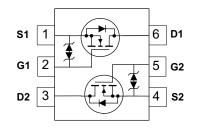


FDMA2002NZ

Dual N-Channel PowerTrench[®] MOSFET

General Description

This device is designed specifically as a single package solution for dual switching requirements in cellular handset and other ultra-portable applications. It features two independent N-Channel MOSFETs with low on-state resistance for minimum conduction losses. The MicroFET 2x2 offers exceptional thermal performance for its physical size and is well suited to linear mode applications.



Features

- 2.9 A, 30 V $R_{DS(ON)}$ = 123 mΩ @ V_{GS} = 4.5 V $R_{DS(ON)}$ = 140 mΩ @ V_{GS} = 3.0 V $R_{DS(ON)}$ = 163 mΩ @ V_{GS} = 2.5 V
- Low profile 0.8 mm maximum in the new package MicroFET 2x2 mm

July 2014

- HBM ESD protection level = 1.8kV (Note 3)
- RoHS Compliant
- Free from halogenated compounds and antimony oxides

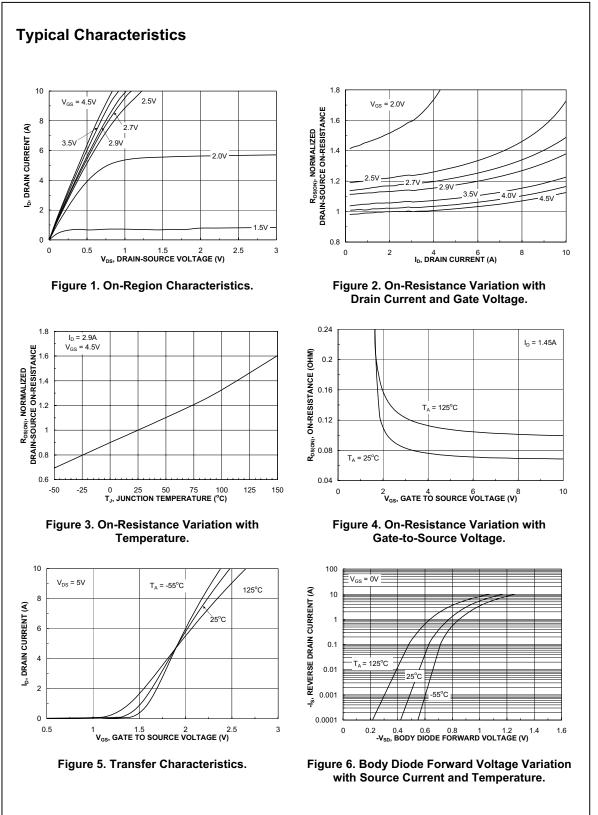
Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol		Param	Ratings	Units				
V _{DS}	Drain-Source	e Voltage	30	V				
V _{GS}	Gate-Source	e Voltage	±12	V				
I _D	Drain Currer	nt – Continuous (T _c = 2	2.9					
		– Continuous (T _c = 2	2.7	A				
		– Pulsed	10					
P _D	Power Dissi	pation for Single Operation	ation	(Note 1a)	1.5			
	Power Dissi	pation for Single Opera	ation	(Note 1b)	0.65	W		
	-							
		nd Storage Temperatu	re		-55 to +150	°C		
Therma	al Charac			8	-55 to +150 33 (Single Operation)	 ⊃°		
Therma R _{0JA}	al Charac	teristics	Ambient (Note 1a					
Therma R _{0JA} R _{0JA}	al Charac Thermal Re Thermal Re	teristics sistance, Junction-to-A	Ambient (Note 1a Ambient (Note 1b	1	33 (Single Operation)	∘C/W		
Therma R _{θJA} R _{θJA}	al Charac Thermal Re Thermal Re Thermal Re	teristics sistance, Junction-to-/ sistance, Junction-to-/	Ambient (Note 1a Ambient (Note 1b Ambient (Note 1c	1	33 (Single Operation) 93 (Single Operation)			
Therma R _{0JA} R _{0JA} R _{0JA} Packaç	al Charac Thermal Re Thermal Re Thermal Re Thermal Re ge Markin	teristics sistance, Junction-to-/ sistance, Junction-to-/ sistance, Junction-to-/ g and Orderin	Ambient (Note 1a Ambient (Note 1b Ambient (Note 1c Ambient (Note 1d g Informatic	. 1	 33 (Single Operation) 93 (Single Operation) 68 (Dual Operation) 145 (Dual Operation) 	•C/W		
R _{0JA} R _{0JA} R _{0JA} R _{0JA} Packaç Device	al Charac Thermal Re Thermal Re Thermal Re Thermal Re	teristics sistance, Junction-to-/ sistance, Junction-to-/ sistance, Junction-to-/	Ambient (Note 1a Ambient (Note 1b Ambient (Note 1c Ambient (Note 1d	. 1	33 (Single Operation) 93 (Single Operation) 68 (Dual Operation)			

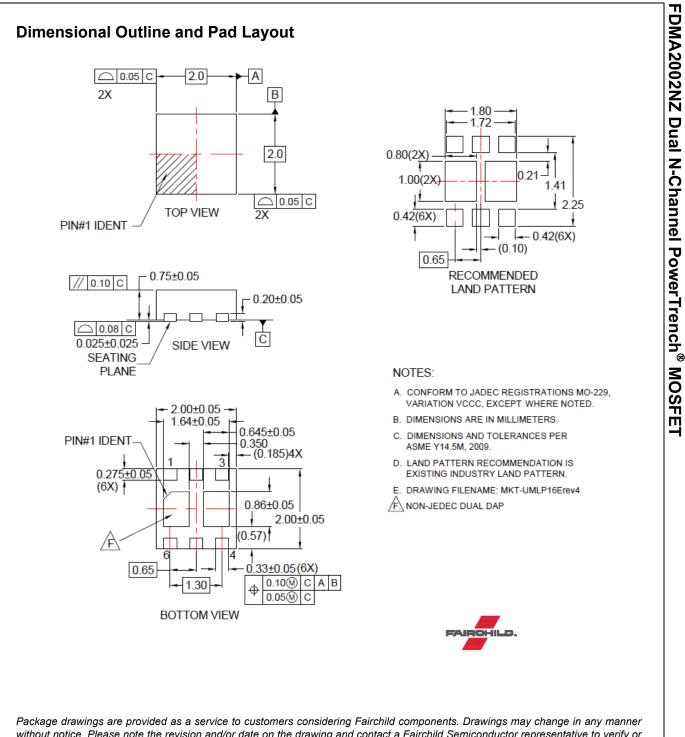
©20F€ Fairchild Semiconductor Corporation

	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	acteristics	1	•		•		
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	30			V	
ΔBV _{DSS} ΔTJ	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C		25		mV/°C	
	Zero Gate Voltage Drain Current	$V_{DS} = 24 V$, $V_{GS} = 0 V$			1	μA	
I _{GSS}	Gate-Body Leakage Current	$V_{GS} = \pm 12 V$, $V_{DS} = 0 V$			±10	μA	
On Chara	acteristics		-	1	1		
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	0.4	1.0	1.5	V	
$\Delta V_{GS(th)}$	Gate Threshold Voltage	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		-			
ΔT_{J}	Temperature Coefficient			-3		mV/°C	
R _{DS(on)}		V _{GS} = 4.5V, I _D = 2.9A		75	123		
		$V_{GS} = 3.0V, I_D = 2.7A$		84	140	3 6 mΩ	
	Static Drain–Source	$V_{GS} = 2.5V, I_D = 2.5A$		92	163		
- 1 - 7	On–Resistance	$V_{GS} = 4.5V, I_D = 2.9A, T_C = 85^{\circ}C$		95	166		
		$V_{GS} = 3.0V, I_D = 2.7A, T_C = 150^{\circ}C$		138	203	{	
		V_{GS} = 2.5V, I_D = 2.5A, T_C = 150°C		150	268		
	Characteristics			100	220	~F	
Ciss	Input Capacitance	$V_{DS} = 15 V, V_{GS} = 0 V,$		190	220	pF	
C _{oss}	Output Capacitance	f = 1.0 MHz		30	40	pF	
C _{rss}	Reverse Transfer Capacitance			20	30	pF	
Switching	g Characteristics (Note 2)						
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 15 V, I_D = 1 A,$		6	12	ns	
t _r	Turn–On Rise Time	$V_{GS} = 4.5 V, R_{GEN} = 6 \Omega$		8	16	ns	
t _{d(off)}	Turn–Off Delay Time]		12	21	ns	
t _f	Turn–Off Fall Time			2	10	ns	
Qg	Total Gate Charge	$V_{DS} = 15 V$, $I_{D} = 2.9 A$,		2.4	3.0	nC	
Q _{gs}	Gate–Source Charge	V _{GS} = 4.5 V		0.35		nC	
Q _{gd}	Gate–Drain Charge	1		0.75		nC	
-	-	and Maximum Patings					
Drain-50	Durce Diode Characteristics				2.9	А	
V _{SD}	Source–Drain Diode Forward	$I_{\rm S} = 2.0 \text{ A}$		0.9	1.2		
• 50	Voltage	$I_{\rm S} = 2.0$ A		0.8	1.2	V	
t _{rr}	Diode Reverse Recovery Time	$I_{\rm F} = 2.9 {\rm A},$		10		ns	
	Diode Reverse Recovery Charge	dl _⊧ /dt = 100 A/µs		2		nC	

Notes:


- R_{0JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design.

 (a) R_{0JA} = 86 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For single operation.
 - (b) $R_{0JA} = 173 \text{ °C/W}$ when mounted on a minimum pad of 2 oz copper. For single operation.
 - (c) $R_{\theta JA} = 69 \text{ }^{\circ}\text{C/W}$ when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For dual operation.
 - (d) $R_{\theta JA}$ = 151 °C/W when mounted on a minimum pad of 2 oz copper. For dual operation.



2. Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0%

3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

FDMA2002NZ Dual N-Channel PowerTrench[®] MOSFET

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_MLDEB-X06

Obsolete

Not In Production

Datasheet contains specifications on a product that is discontinued by Fairchild

Semiconductor. The datasheet is for reference information only.

DMA2002NZ Dual N-Channel PowerTrench[®] MOSFET