SMART Position Sensor, 35 mm, 75 mm and 225 mm Linear Configurations

DESCRIPTION

The SMART Position Sensor is one of the most durable, adaptable, and lightweight linear position sensors available in the industry, enabling highly accurate motion control and improving operation efficiency and safety. Its simple, non-contact design eliminates mechanical failure mechanisms, reducing wear and tear, improving reliability and durability, and minimizing downtime.

The SMART Position Sensor is a non-contacting sensing solution for absolute position sensing with enhanced accuracy. It senses the position of a magnet relative to the sensor in one of three available sensing ranges:

- 0 mm to 35 mm [0 in to 1.38 in]
- 0 mm to 75 mm [0 in to 2.95 in]
- 0 mm to 225 mm [0 in to 8.86 in]

These sensors use a patented combination of an ASIC (Application-Specific Integrated Circuit) and an array of MR (magnetoresistive) sensors to accurately and reliably determine the position of a magnet attached to a moving object so that the object's position can be determined or controlled.

The MR array measures the output of the MR sensors mounted along the magnet's direction of travel. The output and the MR sensor sequence determine the nearest pair of MR sensors to the center of the magnet location. The output of these two MR sensors is then used to determine the position of the magnet between them.

With this sensor, Honeywell has utilized MR technology through the ASIC at a level never before accomplished.

The SMART Position Sensor is available in both analog output (35 mm, 75 mm and 225 mm configurations) and digital output (225 mm configuration only) for use in control systems requiring an RS232-type interface with a 57.6 kbits/s baud rate.

FEATURES AND BENEFITS

- **Reliable, durable**: Non-contact design reduces wear and tear, improving reliability and durability, and minimizing downtime
- **Easy to install**: Installation takes four simple steps (1: position sensor; 2: drill holes; 3: mount sensor; 4: locate magnet actuator/make electrical connection) vs. up to 14 steps some competitive products require, simplifying installation and reducing set-up costs
- **Rugged**: As there are no moving parts within the sensor, Honeywell utilizes unique packaging materials that make the sensor more resistant to vibration, shock, and extreme temperatures
- **Flexible**: Air gap of up to 8.5 ±1.0 mm [0.334 ±0.039 in] between sensor and magnet expands application opportunities; variety of output options (analog standard and other RS232-type baud rates) are available, expanding application opportunities
- **Cost effective**: Adaptable, non-contacting design allows customers to eliminate unnecessary connections for installation, thereby reducing installation steps, installation time, and components
- **Accurate**: 35 mm configuration accurately measures values down to 0.04 mm [0.0016 in], 75 mm configuration accurately measures values down to 0.05 mm [0.002 in], while 225 mm configuration accurately measures value down to 0.14 mm [0.0055 in] (analog) and 0.0035 mm [0.000137 in] (digital)
- **Adaptable**: Electronics on board allow for flexible packaging and component compatibility with existing systems
- **Lightweight**: More than 50% lighter in weight than LVDT (Linear Variable Differential Transformer) technology
- **Simplifies design-in**: Easy-to-configure sensor array fits virtually any linear movement path
- **Self-diagnostics feature**: Can reduce equipment downtime by providing predictive maintenance input
- **Combined patented MR sensor and ASIC technology**: Provides enhanced differentiation and performance
- **IP67 and IP69K sealing**: allow use in many harsh applications
- **Qualified for automotive grade EMI/EMC specification**: Provides protection against environmental frequencies (35 mm configuration only)
- **RoHS-compliant materials**: Meet Directive 2002/95/EC
SMART Position Sensor

POTENTIAL APPLICATIONS
(Appplies to all configurations except where noted.)

INDUSTRIAL
• Valve position: May be used to monitor valve position so the desired amount of liquid is delivered based on the position of the valve that is opening/closing, and how long open/closed (e.g., bottling machines, food/chemical processing, water handling equipment, etc.).
• Material handling: May be used on a lifting device that moves cartons from one conveyor belt to another.
• Plastic molding: May be used for injection positioning.
• Cutting and slitting: May be used in paper mills to accurately control the location of the slitter before it cuts.
• Wafer handling: May be used to monitor if parts are properly placed.
• CNC machines: May be used to monitor tool depth and direction of travel.

TRANSPORTATION
• Engine transmissions: May be used for gear shift position for trucks (35 mm configuration only).
• Passenger bus level position: May be used for passenger bus leveling to simplify access for passengers and luggage.
• Truck-mounted crane outrigger position: May be used to determine that the outriggers are fully deployed before the lifting of objects can begin.
• Heavy equipment attachment identification: May be used to sense which attachments are being deployed onto heavy equipment by the strategic placement of the magnet to the sensor. The corresponding output indicates to the operator and control system which attachment is connected.
• Hydraulic cylinders: May be used on non-ferrous hydraulic cylinders for non-contact stroke position (225 mm configuration only).
• Marine motors: May be used for trim position on inboard/outboard motors for enhanced durability and performance.

AEROSPACE
• Aircraft actuators: May be used to control actuator position on multiple applications in the aircraft, helping to regulate airflow to engines and environmental systems.
35 mm, 75 mm and 225 mm Linear Configurations

Table 1. Specifications

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Component</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>35 mm</td>
</tr>
<tr>
<td></td>
<td>analog</td>
<td>analog</td>
</tr>
<tr>
<td></td>
<td>(SPS-L035-LATS)</td>
<td>(SPS-L075-HALS)</td>
</tr>
<tr>
<td>Sensing range</td>
<td>0 mm to 35 mm</td>
<td>0 mm to 75 mm</td>
</tr>
<tr>
<td></td>
<td>[0 in to 1.38 in]</td>
<td>[0 in to 2.95 in]</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.04 mm [0.0016 in]</td>
<td>0.05 mm [0.002 in]</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>4.75 Vdc to 5.25 Vdc</td>
<td>6 Vdc to 24 Vdc</td>
</tr>
<tr>
<td>Output</td>
<td>0.55 Vdc to 4.15 Vdc</td>
<td>0 Vdc to 5 Vdc</td>
</tr>
<tr>
<td>Supply current</td>
<td>20 mA max.</td>
<td>32 mA max.</td>
</tr>
<tr>
<td>Linearity*</td>
<td>±1.0% full scale output</td>
<td>±0.4% full scale output</td>
</tr>
<tr>
<td>Reverse polarity</td>
<td>-5 V</td>
<td>26.4 V at 125 °C [257 °F]</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>103 mV/mm typ.</td>
<td>50 mV/mm typ.</td>
</tr>
<tr>
<td>Update rate</td>
<td>476 µs</td>
<td>400 µs</td>
</tr>
<tr>
<td>Baud rate</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Initial startup time</td>
<td>5 ms</td>
<td>30 ms</td>
</tr>
<tr>
<td>Termination</td>
<td>TYCO Super Seal 282087-1 integral connector</td>
<td>flying leads</td>
</tr>
<tr>
<td>Cable bend radius</td>
<td>–</td>
<td>40 mm [1.6 in] min.</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-40 °C to 125 °C [-40 °F to 257 °F]</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-40 °C to 150 °C [-40 °F to 302 °F]</td>
<td></td>
</tr>
<tr>
<td>Air gap</td>
<td>8.5 ±1.0 mm [0.334 ±0.039 in]</td>
<td>3.0 ±2.5 mm [0.118 ±0.098 in]</td>
</tr>
<tr>
<td>Sealing</td>
<td>IP67, IP69K</td>
<td></td>
</tr>
<tr>
<td>Radiated immunity</td>
<td>100 V/m per ISO 11452-2</td>
<td>–</td>
</tr>
<tr>
<td>Conducted immunity</td>
<td>100 mA BCI per ISO 11452-4</td>
<td>–</td>
</tr>
<tr>
<td>Shock</td>
<td>50 G half sine wave with 11 ms duration</td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>20 G from 10 Hz to 2000 Hz</td>
<td>10 G from 10 Hz to 2000 Hz</td>
</tr>
<tr>
<td>Housing material</td>
<td>thermoplastic</td>
<td></td>
</tr>
<tr>
<td>Approvals</td>
<td>CE</td>
<td></td>
</tr>
<tr>
<td>Mounting: screws recommended torque</td>
<td>¼-20 or M6</td>
<td>6 N m to 10 N m [53.1 in lb to 88.5 in lb]</td>
</tr>
<tr>
<td>Material</td>
<td>magnet actuator only</td>
<td>neodymium iron boron</td>
</tr>
<tr>
<td>Strength</td>
<td>13,500 Gauss</td>
<td>10,000 Gauss</td>
</tr>
</tbody>
</table>

Note:
1. Percent linearity is the quotient of the measured output deviation from the best fit line at the measured temperature to the full scale output span.

NOTICE
Ferrous metal within a 100 mm [3.9 in] radius of the magnet actuator may affect sensor performance.
SMART Position Sensor

Figure 1. SPS-L035-LATS Dimensional Drawing (for reference only: mm) and Sensor Output Performance Graph

Pinout
1 = Vcc
2 = GND
3 = Output

Notes:
A = Sensor
B = Magnet actuator
C = Mounting ear
D = Sensor seating surface
E = Magnet seating surface
F = Sensing range
L = Length
Figure 2. SPS-L075-HALS Dimensional Drawing (for reference only: mm) and Sensor Output Performance Graph

<table>
<thead>
<tr>
<th>Wiring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red = Vcc</td>
</tr>
<tr>
<td>Black = GND</td>
</tr>
<tr>
<td>Green = Output</td>
</tr>
</tbody>
</table>

Notes:
- **A** = Sensor
- **B** = Magnet actuator
- **C** = Mounting ear
- **D** = Mounting dog
- **L** = Length

Nominal Signal Output Curve (Through Reference Points A and B)

Reference Point A

Reference Point B

Measurement Difference (mm)

Output Signal (V)

Linearity 0.4% of Full Scale

<table>
<thead>
<tr>
<th>0 mm</th>
<th>L (Delta L)</th>
<th>75 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.561</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.132</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.703</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.274</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.845</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.416</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.987</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.558</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.129</td>
<td></td>
</tr>
</tbody>
</table>

Reference Point B

Nominal Signal Output Curve (Through Reference Points A and B)

<table>
<thead>
<tr>
<th>0 mm</th>
<th>L (Delta L)</th>
<th>75 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.561</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.132</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.703</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.274</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.845</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.416</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.987</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.558</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.129</td>
<td></td>
</tr>
</tbody>
</table>

Reference Point A

Reference Point B

Nominal Signal Output Curve (Through Reference Points A and B)

<table>
<thead>
<tr>
<th>0 mm</th>
<th>L (Delta L)</th>
<th>75 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.561</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.132</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.703</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.274</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.845</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.416</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.987</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.558</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.129</td>
<td></td>
</tr>
</tbody>
</table>

Reference Point A

Reference Point B

Nominal Signal Output Curve (Through Reference Points A and B)

<table>
<thead>
<tr>
<th>0 mm</th>
<th>L (Delta L)</th>
<th>75 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.561</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.132</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.703</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.274</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.845</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.416</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.987</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.558</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.129</td>
<td></td>
</tr>
</tbody>
</table>
SMART Position Sensor

Figure 3. SPS-L225-HALS Dimensional Drawing (for reference only: mm) and Sensor Output Performance Graph

Notes:
A = Sensor
B = Magnet actuator
C = Mounting ear
D = Mounting dog
L = Length

Wiring
Red = Vcc
Black = GND
Green = Output
35 mm, 75 mm and 225 mm Linear Configurations

Figure 4. SPS-L225-HDLS Dimensional Drawing (for reference only: mm) and Sensor Output Performance Graph

Notes:
- A = Sensor
- B = Magnet actuator
- C = Mounting ear
- D = Mounting dog
- L = Length

Wiring
- Red = Vcc
- Black = GND
- Green = Output

Nominal Signal Output Curve (Through Reference Points A and B)

Linearity 0.4% of Full Scale

Output Signal (Counts)

Reference Point A

Reference Point B

Measurement Difference (mm)

0 mm

L (Delta L)

225 mm

65535

63487

0
SMART Position Sensor

Order Guide

<table>
<thead>
<tr>
<th>Catalog Listing</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPS-L035-LATS</td>
<td>SPS Series SMART Position Sensor, 35 mm linear configuration, 0 mm to 35 mm [0 in to 1.38 in] sensing range, 0.5 Vdc to 4.5 Vdc analog output, magnet actuator included (sensor also available separately)</td>
</tr>
<tr>
<td>SPS-L075-HALS</td>
<td>SPS Series SMART Position Sensor, 75 mm linear configuration, 0 mm to 75 mm [0 in to 2.95 in] sensing range, 0 Vdc to 5 Vdc analog output, magnet actuator included</td>
</tr>
<tr>
<td>SPS-L225-HALS</td>
<td>SPS Series SMART Position Sensor, 225 mm linear configuration, 0 mm to 225 mm [0 in to 8.86 in] sensing range, 0 Vdc to 5 Vdc analog output, magnet actuator included</td>
</tr>
<tr>
<td>SPS-L225-HDLS</td>
<td>SPS Series SMART Position Sensor, 225 mm linear configuration, 0 mm to 225 mm [0 in to 8.86 in] sensing range, RS232-type digital output with 57.6 kbits/s baud rate, magnet actuator included</td>
</tr>
</tbody>
</table>

WARNING

PERSONAL INJURY

DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.

Failure to comply with these instructions could result in death or serious injury.

SALES AND SERVICE

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Honeywell’s standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgement or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items it finds defective. **The foregoing is buyer’s sole remedy and is in lieu of all warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.**

While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

WARNING

MISUSE OF DOCUMENTATION

- The information presented in this datasheet is for reference only. DO NOT USE this document as product installation information.
- Complete installation, operation and maintenance information is provided in the instructions supplied with each product. **Failure to comply with these instructions could result in death or serious injury.**

Sensing and Control
Honeywell
1985 Douglas Drive North
Golden Valley, MN 55422 USA
sensing.honeywell.com