Nominal data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>D4E225-CC01-30</td>
</tr>
<tr>
<td>Motor</td>
<td>M4E074-LA</td>
</tr>
<tr>
<td>Phase</td>
<td>1~</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>VAC 230</td>
</tr>
<tr>
<td>Frequency</td>
<td>Hz 50</td>
</tr>
<tr>
<td>Type of data definition</td>
<td>ml</td>
</tr>
<tr>
<td>Valid for approval / standard</td>
<td>CE</td>
</tr>
<tr>
<td>Speed</td>
<td>min⁻¹ 1150</td>
</tr>
<tr>
<td>Power input</td>
<td>W 650</td>
</tr>
<tr>
<td>Current draw</td>
<td>A 2.84</td>
</tr>
<tr>
<td>Motor capacitor</td>
<td>μF 25</td>
</tr>
<tr>
<td>Capacitor voltage</td>
<td>VDB 400</td>
</tr>
<tr>
<td>Capacitor standard</td>
<td>P2 (CE)</td>
</tr>
<tr>
<td>Min. back pressure</td>
<td>Pa 100</td>
</tr>
<tr>
<td>Min. ambient temperature</td>
<td>°C -25</td>
</tr>
<tr>
<td>Max. ambient temperature</td>
<td>°C 30</td>
</tr>
</tbody>
</table>

ml = max. load · me = max. efficiency · fa = running at free air · cs = customer specs · cu = customer unit
Subject to alterations

Data according to ErP directive

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Actual</th>
<th>Request 2013</th>
<th>Request 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall efficiency η_e</td>
<td>36.5</td>
<td>33.9</td>
<td>40.9</td>
</tr>
<tr>
<td>Efficiency grade N</td>
<td>44.6</td>
<td>42</td>
<td>49</td>
</tr>
<tr>
<td>Power input P_e</td>
<td>kW 0.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air flow q_v</td>
<td>m³/h 1965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure increase p_f</td>
<td>Pa 361</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed n</td>
<td>min⁻¹ 1335</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data established at point of optimum efficiency
Technical features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>13 kg</td>
</tr>
<tr>
<td>Size</td>
<td>225 mm</td>
</tr>
<tr>
<td>Material of impeller</td>
<td>Sheet steel, hot-galvanised</td>
</tr>
<tr>
<td>Housing material</td>
<td>Sheet steel, hot-galvanised</td>
</tr>
<tr>
<td>Material of support structure</td>
<td>Sheet steel, hot-galvanised</td>
</tr>
<tr>
<td>Motor suspension</td>
<td>Motor anti-vibration mounted on both sides</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Counter-clockwise, seen on rotor</td>
</tr>
<tr>
<td>Type of protection</td>
<td>IP 22; Depending on installation and position</td>
</tr>
<tr>
<td>Insulation class</td>
<td>"B"</td>
</tr>
<tr>
<td>Humidity class</td>
<td>F2-1</td>
</tr>
<tr>
<td>Max. permissible ambient motor temp. (transp./ storage)</td>
<td>+ 80 °C</td>
</tr>
<tr>
<td>Min. permissible ambient motor temp. (transp./storage)</td>
<td>- 40 °C</td>
</tr>
<tr>
<td>Mounting position</td>
<td>Any</td>
</tr>
<tr>
<td>Condensate discharge holes</td>
<td>None</td>
</tr>
<tr>
<td>Operation mode</td>
<td>S1</td>
</tr>
<tr>
<td>Motor bearing</td>
<td>Ball bearing</td>
</tr>
<tr>
<td>Touch current acc. IEC 60990 (measuring network Fig. 4, TN system)</td>
<td>< 0.75 mA</td>
</tr>
<tr>
<td>Motor protection</td>
<td>Thermal overload protector (TOP) brought out</td>
</tr>
<tr>
<td>Protection class</td>
<td>I (if protective earth is connected by customer)</td>
</tr>
<tr>
<td>Product conforming to standard</td>
<td>EN 60335-1; CE</td>
</tr>
<tr>
<td>Approval</td>
<td>CCC</td>
</tr>
</tbody>
</table>
AC centrifugal fan
forward curved, dual inlet
with housing (flange)

Product drawing

1 Connection line ETFE AWG20 0.5mm², 6x brass lead tips crimped

Connection screen

<table>
<thead>
<tr>
<th>TOP</th>
<th>U1</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x grey</td>
<td>blue</td>
<td>brown</td>
</tr>
<tr>
<td>U2</td>
<td>black</td>
<td>PE</td>
</tr>
</tbody>
</table>
AC centrifugal fan
forward curved, dual inlet
with housing (flange)

Charts: Air flow 50 Hz

Measurement: LU38314
Air performance measured as per ISO 5801
Installation category A. For detailed
information on the measuring set-up, please
contact ebm-papst. Suction-side noise
levels: LWA measured with 1m distance to fan axis.
The values given are valid under the
measuring conditions mentioned above and
may vary according to the actual installation
situation. With any deviation from the
standard set-up, the specific values have to
be checked and reviewed with the unit
installed.

Measurement values

<table>
<thead>
<tr>
<th>U</th>
<th>f</th>
<th>h</th>
<th>P_e</th>
<th>I</th>
<th>qv</th>
<th>P_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Hz</td>
<td>min⁻¹</td>
<td>W</td>
<td>A</td>
<td>m³/h</td>
<td>Pa</td>
</tr>
<tr>
<td>1</td>
<td>230</td>
<td>50</td>
<td>1150</td>
<td>783</td>
<td>3.42</td>
<td>2975</td>
</tr>
<tr>
<td>2</td>
<td>230</td>
<td>50</td>
<td>1195</td>
<td>689</td>
<td>3.05</td>
<td>2700</td>
</tr>
<tr>
<td>3</td>
<td>230</td>
<td>50</td>
<td>1300</td>
<td>581</td>
<td>2.65</td>
<td>2215</td>
</tr>
<tr>
<td>4</td>
<td>230</td>
<td>50</td>
<td>1395</td>
<td>445</td>
<td>2.15</td>
<td>1300</td>
</tr>
</tbody>
</table>

U = Supply voltage · f = Frequency · h = Speed · P_e = Power input · I = Current draw · qv = Air flow · P_f = Pressure increase