).

NOTES / WARNINGS

None.

CPU_BOOLEAN NetDbg_CfgRsrcBufThLo(NET_IF_NBR if_nbr,
 CPU_INT08U th_pct,
 CPU_INT08U hyst_pct);
474

C-7-4 NetDbg_CfgRsrcBufRxLargeThLo()

Configure an interface’s large receive buffers’ low resource threshold.

FILES

net_dbg.h/net_dbg.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to configure low threshold & hysteresis.

th_pct Desired percentage of large receive buffers available to trip low resources.

hyst_pct Desired percentage of large receive buffers freed to clear low resources.

RETURNED VALUE

DEF_OK, Large receive buffers’ low resource threshold successfully configured.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_DBG_CFG_DBG_STATUS_EN is enabled (see section D-2-2 on page 742)

and/or if the Network Debug Monitor task is enabled (see section 11-2 on page 297).

NOTES / WARNINGS

None.

CPU_BOOLEAN NetDbg_CfgRsrcBufRxLargeThLo(NET_IF_NBR if_nbr,
 CPU_INT08U th_pct,
 CPU_INT08U hyst_pct);
475

C-7-5 NetDbg_CfgRsrcBufTxLargeThLo()

Configure an interface’s large transmit buffers’ low resource threshold.

FILES

net_dbg.h/net_dbg.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to configure low threshold and hysteresis.

th_pct Desired percentage of large transmit buffers available to trip low resources.

hyst_pct Desired percentage of large transmit buffers freed to clear low resources.

RETURNED VALUE

DEF_OK, Large transmit buffers’ low resource threshold successfully configured.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_DBG_CFG_DBG_STATUS_EN is enabled (see section D-2-2 on page 742)

and/or if the Network Debug Monitor task is enabled (see section 11-2 on page 297).

NOTES / WARNINGS

None.

CPU_BOOLEAN NetDbg_CfgRsrcBufTxLargeThLo(NET_IF_NBR if_nbr,
 CPU_INT08U th_pct,
 CPU_INT08U hyst_pct);
476

C-7-6 NetDbg_CfgRsrcBufTxSmallThLo()

Configure an interface’s small transmit buffers’ low resource threshold.

FILES

net_dbg.h/net_dbg.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to configure low threshold & hysteresis.

th_pct Desired percentage of small transmit buffers available to trip low resources.

hyst_pct Desired percentage of small transmit buffers freed to clear low resources.

RETURNED VALUE

DEF_OK, Small transmit buffers’ low resource threshold successfully configured.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_DBG_CFG_DBG_STATUS_EN is enabled (see section D-2-2 on page 742)

and/or if the Network Debug Monitor task is enabled (see section 11-2 on page 297).

NOTES / WARNINGS

None.

CPU_BOOLEAN NetDbg_CfgRsrcBufTxSmallThLo(NET_IF_NBR if_nbr,
 CPU_INT08U th_pct,
 CPU_INT08U hyst_pct);
477

C-7-7 NetDbg_CfgRsrcConnThLo()

Configure network connections’ low resource threshold.

FILES

net_dbg.h/net_dbg.c

PROTOTYPE

ARGUMENTS

th_pct Desired percentage of network connections available to trip low resources.

hyst_pct Desired percentage of network connections freed to clear low resources.

RETURNED VALUE

DEF_OK, Network connections’ low resource threshold successfully configured.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_DBG_CFG_DBG_STATUS_EN is enabled (see section D-2-2 on page 742)

and/or if the Network Debug Monitor task is enabled (see section 11-2 on page 297) and if

either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1 on

page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see section D-13-1

on page 756).

NOTES / WARNINGS

None.

CPU_BOOLEAN NetDbg_CfgRsrcConnThLo(CPU_INT08U th_pct,
 CPU_INT08U hyst_pct);
478

C-7-8 NetDbg_CfgRsrcSockThLo()

Configure network sockets’ low resource threshold.

FILES

net_dbg.h/net_dbg.c

PROTOTYPE

ARGUMENTS

th_pct Desired percentage of network sockets available to trip low resources.

hyst_pct Desired percentage of network sockets freed to clear low resources.

RETURNED VALUE

DEF_OK, Network sockets’ low resource threshold successfully configured.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_DBG_CFG_DBG_STATUS_EN is enabled (see section D-2-2 on page 742)

and/or if the Network Debug Monitor task is enabled (see section 11-2 on page 297) and if

either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1 on

page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see section D-13-1

on page 756).

NOTES / WARNINGS

None.

CPU_BOOLEAN NetDbg_CfgRsrcSockThLo(CPU_INT08U th_pct,
 CPU_INT08U hyst_pct);
479

C-7-9 NetDbg_CfgRsrcTCP_ConnThLo()

Configure TCP connections’ low resource threshold.

FILES

net_dbg.h/net_dbg.c

PROTOTYPE

ARGUMENTS

th_pct Desired percentage of TCP connections available to trip low resources.

hyst_pct Desired percentage of TCP connections freed to clear low resources.

RETURNED VALUE

DEF_OK, TCP connections’ low resource threshold successfully configured.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_DBG_CFG_DBG_STATUS_EN is enabled (see section D-2-2 on page 742)

and/or if the Network Debug Monitor task is enabled (see section 11-2 on page 297) and if

NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1 on page 755).

NOTES / WARNINGS

None.

CPU_BOOLEAN NetDbg_CfgRsrcTCP_ConnThLo(CPU_INT08U th_pct,
 CPU_INT08U hyst_pct);
480

C-7-10 NetDbg_CfgRsrcTmrThLo()

Configure network timers’ low resource threshold.

FILES

net_dbg.h/net_dbg.c

PROTOTYPE

ARGUMENTS

th_pct Desired percentage of network timers available to trip low resources.

hyst_pct Desired percentage of network timers freed to clear low resources.

RETURNED VALUE

DEF_OK, Network timers’ low resource threshold successfully configured.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_DBG_CFG_DBG_STATUS_EN is enabled (see section D-2-2 on page 742)

and/or if the Network Debug Monitor task is enabled (see section 11-2 on page 297).

NOTES / WARNINGS

None.

CPU_BOOLEAN NetDbg_CfgRsrcTmrThLo(CPU_INT08U th_pct,
 CPU_INT08U hyst_pct);
481

C-7-11 NetDbg_ChkStatus()

Return the current run-time status of certain μC/TCP-IP conditions.

FILES

net_dbg.h/net_dbg.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

NET_DBG_STATUS_OK, if all network conditions are OK (i.e., no warnings, faults, or errors

currently exist);

Otherwise, returns the following status condition codes logically OR’d:

NET_DBG_STATUS_FAULT Some network status fault(s)

NET_DBG_STATUS_RSRC_LOST Some network resources lost.

NET_DBG_STATUS_RSRC_LO Some network resources low.

NET_DBG_STATUS_FAULT_BUF Some network buffer management fault(s).

NET_DBG_STATUS_FAULT_TMR Some network timer management fault(s).

NET_DBG_STATUS_FAULT_CONN Some network connection management fault(s).

NET_DBG_STATUS_FAULT_TCP Some TCP layer fault(s).

NET_DBG_STATUS NetDbg_ChkStatus(void);
482

REQUIRED CONFIGURATION

Available only if NET_DBG_CFG_DBG_STATUS_EN is enabled (see section D-2-2 on page 742).

NOTES / WARNINGS

None.
483

C-7-12 NetDbg_ChkStatusBufs()

Return the current run-time status of μC/TCP-IP network buffers.

FILES

net_dbg.h/net_dbg.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

NET_DBG_STATUS_OK, if all network buffer conditions are OK (i.e., no warnings, faults, or

errors currently exist);

Otherwise, returns the following status condition codes logically OR’d:

NET_DBG_SF_BUF Some Network Buffer management fault(s).

REQUIRED CONFIGURATION

Available only if NET_DBG_CFG_DBG_STATUS_EN is enabled (see section D-2-2 on page 742).

NOTES / WARNINGS

Debug status information for network buffers has been deprecated in μC/TCP-IP.

NET_DBG_STATUS NetDbg_ChkStatusBufs(void);
484

C-7-13 NetDbg_ChkStatusConns()

Return the current run-time status of μC/TCP-IP network connections.

FILES

net_dbg.h/net_dbg.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

NET_DBG_STATUS_OK, if all network connection conditions are OK (i.e., no warnings, faults,

or errors currently exist);

Otherwise, returns the following status condition codes logically OR’d:

NET_DBG_SF_CONN Some network connection management

fault(s).

NET_DBG_SF_CONN_TYPE Network connection invalid type.

NET_DBG_SF_CONN_FAMILY Network connection invalid family.

NET_DBG_SF_CONN_PROTOCOL_IX_NBR_MAX Network connection invalid protocol list

index number.

NET_DBG_SF_CONN_ID Network connection invalid ID.

NET_DBG_SF_CONN_ID_NONE Network connection with no connection

IDs.

NET_DBG_STATUS NetDbg_ChkStatusConns(void);
485

NET_DBG_SF_CONN_ID_UNUSED Network connection linked to unused

connection.

NET_DBG_SF_CONN_LINK_TYPE Network connection invalid link type.

NET_DBG_SF_CONN_LINK_UNUSED Network connection link unused.

NET_DBG_SF_CONN_LINK_BACK_TO_CONN Network connection invalid link back to

same connection.

NET_DBG_SF_CONN_LINK_NOT_TO_CONN Network connection invalid link not

back to same connection.

NET_DBG_SF_CONN_LINK_NOT_IN_LIST Network connection not in appropriate

connection list.

NET_DBG_SF_CONN_POOL_TYPE Network connection invalid pool type.

NET_DBG_SF_CONN_POOL_ID Network connection invalid pool id.

NET_DBG_SF_CONN_POOL_DUP Network connection pool contains

duplicate connection(s).

NET_DBG_SF_CONN_POOL_NBR_MAX Network connection pool number of

connections greater than maximum

number of connections.

NET_DBG_SF_CONN_LIST_NBR_NOT_SOLITARY Network connection lists number of

connections not equal to solitary

connection.

NET_DBG_SF_CONN_USED_IN_POOL Network connection used but in pool.

NET_DBG_SF_CONN_USED_NOT_IN_LIST Network connection used but not in list.

NET_DBG_SF_CONN_UNUSED_IN_LIST Network connection unused but in list.
486

NET_DBG_SF_CONN_UNUSED_NOT_IN_POOL Network connection unused but not in

pool.

NET_DBG_SF_CONN_IN_LIST_IN_POOL Network connection in list and in pool.

NET_DBG_SF_CONN_NOT_IN_LIST_NOT_IN_POOL Network connection not in list nor in

pool.

REQUIRED CONFIGURATION

Available only if NET_DBG_CFG_DBG_STATUS_EN is enabled (see section D-2-2 on page 742)

and if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1 on

page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see section D-13-1

on page 756).

NOTES / WARNINGS

None.
487

C-7-14 NetDbg_ChkStatusRsrcLost() /
NetDbg_MonTaskStatusGetRsrcLost()

Return whether any μC/TCP-IP resources are currently lost.

FILES

net_dbg.h/net_dbg.c

PROTOTYPES

ARGUMENTS

None.

RETURNED VALUE

NET_DBG_STATUS_OK, if no network resources are lost; otherwise, returns the following

status condition codes logically OR’d:

NET_DBG_SF_RSRC_LOST Some network resources lost.

NET_DBG_SF_RSRC_LOST_BUF_SMALL Some network SMALL buffer resources lost.

NET_DBG_SF_RSRC_LOST_BUF_LARGE Some network LARGE buffer resources lost.

NET_DBG_SF_RSRC_LOST_TMR Some network timer resources lost.

NET_DBG_SF_RSRC_LOST_CONN Some network connection resources lost.

NET_DBG_SF_RSRC_LOST_ARP_CACHE Some network ARP cache resources lost.

NET_DBG_SF_RSRC_LOST_TCP_CONN Some network TCP connection resources lost.

NET_DBG_SF_RSRC_LOST_SOCK Some network socket resources lost.

NET_DBG_STATUS NetDbg_ChkStatusRsrcLost(void);
NET_DBG_STATUS NetDbg_MonTaskStatusGetRsrcLost(void);
488

REQUIRED CONFIGURATION

NetDbg_ChkStatusRsrcLost() available only if NET_DBG_CFG_DBG_STATUS_EN is enabled

(see section D-2-2 on page 742). NetDbg_MonTaskStatusGetRsrcLost() available only if

the Network Debug Monitor task is enabled (see section 11-2 on page 297).

NOTES / WARNINGS

NetDbg_ChkStatusRsrcLost() checks network conditions lost status inline, whereas

NetDbg_MonTaskStatusGetRsrcLost() checks the Network Debug Monitor task’s last

known lost status.
489

C-7-15 NetDbg_ChkStatusRsrcLo() /
NetDbg_MonTaskStatusGetRsrcLo()

Return whether any μC/TCP-IP resources are currently low.

FILES

net_dbg.h/net_dbg.c

PROTOTYPES

ARGUMENTS

None.

RETURNED VALUE

NET_DBG_STATUS_OK, if no network resources are low; otherwise, returns the following

status condition codes logically OR’d:

NET_DBG_SF_RSRC_LO Some network resources low.

NET_DBG_SF_RSRC_LO_BUF_SMALL Network SMALL buffer resources low

NET_DBG_SF_RSRC_LO_BUF_LARGE Network LARGE buffer resources low.

NET_DBG_SF_RSRC_LO_TMR Network timer resources low.

NET_DBG_SF_RSRC_LO_CONN Network connection resources low.

NET_DBG_SF_RSRC_LO_ARP_CACHE Network ARP cache resources low.

NET_DBG_SF_RSRC_LO_TCP_CONN Network TCP connection resources low.

NET_DBG_SF_RSRC_LO_SOCK Network socket resources low.

NET_DBG_STATUS NetDbg_ChkStatusRsrcLo(void);
NET_DBG_STATUS NetDbg_MonTaskStatusGetRsrcLo(void);
490

REQUIRED CONFIGURATION

NetDbg_ChkStatusRsrcLo() available only if NET_DBG_CFG_DBG_STATUS_EN is enabled

(see section D-2-2 on page 742). NetDbg_MonTaskStatusGetRsrcLo() available only if the

Network Debug Monitor task is enabled (see section 11-2 on page 297).

NOTES / WARNINGS

NetDbg_ChkStatusRsrcLo() checks network conditions low status inline, whereas

NetDbg_MonTaskStatusGetRsrcLo() checks the Network Debug Monitor task’s last known

low status.
491

C-7-16 NetDbg_ChkStatusTCP()

Return the current run-time status of μC/TCP-IP TCP connections.

FILES

net_dbg.h/net_dbg.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

NET_DBG_STATUS_OK, if all TCP layer conditions are OK (i.e., no warnings, faults, or errors

currently exist); otherwise, returns the following status condition codes logically OR’d:

NET_DBG_SF_TCP Some TCP layer fault(s).

NET_DBG_SF_TCP_CONN_TYPE TCP connection invalid type.

NET_DBG_SF_TCP_CONN_ID TCP connection invalid id.

NET_DBG_SF_TCP_CONN_LINK_TYPE TCP connection invalid link type.

NET_DBG_SF_TCP_CONN_LINK_UNUSED TCP connection link unused.

NET_DBG_SF_TCP_CONN_POOL_TYPE TCP connection invalid pool type.

NET_DBG_SF_TCP_CONN_POOL_ID TCP connection invalid pool id.

NET_DBG_SF_TCP_CONN_POOL_DUP TCP connection pool contains duplicate

connection(s).

NET_DBG_STATUS NetDbg_ChkStatusTCP(void);
492

NET_DBG_SF_TCP_CONN_POOL_NBR_MAX TCP connection pool number of

connections greater than maximum

number of connections.

NET_DBG_SF_TCP_CONN_USED_IN_POOL TCP connection used in pool.

NET_DBG_SF_TCP_CONN_UNUSED_NOT_IN_POOL TCP connection unused not in pool.

NET_DBG_SF_TCP_CONN_Q Some TCP connection queue fault(s).

NET_DBG_SF_TCP_CONN_Q_BUF_TYPE TCP connection queue buffer invalid

type.

NET_DBG_SF_TCP_CONN_Q_BUF_UNUSED TCP connection queue buffer unused.

NET_DBG_SF_TCP_CONN_Q_LINK_TYPE TCP connection queue buffer invalid

link type.

NET_DBG_SF_TCP_CONN_Q_LINK_UNUSED TCP connection queue buffer link

unused.

NET_DBG_SF_TCP_CONN_Q_BUF_DUP TCP connection queue contains

duplicate buffer(s).

REQUIRED CONFIGURATION

Available only if NET_DBG_CFG_DBG_STATUS_EN is enabled (see section D-2-2 on page 742)

and if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1 on

page 755).

NOTES / WARNINGS

None.
493

C-7-17 NetDbg_ChkStatusTmrs()

Return the current run-time status of μC/TCP-IP network timers.

FILES

net_dbg.h/net_dbg.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

NET_DBG_STATUS_OK, if all network timer conditions are OK (i.e., no warnings, faults, or

errors currently exist);

Otherwise, returns the following status condition codes logically OR’d:

NET_DBG_SF_TMR Some network timer management fault(s).

NET_DBG_SF_TMR_TYPE Network timer invalid type.

NET_DBG_SF_TMR_ID Network timer invalid id.

NET_DBG_SF_TMR_LINK_TYPE Network timer invalid link type.

NET_DBG_SF_TMR_LINK_UNUSED Network timer link unused.

NET_DBG_SF_TMR_LINK_BACK_TO_TMR Network timer invalid link back to same timer.

NET_DBG_SF_TMR_LINK_TO_TMR Network timer invalid link back to timer.

NET_DBG_SF_TMR_POOL_TYPE Network timer invalid pool type.

NET_DBG_STATUS NetDbg_ChkStatusTmrs(void);
494

NET_DBG_SF_TMR_POOL_ID Network timer invalid pool id.

NET_DBG_SF_TMR_POOL_DUP Network timer pool contains duplicate timer(s).

NET_DBG_SF_TMR_POOL_NBR_MAX Network timer pool number of timers greater than

maximum number of timers.

NET_DBG_SF_TMR_LIST_TYPE Network Timer task list invalid type.

NET_DBG_SF_TMR_LIST_ID Network Timer task list invalid id.

NET_DBG_SF_TMR_LIST_DUP Network Timer task list contains duplicate timer(s).

NET_DBG_SF_TMR_LIST_NBR_MAX Network Timer task list number of timers greater

than maximum number of timers.

NET_DBG_SF_TMR_LIST_NBR_USED Network Timer task list number of timers not equal

to number of used timers.

NET_DBG_SF_TMR_USED_IN_POOL Network timer used but in pool.

NET_DBG_SF_TMR_UNUSED_NOT_IN_POOLNetwork timer unused but not in pool.

NET_DBG_SF_TMR_UNUSED_IN_LIST Network timer unused but in Timer task list.

REQUIRED CONFIGURATION

Available only if NET_DBG_CFG_DBG_STATUS_EN is enabled (see section D-2-2 on page 742).

NOTES / WARNINGS

None.
495

C-7-18 NetDbg_MonTaskStatusGetRsrcLost()

Return whether any μC/TCP-IP resources are currently lost.

See section C-7-14 on page 488 for more information.

FILES

net_dbg.h/net_dbg.c

PROTOTYPE

C-7-19 NetDbg_MonTaskStatusGetRsrcLo()

Return whether any μC/TCP-IP resources are currently low.

See section C-7-15 on page 490 for more information.

FILES

net_dbg.h/net_dbg.c

PROTOTYPE

NET_DBG_STATUS NetDbg_MonTaskStatusGetRsrcLost(void);

NET_DBG_STATUS NetDbg_MonTaskStatusGetRsrcLo(void);
496

C-8 ICMP FUNCTIONS

C-8-1 NetICMP_CfgTxSrcQuenchTh()

Configure ICMP transmit source quench entry’s access transmit threshold.

FILES

net_icmp.h/net_icmp.c

PROTOTYPE

ARGUMENTS

th Desired number of received IP packets from a specific IP source host that

trips the transmission of an additional ICMP Source Quench Error Message.

RETURNED VALUE

DEF_OK, ICMP transmit source quench threshold configured.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

CPU_BOOLEAN NetICMP_CfgTxSrcQuenchTh(CPU_INT16U th);
497

C-9 NETWORK INTERFACE FUNCTIONS

C-9-1 NetIF_Add()

Add a network device and hardware as a network interface.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

if_api Pointer to the desired link-layer API for this network interface and device

hardware. In most cases, the desired link-layer interface will point to the

Ethernet API, NetIF_API_Ether (see also section L16-1(1) on page 362).

dev_api Pointer to the desired device driver API for this network interface (see also

section 5-3-3 “Adding an Ethernet Interface” on page 94 and section 5-4-2

“Adding a Wireless Interface” on page 100).

dev_bsp Pointer to the specific device's BSP interface for this network interface (see

also Chapter 6, “Network Board Support Package” on page 121).

dev_cfg Pointer to a configuration structure used to configure the device hardware for

the specific network interface (see also Chapter 5, “Network Interface

Configuration” on page 77).

NET_IF_NBR NetIF_Add(void *if_api,
 void *dev_api,
 void *dev_bsp,
 void *dev_cfg,
 void *phy_api,
 void *phy_cfg,
 NET_ERR *perr);
498

phy_api Pointer to an optional physical layer device driver API for this network

interface. In most cases, the generic physical layer device API will be used,

NetPhy_API_Generic, but for Ethernet devices that have non-MII or non-

RMII compliant physical layer components, another device-specific physical

layer device driver API may be necessary. See also section 7-4 “Ethernet PHY

API Implementation” on page 155.

phy_cfg Pointer to a configuration structure used to configure the physical layer

hardware for the specific network interface (see also section 5-3-2 “Ethernet

PHY Configuration” on page 92).

perr Pointer to variable that will receive the return error code from this function:

NET_IF_ERR_NONE
NET_IF_ERR_NULL_PTR
NET_IF_ERR_INVALID_IF
NET_IF_ERR_INVALID_CFG
NET_IF_ERR_NONE_AVAIL
NET_BUF_ERR_POOL_INIT
NET_BUF_ERR_INVALID_POOL_TYPE
NET_BUF_ERR_INVALID_POOL_ADDR
NET_BUF_ERR_INVALID_POOL_SIZE
NET_BUF_ERR_INVALID_POOL_QTY
NET_BUF_ERR_INVALID_SIZE
NET_OS_ERR_INIT_DEV_TX_RDY
NET_OS_ERR_INIT_DEV_TX_RDY_NAME
NET_OS_ERR_LOCK

RETURNED VALUE

Network interface number, if device and hardware successfully added;

NET_IF_NBR_NONE, otherwise.

REQUIRED CONFIGURATION

None.
499

NOTES / WARNINGS

The first network interface added and started is the default interface used for all default

communication. See also section C-12-1 on page 542 and section C-12-2 on page 544.

Both physical layer API and configuration parameters must ,either be specified or passed

NULL pointers.

Additional error codes may be returned by the specific interface or device driver.

See section 16-1-1 “Adding Network Interfaces” on page 361 for a detailed example of how

to add an interface.
500

C-9-2 NetIF_AddrHW_Get()

Get network interface’s hardware address.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

if_nbr Network interface number to get the hardware address.

paddr_hw Pointer to variable that will receive the hardware address.

paddr_len Pointer to a variable to pass the length of the address buffer pointed to by

paddr_hw and return the size of the returned hardware address, if no errors.

perr Pointer to variable that will receive the return error code from this function:

NET_IF_ERR_NONE
NET_IF_ERR_NULL_PTR
NET_IF_ERR_NULL_FNCT
NET_IF_ERR_INVALID_IF
NET_IF_ERR_INVALID_CFG
NET_IF_ERR_INVALID_ADDR_LEN
NET_OS_ERR_LOCK

RETURNED VALUE

None.

void NetIF_AddrHW_Get(NET_IF_NBR if_nbr,
 CPU_INT08U *paddr_hw,
 CPU_INT08U *paddr_len,
 NET_ERR *perr);
501

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

The hardware address is returned in network-order; i.e., the pointer to the hardware address

points to the highest-order byte. Additional error codes may be returned by the specific

interface or device driver.
502

C-9-3 NetIF_AddrHW_IsValid()

Validate a network interface hardware address.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

if_nbr Network interface number to validate the hardware address.

paddr_hw Pointer to a network interface hardware address.

perr Pointer to variable that will receive the return error code from this function:

NET_IF_ERR_NONE
NET_IF_ERR_NULL_PTR
NET_IF_ERR_NULL_FNCT
NET_IF_ERR_INVALID_IF
NET_IF_ERR_INVALID_CFG
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_YES if hardware address valid;

DEF_NO otherwise.

CPU_BOOLEAN NetIF_AddrHW_IsValid(NET_IF_NBR if_nbr,
 CPU_INT08U *paddr_hw,
 NET_ERR *perr);
503

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.
504

C-9-4 NetIF_AddrHW_Set()

Set network interface’s hardware address.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

if_nbr Network interface number to set hardware address.

paddr_hw Pointer to a hardware address.

addr_len Length of hardware address.

perr Pointer to variable that will receive the return error code from this function:

NET_IF_ERR_NONE
NET_IF_ERR_NULL_PTR
NET_IF_ERR_NULL_FNCT
NET_IF_ERR_INVALID_IF
NET_IF_ERR_INVALID_CFG
NET_IF_ERR_INVALID_STATE
NET_IF_ERR_INVALID_ADDR
NET_IF_ERR_INVALID_ADDR_LEN
NET_OS_ERR_LOCK

RETURNED VALUE

None.

void NetIF_AddrHW_Set(NET_IF_NBR if_nbr,
 CPU_INT08U *paddr_hw,
 CPU_INT08U addr_len,
 NET_ERR *perr);
505

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

The hardware address must be in network-order (i.e., the pointer to the hardware address

must point to the highest-order byte).

The network interface must be stopped before setting a new hardware address, which does

not take effect until the interface is re-started.

Additional error codes may be returned by the specific interface or device driver.
506

C-9-5 NetIF_CfgPerfMonPeriod()

Configure the network interface Performance Monitor Handler timeout.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

timeout_ms Desired value for network interface Performance Monitor Handler timeout (in

milliseconds).

RETURNED VALUE

DEF_OK, Network interface Performance Monitor Handler timeout configured;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_CTR_CFG_STAT_EN is enabled (see section D-4-1 on page 745).

NOTES / WARNINGS

None.

CPU_BOOLEAN NetIF_CfgPerfMonPeriod(CPU_INT16U timeout_ms);
507

C-9-6 NetIF_CfgPhyLinkPeriod()

Configure network interface Physical Link State Handler timeout.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

timeout_ms Desired value for network interface Link State Handler timeout (in

milliseconds).

RETURNED VALUE

DEF_OK, Network interface Physical Link State Handler timeout configured;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

CPU_BOOLEAN NetIF_CfgPhyLinkPeriod(CPU_INT16U timeout_ms);
508

C-9-7 NetIF_GetRxDataAlignPtr()

Get an aligned pointer into a receive application data buffer.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

if_nbr Network interface number to get a receive application buffer's aligned data

pointer.

p_data Pointer to receive application data buffer to get an aligned pointer into (see

also Note #2).

perr Pointer to variable that will receive the return error code from this function :

NET_IF_ERR_NONE
NET_IF_ERR_NULL_PTR
NET_IF_ERR_INVALID_IF
NET_IF_ERR_ALIGN_NOT_AVAIL
NET_ERR_INIT_INCOMPLETE
NET_ERR_INVALID_TRANSACTION
NET_OS_ERR_LOCK

RETURNED VALUE

Pointer to aligned receive application data buffer address, if no errors.

Pointer to NULL, otherwise.

void *NetIF_GetRxDataAlignPtr(NET_IF_NBR if_nbr,
 void *p_data,
 NET_ERR *perr);
509

NOTES/WARNINGS #1

1 Optimal alignment between application data buffers and the network interface's

network buffer data areas is not guaranteed, and is possible if, and only if, all of the

following conditions are true:

■ Network interface's network buffer data areas must be aligned to a multiple of the

CPU's data word size.

Otherwise, a single, fixed alignment between application data buffers and network

interface's buffer data areas is not possible.

2 Even when application data buffers and network buffer data areas are aligned in the

best case, optimal alignment is not guaranteed for every read/write of data to/from

application data buffers and network buffer data areas.

For any single read/write of data to/from application data buffers and network buffer

data areas, optimal alignment occurs if, and only if, all of the following conditions are

true:

■ Data read/written to/from application data buffers to network buffer data areas

must start on addresses with the same relative offset from CPU word-aligned

addresses.

In other words, the modulus of the specific read/write address in the application

data buffer with the CPU's data word size must be equal to the modulus of the

specific read/write address in the network buffer data area with the CPU's data

word size.

This condition might not be satisfied whenever:

■ Data is read/written to/from fragmented packets

■ Data is not maximally read/written to/from stream-type packets (e.g., TCP data

segments)

■ Packets include variable number of header options (e.g., IP options)
510

However, even though optimal alignment between application data buffers and

network buffer data areas is not guaranteed for every read/write; optimal alignment

should occur more frequently, leading to improved network data throughput.

NOTES/WARNINGS #2

Since the first aligned address in the application data buffer may be 0 to

(CPU_CFG_DATA_SIZE-1) bytes after the application data buffer's starting address, the

application data buffer should allocate and reserve an additional (CPU_CFG_DATA_SIZE-1)
number of bytes.

However, the application data buffer's effective, useable size is still limited to its original

declared size (before reserving additional bytes), and should not be increased by the

additional, reserved bytes.
511

C-9-8 NetIF_GetTxDataAlignPtr()

Get an aligned pointer into a transmit application data buffer.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

if_nbr Network interface number to get a transmit application buffer's aligned data

pointer.

p_data Pointer to transmit application data buffer to get an aligned pointer into (see

also Note #2b).

perr Pointer to variable that will receive the return error code from this function :

NET_IF_ERR_NONE
NET_IF_ERR_NULL_PTR
NET_IF_ERR_INVALID_IF
NET_IF_ERR_ALIGN_NOT_AVAIL
NET_ERR_INIT_INCOMPLETE
NET_ERR_INVALID_TRANSACTION
NET_OS_ERR_LOCK

RETURNED VALUE

Pointer to aligned transmit application data buffer address, if no errors.

Pointer to NULL, otherwise.

void *NetIF_GetTxDataAlignPtr(NET_IF_NBR if_nbr,
 void *p_data,
 NET_ERR *perr);
512

REQUIRED CONFIGURATION

None.

NOTES/WARNINGS #1

1 Optimal alignment between application data buffers and the network interface's

network buffer data areas is not guaranteed, and is possible if, and only if, all of the

following conditions are true:

■ Network interface's network buffer data areas must be aligned to a multiple of the

CPU's data word size.

Otherwise, a single, fixed alignment between application data buffers and network

interface's buffer data areas is not possible.

2 Even when application data buffers and network buffer data areas are aligned in the

best case, optimal alignment is not guaranteed for every read/write of data to/from

application data buffers and network buffer data areas.

For any single read/write of data to/from application data buffers and network buffer data

areas, optimal alignment occurs if, and only if, all of the following conditions are true:

■ Data read/written to/from application data buffers to network buffer data areas must

start on addresses with the same relative offset from CPU word-aligned addresses.

In other words, the modulus of the specific read/write address in the application

data buffer with the CPU's data word size must be equal to the modulus of the

specific read/write address in the network buffer data area with the CPU's data

word size.

This condition might not be satisfied whenever:

■ Data is read/written to/from fragmented packets

■ Data is not maximally read/written to/from stream-type packets (e.g., TCP data

segments)

■ Packets include variable number of header options (e.g., IP options)
513

However, even though optimal alignment between application data buffers and

network buffer data areas is not guaranteed for every read/write; optimal alignment

should not occur more frequently, leading to improved network data throughput.

NOTES/WARNINGS #2

Since the first aligned address in the application data buffer may be 0 to

(CPU_CFG_DATA_SIZE-1) bytes after the application data buffer's starting address, the

application data buffer should allocate and reserve an additional (CPU_CFG_DATA_SIZE-1)
number of bytes.

However, the application data buffer's effective, useable size is still limited to its original

declared size (before reserving additional bytes), and should not be increased by the

additional, reserved bytes.
514

C-9-9 NetIF_IO_Ctrl()

Handle network interface and/or device specific (I/O) control(s).

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

if_nbr Network interface number to handle (I/O) controls.

opt Desired I/O control option code to perform; additional control options may

be defined by the device driver:

NET_IF_IO_CTRL_LINK_STATE_GET
NET_IF_IO_CTRL_LINK_STATE_UPDATE

p_data Pointer to variable that will receive the I/O control information.

perr Pointer to variable that will receive the return error code from this function:

NET_IF_ERR_NONE
NET_IF_ERR_NULL_PTR
NET_IF_ERR_NULL_FNCT
NET_IF_ERR_INVALID_IF
NET_IF_ERR_INVALID_CFG
NET_IF_ERR_INVALID_IO_CTRL_OPTNET_OS_ERR_LOCK

void NetIF_IO_Ctrl(NET_IF_NBR if_nbr,
 CPU_INT08U opt,
 void *p_data,
 NET_ERR *perr);
515

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

Additional error codes may be returned by the specific interface or device driver.
516

C-9-10 NetIF_IsEn()

Validate network interface as enabled.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

if_nbr Network interface number to validate.

perr Pointer to variable that will receive the return error code from this function:

NET_IF_ERR_NONE
NET_IF_ERR_INVALID_IF
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_YES network interface valid and enabled;

DEF_NO network interface invalid or disabled.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

CPU_BOOLEAN NetIF_IsEn(NET_IF_NBR if_nbr,
 NET_ERR *perr);
517

C-9-11 NetIF_IsEnCfgd()

Validate configured network interface as enabled.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

if_nbr Network interface number to validate.

perr Pointer to variable that will receive the return error code from this function:

NET_IF_ERR_NONE
NET_IF_ERR_INVALID_IF
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_YES network interface valid and enabled;

DEF_NO network interface invalid or disabled.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

CPU_BOOLEAN NetIF_IsEnCfgd(NET_IF_NBR if_nbr,
 NET_ERR *perr);
518

C-9-12 NetIF_ISR_Handler()

Handle a network interface’s device interrupts.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

if_nbr Network interface number to handler device interrupts.

type Device interrupt type(s) to handle:

NET_DEV_ISR_TYPE_UNKNOWN Handle unknown device interrupts.

NET_DEV_ISR_TYPE_RX Handle device receive interrupts.

NET_DEV_ISR_TYPE_RX_OVERRUN Handle device receive overrun interrupts.

NET_DEV_ISR_TYPE_TX_RDY Handle device transmit ready interrupts.

NET_DEV_ISR_TYPE_TX_COMPLETE Handle device transmit complete

interrupts.

This is not an exclusive list of interrupt types and specific network device’s

may handle other types of interrupts.

void NetIF_ISR_Handler (NET_IF_NBR if_nbr,
 NET_DEV_ISR_TYPE type,
 NET_ERR *perr);
519

perr Pointer to variable that will receive the return error code from this function:

NET_IF_ERR_NONE
NET_IF_ERR_INVALID_CFG
NET_IF_ERR_NULL_FNCT
NET_IF_ERR_INVALID_STATE
NET_ERR_INIT_INCOMPLETE
NET_IF_ERR_INVALID_IF

This is not an exclusive list of return errors and specific network interface’s or device’s

may return any other specific errors as required.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.
520

C-9-13 NetIF_IsValid()

Validate network interface number.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

if_nbr Network interface number to validate.

perr Pointer to variable that will receive the return error code from this function:

NET_IF_ERR_NONE
NET_IF_ERR_INVALID_IF
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_YES network interface number valid;

DEF_NO network interface number invalid/not yet configured.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

CPU_BOOLEAN NetIF_IsValid(NET_IF_NBR if_nbr,
 NET_ERR *perr);
521

C-9-14 NetIF_IsValidCfgd()

Validate configured network interface number.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

if_nbr Network interface number to validate.

perr Pointer to variable that will receive the return error code from this function:

NET_IF_ERR_NONE
NET_IF_ERR_INVALID_IF
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_YES network interface number valid;

DEF_NO network interface number invalid/not yet configured or reserved.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

CPU_BOOLEAN NetIF_IsValidCfgd(NET_IF_NBR if_nbr,
 NET_ERR *perr);
522

C-9-15 NetIF_LinkStateGet()

Get network interface’s last known physical link state.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

if_nbr Network interface number to get last known physical link state.

perr Pointer to variable that will receive the return error code from this function:

NET_IF_ERR_NONE
NET_IF_ERR_INVALID_IF
NET_OS_ERR_LOCK

RETURNED VALUE

NET_IF_LINK_UP if no errors and network interface’s last known physical link

state was ‘UP’;

NET_IF_LINK_DOWN otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

Use NetIF_IO_Ctrl() with option NET_IF_IO_CTRL_LINK_STATE_GET to get a network

interface’s current physical link state.

CPU_BOOLEAN NetIF_LinkStateGet(NET_IF_NBR if_nbr,
 NET_ERR *perr);
523

C-9-16 NetIF_LinkStateWaitUntilUp()

Wait for a network interface's physical link state to be UP.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

if_nbr Network interface number to wait for link state to be UP.

retry_max Maximum number of consecutive socket open retries.

time_dly_ms Transitory socket open delay value, in milliseconds.

perr Pointer to variable that will receive the return error code from this function:

NET_IF_ERR_NONE
NET_IF_ERR_INVALID_IF
NET_IF_ERR_LINK_DOWN
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

NET_IF_LINK_UP if no errors and network interface’s physical link state is UP;

NET_IF_LINK_DOWN otherwise.

CPU_BOOLEAN NetIF_LinkStateWaitUntilUp(NET_IF_NBR if_nbr,
 CPU_INT16U retry_max,
 CPU_INT32U time_dly_ms,
 NET_ERR *perr);
524

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

If a non-zero number of retries is requested (retry_max) then a non-zero time delay

(time_dly_ms) should also be requested. Otherwise, all retries will most likely fail

immediately since no time will elapse to wait for and allow the network interface's link state

to successfully be UP.
525

C-9-17 NetIF_MTU_Get()

Get network interface’s MTU.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

if_nbr Network interface number to get MTU.

perr Pointer to variable that will receive the return error code from this function:

NET_IF_ERR_NONE
NET_IF_ERR_INVALID_IF
NET_OS_ERR_LOCK

RETURNED VALUE

Network interface’s MTU, if no errors.

0, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

NET_MTU NetIF_MTU_Get(NET_IF_NBR if_nbr,
 NET_ERR *perr);
526

C-9-18 NetIF_MTU_Set()

Set network interface’s MTU.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

if_nbr Network interface number to set MTU.

mtu Desired maximum transmission unit size to configure.

perr Pointer to variable that will receive the return error code from this function:

NET_IF_ERR_NONE
NET_IF_ERR_NULL_FNCT
NET_IF_ERR_INVALID_IF
NET_IF_ERR_INVALID_CFG
NET_IF_ERR_INVALID_MTU
NET_OS_ERR_LOCK

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

Additional error codes may be returned by the specific interface or device driver.

void NetIF_MTU_Set(NET_IF_NBR if_nbr,
 NET_MTU mtu,
 NET_ERR *perr);
527

C-9-19 NetIF_Start()

Start a network interface.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

if_nbr Network interface number to start.

perr Pointer to variable that will receive the return error code from this function:

NET_IF_ERR_NONE
NET_IF_ERR_NULL_FNCT
NET_IF_ERR_INVALID_IF
NET_IF_ERR_INVALID_CFG
NET_IF_ERR_INVALID_STATE
NET_OS_ERR_LOCK

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

Additional error codes may be returned by the specific interface or device driver.

void NetIF_Start(NET_IF_NBR if_nbr,
 NET_ERR *perr);
528

C-9-20 NetIF_Stop()

Stop a network interface.

FILES

net_if.h/net_if.c

PROTOTYPE

ARGUMENTS

if_nbr Network interface number to stop.

perr Pointer to variable that will receive the return error code from this function:

NET_IF_ERR_NONE
NET_IF_ERR_NULL_FNCT
NET_IF_ERR_INVALID_IF
NET_IF_ERR_INVALID_CFG
NET_IF_ERR_INVALID_STATE
NET_OS_ERR_LOCK

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

Additional error codes may be returned by the specific interface or device driver.

void NetIF_Stop(NET_IF_NBR if_nbr,
 NET_ERR *perr);
529

C-10 WIRELESS NETWORK INTERFACE FUNCTION

C-10-1 NetIF_WiFi_Scan()

Scan available wireless access point.

FILES

net_if_wifi.h/net_if_wifi.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to scan wireless access point.

p_buf_scan Pointer to a buffer that will receive wireless access point found.

buf_scan_len_max Maximum number of access point that can be stored in the scan

buffer.

p_ssid Pointer to a:

a. string that contains the hidden SSID to scan for

b. null pointer, if the scan is for all SSID broadcasted.

void NetIF_WiFi_Scan (NET_IF_NBR if_nbr,
 NET_IF_WIFI_AP *p_buf_scan,
 CPU_INT16U buf_scan_len_max,
 const NET_IF_WIFI_SSID *p_ssid,
 NET_IF_WIFI_CH ch,
 NET_ERR *p_err);
530

ch Wireless channel number to scan:

NET_IF_WIFI_CH_ALL
NET_IF_WIFI_CH_1
NET_IF_WIFI_CH_2
NET_IF_WIFI_CH_3
NET_IF_WIFI_CH_4
NET_IF_WIFI_CH_5
NET_IF_WIFI_CH_6
NET_IF_WIFI_CH_7
NET_IF_WIFI_CH_8
NET_IF_WIFI_CH_9
NET_IF_WIFI_CH_10
NET_IF_WIFI_CH_11
NET_IF_WIFI_CH_12
NET_IF_WIFI_CH_13
NET_IF_WIFI_CH_14

perr Pointer to variable that will receive the return error code from this function:

NET_IF_WIFI_ERR_NONE
NET_IF_WIFI_ERR_CH_INVALID
NET_IF_WIFI_ERR_SCAN
NET_IF_ERR_NULL_PTR

RETURNED VALUE

Number of wireless access point found and set in the scan buffer.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.
531

C-10-2 NetIF_WiFi_Join()

Join an wireless access point.

FILES

net_if_wifi.h/net_if_wifi.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to join wireless access point.

net_type Wireless network type of the access point:

NET_IF_WIFI_NET_TYPE_INFRASTRUCTURE
NET_IF_WIFI_NET_TYPE_ADHOC

data_rate Wireless data rate to configure:

NET_IF_WIFI_DATA_RATE_AUTO
NET_IF_WIFI_DATA_RATE_1_MBPS
NET_IF_WIFI_DATA_RATE_2_MBPS
NET_IF_WIFI_DATA_RATE_5_5_MBPS
NET_IF_WIFI_DATA_RATE_6_MBPS
NET_IF_WIFI_DATA_RATE_9_MBPS
NET_IF_WIFI_DATA_RATE_11_MBPS
NET_IF_WIFI_DATA_RATE_12_MBPS
NET_IF_WIFI_DATA_RATE_18_MBPS
NET_IF_WIFI_DATA_RATE_24_MBPS

void NetIF_WiFi_Join (NET_IF_NBR if_nbr,
 NET_IF_WIFI_NET_TYPE net_type,
 NET_IF_WIFI_DATA_RATE data_rate,
 NET_IF_WIFI_SECURITY_TYPE security_type,
 NET_IF_WIFI_PWR_LEVEL pwr_level,
 NET_IF_WIFI_SSID ssid,
 NET_IF_WIFI_PSK psk,
 NET_ERR *p_err);
532

NET_IF_WIFI_DATA_RATE_36_MBPS
NET_IF_WIFI_DATA_RATE_48_MBPS
NET_IF_WIFI_DATA_RATE_54_MBPS
NET_IF_WIFI_DATA_RATE_MCS0
NET_IF_WIFI_DATA_RATE_MCS1
NET_IF_WIFI_DATA_RATE_MCS2
NET_IF_WIFI_DATA_RATE_MCS3
NET_IF_WIFI_DATA_RATE_MCS4
NET_IF_WIFI_DATA_RATE_MCS5
NET_IF_WIFI_DATA_RATE_MCS6
NET_IF_WIFI_DATA_RATE_MCS7
NET_IF_WIFI_DATA_RATE_MCS8
NET_IF_WIFI_DATA_RATE_MCS9
NET_IF_WIFI_DATA_RATE_MCS10
NET_IF_WIFI_DATA_RATE_MCS11
NET_IF_WIFI_DATA_RATE_MCS12
NET_IF_WIFI_DATA_RATE_MCS13
NET_IF_WIFI_DATA_RATE_MCS14
NET_IF_WIFI_DATA_RATE_MCS15

security_typeWireless security type:

NET_IF_WIFI_SECURITY_OPEN
NET_IF_WIFI_SECURITY_WEP
NET_IF_WIFI_SECURITY_WPA
NET_IF_WIFI_SECURITY_WPA2

pwr_level Wireless radio power to configure:

NET_IF_WIFI_PWR_LEVEL_LO
NET_IF_WIFI_PWR_LEVEL_MED
NET_IF_WIFI_PWR_LEVEL_HI

ssid SSID of the access point to join.

psk Pre shared key of the access point to join.
533

p_err Pointer to variable that will receive the return error code from this function:

NET_IF_WIFI_ERR_NONE
NET_IF_WIFI_ERR_JOIN
NET_IF_WIFI_ERR_INVALID_NET_TYPE
NET_IF_WIFI_ERR_INVALID_DATA_RATE
NET_IF_WIFI_ERR_INVALID_SECURITY
NET_IF_WIFI_ERR_INVALID_PWR_LEVEL

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

Prior joining an access point a scan should be performed to find the access point.
534

C-10-3 NetIF_WiFi_CreateAdhoc()

Create an wireless adhoc access point.

FILES

net_if_wifi.h/net_if_wifi.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to join wireless access point.

data_rate Wireless data rate to configure:

NET_IF_WIFI_DATA_RATE_AUTO
NET_IF_WIFI_DATA_RATE_1_MBPS
NET_IF_WIFI_DATA_RATE_2_MBPS
NET_IF_WIFI_DATA_RATE_5_5_MBPS
NET_IF_WIFI_DATA_RATE_6_MBPS
NET_IF_WIFI_DATA_RATE_9_MBPS
NET_IF_WIFI_DATA_RATE_11_MBPS
NET_IF_WIFI_DATA_RATE_12_MBPS
NET_IF_WIFI_DATA_RATE_18_MBPS
NET_IF_WIFI_DATA_RATE_24_MBPS
NET_IF_WIFI_DATA_RATE_36_MBPS
NET_IF_WIFI_DATA_RATE_48_MBPS
NET_IF_WIFI_DATA_RATE_54_MBPS
NET_IF_WIFI_DATA_RATE_MCS0
NET_IF_WIFI_DATA_RATE_MCS1

void NetIF_WiFi_CreateAdhoc (NET_IF_NBR if_nbr,
 NET_IF_WIFI_DATA_RATE data_rate,
 NET_IF_WIFI_SECURITY_TYPE security_type,
 NET_IF_WIFI_PWR_LEVEL pwr_level,
 NET_IF_WIFI_CGH, ch,
 NET_IF_WIFI_SSID ssid,
 NET_IF_WIFI_PSK psk,
 NET_ERR *p_err);
535

NET_IF_WIFI_DATA_RATE_MCS2
NET_IF_WIFI_DATA_RATE_MCS3
NET_IF_WIFI_DATA_RATE_MCS4
NET_IF_WIFI_DATA_RATE_MCS5
NET_IF_WIFI_DATA_RATE_MCS6
NET_IF_WIFI_DATA_RATE_MCS7
NET_IF_WIFI_DATA_RATE_MCS8
NET_IF_WIFI_DATA_RATE_MCS9
NET_IF_WIFI_DATA_RATE_MCS10
NET_IF_WIFI_DATA_RATE_MCS11
NET_IF_WIFI_DATA_RATE_MCS12
NET_IF_WIFI_DATA_RATE_MCS13
NET_IF_WIFI_DATA_RATE_MCS14
NET_IF_WIFI_DATA_RATE_MCS15

security_typeWireless security type:

NET_IF_WIFI_SECURITY_OPEN
NET_IF_WIFI_SECURITY_WEP
NET_IF_WIFI_SECURITY_WPA
NET_IF_WIFI_SECURITY_WPA2

pwr_level Wireless radio power to configure:

NET_IF_WIFI_PWR_LEVEL_LO
NET_IF_WIFI_PWR_LEVEL_MED
NET_IF_WIFI_PWR_LEVEL_HI

ch Wireless channel number of the access point:

NET_IF_WIFI_CH_1
NET_IF_WIFI_CH_2
NET_IF_WIFI_CH_3
NET_IF_WIFI_CH_4
NET_IF_WIFI_CH_5
NET_IF_WIFI_CH_6
NET_IF_WIFI_CH_7
NET_IF_WIFI_CH_8
536

NET_IF_WIFI_CH_9
NET_IF_WIFI_CH_10
NET_IF_WIFI_CH_11
NET_IF_WIFI_CH_12
NET_IF_WIFI_CH_13
NET_IF_WIFI_CH_14

ssid SSID of the access point.

psk Pre shared key of the access point.

p_err Pointer to variable that will receive the return error code from this function:

NET_IF_WIFI_ERR_NONE
NET_IF_WIFI_ERR_CREATE_ADHOC
NET_IF_WIFI_ERR_INVALID_CH
NET_IF_WIFI_ERR_INVALID_NET_TYPE
NET_IF_WIFI_ERR_INVALID_DATA_RATE
NET_IF_WIFI_ERR_INVALID_SECURITY
NET_IF_WIFI_ERR_INVALID_PWR_LEVEL

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.
537

C-10-4 NetIF_WiFi_Leave()

Leave the access point previously joined.

FILES

net_if_wifi.h/net_if_wifi.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to join wireless access point.

p_err Pointer to variable that will receive the return error code from this function:

NET_IF_WIFI_ERR_NONE
NET_IF_WIFI_ERR_LEAVE

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

void NetIF_WiFi_Leave (NET_IF_NBR if_nbr,
 NET_ERR *p_err);
538

C-11 IGMP FUNCTIONS

C-11-1 NetIGMP_HostGrpJoin()

Join a host group.

FILES

net_igmp.h/net_igmp.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to join host group.

addr_grp IP address of host group to join.

perr Pointer to variable that will receive the return error code from this function:

NET_IGMP_ERR_NONE
NET_IGMP_ERR_INVALID_ADDR_GRP
NET_IGMP_ERR_HOST_GRP_NONE_AVAIL
NET_IGMP_ERR_HOST_GRP_INVALID_TYPE
NET_IF_ERR_INVALID_IF
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

void NetIGMP_HostGrpJoin (NET_IF_NBR if_nbr,
 NET_IP_ADDR addr_grp,
 NET_ERR *perr);
539

RETURNED VALUE

DEF_OK, if host group successfully joined.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_IP_CFG_MULTICAST_SEL is configured for transmit and receive

multicasting (see section D-9-2 on page 752).

NOTES / WARNINGS

addr_grp must be in host-order.
540

C-11-2 NetIGMP_HostGrpLeave()

Leave a host group.

FILES

net_igmp.h/net_igmp.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to leave host group.

addr_grp IP address of host group to leave.

err Pointer to variable that will receive the return error code from this function:

NET_IGMP_ERR_NONE
NET_IGMP_ERR_HOST_GRP_NOT_FOUND
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, if host group successfully left.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_IP_CFG_MULTICAST_SEL is configured for transmit and receive

multicasting (see section D-9-2 on page 752).

NOTES / WARNINGS

addr_grp must be in host-order.

void NetIGMP_HostGrpLeave (NET_IF_NBR if_nbr,
 NET_IP_ADDR addr_grp,
 NET_ERR *perr);
541

C-12 IP FUNCTIONS

C-12-1 NetIP_CfgAddrAdd()

Add a static IP host address, subnet mask, and default gateway to an interface.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to configure.

addr_host Desired IP address to add to this interface.

addr_subnet_mask Desired IP address subnet mask.

addr_dflt_gateway Desired IP default gateway address.

perr Pointer to variable that will receive the error code from this function:

NET_IP_ERR_NONE
NET_IP_ERR_INVALID_ADDR_HOST
NET_IP_ERR_INVALID_ADDR_GATEWAY
NET_IP_ERR_ADDR_CFG_STATE
NET_IP_ERR_ADDR_TBL_FULL
NET_IP_ERR_ADDR_CFG_IN_USE
NET_IF_ERR_INVALID_IF
NET_OS_ERR_LOCK

CPU_BOOLEAN NetIP_CfgAddrAdd(NET_IF_NBR if_nbr,
 NET_IP_ADDR addr_host,
 NET_IP_ADDR addr_subnet_mask,
 NET_IP_ADDR addr_dflt_gateway,
 NET_ERR *perr);
542

RETURNED VALUE

DEF_OK, if valid IP address, subnet mask, and default gateway statically-configured;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

IP addresses must be configured in host-order.

An interface may be configured with either:

■ One or more statically- configured IP addresses (default configuration) or

■ Exactly one dynamically-configured IP address (see section C-12-2 on page 544).

If an interface’s address(es) are dynamically-configured, no statically-configured address(es)

may be added until all dynamically-configured address(es) are removed.

The maximum number of IP address(es) configured on any interface is limited to

NET_IP_CFG_IF_MAX_NBR_ADDR (see section D-9-1 on page 752).

Note that on the default interface, the first IP address added will be the default address used

for all default communication. See also section C-9-1 on page 498.

A host may be configured without a gateway address to allow communication only with

other hosts on its local network. However, any configured gateway address must be on the

same network as the configured host IP address (i.e., the network portion of the configured

IP address and the configured gateway addresses must be identical).
543

C-12-2 NetIP_CfgAddrAddDynamic()

Add a dynamically-configured IP host address, subnet mask, and default gateway to an

interface.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to configure.

addr_host Desired IP address to add to this interface.

addr_subnet_mask Desired IP address subnet mask.

addr_dflt_gateway Desired IP default gateway address.

perr Pointer to variable that will receive the return error code from this function:

NET_IP_ERR_NONE
NET_IP_ERR_INVALID_ADDR_HOST
NET_IP_ERR_INVALID_ADDR_GATEWAY
NET_IP_ERR_ADDR_CFG_STATE
NET_IP_ERR_ADDR_CFG_IN_USE
NET_IF_ERR_INVALID_IF
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

CPU_BOOLEAN NetIP_CfgAddrAddDynamic(NET_IF_NBR if_nbr,
 NET_IP_ADDR addr_host,
 NET_IP_ADDR addr_subnet_mask,
 NET_IP_ADDR addr_dflt_gateway,
 NET_ERR *perr);
544

RETURNED VALUE

DEF_OK, if valid IP address, subnet mask, and default gateway dynamically configured;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

IP addresses must be configured in host-order.

An interface may be configured with either:

■ One or more statically- configured IP addresses (see section C-12-1 on page 542) or

■ Exactly one dynamically-configured IP address.

This function should only be called by appropriate network application function(s) [e.g.,

DHCP initialization functions]. However, if the application attempts to dynamically configure

IP address(es), it must call NetIP_CfgAddrAddDynamicStart() before calling

NetIP_CfgAddrAddDynamic(). Note that on the default interface, the first IP address added

will be the default address used for all default communication. See also section C-9-1 on

page 498.

A host may be configured without a gateway address to allow communication only with

other hosts on its local network. However, any configured gateway address must be on the

same network as the configured host IP address (i.e., the network portion of the configured

IP address and the configured gateway addresses must be identical).
545

C-12-3 NetIP_CfgAddrAddDynamicStart()

Start dynamic IP address configuration for an interface.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to start dynamic address configuration.

perr Pointer to variable that will receive the return error code from this function:

NET_IP_ERR_NONE
NET_IP_ERR_ADDR_CFG_STATE
NET_IP_ERR_ADDR_CFG_IN_PROGRESS
NET_IF_ERR_INVALID_IF
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, if dynamic IP address configuration successfully started;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

None.

CPU_BOOLEAN NetIP_CfgAddrAddDynamicStart(NET_IF_NBR if_nbr,
 NET_ERR *perr);
546

NOTES / WARNINGS

This function should only be called by appropriate network application function(s) [e.g.,

DHCP initialization functions]. However, if the application attempts to dynamically configure

IP address(es), it must call NetIP_CfgAddrAddDynamicStart() before calling

NetIP_CfgAddrAddDynamic().
547

C-12-4 NetIP_CfgAddrAddDynamicStop()

Stop dynamic IP address configuration for an interface.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to stop dynamic address configuration.

perr Pointer to variable that will receive the return error code from this function:

NET_IP_ERR_NONE
NET_IP_ERR_ADDR_CFG_STATE
NET_IF_ERR_INVALID_IF
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, if dynamic IP address configuration successfully stopped;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

This function should only be called by appropriate network application function(s) [e.g.,

DHCP initialization functions]. However, if the application attempts to dynamically configure

IP address(es), it must call NetIP_CfgAddrAddDynamicStop() only after calling

NetIP_CfgAddrAddDynamicStart() and dynamic IP address configuration has failed.

CPU_BOOLEAN NetIP_CfgAddrAddDynamicStop(NET_IF_NBR if_nbr,
 NET_ERR *perr);
548

C-12-5 NetIP_CfgAddrRemove()

Remove a configured IP host address from an interface.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to remove configured IP host address.

addr_host IP address to remove.

perr Pointer to variable that will receive the return error code from this function:

NET_IP_ERR_NONE
NET_IP_ERR_INVALID_ADDR_HOST
NET_IP_ERR_ADDR_CFG_STATE
NET_IP_ERR_ADDR_TBL_EMPTY
NET_IP_ERR_ADDR_NOT_FOUND
NET_IF_ERR_INVALID_IF
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, if interface’s configured IP host address successfully removed;

DEF_FAIL, otherwise.

CPU_BOOLEAN NetIP_CfgAddrRemove(NET_IF_NBR if_nbr,
 NET_IP_ADDR addr_host,
 NET_ERR *perr);
549

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.
550

C-12-6 NetIP_CfgAddrRemoveAll()

Remove all configured IP host address(es) from an interface.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to remove all configured IP host address(es).

perr Pointer to variable that will receive the return error code from this function:

NET_IP_ERR_NONE
NET_IP_ERR_ADDR_CFG_STATE
NET_IF_ERR_INVALID_IF
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, if all interface’s configured IP host address(es) successfully removed;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

CPU_BOOLEAN NetIP_CfgAddrRemoveAll(NET_IF_NBR if_nbr,
 NET_ERR *perr);
551

C-12-7 NetIP_CfgFragReasmTimeout()

Configure IP fragment reassembly timeout.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

timeout_sec Desired value for IP fragment reassembly timeout (in seconds).

RETURNED VALUE

DEF_OK, IP fragment reassembly timeout successfully configured.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

Fragment reassembly timeout is the maximum time allowed between received fragments of

the same IP datagram.

CPU_BOOLEAN NetIP_CfgFragReasmTimeout(CPU_INT08U timeout_sec);
552

C-12-8 NetIP_GetAddrDfltGateway()

Get the default gateway IP address for a host’s configured IP address.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

addr Configured IP host address.

perr Pointer to variable that will receive the return error code from this function:

NET_IP_ERR_NONE
NET_IP_ERR_INVALID_ADDR_HOST
NET_OS_ERR_LOCK

RETURNED VALUE

Configured IP host address’s default gateway (in host-order), if no errors.

NET_IP_ADDR_NONE, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

All IP addresses in host-order.

NET_IP_ADDR NetIP_GetAddrDfltGateway(NET_IP_ADDR addr,
 NET_ERR *perr);
553

C-12-9 NetIP_GetAddrHost()

Get an interface’s configured IP host address(es).

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to get configured IP host address(es).

paddr_tbl Pointer to IP address table that will receive the IP host address(es) in host-

order for this interface.

paddr_tbl_qty Pointer to a variable to:

Pass the size of the address table, in number of IP addresses,

pointed to by paddr_tbl.

Returns the actual number of IP addresses, if no errors.

Returns 0, otherwise.

CPU_BOOLEAN NetIP_GetAddrHost(NET_IF_NBR if_nbr,
 NET_IP_ADDR *paddr_tbl,
 NET_IP_ADDRS_QTY *paddr_tbl_qty,
 NET_ERR *perr);
554

perr Pointer to variable that will receive the error code from this function:

NET_IP_ERR_NONE
NET_IP_ERR_NULL_PTR
NET_IP_ERR_ADDR_NONE_AVAIL
NET_IP_ERR_ADDR_CFG_IN_PROGRESS
NET_IP_ERR_ADDR_TBL_SIZE
NET_IF_ERR_INVALID_IF
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, if interface’s configured IP host address(es) successfully returned;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

IP addresses returned in host-order.
555

C-12-10 NetIP_GetAddrHostCfgd()

Get corresponding configured IP host address for a remote IP address.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

addr_remote Remote address to get configured IP host address

RETURNED VALUE

Configured IP host address, if available;

NET_IP_ADDR_NONE, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

IP addresses returned in host-order.

NET_IP_ADDR NetIP_GetAddrHostCfgd(NET_IP_ADDR addr_remote);
556

C-12-11 NetIP_GetAddrSubnetMask()

Get the IP address subnet mask for a host’s configured IP address.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

addr Configured IP host address.

perr Pointer to variable that will receive the return error code from this function:

NET_IP_ERR_NONE
NET_IP_ERR_INVALID_ADDR_HOST
NET_OS_ERR_LOCK

RETURNED VALUE

Configured IP host address’s subnet mask (in host-order), if no errors.

NET_IP_ADDR_NONE, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

IP addresses in host-order.

NET_IP_ADDR NetIP_GetAddrSubnetMask(NET_IP_ADDR addr,
 NET_ERR *perr);
557

C-12-12 NetIP_IsAddrBroadcast()

Validate an IP address as the limited broadcast IP address.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

addr IP address to validate.

RETURNED VALUE

DEF_YES if IP address is a limited broadcast IP address;

DEF_NO otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

IP address must be in host-order.

The broadcast IP address is 255.255.255.255.

CPU_BOOLEAN NetIP_IsAddrBroadcast(NET_IP_ADDR addr);
558

C-12-13 NetIP_IsAddrClassA()

Validate an IP address as a Class-A IP address.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

addr IP address to validate.

RETURNED VALUE

DEF_YES if IP address is a Class-A IP address;

DEF_NO otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

IP address must be in host-order.

Class-A IP addresses have their most significant bit be ‘0’.

CPU_BOOLEAN NetIP_IsAddrClassA(NET_IP_ADDR addr);
559

C-12-14 NetIP_IsAddrClassB()

Validate an IP address as a Class-B IP address.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

addr IP address to validate.

RETURNED VALUE

DEF_YES if IP address is a Class-B IP address;

DEF_NO otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

IP address must be in host-order.

Class-B IP addresses have their most significant bits be ‘10’.

CPU_BOOLEAN NetIP_IsAddrClassB(NET_IP_ADDR addr);
560

C-12-15 NetIP_IsAddrClassC()

Validate an IP address as a Class-C IP address.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

addr IP address to validate.

RETURNED VALUE

DEF_YES if IP address is a Class-C IP address;

DEF_NO otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

IP address must be in host-order.

Class-C IP addresses have their most significant bits be ‘110’.

CPU_BOOLEAN NetIP_IsAddrClassC(NET_IP_ADDR addr);
561

C-12-16 NetIP_IsAddrHost()

Validate an IP address as one the host’s IP address(es).

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

addr IP address to validate.

RETURNED VALUE

DEF_YES if IP address is any one of the host’s IP address(es);

DEF_NO otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

IP address must be in host-order.

CPU_BOOLEAN NetIP_IsAddrHost(NET_IP_ADDR addr);
562

C-12-17 NetIP_IsAddrHostCfgd()

Validate an IP address as one the host’s configured IP address(es).

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

addr IP address to validate.

RETURNED VALUE

DEF_YES if IP address is any one of the host’s configured IP address(es);

DEF_NO otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

IP address must be in host-order.

CPU_BOOLEAN NetIP_IsAddrHostCfgd(NET_IP_ADDR addr);
563

C-12-18 NetIP_IsAddrLocalHost()

Validate an IP address as a Localhost IP address.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

addr IP address to validate.

RETURNED VALUE

DEF_YES if IP address is a Localhost IP address;

DEF_NO otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

IP address must be in host-order.

Localhost IP addresses are any host address in the ‘127.<host>’ subnet.

CPU_BOOLEAN NetIP_IsAddrLocalHost(NET_IP_ADDR addr);
564

C-12-19 NetIP_IsAddrLocalLink()

Validate an IP address as a link-local IP address.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

addr IP address to validate.

RETURNED VALUE

DEF_YES if IP address is a link-local IP address;

DEF_NO otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

IP address must be in host-order.

Link-local IP addresses are any host address in the ‘169.254.<host>’ subnet.

CPU_BOOLEAN NetIP_IsAddrLocalLink(NET_IP_ADDR addr);
565

C-12-20 NetIP_IsAddrsCfgdOnIF()

Check if any IP address(es) are configured on an interface.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

if_nbr Interface number to check for configured IP host address(es).

perr Pointer to variable that will receive the return error code from this function:

NET_IP_ERR_NONE
NET_IF_ERR_INVALID_IF
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_YES if any IP host address(es) are configured on the interface;

DEF_NO otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

CPU_BOOLEAN NetIP_IsAddrsHostCfgdOnIF(NET_IF_NBR if_nbr,
NET_ERR *perr);
566

C-12-21 NetIP_IsAddrThisHost()

Validate an IP address as the ‘This Host’ initialization IP address.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

addr IP address to validate.

RETURNED VALUE

DEF_YES if IP address is a ‘This Host’ initialization IP address;

DEF_NO otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

IP address must be in host-order.

The ‘This Host’ initialization IP address is 0.0.0.0.

CPU_BOOLEAN NetIP_IsAddrThisHost(NET_IP_ADDR addr);
567

C-12-22 NetIP_IsValidAddrHost()

Validate an IP address as a valid IP host address.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

addr_host IP host address to validate.

RETURNED VALUE

DEF_YES if valid IP host address;

DEF_NO otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

IP address must be in host-order. A valid IP host address must not be one of the following:

■ This Host (see section C-12-21 on page 567)

■ Specified Host

■ Localhost (see section C-12-18 on page 564)

■ Limited Broadcast (see section C-12-12 on page 558)

■ Directed Broadcast

CPU_BOOLEAN NetIP_IsValidAddrHost(NET_IP_ADDR addr_host);
568

C-12-23 NetIP_IsValidAddrHostCfgd()

Validate an IP address as a valid, configurable IP host address.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

addr_host IP host address to validate.

addr_subnet_mask IP host address subnet mask.

RETURNED VALUE

DEF_YES if configurable IP host address;

DEF_NO otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

IP addresses must be in host-order.

A configurable IP host address must not be one of the following:

■ This host (see section C-12-21 on page 567)

■ Specified host

■ Localhost (see section C-12-18 on page 564)

CPU_BOOLEAN NetIP_IsValidAddrHostCfgd(NET_IP_ADDR addr_host,
 NET_IP_ADDR addr_subnet_mask);
569

■ Limited broadcast (see section C-12-12 on page 558)

■ Directed broadcast

■ Subnet broadcast
570

C-12-24 NetIP_IsValidAddrSubnetMask()

Validate an IP address subnet mask.

FILES

net_ip.h/net_ip.c

PROTOTYPE

ARGUMENTS

addr_subnet_mask IP host address subnet mask.

RETURNED VALUE

DEF_YES if valid IP address subnet mask;

DEF_NO otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

IP address must be in host-order.

CPU_BOOLEAN NetIP_IsValidAddrSubnetMask(NET_IP_ADDR addr_subnet_mask);
571

C-13 NETWORK SOCKET FUNCTIONS

C-13-1 NetSock_Accept() / accept() (TCP)

Wait for new socket connections on a listening server socket (see section C-13-40 on

page 648). When a new connection arrives and the TCP handshake has successfully

completed, a new socket ID is returned for the new connection with the remote host’s

address and port number returned in the socket address structure.

FILES

net_sock.h/net_sock.c
net_bsd.h/net_bsd.c

PROTOTYPES

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created. This socket is assumed to be bound to an address and

listening for new connections (see section C-13-40 on page 648).

paddr_remote Pointer to a socket address structure (see section 9-1 “Network Socket Data

Structures” on page 273) to return the remote host address of the new

accepted connection.

paddr_len Pointer to the size of the socket address structure which must be passed the

size of the socket address structure [e.g., sizeof(NET_SOCK_ADDR_IP)].
Returns size of the accepted connection’s socket address structure, if no

errors; returns 0, otherwise.

NET_SOCK_ID NetSock_Accept(NET_SOCK_ID sock_id,
 NET_SOCK_ADDR *paddr_remote,
 NET_SOCK_ADDR_LEN *paddr_len,
 NET_ERR *perr);

int accept(int sock_id,
 struct sockaddr *paddr_remote,
 socklen_t *paddr_len);
572

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NULL_PTR
NET_SOCK_ERR_NONE_AVAIL
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_CLOSED
NET_SOCK_ERR_INVALID_SOCK
NET_SOCK_ERR_INVALID_FAMILY
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_STATE
NET_SOCK_ERR_INVALID_OP
NET_SOCK_ERR_CONN_ACCEPT_Q_NONE_AVAIL
NET_SOCK_ERR_CONN_SIGNAL_TIMEOUT
NET_SOCK_ERR_CONN_FAIL
NET_SOCK_ERR_FAULT
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

Returns a non-negative socket descriptor ID for the new accepted connection, if successful;

NET_SOCK_BSD_ERR_ACCEPT/-1, otherwise.

If the socket is configured for non-blocking, a return value of NET_SOCK_BSD_ERR_ACCEPT/
-1 may indicate that the no requests for connection were queued when

NetSock_Accept()/accept() was called. In this case, the server can “poll” for a new

connection at a later time.

REQUIRED CONFIGURATION

NetSock_Accept() is available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for

TCP (see section D-12-1 on page 755).

In addition, accept() is available only if NET_BSD_CFG_API_EN is enabled (see section D-

17-1 on page 767).

NOTES / WARNINGS

See section 8-2 “Socket Interface” on page 212 for socket address structure formats.
573

C-13-2 NetSock_Bind() / bind() (TCP/UDP)

Assign network addresses to sockets. Typically, server sockets bind to addresses but client

sockets do not. Servers may bind to one of the local host’s addresses but usually bind to the

wildcard address (NET_SOCK_ADDR_IP_WILDCARD/INADDR_ANY) on a specific, well-known

port number. Whereas client sockets usually bind to one of the local host’s addresses but

with a random port number (by configuring the socket address structure’s port number field

with a value of 0).

FILES

net_sock.h/net_sock.c
net_bsd.h/net_bsd.c

PROTOTYPES

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created.

paddr_local Pointer to a socket address structure (see section 8-2 “Socket Interface” on

page 212) which contains the local host address to bind the socket to.

addr_len Size of the socket address structure which must be passed the size of the

socket address structure [for example, sizeof(NET_SOCK_ADDR_IP)].

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED

NET_SOCK_RTN_CODE NetSock_Bind(NET_SOCK_ID sock_id,
 NET_SOCK_ADDR *paddr_local,
 NET_SOCK_ADDR_LEN addr_len,
 NET_ERR *perr);

int bind(int sock_id,
 struct sockaddr *paddr_local,
 socklen_t addr_len);
574

NET_SOCK_ERR_CLOSED
NET_SOCK_ERR_INVALID_SOCK
NET_SOCK_ERR_INVALID_FAMILY
NET_SOCK_ERR_INVALID_PROTOCOL
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_STATE
NET_SOCK_ERR_INVALID_OP
NET_SOCK_ERR_INVALID_ADDR
NET_SOCK_ERR_ADDR_IN_USE
NET_SOCK_ERR_PORT_NBR_NONE_AVAIL
NET_SOCK_ERR_CONN_FAIL
NET_IF_ERR_INVALID_IF
NET_IP_ERR_ADDR_NONE_AVAIL
NET_IP_ERR_ADDR_CFG_IN_PROGRESS
NET_CONN_ERR_NULL_PTR
NET_CONN_ERR_NOT_USED
NET_CONN_ERR_NONE_AVAIL
NET_CONN_ERR_INVALID_CONN
NET_CONN_ERR_INVALID_FAMILY
NET_CONN_ERR_INVALID_TYPE
NET_CONN_ERR_INVALID_PROTOCOL_IX
NET_CONN_ERR_INVALID_ADDR_LEN
NET_CONN_ERR_ADDR_NOT_USED
NET_CONN_ERR_ADDR_IN_USE
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

NET_SOCK_BSD_ERR_NONE/0 if successful;

NET_SOCK_BSD_ERR_BIND/-1 otherwise.
575

REQUIRED CONFIGURATION

NetSock_Bind() is available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured

for TCP (see section D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured

for sockets (see section D-13-1 on page 756).

In addition, bind() is available only if NET_BSD_CFG_API_EN is enabled (see section D-17-1

on page 767).

NOTES / WARNINGS

See section 8-2 “Socket Interface” on page 212 for socket address structure formats.

Sockets may bind to any of the host’s configured addresses, any localhost address (127.x.y.z

network; e.g., 127.0.0.1), any link-local address (169.254.y.z network; e.g., 169.254.65.111),

as well as the wildcard address (NET_SOCK_ADDR_IP_WILDCARD/INADDR_ANY, i.e., 0.0.0.0).

Sockets may bind to specific port numbers or request a random, ephemeral port number by

configuring the socket address structure’s port number field with a value of 0. Sockets may

not bind to a port number that is within the configured range of random port numbers (see

section D-15-2 on page 760 and section D-15-7 on page 762):

 NET_SOCK_CFG_PORT_NBR_RANDOM_BASE <= RandomPortNbrs <=
(NET_SOCK_CFG_PORT_NBR_RANDOM_BASE + NET_SOCK_CFG_NBR_SOCK + 10)
576

C-13-3 NetSock_CfgBlock() (TCP/UDP)

Configure a socket’s blocking mode.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

block Desired value for socket blocking mode:

NET_SOCK_BLOCK_SEL_DFLT Socket operations will block

NET_SOCK_BLOCK_SEL_BLOCK Socket operations will block

NET_SOCK_BLOCK_SEL_NO_BLOCK Socket operations will not block

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_SOCK_ERR_INVALID_ARG
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

CPU_BOOLEAN NetSock_CfgBlock(NET_SOCK_ID sock_id,
 CPU_INT08U block,
 NET_ERR *perr);
577

RETURNED VALUE

DEF_OK, Socket blocking mode successfully configured;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see section D-

13-1 on page 756).

NOTES / WARNINGS

None.
578

C-13-4 NetSock_CfgIF()

Configure the interface that must be used by the socket.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created.

if_nbr Interface number that must be used.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_ERR_INIT_INCOMPLETE
NET_CONN_ERR_NOT_USED
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, interface number successfully configured.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

none.

NOTES / WARNINGS

None.

CPU_BOOLEAN NetSock_CfgIF(NET_SOCK_ID sock_id,
 NET_IF_NBR if_nbr,
 NET_ERR *perr);
579

C-13-5 NetSock_CfgConnChildQ_SizeGet() (TCP)

Get socket's connection child queue size value.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_PROTOCOL
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_STATE
NET_SOCK_ERR_INVALID_SOCK
NET_ERR_INIT_INCOMPLETE
NET_TCP_ERR_CONN_NOT_USED
NET_TCP_ERR_INVALID_ARG
NET_TCP_ERR_INVALID_CONN
NET_CONN_ERR_INVALID_CONN
NET_CONN_ERR_NOT_USED
NET_OS_ERR_LOCK

CPU_BOOLEAN NetSock_CfgConnChildQ_SizeGet(NET_SOCK_ID sock_id,
 NET_ERR *perr);
580

RETURNED VALUE

Socket's connection child queue size value:

NET_SOCK_Q_SIZE_NONE on any error(s).

NET_SOCK_Q_SIZE_UNLIMITED if unlimited (i.e., no limit) value configured.

child connection queue size, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

Available only for stream-type sockets (e.g., TCP sockets).
581

C-13-6 NetSock_CfgConnChildQ_SizeSet() (TCP)

Configure socket's child connection queue size.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created.

queue_size Desired child connection queue size.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_PROTOCOL
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_STATE
NET_SOCK_ERR_INVALID_SOCK
NET_ERR_INIT_INCOMPLETE
NET_TCP_ERR_CONN_NOT_USED
NET_TCP_ERR_INVALID_ARG
NET_TCP_ERR_INVALID_CONN
NET_CONN_ERR_INVALID_CONN
NET_CONN_ERR_NOT_USED
NET_OS_ERR_LOCK

CPU_BOOLEAN NetSock_CfgConnChildQ_SizeSet(NET_SOCK_ID sock_id,
 NET_SOCK_Q_SIZE queues_size
 NET_ERR *perr);
582

RETURNED VALUE

DEF_OK, Socket child connection queue size successfully configured;

DEF_FAIL otherwise.

REQUIRED CONFIGURATION

none.

NOTES / WARNINGS

Available only for stream-type sockets (e.g., TCP sockets).
583

C-13-7 NetSock_CfgSecure() (TCP)

Configure a socket’s secure mode.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created.

block Desired value for socket secure mode:

DEF_ENABLED Socket operations will be secured.

DEF_DISABLED Socket operations will not be secured.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_ARG
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_STATE
NET_SOCK_ERR_INVALID_SOCK
NET_ERR_INIT_INCOMPLETE
NET_SECURE_ERR_NOT_AVAIL
NET_OS_ERR_LOCK

CPU_BOOLEAN NetSock_CfgBlock(NET_SOCK_ID sock_id,
 CPU_INT08U secure,
 NET_ERR *perr);
584

RETURNED VALUE

DEF_OK, Socket secure mode successfully configured;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755) and if NET_SECURE_CFG_EN is enabled (see section D-15 on page 760).

NOTES / WARNINGS

Available only for stream-type sockets (e.g., TCP sockets).
585

C-13-8 NetSock_CfgServerCertKeyInstall() (TCP)

Install certificate (CERT) and private key (KEY) from a buffer which must be used by a

server.

FILE

net_sock.h/net_sock.c

CALLED FROM

Application

PROTOTYPE

ARGUMENTS

sock_id Socket descriptor/handle identifier of server socket to configure secure

certificate and key.

pcert Pointer to buffer that contains the certificate.

cert_len Certificate length.

pkey Pointer to buffer that contains the key.

key_len Key length.

CPU_BOOLEAN NetSock_CfgSecureServerCertKeyInstall (NET_SOCK_ID sock_id,
 const void *pcert,
 CPU_INT32U cert_len,
 const void *pkey,
 CPU_INT32U key_len,
 NET_SOCK_SECURE_CERT_KEY_FMT fmt,
 CPU_BOOLEAN cert_chain,
 NET_ERR *perr)
586

fmt Certificate and key format:

NET_SOCK_SECURE_CERT_KEY_FMT_PEM
NET_SOCK_SECURE_CERT_KEY_FMT_DER

cert_chain Certificate point to a chain of certificate.

DEF_YES Certificate points to a chain of certificate.

DEF_NO Certificate points to a single certificate.

p_err Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_ARG
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_STATE
NET_SOCK_ERR_INVALID_OP
NET_SOCK_ERR_API_DIS
NET_ERR_INIT_INCOMPLETE
NET_SOCK_ERR_INVALID_SOCK
NET_SECURE_ERR_NOT_AVAIL
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, certificate and key successfully installed;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_SECURE_CFG_EN is enabled (see section D-16-1 on page 764) and

NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1 on page 755).

NOTES / WARNINGS

The socket’s secure mode must be configured before calling this function, see section C-13-

7 “NetSock_CfgSecure() (TCP)” on page 584
587

C-13-9 NetSock_CfgSecureClientCommonName() (TCP)

Configure client socket's common name.

FILE

net_sock.h/net_sock.c

CALLED FROM

Application

PROTOTYPE

ARGUMENTS

sock_id Socket descriptor/handle identifier of client socket to configure common name.

pcommon_name Pointer to string that contain the common name.

p_err Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_ARG
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_STATE
NET_SOCK_ERR_INVALID_OP
NET_SOCK_ERR_API_DIS
NET_ERR_INIT_INCOMPLETE
NET_SOCK_ERR_INVALID_SOCK
NET_SECURE_ERR_NOT_AVAIL
NET_OS_ERR_LOCK

CPU_BOOLEAN NetSock_CfgSecureClientCommonName(NET_SOCK_ID sock_id,
 CPU_CHAR *pcommon_name,
 NET_ERR *perr);
588

RETURNED VALUE

DEF_OK, common name successfully configured.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_SECURE_CFG_EN is enabled (see section D-16-1 on page 764) and

NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1 on page 755).

NOTES / WARNINGS

The socket’s secure mode must be configured before calling this function, see section C-13-

7 “NetSock_CfgSecure() (TCP)” on page 584
589

C-13-10 NetSock_CfgSecureClientTrustCallBack() (TCP)

Configure client socket's trust call back function.

FILE

net_sock.h/net_sock.c

CALLED FROM

Application

PROTOTYPE

ARGUMENTS

sock_id Socket descriptor/handle identifier of client socket to configure trust call back

function.

pcall_back_fnct Pointer to the trust call back function.

p_err Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_ARG
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_STATE
NET_SOCK_ERR_INVALID_OP
NET_SOCK_ERR_API_DIS
NET_ERR_INIT_INCOMPLETE
NET_SOCK_ERR_INVALID_SOCK
NET_SECURE_ERR_NOT_AVAIL
NET_OS_ERR_LOCK

CPU_BOOLEAN NetSock_CfgSecureClientTrustCallBack(NET_SOCK_ID sock_id,
 NET_SOCK_SECURE_TRUST_FNCT pcall_back_fnct,
 NET_ERR *perr);
590

RETURNED VALUE

DEF_OK, trust call back function successfully configured.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_SECURE_CFG_EN is enabled (see section D-16-1 on page 764) and

NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1 on page 755).

NOTES / WARNINGS

The socket’s secure mode must be configured before calling this function, see section C-13-

7 “NetSock_CfgSecure() (TCP)” on page 584
591

C-13-11 NetSock_CfgRxQ_Size() (TCP/UDP)

Configure socket's receive queue size.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID of socket to configure receive queue size.

size Desired receive queue size.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_PROTOCOL
NET_SOCK_ERR_INVALID_DATA_SIZE
NET_ERR_INIT_INCOMPLETE
NET_SOCK_ERR_INVALID_SOCK
NET_SOCK_ERR_NOT_USED
NET_TCP_ERR_INVALID_CONN
NET_TCP_ERR_INVALID_ARG
NET_TCP_ERR_CONN_NOT_USED
NET_CONN_ERR_INVALID_CONN
NET_CONN_ERR_NOT_USED
NET_OS_ERR_LOCK

CPU_BOOLEAN NetSock_CfgRxQ_Size(NET_SOCK_ID sock_id,
 NET_SOCK_DATA_SIZE size
 NET_ERR *perr);
592

RETURNED VALUE

DEF_OK, Socket receive queue size successfully configured;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

For datagram sockets, configured size does not:

■ Limit or remove any received data currently queued but becomes effective for later

received data.

■ Partially truncate any received data but instead allows data from exactly one

received packet buffer to overflow the configured size since each datagram must be

received atomically (see section C-13-46 “NetSock_RxData() / recv() (TCP)

NetSock_RxDataFrom() / recvfrom() (UDP)” on page 659).

For steam sockets, size may be required to be configured prior to connecting (see section

C-14-5 “NetTCP_ConnCfgRxWinSize()” on page 679).
593

C-13-12 NetSock_CfgTxQ_Size() (TCP/UDP)

Configure socket's transmit queue size.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID of socket to configure transmit queue size.

size Desired transmit queue size.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_PROTOCOL
NET_SOCK_ERR_INVALID_DATA_SIZE
NET_ERR_INIT_INCOMPLETE
NET_SOCK_ERR_INVALID_SOCK
NET_SOCK_ERR_NOT_USED
NET_TCP_ERR_INVALID_CONN
NET_TCP_ERR_INVALID_ARG
NET_TCP_ERR_CONN_NOT_USED
NET_CONN_ERR_INVALID_CONN
NET_CONN_ERR_NOT_USED
NET_OS_ERR_LOCK

CPU_BOOLEAN NetSock_CfgTxQ_Size(NET_SOCK_ID sock_id,
 NET_SOCK_DATA_SIZE size
 NET_ERR *perr);
594

RETURNED VALUE

DEF_OK, Socket transmit queue size successfully configured;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

For datagram sockets, configured size does not:

■ Partially truncate any transmitted data but instead allows data from exactly one

transmitted packet buffer to overflow the configured size since each datagram must be

transmitted atomically (see section C-13-48 “NetSock_TxData() / send() (TCP)

NetSock_TxDataTo() / sendto() (UDP)” on page 666).

For steam sockets, size may be required to be configured prior to connecting (see section

C-14-6 “NetTCP_ConnCfgTxWinSize()” on page 681).
595

C-13-13 NetSock_CfgTxIP_TOS() (TCP/UDP)

Configure socket's transmit IP TOS.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID of socket to configure transmit IP TOS.

size Desired transmit IP TOS.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_STATE
NET_SOCK_ERR_INVALID_OP
NET_ERR_INIT_INCOMPLETE
NET_SOCK_ERR_INVALID_SOCK
NET_CONN_ERR_INVALID_ARG
NET_CONN_ERR_INVALID_CONN
NET_CONN_ERR_NOT_USED
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, Socket transmit IP TOS successfully configured;

DEF_FAIL, otherwise.

CPU_BOOLEAN NetSock_CfgTxIP_TOS(NET_SOCK_ID sock_id,
 NET_IP_TOS ip_tos
 NET_ERR *perr);
596

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.
597

C-13-14 NetSock_CfgTxIP_TTL() (TCP/UDP)

Configure socket's transmit IP TTL.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID of socket to configure transmit IP TTL.

size Desired transmit IP TTL:

NET_IP_TTL_MIN Minimum TTL transmit value (1)

NET_IP_TTL_MAX Maximum TTL transmit value (255)

NET_IP_TTL_DFLT Default TTL transmit value (128)

NET_IP_TTL_NONE Replace with default TTL

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_STATE
NET_SOCK_ERR_INVALID_OP
NET_ERR_INIT_INCOMPLETE
NET_SOCK_ERR_INVALID_SOCK
NET_CONN_ERR_INVALID_ARG
NET_CONN_ERR_INVALID_CONN
NET_CONN_ERR_NOT_USED
NET_OS_ERR_LOCK

CPU_BOOLEAN NetSock_CfgTxIP_TTL(NET_SOCK_ID sock_id,
 NET_IP_TTL ip_ttl
 NET_ERR *perr);
598

RETURNED VALUE

DEF_OK, Socket transmit IP TTL successfully configured;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.
599

C-13-15 NetSock_CfgTxIP_TTL_Multicast() (TCP/UDP)

Configure socket's transmit IP multicast TTL.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID of socket to configure transmit IP TTL.

size Desired transmit IP multicast TTL:

NET_IP_TTL_MIN Minimum TTL transmit value (1)

NET_IP_TTL_MAX Maximum TTL transmit value (255)

NET_IP_TTL_DFLT Default TTL transmit value (1)

NET_IP_TTL_NONE Replace with default TTL

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_STATE
NET_SOCK_ERR_INVALID_OP
NET_SOCK_ERR_API_DIS
NET_ERR_INIT_INCOMPLETE
NET_SOCK_ERR_INVALID_SOCK
NET_CONN_ERR_INVALID_ARG
NET_CONN_ERR_INVALID_CONN
NET_CONN_ERR_NOT_USED
NET_OS_ERR_LOCK

CPU_BOOLEAN NetSock_CfgTxIP_TTL_Multicast(NET_SOCK_ID sock_id,
 NET_IP_TTL ip_ttl
 NET_ERR *perr);
600

RETURNED VALUE

DEF_OK, Socket transmit IP multicast TTL successfully configured;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_SOCK_CFG_FAMILY is configured for IPv4 sockets (see section D-15-1

“NET_SOCK_CFG_FAMILY” on page 760).

NOTES / WARNINGS

None.
601

C-13-16 NetSock_CfgTimeoutConnAcceptDflt() (TCP)

Set socket’s connection accept timeout to configured-default value.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_INVALID_TIME
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, Socket connection accept configured-default timeout successfully set;

DEF_FAIL, otherwise.

CPU_BOOLEAN NetSock_CfgTimeoutConnAcceptDflt(NET_SOCK_ID sock_id,
 NET_ERR *perr);
602

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

None.
603

C-13-17 NetSock_CfgTimeoutConnAcceptGet_ms() (TCP)

Get socket’s connection accept timeout value.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

0, on any errors;

NET_TMR_TIME_INFINITE, if infinite (i.e., no timeout) value configured.

Timeout in number of milliseconds, otherwise.

CPU_INT32U NetSock_CfgTimeoutConnAcceptGet_ms(NET_SOCK_ID sock_id,
 NET_ERR *perr);
604

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

None.
605

C-13-18 NetSock_CfgTimeoutConnAcceptSet() (TCP)

Set socket’s connection accept timeout value.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

timeout_ms Desired timeout value:

NET_TMR_TIME_INFINITE, if infinite (i.e., no timeout) value desired.

In number of milliseconds, otherwise.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_INVALID_TIME
NET_OS_ERR_LOCK

CPU_BOOLEAN NetSock_CfgTimeoutConnAcceptSet(NET_SOCK_ID sock_id,
 CPU_INT32U timeout_ms,
 NET_ERR *perr);
606

RETURNED VALUE

DEF_OK, Socket connection accept timeout successfully set;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

None.
607

C-13-19 NetSock_CfgTimeoutConnCloseDflt() (TCP)

Set socket’s connection close timeout to configured-default value.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_INVALID_TIME
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, Socket connection close configured-default timeout successfully set;

DEF_FAIL, otherwise.

CPU_BOOLEAN NetSock_CfgTimeoutConnCloseDflt(NET_SOCK_ID sock_id,
 NET_ERR *perr);
608

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

None.
609

C-13-20 NetSock_CfgTimeoutConnCloseGet_ms() (TCP)

Get socket’s connection close timeout value.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

0, on any errors;

NET_TMR_TIME_INFINITE, if infinite (i.e., no timeout) value configured;

Timeout in number of milliseconds, otherwise.

CPU_INT32U NetSock_CfgTimeoutConnCloseGet_ms(NET_SOCK_ID sock_id,
 NET_ERR *perr);
610

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

None.
611

C-13-21 NetSock_CfgTimeoutConnCloseSet() (TCP)

Set socket’s connection close timeout value.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

timeout_ms Desired timeout value:

NET_TMR_TIME_INFINITE, if infinite (i.e., no timeout) value desired.

In number of milliseconds, otherwise.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_INVALID_TIME
NET_OS_ERR_LOCK

CPU_BOOLEAN NetSock_CfgTimeoutConnCloseSet(NET_SOCK_ID sock_id,
 CPU_INT32U timeout_ms,
 NET_ERR *perr);
612

RETURNED VALUE

DEF_OK, Socket connection close timeout successfully set;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

None.
613

C-13-22 NetSock_CfgTimeoutConnReqDflt() (TCP)

Set socket’s connection request timeout to configured-default value.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_INVALID_TIME
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, Socket connection request configured-default timeout successfully set;

DEF_FAIL, otherwise.

CPU_BOOLEAN NetSock_CfgTimeoutConnReqDflt(NET_SOCK_ID sock_id,
 NET_ERR *perr);
614

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

None.
615

C-13-23 NetSock_CfgTimeoutConnReqGet_ms() (TCP)

Get socket’s connection request timeout value.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

0, on any errors;

NET_TMR_TIME_INFINITE, if infinite (i.e., no timeout) value configured;

Timeout in number of milliseconds, otherwise.

CPU_INT32U NetSock_CfgTimeoutConnReqGet_ms(NET_SOCK_ID sock_id,
 NET_ERR *perr);
616

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

None.
617

C-13-24 NetSock_CfgTimeoutConnReqSet() (TCP)

Set socket’s connection request timeout value.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

timeout_ms Desired timeout value:

NET_TMR_TIME_INFINITE, if infinite (i.e., no timeout) value desired.

In number of milliseconds, otherwise.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_INVALID_TIME
NET_OS_ERR_LOCK

CPU_BOOLEAN NetSock_CfgTimeoutConnReqSet(NET_SOCK_ID sock_id,
 CPU_INT32U timeout_ms,
 NET_ERR *perr);
618

RETURNED VALUE

DEF_OK, Socket connection request timeout successfully set;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

None.
619

C-13-25 NetSock_CfgTimeoutRxQ_Dflt() (TCP/UDP)

Set socket’s connection receive queue timeout to configured-default value.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_PROTOCOL
NET_TCP_ERR_CONN_NOT_USED
NET_TCP_ERR_INVALID_CONN
NET_CONN_ERR_NOT_USED
NET_CONN_ERR_INVALID_CONN
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_INVALID_TIME
NET_OS_ERR_LOCK

CPU_BOOLEAN NetSock_CfgTimeoutRxQ_Dflt(NET_SOCK_ID sock_id,
 NET_ERR *perr);
620

RETURNED VALUE

DEF_OK, Socket receive queue configured-default timeout successfully set;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section

D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see

section D-13-1 on page 756).

NOTES / WARNINGS

None.
621

C-13-26 NetSock_CfgTimeoutRxQ_Get_ms() (TCP/UDP)

Get socket’s receive queue timeout value.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_PROTOCOL
NET_TCP_ERR_CONN_NOT_USED
NET_TCP_ERR_INVALID_CONN
NET_CONN_ERR_NOT_USED
NET_CONN_ERR_INVALID_CONN
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

CPU_INT32U NetSock_CfgTimeoutRxQ_Get_ms(NET_SOCK_ID sock_id,
 NET_ERR *perr);
622

RETURNED VALUE

0, on any errors;

NET_TMR_TIME_INFINITE, if infinite (i.e., no timeout) value configured;

Timeout in number of milliseconds, otherwise.

REQUIRED CONFIGURATION

Available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section

D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see

section D-13-1 on page 756).

NOTES / WARNINGS

None.
623

C-13-27 NetSock_CfgTimeoutRxQ_Set() (TCP/UDP)

Set socket’s connection receive queue timeout value.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

timeout_ms Desired timeout value:

NET_TMR_TIME_INFINITE, if infinite (i.e., no timeout) value desired. In

number of milliseconds, otherwise.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_PROTOCOL
NET_TCP_ERR_CONN_NOT_USED
NET_TCP_ERR_INVALID_CONN
NET_CONN_ERR_NOT_USED
NET_CONN_ERR_INVALID_CONN
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_INVALID_TIME
NET_OS_ERR_LOCK

CPU_BOOLEAN NetSock_CfgTimeoutRxQ_Set(NET_SOCK_ID sock_id,
 CPU_INT32U timeout_ms,
 NET_ERR *perr);
624

RETURNED VALUE

DEF_OK, Socket receive queue timeout successfully set;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section

D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see

section D-13-1 on page 756).

NOTES / WARNINGS

None.
625

C-13-28 NetSock_CfgTimeoutTxQ_Dflt() (TCP)

Set socket’s connection transmit queue timeout to configured-default value.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_PROTOCOL
NET_TCP_ERR_CONN_NOT_USED
NET_TCP_ERR_INVALID_CONN
NET_CONN_ERR_NOT_USED
NET_CONN_ERR_INVALID_CONN
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_INVALID_TIME
NET_OS_ERR_LOCK

CPU_BOOLEAN NetSock_CfgTimeoutTxQ_Dflt(NET_SOCK_ID sock_id,
 NET_ERR *perr);
626

RETURNED VALUE

DEF_OK, Socket transmit queue configured-default timeout successfully set;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

None.
627

C-13-29 NetSock_CfgTimeoutTxQ_Get_ms() (TCP)

Get socket’s transmit queue timeout value.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_PROTOCOL
NET_TCP_ERR_CONN_NOT_USED
NET_TCP_ERR_INVALID_CONN
NET_CONN_ERR_NOT_USED
NET_CONN_ERR_INVALID_CONN
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

CPU_INT32U NetSock_CfgTimeoutTxQ_Get_ms(NET_SOCK_ID sock_id,
 NET_ERR *perr);
628

RETURNED VALUE

0, on any errors;

NET_TMR_TIME_INFINITE, if infinite (i.e., no timeout) value configured;

Timeout in number of milliseconds, otherwise.

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

None.
629

C-13-30 NetSock_CfgTimeoutTxQ_Set() (TCP)

Set socket’s connection transmit queue timeout value.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

timeout_ms Desired timeout value:

NET_TMR_TIME_INFINITE, if infinite (i.e., no timeout) value desired. In

number of milliseconds, otherwise.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_PROTOCOL
NET_TCP_ERR_CONN_NOT_USED
NET_TCP_ERR_INVALID_CONN
NET_CONN_ERR_NOT_USED
NET_CONN_ERR_INVALID_CONN
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_INVALID_TIME
NET_OS_ERR_LOCK

CPU_BOOLEAN NetSock_CfgTimeoutTxQ_Set(NET_SOCK_ID sock_id,
 CPU_INT32U timeout_ms,
 NET_ERR *perr);
630

RETURNED VALUE

DEF_OK, Socket transmit queue timeout successfully set;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

None.
631

C-13-31 NetSock_Close() / close() (TCP/UDP)

Terminate communication and free a socket.

FILES

net_sock.h/net_sock.c
net_bsd.h/net_bsd.c

PROTOTYPES

ARGUMENTS

sock_id The socket ID returned by NetSock_Open()/socket() when the socket is

created or by NetSock_Accept()/accept() when a connection is accepted.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_CLOSED
NET_SOCK_ERR_INVALID_SOCK
NET_SOCK_ERR_INVALID_FAMILY
NET_SOCK_ERR_INVALID_STATE
NET_SOCK_ERR_CLOSE_IN_PROGRESS
NET_SOCK_ERR_CONN_SIGNAL_TIMEOUT
NET_SOCK_ERR_CONN_FAIL
NET_SOCK_ERR_FAULT
NET_CONN_ERR_NULL_PTR
NET_CONN_ERR_NOT_USED
NET_CONN_ERR_INVALID_CONN
NET_CONN_ERR_INVALID_ADDR_LEN
NET_CONN_ERR_ADDR_IN_USE
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

NET_SOCK_RTN_CODE NetSock_Close(NET_SOCK_ID sock_id,
 NET_ERR *perr);

int close(int sock_id);
632

RETURNED VALUE

NET_SOCK_BSD_ERR_NONE/0, if successful;

NET_SOCK_BSD_ERR_CLOSE/-1, otherwise.

REQUIRED CONFIGURATION

NetSock_Close() is available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured

for TCP (see section D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured

for sockets (see section D-13-1 on page 756).

In addition, close() is available only if NET_BSD_CFG_API_EN is enabled (see section D-17-

1 on page 767).

NOTES / WARNINGS

After closing a socket, no further operations should be performed with the socket.
633

C-13-32 NetSock_Conn() / connect() (TCP/UDP)

Connect a local socket to a remote socket address. If the local socket was not previously

bound to a local address and port, the socket is bound to the default interface’s default

address and a random port number. When successful, a connected socket has access to

both local and remote socket addresses.

Although both UDP and TCP sockets may both connect to remote servers or hosts, UDP and

TCP connections are inherently different:

For TCP sockets, NetSock_Conn()/connect() returns successfully only after completing

the three-way TCP handshake with the remote TCP host. Success implies the existence of a

dedicated connection to the remote socket similar to a telephone connection. This

dedicated connection is maintained for the life of the connection until one or both sides

close the connection.

For UDP sockets, NetSock_Conn()/connect() merely saves the remote socket’s address

for the local socket for convenience. All UDP datagrams from the socket will be transmitted

to the remote socket. This pseudo-connection is not permanent and may be re-configured

at any time.

FILES

net_sock.h/net_sock.c
net_bsd.h/net_bsd.c
634

PROTOTYPES

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created.

paddr_remote Pointer to a socket address structure (see section 8-2 “Socket Interface” on

page 212) which contains the remote socket address to connect the socket to.

addr_len Size of the socket address structure which must be passed the size of the

socket address structure [e.g., sizeof(NET_SOCK_ADDR_IP)].

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_CLOSED
NET_SOCK_ERR_INVALID_SOCK
NET_SOCK_ERR_INVALID_FAMILY
NET_SOCK_ERR_INVALID_PROTOCOL
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_STATE
NET_SOCK_ERR_INVALID_OP
NET_SOCK_ERR_INVALID_ADDR
NET_SOCK_ERR_INVALID_ADDR_LEN
NET_SOCK_ERR_ADDR_IN_USE
NET_SOCK_ERR_PORT_NBR_NONE_AVAIL
NET_SOCK_ERR_CONN_SIGNAL_TIMEOUT
NET_SOCK_ERR_CONN_IN_USE
NET_SOCK_ERR_CONN_FAIL

NET_SOCK_RTN_CODE NetSock_Conn(NET_SOCK_ID sock_id,
 NET_SOCK_ADDR *paddr_remote,
 NET_SOCK_ADDR_LEN addr_len,
 NET_ERR *perr);

int connect(int sock_id,
 struct sockaddr *paddr_remote,
 socklen_t addr_len);
635

NET_SOCK_ERR_FAULT
NET_IF_ERR_INVALID_IF
NET_IP_ERR_ADDR_NONE_AVAIL
NET_IP_ERR_ADDR_CFG_IN_PROGRESS
NET_CONN_ERR_NULL_PTR
NET_CONN_ERR_NOT_USED
NET_CONN_ERR_NONE_AVAIL
NET_CONN_ERR_INVALID_CONN
NET_CONN_ERR_INVALID_FAMILY
NET_CONN_ERR_INVALID_TYPE
NET_CONN_ERR_INVALID_PROTOCOL_IX
NET_CONN_ERR_INVALID_ADDR_LEN
NET_CONN_ERR_ADDR_NOT_USED
NET_CONN_ERR_ADDR_IN_USE
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

NET_SOCK_BSD_ERR_NONE/0, if successful;

NET_SOCK_BSD_ERR_CONN/-1, otherwise.

REQUIRED CONFIGURATION

NetSock_Conn() is available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured

for TCP (see section D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured

for sockets (see section D-13-1 on page 756).

In addition, connect() is available only if NET_BSD_CFG_API_EN is enabled (see section D-

17-1 on page 767).

NOTES / WARNINGS

See section 8-2 “Socket Interface” on page 212 for socket address structure formats.
636

C-13-33 NET_SOCK_DESC_CLR() / FD_CLR() (TCP/UDP)

Remove a socket file descriptor ID as a member of a file descriptor set. See also section C-

13-47 “NetSock_Sel() / select() (TCP/UDP)” on page 663.

FILES

net_sock.h

PROTOTYPE

ARGUMENTS

desc_nbr This is the socket file descriptor ID returned by NetSock_Open()/socket()
when the socket was created or by NetSock_Accept()/accept() when a

connection was accepted.

pdesc_set Pointer to a socket file descriptor set.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

Available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section

D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see

section D-13-1 on page 756) and if NET_SOCK_CFG_SEL_EN is enabled (see section D-15-4

on page 761).

In addition, FD_CLR() is available only if NET_BSD_CFG_API_EN is enabled (see section D-

17-1 on page 767).

NET_SOCK_DESC_CLR(desc_nbr, pdesc_set);
637

NOTES / WARNINGS

NetSock_Sel()/select() checks or waits for available operations or error conditions on

any of the socket file descriptor members of a socket file descriptor set.

No errors are returned even if the socket file descriptor ID or the file descriptor set is

invalid, or the socket file descriptor ID is not set in the file descriptor set.
638

C-13-34 NET_SOCK_DESC_COPY() (TCP/UDP)

Copy a file descriptor set to another file descriptor set. See also section C-13-47

“NetSock_Sel() / select() (TCP/UDP)” on page 663.

FILES

net_sock.h

PROTOTYPE

ARGUMENTS

pdesc_set_dest Pointer to the destination socket file descriptor set.

pdesc_set_src Pointer to the source socket file descriptor set to copy.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

Available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section

D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see

section D-13-1 on page 756) and if NET_SOCK_CFG_SEL_EN is enabled (see section D-15-4

on page 761).

NOTES / WARNINGS

NetSock_Sel()/select() checks or waits for available operations or error conditions on

any of the socket file descriptor members of a socket file descriptor set.

No errors are returned even if either file descriptor set is invalid.

NET_SOCK_DESC_COPY(pdesc_set_dest, pdesc_set_src);
639

C-13-35 NET_SOCK_DESC_INIT() / FD_ZERO() (TCP/UDP)

Initialize/zero-clear a file descriptor set. See also section C-13-47 “NetSock_Sel() / select()

(TCP/UDP)” on page 663.

FILES

net_sock.h

PROTOTYPE

ARGUMENTS

pdesc_set Pointer to a socket file descriptor set.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

Available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section

D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see

section D-13-1 on page 756) and if NET_SOCK_CFG_SEL_EN is enabled (see section D-15-4

on page 761).

In addition, FD_ZERO() is available only if NET_BSD_CFG_API_EN is enabled (see section D-

17-1 on page 767).

NOTES / WARNINGS

NetSock_Sel()/select() checks or waits for available operations or error conditions on

any of the socket file descriptor members of a socket file descriptor set.

No errors are returned even if the file descriptor set is invalid.

NET_SOCK_DESC_INIT(pdesc_set);
640

C-13-36 NET_SOCK_DESC_IS_SET() / FD_IS_SET() (TCP/UDP)

Check if a socket file descriptor ID is a member of a file descriptor set. See also section C-

13-47 “NetSock_Sel() / select() (TCP/UDP)” on page 663.

FILES

net_sock.h

PROTOTYPE

ARGUMENTS

desc_nbr This is the socket file descriptor ID returned by NetSock_Open()/socket()
when the socket was created or by NetSock_Accept()/accept() when a

connection was accepted.

pdesc_set Pointer to a socket file descriptor set.

RETURNED VALUE

1, if the socket file descriptor ID is a member of the file descriptor set;

0, otherwise.

REQUIRED CONFIGURATION

Available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section

D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see

section D-13-1 on page 756) and if NET_SOCK_CFG_SEL_EN is enabled (see section D-15-4

on page 761).

In addition, FD_IS_SET() is available only if NET_BSD_CFG_API_EN is enabled (see section

D-17-1 on page 767).

NET_SOCK_DESC_IS_SET(desc_nbr, pdesc_set);
641

NOTES / WARNINGS

NetSock_Sel()/select() checks or waits for available operations or error conditions on

any of the socket file descriptor members of a socket file descriptor set.

0 is returned if the socket file descriptor ID or the file descriptor set is invalid.
642

C-13-37 NET_SOCK_DESC_SET() / FD_SET() (TCP/UDP)

Add a socket file descriptor ID as a member of a file descriptor set. See also section C-13-47

“NetSock_Sel() / select() (TCP/UDP)” on page 663.

FILES

net_sock.h

PROTOTYPE

ARGUMENTS

desc_nbr This is the socket file descriptor ID returned by NetSock_Open()/socket()
when the socket was created or by NetSock_Accept()/accept() when a

connection was accepted.

pdesc_set Pointer to a socket file descriptor set.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

Available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section

D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see

section D-13-1 on page 756) and if NET_SOCK_CFG_SEL_EN is enabled (see section D-15-4

on page 761). In addition, FD_SET() is available only if NET_BSD_CFG_API_EN is enabled

(see section D-17-1 on page 767).

NOTES / WARNINGS

NetSock_Sel()/select() checks or waits for available operations or error conditions on

any of the socket file descriptor members of a socket file descriptor set.

No errors are returned even if the socket file descriptor ID or the file descriptor set is

invalid, or the socket file descriptor ID is not cleared in the file descriptor set.

NET_SOCK_DESC_SET(desc_nbr, pdesc_set);
643

C-13-38 NetSock_GetConnTransportID()

Gets a socket’s transport layer connection handle ID (e.g., TCP connection ID) if available.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_SOCK_ERR_INVALID_TYPE
NET_CONN_ERR_NOT_USED
NET_CONN_ERR_INVALID_CONN
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

NET_CONN_ID NetSock_GetConnTransportID(NET_SOCK_ID sock_id,
 NET_ERR *perr);
644

RETURNED VALUE

Socket’s transport connection handle ID (e.g., TCP connection ID), if no errors.

NET_CONN_ID_NONE, otherwise.

REQUIRED CONFIGURATION

Available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section

D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see

section D-13-1 on page 756).

NOTES / WARNINGS

None.
645

C-13-39 NetSock_IsConn() (TCP/UDP)

Check if a socket is connected to a remote socket.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_INVALID_SOCK
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_YES if the socket is valid and connected;

DEF_NO otherwise.

CPU_BOOLEAN NetSock_IsConn(NET_SOCK_ID sock_id,
 NET_ERR *perr);
646

REQUIRED CONFIGURATION

Available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section

D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see

section D-13-1 on page 756).

NOTES / WARNINGS

None.
647

C-13-40 NetSock_Listen() / listen() (TCP)

Set a socket to accept incoming connections. The socket must already be bound to a local

address. If successful, incoming TCP connection requests addressed to the socket’s local

address will be queued until accepted by the socket (see section C-13-1 “NetSock_Accept()

/ accept() (TCP)” on page 572).

FILES

net_sock.h/net_sock.c
net_bsd.h/net_bsd.c

PROTOTYPES

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created.

sock_q_size Maximum number of new connections allowed to be waiting. In other words,

this argument specifies the maximum queue length of pending connections

while the listening socket is busy servicing the current request.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_CLOSED
NET_SOCK_ERR_INVALID_SOCK
NET_SOCK_ERR_INVALID_FAMILY
NET_SOCK_ERR_INVALID_PROTOCOL
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_STATE

NET_SOCK_RTN_CODE NetSock_Listen(NET_SOCK_ID sock_id,
 NET_SOCK_Q_SIZE sock_q_size,
 NET_ERR *perr);

int listen(int sock_id,
 int sock_q_size);
648

NET_SOCK_ERR_INVALID_OP
NET_SOCK_ERR_CONN_FAIL
NET_CONN_ERR_NOT_USED
NET_CONN_ERR_INVALID_CONN
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

NET_SOCK_BSD_ERR_NONE/0, if successful;

NET_SOCK_BSD_ERR_LISTEN/-1, otherwise.

REQUIRED CONFIGURATION

NetSock_Listen() is available only if either NET_CFG_TRANSPORT_LAYER_SEL is

configured for TCP (see section D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is
configured for sockets (see section D-13-1 on page 756).

In addition, listen() is available only if NET_BSD_CFG_API_EN is enabled (see section D-

17-1 on page 767).

NOTES / WARNINGS

None.
649

C-13-41 NetSock_Open() / socket() (TCP/UDP)

Create a datagram (i.e., UDP) or stream (i.e., TCP) type socket.

FILES

net_sock.h/net_sock.c
net_bsd.h/net_bsd.c

PROTOTYPES

ARGUMENTS

protocol_family This field establishes the socket protocol family domain. Always

use NET_SOCK_FAMILY_IP_V4/PF_INET for TCP/IP sockets.

sock_type Socket type:

NET_SOCK_TYPE_DATAGRAM/PF_DGRAM for datagram sockets (i.e., UDP)

NET_SOCK_TYPE_STREAM/PF_STREAM for stream sockets (i.e., TCP)

NET_SOCK_TYPE_DATAGRAM sockets preserve message boundaries.

Applications that exchange single request and response messages are

examples of datagram communication.

NET_SOCK_TYPE_STREAM sockets provides a reliable byte-stream connection,

where bytes are received from the remote application in the same order as

they were sent. File transfer and terminal emulation are examples of

applications that require this type of protocol.

NET_SOCK_ID NetSock_Open(NET_SOCK_PROTOCOL_FAMILY protocol_family,
 NET_SOCK_TYPE sock_type,
 NET_SOCK_PROTOCOL protocol,
 NET_ERR *perr);

int socket(int protocol_family,
 int sock_type,
 int protocol);
650

protocol Socket protocol:

NET_SOCK_PROTOCOL_UDP/IPPROTO_UDP for UDP

NET_SOCK_PROTOCOL_TCP/IPPROTO_TCP for TCP

0 for default-protocol:

UDP for NET_SOCK_TYPE_DATAGRAM/PF_DGRAM

TCP for NET_SOCK_TYPE_STREAM/PF_STREAM

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NONE_AVAIL
NET_SOCK_ERR_INVALID_FAMILY
NET_SOCK_ERR_INVALID_PROTOCOL
NET_SOCK_ERR_INVALID_TYPE
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

The table below shows you the different ways you can specify the three arguments.

TCP/IP Protocol Arguments

protocol_family sock_type protocol

UDP NET_SOCK_FAMILY_IP_V4 NET_SOCK_TYPE_DATAGRAM NET_SOCK_PROTOCOL_UDP

UDP NET_SOCK_FAMILY_IP_V4 NET_SOCK_TYPE_DATAGRAM 0

TCP NET_SOCK_FAMILY_IP_V4 NET_SOCK_TYPE_STREAM ET_SOCK_PROTOCOL_TCP

TCP NET_SOCK_FAMILY_IP_V4 NET_SOCK_TYPE_STREAM 0
651

RETURNED VALUE

Returns a non-negative socket descriptor ID for the new socket connection, if successful;

NET_SOCK_BSD_ERR_OPEN/-1 otherwise.

REQUIRED CONFIGURATION

NetSock_Open() is available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured

for TCP (see section D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured

for sockets (see section D-13-1 on page 756).

In addition, socket() is available only if NET_BSD_CFG_API_EN is enabled (see section D-

17-1 on page 767).

NOTES / WARNINGS

The family, type, and protocol of a socket is fixed once a socket is created. In other words,

you cannot change a TCP stream socket to a UDP datagram socket (or vice versa) at run-

time.

To connect two sockets, both sockets must share the same socket family, type, and protocol.
652

C-13-42 NetSock_OptGet()

Get the specified socket option from the sock_id socket.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

level Protocol level from which to retrieve the socket option.

opt_name Socket option to get the value.

popt_val Pointer to a socket option value buffer.

popt_len Pointer to variable a socket option value buffer length.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_INVALID_OPT
NET_SOCK_ERR_INVALID_ARG
NET_SOCK_ERR_INVALID_OPT_LEN
NET_CONN_ERR_INVALID_OPT_GET
NET_CONN_ERR_INVALID_OPT_LEVEL

NET_SOCK_RTN_CODE_ID NetSock_OptGet(NET_SOCK_ID sock_id,
 NET_SOCK_PROTOCOL level,
 NET_SOCK_OPT_NAME opt_name,
 void *popt_val,
 NET_SOCK_OPT_LEN *popt_len,
 NET_ERR *perr);
653

RETURNED VALUE

NET_SOCK_BSD_ERR_NONE/0, if successful; NET_SOCK_BSD_ERR_OPT_GET/-1, otherwise.

REQUIRED CONFIGURATION

NetSock_OptGet() is available only if either NET_CFG_TRANSPORT_LAYER_SEL is

configured for TCP (see section D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is
configured for sockets (see section D-13-1 on page 756).

In addition, getsockopt() is available only if NET_BSD_CFG_API_EN is enabled (see section

D-17-1 on page 767).

NOTES / WARNINGS

The supported options are:

■ Protocol level NET_SOCK_PROTOCOL_SO:

■ NET_SOCK_OPT_SOCK_TYPE

■ NET_SOCK_OPT_SOCK_KEEP_ALIVE

■ NET_SOCK_OPT_SOCK_ACCEPT_CONN

■ NET_SOCK_OPT_SOCK_TX_BUF_SIZE / NET_SOCK_OPT_SOCK_RX_BUF_SIZE

■ NET_SOCK_OPT_SOCK_TX_TIMEOUT / NET_SOCK_OPT_SOCK_RX_TIMEOUT

■ Protocol level NET_SOCK_PROTOCOL_IP:

■ NET_SOCK_OPT_IP_TOS

■ NET_SOCK_OPT_IP_TTL

■ NET_SOCK_OPT_IP_RX_IF

■ Protocol level NET_SOCK_PROTOCOL_TCP:

■ NET_SOCK_OPT_TCP_NO_DELAY

■ NET_SOCK_OPT_TCP_KEEP_CNT

■ NET_SOCK_OPT_TCP_KEEP_IDLE

■ NET_SOCK_OPT_TCP_KEEP_INTVL
654

C-13-43 NetSock_OptSet()

Set the specified socket option to the sock_id socket.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

level Protocol level from which to set the socket option.

opt_name Name of the option to set.

popt_val Pointer to the value to set the socket option.

opt_len Option length.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_INVALID_DATA_SIZE
NET_SOCK_ERR_NULL_PTR
NET_SOCK_ERR_INVALID_OPT

NET_SOCK_RTN_CODE_ID NetSock_OptSet(NET_SOCK_ID sock_id,
 NET_SOCK_PROTOCOL level,
 NET_SOCK_OPT_NAME opt_name,
 void *popt_val,
 NET_SOCK_OPT_LEN opt_len,
 NET_ERR *perr);
655

RETURNED VALUE

NET_SOCK_BSD_ERR_NONE/0, if successful;

NET_SOCK_BSD_ERR_OPT_SET/-1, otherwise.

REQUIRED CONFIGURATION

NetSock_OptSet() is available only if either NET_CFG_TRANSPORT_LAYER_SEL is

configured for TCP (see section D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is
configured for sockets (see section D-13-1 on page 756).

In addition, setsockopt() is available only if NET_BSD_CFG_API_EN is enabled (see section

D-17-1 on page 767).

NOTES / WARNINGS

The supported options are:

■ Protocol level NET_SOCK_PROTOCOL_SO:

■ NET_SOCK_OPT_SOCK_KEEP_ALIVE

■ NET_SOCK_OPT_SOCK_TX_BUF_SIZE / NET_SOCK_OPT_SOCK_RX_BUF_SIZE

■ NET_SOCK_OPT_SOCK_TX_TIMEOUT / NET_SOCK_OPT_SOCK_RX_TIMEOUT

■ Protocol level NET_SOCK_PROTOCOL_IP:

■ NET_SOCK_OPT_IP_TOS

■ NET_SOCK_OPT_IP_TTL

■ Protocol level NET_SOCK_PROTOCOL_TCP:

■ NET_SOCK_OPT_TCP_NO_DELAY

■ NET_SOCK_OPT_TCP_KEEP_CNT

■ NET_SOCK_OPT_TCP_KEEP_IDLE

■ NET_SOCK_OPT_TCP_KEEP_INTVL
656

C-13-44 NetSock_PoolStatGet()

Get Network Sockets’ statistics pool.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

Network Sockets’ statistics pool, if no errors.

NULL statistics pool, otherwise.

REQUIRED CONFIGURATION

Available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section

D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see

section D-13-1 on page 756).

NOTES / WARNINGS

None.

NET_STAT_POOL NetSock_PoolStatGet(void);
657

C-13-45 NetSock_PoolStatResetMaxUsed()

Reset Network Sockets’ statistics pool’s maximum number of entries used.

FILES

net_sock.h/net_sock.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

Available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section

D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see

section D-13-1 on page 756).

NOTES / WARNINGS

None.

void NetSock_PoolStatResetMaxUsed(void);
658

C-13-46 NetSock_RxData() / recv() (TCP)
NetSock_RxDataFrom() / recvfrom() (UDP)

Copy up to a specified number of bytes received from a remote socket into an application

memory buffer.

FILES

net_sock.h/net_sock.c
net_bsd.h/net_bsd.c

PROTOTYPES

NET_SOCK_RTN_CODE NetSock_RxData(NET_SOCK_ID sock_id,
 void *pdata_buf,
 CPU_INT16U data_buf_len,
 CPU_INT16S flags,
 NET_ERR *perr);

NET_SOCK_RTN_CODE NetSock_RxDataFrom(NET_SOCK_ID sock_id,
 void *pdata_buf,
 CPU_INT16U data_buf_len,
 CPU_INT16S flags,
 NET_SOCK_ADDR *paddr_remote,
 NET_SOCK_ADDR_ *paddr_len,
 void *pip_opts_buf,
 CPU_INT08U ip_opts_buf_len,
 CPU_INT08U *pip_opts_len,
 NET_ERR *perr);

ssize_t recv(int sock_id,
 void *pdata_buf,
 _size_t data_buf_len,
 int flags);

ssize_t recvfrom(int sock_id,
 void *pdata_buf,
 _size_t data_buf_len,
 int flags,
 struct sockaddr *paddr_remote,
 socklen_t *paddr_len);
659

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

pdata_buf Pointer to the application memory buffer to receive data.

data_buf_lenSize of the destination application memory buffer (in bytes).

flags Flag to select receive options; bit-field flags logically OR’d:

NET_SOCK_FLAG_NONE/0 No socket flags selected

NET_SOCK_FLAG_RX_DATA_PEEK/
MSG_PEEK Receive socket data without consuming it

NET_SOCK_FLAG_RX_NO_BLOCK/
MSG_DONTWAIT Receive socket data without blocking

In most cases, this flag would be set to NET_SOCK_FLAG_NONE/0.

paddr_remotePointer to a socket address structure (see section 8-2 “Socket Interface” on

page 212) to return the remote host address that sent the received data.

paddr_len Pointer to the size of the socket address structure which must be passed the

size of the socket address structure [e.g., sizeof(NET_SOCK_ADDR_IP)].

Returns size of the accepted connection’s socket address structure, if no errors;

returns 0, otherwise.

pip_opts_bufPointer to buffer to receive possible IP options.

pip_opts_lenPointer to variable that will receive the return size of any received IP options.

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NULL_PTR
NET_SOCK_ERR_NULL_SIZE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_CLOSED
660

NET_SOCK_ERR_INVALID_SOCK
NET_SOCK_ERR_INVALID_FAMILY
NET_SOCK_ERR_INVALID_PROTOCOL
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_STATE
NET_SOCK_ERR_INVALID_OP
NET_SOCK_ERR_INVALID_FLAG
NET_SOCK_ERR_INVALID_ADDR_LEN
NET_SOCK_ERR_INVALID_DATA_SIZE
NET_SOCK_ERR_CONN_FAIL
NET_SOCK_ERR_FAULT
NET_SOCK_ERR_RX_Q_EMPTY
NET_SOCK_ERR_RX_Q_CLOSED
NET_ERR_RX
NET_CONN_ERR_NULL_PTR
NET_CONN_ERR_NOT_USED
NET_CONN_ERR_INVALID_CONN
NET_CONN_ERR_INVALID_ADDR_LEN
NET_CONN_ERR_ADDR_NOT_USED
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

Positive number of bytes received, if successful;

NET_SOCK_BSD_RTN_CODE_CONN_CLOSED/0, if the socket is closed;

NET_SOCK_BSD_ERR_RX/-1, otherwise.

BLOCKING VS NON-BLOCKING

The default setting for μC/TCP-IP is blocking. However, this setting can be changed at compile

time by setting the NET_SOCK_CFG_BLOCK_SEL (see section D-15-3 on page 761) to one of the

following values:

NET_SOCK_BLOCK_SEL_DFLT sets blocking mode to the default, or blocking, unless modified

by run-time options.
661

NET_SOCK_BLOCK_SEL_BLOCK sets the blocking mode to blocking. This means that a socket

receive function will wait forever, until at least one byte of data is available to return or the

socket connection is closed, unless a timeout is specified by NetSock_CfgTimeoutRxQ_Set()
[See section C-13-27 on page 624].

NET_SOCK_BLOCK_SEL_NO_BLOCK sets the blocking mode to non-blocking. This means that

a socket receive function will not wait but immediately return either any available data,

socket connection closed, or an error indicating no available data or other possible socket

faults. Your application will have to “poll” the socket on a regular basis to receive data.

The current version of μC/TCP-IP selects blocking or non-blocking at compile time for all

sockets. A future version may allow the selection of blocking or non-blocking at the

individual socket level. However, each socket receive call can pass the

NET_SOCK_FLAG_RX_NO_BLOCK/MSG_DONTWAIT flag to disable blocking on that call.

REQUIRED CONFIGURATION

NetSock_RxData()/NetSock_RxDataFrom() is available only if NET_CFG_TRANSPORT_LAYER_SEL
is configured for TCP (see section D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL
is configured for sockets (see section D-13-1 on page 756).

In addition, recv()/recvfrom() is available only if NET_BSD_CFG_API_EN is enabled (see

section D-17-1 on page 767).

NOTES / WARNINGS

TCP sockets typically use NetSock_RxData()/recv(), whereas UDP sockets typically use

NetSock_RxDataFrom()/recvfrom().

For stream sockets (i.e., TCP), bytes are guaranteed to be received in the same order as they

were transmitted, without omissions.

For datagram sockets (i.e., UDP), each receive returns the data from exactly one send but

datagram order and delivery is not guaranteed. Also, if the application memory buffer is not

big enough to receive an entire datagram, the datagram’s data is truncated to the size of the

memory buffer and the remaining data is discarded.

Only some receive flag options are implemented. If other flag options are requested, an

error is returned so that flag options are not silently ignored.
662

C-13-47 NetSock_Sel() / select() (TCP/UDP)

Check if any sockets are ready for available read or write operations or error conditions.

FILES

net_sock.h/net_sock.c
net_bsd.h/net_bsd.c

PROTOTYPES

ARGUMENTS

sock_nbr_max Specifies the maximum number of socket file descriptors in the

file descriptor sets.

psock_desc_rd Pointer to a set of socket file descriptors to:

■ Check for available read operations.

■ Returns the actual socket file descriptors ready for available

read operations, if no errors;

■ Returns the initial, non-modified set of socket file

descriptors, on any errors;

■ Returns a null-valued (i.e., zero-cleared) descriptor set,

if any timeout expires.

NET_SOCK_RTN_CODE NetSock_Sel(NET_SOCK_QTY sock_nbr_max,
 NET_SOCK_DESC *psock_desc_rd,
 NET_SOCK_DESC *psock_desc_wr,
 NET_SOCK_DESC *psock_desc_err,
 NET_SOCK_TIMEOUT *ptimeout,
 NET_ERR *perr);

int select(int desc_nbr_max,
 struct fd_set *pdesc_rd,
 struct fd_set *pdesc_wr,
 struct fd_set *pdesc_err,
 struct timeval *ptimeout);
663

psock_desc_wr Pointer to a set of socket file descriptors to:

■ Check for available read operations.

■ Returns the actual socket file descriptors ready for available

write operations, if no errors;

■ Returns the initial, non-modified set of socket file

descriptors, on any errors;

■ Returns a null-valued (i.e., zero-cleared) descriptor set,

if any timeout expires.

psock_desc_err Pointer to a set of socket file descriptors to:

■ Check for any available socket errors.

■ Returns the actual socket file descriptors ready with any

pending errors;

■ Returns the initial, non-modified set of socket file

descriptors, on any errors;

■ Returns a null-valued (i.e., zero-cleared) descriptor set,

if any timeout expires.

ptimeout Pointer to a timeout argument.

perr Pointer to variable that will receive the error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_TIMEOUT
NET_ERR_INIT_INCOMPLETE
NET_SOCK_ERR_INVALID_DESC
NET_SOCK_ERR_INVALID_TIMEOUT
NET_SOCK_ERR_INVALID_SOCK
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_EVENTS_NBR_MAX
NET_OS_ERR_LOCK
664

RETURNED VALUE

Returns the number of sockets ready with available operations, if successful;

NET_SOCK_BSD_RTN_CODE_TIMEOUT/0, upon timeout;

NET_SOCK_BSD_ERR_SEL/-1, otherwise.

REQUIRED CONFIGURATION

NetSock_Sel() is available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for

TCP (see section D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for

sockets (see section D-13-1 on page 756) and if NET_SOCK_CFG_SEL_EN is enabled (see

section D-15-4 on page 761).

In addition, select() is available only if NET_BSD_CFG_API_EN is enabled (see section D-

17-1 on page 767).

NOTES / WARNINGS

Supports socket file descriptors only (i.e., socket ID numbers).

The descriptor macro’s is used to prepare and decode socket file descriptor sets (see section

C-13-33 on page 637 through section C-13-37 on page 643).

See “net_sock.c NetSock_Sel() Note #3” for more details.
665

C-13-48 NetSock_TxData() / send() (TCP)
NetSock_TxDataTo() / sendto() (UDP)

Copy bytes from an application memory buffer into a socket to send to a remote socket.

FILES

net_sock.h/net_sock.c
net_bsd.h/net_bsd.c

PROTOTYPES

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

p_data Pointer to the application data memory buffer to send.

NET_SOCK_RTN_CODE NetSock_TxData(NET_SOCK_ID sock_id,
 void *p_data,
 CPU_INT16U data_len,
 CPU_INT16S flags,
 NET_ERR *perr);

NET_SOCK_RTN_CODE NetSock_TxDataTo(NET_SOCK_ID sock_id,
 void *p_data,
 CPU_INT16U data_len,
 CPU_INT16S flags,
 NET_SOCK_ADDR *paddr_remote,
 NET_SOCK_ADDR_LEN addr_len,
 NET_ERR *perr);

ssize_t send (int sock_id,
 void *p_data,
 _size_t data_len,
 int flags);

ssize_t sendto(int sock_id,
 void *p_data,
 _size_t data_len,
 int flags,
 struct sockaddr *paddr_remote,
 socklen_t addr_len);
666

data_len Size of the application data memory buffer (in bytes).

flags Flag to select transmit options; bit-field flags logically OR’d:

NET_SOCK_FLAG_NONE/0
NET_SOCK_FLAG_TX_NO_BLOCK/ No socket flags selected

MSG_DONTWAIT Send socket data without blocking

In most cases, this flag would be set to NET_SOCK_FLAG_NONE/0.

paddr_remote Pointer to a socket address structure (see section 8-2 “Socket Interface” on

page 212) which contains the remote socket address to send data to.

addr_len Size of the socket address structure which must be passed the size of

the socket address structure [e.g., sizeof(NET_SOCK_ADDR_IP)].

perr Pointer to variable that will receive the return error code from this function:

NET_SOCK_ERR_NONE
NET_SOCK_ERR_NULL_PTR
NET_SOCK_ERR_NOT_USED
NET_SOCK_ERR_CLOSED
NET_SOCK_ERR_INVALID_SOCK
NET_SOCK_ERR_INVALID_FAMILY
NET_SOCK_ERR_INVALID_PROTOCOL
NET_SOCK_ERR_INVALID_TYPE
NET_SOCK_ERR_INVALID_STATE
NET_SOCK_ERR_INVALID_OP
NET_SOCK_ERR_INVALID_FLAG
NET_SOCK_ERR_INVALID_DATA_SIZE
NET_SOCK_ERR_INVALID_CONN
NET_SOCK_ERR_INVALID_ADDR
NET_SOCK_ERR_INVALID_ADDR_LEN
NET_SOCK_ERR_INVALID_PORT_NBR
NET_SOCK_ERR_ADDR_IN_USE
NET_SOCK_ERR_PORT_NBR_NONE_AVAIL
NET_SOCK_ERR_CONN_FAIL
NET_SOCK_ERR_FAULT
667

NET_ERR_TX
NET_IF_ERR_INVALID_IF
NET_IP_ERR_ADDR_NONE_AVAIL
NET_IP_ERR_ADDR_CFG_IN_PROGRESS
NET_CONN_ERR_NULL_PTR
NET_CONN_ERR_NOT_USED
NET_CONN_ERR_INVALID_CONN
NET_CONN_ERR_INVALID_FAMILY
NET_CONN_ERR_INVALID_TYPE
NET_CONN_ERR_INVALID_PROTOCOL_IX
NET_CONN_ERR_INVALID_ADDR_LEN
NET_CONN_ERR_ADDR_IN_USE
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

Positive number of bytes (queued to be) sent, if successful;

NET_SOCK_BSD_RTN_CODE_CONN_CLOSED/0, if the socket is closed;

NET_SOCK_BSD_ERR_TX/-1, otherwise.

Note that a positive return value does not mean that the message was successfully delivered

to the remote socket, just that it was sent or queued for sending.

BLOCKING VS NON-BLOCKING

The default setting for μC/TCP-IP is blocking. However, this setting can be changed at compile

time by setting the NET_SOCK_CFG_BLOCK_SEL (see section D-15-3 on page 761) to one of the

following values:

NET_SOCK_BLOCK_SEL_DFLT sets blocking mode to the default, or blocking, unless modified

by run-time options.

NET_SOCK_BLOCK_SEL_BLOCK sets the blocking mode to blocking. This means that a socket

transmit function will wait forever, until it can send (or queue to send) at least one byte of

data or the socket connection is closed, unless a timeout is specified by

NetSock_CfgTimeoutTxQ_Set() [See section C-13-30 on page 630].
668

NET_SOCK_BLOCK_SEL_NO_BLOCK sets the blocking mode to non-blocking. This means that

a socket transmit function will not wait but immediately return as much data sent (or

queued to be sent), socket connection closed, or an error indicating no available memory to

send (or queue) data or other possible socket faults. The application will have to “poll” the

socket on a regular basis to transmit data.

The current version of μC/TCP-IP selects blocking or non-blocking at compile time for all

sockets. A future version may allow the selection of blocking or non-blocking at the

individual socket level. However, each socket transmit call can pass the

NET_SOCK_FLAG_TX_NO_BLOCK/MSG_DONTWAIT flag to disable blocking on that call.

Despite these socket-level blocking options, the current version of μC/TCP-IP possibly

blocks at the device driver when waiting for the availability of a device’s transmitter.

REQUIRED CONFIGURATION

NetSock_TxData()/NetSock_TxDataTo() is available only if:

■ NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1 on

page 755), and/or

■ NET_UDP_CFG_APP_API_SEL is configured for sockets (see section D-13-1 on page 756).

In addition, send()/sendto() is available only if NET_BSD_CFG_API_EN is enabled (see

section D-17-1 on page 767).

NOTES / WARNINGS

TCP sockets typically use NetSock_TxData()/send(), whereas UDP sockets typically use

NetSock_TxDataTo()/sendto().

For datagram sockets (i.e., UDP), each receive returns the data from exactly one send but

datagram order and delivery is not guaranteed. Also, if the receive memory buffer is not

large enough to receive an entire datagram, the datagram’s data is truncated to the size of

the memory buffer and the remaining data is discarded.
669

For datagram sockets (i.e., UDP), all data is sent atomically – i.e., each call to send data

must be sent in a single, complete datagram. Since μC/TCP-IP does not currently support IP

transmit fragmentation, if a datagram socket attempts to send data greater than a single

datagram, then the socket send is aborted and no socket data is sent.

Only some transmit flag options are implemented. If other flag options are requested, an

error is returned so that flag options are not silently ignored.
670

C-14 TCP FUNCTIONS

C-14-1 NetTCP_ConnCfgIdleTimeout()

Configure TCP connection’s idle timeout.

FILES

net_tcp.h/net_tcp.c

PROTOTYPE

ARGUMENTS

conn_id_tcp TCP connection handle ID to configure connection handle timeout.

timeout_sec Desired value for TCP connection idle timeout (in seconds).

perr Pointer to variable that will receive the return error code from this function:

NET_TCP_ERR_NONE
NET_TCP_ERR_INVALID_ARG
NET_TCP_ERR_INVALID_CONN
NET_TCP_ERR_CONN_NOT_USED
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, TCP connection’s idle timeout successfully configured.

DEF_FAIL, otherwise.

CPU_BOOLEAN NetTCP_ConnCfgIdleTimeout(NET_TCP_CONN_ID conn_id_tcp,
 NET_TCP_TIMEOUT_SEC timeout_sec,
 NET_ERR *perr);
671

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

Configured timeout does not reschedule any current idle timeout in progress but becomes

effective the next time a TCP connection sets its idle timeout.

The conn_id_tcp argument represents the TCP connection handle – not the socket handle.

The following code may be used to get the TCP connection handle and configure TCP

connection parameters (see also section C-13-38 “NetSock_GetConnTransportID()” on

page 644):

NetTCP_ConnCfgIdleTimeout() is called by application function(s) and must not be called

with the global network lock already acquired. It must block all other network protocol

tasks by pending on and acquiring the global network lock (see “net.h Note #3”). This is

required since an application's network protocol suite API function access is asynchronous

to other network protocol tasks.

NET_SOCK_ID sock_id;
NET_TCP_CONN_ID conn_id_tcp;
NET_ERR err;

sock_id = Application’s TCP socket ID; /* Get application’s TCP socket ID. */
 /* Get socket’s TCP connection ID. */
conn_id_tcp = (NET_TCP_CONN_ID)NetSock_GetConnTransportID(sock_id, &err);

if (err == NET_SOCK_ERR_NONE) {/* If NO errors, ... */
 /* ... configure TCP connection maximum re-transmit threshold. */
 NetTCP_ConnCfgIdleTimeout(conn_id_tcp, 240u, &err);
}

672

C-14-2 NetTCP_ConnCfgMaxSegSizeLocal()

Configure TCP connection’s local maximum segment size.

FILES

net_tcp.h/net_tcp.c

PROTOTYPE

ARGUMENTS

conn_id_tcp TCP connection handle ID to configure local maximum segment size.

max_seg_size Desired maximum segment size.

perr Pointer to variable that will receive the return error code from this function:

NET_TCP_ERR_NONE
NET_TCP_ERR_CONN_NOT_USED
NET_TCP_ERR_INVALID_CONN_STATE
NET_TCP_ERR_INVALID_CONN_OP
NET_TCP_ERR_INVALID_CONN_ARG
NET_TCP_ERR_INVALID_CONN
NET_TCP_ERR_CONN_NOT_USED
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, TCP connection’s local maximum segment size successfully configured, if no

errors.

DEF_FAIL, otherwise.

CPU_BOOLEAN NetTCP_ConnCfgMaxSegSizeLocal(NET_TCP_CONN_ID conn_id_tcp,
 NET_TCP_SEG_SIZE max_seg_size,
 NET_ERR *perr);
673

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

The conn_id_tcp argument represents the TCP connection handle — not the socket

handle. The following code may be used to get the TCP connection handle and configure

TCP connection parameters (see also section C-13-38 “NetSock_GetConnTransportID()” on

page 644):

NetTCP_ConnCfgMaxSegSizeLocal() is called by application function(s) and must not be

called with the global network lock already acquired. It must block all other network

protocol tasks by pending on and acquiring the global network lock (see “net.h Note #3”).

This is required since an application's network protocol suite API function access is

asynchronous to other network protocol tasks.

NET_SOCK_ID sock_id;
NET_TCP_CONN_ID conn_id_tcp;
NET_ERR err;

sock_id = Application’s TCP socket ID; /* Get application’s TCP socket ID. */
 /* Get socket’s TCP connection ID. */
conn_id_tcp = (NET_TCP_CONN_ID)NetSock_GetConnTransportID(sock_id, &err);

if (err == NET_SOCK_ERR_NONE) { /* If NO errors, ... */
 /* ... configure TCP connection local maximum segment size. */
 NetTCP_ConnCfgMaxSegSizeLocal(conn_id_tcp, 1360u);
}

674

C-14-3 NetTCP_ConnCfgReTxMaxTh()

Configure TCP connection’s maximum number of same segment retransmissions.

FILES

net_tcp.h/net_tcp.c

PROTOTYPE

ARGUMENTS

conn_id_tcp TCP connection handle ID to configure maximum number of same segment

retransmissions.

nbr_max_re_txDesired maximum number of same segment retransmissions.

perr Pointer to variable that will receive the return error code from this function:

NET_TCP_ERR_NONE
NET_TCP_ERR_INVALID_ARG
NET_TCP_ERR_INVALID_CONN
NET_TCP_ERR_CONN_NOT_USED
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, TCP connection’s maximum number of retransmissions successfully

configured, if no errors.

DEF_FAIL, otherwise.

CPU_BOOLEAN NetTCP_ConnCfgReTxMaxTh(NET_TCP_CONN_ID conn_id_tcp,
 NET_PKT_CTR nbr_max_re_tx,
 NET_ERR *perr);
675

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

The conn_id_tcp argument represents the TCP connection handle – not the socket handle.

The following code may be used to get the TCP connection handle and configure TCP

connection parameters (see also section C-13-38 “NetSock_GetConnTransportID()” on

page 644):

NetTCP_ConnCfgReTxMaxTh() is called by application function(s) and must not be called

with the global network lock already acquired. It must block all other network protocol

tasks by pending on and acquiring the global network lock (see “net.h Note #3”). This is

required since an application's network protocol suite API function access is asynchronous

to other network protocol tasks.

NET_SOCK_ID sock_id;
NET_TCP_CONN_ID conn_id_tcp;
NET_ERR err;

sock_id = Application’s TCP socket ID; /* Get application’s TCP socket ID. */
 /* Get socket’s TCP connection ID. */
conn_id_tcp = (NET_TCP_CONN_ID)NetSock_GetConnTransportID(sock_id, &err);

if (err == NET_SOCK_ERR_NONE) {/* If NO errors, ... */
 /* ... configure TCP connection maximum re-transmit threshold. */
 NetTCP_ConnCfgReTxMaxTh(conn_id_tcp, 4u, &err);
}

676

C-14-4 NetTCP_ConnCfgReTxMaxTimeout()

Configure TCP connection’s maximum retransmission timeout.

FILES

net_tcp.h/net_tcp.c

PROTOTYPE

ARGUMENTS

conn_id_tcp TCP connection handle ID to configure maximum retransmission timeout

value.

timeout_sec Desired value for TCP connection maximum retransmission timeout (in

seconds).

perr Pointer to variable that will receive the return error code from this function:

NET_TCP_ERR_NONE
NET_TCP_ERR_INVALID_ARG
NET_TCP_ERR_INVALID_CONN
NET_TCP_ERR_CONN_NOT_USED
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, TCP connection’s maximum retransmission timeout successfully configured, if

no errors.

DEF_FAIL, otherwise.

CPU_BOOLEAN NetTCP_ConnCfgReTxMaxTimeout(NET_TCP_CONN_ID conn_id_tcp,
 NET_TCP_TIMEOUT_SEC timeout_sec,
 NET_ERR *perr);
677

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

The conn_id_tcp argument represents the TCP connection handle — not the socket handle.

The following code may be used to get the TCP connection handle and configure TCP

connection parameters (see also section C-13-38 “NetSock_GetConnTransportID()” on

page 644):

NetTCP_ConnCfgReTxMaxTimeout() is called by application function(s) and must not be

called with the global network lock already acquired. It must block all other network

protocol tasks by pending on and acquiring the global network lock (see “net.h Note #3”).

This is required since an application's network protocol suite API function access is

asynchronous to other network protocol tasks.

NET_SOCK_ID sock_id;
NET_TCP_CONN_ID conn_id_tcp;
NET_ERR err;

sock_id = Application’s TCP socket ID; /* Get application’s TCP socket ID. */
 /* Get socket’s TCP connection ID. */
conn_id_tcp = (NET_TCP_CONN_ID)NetSock_GetConnTransportID(sock_id, &err);

if (err == NET_SOCK_ERR_NONE) { /* If NO errors, ... */
 /* ... configure TCP connection maximum re-transmit timeout. */
 NetTCP_ConnCfgReTxMaxTimeout(conn_id_tcp, 30u);
}

678

C-14-5 NetTCP_ConnCfgRxWinSize()

Configure TCP connection’s receive window size.

FILES

net_tcp.h/net_tcp.c

PROTOTYPE

ARGUMENTS

conn_id_tcp TCP connection handle ID to configure receive window size.

win_size Desired receive window size.

perr Pointer to variable that will receive the return error code from this function:

NET_TCP_ERR_NONE
NET_TCP_ERR_CONN_NOT_USED
NET_TCP_ERR_INVALID_CONN_STATE
NET_TCP_ERR_INVALID_CONN_OP
NET_TCP_ERR_INVALID_ARG
NET_TCP_ERR_INVALID_CONN
NET_TCP_ERR_CONN_NOT_USED
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, TCP connection’s receive window size successfully configured, if no errors.

DEF_FAIL, otherwise.

CPU_BOOLEAN NetTCP_ConnCfgRxWinSize(NET_TCP_CONN_ID conn_id_tcp,
 NET_TCP_WIN_SIZE win_size,
 NET_ERR *perr);
679

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

The conn_id_tcp argument represents the TCP connection handle – not the socket handle.

The following code may be used to get the TCP connection handle and configure TCP

connection parameters (see also section C-13-38 “NetSock_GetConnTransportID()” on

page 644):

NetTCP_ConnCfgRxWindowsSize() is called by application function(s) and must not be

called with the global network lock already acquired. It must block all other network

protocol tasks by pending on and acquiring the global network lock (see “net.h Note #3”).

This is required since an application's network protocol suite API function access is

asynchronous to other network protocol tasks.

NET_SOCK_ID sock_id;
NET_TCP_CONN_ID conn_id_tcp;
NET_ERR err;

sock_id = Application’s TCP socket ID; /* Get application’s TCP socket ID. */
 /* Get socket’s TCP connection ID. */
conn_id_tcp = (NET_TCP_CONN_ID)NetSock_GetConnTransportID(sock_id, &err);

if (err == NET_SOCK_ERR_NONE) { /* If NO errors, ... */
 /* ... configure TCP connection receive window size. */
 NetTCP_ConnCfgRxWinSize(conn_id_tcp, (4u * 1460u));
}

680

C-14-6 NetTCP_ConnCfgTxWinSize()

Configure TCP connection’s transmit window size.

FILES

net_tcp.h/net_tcp.c

PROTOTYPE

ARGUMENTS

conn_id_tcp TCP connection handle ID to configure transmit window size.

win_size Desired transmit window size.

perr Pointer to variable that will receive the return error code from this function:

NET_TCP_ERR_NONE
NET_TCP_ERR_CONN_NOT_USED
NET_TCP_ERR_INVALID_CONN_STATE
NET_TCP_ERR_INVALID_CONN_OP
NET_TCP_ERR_INVALID_ARG
NET_TCP_ERR_INVALID_CONN
NET_TCP_ERR_CONN_NOT_USED
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, TCP connection’s transmit window size successfully configured, if no errors.

DEF_FAIL, otherwise.

CPU_BOOLEAN NetTCP_ConnCfgTxWinSize(NET_TCP_CONN_ID conn_id_tcp,
 NET_TCP_WIN_SIZE win_size,
 NET_ERR *perr);
681

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

The conn_id_tcp argument represents the TCP connection handle – not the socket handle.

The following code may be used to get the TCP connection handle and configure TCP

connection parameters (see also section C-13-38 “NetSock_GetConnTransportID()” on

page 644):

NetTCP_ConnCfgTxWindowsSize() is called by application function(s) and must not be

called with the global network lock already acquired. It must block all other network

protocol tasks by pending on and acquiring the global network lock (see “net.h Note #3”).

This is required since an application's network protocol suite API function access is

asynchronous to other network protocol tasks.

NET_SOCK_ID sock_id;
NET_TCP_CONN_ID conn_id_tcp;
NET_ERR err;

sock_id = Application’s TCP socket ID; /* Get application’s TCP socket ID. */
 /* Get socket’s TCP connection ID. */
conn_id_tcp = (NET_TCP_CONN_ID)NetSock_GetConnTransportID(sock_id, &err);

if (err == NET_SOCK_ERR_NONE) { /* If NO errors, ... */
 /* ... configure TCP connection receive window size. */
 NetTCP_ConnCfgTxWinSize(conn_id_tcp, (4u * 1460u));
}

682

C-14-7 NetTCP_ConnCfgTxAckImmedRxdPushEn()

Configure TCP connection’s transmit immediate acknowledgement for received and pushed

TCP segments.

FILES

net_tcp.h/net_tcp.c

PROTOTYPE

ARGUMENTS

conn_id_tcp TCP connection handle ID to configure transmit immediate

acknowledgement for received and pushed TCP segments.

tx_immed_ack_en Desired value for TCP connection transmit immediate

acknowledgement for received and pushed TCP segments:

DEF_ENABLED TCP connection acknowledgements

immediately transmitted for any pushed

TCP segments received.

DEF_DISABLED TCP connection acknowledgements not

immediately transmitted for any pushed

TCP segments received.

perr Pointer to variable that will receive the return error code from this function:

NET_TCP_ERR_NONE
NET_TCP_ERR_INVALID_ARG
NET_TCP_ERR_INVALID_CONN
NET_TCP_ERR_CONN_NOT_USED
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

CPU_BOOLEAN NetTCP_ConnCfgTxAckImmedRxdPushEn(NET_TCP_CONN_ID conn_id_tcp,
 CPU_BOOLEAN tx_immed_ack_en,
 NET_ERR *perr);
683

RETURNED VALUE

DEF_OK, TCP connection’s transmit immediate acknowledgement for received and

pushed TCP segments successfully configured, if no errors.

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

The conn_id_tcp argument represents the TCP connection handle – not the socket handle.

The following code may be used to get the TCP connection handle and configure TCP

connection parameters (see also section C-13-38 on page 644):

NetTCP_ConnCfgTxAckImmedRxdPushEn() is called by application function(s) and must not

be called with the global network lock already acquired. It must block all other network

protocol tasks by pending on and acquiring the global network lock (see “net.h Note #3”).

This is required since an application's network protocol suite API function access is

asynchronous to other network protocol tasks.

NET_SOCK_ID sock_id;
NET_TCP_CONN_ID conn_id_tcp;
NET_ERR err;

sock_id = Application’s TCP socket ID; /* Get application’s TCP socket ID. */
 /* Get socket’s TCP connection ID. */
conn_id_tcp = (NET_TCP_CONN_ID)NetSock_GetConnTransportID(sock_id, &err);

if (err == NET_SOCK_ERR_NONE) {
 /* If NO errors, ... */
 /* ... configure TCP connection transmit immediate ACK for received PUSH. */
 NetTCP_ConnCfgTxAckImmedRxdPushEn(conn_id_tcp, DEF_NO);
}

684

C-14-8 NetTCP_ConnCfgTxNagleEn()

Configure TCP connection's transmit Nagle algorithm enable.

FILES

net_tcp.h/net_tcp.c

PROTOTYPE

ARGUMENTS

conn_id_tcp Handle identifier of TCP connection to configure transmit Nagle enable.

nagle_en Desired value for TCP connection transmit Nagle enable :

DEF_ENABLED TCP connections delay transmitting next

data segment(s) until all unacknowledged

data is acknowledged or an MSS-sized

segment can be transmitted.

DEF_DISABLED TCP connections transmit all data

segment(s) when permitted by local &

remote hosts' congestion controls.

perr Pointer to variable that will receive the return error code from this function:

NET_TCP_ERR_NONE
NET_TCP_ERR_INVALID_ARG
NET_TCP_ERR_INVALID_CONN
NET_TCP_ERR_CONN_NOT_USED
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

CPU_BOOLEAN NetTCP_ConnCfgTxNagleEn(NET_TCP_CONN_ID conn_id_tcp,
 CPU_BOOLEAN nagle_en,
 NET_ERR *perr);
685

RETURNED VALUE

DEF_OK, TCP connection’s transmit Nagle enable successfully configured;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

The conn_id_tcp argument represents the TCP connection handle – not the socket handle.

The following code may be used to get the TCP connection handle and configure TCP

connection parameters (see also section C-13-38 “NetSock_GetConnTransportID()” on

page 644):

NetTCP_ConnCfgTxNagleEn() is called by application function(s) and must not be called

with the global network lock already acquired. It must block all other network protocol

tasks by pending on and acquiring the global network lock (see “net.h Note #3”). This is

required since an application's network protocol suite API function access is asynchronous

to other network protocol tasks.

NET_SOCK_ID sock_id;
NET_TCP_CONN_ID conn_id_tcp;
NET_ERR err;

sock_id = Application’s TCP socket ID; /* Get application’s TCP socket ID. */
 /* Get socket’s TCP connection ID. */
conn_id_tcp = (NET_TCP_CONN_ID)NetSock_GetConnTransportID(sock_id, &err);

if (err == NET_SOCK_ERR_NONE) { /* If NO errors, ... */
 /* ... configure TCP connection Nagle algorithm. */
 NetTCP_ConnCfgTxNagleEn(conn_id_tcp, DEF_DISABLED, &err);
}

686

C-14-9 NetTCP_ConnCfgTxKeepAliveEn()

Configure TCP connection's transmit keep-alive enable.

FILES

net_tcp.h/net_tcp.c

PROTOTYPE

ARGUMENTS

conn_id_tcp Handle identifier of TCP connection to configure transmit keep-

alive.

keep_alive_en Desired value for TCP connection transmit keep-alive enable:

DEF_ENABLED TCP connections transmit periodic keep-

alive segments if no data segments have

been received within the keep-alive

timeout.

DEF_DISABLED TCP connections transmit a reset segment

and close if no data segments have been

received within the keep-alive timeout.

perr Pointer to variable that will receive the return error code from this function:

NET_TCP_ERR_NONE
NET_TCP_ERR_INVALID_ARG
NET_TCP_ERR_INVALID_CONN
NET_TCP_ERR_CONN_NOT_USED
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

CPU_BOOLEAN NetTCP_ConnCfgTxKeepAliveEn(NET_TCP_CONN_ID conn_id_tcp,
 CPU_BOOLEAN keep_alive_en,
 NET_ERR *perr);
687

RETURNED VALUE

DEF_OK, TCP connection’s transmit keep-alive enable successfully configured;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

The conn_id_tcp argument represents the TCP connection handle – not the socket handle.

The following code may be used to get the TCP connection handle and configure TCP

connection parameters (see also section C-13-38 “NetSock_GetConnTransportID()” on

page 644):

NetTCP_ConnCfgTxKeepAliveEn() is called by application function(s) and must not be

called with the global network lock already acquired. It must block all other network

protocol tasks by pending on and acquiring the global network lock (see “net.h Note #3”).

This is required since an application's network protocol suite API function access is

asynchronous to other network protocol tasks.

NET_SOCK_ID sock_id;
NET_TCP_CONN_ID conn_id_tcp;
NET_ERR err;

sock_id = Application’s TCP socket ID; /* Get application’s TCP socket ID. */
 /* Get socket’s TCP connection ID. */
conn_id_tcp = (NET_TCP_CONN_ID)NetSock_GetConnTransportID(sock_id, &err);

if (err == NET_SOCK_ERR_NONE) { /* If NO errors, ... */
 /* ... configure TCP connection Nagle algorithm. */
 NetTCP_ConnCfgTxKeepAliveEn(conn_id_tcp, DEF_ENABLED, &err);
}

688

C-14-10 NetTCP_ConnCfgTxKeepAliveTh()

Configure TCP connection's maximum number of consecutive keep-alives to transmit.

FILES

net_tcp.h/net_tcp.c

PROTOTYPE

ARGUMENTS

conn_id_tcp Handle identifier of TCP connection to configure transmit keep-

alive threshold.

keep_alive_en Desired maximum number of consecutive keep-alives to

transmit.

perr Pointer to variable that will receive the return error code from this function:

NET_TCP_ERR_NONE
NET_TCP_ERR_INVALID_ARG
NET_TCP_ERR_INVALID_CONN
NET_TCP_ERR_CONN_NOT_USED
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, TCP connection’s transmit keep-alive enable successfully configured;

DEF_FAIL, otherwise.

CPU_BOOLEAN NetTCP_ConnCfgTxKeepAliveTh(NET_TCP_CONN_ID conn_id_tcp,
 NET_PKT_CTR nbr_max_keep_alive,
 NET_ERR *perr);
689

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

The conn_id_tcp argument represents the TCP connection handle – not the socket handle.

The following code may be used to get the TCP connection handle and configure TCP

connection parameters (see also section C-13-38 “NetSock_GetConnTransportID()” on

page 644):

NetTCP_ConnCfgTxKeepAliveTh() is called by application function(s) and must not be

called with the global network lock already acquired. It must block all other network

protocol tasks by pending on and acquiring the global network lock (see “net.h Note #3”).

This is required since an application's network protocol suite API function access is

asynchronous to other network protocol tasks.

NET_SOCK_ID sock_id;
NET_TCP_CONN_ID conn_id_tcp;
NET_ERR err;

sock_id = Application’s TCP socket ID; /* Get application’s TCP socket ID. */
 /* Get socket’s TCP connection ID. */
conn_id_tcp = (NET_TCP_CONN_ID)NetSock_GetConnTransportID(sock_id, &err);

if (err == NET_SOCK_ERR_NONE) { /* If NO errors, ... */
 /* ... configure TCP connection Nagle algorithm. */
 NetTCP_ConnCfgTxKeepAliveTh(conn_id_tcp, 15u, &err);
}

690

C-14-11 NetTCP_ConnCfgTxKeepAliveRetryTimeout()

Configure TCP connection's transmit keep-alive retry timeout.

FILES

net_tcp.h/net_tcp.c

PROTOTYPE

ARGUMENTS

conn_id_tcp Handle identifier of TCP connection to configure transmit keep-

alive retry timeout.

timeout_sec Desired value for TCP connection transmit keep-alive retry

timeout (in seconds).

perr Pointer to variable that will receive the return error code from this function:

NET_TCP_ERR_NONE
NET_TCP_ERR_INVALID_ARG
NET_TCP_ERR_INVALID_CONN
NET_TCP_ERR_CONN_NOT_USED
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, TCP connection’s transmit keep-alive retry timeout successfully configured;

DEF_FAIL, otherwise.

CPU_BOOLEAN NetTCP_ConnCfgTxKeepAliveRetryTimeout(NET_TCP_CONN_ID conn_id_tcp,
 NET_TCP_TIMEOUT_SEC timeout_sec,
 NET_ERR *perr);
691

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

The conn_id_tcp argument represents the TCP connection handle – not the socket handle.

The following code may be used to get the TCP connection handle and configure TCP

connection parameters (see also section C-13-38 “NetSock_GetConnTransportID()” on

page 644):

NetTCP_ConnCfgTxKeepAliveRetryTimeout() is called by application function(s) and

must not be called with the global network lock already acquired. It must block all other

network protocol tasks by pending on and acquiring the global network lock (see “net.h
Note #3”). This is required since an application's network protocol suite API function access

is asynchronous to other network protocol tasks.

NET_SOCK_ID sock_id;
NET_TCP_CONN_ID conn_id_tcp;
NET_ERR err;

sock_id = Application’s TCP socket ID; /* Get application’s TCP socket ID. */
 /* Get socket’s TCP connection ID. */
conn_id_tcp = (NET_TCP_CONN_ID)NetSock_GetConnTransportID(sock_id, &err);

if (err == NET_SOCK_ERR_NONE) { /* If NO errors, ... */
 /* ... configure TCP connection Nagle algorithm. */
 NetTCP_ConnCfgTxKeepAliveRetryTimeout(conn_id_tcp, 20u, &err);
}

692

C-14-12 NetTCP_ConnCfgTxAckDlyTimeout()

Configure TCP connection's transmit acknowledgement delay timeout.

FILES

net_tcp.h/net_tcp.c

PROTOTYPE

ARGUMENTS

conn_id_tcp Handle identifier of TCP connection to configure transmit

acknowledgement delay timeout.

timeout_sec Desired value for TCP connection transmit acknowledgement

delay timeout (in milliseconds).

perr Pointer to variable that will receive the return error code from this function:

NET_TCP_ERR_NONE
NET_TCP_ERR_INVALID_ARG
NET_TCP_ERR_INVALID_CONN
NET_TCP_ERR_CONN_NOT_USED
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, TCP connection’s transmit acknowledgement delay timeout successfully

configured;

DEF_FAIL, otherwise.

CPU_BOOLEAN NetTCP_ConnCfgTxAckDlyTimeout(NET_TCP_CONN_ID conn_id_tcp,
 NET_TCP_TIMEOUT_MS timeout_ms,
 NET_ERR *perr);
693

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

The conn_id_tcp argument represents the TCP connection handle – not the socket handle.

The following code may be used to get the TCP connection handle and configure TCP

connection parameters (see also section C-13-38 “NetSock_GetConnTransportID()” on

page 644):

NetTCP_ConnCfgTxAckDlyTimeout() is called by application function(s) and must not be

called with the global network lock already acquired. It must block all other network

protocol tasks by pending on and acquiring the global network lock (see “net.h Note #3”).

This is required since an application's network protocol suite API function access is

asynchronous to other network protocol tasks.

NET_SOCK_ID sock_id;
NET_TCP_CONN_ID conn_id_tcp;
NET_ERR err;

sock_id = Application’s TCP socket ID; /* Get application’s TCP socket ID. */
 /* Get socket’s TCP connection ID. */
conn_id_tcp = (NET_TCP_CONN_ID)NetSock_GetConnTransportID(sock_id, &err);

if (err == NET_SOCK_ERR_NONE) { /* If NO errors, ... */
 /* ... configure TCP connection Nagle algorithm. */
 NetTCP_ConnCfgTxAckDlyTimeout(conn_id_tcp, 20u, &err);
}

694

C-14-13 NetTCP_ConnCfgMSL_Timeout()

Configure TCP connection's maximum segment lifetime (MSL) timeout.

FILES

net_tcp.h/net_tcp.c

PROTOTYPE

ARGUMENTS

conn_id_tcp Handle identifier of TCP connection to configure transmit

acknowledgement delay timeout.

timeout_sec Desired value for TCP connection MSL timeout (in seconds).

perr Pointer to variable that will receive the return error code from this function:

NET_TCP_ERR_NONE
NET_TCP_ERR_INVALID_ARG
NET_TCP_ERR_INVALID_CONN
NET_TCP_ERR_CONN_NOT_USED
NET_ERR_INIT_INCOMPLETE
NET_OS_ERR_LOCK

RETURNED VALUE

DEF_OK, TCP connection’s MSL timeout successfully configured;

DEF_FAIL, otherwise.

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

CPU_BOOLEAN NetTCP_ConnCfgMSL_Timeout(NET_TCP_CONN_ID conn_id_tcp,
 NET_TCP_TIMEOUT_SEC timeout_sec,
 NET_ERR *perr);
695

NOTES / WARNINGS

The conn_id_tcp argument represents the TCP connection handle – not the socket handle.

The following code may be used to get the TCP connection handle and configure TCP

connection parameters (see also section C-13-38 “NetSock_GetConnTransportID()” on

page 644):

NetTCP_ConnCfgMSL_Timeout() is called by application function(s) and must not be called

with the global network lock already acquired. It must block all other network protocol

tasks by pending on and acquiring the global network lock (see “net.h Note #3”). This is

required since an application's network protocol suite API function access is asynchronous

to other network protocol tasks.

NET_SOCK_ID sock_id;
NET_TCP_CONN_ID conn_id_tcp;
NET_ERR err;

sock_id = Application’s TCP socket ID; /* Get application’s TCP socket ID. */
 /* Get socket’s TCP connection ID. */
conn_id_tcp = (NET_TCP_CONN_ID)NetSock_GetConnTransportID(sock_id, &err);

if (err == NET_SOCK_ERR_NONE) { /* If NO errors, ... */
 /* ... configure TCP connection Nagle algorithm. */
 NetTCP_ConnCfgMSL_Timeout(conn_id_tcp, 20u, &err);
}

696

C-14-14 NetTCP_ConnPoolStatGet()

Get TCP connections’ statistics pool.

FILES

net_tcp.h/net_tcp.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

TCP connections’ statistics pool, if no errors.

NULL statistics pool, otherwise.

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

None.

NET_STAT_POOL NetTCP_ConnPoolStatGet(void);
697

C-14-15 NetTCP_ConnPoolStatResetMaxUsed()

Reset TCP connections’ statistics pool’s maximum number of entries used.

FILES

net_tcp.h/net_tcp.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

None.

void NetTCP_ConnPoolStatResetMaxUsed(void);
698

C-14-16 NetTCP_InitTxSeqNbr()

Application-defined function to initialize TCP’s Initial Transmit Sequence Number Counter.

FILES

net_tcp.h/net_bsp.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

Available only if NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section D-12-1

on page 755).

NOTES / WARNINGS

If TCP module is included, the application is required to initialize TCP’s Initial Transmit

Sequence Number Counter. Possible initialization methods include:

■ Time-based initialization is one preferred method since it more appropriately provides a

pseudo-random initial sequence number.

■ Hardware-generated random number initialization is not a preferred method since it

tends to produce a discrete set of pseudo-random initial sequence numbers – often the

same initial sequence number.

■ Hard-coded initial sequence number is not a preferred method since it is not random.

void NetTCP_InitTxSeqNbr(void);
699

C-15 NETWORK TIMER FUNCTIONS

C-15-1 NetTmr_PoolStatGet()

Get Network Timers’ statistics pool.

FILES

net_tmr.h/net_tmr.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

Network Timers’ statistics pool, if no errors.

NULL statistics pool, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

NET_STAT_POOL NetTmr_PoolStatGet(void);
700

C-15-2 NetTmr_PoolStatResetMaxUsed()

Reset Network Timers’ statistics pool’s maximum number of entries used.

FILES

net_tmr.h/net_tmr.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

None.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

None.

void NetTmr_PoolStatResetMaxUsed(void);
701

C-16 UDP FUNCTIONS

C-16-1 NetUDP_RxAppData()

Copy up to a specified number of bytes from received UDP packet buffer(s) into an

application memory buffer.

FILES

net_udp.h/net_udp.c

PROTOTYPE

ARGUMENTS

pbuf Pointer to network buffer that received UDP datagram.

pdata_buf Pointer to application buffer to receive application data.

data_buf_len Size of application receive buffer (in bytes).

flags Flag to select receive options; bit-field flags logically OR’d:

NET_UDP_FLAG_NONE No UDP receive flags selected.

NET_UDP_FLAG_RX_DATA_PEEK Receive UDP application data without

consuming the data; i.e., do not free any

UDP receive packet buffer(s).

pip_opts_buf Pointer to buffer to receive possible IP options, if no errors.

CPU_INT16U NetUDP_RxAppData(NET_BUF *pbuf,
 void *pdata_buf,
 CPU_INT16U data_buf_len,
 CPU_INT16U flags,
 void *pip_opts_buf,
 CPU_INT08U ip_opts_buf_len,
 CPU_INT08U *pip_opts_len,
 NET_ERR *perr);
702

ip_opts_buf_len Size of IP options receive buffer (in bytes).

pip_opts_len Pointer to variable that will receive the return size of any

received IP options, if no errors.

perr Pointer to variable that will receive the return error code from this function:

NET_UDP_ERR_NONE
NET_UDP_ERR_NULL_PTR
NET_UDP_ERR_INVALID_DATA_SIZE
NET_UDP_ERR_INVALID_FLAG
NET_ERR_INIT_INCOMPLETE
NET_ERR_RX

RETURNED VALUE

Positive number of bytes received, if successful;

0, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

NetUDP_RxAppData() must be called with the global network lock already acquired.

Expected to be called from application’s custom NetUDP_RxAppDataHandler() (see section

C-16-2 on page 704).

Each UDP receive returns the data from exactly one send but datagram order and delivery is

not guaranteed. Also, if the application memory buffer is not large enough to receive an

entire datagram, the datagram’s data is truncated to the size of the memory buffer and the

remaining data is discarded. Therefore, the application memory buffer should be large

enough to receive either the maximum UDP datagram size (i.e., 65,507 bytes) or the

application’s expected maximum UDP datagram size.

Only some UDP receive flag options are implemented. If other flag options are requested,

an error is returned so that flag options are not silently ignored.
703

C-16-2 NetUDP_RxAppDataHandler()

Application-defined handler to demultiplex and receive UDP packet(s) to application

without sockets.

FILES

net_udp.h/net_bsp.c

PROTOTYPE

ARGUMENTS

pbuf Pointer to network buffer that received UDP datagram.

src_addr Receive UDP packet’s source IP address.

src_port Receive UDP packet’s source UDP port.

dest_addr Receive UDP packet’s destination IP address.

dest_port Receive UDP packet’s destination UDP port.

perr Pointer to variable that will receive the return error code from this function:

NET_APP_ERR_NONE
NET_ERR_RX_DEST
NET_ERR_RX

RETURNED VALUE

None.

void NetUDP_RxAppDataHandler(NET_BUF *pbuf,
 NET_IP_ADDR src_addr,
 NET_UDP_PORT_NBR src_port,
 NET_IP_ADDR dest_addr,
 NET_UDP_PORT_NBR dest_port,
 NET_ERR *perr);
704

REQUIRED CONFIGURATION

Available only if NET_UDP_CFG_APP_API_SEL is configured for application demultiplexing

(see section D-13-1 on page 756).

NOTES / WARNINGS

NetUDP_RxAppDataHandler() already called with the global network lock acquired and

expects to call NetUDP_RxAppData() to copy data from received UDP packets (see section

C-16-1 on page 702).

If NetUDP_RxAppDataHandler() services the application data immediately within the

handler function, it should do so as quickly as possible since the network’s global lock

remains acquired for the full duration. Thus, no other network receives or transmits can

occur while NetUDP_RxAppDataHandler() executes.

NetUDP_RxAppDataHandler() may delay servicing the application data but must then:

■ Acquire the network’s global lock prior to calling NetUDP_RxAppData()

■ Release the network’s global lock after calling NetUDP_RxAppData()

If NetUDP_RxAppDataHandler() successfully demultiplexes the UDP packets, it should

eventually call NetUDP_RxAppData() to deframe the UDP packet application data. If

NetUDP_RxAppData() successfully deframes the UDP packet application data,

NetUDP_RxAppDataHandler() must not call NetUDP_RxPktFree() to free the UDP packet’s

network buffer(s), since NetUDP_RxAppData() already frees the network buffer(s). And if

the UDP packets were successfully demultiplexed and deframed,

NetUDP_RxAppDataHandler() must return NET_APP_ERR_NONE.

However, if NetUDP_RxAppDataHandler() does not successfully demultiplex the UDP

packets and therefore does not call NetUDP_RxAppData(), then

NetUDP_RxAppDataHandler() should return NET_ERR_RX_DEST but must not free or

discard the UDP packet network buffer(s).

But if NetUDP_RxAppDataHandler() or NetUDP_RxAppData() fails for any other reason,

NetUDP_RxAppDataHandler() should call NetUDP_RxPktDiscard() to discard the UDP

packet’s network buffer(s) and should return NET_ERR_RX.
705

C-16-3 NetUDP_TxAppData()

Copy bytes from an application memory buffer to send via UDP packet(s).

FILES

net_udp.h/net_udp.c

PROTOTYPE

ARGUMENTS

p_data Pointer to application data.

data_len Length of application data (in bytes).

src_addr Source IP address.

src_port Source UDP port.

dest_addr Destination IP address.

dest_port Destination UDP port.

TOS Specific TOS to transmit UDP/IP packet.

CPU_INT16U
NetUDP_TxAppData(void *p_data,
 CPU_INT16U data_len,
 NET_IP_ADDR src_addr,
 NET_UDP_PORT_NBR src_port,
 NET_IP_ADDR dest_addr,
 NET_UDP_PORT_NBR dest_port,
 NET_IP_TOS TOS,
 NET_IP_TTL TTL,
 CPU_INT16U flags_udp,
 CPU_INT16U flags_ip,
 void *popts_ip,
 NET_ERR *perr);
706

TTL Specific TTL to transmit UDP/IP packet:

flags_udp Flags to select UDP transmit options; bit-field flags logically OR’d:

NET_UDP_FLAG_NONE No UDP transmit flags selected.

NET_UDP_FLAG_TX_CHK_SUM_DIS Disable UDP transmit check-sums.

NET_UDP_FLAG_TX_BLOCK Transmit UDP application data with

blocking, if flag set; without blocking, if

flag clear.

flags_ip Flags to select IP transmit options; bit-field flags logically OR’d:

NET_IP_FLAG_NONE No IP transmit flags selected.

NET_IP_FLAG_TX_DONT_FRAG Set IP ‘Don’t Frag’ flag.

popts_ip Pointer to one or more IP options configuration data structures:

NULL No IP transmit options configuration.

NET_IP_OPT_CFG_ROUTE_TS Route and/or Internet Timestamp options

configuration.

NET_IP_OPT_CFG_SECURITY Security options configuration.

perr Pointer to variable that will receive the return error code from this function:

NET_UDP_ERR_NONE
NET_UDP_ERR_NULL_PTR
NET_UDP_ERR_INVALID_DATA_SIZE
NET_UDP_ERR_INVALID_LEN_DATA
NET_UDP_ERR_INVALID_PORT_NBR
NET_UDP_ERR_INVALID_FLAG
NET_BUF_ERR_NULL_PTR
NET_BUF_ERR_NONE_AVAIL

NET_IP_TTL_MIN 1 minimum TTL transmit value

NET_IP_TTL_MAX 255 maximum TTL transmit value

NET_IP_TTL_DFLT default TTL transmit value

NET_IP_TTL_NONE 0 replace with default TTL
707

NET_BUF_ERR_INVALID_TYPE
NET_BUF_ERR_INVALID_SIZE
NET_BUF_ERR_INVALID_IX
NET_BUF_ERR_INVALID_LEN
NET_UTIL_ERR_NULL_PTR
NET_UTIL_ERR_NULL_SIZE
NET_UTIL_ERR_INVALID_PROTOCOL
NET_ERR_TX
NET_ERR_INIT_INCOMPLETE
NET_ERR_INVALID_PROTOCOL
NET_OS_ERR_LOCK

RETURNED VALUE

Positive number of bytes sent, if successful;

0, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

Each UDP datagram is sent atomically – i.e., each call to send data must be sent in a single,

complete datagram. Since μC/TCP-IP does not currently support IP transmit fragmentation,

if the application attempts to send data greater than a single UDP datagram, then the send is

aborted and no data is sent.

Only some UDP transmit flag options are implemented. If other flag options are requested,

an error is returned so that flag options are not silently ignored.
708

C-17 GENERAL NETWORK UTILITY FUNCTIONS

C-17-1 NET_UTIL_HOST_TO_NET_16()

Convert 16-bit integer values from CPU host-order to network-order.

FILES

net_util.h

PROTOTYPE

ARGUMENTS

val 16-bit integer data value to convert.

RETURNED VALUE

16-bit integer value in network-order.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

For microprocessors that require data access to be aligned to appropriate word boundaries,

val and any variable to receive the returned 16-bit integer must start on appropriately-

aligned CPU addresses. This means that all 16-bit words must start on addresses that are

multiples of 2 bytes.

NET_UTIL_HOST_TO_NET_16(val);
709

C-17-2 NET_UTIL_HOST_TO_NET_32()

Convert 32-bit integer values from CPU host-order to network-order.

FILES

net_util.h

PROTOTYPE

ARGUMENTS

val 32-bit integer data value to convert.

RETURNED VALUE

32-bit integer value in network-order.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

For microprocessors that require data access to be aligned to appropriate word boundaries,

val and any variable to receive the returned 32-bit integer must start on appropriately-

aligned CPU addresses. This means that all 32-bit words must start on addresses that are

multiples of 4 bytes.

NET_UTIL_HOST_TO_NET_32(val);
710

C-17-3 NET_UTIL_NET_TO_HOST_16()

Convert 16-bit integer values from network-order to CPU host- order.

FILES

net_util.h

PROTOTYPE

ARGUMENTS

val 16-bit integer data value to convert.

RETURNED VALUE

16-bit integer value in CPU host-order.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

For microprocessors that require data access to be aligned to appropriate word boundaries,

val and any variable to receive the returned 16-bit integer must start on appropriately-

aligned CPU addresses. This means that all 16-bit words must start on addresses that are

multiples of 2 bytes.

NET_UTIL_NET_TO_HOST_16(val);
711

C-17-4 NET_UTIL_NET_TO_HOST_32()

Convert 32-bit integer values from network-order to CPU host- order.

FILES

net_util.h

PROTOTYPE

ARGUMENTS

val 32-bit integer data value to convert.

RETURNED VALUE

32-bit integer value in CPU host-order.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

For microprocessors that require data access to be aligned to appropriate word boundaries,

val and any variable to receive the returned 32-bit integer must start on appropriately-

aligned CPU addresses. This means that all 32-bit words must start on addresses that are

multiples of 4 bytes.

NET_UTIL_NET_TO_HOST_32(val);
712

C-17-5 NetUtil_TS_Get()

Application-defined function to get the current Internet Timestamp.

FILES

net_util.h/net_bsp.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

Current Internet Timestamp, if available;

NET_TS_NONE, otherwise.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

RFC #791, Section 3.1 ‘Options: Internet Timestamp’ states that “the [Internet] Timestamp is a

right-justified, 32-bit timestamp in milliseconds since midnight UT [Universal Time]”.

The application is responsible for providing a real-time clock with correct time-zone

configuration to implement the Internet Timestamp, if possible. In order to implement this

feature, the target hardware must usually include a real-time clock with the correct time

zone configuration. However, NetUtil_TS_Get() is not absolutely required and may return

NET_TS_NONE if real-time clock hardware is not available.

NET_TS NetUtil_TS_Get (void);
713

C-17-6 NetUtil_TS_Get_ms()

Application-defined function to get the current millisecond timestamp.

FILES

net_util.h/net_bsp.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

Current millisecond timestamp.

REQUIRED CONFIGURATION

None.

NOTES / WARNINGS

The application is responsible for providing a millisecond timestamp clock with adequate

resolution and range to satisfy the minimum/maximum TCP RTO values (see ‘net_bsp.c

NetUtil_TS_Get_ms() Note #1a’).

μC/TCP-IP includes μC/OS-II and μC/OS-III implementations which use their OS tick

counters as the source for the millisecond timestamp. These implementations can be found

in the following directories:

\Micrium\Software\uC-TCPIP-V2\BSP\Template\OS\uCOS-II

\Micrium\Software\uC-TCPIP-V2\BSP\Template\OS\uCOS-III

NET_TS_MS NetUtil_TS_Get_ms (void);
714

C-18 BSD FUNCTIONS

C-18-1 accept() (TCP)

Wait for new socket connections on a listening server socket. See section C-13-1 on

page 572 for more information.

FILES

net_bsd.h/net_bsd.c

PROTOTYPE

C-18-2 bind() (TCP/UDP)

Assign network addresses to sockets. See section C-13-2 on page 574 for more information.

FILES

net_bsd.h/net_bsd.c

PROTOTYPE

int accept(int sock_id,
 struct sockaddr *paddr_remote,
 socklen_t *paddr_len);

int bind(int sock_id,
 struct sockaddr *paddr_local,
 socklen_t addr_len);
715

C-18-3 close() (TCP/UDP)

Terminate communication and free a socket. See section C-13-31 on page 632 for more

information.

FILES

net_bsd.h/net_bsd.c

PROTOTYPE

C-18-4 connect() (TCP/UDP)

Connect a local socket to a remote socket address. See section C-13-32 on page 634 for

more information.

FILES

net_bsd.h/net_bsd.c

PROTOTYPE

int close(int sock_id);

int connect(int sock_id,
 struct sockaddr *paddr_remote,
 socklen_t addr_len);
716

C-18-5 FD_CLR() (TCP/UDP)

Remove a socket file descriptor ID as a member of a file descriptor set. See section C-13-33

on page 637 for more information.

FILES

net_bsd.h

PROTOTYPE

REQUIRED CONFIGURATION

Available only if NET_BSD_CFG_API_EN is enabled (see section D-17-1 on page 767).

C-18-6 FD_ISSET() (TCP/UDP)

Check if a socket file descriptor ID is a member of a file descriptor set. See section C-13-36

on page 641 for more information.

FILES

net_bsd.h

PROTOTYPE

REQUIRED CONFIGURATION

Available only if NET_BSD_CFG_API_EN is enabled (see section D-17-1 on page 767).

FD_CLR(fd, fdsetp);

FD_ISSET(fd, fdsetp);
717

C-18-7 FD_SET() (TCP/UDP)

Add a socket file descriptor ID as a member of a file descriptor set. See section C-13-37 on

page 643 for more information.

FILES

net_bsd.h

PROTOTYPE

REQUIRED CONFIGURATION

Available only if NET_BSD_CFG_API_EN is enabled (see section D-17-1 on page 767).

C-18-8 FD_ZERO() (TCP/UDP)

Initialize/zero-clear a file descriptor set. See section C-13-35 on page 640 for more

information.

FILES

net_bsd.h

PROTOTYPE

REQUIRED CONFIGURATION

Available only if NET_BSD_CFG_API_EN is enabled (see section D-17-1 on page 767).

FD_SET(fd, fdsetp);

FD_ZERO(fdsetp);
718

C-18-9 getsockopt() (TCP/UDP)

Get a specific option value on a specific TCP socket. See section C-13-42 on page 653 for

more information.

FILES

net_bsd.h/net_bsd.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

level Protocol level from which to retrieve the socket option.

opt_name Socket option to set the value.

popt_val Pointer to the socket option value to set.

popt_len Pointer to the socket option value to get.

RETURNED VALUE

0, if successful;

-1, otherwise.

int getsockopt(int sock_id,
 int level,
 int opt_name,
 void *popt_val,
 sock_len_t *popt_len);
719

REQUIRED CONFIGURATION

getsockopt() is available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for

TCP (see section D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for

sockets (see section D-13-1 on page 756), and if NET_BSD_CFG_API_EN is enabled (see

section D-17-1 on page 767).

NOTES / WARNINGS

The supported options are:

■ Protocol level SOL_SOCKET:

■ SO_TYPE

■ SO_KEEPALIVE

■ SO_ACCEPTCONN

■ SO_SNDBUF / SO_RCVBUF

■ SO_SNDTIMEO / SO_RCVTIMEO

■ Protocol level IPPROTO_IP:

■ IP_TOS

■ IP_TTL

■ IP_RECVIF

■ Protocol level IPPROTO_TCP:

■ TCP_NODELAY

■ TCP_KEEPCNT

■ TCP_KEEPIDLE

■ TCP_INTVL
720

C-18-10 htonl()

Convert 32-bit integer values from CPU host-order to network-order. See section C-17-2 on

page 710 for more information.

FILES

net_bsd.h

PROTOTYPE

REQUIRED CONFIGURATION

Available only if NET_BSD_CFG_API_EN is enabled (see section D-17-1 on page 767).

C-18-11 htons()

Convert 16-bit integer values from CPU host-order to network-order. See section C-17-1 on

page 709 for more information.

FILES

net_bsd.h

PROTOTYPE

htonl(val);

htons(val);
721

C-18-12 inet_addr() (IPv4)

Convert a string of an IPv4 address in dotted-decimal notation to an IPv4 address in host-

order. See section C-4-3 on page 457 for more information.

FILES

net_bsd.h/net_bsd.c

PROTOTYPE

ARGUMENTS

paddr Pointer to an ASCII string that contains a dotted-decimal IPv4 address.

RETURNED VALUE

Returns the IPv4 address represented by ASCII string in host-order, if no errors.

-1 (i.e., 0xFFFFFFFF), otherwise.

REQUIRED CONFIGURATION

Available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section

D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see

section D-13-1 on page 756) and if NET_BSD_CFG_API_EN is enabled (see section D-17-1 on

page 767).

NOTES / WARNINGS

RFC 1983 states that “dotted decimal notation… refers [to] IP addresses of the form A.B.C.D;

where each letter represents, in decimal, one byte of a four byte IP address”. In other words,

the dotted-decimal notation separates four decimal byte values by the dot, or period,

character (‘.’). Each decimal value represents one byte of the IP address starting with the

most significant byte in network order.

in_addr_t inet_addr(char *paddr);
722

IPv4 Address Examples

MSB Most Significant Byte in Dotted-Decimal IP Address

LSB Least Significant Byte in Dotted-Decimal IP Address

The IPv4 dotted-decimal ASCII string must include only decimal values and the dot, or

period, character (‘.’); all other characters are trapped as invalid, including any leading or

trailing characters. The ASCII string must include exactly four decimal values separated by

exactly three dot characters. Each decimal value must not exceed the maximum byte value

(i.e., 255), or exceed the maximum number of digits for each byte (i.e., 3) including any

leading zeros.

DOTTED DECIMAL NOTATION HEXADECIMAL EQUIVALENT

127.0.0.1 0x7F000001

192.168.1.64 0xC0A80140

255.255.255.0 0xFFFFFF00

MSB ….…… LSB MSB …. LSB
723

C-18-13 inet_aton() (IPv4)

Convert an IPv4 address in ASCII dotted-decimal notation to a network protocol IPv4

address in network-order. See section C-4-3 on page 457 for more information.

FILES

net_bsd.h/net_bsd.c

PROTOTYPE

ARGUMENTS

paddr_in Pointer to an ASCII string that contains a dotted-decimal IPv4 address.

paddr Pointer to an IPv4 address that will receive the converted address.

RETURNED VALUE

1, if no errors.

0, otherwise.

REQUIRED CONFIGURATION

Available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section

D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see

section D-13-1 on page 756) and if NET_BSD_CFG_API_EN is enabled (see section D-17-1 on

page 767).

NOTES / WARNINGS

RFC 1983 states that “dotted decimal notation... refers [to] IP addresses of the form A.B.C.D;

where each letter represents, in decimal, one byte of a four-byte IP address”. In other

words, the dotted-decimal notation separates four decimal byte values by the dot, or period,

character (‘.’). Each decimal value represents one byte of the IP address starting with the

most significant byte in network order.

int inet_aton(char *paddr_in,
 struct in_addr *paddr);
724

IPv4 Address Examples

MSB Most Significant Byte in Dotted-Decimal IP Address

LSB Least Significant Byte in Dotted-Decimal IP Address

Values specified using IPv4 dotted decimal notation take one of the following forms:

a.b.c.d When a four parts address is specified, each shall be interpreted as a byte of

data and assigned, from left to right, to the four bytes of an internet address.

a.b.c When three parts address is specified, the last part shall be interpreted as a

16-bit quantity and placed in the rightmost two bytes of the network address.

This makes the three part address format convenient for specifying Class B

network addresses as “128.net.host”.

a.b When two parts address is specified, the last part shall be interpreted as a 24-

bit quantity and placed in the rightmost three bytes of the network address.

This makes the two part address format convenient for specifying Class A

network addresses as “net.host”.

a When one part address is specified, the value shall be stored directly in the

network address without any byte rearrangement.

The dotted-decimal ASCII string must:

■ Include only decimal values and the dot, or period, character (“.”). All other characters

are trapped as invalid, including any leading or trailing characters.

■ Included up to four decimal values, separated bu UP to three dot characters.

DOTTED DECIMAL NOTATION HEXADECIMAL EQUIVALENT

127.0.0.1 0x7F000001

192.168.1.64 0xC0A80140

255.255.255.0 0xFFFFFF00

MSB ….…… LSB MSB …. LSB
725

■ Ensure that each decimal value does not exceed the maximum value for its form:

■ a.b.c.d - 255.255.255.255

■ a.b.c - 255.255.255.65535

■ a.b - 255.16777215

■ a - 4294967295

■ Ensure that each decimal value does not exceed leading zeros.
726

C-18-14 inet_ntoa() (IPv4)

Convert an IPv4 address in host-order into an IPv4 dotted-decimal notation ASCII string. See

section C-4-1 on page 453 for more information.

FILES

net_bsd.h/net_bsd.c

PROTOTYPE

ARGUMENTS

in_addr IPv4 address (in host-order).

RETURNED VALUE

Pointer to ASCII string of converted IPv4 address (see Notes / Warnings), if no errors.

Pointer to NULL, otherwise.

REQUIRED CONFIGURATION

Available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for TCP (see section

D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for sockets (see

section D-13-1 on page 756) and if NET_BSD_CFG_API_EN is enabled (see section D-17-1 on

page 767).

NOTES / WARNINGS

RFC 1983 states that “dotted decimal notation... refers [to] IP addresses of the form A.B.C.D;

where each letter represents, in decimal, one byte of a four-byte IP address”. In other

words, the dotted-decimal notation separates four decimal byte values by the dot, or period,

character (‘.’). Each decimal value represents one byte of the IP address starting with the

most significant byte in network order.

char *inet_ntoa(struct in_addr addr);
727

IPv4 Address Examples

MSB Most Significant Byte in Dotted-Decimal IP Address

LSB Least Significant Byte in Dotted-Decimal IP Address

Since the returned ASCII string is stored in a single, global ASCII string array, this function is

not reentrant or thread-safe. Therefore, the returned string should be copied as soon as

possible before other calls to inet_ntoa() are needed.

DOTTED DECIMAL NOTATION HEXADECIMAL EQUIVALENT

127.0.0.1 0x7F000001

192.168.1.64 0xC0A80140

255.255.255.0 0xFFFFFF00

MSB ….…… LSB MSB …. LSB
728

C-18-15 listen() (TCP)

Set a socket to accept incoming connections. See section C-13-40 on page 648 for more

information.

FILES

net_bsd.h/net_bsd.c

PROTOTYPE

C-18-16 ntohl()

Convert 32-bit integer values from network-order to CPU host-order. See section C-17-4 on

page 712 for more information.

FILES

net_bsd.h

PROTOTYPE

REQUIRED CONFIGURATION

Available only if NET_BSD_CFG_API_EN is enabled (see section D-17-1 on page 767).

int listen(int sock_id,
 int sock_q_size);

ntohl(val);
729

C-18-17 ntohs()

Convert 16-bit integer values from network-order to CPU host-order. See section C-17-3 on

page 711 for more information.

FILES

net_bsd.h

PROTOTYPE

REQUIRED CONFIGURATION

Available only if NET_BSD_CFG_API_EN is enabled (see section D-17-1 on page 767).

C-18-18 recv() / recvfrom() (TCP/UDP)

Copy up to a specified number of bytes received from a remote socket into an application

memory buffer. See section C-13-46 on page 659 for more information.

FILES

net_bsd.h/net_bsd.c

PROTOTYPES

ntohs(val);

ssize_t recv(int sock_id,
 void *pdata_buf,
 _size_t data_buf_len,
 int flags);

ssize_t recvfrom(int sock_id,
 void *pdata_buf,
 _size_t data_buf_len,
 int flags,
 struct sockaddr *paddr_remote,
 socklen_t *paddr_len);
730

C-18-19 select() (TCP/UDP)

Check if any sockets are ready for available read or write operations or error conditions. See

section C-13-47 “NetSock_Sel() / select() (TCP/UDP)” on page 663 for more information.

FILES

net_bsd.h/net_bsd.c

PROTOTYPE

C-18-20 send() / sendto() (TCP/UDP)

Copy bytes from an application memory buffer into a socket to send to a remote socket. See

section C-13-48 on page 666 for more information.

FILES

net_bsd.h/net_bsd.c

PROTOTYPES

int select(int desc_nbr_max,
 struct fd_set *pdesc_rd,
 struct fd_set *pdesc_wr,
 struct fd_set *pdesc_err,
 struct timeval *ptimeout);

ssize_t send (int sock_id,
 void *p_data,
 _size_t data_len,
 int flags);

ssize_t sendto(int sock_id,
 void *p_data,
 _size_t data_len,
 int flags,
 struct sockaddr *paddr_remote,
 socklen_t addr_len);
731

C-18-21 setsockopt() (TCP/UDP)

Set a specific option on a specific TCP socket. See section C-13-43 on page 655 for more

information.

FILES

net_bsd.h/net_bsd.c

PROTOTYPE

ARGUMENTS

sock_id This is the socket ID returned by NetSock_Open()/socket() when the

socket was created or by NetSock_Accept()/accept() when a connection

was accepted.

level Protocol level from which to retrieve the socket option.

opt_name Socket option to set the value.

popt_val Pointer to the socket option value to set.

opt_len Option length.

RETURNED VALUE

0, if successful;

-1, otherwise.

int setsockopt(int sock_id,
 int level,
 int opt_name,
 void *popt_val,
 sock_len_t opt_len);
732

REQUIRED CONFIGURATION

setsockopt() is available only if either NET_CFG_TRANSPORT_LAYER_SEL is configured for

TCP (see section D-12-1 on page 755) and/or NET_UDP_CFG_APP_API_SEL is configured for

sockets (see section D-13-1 on page 756), and if NET_BSD_CFG_API_EN is enabled (see

section D-17-1 on page 767).

NOTES / WARNINGS

The supported options are:

■ Protocol level SOL_SOCKET:

■ SO_KEEPALIVE

■ SO_SNDBUF / SO_RCVBUF

■ SO_SNDTIMEO / SO_RCVTIMEO

■ Protocol level IPPROTO_IP:

■ IP_TOS

■ IP_TTL

■ Protocol level IPPROTO_TCP:

■ TCP_NODELAY

■ TCP_KEEPCNT

■ TCP_KEEPIDLE

■ TCP_INTVL
733

C-18-22 socket() (TCP/UDP)

Create a datagram (i.e., UDP) or stream (i.e., TCP) type socket. See section C-13-41 on

page 650 for more information.

FILES

net_bsd.h/net_bsd.c

PROTOTYPE

int socket(int protocol_family,
 int sock_type,
 int protocol);
734

Appendix

D

μC/TCP-IP Configuration and Optimization

μC/TCP-IP is configurable at compile time via approximately 70 #defines in an

application’s net_cfg.h and app_cfg.h files. μC/TCP-IP uses #defines because they allow

code and data sizes to be scaled at compile time based on enabled features and the

configured number of network objects. This allows the ROM and RAM footprints of μC/TCP-

IP to be adjusted based on application requirements.

Most of the #defines should be configured with the default configuration values. A handful

of values may likely never change because there is currently only one configuration choice

available. This leaves approximately a dozen values that should be configured with values

that may deviate from the default configuration.

It is recommended that the configuration process begins with the recommended or default

configuration values which are shown in bold.

Unlike Appendix C on page 417, the sections in this appendix are organized following the

order in μC/TCP-IP’s template configuration file, net_cfg.h.
735

D-1 NETWORK CONFIGURATION

D-1-1 NET_CFG_INIT_CFG_VALS

NET_CFG_INIT_CFG_VALS is used to determine whether internal TCP/IP parameters are set

to default values or are set by the user:

NET_INIT_CFG_VALS_DFLT μC/TCP-IP initializes all parameters with default

values

NET_INIT_CFG_VALS_APP_INIT Application initializes all μC/TCP-IP parameters with

application-specific values

NET_INIT_CFG_VALS_DFLT
Configure μC/TCP-IP’s network parameters with default values. The application only needs

to call Net_Init() to initialize both μC/TCP-IP and its configurable parameters. This

configuration is highly recommended since configuring network parameters requires in-

depth knowledge of the protocol stack. In fact, most references recommend many of the

default values we have selected.

Parameter Units Min Max Default Configuration Function

Interface’s Network

Buffer Low Threshold

% of the Total Number

of an Interface’s

Network Buffers

5% 50% 5% NetDbg_CfgRsrcBufThLo()

Interface’s Network

Buffer Low Threshold

Hysteresis

% of the Total Number

of an Interface’s

Network Buffers

0% 15% 3% NetDbg_CfgRsrcBufThLo()

Interface’s Large

Receive Buffer Low

Threshold

% of the Total Number

of an Interface’s Large

Receive Buffers

5% 50% 5% NetDbg_CfgRsrcBufRxLargeThLo()

Interface’s Large

Receive Buffer Low

Threshold Hysteresis

% of the Total Number

of an Interface’s Large

Receive Buffers

0% 15% 3% NetDbg_CfgRsrcBufRxLargeThLo()

Interface’s Small

Transmit Buffer Low

Threshold

% of the Total Number

of an Interface’s Small

Transmit Buffers

5% 50% 5% NetDbg_CfgRsrcBufTxSmallThLo()
736

Interface’s Small

Transmit Buffer Low

Threshold Hysteresis

% of the Total Number

of an Interface’s Small

Transmit Buffers

0% 15% 3% NetDbg_CfgRsrcBufTxSmallThLo()

Interface’s Large

Transmit Buffer Low

Threshold

% of the Total Number

of an Interface’s Large

Transmit Buffers

5% 50% 5% NetDbg_CfgRsrcBufTxLargeThLo()

Interface’s Large

Transmit Buffer Low

Threshold Hysteresis

% of the Total Number

of an Interface’s Large

Transmit Buffers

0% 15% 3% NetDbg_CfgRsrcBufTxLargeThLo()

Network Timer Low

Threshold

% of the Total Number

of Network Timers

5% 50% 5% NetDbg_CfgRsrcTmrLoTh()

Network Timer Low

Threshold Hysteresis

% of the Total Number

of Network Timers

0% 15% 3% NetDbg_CfgRsrcTmrLoTh()

Network Connection

Low Threshold

% of the Total Number

of Network

Connections

5% 50% 5% NetDbg_CfgRsrcConnLoTh()

Network Connection

Low Threshold

Hysteresis

% of the Total Number

of Network

Connections

0% 15% 3% NetDbg_CfgRsrcConnLoTh()

ARP Cache Low

Threshold

% of the Total Number

of ARP Caches

5% 50% 5% NetDbg_CfgRsrcARP_CacheLoTh()

ARP Cache Low

Threshold Hysteresis

% of the Total Number

of ARP Caches

0% 15% 3% NetDbg_CfgRsrcARP_CacheLoTh()

TCP Connection Low

Threshold

% of the Total Number

of TCP Connections

5% 50% 5% NetDbg_CfgRsrcTCP_ConnLoTh()

TCP Connection Low

Threshold Hysteresis

% of the Total Number

of TCP Connections

0% 15% 3% NetDbg_CfgRsrcTCP_ConnLoTh()

Socket Low Threshold % of the Total Number

of Sockets

5% 50% 5% NetDbg_CfgRsrcSockLoTh()

Socket Low Threshold

Hysteresis

% of the Total Number

of Sockets

0% 15% 3% NetDbg_CfgRsrcSockLoTh()

Parameter Units Min Max Default Configuration Function
737

Table D-1 μC/TCP-IP Internal Configuration Parameters

Resource Monitor

Task Time

Seconds 1 600 60 NetDbg_CfgMonTaskTime()

Network Connection

Accessed Threshold

Number of Network

Connections

10 65000 100 NetConn_CfgAccessTh()

Network Interface

Physical Link Monitor

Period

Milliseconds 50 60000 250 NetIF_CfgPhyLinkPeriod()

Network Interface

Performance Monitor

Period

Milliseconds 50 60000 250 NetIF_CfgPerfMonPeriod()

ARP Cache Timeout Seconds 60 600 600 NetARP_CfgCacheTimeout()

ARP Cache Accessed

Threshold

Number of ARP

Caches

100 65000 100 NetARP_CfgCacheAccessedTh()

ARP Request Timeout Seconds 1 10 5 NetARP_CfgReqTimeout()

ARP Request

Maximum Number of

Retries

Maximum Number of

Transmitted ARP

Request Retries

0 5 3 NetARP_CfgReqMaxRetries()

IP Receive Fragments

Reassembly Timeout

Seconds 1 15 5 NetIP_CfgFragReasmTimeout()

ICMP Transmit Source

Quench Threshold

Number of

Transmitted ICMP

Source Quenches

1 100 5 NetICMP_CfgTxSrcQuenchTh()

Parameter Units Min Max Default Configuration Function
738

NET_INIT_CFG_VALS_APP_INIT
It is possible to change the parameters listed in by calling the above configuration functions.

These values could be stored in non-volatile memory and recalled at power up (e.g., using

EEPROM or battery-backed RAM) by the application. Similarly the values could be hard-

coded directly in the application. Regardless of how the application configures the values, if

this option is selected, the application must initialize all of the above configuration

parameters using the configuration functions listed above.

Alternatively, the application could call Net_InitDflt() to initialize all of the internal

configuration parameters to their default values and then call the configuration functions for

only the values to be modified.
739

D-1-2 NET_CFG_OPTIMIZE

Select portions of μC/TCP-IP code may be optimized for better performance or for smallest

code size by configuring NET_CFG_OPTIMIZE:

NET_OPTIMIZE_SPD Optimizes μC/TCP-IP for best speed performance

NET_OPTIMIZE_SIZE Optimizes μC/TCP-IP for best binary image size

D-1-3 NET_CFG_OPTIMIZE_ASM_EN

Select portions of μC/TCP-IP code may even call optimized assembly functions by

configuring NET_CFG_OPTIMIZE_ASM_EN:

DEF_DISABLED No optimized assembly files/functions are included in the μC/

TCP-IP build

or

DEF_ENABLED Optimized assembly files/functions are included in the μC/TCP-

IP build
740

D-1-4 NET_CFG_BUILD_LIB_EN

μC/TCP-IP can be compiled on some toolchains into a linkable library by configuring

NET_CFG_BUILD_LIB_EN:

DEF_DISABLED μC/TCP-IP not compiled as a linkable library

or

DEF_ENABLED Build μC/TCP-IP as a linkable library
741

D-2 DEBUG CONFIGURATION

A fair amount of code in μC/TCP-IP has been included to simplify debugging. There are

several configuration constants used to aid debugging.

D-2-1 NET_DBG_CFG_INFO_EN

NET_DBG_CFG_INFO_EN is used to enable/disable μC/TCP-IP debug information:

■ Internal constants assigned to global variables

■ Internal variable data sizes calculated and assigned to global variables

NET_DBG_CFG_INFO_EN can be set to either DEF_DISABLED or DEF_ENABLED.

D-2-2 NET_DBG_CFG_STATUS_EN

NET_DBG_CFG_STATUS_EN is used to enable/disable μC/TCP-IP run-time status information:

■ Internal resource usage – low or lost resources

■ Internal faults or errors

NET_DBG_CFG_STATUS_EN can be set to either DEF_DISABLED or DEF_ENABLED.
742

D-2-3 NET_DBG_CFG_MEM_CLR_EN

NET_DBG_CFG_MEM_CLR_EN is used to clear internal network data structures when allocated

or de-allocated. By clearing, all bytes in internal data structures are set to ‘0’ or to default

initialization values. NET_DBG_CFG_MEM_CLR_EN can be set to either DEF_DISABLED or

DEF_ENABLED. This configuration is typically set it to DEF_DISABLED unless the contents of

the internal network data structures need to be examined for debugging purposes. Having

the internal network data structures cleared generally helps to differentiate between

“proper” data and “pollution”.

D-2-4 NET_DBG_CFG_TEST_EN

NET_DBG_CFG_TEST_EN is used internally for testing/debugging purposes and can be set to

either DEF_DISABLED or DEF_ENABLED.
743

D-3 ARGUMENT CHECKING CONFIGURATION

Most functions in μC/TCP-IP include code to validate arguments that are passed to it.

Specifically, μC/TCP-IP checks to see if passed pointers are NULL, if arguments are within

valid ranges, etc. The following constants configure additional argument checking.

D-3-1 NET_ERR_CFG_ARG_CHK_EXT_EN

NET_ERR_CFG_ARG_CHK_EXT_EN allows code to be generated to check arguments for

functions that can be called by the user and, for functions which are internal but receive

arguments from an API that the user can call. Also, enabling this check verifies that μC/TCP-

IP is initialized before API tasks and functions perform the desired function.

NET_ERR_CFG_ARG_CHK_EXT_EN can be set to either DEF_DISABLED or DEF_ENABLED.

D-3-2 NET_ERR_CFG_ARG_CHK_DBG_EN

NET_ERR_CFG_ARG_CHK_DBG_EN allows code to be generated which checks to make sure

that pointers passed to functions are not NULL, and that arguments are within range, etc.

NET_ERR_CFG_ARG_CHK_DBG_EN can be set to either DEF_DISABLED or DEF_ENABLED.
744

D-4 NETWORK COUNTER CONFIGURATION

μC/TCP-IP contains code that increments counters to keep track of statistics such as the

number of packets received, the number of packets transmitted, etc. Also, μC/TCP-IP

contains counters that are incremented when error conditions are detected. The following

constants enable or disable network counters.

D-4-1 NET_CTR_CFG_STAT_EN

NET_CTR_CFG_STAT_EN determines whether the code and data space used to keep track of

statistics will be included. NET_CTR_CFG_STAT_EN can be set to either DEF_DISABLED or

DEF_ENABLED.

D-4-2 NET_CTR_CFG_ERR_EN

NET_CTR_CFG_ERR_EN determines whether the code and data space used to keep track of

errors will be included. NET_CTR_CFG_ERR_EN can be set to either DEF_DISABLED or

DEF_ENABLED.
745

D-5 NETWORK TIMER CONFIGURATION

μC/TCP-IP manages software timers used to keep track of timeouts and execute callback

functions when needed.

D-5-1 NET_TMR_CFG_NBR_TMR

NET_TMR_CFG_NBR_TMR determines the number of timers that μC/TCP-IP will be managing.

Of course, the number of timers affect the amount of RAM required by μC/TCP-IP. Each

timer requires 12 bytes plus 4 pointers. Timers are required for:

■ The Network Debug Monitor task1 total

■ The Network Performance Monitor1 total

■ The Network Link State Handler1 total

■ Each ARP cache entry1 per ARP cache

■ Each IP fragment reassembly1 per IP fragment chain

■ Each TCP connection7 per TCP connection

It is recommended to set NET_TMR_CFG_NBR_TMR with at least 12 timers, but a better

starting point may be to allocate the maximum number of timers for all resources.

For instance, if the Network Debug Monitor task is enabled (see section 11-2 “Network Debug

Monitor Task” on page 297), 20 ARP caches are configured (NET_ARP_CFG_NBR_CACHE = 20),
& 10 TCP connections are configured (NET_TCP_CFG_NBR_CONN = 10); the maximum

number of timers for these resources is 1 for the Network Debug Monitor task, 1 for the

Network Performance Monitor, 1 for the Link State Handler, (20 * 1) for the ARP caches

and, (10 * 7) for TCP connections:

Timers = 1 + 1 + 1 + (20 * 1) + (10 * 7) = 93
746

D-5-2 NET_TMR_CFG_TASK_FREQ

NET_TMR_CFG_TASK_FREQ determines how often (in Hz) network timers are to be updated.

This value must not be configured as a floating-point number. NET_TMR_CFG_TASK_FREQ is
typically set to 10 Hz.

D-6 NETWORK BUFFER CONFIGURATION

μC/TCP-IP manages Network Buffers to read data to and from network applications and

network devices. Network Buffers are specially configured with network devices as

described in section 5-1 “Buffer Management” on page 77.
747

D-7 NETWORK INTERFACE LAYER CONFIGURATION

D-7-1 NET_IF_CFG_MAX_NBR_IF

NET_IF_CFG_MAX_NBR_IF determines the maximum number of network interfaces that μC/

TCP-IP may create at run-time. The default value of 1 is for a single network interface.

D-7-2 NET_IF_CFG_LOOPBACK_EN

NET_IF_CFG_LOOPBACK_EN determines whether the code and data space used to support

the loopback interface for internal-only communication only will be included.

NET_IF_CFG_LOOPBACK_EN can be set to either DEF_DISABLED or DEF_ENABLED.

D-7-3 NET_IF_CFG_ETHER_EN

NET_IF_CFG_ETHER_EN determines whether the code and data space used to support Ethernet

interfaces and devices will be included. NET_IF_CFG_ETHER_EN can be set to either

DEF_DISABLED or DEF_ENABLED, but must be enabled if the target expects to communicate

over Ethernet networks.

D-7-4 NET_IF_CFG_WIFI_EN

NET_IF_CFG_WIFI_EN determines whether the code and data space used to support wireless

interfaces and devices will be included. NET_IF_CFG_WIFI_EN can be set to either

DEF_DISABLED or DEF_ENABLED, but must be enabled if the target expects to communicate

over wireless networks.
748

D-7-5 NET_IF_CFG_ADDR_FLTR_EN

NET_IF_CFG_ADDR_FLTR_EN determines whether address filtering is enabled or not:

DEF_DISABLED Addresses are not filtered

or

DEF_ENABLED Addresses are filtered

D-7-6 NET_IF_CFG_TX_SUSPEND_TIMEOUT_MS

NET_IF_CFG_TX_SUSPEND_TIMEOUT_MS configures the network interface transmit suspend

timeout value. The value is specified in integer milliseconds. It is recommended to initially

set NET_IF_CFG_TX_SUSPEND_TIMEOUT_MS with a value of 1 millisecond.
749

D-8 ARP (ADDRESS RESOLUTION PROTOCOL) CONFIGURATION

ARP is only required for some network interfaces such as Ethernet.

D-8-1 NET_ARP_CFG_HW_TYPE

The current version of μC/TCP-IP only supports Ethernet-type networks, and thus

NET_ARP_CFG_HW_TYPE should always be set to NET_ARP_HW_TYPE_ETHER.

D-8-2 NET_ARP_CFG_PROTOCOL_TYPE

The current version of μC/TCP-IP only supports IPv4, and thus

NET_ARP_CFG_PROTOCOL_TYPE should always be set to NET_ARP_PROTOCOL_TYPE_IP_V4.

D-8-3 NET_ARP_CFG_NBR_CACHE

ARP caches the mapping of IP addresses to physical (i.e., MAC) addresses.

NET_ARP_CFG_NBR_CACHE configures the number of ARP cache entries. Each cache entry

requires approximately 18 bytes of RAM, plus five pointers, plus a hardware address and

protocol address (10 bytes assuming Ethernet interfaces and IPv4 addresses).

The number of ARP caches required by the application depends on how many different

hosts are expected to communicate. If the application only communicates with hosts on

remote networks via the local network’s default gateway (i.e., router), then only a single

ARP cache needs to be configured.

To test μC/TCP-IP with a smaller network, a default number of 3 ARP caches should be

sufficient.
750

D-8-4 NET_ARP_CFG_ADDR_FLTR_EN

NET_ARP_CFG_ADDR_FLTR_EN determines whether to enable address filtering:

DEF_DISABLED Addresses are not filtered

or

DEF_ENABLED Addresses are filtered
751

D-9 IP (INTERNET PROTOCOL) CONFIGURATION

D-9-1 NET_IP_CFG_IF_MAX_NBR_ADDR

NET_IP_CFG_IF_MAX_NBR_ADDR determines the maximum number of IP addresses that may

be configured per network interface at run-time. It is recommended to set

NET_IP_CFG_IF_MAX_NBR_ADDR to the initial, default value of 1 IP address per network

interface and increased if the μC/TCP-IP target requires more addresses on each interface.

D-9-2 NET_IP_CFG_MULTICAST_SEL

NET_IP_CFG_MULTICAST_SEL is used to determine the IP multicast support level. The

allowable values for this parameter are:

NET_IP_MULTICAST_SEL_NONE No multicasting

NET_IP_MULTICAST_SEL_TX Transmit multicasting only

NET_IP_MULTICAST_SEL_TX_RX Transmit and receive multicasting
752

D-10 ICMP (INTERNET CONTROL MESSAGE PROTOCOL)
CONFIGURATION

D-10-1 NET_ICMP_CFG_TX_SRC_QUENCH_EN

ICMP transmits ICMP source quench messages to other hosts when the Network Resources

are low (see section 11-2 “Network Debug Monitor Task” on page 297).

NET_ICMP_CFG_TX_SRC_QUENCH_EN can be set to either:

DEF_DISABLED ICMP does not transmit any Source Quenches

or

DEF_ENABLED ICMP transmits Source Quenches when necessary

D-10-2 NET_ICMP_CFG_TX_SRC_QUENCH_NBR

NET_ICMP_CFG_TX_SRC_QUENCH_NBR configures the number of ICMP transmit source

quench entries. Each source quench entry requires approximately 12 bytes of RAM plus two

pointers.

The number of entries depends on the number of different hosts to communicate with. It is

recommended to set NET_ICMP_CFG_TX_SRC_QUENCH_NBR with an initial value of 5 and

adjusted if the μC/TCP-IP target communicates with more or less hosts.
753

D-11 IGMP (INTERNET GROUP MANAGEMENT PROTOCOL)
CONFIGURATION

D-11-1 NET_IGMP_CFG_MAX_NBR_HOST_GRP

NET_IGMP_CFG_MAX_NBR_HOST_GRP configures the maximum number of IGMP host groups

that may be joined at any one time. Each group entry requires approximately 12 bytes of

RAM, plus three pointers, plus a protocol address (4 bytes assuming IPv4 address).

The number of IGMP host groups required by the application depends on how many host

groups are expected to be joined at a given time. Since each configured multicast address

requires its own IGMP host group, it is recommended to configure at least one host group

per multicast address used by the application, plus one additional host group. Thus for a

single multicast address, it is recommended to set NET_IGMP_CFG_MAX_NBR_HOST_GRP with

an initial value of 2.
754

D-12 TRANSPORT LAYER CONFIGURATION

D-12-1 NET_CFG_TRANSPORT_LAYER_SEL

μC/TCP-IP allows you to include code for either UDP alone or for both UDP and TCP. Most

application software requires TCP as well as UDP. However, enabling UDP only reduces

both the code and data size required by μC/TCP-IP. NET_CFG_TRANSPORT_LAYER_SEL can

be set to either:

NET_TRANSPORT_LAYER_SEL_UDP_TCP UDP and TCP transport layers included

or

NET_TRANSPORT_LAYER_SEL_UDP Only UDP transport layer included
755

D-13 UDP (USER DATAGRAM PROTOCOL) CONFIGURATION

D-13-1 NET_UDP_CFG_APP_API_SEL

NET_UDP_CFG_APP_API_SEL is used to determine where to send the de-multiplexed UDP

datagram. Specifically, the datagram may be sent to the socket layer, to a function at the

application level, or both. NET_UDP_CFG_APP_API_SEL can be set to one of the following

values:

NET_UDP_APP_API_SEL_SOCK De-multiplex receive datagrams to socket layer only

NET_UDP_APP_API_SEL_APP De-multiplex receive datagrams to the application

only

NET_UDP_APP_API_SEL_SOCK_APP De-multiplex receive datagrams to socket layer first,

then to the application

If either NET_UDP_APP_API_SEL_APP or NET_UDP_APP_API_SEL_SOCK_APP is configured, the

application must define NetUDP_RxAppDataHandler() to de-multiplex receive datagrams by

the application (see section C-16-2 on page 704).
756

D-13-2 NET_UDP_CFG_RX_CHK_SUM_DISCARD_EN

NET_UDP_CFG_RX_CHK_SUM_DISCARD_EN is used to determine whether received UDP

packets without a valid checksum are discarded or are handled and processed. Before a

UDP Datagram Check-Sum is validated, it is necessary to check whether the UDP

datagram was transmitted with or without a computed Check-Sum (see RFC #768, Section

‘Fields: Checksum’).

NET_UDP_CFG_RX_CHK_SUM_DISCARD_EN can be set to either:

DEF_DISABLED UDP Layer processes but flags all UDP datagrams received

without a checksum so that “an application may optionally

discard datagrams without checksums” (see RFC #1122, Section

4.1.3.4).

or

DEF_ENABLED All UDP datagrams received without a checksum are discarded.

D-13-3 NET_UDP_CFG_TX_CHK_SUM_EN

NET_UDP_CFG_TX_CHK_SUM_EN is used to determine whether UDP checksums are computed

for transmission to other hosts. An application MAY optionally be able to control whether a

UDP checksum will be generated (see RFC #1122, Section 4.1.3.4).

NET_UDP_CFG_TX_CHK_SUM_EN can be set to either:

DEF_DISABLED All UDP datagrams are transmitted without a computed

checksum

or

DEF_ENABLED All UDP datagrams are transmitted with a computed checksum
757

D-14 TCP (TRANSPORT CONTROL PROTOCOL) CONFIGURATION

D-14-1 NET_TCP_CFG_NBR_CONN

NET_TCP_CFG_NBR_CONN configures the maximum number of TCP connections that μC/TCP-

IP can handle concurrently. This number depends entirely on how many simultaneous TCP

connections the application requires. Each TCP connection requires approximately 220 bytes

of RAM plus 16 pointers. It is recommended to set NET_TCP_CFG_NBR_CONN with an initial

value of 10 and adjust this value if more or less TCP connections are required.

D-14-2 NET_TCP_CFG_RX_WIN_SIZE_OCTET

NET_TCP_CFG_RX_WIN_SIZE_OCTET configures each TCP connection’s receive window size.

It is recommended to set TCP window sizes to integer multiples of each TCP connection’s

maximum segment size (MSS). For example, systems with an Ethernet MSS of 1460, a value

5840 (4 * 1460) is probably a better configuration than the default window size of 4096 (4K).

D-14-3 NET_TCP_CFG_TX_WIN_SIZE_OCTET

NET_TCP_CFG_TX_WIN_SIZE_OCTET configures each TCP connection’s transmit window size.

It is recommended to set TCP window sizes to integer multiples of each TCP connection’s

maximum segment size (MSS). For example, systems with an Ethernet MSS of 1460, a value

5840 (4 * 1460) is probably a better configuration than the default window size of 4096 (4K).

D-14-4 NET_TCP_CFG_TIMEOUT_CONN_MAX_SEG_SEC

NET_TCP_CFG_TIMEOUT_CONN_MAX_SEG_SEC configures TCP connections’ default maximum

segment lifetime timeout (MSL) value, specified in integer seconds. It is recommended to

start with a value of 3 seconds.

If TCP connections are established and closed rapidly, it is possible that this timeout may

further delay new TCP connections from becoming available. Thus, an even lower timeout

value may be desirable to free TCP connections and make them available as quickly as

possible. However, a 0 second timeout prevents μC/TCP-IP from performing the complete

TCP connection close sequence and will instead send TCP reset (RST) segments.
758

D-14-5 NET_TCP_CFG_TIMEOUT_CONN_FIN_WAIT_2_SEC

NET_TCP_CFG_TIMEOUT_CONN_FIN_WAIT_2_SEC configures the TCP connection default FIN-

WAIT-2 timeout (in seconds or no timeout if configured with NET_TMR_TIME_INFINITE).
On a typical connection close (FIN/ACK/FIN/ACK), this timeout defines the maximum delay

between the ACK/FIN packets sent by the remote host. It is recommended to set

NET_TCP_CFG_TIMEOUT_CONN_FIN_WAIT_2_SEC with a value of 15 seconds.

D-14-6 NET_TCP_CFG_TIMEOUT_CONN_ACK_DLY_MS

NET_TCP_CFG_TIMEOUT_CONN_ACK_DLY_MS configures the TCP acknowledgement delay in

integer milliseconds. It is recommended to configure the default value of 500 milliseconds
since RFC #2581, Section 4.2 states that “an ACK must be generated within 500 ms of the

arrival of the first unacknowledged packet”.

D-14-7 NET_TCP_CFG_TIMEOUT_CONN_RX_Q_MS

NET_TCP_CFG_TIMEOUT_CONN_RX_Q_MS configures each TCP connection’s receive timeout

(in milliseconds or no timeout if configured with NET_TMR_TIME_INFINITE). It is

recommended to start with a value of 3000 milliseconds or the no-timeout value of

NET_TMR_TIME_INFINITE.

D-14-8 NET_TCP_CFG_TIMEOUT_CONN_TX_Q_MS

NET_TCP_CFG_TIMEOUT_CONN_TX_Q_MS configures each TCP connection’s transmit timeout

(in milliseconds or no timeout if configured with NET_TMR_TIME_INFINITE). It is

recommended to start with a value of 3000 milliseconds or the no-timeout value of

NET_TMR_TIME_INFINITE.
759

D-15 NETWORK SOCKET CONFIGURATION

μC/TCP-IP supports BSD 4.x sockets and basic socket API for the TCP/UDP/IP protocols.

D-15-1 NET_SOCK_CFG_FAMILY

The current version of μC/TCP-IP only supports IPv4 BSD sockets, and thus

NET_SOCK_CFG_FAMILY should always be set to NET_SOCK_FAMILY_IP_V4.

D-15-2 NET_SOCK_CFG_NBR_SOCK

NET_SOCK_CFG_NBR_SOCK configures the maximum number of sockets that μC/TCP-IP can

handle concurrently. This number depends entirely on how many simultaneous socket

connections the application requires. Each socket requires approximately 28 bytes of RAM

plus three pointers. It is recommended to set NET_SOCK_CFG_NBR_SOCK with an initial value

of 10 and adjust this value if more or less sockets are required.
760

D-15-3 NET_SOCK_CFG_BLOCK_SEL

NET_SOCK_CFG_BLOCK_SEL determines the default blocking (or non-blocking) behavior for

sockets:

NET_SOCK_BLOCK_SEL_DFLT Sockets will be blocking by default, but may be

individually configured in a future release

NET_SOCK_BLOCK_SEL_BLOCK Sockets will be blocking by default

NET_SOCK_BLOCK_SEL_NO_BLOCK Sockets will be non-blocking by default

If blocking mode is enabled, a timeout can be specified. The amount of time for the timeout

is determined by various timeout functions implemented in net_sock.c:

NetSock_CfgTimeoutRxQ_Set() Configure datagram socket receive timeout

NetSock_CfgTimeoutConnReqSet() Configure socket connection timeout

NetSock_CfgTimeoutConnAcceptSet()Configure socket accept timeout

NetSock_CfgTimeoutConnClOSset() Configure socket close timeout

D-15-4 NET_SOCK_CFG_SEL_EN

NET_SOCK_CFG_SEL_EN determines whether or not the code and data space used to support

socket select() functionality is enabled:

DEF_DISABLED BSD select() API disabled

or

DEF_ENABLED BSD select() API enabled
761

D-15-5 NET_SOCK_CFG_SEL_NBR_EVENTS_MAX

NET_SOCK_CFG_SEL_NBR_EVENTS_MAX is used to configure the maximum number of socket

events/operations that the socket select() functionality can wait on. It is recommended to

set NET_SOCK_CFG_SEL_NBR_EVENTS_MAX with an initial value of at least 10 and adjust this

value if more or less socket select() events are required.

D-15-6 NET_SOCK_CFG_CONN_ACCEPT_Q_SIZE_MAX

NET_SOCK_CFG_CONN_ACCEPT_Q_SIZE_MAX is used to configure the absolute maximum

queue size of accept() connections for stream-type sockets. It is recommended to set

NET_SOCK_CFG_CONN_ACCEPT_Q_SIZE_MAX with an initial value of at least 5 and adjust this

value if more or less socket connections need to be queued.

D-15-7 NET_SOCK_CFG_PORT_NBR_RANDOM_BASE

NET_SOCK_CFG_PORT_NBR_RANDOM_BASE is used to configure the starting base socket

number for “ephemeral” or “random” port numbers. Since two times the number of random

ports are required for each socket, the base value for the random port number must be:

Random Port Number Base <= 65535 – (2 * NET_SOCK_CFG_NBR_SOCK)

The arbitrary default value of 65000 is recommended as a good starting point.

D-15-8 NET_SOCK_CFG_RX_Q_SIZE_OCTET

NET_SOCK_CFG_RX_Q_SIZE_OCTET configures datagram sockets default receive queue

buffer size in integer number of octets. According to 4.3BSD, it is recommended to set

NET_SOCK_CFG_RX_Q_SIZE_OCTET with a value of 4096 octets. However, systems such as

4.4BSD use larger default buffer sizes, such as 8192 or 16384 bytes. This configuration does

not impact TCP default receive windows size.
762

D-15-9 NET_SOCK_CFG_TX_Q_SIZE_OCTET

NET_SOCK_CFG_TX_Q_SIZE_OCTET configures datagram sockets default transmit queue

buffer size in integer number of octets. According to 4.3BSD, it is recommended to set

NET_SOCK_CFG_TX_Q_SIZE_OCTET with a value of 4096 octets. However, systems such as

4.4BSD use larger default buffer sizes, such as 8192 or 16384 bytes. This configuration does

not impact TCP default transmit windows size.

D-15-10 NET_SOCK_CFG_TIMEOUT_RX_Q_MS

NET_SOCK_CFG_TIMEOUT_RX_Q_MS configures socket timeout value (in milliseconds or no

timeout if configured with NET_TMR_TIME_INFINITE) for UDP datagram socket recv()
operations. It is recommended to set NET_SOCK_CFG_TIMEOUT_RX_Q_MS with a value of

3000 milliseconds or the no-timeout value of NET_TMR_TIME_INFINITE.

D-15-11 NET_SOCK_CFG_TIMEOUT_CONN_REQ_MS

NET_SOCK_CFG_TIMEOUT_CONN_REQ_MS configures socket timeout value (in milliseconds or

no timeout if configured with NET_TMR_TIME_INFINITE) for stream socket connect()
operations. It is recommended to set NET_SOCK_CFG_TIMEOUT_CONN_REQ_MS with a value of

3000 milliseconds or the no-timeout value of NET_TMR_TIME_INFINITE.

D-15-12 NET_SOCK_CFG_TIMEOUT_CONN_ACCEPT_MS

NET_SOCK_CFG_TIMEOUT_CONN_ACCEPT_MS configures socket timeout value (in milliseconds

or no timeout if configured with NET_TMR_TIME_INFINITE) for socket accept()
operations. It is recommended to set NET_SOCK_CFG_TIMEOUT_CONN_ACCEPT_MS with a

value of 3000 milliseconds or the no-timeout value of NET_TMR_TIME_INFINITE.

D-15-13 NET_SOCK_CFG_TIMEOUT_CONN_CLOSE_MS

NET_SOCK_CFG_TIMEOUT_CONN_CLOSE_MS configures socket timeout value (in milliseconds

or no timeout if configured with NET_TMR_TIME_INFINITE) for socket close() operations.

It is recommended to set NET_SOCK_CFG_TIMEOUT_CONN_CLOSE_MS with a value of 10000
milliseconds or the no-timeout value of NET_TMR_TIME_INFINITE.
763

D-16 NETWORK SECURITY MANAGER CONFIGURATION

D-16-1 NET_SECURE_CFG_EN

NET_SECURE_CFG_EN determines whether or not the network security manager is enabled.

When the network security manager is enabled, a network security module (e.g., μC/SSL)

must be present in the build. NET_SECURE_CFG_EN can be set to either:

DEF_DISABLED Network security manager and security port layer disabled

or

DEF_ENABLED Network security manager and security port layer enabled

D-16-2 NET_SECURE_CFG_FS_EN

NET_SECURE_CFG_FS_EN determines whether or not file system operations can be used to

install keying material. When NET_SECURE_CFG_FS_EN is enabled, a file system (e.g., μC/FS)

must be present in the build. NET_SECURE_CFG_FS_EN can be set to either:

DEF_DISABLED Keying material cannot be installed from file system

or

DEF_ENABLED Keying material can be installed from file system

D-16-3 NET_SECURE_CFG_MAX_NBR_SOCK_SERVER

NET_SECURE_CFG_MAX_NBR_SOCK configures the maximum number of sockets server that

can be secured. If your application is a simple TCP server, you need to have two secure

sockets (one listening socket and one accepted socket). It is recommended to set

NET_SECURE_CFG_MAX_NBR_SOCK_SERVER to the initial value of 5 sockets and adjust this

value if more or less sockets are required. However, the maximum number of secure sockets

must be less than or equal to NET_SOCK_CFG_NBR_SOCK (see section D-15-2 on page 760).
764

D-16-4 NET_SECURE_CFG_MAX_NBR_SOCK_CLIENT

NET_SECURE_CFG_MAX_NBR_SOCK configures the maximum number of sockets client that

can be secured. If your application is a simple TCP client, you will only need to have one

secure socket to connect. It is recommended to set

NET_SECURE_CFG_MAX_NBR_SOCK_CLIENT to the initial value of 5 sockets and adjust this

value if more or less sockets are required. However, the maximum number of secure sockets

must be less than or equal to NET_SOCK_CFG_NBR_SOCK (see section D-15-2 on page 760).

D-16-5 NET_SECURE_CFG_MAX_CERT_LEN

NET_SECURE_CFG_MAX_CERT_LEN configures the maximum length (in bytes) of a server

certificate. It is recommended to set NET_SECURE_CFG_MAX_CERT_LEN to the default value of

1500 for standard certificate and adjust this value if required. You can find the size of any

certificate by right clicking on the DER or PEM file on a Windows environment and by

choosing ‘Properties’. Usually DER encoded keying material is smaller than PEM encoded

keying material.

D-16-6 NET_SECURE_CFG_MAX_KEY_LEN

NET_SECURE_CFG_MAX_KEY_LEN configures the maximum length (in bytes) of a certificate

server key. It is recommended to set NET_SECURE_CFG_MAX_KEY_LEN to the default value of

1500 for standard key and adjust this value if required. You can find the size of any key by

right clicking on the DER or PEM file on a Windows environment and by choosing

‘Properties’. Usually DER encoded keying material is smaller than PEM encoded keying

material.

D-16-7 NET_SECURE_CFG_MAX_NBR_CA

NET_SECURE_CFG_MAX_NBR_CA configures the maximum number of certificate authorities

(CAs) that can be installed. If many CAs are installed, they are saved into a linked-list. When

the client receives the server public key certificate, it scans the linked-list to see if it is

trusted by one of the installed CAs.
765

D-16-8 NET_SECURE_CFG_MAX_CA_CERT_LEN

NET_SECURE_CFG_MAX_CERT_LEN configures the maximum length (in bytes) of a certificate

authority’s certificate. It is recommended to set NET_SECURE_CFG_MAX_CA_CERT_LEN to the

default value of 1500 for standard certificate and adjust this value if required. You can find

the size of any certificate by right clicking on the DER or PEM file on a Windows

environment and by choosing ‘Properties’. Usually DER encoded keying material is smaller

than PEM encoded keying material.
766

D-17 BSD SOCKETS CONFIGURATION

D-17-1 NET_BSD_CFG_API_EN

NET_BSD_CFG_API_EN determines whether or not the standard BSD 4.x socket API is

included in the build:

DEF_DISABLED BSD 4.x layer API disabled

or

DEF_ENABLED BSD 4.x layer API enabled
767

D-18 NETWORK APPLICATION INTERFACE CONFIGURATION

D-18-1 NET_APP_CFG_API_EN

NET_APP_CFG_API_EN determines whether or not a simplified network application

programming interface (API) is included in the build:

DEF_DISABLED Network API layer disabled

or

DEF_ENABLED Network API layer enabled
768

D-19 NETWORK CONNECTION MANAGER CONFIGURATION

D-19-1 NET_CONN_CFG_FAMILY

The current version of μC/TCP-IP only supports IPv4 connections, and thus

NET_CONN_CFG_FAMILY should always be set to NET_CONN_FAMILY_IP_V4_SOCK.

D-19-2 NET_CONN_CFG_NBR_CONN

NET_CONN_CFG_NBR_CONN configures the maximum number of connections that μC/TCP-IP

can handle concurrently. This number depends entirely on how many simultaneous

connections the application requires and must be at least greater than the configured number

of application (socket) connections and transport layer (TCP) connections. Each connection

requires approximately 28 bytes of RAM, plus five pointers, plus two protocol addresses

(8 bytes assuming IPv4 addresses). It is recommended to set NET_CONN_CFG_NBR_CONN with

an initial value of 20 and adjust this value if more or less connections are required.
769

D-20 APPLICATION-SPECIFIC CONFIGURATION

This section defines the configuration constants related to μC/TCP-IP but that are

application-specific. Most of these configuration constants relate to the various ports for μC/

TCP-IP such as the CPU, OS, device, or network interface ports. Other configuration

constants relate to the compiler and standard library ports.

These configuration constants should be defined in an application’s app_cfg.h file.

D-20-1 Operating System Configuration

The following configuration constants relate to the μC/TCP-IP OS port. For many OSs, the

μC/TCP-IP task priorities, stack sizes, and other options will need to be explicitly configured

for the particular OS (consult the specific OS’s documentation for more information).

The priority of μC/TCP-IP tasks is dependent on the network communication requirements

of the application. For most applications, the priority for μC/TCP-IP tasks is typically lower

than the priority for other application tasks.

For μC/OS-II and μC/OS-III, the following macros must be configured within app_cfg.h:

NET_OS_CFG_IF_TX_DEALLOC_PRIO 10 (highest priority)
NET_OS_CFG_TMR_TASK_PRIO 51
NET_OS_CFG_IF_RX_TASK_PRIO 52 (lowest priority)

The arbitrary task priorities of 10, 51, and 52 are a good starting point for most

applications, where the network interface Transmit De-allocation task is assigned a higher

priority than all application tasks that use μC/TCP-IP network services but the Network

Timer task and network interface Receive task are assigned lower priorities than almost all

other application tasks.

NET_OS_CFG_IF_TX_DEALLOC_TASK_STK_SIZE 1000
NET_OS_CFG_IF_RX_TASK_STK_SIZE 1000
NET_OS_CFG_TMR_TASK_STK_SIZE 1000

The arbitrary stack size of 1000 is a good starting point for most applications.
770

The only guaranteed method of determining the required task stack sizes is to calculate the

maximum stack usage for each task. Obviously, the maximum stack usage for a task is the

total stack usage along the task’s most-stack-greedy function path plus the (maximum) stack

usage for interrupts. Note that the most-stack-greedy function path is not necessarily the

longest or deepest function path.

The easiest and best method for calculating the maximum stack usage for any task/function

should be performed statically by the compiler or by a static analysis tool since these can

calculate function/task maximum stack usage based on the compiler’s actual code

generation and optimization settings. So for optimal task stack configuration, we

recommend to invest in a task stack calculator tool compatible with your build toolchain.

D-20-2 μC/TCP-IP Configuration

The following configuration constants relate to the μC/TCP-IP OS port. For many OSs, the

μC/TCP-IP maximum queue sizes may need to be explicitly configured for the particular OS

(consult the specific OS’s documentation for more information).

For μC/OS-II and μC/OS-III, the following macros must be configured within app_cfg.h:

NET_OS_CFG_IF_RX_Q_SIZE

NET_OS_CFG_IF_TX_DEALLOC_Q_SIZE

The values configured for these macros depend on additional application dependent

information such as the number of transmit or receive buffers configured for the total

number of interfaces.

The following configuration for the above macros are recommended:

NET_OS_CFG_IF_RX_Q_SIZE should be configured such that it reflects the total number of

DMA receive descriptors on all physical interfaces. If DMA is not available, or a combination

of DMA and I/O based interfaces are configured then this number reflects the maximum

number of packets than can be acknowledged and signaled for during a single receive

interrupt event for all interfaces.
771

For example, if one interface has 10 receive descriptors and another interface is I/O based

but is capable of receiving 4 frames within its internal memory and issuing a single interrupt

request, then the NET_OS_CFG_IF_RX_Q_SIZE macro should be configured to 14. Defining a

number in excess of the maximum number of receivable frames per interrupt across all

interfaces would not be harmful, but the additional queue space will not be utilized.

NET_OS_CFG_IF_TX_DEALLOC_Q_SIZE should be defined to be the total number of small

and large transmit buffers declared for all interfaces.
772

D-21 μC/TCP-IP OPTIMIZATION

D-21-1 Optimizing μC/TCP-IP for Additional Performance

There are several configuration combinations that can improve overall μC/TCP-IP

performance. The following items can be used as a starting point:

1 Enable the assembly port optimizations, if available in the architecture.

2 Configure the μC/TCP-IP for speed optimization.

3 Configure optimum TCP window sizes for TCP communication. Disable argument

checking, statistics and error counters.

ASSEMBLY OPTIMIZATION

First, if using the ARM architecture, or other supported optimized architecture, the files

net_util_a.asm and lib_mem_a.asm may be included into the project and the following

macros should be defined and enabled:

app_cfg.h: #define LIB_MEM_CFG_OPTIMIZE_ASM_EN
net_cfg.h: Set NET_CFG_OPTIMIZE_ASM_EN to DEF_ENABLED

These files are generally located in the following directories:

\Micrium\Software\uC-LIB\Ports\ARM\IAR\lib_mem_a.asm
\Micrium\Software\uC-TCPIP-V2\Ports\ARM\IAR\net_util_a.asm

ENABLE SPEED OPTIMIZATION

Second, you may compile the Network Protocol Stack with speed optimizations enabled.

This can be accomplished by configuring the net_cfg.h macro NET_CFG_OPTIMIZE to

NET_OPTIMIZE_SPD.
773

TCP OPTIMIZATION

Third, the two net_cfg.h macros NET_TCP_CFG_RX_WIN_SIZE_OCTET and

NET_TCP_CFG_TX_WIN_SIZE_OCTET should configure each TCP connection’s receive and

transmit window sizes. It is recommended to set TCP window sizes to integer multiples of

each TCP connection’s maximum segment size (MSS). For example, systems with an

Ethernet MSS of 1460, a value 5840 (4 * 1460) is probably a better configuration than the

default window size of 4096 (4K).

DISABLE ARGUMENT CHECKING

Finally, once the application has been validated, argument checking, statistics and error

counters may optionally be disabled by configuring the following macros to DEF_DISABLED:

NET_ERR_CFG_ARG_CHK_EXT_EN
NET_ERR_CFG_ARG_CHK_DBG_EN
NET_CTR_CFG_STAT_EN
NET_CTR_CFG_ERR_EN
774

Appendix

E

μC/TCP-IP Error Codes

This appendix provides a brief explanation of μC/TCP-IP error codes defined in net_err.h.
Any error codes not listed here may be searched in net_err.h for both their numerical

value and usage.

Each error has a numerical value. The error codes are grouped. The definition of the

groups are:

Error code group Numbering serie

NETWORK-OS LAYER 1000

NETWORK UTILITY LIBRARY 2000

ASCII LIBRARY 3000

NETWORK STATISTIC MANAGEMENT 4000

NETWORK TIMER MANAGEMENT 5000

NETWORK BUFFER MANAGEMENT 6000

NETWORK CONNECTION MANAGEMENT 6000

NETWORK BOARD SUPPORT PACKAGE (BSP) 10000

NETWORK DEVICE 11000

NETWORK PHYSICAL LAYER 12000

NETWORK INTERFACE LAYER 13000

ARP LAYER 15000

NETWORK LAYER MANAGEMENT 20000

IP LAYER 21000

ICMP LAYER 22000

IGMP LAYER 23000

UDP LAYER 30000
775

E-1 NETWORK ERROR CODES

E-2 ARP ERROR CODES

TCP LAYER 31000

APPLICATION LAYER 40000

NETWORK SOCKET LAYER 41000

NETWORK SECURITY MANAGER LAYER 50000

NETWORK SECURITY LAYER 51000

10 NET_ERR_INIT_INCOMPLETE Network initialization not complete.

20 NET_ERR_INVALID_PROTOCOL Invalid/unknown network protocol type.

30 NET_ERR_INVALID_TRANSACTION Invalid/unknown network buffer pool type.

400 NET_ERR_RX General receive error. Receive data discarded.

450 NET_ERR_RX_DEST Destination address and/or port number not available

on this host.

500 NET_ERR_TX General transmit error. No data transmitted. A

momentarily delay should be performed to allow

additional buffers to be de-allocated before calling

send(), NetSock_TxData() or NetSock_TxDataTo().

15000 NET_ARP_ERR_NONE ARP operation completed successfully.

15020 NET_ARP_ERR_NULL_PTR Argument(s) passed NULL pointer.

15102 NET_ARP_ERR_INVALID_HW_ADDR_LEN Invalid ARP hardware address length.

15105 NET_ARP_ERR_INVALID_PROTOCOL_LEN Invalid ARP protocol address length.

15150 NET_ARP_ERR_CACHE_NONE_AVAIL No ARP cache entry structures available.

15151 NET_ARP_ERR_CACHE_INVALID_TYPE ARP cache type invalid or unknown.

15155 NET_ARP_ERR_CACHE_NOT_FOUND ARP cache entry not found.

15156 NET_ARP_ERR_CACHE_PEND ARP cache resolution pending.

Error code group Numbering serie
776

E-3 NETWORK ASCII ERROR CODES

E-4 NETWORK BUFFER ERROR CODES

3000 NET_ASCII_ERR_NONE ASCII operation completed successfully.

3020 NET_ASCII_ERR_NULL_PTR Argument(s) passed NULL pointer.

3100 NET_ASCII_ERR_INVALID_STR_LEN Invalid ASCII string length.

3101 NET_ASCII_ERR_INVALID_CHAR_LEN Invalid ASCII character length.

3102 NET_ASCII_ERR_INVALID_CHAR_VAL Invalid ASCII character value.

3103 NET_ASCII_ERR_INVALID_CHAR_SEQ Invalid ASCII character sequence.

3200 NET_ASCII_ERR_INVALID_CHAR Invalid ASCII character.

6010 NET_BUF_ERR_NONE_AVAIL No network buffers of required size available.

6031 NET_BUF_ERR_INVALID_SIZE Invalid network buffer pool size.

6032 NET_BUF_ERR_INVALID_IX Invalid buffer index outside data area.

6033 NET_BUF_ERR_INVALID_LEN Invalid buffer length specified outside of data area.

6040 NET_BUF_ERR_POOL_INIT Network buffer pool initialization failed.

6050 NET_BUF_ERR_INVALID_POOL_TYPE Invalid network buffer pool type.

6051 NET_BUF_ERR_INVALID_POOL_ADDR Invalid network buffer pool address.

6053 NET_BUF_ERR_INVALID_POOL_QTY Invalid number of pool buffers configured.
777

E-5 ICMP ERROR CODES

E-6 NETWORK INTERFACE ERROR CODES

E-7 IP ERROR CODES

13000 NET_IF_ERR_NONE Network interface operation completed successfully.

13010 NET_IF_ERR_NONE_AVAIL No network interfaces available. The value of

NET_IF_CFG_MAX_NBR_IF should be increased in

net_cfg.h.

13020 NET_IF_ERR_NULL_PTR Argument(s) passed NULL pointer.

13021 NET_IF_ERR_NULL_FNCT NULL interface API function pointer encountered.

13100 NET_IF_ERR_INVALID_IF Invalid network interface number specified.

13101 NET_IF_ERR_INVALID_CFG Invalid network interface configuration specified.

13110 NET_IF_ERR_INVALID_STATE Invalid network interface state for specified operation.

13120 NET_IF_ERR_INVALID_IO_CTRL_OPT Invalid I/O control option parameter specified.

13200 NET_IF_ERR_INVALID_MTU Invalid hardware MTU specified.

13210 NET_IF_ERR_INVALID_ADDR Invalid hardware address specified.

13211 NET_IF_ERR_INVALID_ADDR_LEN Invalid hardware address length specified.

21000 NET_IP_ERR_NONE IP operation completed successfully.

21020 NET_IP_ERR_NULL_PTR Argument(s) passed NULL pointer.

21115 NET_IP_ERR_INVALID_ADDR_HOST Invalid host IP address.

21117 NET_IP_ERR_INVALID_ADDR_GATEWAY Invalid gateway IP address.

21201 NET_IP_ERR_ADDR_CFG_STATE Invalid IP address state for attempted operation.

21202 NET_IP_ERR_ADDR_CFG_IN_PROGRESS Interface address configuration in progress.

21203 NET_IP_ERR_ADDR_CFG_IN_USE Specified IP address currently in use.

21210 NET_IP_ERR_ADDR_NONE_AVAIL No IP addresses configured.

21211 NET_IP_ERR_ADDR_NOT_FOUND IP address not found.

21220 NET_IP_ERR_ADDR_TBL_SIZE Invalid IP address table size argument passed.
778

E-8 IGMP ERROR CODES

E-9 OS ERROR CODES

21221 NET_IP_ERR_ADDR_TBL_EMPTY IP address table empty.

21222 NET_IP_ERR_ADDR_TBL_FULL IP address table full.

23000 NET_IGMP_ERR_NONE IGMP operation completed successfully.

23100 NET_IGMP_ERR_INVALID_VER Invalid IGMP version.

23101 NET_IGMP_ERR_INVALID_TYPE Invalid IGMP message type.

23102 NET_IGMP_ERR_INVALID_LEN Invalid IGMP message lenth.

23103 NET_IGMP_ERR_INVALID_CHK_SUM Invalid IGMP checksum.

23104 NET_IGMP_ERR_INVALID_ADDR_SRC Invalid IGMP IP source address.

23105 NET_IGMP_ERR_INVALID_ADDR_DEST Invalid IGMP IP destination address.

23106 NET_IGMP_ERR_INVALID_ADDR_GRP Invalid IGMP IP host group address

23200 NET_IGMP_ERR_HOST_GRP_NONE_AVAIL No host group available.

23201 NET_IGMP_ERR_HOST_GRP_INVALID_TYPE Invalid or unknown IGMP host group type.

23202 NET_IGMP_ERR_HOST_GRP_NOT_FOUND No IGMP host group found.

1010 NET_OS_ERR_LOCK Network global lock access not acquired.

OS-implemented lock may be corrupted.
779

E-10 UDP ERROR CODES

E-11 NETWORK SOCKET ERROR CODES

30040 NET_UDP_ERR_INVALID_DATA_SIZE UDP receive or transmit data does not fit into the

receive or transmit buffer.In the case of receive, excess

data bytes are dropped; for transmit, no data is sent.

30105 NET_UDP_ERR_INVALID_FLAG Invalid UDP flags specified.

30101 NET_UDP_ERR_INVALID_LEN_DATA Invalid protocol/data length.

30103 NET_UDP_ERR_INVALID_PORT_NBR Invalid UDP port number.

30000 NET_UDP_ERR_NONE UDP operation completed successfully.

30020 NET_UDP_ERR_NULL_PTR Argument(s) passed NULL pointer.

NET_UDP_ERR_NULL_SIZE Argument(s) passed NULL size.

41072 NET_SOCK_ERR_ADDR_IN_USE Socket address (IP / port number) already in use.

41020 NET_SOCK_ERR_CLOSED Socket already/previously closed.

41106 NET_SOCK_ERR_CLOSE_IN_PROGRESS Socket already closing.

41130 NET_SOCK_ERR_CONN_ACCEPT_Q_NONE_AVA
IL

Accept connection handle identifier not available.

41110 NET_SOCK_ERR_CONN_FAIL Socket operation failed.

41100 NET_SOCK_ERR_CONN_IN_USE Socket address (IP / port number) already connected.

41122 NET_SOCK_ERR_CONN_SIGNAL_TIMEOUT Socket operation not signaled before specified timeout.

41091 NET_SOCK_ERR_EVENTS_NBR_MAX Number of configured socket events is greater than the

maximum number of socket events.

41021 NET_SOCK_ERR_FAULT Fatal socket fault; close socket immediately.

41070 NET_SOCK_ERR_INVALID_ADDR Invalid socket address specified.

41071 NET_SOCK_ERR_INVALID_ADDR_LEN Invalid socket address length specified.

41055 NET_SOCK_ERR_INVALID_CONN Invalid socket connection.

41040 NET_SOCK_ERR_INVALID_DATA_SIZE Socket receive or transmit data does not fit into the

receive or transmit buffer.In the case of receive, excess

data bytes are dropped; for transmit, no data is sent.

41054 NET_SOCK_ERR_INVALID_DESC Invalid socket descriptor number.

41050 NET_SOCK_ERR_INVALID_FAMILY Invalid socket family; close socket immediately.
780

41058 NET_SOCK_ERR_INVALID_FLAG Invalid socket flags specified.

41057 NET_SOCK_ERR_INVALID_OP Invalid socket operation; e.g., socket not in the correct

state for specified socket call.

41080 NET_SOCK_ERR_INVALID_PORT_NBR Invalid port number specified.

41051 NET_SOCK_ERR_INVALID_PROTOCOL Invalid socket protocol; close socket immediately.

41053 NET_SOCK_ERR_INVALID_SOCK Invalid socket number specified.

41056 NET_SOCK_ERR_INVALID_STATE Invalid socket state; close socket immediately.

41059 NET_SOCK_ERR_INVALID_TIMEOUT Invalid or no timeout specified.

41052 NET_SOCK_ERR_INVALID_TYPE Invalid socket type; close socket immediately.

41000 NET_SOCK_ERR_NONE Socket operation completed successfully.

41010 NET_SOCK_ERR_NONE_AVAIL No available socket resources to allocate;

NET_SOCK_CFG_NBR_SOCK should be increased in

net_cfg.h.

41011 NET_SOCK_ERR_NOT_USED Socket not used; do not close or use the socket for

further operations.

41030 NET_SOCK_ERR_NULL_PTR Argument(s) passed NULL pointer.

41031 NET_SOCK_ERR_NULL_SIZE Argument(s) passed NULL size.

41085 NET_SOCK_ERR_PORT_NBR_NONE_AVAIL Random local port number not available.

41400 NET_SOCK_ERR_RX_Q_CLOSED Socket receive queue closed (received FIN from peer).

41401 NET_SOCK_ERR_RX_Q_EMPTY Socket receive queue empty.

41022 NET_SOCK_ERR_TIMEOUT No socket events occurred before timeout expired.
781

E-12 NETWORK SECURITY MANAGER ERROR CODES

E-13 NETWORK SECURITY ERROR CODES

50005 NET_SECURE_MGR_ERR_FORMAT Invalid keying material format.

50002 NET_SECURE_MGR_ERR_INIT Failed to initialize network security manager.

50000 NET_SECURE_MGR_ERR_NONE Network security manager operation successful.

50001 NET_SECURE_MGR_ERR_NOT_AVAIL Network security manager not available.

50003 NET_SECURE_MGR_ERR_NULL_PTR Argument(s) passed NULL pointer.

50004 NET_SECURE_MGR_ERR_TYPE Invalid keying material type.

51011 NET_SECURE_ERR_BLK_FREE Failed to free block from memory pool.

51010 NET_SECURE_ERR_BLK_GET Failed to get block from memory pool.

51013 NET_SECURE_ERR_HANDSHAKE Failed to perform secure handshake.

51002 NET_SECURE_ERR_INIT_POOL Failed to initialize memory pool.

51020 NET_SECURE_ERR_INSTALL Failed to install keying material.

51024 NET_SECURE_ERR_INSTALL_CA_SLOT No more CA slot available.

51023 NET_SECURE_ERR_INSTALL_DATE_CREATION Keying material creation date is invalid.

51022 NET_SECURE_ERR_INSTALL_DATE_EXPIRATION Keying material is expired.

51021 NET_SECURE_ERR_INSTALL_NOT_TRUSTED Keying material is not trusted.

50000 NET_SECURE_ERR_NONE Network security operation successful.

51001 NET_SECURE_ERR_NOT_AVAIL Failed to get secure session from memory pool.

51012 NET_SECURE_ERR_NULL_PTR Argument(s) passed NULL pointer.
782

Appendix

F

μC/TCP-IP Typical Usage

This appendix provides a brief explanation to a variety of common questions regarding how

to use μC/TCP-IP.

F-1 μC/TCP-IP CONFIGURATION AND INITIALIZATION

F-1-1 μC/TCP-IP STACK CONFIGURATION

Refer to Appendix D, “μC/TCP-IP Configuration and Optimization” on page 735 for

information on this topic.

F-1-2 μC/LIB MEMORY HEAP INITIALIZATION

The μC/LIB memory heap is used for allocation of the following objects:

1 Transmit small buffers

2 Transmit large buffers

3 Receive large buffers

4 Network Buffers (Network Buffer header and pointer to data area)

5 DMA receive descriptors

6 DMA transmit descriptors

7 Interface data area

8 Device driver data area
783

In the following example, the use of a Network Device Driver with DMA support is

assumed. DMA descriptors are included in the analysis. The size of Network Buffer Data

Areas (1, 2, 3) vary based on configuration. Refer to Chapter 9, “Buffer Management” on

page 277. However, for this example, the following object sizes in bytes are assumed:

■ Small transmit buffers: 152

■ Large transmit buffers: 1594 for maximum sized TCP packets

■ Large receive buffers: 1518

■ Size of DMA receive descriptor: 8

■ Size of DMA transmit descriptor: 8

■ Ethernet interface data area: 7

■ Average Ethernet device driver data area: 108

With a 4-byte alignment on all memory pool objects, it results in a worst case disposal of

three leading bytes for each object. In practice this is not usually true since the size of most

objects tend to be even multiples of four. Therefore, the alignment is preserved after having

aligned the start of the pool data area. However, this makes the case for allocating objects

with size to the next greatest multiple of four in order to prevent lost space due to

misalignment.

The approximate memory heap size may be determined according to the following

expressions:

nbr buf per interface = nbr small Tx buf +
 nbr large Tx buf +
 nbr large Rx buf

nbr net buf per interface = nbr buf per interface
784

nbr objects = nbr buf per interface +
 nbr net buf per interface +
 nbr Rx descriptors +
 nbr Tx descriptors +
 1 Ethernet data area +
 1 Device driver data area

interface mem = (nbr small Tx buf * 152) +
 (nbr large Tx buf * 1594) +
 (nbr large Rx buf * 1518) +
 (nbr Rx descriptors * 8) +
 (nbr Tx descriptors * 8) +
 (Ethernet IF data area * 7) +
 (Ethernet Drv data area * 108) +
 (nbr objects * 3)

total mem required = nbr interfaces * interface mem

EXAMPLE

With the following configuration, the memory heap required is:

■ 10 small transmit buffers

■ 10 large transmit buffers

■ 10 large receive buffers

■ 6 receive descriptors

■ 20 transmit descriptors

■ Ethernet interface (interface + device driver data area required)
785

The localhost interface, when enabled, requires a similar amount of memory except that it

does not require Rx and Tx descriptors, an IF data area, or a device driver data area.

The value determined by these expressions is only an estimate. In some cases, it may be

possible to reduce the size of the μC/LIB memory heap by inspecting the variable

Mem_PoolHeap.SegSizeRem after all interfaces have been successfully initialized and any

additional application allocations (if applicable) have been completed.

Excess heap space, if present, may be subtracted from the lib heap size configuration

macro, LIB_MEM_CFG_HEAP_SIZE, present in app_cfg.h.

F-1-3 μC/TCP-IP TASK STACKS

In general, the size of μC/TCP-IP task stacks is dependent on the CPU architecture and

compiler used.

On ARM processors, experience has shown that configuring the task stacks to 1024 OS_STK
entries (4,096 bytes) is sufficient for most applications. Certainly, the stack sizes may be

examined and reduced accordingly once the run-time behavior of the device has been

analyzed and additional stack space deemed to be unnecessary.

nbr buf per interface = 10 + 10 + 10 = 30
nbr net buf per interface = nbr buf per interface = 30
nbr objects = (30 + 30 + 6 + 20 + 1 + 1) = 88
interface mem = (10 * 152) +
 (10 * 1594) +
 (10 * 1518) +
 (6 * 8) +
 (20 * 8) +
 (1 * 7) +
 (1 * 108) +
 (88 * 3) = 33,227 bytes

total mem required = 33,227 (+ localhost memory, if enabled)
786

The only guaranteed method of determining the required task stack sizes is to calculate the

maximum stack usage for each task. Obviously, the maximum stack usage for a task is the

total stack usage along the task’s most-stack-greedy function path plus the (maximum) stack

usage for interrupts. Note that the most-stack-greedy function path is not necessarily the

longest or deepest function path.

The easiest and best method for calculating the maximum stack usage for any task/function

should be performed statically by the compiler or by a static analysis tool since these can

calculate function/task maximum stack usage based on the compiler’s actual code

generation and optimization settings. So for optimal task stack configuration, we

recommend to invest in a task stack calculator tool compatible with your build toolchain.

See also section D-20-1 “Operating System Configuration” on page 770.

F-1-4 μC/TCP-IP TASK PRIORITIES

We recommend to configure the Network Protocol Stack task priorities as follows:

NET_OS_CFG_IF_TX_DEALLOC_TASK_PRIO (highest priority)
NET_OS_CFG_TMR_TASK_PRIO
NET_OS_CFG_IF_RX_TASK_PRIO (lowest priority)

We recommend that the μC/TCP-IP Timer task and network interface Receive task be lower

priority than almost all other application tasks; but we recommend that the network

interface Transmit De-allocation task be higher priority than all application tasks that use

μC/TCP-IP network services.

See also section D-20-1 “Operating System Configuration” on page 770.

F-1-5 μC/TCP-IP QUEUE SIZES

Refer to section D-20-2 “μC/TCP-IP Configuration” on page 771.
787

F-1-6 μC/TCP-IP INITIALIZATION

The following example code demonstrates the initialization of two identical network

interface devices via a local, application developer provided function named

AppInit_TCPIP(). Another example of this method can also be found in section 4-3

“Application Code” on page 69

The first interface is bound to two different sets of network addresses on two separate

networks. The second interface is configured to operate on one of the same networks as the

first interface, but could easily be plugged into a separate network that happens to use the

same address ranges.

static void AppInit_TCPIP (void)
{
 NET_IF_NBR if_nbr;
 NET_IP_ADDR ip;
 NET_IP_ADDR msk;
 NET_IP_ADDR gateway;
 CPU_BOOLEAN cfg_success;
 NET_ERR err;

 Mem_Init(); (1)
 err = Net_Init(); (2)
 if (err != NET_ERR_NONE) {
 return;
 }

 if_nbr = NetIF_Add((void *)&NetIF_API_Ether, (3)
 (void *)&NetDev_API_FC,
 (void *)&NetDev_BSP_FC_0,
 (void *)&NetDev_Cfg_FC_0,
 (void *)&NetPHY_API_Generic,
 (void *)&NetPhy_Cfg_FC_0,
 (NET_ERR *)&err);
788

Listing F-1 Complete Initialization Example

LF-1(1) Initialize μC/LIB memory management. Most applications call this function

PRIOR to AppInit_TCPIP() so that other parts of the application may benefit

from memory management functionality prior to initializing μC/TCP-IP.

LF-1(2) Initialize μC/TCP-IP. This function must only be called once following the call

to μC/LIB Mem_Init(). The return error code should be checked for

NET_ERR_NONE before proceeding

LF-1(3) Add the first network interface to the system. In this case, an Ethernet interface

bound to a Ethernet controller (EC) hardware device and generic (MII or RMII)

compliant physical layer device is being configured. The interface uses a

 if (err == NET_IF_ERR_NONE) {
 ip = NetASCII_Str_to_IP((CPU_CHAR *)”192.168.1.2”, &err); (4)
 msk = NetASCII_Str_to_IP((CPU_CHAR *)”255.255.255.0”, &err);
 gateway = NetASCII_Str_to_IP((CPU_CHAR *)”192.168.1.1”, &err);
 cfg_success = NetIP_CfgAddrAdd(if_nbr, ip, msk, gateway, &err); (5)

 ip = NetASCII_Str_to_IP((CPU_CHAR *)”10.10.1.2”, &err); (6)
 msk = NetASCII_Str_to_IP((CPU_CHAR *)”255.255.255.0”, &err);
 gateway = NetASCII_Str_to_IP((CPU_CHAR *)”10.10.1.1”, &err);
 cfg_success = NetIP_CfgAddrAdd(if_nbr, ip, msk, gateway, &err); (7)

 NetIF_Start(if_nbr, &err); (8)
 }

 if_nbr = NetIF_Add((void *)&NetIF_API_Ether, (9)
 (void *)&NetDev_API_FC,
 (void *)&NetDev_BSP_FC_1,
 (void *)&NetDev_Cfg_FC_1,
 (void *)&NetPHY_API_Generic,
 (void *)&NetPhy_Cfg_FC_1,
 (NET_ERR *)&err);

 if (err == NET_IF_ERR_NONE) {
 ip = NetASCII_Str_to_IP((CPU_CHAR *)”192.168.1.3”, &err); (10)
 msk = NetASCII_Str_to_IP((CPU_CHAR *)”255.255.255.0”, &err);
 gateway = NetASCII_Str_to_IP((CPU_CHAR *)”192.168.1.1”, &err);
 cfg_success = NetIP_CfgAddrAdd(if_nbr, ip, msk, gateway, &err); (11)

 NetIF_Start(if_nbr, &err); (12)
 }
}

789

different device configuration structure than the second interface being added

in Step 8. Each interface requires a unique device BSP interface and

configuration structure. Physical layer device configuration structures however

could be re-used if the Physical layer configurations are exactly the same. The

return error should be checked before starting the interface.

LF-1(4) Obtain the hexadecimal equivalents for the first set of Internet addresses to

configure on the first added interface.

LF-1(5) Configure the first added interface with the first set of specified addresses.

LF-1(6) Obtain the hexadecimal equivalents for the second set of Internet addresses to

configure on the first added interface. The same local variables have been used

as when the first set of address information was configured. Once the address

set is configured to the interface, as in Step 4, the local copies of the configured

addresses are no longer necessary and can be overwritten with the next set of

addresses to configure.

LF-1(7) Configure the first added interface with the second set of specified addresses.

LF-1(8) Start the first interface. The return error code should be checked, but this

depends on whether the application will attempt to restart the interface should

an error occur. This example assumes that no error occurs when starting the

interface. Initialization for the first interface is now complete, and if no further

initialization takes place, the first interface will respond to ICMP Echo (ping)

requests on either of its configured addresses.

LF-1(9) Add the second network interface to the system. In this case, an Ethernet

interface bound to a Ethernet controller (EC) hardware device and generic (MII

or RMII) compliant physical layer device is being configured. The interface uses

a different device configuration structure than the first interface added in Step

2. Each interface requires a unique device BSP interface and configuration

structure. Physical layer device configuration structures, however, could be

re-used if the Physical layer configurations are exactly the same. The return

error should be checked before starting the interface.

LF-1(10) Obtain the hexadecimal equivalents for the first and only set of Internet

addresses to configure on the second added interface.
790

LF-1(11) Configure the second interface with the first and only set of specified

addresses.

LF-1(12) Start the second interface. The return error code should be checked, but this

depends on whether the application will attempt to restart the interface should

an error occur. This example assumes that no error occurs when starting the

interface. Initialization for the second interface is now complete and it will

respond to ICMP Echo (ping) requests on its configured address.

F-2 NETWORK INTERFACES, DEVICES, AND BUFFERS

F-2-1 NETWORK INTERFACE CONFIGURATION

ADDING AN INTERFACE

Interfaces may be added to the stack by calling NetIF_Add(). Each new interface requires

additional BSP. The order of addition is critical to ensure that the interface number assigned

to the new interface matches the code defined within net_bsp.c. See section 16-1

“Network Interface Configuration” on page 361 for more information on configuring and

adding interfaces.

STARTING AN INTERFACE

Interfaces may be started by calling NetIF_Start(). See section 16-2-1 “Starting Network

Interfaces” on page 366 for more information on starting interfaces.

STOPPING AN INTERFACE

Interfaces may be started by calling NetIF_Stop(). See section 16-2-2 “Stopping Network

Interfaces” on page 367 for more information on stopping interfaces.

CHECKING FOR ENABLED INTERFACE

The application may check if an interface is enabled by calling NetIF_IsEn() or

NetIF_IsEnCfgd(). See section C-9-10 “NetIF_IsEn()” on page 517 and section C-9-11

“NetIF_IsEnCfgd()” on page 518 for more information.
791

F-2-2 NETWORK AND DEVICE BUFFER CONFIGURATION

LARGE TRANSMIT BUFFERS ARE 1594 BYTES

Refer to the section 9-3 “Network Buffer Sizes” on page 279 for more information.

NUMBER OF RX PR TX BUFFERS TO CONFIGURE

The number of large receive, small transmit and large transmit buffers configured for a

specific interface depend on several factors.

1 Desired level of performance.

2 Amount of data to be either transmitted or received.

3 Ability of the target application to either produce or consume transmitted or received

data.

4 Average CPU utilization.

5 Average network utilization.

The discussion on the bandwidth-delay product is always valid. In general, the more buffers

the better. However, the number of buffers can be tailored based on the application. For

example, if an application receives a lot of data but transmits very little, then it may be

sufficient to define a number of small transmit buffers for operations such as TCP

acknowledgements and allocate the remaining memory to large receive buffers. Similarly, if

an application transmits and receives little, then the buffer allocation emphasis should be on

defining more transmit buffers. However, there is a caveat:

If the application is written such that the task that consumes receive data runs infrequently

or the CPU utilization is high and the receiving application task(s) becomes starved for CPU

time, then more receive buffers will be required.

To ensure the highest level of performance possible, it makes sense to define as many

buffers as possible and use the interface and pool statistics data in order to refine the

number after having run the application for a while. A busy network will require more

receive buffers in order to handle the additional broadcast messages that will be received.
792

In general, at least two large and two small transmit buffers should be configured. This

assumes that neither the network or CPU are very busy.

Many applications will receive properly with four or more large receive buffers. However,

for TCP applications that move a lot of data between the target and the peer, this number

may need to be higher.

Specifying too few transmit or receive buffers may lead to stalls in communication and

possibly even dead-lock. Care should be taken when configuring the number of buffers.

μC/TCP-IP is often tested with configurations of 10 or more small transmit, large transmit,

and large receive buffers.

All device configuration structures and declarations are in the provided files named

net_dev_cfg.c and net_dev_cfg.h. Each configuration structure must be completely

initialized in the specified order. The following listing shows where to define the number of

buffers per interface as calculated
793

Listing F-2 Network Device Driver buffer configuration

LF-2(1) Receive buffer size. This field sets the size of the largest receivable packet and

may be set to match the application’s requirements.

LF-2(2) Number of receive buffers. This setting controls the number of receive buffers

that will be allocated to the interface. This value must be set greater than or

equal to one buffer if the interface is receiving only UDP. If TCP data is

expected to be transferred across the interface, then there must be the

minimum of receive buffers as calculated by the BDP.

LF-2(3) Large transmit buffer size. This field controls the size of the large transmit

buffers allocated to the device in bytes. This field has no effect if the number of

large transmit buffers is configured to zero. Setting the size of the large transmit

buffers below 1594, bytes may hinder the stack’s ability to transmit full-sized IP

const NET_DEV_CFG_ETHER NetDev_Cfg_Processor_0 = {
 ,
 1518, (1)
 10, (2)
 16,
 0,

 NET_IF_MEM_TYPE_MAIN,
 1594, (3)
 5, (4)
 256, (5)
 5, (6)
 16,
 0,

 0x00000000,
 0,

 10, (7)
 5, (8)

 0x40001000,
 0,

 "00:50:C2:25:60:02"
};
794

datagrams since IP transmit fragmentation is not yet supported. Micrium

recommends setting this field to 1594 bytes in order to accommodate

μC/TCP-IPs internal packet building mechanisms.

LF-2(4) Number of large transmit buffers. This field controls the number of large

transmit buffers allocated to the device. The developer may set this field to zero

to make room for additional small transmit buffers, however, the size of the

maximum transmittable UDP packet will depend on the size of the small

transmit buffers, (see #5).

LF-2(5) Small transmit buffer size. For devices with a minimal amount of RAM, it is

possible to allocate small transmit buffers as well as large transmit buffers. In

general, Micrium recommends 256 byte small transmit buffers, however, the

developer may adjust this value according to the application requirements. This

field has no effect if the number of small transmit buffers is configured to zero.

LF-2(6) Number of small transmit buffers. This field controls the number of small

transmit buffers allocated to the device. The developer may set this field to zero

to make room for additional large transmit buffers if required.

NUMBER OF DMA DESCRIPTORS TO CONFIGURE

If the hardware device is an Ethernet MAC that supports DMA, then the number of

configured receive descriptors will play an important role in determining overall

performance for the configured interface.

For applications with 10 or less large receive buffers, it is desirable to configure the number

of receive descriptors to that of 60% to 70% of the number of configured receive buffers.

In this example, 60% of 10 receive buffers allows for four receive buffers to be available to

the stack waiting to be processed by application tasks. While the application is processing

data, the hardware may continue to receive additional frames up to the number of

configured receive descriptors.

There is, however, a point in which configuring additional receive descriptors no longer

greatly impacts performance. For applications with 20 or more buffers, the number of

descriptors can be configured to 50% of the number of configured receive buffers. After this

point, only the number of buffers remains a significant factor; especially for slower or busy

CPUs and networks with higher utilization.
795

In general, if the CPU is not busy and the μC/TCP-IP Receive task has the opportunity to

run often, the ratio of receive descriptors to receive buffers may be reduced further for very

high numbers of available receive buffers (e.g., 50 or more).

The number of transmit descriptors should be configured such that it is equal to the number

of small plus the number of large transmit buffers.

These numbers only serve as a starting point. The application and the environment that the

device will be attached to will ultimately dictate the number of required transmit and

receive descriptors necessary for achieving maximum performance.

Specifying too few descriptors can cause communication delays. See Listing F-2 for

descriptors configuration.

LF-2(7) Number of receive descriptors. For DMA-based devices, this value is utilized by

the device driver during initialization in order to allocate a fixed-size pool of

receive descriptors to be used by the device. The number of descriptors must

be less than the number of configured receive buffers. Micrium recommends

setting this value to approximately 60% to 70%f of the number of receive

buffers. Non DMA based devices may configure this value to zero.

LF-2(8) Number of transmit descriptors. For DMA-based devices, this value is utilized

by the device driver during initialization in order to allocate a fixed-size pool of

transmit descriptors to be used by the device. For best performance, the

number of transmit descriptors should be equal to the number of small, plus

the number of large transmit buffers configured for the device. Non DMA based

devices may configure this value to zero.

CONFIGURING TCP WINDOW SIZES

Once number and size of the transmit and receive buffers are configured, as explained in

the previous section, the last thing that need to be done is to configure the TCP Transmit

and Receive Window sizes. These parameters are found in the net_cfg.h file in the

TRANSMISSION CONTROL PROTOCOL LAYER CONFIGURATION section.
796

Listing F-3 TCP Transmit and Receive Window Size configuration

LF-3(1) This #define configures the TCP Receive Window size. It is recommended to

set this parameter to the number of receive descriptors in the case of DMA or to

the number of receive buffers in the case of non-DMA, multiplied by the MSS.

For example, if 4 descriptors or 4 receive buffers are required, the TCP Receive

WIndow size is 4 * 1460 = 5840 bytes.

LF-3(2) This #define configures the TCP Transmit Window size. It is recommended to

set this parameter to the number of transmit descriptors in the case of DMA or

to the number of transmit buffers in the case of non-DMA, multiplied by the

MSS. For example, if 2 descriptors or 2 receive buffers are required, the TCP

Receive WIndow size is 2 * 1460 = 2920 bytes.

WRITING OR OBTAINING ADDITIONAL DEVICE DRIVERS

Contact Micrium for information regarding obtaining additional device drivers. If a specific

driver is not available, Micrium may develop the driver by providing engineering consulting

services.

Alternately, a new device driver may be developed by filling in a template driver provided

with the μC/TCP-IP source code.

See Chapter 7, “Device Driver Implementation” on page 139 for more information.

#define NET_TCP_CFG_RX_WIN_SIZE_OCTET 4096 /* Configure TCP connection receive window size.
*/ (1)
#define NET_TCP_CFG_TX_WIN_SIZE_OCTET 4096 /* Configure TCP connection transmit window size.
*/ (2)
797

F-2-3 ETHERNET MAC ADDRESS

GETTING AN INTERFACE MAC ADDRESS

The application may call NetIF_AddrHW_Get() to obtain the MAC address for a specific

interface.

CHANGING AN INTERFACE MAC ADDRESS

The application may call NetIF_AddrHW_Set() in order to set the MAC address for a

specific interface.

GETTING A HOST MAC ADDRESS ON MY NETWORK

In order to determine the MAC address of a host on the network, the Network Protocol

Stack must have an ARP cache entry for the specified host protocol address. An application

may check to see if an ARP cache entry is present by calling NetARP_CacheGetAddrHW().

If an ARP cache entry is not found, the application may call NetARP_ProbeAddrOnNet() to
send an ARP request to all hosts on the network. If the target host is present, an ARP reply

will be received shortly and the application should wait and then call

NetARP_CacheGetAddrHW() to determine if the ARP reply has been entered into the ARP

cache.

The following example shows how to obtain the Ethernet MAC address of a host on the

local area network:
798

void AppGetRemoteHW_Addr (void)
{
 NET_IP_ADDR addr_ip_local;
 NET_IP_ADDR addr_ip_remote;
 CPU_CHAR *paddr_ip_remote;
 CPU_CHAR addr_hw_str[NET_IF_ETHER_ADDR_SIZE_STR];
 CPU_INT08U addr_hw[NET_IF_ETHER_ADDR_SIZE];
 NET_ERR err;

 /* ------------- PREPARE IP ADDRs ------------- */
 paddr_ip_local = “10.10.1.10”; /* MUST be one of host’s configured IP addrs. */
 addr_ip_local = NetASCII_Str_to_IP((CPU_CHAR *) paddr_ip_local,
 (NET_ERR *)&err);
 if (err != NET_ASCII_ERR_NONE) {
 printf(“ Error #%d converting IP address %s”, err, paddr_ip_local);
 return;
 }

 paddr_ip_remote = “10.10.1.50”; /* Remote host’s IP addr to get hardware addr. */
 addr_ip_remote = NetASCII_Str_to_IP((CPU_CHAR *) paddr_ip_remote,
 (NET_ERR *)&err);
 if (err != NET_ASCII_ERR_NONE) {
 printf(“ Error #%d converting IP address %s”, err, paddr_ip_remote);
 return;
 }

 addr_ip_local = NET_UTIL_HOST_TO_NET_32(addr_ip_local);
 addr_ip_remote = NET_UTIL_HOST_TO_NET_32(addr_ip_remote);

 /* ------------ PROBE ADDR ON NET ------------- */
 NetARP_ProbeAddrOnNet((NET_PROTOCOL_TYPE) NET_PROTOCOL_TYPE_IP_V4,
 (CPU_INT08U *)&addr_ip_local,
 (CPU_INT08U *)&addr_ip_remote,
 (NET_ARP_ADDR_LEN) sizeof(addr_ip_remote),
 (NET_ERR *)&err);
 if (err != NET_ARP_ERR_NONE) {
 printf(“ Error #%d probing address %s on network”, err, addr_ip_remote);
 return;
 }

 OSTimeDly(2); /* Delay short time for ARP to probe network. */
799

Listing F-4 Obtaining the Ethernet MAC address of a host

 /* ---- QUERY ARP CACHE FOR REMOTE HW ADDR ---- */
(void)NetARP_CacheGetAddrHW((CPU_INT08U *)&addr_hw[0],
 (NET_ARP_ADDR_LEN) sizeof(addr_hw_str),
 (CPU_INT08U *)&addr_ip_remote,
 (NET_ARP_ADDR_LEN) sizeof(addr_ip_remote),
 (NET_ERR *)&err);
 switch (err) {
 case NET_ARP_ERR_NONE:
 NetASCII_MAC_to_Str((CPU_INT08U *)&addr_hw[0],
 (CPU_CHAR *)&addr_hw_str[0],
 (CPU_BOOLEAN) DEF_NO,
 (CPU_BOOLEAN) DEF_YES,
 (NET_ERR *)&err);
 if (err != NET_ASCII_ERR_NONE) {
 printf(“ Error #%d converting hardware address”, err);
 return;
 }

 printf(“ Remote IP Addr %s @ HW Addr %s\n\r”, paddr_ip_remote, &addr_hw_str[0]);
 break;

 case NET_ARP_ERR_CACHE_NOT_FOUND:
 printf(“ Remote IP Addr %s NOT found on network\n\r”, paddr_ip_remote);
 break;

 case NET_ARP_ERR_CACHE_PEND:
 printf(“ Remote IP Addr %s NOT YET found on network\n\r”, paddr_ip_remote);
 break;

 case NET_ARP_ERR_NULL_PTR:
 case NET_ARP_ERR_INVALID_HW_ADDR_LEN:
 case NET_ARP_ERR_INVALID_PROTOCOL_ADDR_LEN:
 default:
 printf(“ Error #%d querying ARP cache”, err);
 break;
 }
}

800

F-2-4 ETHERNET PHY LINK STATE

INCREASING THE RATE OF LINK STATE POLLING

The application may increase the μC/TCP-IP link state polling rate by calling

NetIF_CfgPhyLinkPeriod() (see section C-9-6 on page 508). The default value is 250ms.

GETTING THE CURRENT LINK STATE FOR AN INTERFACE

μC/TCP-IP provides two mechanisms for obtaining interface link state.

1 A function which reads a global variable that is periodically updated.

2 A function which reads the current link state from the hardware.

Method 1 provides the fastest mechanism to obtain link state since it does not require

communication with the physical layer device. For most applications, this mechanism is

suitable and if necessary, the polling rate can be increased by calling

NetIF_CfgPhyLinkPeriod(). In order to utilize Method 1, the application may call

NetIF_LinkStateGet() which returns NET_IF_LINK_UP or NET_IF_LINK_DOWN.

The accuracy of Method 1 can be improved by using a physical layer device and driver

combination that supports link state change interrupts. In this circumstance, the value of the

global variable containing the link state is updated immediately following a link state

change. Therefore, the polling rate can be reduced further if desired and a call to

NetIF_LinkStateGet() will return the actual link state.

Method 2 requires the application to call NetIF_IO_Ctrl() with the option parameter set

to either NET_IF_IO_CTRL_LINK_STATE_GET or NET_IF_IO_CTRL_LINK_STATE_GET_INFO.

■ If the application specifies NET_IF_IO_CTRL_LINK_STATE_GET, then NET_IF_LINK_UP
or NET_IF_LINK_DOWN will be returned.

■ Alternatively, if the application specifies NET_IF_IO_CTRL_LINK_STATE_GET_INFO, the

link state details such as speed and duplex will be returned.

The advantage to Method 2 is that the link state returned is the actual link state as reported

by the hardware at the time of the function call. However, the overhead of communicating

with the physical layer device may be high and therefore some cycles may be wasted
801

waiting for the result since the connection bus between the CPU and the physical layer

device is often only a couple of MHz.

FORCING AN ETHERNET PHY TO A SPECIFIC LINK STATE

The generic PHY driver that comes with μC/TCP-IP does not provide a mechanism for

disabling auto-negotiation and specifying a desired link state. This restriction is required in

order to remain MII register block compliant with all (R)MII compliant physical layer

devices.

However, μC/TCP-IP does provide a mechanism for coaching the physical layer device into

advertising only the desired auto-negotiation states. This may be achieved by adjusting the

physical layer device configuration as specified in net_dev_cfg.c with alternative link

speed and duplex values.

The following is an example physical layer device configuration structure.

The parameters NET_PHY_SPD_AUTO and NET_PHY_DUPLEX_AUTO may be changed to match

any of the following settings:

NET_PHY_SPD_10
NET_PHY_SPD_100
NET_PHY_SPD_1000
NET_PHY_SPD_AUTO
NET_PHY_DUPLEX_HALF
NET_PHY_DUPLEX_FULL
NET_PHY_DUPLEX_AUTO

This mechanism is only effective when both the physical layer device attached to the target

and the remote link state partner support auto-negotiation.

NET_PHY_CFG_ETHER NetPhy_Cfg_Generic_0 = {
 0,
 NET_PHY_BUS_MODE_MII,
 NET_PHY_TYPE_EXT,
 NET_PHY_SPD_AUTO,
 NET_PHY_DUPLEX_AUTO
};
802

F-3 IP ADDRESS CONFIGURATION

F-3-1 CONVERTING IP ADDRESSES TO AND FROM THEIR
DOTTED DECIMAL REPRESENTATION

μC/TCP-IP contains functions to perform various string operations on IP addresses.

The following example shows how to use the NetASCII module in order to convert IP

addresses to and from their dotted-decimal representations:

F-3-2 ASSIGNING STATIC IP ADDRESSES TO AN INTERFACE

The constant NET_IP_CFG_IF_MAX_NBR_ADDR specified in net_cfg.h determines the

maximum number of IP addresses that may be assigned to an interface. Many IP addresses

may be added up to the specified maximum by calling NetIP_CfgAddrAdd().

Configuring an IP gateway address is not necessary when communicating only within your

local network.

NET_IP_ADDR ip;
CPU_INT08U ip_str[16];
NET_ERR err;
ip = NetASCII_Str_to_IP((CPU_CHAR *)”192.168.1.65”, &err);
NetASCII_IP_to_Str(ip, &ip_str[0], DEF_NO, &err);

 CPU_BOOLEAN cfg_success;

 ip = NetASCII_Str_to_IP((CPU_CHAR *)”192.168.1.65”, perr);
 msk = NetASCII_Str_to_IP((CPU_CHAR *)”255.255.255.0”, perr);
 gateway = NetASCII_Str_to_IP((CPU_CHAR *)”192.168.1.1”, perr);
 cfg_success = NetIP_CfgAddrAdd(if_nbr, ip, msk, gateway, perr);
803

F-3-3 REMOVING STATICALLY ASSIGNED IP ADDRESSES FROM
AN INTERFACE

Statically assigned IP addresses for a specific interface may be removed by calling

NetIP_CfgAddrRemove().

Alternatively, the application may call NetIP_CfgAddrRemoveAll() to remove all

configured static addresses for a specific interface.

F-3-4 GETTING A DYNAMIC IP ADDRESS

μC/DHCPc must be obtained and integrated into the application to dynamically assign an IP

address to an interface.

F-3-5 GETTING ALL THE IP ADDRESSES CONFIGURED ON A
SPECIFIC INTERFACE

The application may obtain the protocol address information for a specific interface by

calling NetIP_GetAddrHost(). This function may return one or more configured addresses.

Similarly, the application may call NetIP_GetAddrSubnetMask() and

NetIP_GetAddrDfltGateway() in order to determine the subnet mask and gateway

information for a specific interface.

F-4 SOCKET PROGRAMMING

F-4-1 USING μC/TCP-IP SOCKETS

Refer to Chapter 9, “Socket Programming” on page 273 for code examples on this topic.
804

F-4-2 JOINING AND LEAVING AN IGMP HOST GROUP

μC/TCP-IP supports IP multicasting with IGMP. In order to receive packets addressed to a

given IP multicast group address, the stack must have been configured to support

multicasting in net_cfg.h, and that host group has to be joined.

The following examples show how to join and leave an IP multicast group with μC/TCP-IP:

F-4-3 TRANSMITTING TO A MULTICAST IP GROUP ADDRESS

Transmitting to an IP multicast group is identical to transmitting to a unicast or broadcast

address. However, the stack must be configured to enable multicast transmit.

NET_IF_NBR if_nbr;
NET_IP_ADDR group_ip_addr;
NET_ERR err;

if_nbr = NET_IF_NBR_BASE_CFGD;
group_ip_addr = NetASCII_Str_to_IP(“233.0.0.1”, &err);
if (err != NET_ASCII_ERR_NONE) {
 /* Handle error. */
}
NetIGMP_HostGrpJoin(if_nbr, group_ip_addr, &err);
if (err != NET_IGMP_ERR_NONE) {
 /* Handle error. */
}
[...]
NetIGMP_HostGrpLeave(if_nbr, group_ip_addr, &err);
if (err != NET_IGMP_ERR_NONE) {
 /* Handle error. */
}

805

F-4-4 RECEIVING FROM A MULTICAST IP GROUP

An IP multicast group must be joined before packets can be received from it from it (see

section F-4-2 “Joining and Leaving an IGMP Host Group” on page 805 for more

information). Once this is done, receiving from a multicast group only requires a socket

bound to the NET_SOCK_ADDR_IP_WILDCARD address, as shown in the following example:

NET_SOCK_ID sock;
NET_SOCK_ADDR_IP sock_addr_ip;
NET_SOCK_ADDR addr_remote;
NET_SOCK_ADDR_LEN addr_remote_len;
CPU_CHAR rx_buf[100];
CPU_INT16U rx_len;
NET_ERR err;

sock = NetSock_Open((NET_SOCK_PROTOCOL_FAMILY) NET_SOCK_ADDR_FAMILY_IP_V4,
 (NET_SOCK_TYPE) NET_SOCK_TYPE_DATAGRAM,
 (NET_SOCK_PROTOCOL) NET_SOCK_PROTOCOL_UDP,
 (NET_ERR *)&err);
if (err != NET_SOCK_ERR_NONE) {
 /* Handle error. */
}
Mem_Set(&sock_addr_ip, (CPU_CHAR)0, sizeof(sock_addr_ip));
sock_addr_ip.AddrFamily = NET_SOCK_ADDR_FAMILY_IP_V4;
sock_addr_ip.Addr = NET_UTIL_HOST_TO_NET_32(NET_SOCK_ADDR_IP_WILDCARD);
sock_addr_ip.Port = NET_UTIL_HOST_TO_NET_16(10000);
NetSock_Bind((NET_SOCK_ID) sock,
 (NET_SOCK_ADDR *)&sock_addr_ip,
 (NET_SOCK_ADDR_LEN) NET_SOCK_ADDR_SIZE,
 (NET_ERR *)&err);
if (err != NET_SOCK_ERR_NONE) {
 /* Handle error. */
}

rx_len = NetSock_RxDataFrom((NET_SOCK_ID) sock,
 (void *)&rx_buf [0],
 (CPU_INT16U) BUF_SIZE,
 (CPU_INT16S) NET_SOCK_FLAG_NONE,
 (NET_SOCK_ADDR *)&addr_remote,
 (NET_SOCK_ADDR_LEN *)&addr_remote_len,
 (void *) 0,
 (CPU_INT08U) 0,
 (CPU_INT08U *) 0,
 (NET_ERR *)&err);
806

F-4-5 THE APPLICATION RECEIVES SOCKET ERRORS
IMMEDIATELY AFTER REBOOT

Immediately after a network interface is added, the physical layer device is reset and

network interface and device initialization begins. However, it may take up to three seconds

for the average Ethernet physical layer device to complete auto-negotiation. During this

time, the socket layer will return NET_SOCK_ERR_LINK_DOWN for sockets that are bound to

the interface in question.

The application should attempt to retry the socket operation with a short delay between

attempts until network link has been established.

F-4-6 REDUCING THE NUMBER OF TRANSITORY ERRORS
(NET_ERR_TX)

The number of transmit buffer should be increased. Additionally, it may be helpful to add a

short delay between successive calls to socket transmit functions.

F-4-7 CONTROLLING SOCKET BLOCKING OPTIONS

Socket blocking options may be configured during compile time by adjusting the

net_cfg.h macro NET_SOCK_CFG_BLOCK_SEL to the following values:

NET_SOCK_BLOCK_SEL_DFLT
NET_SOCK_BLOCK_SEL_BLOCK
NET_SOCK_BLOCK_SEL_NO_BLOCK

NET_SOCK_BLOCK_SEL_DFLT selects blocking as the default option, however, allows

run-time code to override blocking settings by specifying additional socket.

NET_SOCK_BLOCK_SEL_BLOCK configures all sockets to always block.

NET_SOCK_BLOCK_SEL_NO_BLOCK configures all sockets to non blocking.

See the section C-13-46 on page 659 and section C-13-48 on page 666 for more information

about sockets and blocking options.
807

F-4-8 DETECTING IF A SOCKET IS STILL CONNECTED TO A
PEER

Applications may call NetSock_IsConn() to determine if a socket is (still) connected to a

remote socket (see section C-13-39 on page 646).

Alternatively, applications may make a non-blocking call to recv(), NetSock_RxData(), or

NetSock_RxDataFrom() and inspect the return value. If data or a non-fatal, transitory error

is returned, then the socket is still connected; otherwise, if ‘0’ or a fatal error is returned,

then the socket is disconnected or closed.

F-4-9 RECEIVING -1 INSTEAD OF 0 WHEN CALLING RECV() FOR
A CLOSED SOCKET

When a remote peer closes a socket, and the target application calls one of the receive

socket functions, μC/TCP-IP will first report that the receive queue is empty and return a -1

for both BSD and μC/TCP-IP socket API functions. The next call to receive will indicate that

the socket has been closed by the remote peer.

This is a known issue and will be corrected in subsequent versions of μC/TCP-IP.

F-4-10 DETERMINE THE INTERFACE FOR RECEIVED UDP
DATAGRAM

If a UDP socket server is bound to the “any” address, then it is not currently possible to

know which interface received the UDP datagram. This is a limitation in the BSD socket API

and therefore no solution has been implemented in the μC/TCP-IP socket API.

In order to guarantee which interface a UDP packet was received on, the socket server must

bind a specific interface address.

In fact, if a UDP datagram is received on a listening socket bound to the “any” address and

the application transmits a response back to the peer using the same socket, then the newly

transmitted UDP datagram will be transmitted from the default interface. The default

interface may or may not be the interface in which the UDP datagram originated.
808

F-5 μC/TCP-IP STATISTICS AND DEBUG

F-5-1 PERFORMANCE STATISTICS DURING RUN-TIME

μC/TCP-IP periodically measures and estimates run-time performance on a per interface

basis. The performance data is stored in the global μC/TCP-IP statistics data structure,

Net_StatCtrs which is of type NET_CTR_STATS.

Each interface has a performance metric structure which is allocated within a single array of

NET_CTR_IF_STATS. Each index in the array represents a different interface.

In order to access the performance metrics for a specific interface number, the

application may externally access the array by viewing the variable

Net_StatCtrs.NetIF_StatCtrs[if_nbr].field_name, where if_nbr represents the

interface number in question, 0 for the loopback interface, and where field_name
corresponds to one of the fields below.

Possible field names:

NetIF_StatRxNbrOctets
NetIF_StatRxNbrOctetsPerSec
NetIF_StatRxNbrOctetsPerSecMax
NetIF_StatRxNbrPktCtr
NetIF_StatRxNbrPktCtrPerSec
NetIF_StatRxNbrPktCtrPerSecMax
NetIF_StatRxNbrPktCtrProcessed
NetIF_StatTxNbrOctets
NetIF_StatTxNbrOctetsPerSec
NetIF_StatTxNbrOctetsPerSecMax
NetIF_StatTxNbrPktCtr
NetIF_StatTxNbrPktCtrPerSec
NetIF_StatTxNbrPktCtrPerSecMax
NetIF_StatTxNbrPktCtrProcessed

See Chapter 12, “Statistics and Error Counters” on page 298 for more information.
809

F-5-2 VIEWING ERROR AND STATISTICS COUNTERS

In order to access the statistics and error counters, the application may externally access the

global μC/TCP-IP statistics array by referencing the members of the structure variable

Net_StatCtrs.

See Chapter 12, “Statistics and Error Counters” on page 298 for more information.

F-5-3 USING NETWORK DEBUG FUNCTIONS TO CHECK
NETWORK STATUS CONDITIONS

Example(s) demonstrating how to use the network debug status functions include:

F-6 USING NETWORK SECURITY MANAGER

The network security manager requires the presence of a network security layer such as

μC/SSL. The port layer developed for the network security layer is reponsible of securing

the sockets and applying the security strategy over typical socket programming functions.

From an application point of view, the usage of μC/TCP-IP network security manager is very

simple. It requires two basic step. The application code shipped with μC/TCP-IP includes a

project that shows how to use the network security manager.

NET_DBG_STATUS net_status;
CPU_BOOLEAN net_fault;
CPU_BOOLEAN net_fault_conn;
CPU_BOOLEAN net_rsrc_lost;
CPU_BOOLEAN net_rsrc_low;

net_status = NetDbg_ChkStatus();
net_fault = DEF_BIT_IS_SET(net_status, NET_DBG_STATUS_FAULT);
net_fault_conn = DEF_BIT_IS_SET(net_status, NET_DBG_STATUS_FAULT_CONN);
net_rsrc_lost = DEF_BIT_IS_SET(net_status, NET_DBG_STATUS_RSRC_LOST);
net_rsrc_lo = DEF_BIT_IS_SET(net_status, NET_DBG_STATUS_RSRC_LO);
net_status = NetDbg_ChkStatusTmrs();
810

F-6-1 KEYING MATERIAL INSTALLATION

In order to acheive secure handshake connections, some keying material must be installed

before performing any secure socket operation. With μC/SSL, the client side needs to install

certificates authorities to validate the identity of the public key certificate sent by the server

side. On the opposite, a server needs to install a public key certificare / private key pair to

send the the clients that wants to connect. This keying material can be installed using the

network security manager APIs decribed in section C-13-8 on page 586 and section C-13-9

on page 588 of μC/TCP-IP user manual. The following example demonstrates how to install

a PEM certificate authority from a constant buffer.

CPU_SIZE_T Micrium_Ca_Cert_Pem_Len = 994;
CPU_CHAR Micrium_Ca_Cert_Pem[] =
"-----BEGIN CERTIFICATE-----\r\n"
"MIICpTCCAg4CCQDNdHgFKaYRWDANBgkqhkiG9w0BAQUFADCBljELMAkGA1UEBhMC\r\n"
"Q0ExDzANBgNVBAgMBlF1ZWJlYzERMA8GA1UEBwwITW9udHJlYWwxFTATBgNVBAoM\r\n"
"DE1pY3JpdW0gSW5jLjEZMBcGA1UECwwQRW1iZWRkZWQgU3lzdGVtczEQMA4GA1UE\r\n"
"AwwHTWljcml1bTEfMB0GCSqGSIb3DQEJARYQaW5mb0BtaWNyaXVtLmNvbTAeFw0x\r\n"
"aXVtMR8wHQYJKoZIhvcNAQkBFhBpbmZvQG1pY3JpdW0uY29tMIGfMA0GCSqGSIb3\r\n"
[...]
"CZFtP3vbY0SA6gFrCvCcKjTWRapzQKwSYknMu1QorP4mdwZDeCYsikkn8bI5//zn\r\n"
"CInLCmrWdbrCEtj23t0wefw8fyNQxkKi9JdbzLVwxjIQt8wMq1CnTOQRa7aGX5Uw\r\n"
"QQIDAQABMA0GCSqGSIb3DQEBBQUAA4GBACqyJeSDQ3j5KohXIvV+iBOrl5qbI1PS\r\n"
"WAHf4PSyiTX0Spa58VSdhM4sestd/FELBWo/MHKIfBdoLMhg2frDZE5e7m8Ftq1R\r\n"
"1YBKNbTzIJNjwTajkUPz38BjXb5sqLyPK8wRbjadm2pOlw1f7bIFunpbHpV+1XA1\r\n"
"tk3W32BqKfzy\r\n"
"-----END CERTIFICATE-----\r\n";

void Task (void)
{
 NET_ERR err;

 NetSecureMgr_InstallBuf((CPU_INT08U *)Micrium_Ca_Cert_Pem,
 NET_SECURE_INSTALL_TYPE_CA,
 NET_SECURE_INSTALL_FORMAT_PEM,
 Micrium_Ca_Cert_Pem_Len,
 &err);
 if (err != NET_SECURE_MGR_ERR_NONE) {
 APP_TRACE_INFO((" uC/TCP-IP:NetSecureMgr_InstallBuf() error %d \n", err));
 return;
 }
}

811

The following example demonstrates how to install a DER certificate authority, PEM public

key certificate and a DER private key from the file system.

#define Micrium_Ca_Cert_File_Der "\\ca-cert.der"
#define Micrium_Srv_Cert_File_Pem "\\server-cert.pem"
#define Micrium_Srv_Key_File_Der "\\server-key.der"
void Task (void *p_arg)
{
 NET_ERR err;

 NetSecureMgr_InstallFile(Micrium_Ca_Cert_File_Der,
 NET_SECURE_INSTALL_TYPE_CA,
 NET_SECURE_INSTALL_FORMAT_DER,
 &err);
 if (err != NET_SECURE_MGR_ERR_NONE) {
 APP_TRACE_INFO((" uC/TCP-IP:NetSecureMgr_InstallFile() error %d \n", err));
 return;
 }

 NetSecureMgr_InstallFile(Micrium_Srv_Cert_File_Pem,
 NET_SECURE_INSTALL_TYPE_CERT,
 NET_SECURE_INSTALL_FORMAT_PEM,
 &err);
 if (err != NET_SECURE_MGR_ERR_NONE) {
 APP_TRACE_INFO((" uC/TCP-IP:NetSecureMgr_InstallFile() error %d \n", err));
 return;
 }

 NetSecureMgr_InstallFile(Micrium_Srv_Key_File_Der,
 NET_SECURE_INSTALL_TYPE_KEY,
 NET_SECURE_INSTALL_FORMAT_DER,
 &err);
 if (err != NET_SECURE_MGR_ERR_NONE) {
 APP_TRACE_INFO((" uC/TCP-IP:NetSecureMgr_InstallFile() error %d \n", err));
 return;
 }
}

812

F-6-2 SECURING A SOCKET

Once the appropriate keying material is installed, a TCP socket can be secured if it has been

successfully open. A simple function call is used to setup the secure flag on the socket. This

function is documented in section C-13-7 on page 584 of μC/TCP-IP user manual. With this

simple API, you can secure your custom TCP client or server application. Pleae note that all

Micrium applications running over TCP has already been modified to support secure

sockets (μC/HTTPs, μC/TELNETs, μC/FTPs, μC/FTPc, μC/SMTPc, μC/POP3c). The following

example demonstrates how to open and secure a TCP socket

.

void Task (void *p_arg)
{
 NET_ERR net_err;
 sock_id = NetSock_Open(NET_SOCK_ADDR_FAMILY_IP_V4,
 NET_SOCK_TYPE_STREAM,
 NET_SOCK_PROTOCOL_TCP,
 &net_err);
 if (net_err == NET_SOCK_ERR_NONE) {

#ifdef NET_SECURE_MODULE_PRESENT
 (void)NetSock_CfgSecure((NET_SOCK_ID) sock_id,
 (CPU_BOOLEAN) DEF_YES,
 (NET_ERR *)&net_err);
 if (net_err != NET_SOCK_ERR_NONE) {
 APP_TRACE_INFO(("Open socket failed. No secure socket available.\n"));
 return (DEF_FAIL);
 }
#endif
 }
}

813

F-7 MISCELLANEOUS

F-7-1 SENDING AND RECEIVING ICMP ECHO REQUESTS FROM
THE TARGET

From the user application, μC/TCP-IP does not support sending and receiving ICMP Echo

Request and Reply messages However, the target is capable of receiving externally

generated ICMP Echo Request messages and replying them accordingly. At this time, there

are no means to generate an ICMP Echo Request from the target.

F-7-2 TCP KEEP-ALIVES

μC/TCP-IP does not currently support TCP Keep-Alives. If both ends of the connection are

running different Network Protocol Stacks, you may attempt to enable TCP Keep-Alives on

the remote side. Alternatively, the application will have to send something through the

socket to the remote peer in order to ensure that the TCP connection remains open.

F-7-3 USING μC/TCP-IP FOR INTER-PROCESS
COMMUNICATION

It is possible for tasks to communicate with sockets via the localhost interface which must

be enabled.
814

815

Appendix

G
Bibliography

Labrosse, Jean J. 2009, μC/OS-III, The Real-Time Kernel, Micrium Press, 2009, ISBN

978-0-98223375-3-0.

Douglas E. Comer. 2006, Internetworking With TCP/IP Volume 1: Principles Protocols, and

Architecture, 5th edition, 2006. (Hardcover - Jul 10, 2005) ISBN 0-13-187671-6.

W. Richard Stevens. 1993, TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley

Professional Computing Series, Published Dec 31, 1993 by Addison-Wesley Professional,

Hardcover , ISBN-10: 0-201-63346-9

W. Richard Stevens, Bill Fenner, Andrew M. Rudoff. Unix Network Programming, Volume 1:

The Sockets Networking API (3rd Edition) (Addison-Wesley Professional Computing Series)

(Hardcover), ISBN-10: 0-13-141155-1

IEEE Standard 802.3-1985, Technical Committee on Computer Communications of the IEEE

Computer Society. (1985), IEEE Standard 802.3-1985, IEEE, pp. 121, ISBN 0-471-82749-5

Request for Comments (RFCs), Internet Engineering Task Force (IETF). The complete list of

RFCs can be found at http://www.faqs.org/rfcs/.

Brian “Beej Jorgensen” Hall, 2009, Beej's Guide to Network Programming, Version 3.0.13,

March 23, 2009, http://beej.us/guide/bgnet/

The Motor Industry Software Reliability Association, MISRA-C:2004, Guidelines for the Use

of the C Language in Critical Systems, October 2004. www.misra-c.com.

Index

Numerics
2MSL ..291

A
abstraction layer ..58
accept() ..286, 572, 586, 715
AddrMulticastAdd()314, 317, 362, 365
AddrMulticastRemove() ...318, 366
allocation

buffer ...196–197
alternate hash code ...168
app.c ..44, 69
app_cfg.h ...770
AppInit_TCPIP() ...74
application ...28

code ...43, 69
protocols ...24

application-specific configuration770
AppTaskStart() ...71–74
argument checking configuration744
ARP

configuration ...750
error codes ..776

ASCII error codes ..777

B
Band ...99
BaseAddr ...91
bind() ..291, 574, 715
board support package ...46
BSD socket API layer ..29
BSD v4 sockets configuration760, 767
BSP ..46, 94, 138
BSP API

Ethernet ...122–125
wireless ..127–131

BSP layer
Ethernet ...122
wireless ..127

BSP_CPU_ClkFreq() ..73
BSP_Init() ..47, 73
BSP_LED_Off() ...74

BSP_LED_On() ... 74
BSP_LED_Toggle() .. 74
buffer ... 77, 181, 206, 210

allocation .. 196–197
architecture ... 78
configuration ... 747
deallocation .. 203
error codes ... 777
receive ... 77–78
sizes .. 80
transmit ... 78–83

buffer list nodes
allocation .. 187
deallocation .. 189
initialization ... 188

buffer node processing ... 191

C
CfgClk() .. 303
CfgGPIO() .. 303, 351
CfgIntCtrl() ... 303, 351
CLK .. 141
ClkFreqGet() .. 304
clock frequency ... 127
clock, Ethernet device .. 125
close() .. 291, 632, 716
closed socket .. 808
coding standards .. 22
configuration

argument checking ... 744
ARP ... 750
BSD v4 sockets .. 760, 767
clocks, Ethernet .. 125
connection manager .. 769
device buffer ... 792
general I/O for Ethernet device 125
general I/O for wireless device 133
ICMP ... 753
IGMP ... 754
interrupt controller .. 134
IP ... 752
IP address ... 108, 803
loopback ... 104
memory ... 85
network ... 736
network buffer .. 747, 792
network counter ... 745
network interface .. 77, 85, 791
816

network interface layer ...748
network timer ..746
OS ..770
PHY ..92, 161
SPI interface ..135
stack ..783
TCP ..758
transmit buffer size ...80–83
transport layer ...755
UDP ...756
μC/TCP-IP ...771, 783

configuration structures ..142
connect() ..634, 716
connection manager configuration769
controller functions ..160
converting IP addresses ...803
cooperative DMA ...148
CPU ..45
CPU layer ...31
cpu.h ..52
cpu_a.asm ..52
cpu_c.c ...52
cpu_cfg.h ...52
cpu_core.c ...51
cpu_core.h ...51
CPU_CRITICAL_ENTER() ..51
CPU_CRITICAL_EXIT() ..51
cpu_def.h ...51
CPU-independent source code49, 60
CPU-specific source code50–51, 59
CS ...141
Cuprite() ..73

D
DataBusSizeNbrBits ..91
datagram socket ..278
DataIn ...141
DataOut ..141
deallocation

buffer ...203
packets ..202

debug ...809
configuration ...742
information constants ...296
monitor task ..297

dedicated memory ...148
demultiplex management frames226
descriptor mode ..173
device buffer configuration ...792
device configuration

Ethernet device ...90
wireless device ..98

device driver ..140
functions for MAC ...302, 350
functions for Net BSP ...336, 387
functions for PHY ..328, 376
layer ...31
validation ...229

device driver API ... 158
device ISR interface number .. 137
device reception descriptors .. 179
DI .. 141
direct memory access .. 141
DMA ... 141, 181

control ... 174
cooperative ... 148
driver data ... 174
reception ... 174
reception with lists ... 185
transmit ..196–200, 202–203
transmitting & receiving ... 172

DO .. 141
dotted decimal, converting ... 803
duplex .. 157, 171
dynamic IP address .. 804

E
EnDis() ... 330, 377–378
error codes .. 775

ARP ... 776
ICMP ... 778
IGMP ... 779
IP ... 778
network ... 776, 778
network buffer .. 777
socket ... 780

error counters .. 300, 810
Ethernet

BSP layer .. 122
clock .. 125
configuring general I/O .. 125
MAC address .. 798
PHY configuration .. 161
PHY link state ... 801

Ethernet BSP API .. 122–125
Ethernet device configuration .. 90
Ethernet device driver API .. 158
Ethernet device layer .. 140
Ethernet interface, adding .. 94
example project .. 68
external bus ... 149

F
fatal socket error codes .. 292
FD_CLR() ... 637, 717
FD_IS_SET() ... 641
FD_ISSET() ... 717
FD_SET() .. 643, 718
FD_ZERO() ... 640, 718
Flags .. 88
frame length .. 80
frame padding ... 80
817

H
hardware address ..113–114
heap size ..89
htonl() ...721
htons() ..721
HW_AddrStr ...91, 100

I
ICMP

configuration ...753
echo requests ...814
error codes ..778

IF layer ..30
IGMP

configuration ...754
error codes ..779
host group ...805

includes.h ...44
inet_addr() ..722
inet_ntoa() ..727
Init() .. 302–303, 307, 328, 350–351, 354, 376–379, 381–383,
385
initializing network device ...218
initializing μC/TCP-IP ..783, 788
installing μC/TCP-IP ..67
internal MAC ..147
internal media access controller147–148
interrupt controller

Ethernet ...126
wireless ..134

interrupt handling ..149
IO_Ctrl() ..322, 370, 372, 374
IP

configuration ...752
error codes ..778

IP address
assigning ...803
configuration ...108, 803
configuring on a specific interface804
removing from an Interface ..804

IPerf ..242–243, 253
ISR

address ..157
handler ...179, 199
interface number ...137
wireless device ..221

ISR_Handler() ...320, 335, 368

J
joining an IGMP host group ..805

K
keepalive ..814

L
layer interactions ... 154
leaving an IGMP host group ... 805
LED_On() .. 47
lib_cfg.h ... 54
link speed .. 157
link state .. 115, 156
LinkStateGet() .. 331, 379, 381–382
LinkStateSet() .. 333
listen() .. 648, 729
loopback configuration ... 104
loopback interface, adding ... 107

M
MAC address ... 113–114, 798
MAC link .. 171
MAC, internal ... 147
main() ... 44, 69, 72
management command .. 227
management frames, demultiplex 226
management response ... 228
MCU_led() .. 47
MemAddr ... 88
Mem_Copy() .. 166, 311, 313
Mem_Init() .. 73, 89, 175
memory configuration ... 85
memory copy .. 141

receive ... 204, 206–208
transmit ... 209–210

memory heap initialization .. 783
memory management ... 89, 146
MemSize .. 88
MII_Rd() ... 324
MII_Wr() .. 326
MISO .. 141
MISRA C .. 22
MOSI .. 141
MTU ... 80, 112
multicast .. 268

test setup .. 268
test using NDIT ... 269

multicast address filter
adding an address .. 166, 226
removing an address .. 170, 226

multicast IP group ... 806
address ... 805

MyTask() .. 71

N
NDIT ... 229–230, 232, 234
NetApp_SockAccept() ... 422
NetApp_SockBind() ... 424
NetApp_SockClose() ... 426
NetApp_SockConn() .. 428
818

NetApp_SockListen() ...430
NetApp_SockOpen ..432
NetApp_SockRx() ..434
NetApp_SockTx() ...437
NetApp_TimeDly_ms() ...440
NetARP_CacheCalcStat() ..441
NetARP_CacheGetAddrHW() ..442
NetARP_CachePoolStatGet() ..444
NetARP_CachePoolStatResetMaxUsed()445
NET_ARP_CFG_ADDR_FLTR_EN751
NetARP_CfgCacheAccessedTh()446
NetARP_CfgCacheTimeout() ...447
NET_ARP_CFG_HW_TYPE ..750
NET_ARP_CFG_NBR_CACHE ...750
NET_ARP_CFG_PROTOCOL_TYPE750
NetARP_CfgReqMaxRetries() ...448
NetARP_CfgReqTimeout() ...449
NetARP_IsAddrProtocolConflict()450
NetARP_ProbeAddrOnNet() ..451
NetASCII_IP_to_Str() ..453
NetASCII_MAC_to_Str() ...455
NetASCII_Str_to_IP() ..76, 108, 457
NetASCII_Str_to_MAC()162, 220, 306, 353, 459
NET_BSD_CFG_API_EN ..767
net_bsp.c ...127, 138, 161
NetBSP_ISR_Handler() ..346, 414
NetBuf_Free() ...227
NetBuf_GetDataPtr()165, 181, 224, 311, 358
NetBuf_PoolStatGet() ..461
NetBuf_PoolStatResetMaxUsed()462
NetBuf_RxLargePoolStatGet() ..463
NetBuf_RxLargePoolStatResetMaxUsed()464
NetBuf_TxLargePoolStatGet() ...465
NetBuf_TxLargePoolStatResetMaxUsed()466
NetBuf_TxSmallPoolStatGet() ...467
NetBuf_TxSmallPoolStatResetMaxUsed()468
net_cfg.h ..44
NET_CFG_INIT_CFG_VALS ...736
NET_CFG_OPTIMIZE ...740
NET_CFG_OPTIMIZE_ASM_EN740
NET_CFG_TRANSPORT_LAYER_SEL755
NetConn_CfgAccessedTh() ...469
NET_CONN_CFG_FAMILY ..769
NET_CONN_CFG_NBR_CONN769
NetConn_PoolStatGet() ...470
NetConn_PoolStatResetMaxUsed()471
NET_CTR_CFG_ERR_EN ...745
NET_CTR_CFG_STAT_EN ...745
net_dbg.* ..296
NET_DBG_CFG_INFO_EN ...742
NET_DBG_CFG_MEM_CLR_EN743
NetDbg_CfgMonTaskTime() ..472
NetDbg_CfgRsrcARP_CacheThLo()473
NetDbg_CfgRsrcBufRxLargeThLo()475

NetDbg_CfgRsrcBufThLo() ... 474
NetDbg_CfgRsrcBufTxLargeThLo() 476
NetDbg_CfgRsrcBufTxSmallThLo() 477
NetDbg_CfgRsrcConnThLo() .. 478
NetDbg_CfgRsrcSockThLo() .. 479
NetDbg_CfgRsrcTCP_ConnThLo() 480
NetDbg_CfgRsrcTmrThLo() .. 481
NET_DBG_CFG_STATUS_EN ... 742
NET_DBG_CFG_TEST_EN .. 743
NetDbg_ChkStatus() ... 482
NetDbg_ChkStatusBufs() .. 484
NetDbg_ChkStatusConns() ... 485
NetDbg_ChkStatusRsrcLo() .. 490
NetDbg_ChkStatusRsrcLost() .. 488
NetDbg_ChkStatusTCP() .. 492
NetDbg_ChkStatusTmrs() ... 494
NetDbg_MonTaskStatusGetRsrcLo() 490, 496
NetDbg_MonTaskStatusGetRsrcLost() 488, 496
net_dev.h ... 150
net_dev_<controller>.c ... 56
net_dev_<controller>.h ... 56
NetDev_AddrMulticastAdd() ... 166–167, 170, 226, 319, 367
NetDev_AddrMulticastRemove() 170, 226, 318, 366
NetDev_API_<controller> ... 145
NetDev_BSP_<controller> .. 145
net_dev_cfg.c .. 44, 80, 85
net_dev_cfg.h .. 44, 85
NetDev_Cfg_<controller> ... 145
net_dev_cfg_<controller>.c .. 146
net_dev_cfg_<controller>.h .. 146
NetDev_CfgClk() 123, 125, 161, 336–337, 387, 389
NetDev_CfgGPIO() 125, 161, 338–339, 391
NetDev_CfgIntCtrl() ..126, 161, 340–342, 347, 393–395, 415
NetDev_ClkFreqGet() 127, 161, 344–345, 388, 390, 392, 397,
399, 401, 403, 405, 407, 409, 411
NetDev_Demux() ... 228
NetDev_DemuxMgmt() .. 215
NetDev_Init() ...161, 187, 218–219, 302, 336, 338, 340, 344–
345, 350, 387, 389, 391, 393
NetDev_IO_Ctrl() 171, 314, 322, 362, 370
NetDev_ISR_Handle() .. 204
NetDev_ISR_Handler() ... 137, 152–153, 164, 181, 191, 202,
204, 210, 221, 320–321, 341, 346–347, 368–369, 394, 414–
415
NetDev_ISR_Rx() ... 192
NetDev_MACB_CfgClk_2() .. 123
NetDev_MACB_CfgClk2() ... 123
NetDev_MACB_ISR_HandlerRx_2() 123
NetDev_MACB_ISR_HandlerRx2() 123
NetDev_MDC_ClkFreqGet() ... 344, 397, 399, 401, 403, 405,
407, 409, 411
NetDev_MgmtDemux() .. 222–227
NetDev_MgmtExcuteCmd() .. 227
NetDev_MgmtExecuteCmd() 214, 227–228
NetDev_MgmtProcessCmd() .. 228
819

NetDev_MgmtProcessResp()214, 228
NetDev_MII_Rd() ..171, 324, 376
NetDev_MII_Wr() ..171, 326, 376
NetDev_Rx() 165, 181, 194, 206–208, 215, 222, 224–225,
310, 357
NetDev_RxDescFreeAll() ...184
NetDev_RxDescInit() ..179
NetDev_RxDescPtrCurInc()181, 184
Net_Dev_SPI_WrRd() ...217
NetDev_Start()179, 188, 199, 219, 305, 352
NetDev_Stop()163, 184, 203, 221, 308, 355
NetDev_Tx()166, 199, 201, 209, 225, 312, 360
NetDev_TxDescFreeAll() ..203
NetDev_TxDescInit() ..199
NetDev_WiFi_CfgGPIO() ..133, 218
NetDev_WiFi_CfgIntCtrl() ...134, 218
NetDev_WiFi_IntCtrl() ..134, 220
NetDev_WiFi_ISR_Handler()134, 222
NetDev_WiFi_SPI_Cfg() ...135
NetDev_WiFi_SPI_ChipSelDis()218
NetDev_WiFi_SPI_ChipSelEn()136, 217
NetDev_WiFi_SPI_Init() ..135, 219
NetDev_WiFi_SPI_Lock() ...136, 217
NetDev_WiFi_SPI_SetCfg() ..217
NetDev_WiFi_SPI_Unlock() ...218
NetDev_WiFi_SPI_WrRd()136, 223–224
NetDev_WiFi_Start() ...133, 219
NetDev_WiFi_Stop() ...133, 221
NET_ERR_CFG_ARG_CHK_DBG_EN744
NET_ERR_CFG_ARG_CHK_EXT_EN744
NET_ERR_TX ...807
NET_ICMP_CFG_TX_SRC_QUENCH_EN753
NET_ICMP_CFG_TX_SRC_QUENCH_NBR753
NetICMP_CfgTxSrcQuenchTh()497
net_if.* ..57
NetIF_Add() ...75, 94–96, 100, 102, 109, 142, 144, 302, 350,
498
NetIF_AddrHW_Get() ...113, 501
NetIF_AddrHW_GetHandler()162, 220, 306, 353
NetIF_AddrHW_IsValid() ..503
NetIF_AddrHW_IsValidHandler()162, 220, 306, 353
NetIF_AddrHW_Set()114, 162–163, 220, 306, 353, 505
NetIF_AddrHW_SetHandler()162–163, 220, 306, 353
NetIF_API_Ether ...144
NetIF_API_WiFi ..144
NET_IF_CFG_ADDR_FLTR_EN749
NET_IF_CFG_MAX_NBR_IF ..748
NetIF_CfgPerfMonPeriod() ..507
NetIF_CfgPhyLinkPeriod() ...508
NET_IF_CFG_TX_SUSPEND_TIMEOUT_MS749
net_if_ether.* ..57
NetIF_Ether_ISR_Handler() ..152
NetIF_GetRxDataAlignPtr() ..509
NetIF_GetTxDataAlignPtr() ..512

NetIF_IO_Ctrl() ... 115, 119–120, 515
NetIF_IsEn() ... 517
NetIF_IsEnCfgd() ... 518
NetIF_ISR_Handler() 126, 150–151, 153, 157, 341, 347, 394,
415
NetIF_IsValid() ... 521
NetIF_IsValidCfgd() ... 522
NetIF_LinkStateGet() ... 115, 523
NetIF_LinkStateSet() ... 157
net_if_loopback.* ... 57
NetIF_MTU_Get() ... 112, 526
NetIF_MTU_Set() ... 112, 527
NetIF_RxPkt() .. 214
NetIF_Start() 76, 92, 110, 116–117, 528
NetIF_Stop() ... 111, 529
NetIF_WiFi_Join() .. 117–118
NetIF_WiFi_Rx() ... 215
NET_IGMP_CFG_MAX_NBR_HOST_GRP 754
NetIGMP_HostGrpJoin() ... 539
NetIGMP_HostGrpLeave() .. 541
Net_Init() .. 73, 75, 89, 418
Net_InitDflt() ... 419
NetIP_CfgAddrAdd() ... 76, 108, 542
NetIP_CfgAddrAddDynamic() ... 544
NetIP_CfgAddrAddDynamicStart() 546
NetIP_CfgAddrAddDynamicStop() 548
NetIP_CfgAddrRemove() ... 110, 549
NetIP_CfgAddrRemoveAll() .. 551
NetIP_CfgFragReasmTimeout() 552
NET_IP_CFG_IF_MAX_NBR_ADDR 752
NET_IP_CFG_MULTICAST_SEL 752
NetIP_GetAddrDfltGateway() .. 553
NetIP_GetAddrHost() .. 554
NetIP_GetAddrHostCfgd() .. 556
NetIP_GetAddrSubnetMask() ... 557
NetIP_IsAddrBroadcast() .. 558
NetIP_IsAddrClassA() .. 559
NetIP_IsAddrClassB() .. 560
NetIP_IsAddrClassC() ... 561
NetIP_IsAddrHost() ... 562
NetIP_IsAddrHostCfgd() ... 563
NetIP_IsAddrLocalHost() .. 564
NetIP_IsAddrLocalLink() ... 565
NetIP_IsAddrsCfgdOnIF() ... 566
NetIP_IsAddrThisHost() ... 567
NetIP_IsValidAddrHost() ... 568
NetIP_IsValidAddrHostCfgd() ... 569
NetIP_IsValidAddrSubnetMask() 571
NetOS_Dev_CfgTxRdySignal() 162, 219, 306, 353
NetOS_Dev_TxRdySignal() 153, 164, 222, 225
NetOS_Dev_TxRdyWait() .. 153
NetOS_IF_DeallocTaskPost() 163, 221, 309
NetOS_IF_RxTaskSignal() 152, 164, 181, 221
NetOS_IF_RxTaskWait() .. 151–152
820

NetOS_IF_TxDeallocTaskPost()164, 203, 222, 225
net_phy.c ..55
net_phy.h ...55
NetPhy_API_<phy> ..145
NetPhy_AutoNegStart() ...329
NetPhy_Cfg_<phy> ..145
NetPhy_EnDis() ..156, 330, 335, 377
NetPhy_Init() ...156, 328, 376
NetPhy_ISR_Handler ...155
NetPhy_ISR_Handler() ...157
NetPhy_LinkStateGet(...156
NetPhy_LinkStateGet()331, 333, 379, 381–382, 387
NetPhy_LinkStateSet(..157
NET_SECURE_CFG_MAX_CA_CERT_LEN766
NetSock_Accept() ..572, 586
NetSock_Bind() ..574
NetSock_CfgBlock() ..577
NET_SOCK_CFG_BLOCK_SEL761
NET_SOCK_CFG_CONN_ACCEPT_Q_SIZE_MAX762
NET_SOCK_CFG_FAMILY ...760
NET_SOCK_CFG_NBR_SOCK760, 764–765
NET_SOCK_CFG_PORT_NBR_RANDOM_BASE ...762–763
NET_SOCK_CFG_SEL_EN ..761
NET_SOCK_CFG_SEL_NBR_EVENTS_MAX762
NetSock_CfgTimeoutConnAcceptDflt()602
NetSock_CfgTimeoutConnAcceptGet_ms()604
NET_SOCK_CFG_TIMEOUT_CONN_ACCEPT_MS763
NetSock_CfgTimeoutConnAcceptSet()606
NetSock_CfgTimeoutConnCloseDflt()608
NetSock_CfgTimeoutConnCloseGet_ms()610
NET_SOCK_CFG_TIMEOUT_CONN_CLOSE_MS ..763–764
NetSock_CfgTimeoutConnCloseSet()612
NetSock_CfgTimeoutConnReqDflt()614
NetSock_CfgTimeoutConnReqGet_ms()616
NET_SOCK_CFG_TIMEOUT_CONN_REQ_MS763
NetSock_CfgTimeoutConnReqSet()618
NetSock_CfgTimeoutRxQ_Dflt()620
NetSock_CfgTimeoutRxQ_Get_ms()622
NET_SOCK_CFG_TIMEOUT_RX_Q_MS763
NetSock_CfgTimeoutRxQ_Set()624
NetSock_CfgTimeoutTxQ_Dflt()626
NetSock_CfgTimeoutTxQ_Get_ms()628
NetSock_CfgTimeoutTxQ_Set()630
NetSock_Close() ..632
NetSock_Conn() ...634
NET_SOCK_DESC_ INIT() ..640
NET_SOCK_DESC_CLR() ..637
NET_SOCK_DESC_COPY() ...639
NET_SOCK_DESC_IS_SET() ..641
NET_SOCK_DESC_SET() ...643
NetSock_GetConnTransportID()644
NetSock_IsConn() ..646
NetSock_Listen() ..648
NetSock_Open() ...650

NetSock_PoolStatGet() ... 657
NetSock_PoolStatResetMaxUsed() 658
NetSock_RxData() ... 659
NetSock_RxDataFrom() .. 659
NetSock_Sel() .. 663
NetSock_TxData() ... 666
NetSock_TxDataTo() ... 666
NET_TCP_CFG_NBR_CONN .. 758
NET_TCP_CFG_RX_WIN_SIZE_OCTET 758
NET_TCP_CFG_TIMEOUT_CONN_ACK_DLY_MS 759
NET_TCP_CFG_TIMEOUT_CONN_MAX_SEG_SEC 758
NET_TCP_CFG_TIMEOUT_CONN_RX_Q_MS 759
NET_TCP_CFG_TIMEOUT_CONN_TX_Q_MS 759
NET_TCP_CFG_TX_WIN_SIZE_OCTET 758
NetTCP_ConnCfgMaxSegSizeLocal() 671
NetTCP_ConnCfgReTxMaxTh() 675
NetTCP_ConnCfgReTxMaxTimeout() 677
NetTCP_ConnCfgRxWinSize() .. 679
NetTCP_ConnCfgTxAckImmedRxdPushEn() 681
NetTCP_ConnCfgTxNagleEn .. 685
NetTCP_ConnPoolStatGet() ... 687
NetTCP_ConnPoolStatResetMaxUsed() 698
NetTCP_InitTxSeqNbr() ... 699
net_tmr.* .. 293, 295
NET_TMR_CFG_NBR_TMR .. 746
NET_TMR_CFG_TASK_FREQ ... 747
NetTmr_PoolStatGet() ... 700
NetTmr_PoolStatResetMaxUsed() 701
NetTmr_TaskHandler() .. 294–295
NET_UDP_CFG_APP_API_SEL 756
NET_UDP_CFG_RX_CHK_SUM_DISCARD_EN 757
NET_UDP_CFG_TX_CHK_SUM_EN 757
NetUDP_RxAppData() ... 702
NetUDP_RxAppDataHandler() .. 704
NetUDP_TxAppData() ... 706
NET_UTIL_ HOST_TO_NET_32() 710
NetUtil_32BitCRC_CalcCpl() 168, 316, 364
NetUtil_32BitReflect() 168, 316, 364
net_util_a.asm ... 60
NET_UTIL_HOST_TO_NET_16() 709
NET_UTIL_NET_TO_HOST_16() 711
NET_UTIL_NET_TO_HOST_32() 712
NetUtil_TS_Get() .. 138, 713
NetUtil_TS_Get_ms() ... 714
Net_VersionGet() ... 420
NetWiFiMgr_API_Generic ... 145
NetWiFiMgr_Mgmt() .. 220–221, 226
NetWiFiMgr_MgmtHadler() ... 214
NetWiFiMgr_MgmtHanlder() ... 214
NetWiFiMgr_Signal() ... 227
network board support package 47
network buffer ... 791

configuration ... 792
network configuration ... 736
821

network counter configuration ..745
network debug

functions ..810
information constants ...296
monitor task ..297

network device ..23, 54, 791
driver layer ...31
initializing ...161, 218
starting ..162, 219
stopping ..163, 221

Network Driver Integrated Tester229–230, 232, 234
network error codes ..776, 778
network interface56, 108, 140, 791

configuration ...791
hardware address ...113–114
MTU ...112
starting ..110
stopping ..111

network interface layer ..30
configuration ...748

network link state ..156
network protocol header ...79
network status ...810
network timer configuration ..746
node buffer ...194
ntohl() ...729
ntohs() ..730

O
optimizing μC/TCP-IP ..773
OS configuration ..770
OS error codes ...779
os_cfg.h ..44
OS_CPU_SysTickInit() ...73
OS_CRITICAL_ENTER() ...52
OS_CRITICAL_EXIT() ...52
OS_IdleTask() ...70
OSInit() ..70
OS_IntQTask() ..70, 72
OSStart() ...72–73, 89
OS_StatTask() ..70
OSTaskCreate() ..70–73, 286
OSTimeDly() ...74
OSTimeDlyHMSM() ..74
OS_TmrTask() ..70

P
packet

deallocation ...202
receive ...35, 151
size ...80
transmit ...152, 225

packet frame ..83
performance statistics ...809

PHY
address ... 92
API ... 155
bus mode .. 92
bus type .. 92
configuration ... 92
disable ... 156
initialize ... 156
ISR address .. 157
layer ... 31, 140
link duplex ... 93
link speed .. 93

PHY registers
reading .. 171
writing ... 171

Phy_RegRd() .. 55, 324
Phy_RegWr() .. 55, 326
protocols ... 24

Q
queue sizes ... 787

R
real-time operating system layer 32
receive

buffer ..77–78, 104–105, 222
DMA .. 172, 174
DMA with lists ... 185
from a multicast IP group .. 806
memory copy .. 204, 206–208
packet ... 35, 151, 165
stopping .. 184
task .. 151
UDP datagram .. 808

recv() .. 659, 730, 808
recvfrom() .. 659, 730
RTOS ... 23
RTOS layer .. 32
run-time performance statistics 809
Rx() ... 310, 357
RxBufAlignOctets .. 86
RxBufIxOffset .. 86
RxBufLargeNbr ... 86
RxBufLargeSize ... 86
RxBufPoolType ... 86
RxDescNbr .. 90

S
safety critical certification .. 22
scalable ... 21
SCK .. 141
select() ... 663, 731
send() ... 276, 731
sending and receiving ICMP echo requests 814
sendto() .. 731
Serial Peripheral Interface .. 141
822

socket
applications ...277
blocking options ...807
closed ..808
connected to a peer ..808
data structures ..273
datagram ...278
error codes ..292, 780
errors ...807
programming ...804
UDP ...278
μC/TCP-IP ...804

socket() ...650, 732, 734
source code

CPU-independent ...49, 60
CPU-specific ...50–51, 59

SPI bus ...141, 217
chip select ...136
controller ...135
interface ...135
locking and unlocking ...136
writing and reading ...136

SPI_ClkFreq ...99
SPI_ClkPhase ..99
SPI_ClkPol ...99
SPI_XferShiftDir ...100
SPI_XferUnitLen ...99
SSEL ...141
stack configuration ..783
Start() .. 305–306, 352–353
starting network device ...219
starting network interface ...110
statistics ...298, 809

counters ..810
Stop() ..308, 355
stopping network interfaces ...111
stream socket ..283

T
task

model ...33
priorities ...33, 787
stacks ..786

TCP
configuration ...758
socket ..283

TCP reception
testing ..265–267

TCP transmission
testing ..264–265

TCP/IP layer ...29
testing

TCP reception ...265–267
TCP transmission ..264–265
UDP reception ...260–263
UDP transmission ...257–259

transitory errors ...807

transmit .. 166, 225
completed ... 225
descriptors .. 199
DMA ...172, 196–200, 202–203
initialization ... 196–197
memory copy .. 209–210
packet ... 152
pointers ... 199

transmit buffer ..78–83, 105–106
transport layer configuration .. 755
Tx() ... 312, 360
TxBufAlignOctets .. 88
TxBufDescPtrComp .. 199
TxBufDescPtrCur .. 199
TxBufDescPtrStart .. 199
TxBufIxOffset .. 88
TxBufLargeNbr .. 87
TxBufLargeSize ... 87
TxBufPoolType .. 87
TxBufSmallNbr .. 87
TxBufSmallSize ... 87
TxDescNbr ... 91

U
UDP

configuration ... 756
datagram ... 808
error codes ... 780
socket ... 278

UDP reception
testing ... 260–263

UDP transmission
testing ... 257–259

W
wireless

BSP API .. 127–131
BSP layer .. 127
configure interrupt controller 134
configuring general I/O .. 133
device configuration ... 98
device driver API .. 216–217
interface, adding ... 100
interrupt .. 134
layer ... 211
network interface .. 116
SPI interface ... 135

wireless access point
joining .. 117
scanning ... 116

wireless device
ISR ... 221
layer ... 140
starting .. 133
stopping .. 133

wireless manager .. 141, 212–215
823

Micrium
μC/LIB ..28, 53

memory heap initialization ..783
μC/TCP-IP

configuration ...771, 783
initializing ...783, 788
module relationships ..28
optimizing ..773
sockets ..804
task stacks ..786

μC/TCP-IP block diagram ...42
824

	Table of Contents
	Introduction to µC/TCP-IP
	1-1 Portable
	1-2 Scalable
	1-3 Coding Standards
	1-4 MISRA C
	1-5 Safety Critical Certification
	1-6 RTOS
	1-7 Network Devices
	1-8 µC/TCP-IP Protocols
	1-9 Application Protocols

	µC/TCP-IP Architecture
	2-1 µC/TCP-IP Module Relationships
	2-1-1 Application
	2-1-2 µC/LIB Libraries
	2-1-3 BSD Socket API Layer
	2-1-4 TCP/IP Layer
	2-1-5 Network Interface (IF) Layer
	2-1-6 Network Device Driver Layer
	2-1-7 Network Physical (PHY) Layer
	2-1-8 Network Wireless Manager
	2-1-9 CPU Layer
	2-1-10 Real-Time Operating System (RTOS) Layer

	2-2 Task Model
	2-2-1 µC/TCP-IP Tasks and Priorities
	2-2-2 Receiving a Packet
	2-2-3 Transmitting a Packet

	Directories and Files
	3-1 Block Diagram
	3-2 Application Code
	3-3 CPU
	3-4 Board Support Package (BSP)
	3-5 Network Board Support Package (NET_BSP)
	3-6 µC/OS-III, CPU Independent Source Code
	3-7 µC/OS-III, CPU Specific Source Code
	3-8 µC/CPU, CPU Specific Source Code
	3-9 µC/LIB, Portable Library Functions
	3-10 µC/TCP-IP Network Devices
	3-11 µC/TCP-IP Network Interface
	3-12 µC/TCP-IP Network File System abstraction layer
	3-13 µC/TCP-IP Network OS Abstraction Layer
	3-14 µC/TCP-IP Network CPU Specific Code
	3-15 µC/TCP-IP Network CPU Independent Source Code
	3-16 µC/TCP-IP Network Security Manager CPU Independent Source Code
	3-17 Summary

	Getting Started with µC/TCP-IP
	4-1 Installing µC/TCP-IP
	4-2 µC/TCP-IP Example Project
	4-3 Application Code

	Network Interface Configuration
	5-1 Buffer Management
	5-1-1 Network Buffers
	5-1-2 Receive Buffers
	5-1-3 Transmit Buffers
	5-1-4 Network Buffer Architecture
	5-1-5 Network Buffer Sizes

	5-2 µC/TCP-IP Network Interface configuration
	5-2-1 Memory Configuration
	5-2-2 µC/TCP-IP Memory Management

	5-3 Ethernet Interface Configuration
	5-3-1 Ethernet Device Configuration
	5-3-2 Ethernet PHY Configuration
	5-3-3 Adding an Ethernet Interface

	5-4 Wireless Interface Configuration
	5-4-1 Wireless Device Configuration
	5-4-2 Adding a Wireless Interface

	5-5 LoopBack Interface Configuration
	5-5-1 Loopback Configuration
	5-5-2 Adding a Loopback Interface

	5-6 Network Interface API
	5-6-1 Configuring an IP Address
	5-6-2 Starting Network Interfaces
	5-6-3 Stopping Network Interfaces
	5-6-4 Getting Network Interface MTU
	5-6-5 Setting Network Interface MTU
	5-6-6 Getting Network Interface Hardware Addresses
	5-6-7 Setting Network Interface Hardware Address
	5-6-8 Getting Link State
	5-6-9 Scanning for a Wireless Access Point
	5-6-10 Joining Wireless Access Point
	5-6-11 Creating Wireless Ad Hoc Access Point
	5-6-12 Leaving Wireless Access Point

	Network Board Support Package
	6-1 Ethernet BSP Layer
	6-1-1 Description of the Ethernet BSP API
	6-1-2 Configuring Clocks for an Ethernet Device
	6-1-3 Configuring General I/O for an Ethernet Device
	6-1-4 Configuring the Interrupt Controller for an Ethernet Device
	6-1-5 Getting a Device Clock Frequency

	6-2 Wireless BSP Layer
	6-2-1 Description of the Wireless BSP API
	6-2-2 Configuring General-Purpose I/O for a Wireless Device
	6-2-3 Starting a Wireless Device
	6-2-4 Stopping a Wireless Device
	6-2-5 Configuring the Interrupt Controller for a Wireless Device
	6-2-6 Enabling and Disabling Wireless Interrupt
	6-2-7 Configuring the SPI Interface
	6-2-8 Setting SPI Controller for a Wireless device
	6-2-9 Locking and Unlocking SPI Bus
	6-2-10 Enabling and Disabling SPI Chip select
	6-2-11 Writing and Reading to the SPI Bus

	6-3 Specifying the Interface Number of the Device ISR
	6-4 Miscellaneous Network BSP

	Device Driver Implementation
	7-1 Concepts
	7-2 Overview of the µC/TCP-IP Interface Layers
	7-2-1 Configuration Structures and APIs interactions
	7-2-2 µC/TCP-IP Memory Management
	7-2-3 Interrupt Handling
	7-2-4 Network Packet Reception Overview
	7-2-5 Network Packet Transmission Overview

	7-3 Ethernet Layers Interactions
	7-4 Ethernet PHY API Implementation
	7-4-1 Description of the Ethernet PHY API
	7-4-2 How to Initialize the PHY
	7-4-3 How Enable Or Disable the PHY
	7-4-4 How to Get the Network Link State
	7-4-5 How to Set the Link Speed and Duplex
	7-4-6 How to Specify the Address of the PHY ISR
	7-4-7 NetPhy_ISR_Handler()

	7-5 Ethernet Device Driver Implementation
	7-5-1 Description of the Ethernet Device Driver API
	7-5-2 Initializing a network device
	7-5-3 Starting a Network Device
	7-5-4 Stopping a Network Device
	7-5-5 NetDev_ISR_Handler()
	7-5-6 Receiving Packets on a Network Device
	7-5-7 Transmitting Packets on a Network Device
	7-5-8 Adding an Address to the Multicast Address Filter of a Network Device
	7-5-9 Removing an Address from the Multicast Address Filter of a Network Device
	7-5-10 Setting the MAC Link, Duplex and Speed Settings
	7-5-11 Reading PHY Registers
	7-5-12 Writing to PHY Registers

	7-6 Ethernet - Transmitting & Receiving using DMA
	7-6-1 Driver Data & Control Using DMA
	7-6-2 Reception using DMA
	7-6-3 Reception Using DMA with Lists
	7-6-4 Transmission using DMA

	7-7 Ethernet - Transmitting and Receiving using Memory Copy
	7-7-1 Reception using Memory Copy
	7-7-2 Transmission using Memory Copy

	7-8 Wireless Layers Interaction
	7-9 Wireless Manager API Implementation
	7-10 Wireless Device Driver Implementation
	7-10-1 Description of the Wireless Device Driver API
	7-10-2 How to Access the SPI Bus
	7-10-3 Initializing a Network Device
	7-10-4 Starting a Network Device
	7-10-5 Stopping a Network Device
	7-10-6 Handling a Wireless Device ISR
	7-10-7 Receiving Packets and Management Frames
	7-10-8 Transmitting Packets
	7-10-9 Adding an Address to the Multicast Address Filter of a Network Device
	7-10-10 Removing an Address from the Multicast Address Filter of a Network Device
	7-10-11 How to Demultiplex Management Frames
	7-10-12 How to Execute Management Command
	7-10-13 How to Process Management Response

	Device Driver Validation
	8-1 Checklist
	8-2 Test Management Interface
	8-2-1 NDIT Main Window
	8-2-2 General Options Tab

	8-3 Validating a Device Driver
	8-3-1 Files Needed
	8-3-2 Project Example
	8-3-3 Hardware Address configuration
	8-3-4 IF Start / Stop
	8-3-5 ICMP Echo Request (Ping) Tests
	8-3-6 Target Board Configuration

	8-4 Using IPerf
	8-4-1 Getting Started with IPerf
	8-4-2 IPerf Tools

	8-5 IPerf Test Case
	8-5-1 Testing UDP Transmission
	8-5-2 Testing UDP Reception
	8-5-3 Testing TCP Transmission
	8-5-4 Testing TCP Reception

	8-6 Multicast
	8-6-1 Multicast Test Setup
	8-6-2 Multicast Test Using NDIT
	8-6-3 Analyzing the Results

	Socket Programming
	9-1 Network Socket Data Structures
	9-2 Complete send() Operation
	9-3 Socket Applications
	9-3-1 Datagram Socket (UDP Socket)
	9-3-2 Stream Socket (TCP Socket)

	9-4 Socket Configuration
	9-4-1 Socket Options

	9-5 Secure Sockets
	9-6 2MSL
	9-7 µC/TCP-IP Socket Error Codes
	9-7-1 Fatal Socket Error Codes
	9-7-2 Socket Error Code List

	Timer Management
	Debug Management
	11-1 Network Debug Information Constants
	11-2 Network Debug Monitor Task

	Statistics and Error Counters
	12-1 Statistics
	12-2 Error Counters

	µC/TCP-IP Ethernet Device Driver APIs
	A-1 Device Driver Functions for MAC
	A-1-1 NetDev_Init()
	A-1-2 NetDev_Start()
	A-1-3 NetDev_Stop()
	A-1-4 NetDev_Rx()
	A-1-5 NetDev_Tx()
	A-1-6 NetDev_AddrMulticastAdd()
	A-1-7 NetDev_AddrMulticastRemove()
	A-1-8 NetDev_ISR_Handler()
	A-1-9 NetDev_IO_Ctrl()
	A-1-10 NetDev_MII_Rd()
	A-1-11 NetDev_MII_Wr()

	A-2 Device Driver Functions for PHY
	A-2-1 NetPhy_Init()
	A-2-2 NetPhy_EnDis()
	A-2-3 NetPhy_LinkStateGet()
	A-2-4 NetPhy_LinkStateSet()
	A-2-5 NetPhy_ISR_Handler()

	A-3 Device Driver BSP Functions
	A-3-1 NetDev_CfgClk()
	A-3-2 NetDev_CfgGPIO()
	A-3-3 NetDev_CfgIntCtrl()
	A-3-4 NetDev_ClkGetFreq()
	A-3-5 NetDev_ISR_Handler()

	µC/TCP-IP Wireless Device Driver APIs
	B-1 Device Driver Functions for Wireless Module
	B-1-1 NetDev_Init()
	B-1-2 NetDev_Start()
	B-1-3 NetDev_Stop()
	B-1-4 NetDev_Rx()
	B-1-5 NetDev_Tx()
	B-1-6 NetDev_AddrMulticastAdd()
	B-1-7 NetDev_AddrMulticastRemove()
	B-1-8 NetDev_ISR_Handler()
	B-1-9 NetDev_MgmtDemux()
	B-1-10 NetDev_MgmtExecuteCmd()
	B-1-11 NetDev_MgmtProcessResp()

	B-2 Wireless Manager API
	B-2-1 NetWiFiMgr_Init()
	B-2-2 NetWiFiMgr_Start()
	B-2-3 NetWiFiMgr_Stop()
	B-2-4 NetWiFiMgr_AP_Scan()
	B-2-5 NetWiFiMgr_AP_Join()
	B-2-6 NetWiFiMgr_AP_Leave()
	B-2-7 NetWiFiMgr_IO_Ctrl()
	B-2-8 NetWiFiMgr_Mgmt()

	B-3 Device Driver BSP Functions
	B-3-1 NetDev_WiFi_Start()
	B-3-2 NetDev_WiFi_Stop()
	B-3-3 NetDev_WiFi_CfgGPIO()
	B-3-4 NetDev_WiFi_CfgIntCtrl()
	B-3-5 NetDev_WiFi_IntCtrl()
	B-3-6 NetDev_WiFi_SPI_Init()
	B-3-7 NetDev_WiFi_SPI_Lock()
	B-3-8 NetDev_WiFi_SPI_Unlock()
	B-3-9 NetDev_WiFi_SPI_WrRd()
	B-3-10 NetDev_WiFi_SPI_ChipSelEn()
	B-3-11 NetDev_WiFi_SPI_ChipSelDis()
	B-3-12 NetDev_WiFi_SPI_Cfg()
	B-3-13 NetDev_WiFi_ISR_Handler()

	µC/TCP-IP API Reference
	C-1 General Network Functions
	C-1-1 Net_Init()
	C-1-2 Net_InitDflt()
	C-1-3 Net_VersionGet()

	C-2 Network Application Interface Functions
	C-2-1 NetApp_SockAccept() (TCP)
	C-2-2 NetApp_SockBind() (TCP/UDP)
	C-2-3 NetApp_SockClose() (TCP/UDP)
	C-2-4 NetApp_SockConn() (TCP/UDP)
	C-2-5 NetApp_SockListen() (TCP)
	C-2-6 NetApp_SockOpen() (TCP/UDP)
	C-2-7 NetApp_SockRx() (TCP/UDP)
	C-2-8 NetApp_SockTx() (TCP/UDP)
	C-2-9 NetApp_TimeDly_ms()

	C-3 ARP Functions
	C-3-1 NetARP_CacheCalcStat()
	C-3-2 NetARP_CacheGetAddrHW()
	C-3-3 NetARP_CachePoolStatGet()
	C-3-4 NetARP_CachePoolStatResetMaxUsed()
	C-3-5 NetARP_CfgCacheAccessedTh()
	C-3-6 NetARP_CfgCacheTimeout()
	C-3-7 NetARP_CfgReqMaxRetries()
	C-3-8 NetARP_CfgReqTimeout()
	C-3-9 NetARP_IsAddrProtocolConflict()
	C-3-10 NetARP_ProbeAddrOnNet()

	C-4 Network ASCII Functions
	C-4-1 NetASCII_IP_to_Str()
	C-4-2 NetASCII_MAC_to_Str()
	C-4-3 NetASCII_Str_to_IP()
	C-4-4 NetASCII_Str_to_MAC()

	C-5 Network Buffer Functions
	C-5-1 NetBuf_PoolStatGet()
	C-5-2 NetBuf_PoolStatResetMaxUsed()
	C-5-3 NetBuf_RxLargePoolStatGet()
	C-5-4 NetBuf_RxLargePoolStatResetMaxUsed()
	C-5-5 NetBuf_TxLargePoolStatGet()
	C-5-6 NetBuf_TxLargePoolStatResetMaxUsed()
	C-5-7 NetBuf_TxSmallPoolStatGet()
	C-5-8 NetBuf_TxSmallPoolStatResetMaxUsed()

	C-6 Network Connection Functions
	C-6-1 NetConn_CfgAccessedTh()
	C-6-2 NetConn_PoolStatGet()
	C-6-3 NetConn_PoolStatResetMaxUsed()

	C-7 Network Debug Functions
	C-7-1 NetDbg_CfgMonTaskTime()
	C-7-2 NetDbg_CfgRsrcARP_CacheThLo()
	C-7-3 NetDbg_CfgRsrcBufThLo()
	C-7-4 NetDbg_CfgRsrcBufRxLargeThLo()
	C-7-5 NetDbg_CfgRsrcBufTxLargeThLo()
	C-7-6 NetDbg_CfgRsrcBufTxSmallThLo()
	C-7-7 NetDbg_CfgRsrcConnThLo()
	C-7-8 NetDbg_CfgRsrcSockThLo()
	C-7-9 NetDbg_CfgRsrcTCP_ConnThLo()
	C-7-10 NetDbg_CfgRsrcTmrThLo()
	C-7-11 NetDbg_ChkStatus()
	C-7-12 NetDbg_ChkStatusBufs()
	C-7-13 NetDbg_ChkStatusConns()
	C-7-14 NetDbg_ChkStatusRsrcLost() / NetDbg_MonTaskStatusGetRsrcLost()
	C-7-15 NetDbg_ChkStatusRsrcLo() / NetDbg_MonTaskStatusGetRsrcLo()
	C-7-16 NetDbg_ChkStatusTCP()
	C-7-17 NetDbg_ChkStatusTmrs()
	C-7-18 NetDbg_MonTaskStatusGetRsrcLost()
	C-7-19 NetDbg_MonTaskStatusGetRsrcLo()

	C-8 ICMP Functions
	C-8-1 NetICMP_CfgTxSrcQuenchTh()

	C-9 Network Interface Functions
	C-9-1 NetIF_Add()
	C-9-2 NetIF_AddrHW_Get()
	C-9-3 NetIF_AddrHW_IsValid()
	C-9-4 NetIF_AddrHW_Set()
	C-9-5 NetIF_CfgPerfMonPeriod()
	C-9-6 NetIF_CfgPhyLinkPeriod()
	C-9-7 NetIF_GetRxDataAlignPtr()
	C-9-8 NetIF_GetTxDataAlignPtr()
	C-9-9 NetIF_IO_Ctrl()
	C-9-10 NetIF_IsEn()
	C-9-11 NetIF_IsEnCfgd()
	C-9-12 NetIF_ISR_Handler()
	C-9-13 NetIF_IsValid()
	C-9-14 NetIF_IsValidCfgd()
	C-9-15 NetIF_LinkStateGet()
	C-9-16 NetIF_LinkStateWaitUntilUp()
	C-9-17 NetIF_MTU_Get()
	C-9-18 NetIF_MTU_Set()
	C-9-19 NetIF_Start()
	C-9-20 NetIF_Stop()

	C-10 Wireless Network Interface Function
	C-10-1 NetIF_WiFi_Scan()
	C-10-2 NetIF_WiFi_Join()
	C-10-3 NetIF_WiFi_CreateAdhoc()
	C-10-4 NetIF_WiFi_Leave()

	C-11 IGMP Functions
	C-11-1 NetIGMP_HostGrpJoin()
	C-11-2 NetIGMP_HostGrpLeave()

	C-12 IP Functions
	C-12-1 NetIP_CfgAddrAdd()
	C-12-2 NetIP_CfgAddrAddDynamic()
	C-12-3 NetIP_CfgAddrAddDynamicStart()
	C-12-4 NetIP_CfgAddrAddDynamicStop()
	C-12-5 NetIP_CfgAddrRemove()
	C-12-6 NetIP_CfgAddrRemoveAll()
	C-12-7 NetIP_CfgFragReasmTimeout()
	C-12-8 NetIP_GetAddrDfltGateway()
	C-12-9 NetIP_GetAddrHost()
	C-12-10 NetIP_GetAddrHostCfgd()
	C-12-11 NetIP_GetAddrSubnetMask()
	C-12-12 NetIP_IsAddrBroadcast()
	C-12-13 NetIP_IsAddrClassA()
	C-12-14 NetIP_IsAddrClassB()
	C-12-15 NetIP_IsAddrClassC()
	C-12-16 NetIP_IsAddrHost()
	C-12-17 NetIP_IsAddrHostCfgd()
	C-12-18 NetIP_IsAddrLocalHost()
	C-12-19 NetIP_IsAddrLocalLink()
	C-12-20 NetIP_IsAddrsCfgdOnIF()
	C-12-21 NetIP_IsAddrThisHost()
	C-12-22 NetIP_IsValidAddrHost()
	C-12-23 NetIP_IsValidAddrHostCfgd()
	C-12-24 NetIP_IsValidAddrSubnetMask()

	C-13 Network Socket Functions
	C-13-1 NetSock_Accept() / accept() (TCP)
	C-13-2 NetSock_Bind() / bind() (TCP/UDP)
	C-13-3 NetSock_CfgBlock() (TCP/UDP)
	C-13-4 NetSock_CfgIF()
	C-13-5 NetSock_CfgConnChildQ_SizeGet() (TCP)
	C-13-6 NetSock_CfgConnChildQ_SizeSet() (TCP)
	C-13-7 NetSock_CfgSecure() (TCP)
	C-13-8 NetSock_CfgServerCertKeyInstall() (TCP)
	C-13-9 NetSock_CfgSecureClientCommonName() (TCP)
	C-13-10 NetSock_CfgSecureClientTrustCallBack() (TCP)
	C-13-11 NetSock_CfgRxQ_Size() (TCP/UDP)
	C-13-12 NetSock_CfgTxQ_Size() (TCP/UDP)
	C-13-13 NetSock_CfgTxIP_TOS() (TCP/UDP)
	C-13-14 NetSock_CfgTxIP_TTL() (TCP/UDP)
	C-13-15 NetSock_CfgTxIP_TTL_Multicast() (TCP/UDP)
	C-13-16 NetSock_CfgTimeoutConnAcceptDflt() (TCP)
	C-13-17 NetSock_CfgTimeoutConnAcceptGet_ms() (TCP)
	C-13-18 NetSock_CfgTimeoutConnAcceptSet() (TCP)
	C-13-19 NetSock_CfgTimeoutConnCloseDflt() (TCP)
	C-13-20 NetSock_CfgTimeoutConnCloseGet_ms() (TCP)
	C-13-21 NetSock_CfgTimeoutConnCloseSet() (TCP)
	C-13-22 NetSock_CfgTimeoutConnReqDflt() (TCP)
	C-13-23 NetSock_CfgTimeoutConnReqGet_ms() (TCP)
	C-13-24 NetSock_CfgTimeoutConnReqSet() (TCP)
	C-13-25 NetSock_CfgTimeoutRxQ_Dflt() (TCP/UDP)
	C-13-26 NetSock_CfgTimeoutRxQ_Get_ms() (TCP/UDP)
	C-13-27 NetSock_CfgTimeoutRxQ_Set() (TCP/UDP)
	C-13-28 NetSock_CfgTimeoutTxQ_Dflt() (TCP)
	C-13-29 NetSock_CfgTimeoutTxQ_Get_ms() (TCP)
	C-13-30 NetSock_CfgTimeoutTxQ_Set() (TCP)
	C-13-31 NetSock_Close() / close() (TCP/UDP)
	C-13-32 NetSock_Conn() / connect() (TCP/UDP)
	C-13-33 NET_SOCK_DESC_CLR() / FD_CLR() (TCP/UDP)
	C-13-34 NET_SOCK_DESC_COPY() (TCP/UDP)
	C-13-35 NET_SOCK_DESC_INIT() / FD_ZERO() (TCP/UDP)
	C-13-36 NET_SOCK_DESC_IS_SET() / FD_IS_SET() (TCP/UDP)
	C-13-37 NET_SOCK_DESC_SET() / FD_SET() (TCP/UDP)
	C-13-38 NetSock_GetConnTransportID()
	C-13-39 NetSock_IsConn() (TCP/UDP)
	C-13-40 NetSock_Listen() / listen() (TCP)
	C-13-41 NetSock_Open() / socket() (TCP/UDP)
	C-13-42 NetSock_OptGet()
	C-13-43 NetSock_OptSet()
	C-13-44 NetSock_PoolStatGet()
	C-13-45 NetSock_PoolStatResetMaxUsed()
	C-13-46 NetSock_RxData() / recv() (TCP) NetSock_RxDataFrom() / recvfrom() (UDP)
	C-13-47 NetSock_Sel() / select() (TCP/UDP)
	C-13-48 NetSock_TxData() / send() (TCP) NetSock_TxDataTo() / sendto() (UDP)

	C-14 TCP Functions
	C-14-1 NetTCP_ConnCfgIdleTimeout()
	C-14-2 NetTCP_ConnCfgMaxSegSizeLocal()
	C-14-3 NetTCP_ConnCfgReTxMaxTh()
	C-14-4 NetTCP_ConnCfgReTxMaxTimeout()
	C-14-5 NetTCP_ConnCfgRxWinSize()
	C-14-6 NetTCP_ConnCfgTxWinSize()
	C-14-7 NetTCP_ConnCfgTxAckImmedRxdPushEn()
	C-14-8 NetTCP_ConnCfgTxNagleEn()
	C-14-9 NetTCP_ConnCfgTxKeepAliveEn()
	C-14-10 NetTCP_ConnCfgTxKeepAliveTh()
	C-14-11 NetTCP_ConnCfgTxKeepAliveRetryTimeout()
	C-14-12 NetTCP_ConnCfgTxAckDlyTimeout()
	C-14-13 NetTCP_ConnCfgMSL_Timeout()
	C-14-14 NetTCP_ConnPoolStatGet()
	C-14-15 NetTCP_ConnPoolStatResetMaxUsed()
	C-14-16 NetTCP_InitTxSeqNbr()

	C-15 Network Timer Functions
	C-15-1 NetTmr_PoolStatGet()
	C-15-2 NetTmr_PoolStatResetMaxUsed()

	C-16 UDP Functions
	C-16-1 NetUDP_RxAppData()
	C-16-2 NetUDP_RxAppDataHandler()
	C-16-3 NetUDP_TxAppData()

	C-17 General Network Utility Functions
	C-17-1 NET_UTIL_HOST_TO_NET_16()
	C-17-2 NET_UTIL_HOST_TO_NET_32()
	C-17-3 NET_UTIL_NET_TO_HOST_16()
	C-17-4 NET_UTIL_NET_TO_HOST_32()
	C-17-5 NetUtil_TS_Get()
	C-17-6 NetUtil_TS_Get_ms()

	C-18 BSD Functions
	C-18-1 accept() (TCP)
	C-18-2 bind() (TCP/UDP)
	C-18-3 close() (TCP/UDP)
	C-18-4 connect() (TCP/UDP)
	C-18-5 FD_CLR() (TCP/UDP)
	C-18-6 FD_ISSET() (TCP/UDP)
	C-18-7 FD_SET() (TCP/UDP)
	C-18-8 FD_ZERO() (TCP/UDP)
	C-18-9 getsockopt() (TCP/UDP)
	C-18-10 htonl()
	C-18-11 htons()
	C-18-12 inet_addr() (IPv4)
	C-18-13 inet_aton() (IPv4)
	C-18-14 inet_ntoa() (IPv4)
	C-18-15 listen() (TCP)
	C-18-16 ntohl()
	C-18-17 ntohs()
	C-18-18 recv() / recvfrom() (TCP/UDP)
	C-18-19 select() (TCP/UDP)
	C-18-20 send() / sendto() (TCP/UDP)
	C-18-21 setsockopt() (TCP/UDP)
	C-18-22 socket() (TCP/UDP)

	µC/TCP-IP Configuration and Optimization
	D-1 Network Configuration
	D-1-1 NET_CFG_INIT_CFG_VALS
	D-1-2 NET_CFG_OPTIMIZE
	D-1-3 NET_CFG_OPTIMIZE_ASM_EN
	D-1-4 NET_CFG_BUILD_LIB_EN

	D-2 Debug Configuration
	D-2-1 NET_DBG_CFG_INFO_EN
	D-2-2 NET_DBG_CFG_STATUS_EN
	D-2-3 NET_DBG_CFG_MEM_CLR_EN
	D-2-4 NET_DBG_CFG_TEST_EN

	D-3 Argument Checking Configuration
	D-3-1 NET_ERR_CFG_ARG_CHK_EXT_EN
	D-3-2 NET_ERR_CFG_ARG_CHK_DBG_EN

	D-4 Network Counter Configuration
	D-4-1 NET_CTR_CFG_STAT_EN
	D-4-2 NET_CTR_CFG_ERR_EN

	D-5 Network Timer Configuration
	D-5-1 NET_TMR_CFG_NBR_TMR
	D-5-2 NET_TMR_CFG_TASK_FREQ

	D-6 Network Buffer Configuration
	D-7 Network Interface Layer Configuration
	D-7-1 NET_IF_CFG_MAX_NBR_IF
	D-7-2 NET_IF_CFG_LOOPBACK_EN
	D-7-3 NET_IF_CFG_ETHER_EN
	D-7-4 NET_IF_CFG_WIFI_EN
	D-7-5 NET_IF_CFG_ADDR_FLTR_EN
	D-7-6 NET_IF_CFG_TX_SUSPEND_TIMEOUT_MS

	D-8 ARP (Address Resolution Protocol) Configuration
	D-8-1 NET_ARP_CFG_HW_TYPE
	D-8-2 NET_ARP_CFG_PROTOCOL_TYPE
	D-8-3 NET_ARP_CFG_NBR_CACHE
	D-8-4 NET_ARP_CFG_ADDR_FLTR_EN

	D-9 IP (Internet Protocol) Configuration
	D-9-1 NET_IP_CFG_IF_MAX_NBR_ADDR
	D-9-2 NET_IP_CFG_MULTICAST_SEL

	D-10 ICMP (Internet Control Message Protocol) Configuration
	D-10-1 NET_ICMP_CFG_TX_SRC_QUENCH_EN
	D-10-2 NET_ICMP_CFG_TX_SRC_QUENCH_NBR

	D-11 IGMP (Internet Group Management Protocol) Configuration
	D-11-1 NET_IGMP_CFG_MAX_NBR_HOST_GRP

	D-12 Transport Layer Configuration
	D-12-1 NET_CFG_TRANSPORT_LAYER_SEL

	D-13 UDP (User Datagram Protocol) Configuration
	D-13-1 NET_UDP_CFG_APP_API_SEL
	D-13-2 NET_UDP_CFG_RX_CHK_SUM_DISCARD_EN
	D-13-3 NET_UDP_CFG_TX_CHK_SUM_EN

	D-14 TCP (Transport Control Protocol) Configuration
	D-14-1 NET_TCP_CFG_NBR_CONN
	D-14-2 NET_TCP_CFG_RX_WIN_SIZE_OCTET
	D-14-3 NET_TCP_CFG_TX_WIN_SIZE_OCTET
	D-14-4 NET_TCP_CFG_TIMEOUT_CONN_MAX_SEG_SEC
	D-14-5 NET_TCP_CFG_TIMEOUT_CONN_FIN_WAIT_2_SEC
	D-14-6 NET_TCP_CFG_TIMEOUT_CONN_ACK_DLY_MS
	D-14-7 NET_TCP_CFG_TIMEOUT_CONN_RX_Q_MS
	D-14-8 NET_TCP_CFG_TIMEOUT_CONN_TX_Q_MS

	D-15 Network Socket Configuration
	D-15-1 NET_SOCK_CFG_FAMILY
	D-15-2 NET_SOCK_CFG_NBR_SOCK
	D-15-3 NET_SOCK_CFG_BLOCK_SEL
	D-15-4 NET_SOCK_CFG_SEL_EN
	D-15-5 NET_SOCK_CFG_SEL_NBR_EVENTS_MAX
	D-15-6 NET_SOCK_CFG_CONN_ACCEPT_Q_SIZE_MAX
	D-15-7 NET_SOCK_CFG_PORT_NBR_RANDOM_BASE
	D-15-8 NET_SOCK_CFG_RX_Q_SIZE_OCTET
	D-15-9 NET_SOCK_CFG_TX_Q_SIZE_OCTET
	D-15-10 NET_SOCK_CFG_TIMEOUT_RX_Q_MS
	D-15-11 NET_SOCK_CFG_TIMEOUT_CONN_REQ_MS
	D-15-12 NET_SOCK_CFG_TIMEOUT_CONN_ACCEPT_MS
	D-15-13 NET_SOCK_CFG_TIMEOUT_CONN_CLOSE_MS

	D-16 Network Security Manager Configuration
	D-16-1 NET_SECURE_CFG_EN
	D-16-2 NET_SECURE_CFG_FS_EN
	D-16-3 NET_SECURE_CFG_MAX_NBR_SOCK_SERVER
	D-16-4 NET_SECURE_CFG_MAX_NBR_SOCK_CLIENT
	D-16-5 NET_SECURE_CFG_MAX_CERT_LEN
	D-16-6 NET_SECURE_CFG_MAX_KEY_LEN
	D-16-7 NET_SECURE_CFG_MAX_NBR_CA
	D-16-8 NET_SECURE_CFG_MAX_CA_CERT_LEN

	D-17 BSD Sockets Configuration
	D-17-1 NET_BSD_CFG_API_EN

	D-18 Network Application Interface Configuration
	D-18-1 NET_APP_CFG_API_EN

	D-19 Network Connection Manager Configuration
	D-19-1 NET_CONN_CFG_FAMILY
	D-19-2 NET_CONN_CFG_NBR_CONN

	D-20 Application-Specific Configuration
	D-20-1 Operating System Configuration
	D-20-2 µC/TCP-IP Configuration

	D-21 µC/TCP-IP Optimization
	D-21-1 Optimizing µC/TCP-IP for Additional Performance

	µC/TCP-IP Error Codes
	E-1 Network Error Codes
	E-2 ARP Error Codes
	E-3 Network ASCII Error Codes
	E-4 Network Buffer Error Codes
	E-5 ICMP Error Codes
	E-6 Network Interface Error Codes
	E-7 IP Error Codes
	E-8 IGMP Error Codes
	E-9 OS Error Codes
	E-10 UDP Error Codes
	E-11 Network Socket Error Codes
	E-12 Network Security Manager Error Codes
	E-13 Network security Error Codes

	µC/TCP-IP Typical Usage
	F-1 µC/TCP-IP Configuration and Initialization
	F-1-1 µC/TCP-IP Stack Configuration
	F-1-2 µC/LIB Memory Heap Initialization
	F-1-3 µC/TCP-IP Task Stacks
	F-1-4 µC/TCP-IP Task Priorities
	F-1-5 µC/TCP-IP Queue Sizes
	F-1-6 µC/TCP-IP Initialization

	F-2 Network Interfaces, Devices, and Buffers
	F-2-1 Network Interface Configuration
	F-2-2 Network and Device Buffer Configuration
	F-2-3 Ethernet MAC Address
	F-2-4 Ethernet PHY Link State

	F-3 IP Address Configuration
	F-3-1 Converting IP Addresses to and from Their Dotted Decimal Representation
	F-3-2 Assigning Static IP Addresses to an Interface
	F-3-3 Removing Statically Assigned IP Addresses from an Interface
	F-3-4 Getting a Dynamic IP Address
	F-3-5 Getting all the IP Addresses Configured on a Specific Interface

	F-4 Socket Programming
	F-4-1 Using µC/TCP-IP Sockets
	F-4-2 Joining and Leaving an IGMP Host Group
	F-4-3 Transmitting to a Multicast IP Group Address
	F-4-4 Receiving from a Multicast IP Group
	F-4-5 The Application Receives Socket Errors Immediately After Reboot
	F-4-6 Reducing the Number of Transitory Errors (NET_ERR_TX)
	F-4-7 Controlling Socket Blocking Options
	F-4-8 Detecting if a Socket is Still Connected to a Peer
	F-4-9 Receiving -1 Instead of 0 When Calling recv() for a Closed Socket
	F-4-10 Determine the Interface for Received UDP Datagram

	F-5 µC/TCP-IP Statistics and Debug
	F-5-1 Performance Statistics During Run-Time
	F-5-2 Viewing Error and Statistics Counters
	F-5-3 Using Network Debug Functions to Check Network Status Conditions

	F-6 Using Network Security Manager
	F-6-1 Keying material installation
	F-6-2 Securing a socket

	F-7 Miscellaneous
	F-7-1 Sending and Receiving ICMP Echo Requests from the Target
	F-7-2 TCP Keep-Alives
	F-7-3 Using µC/TCP-IP for Inter-Process Communication

	Bibliography
	Index

