

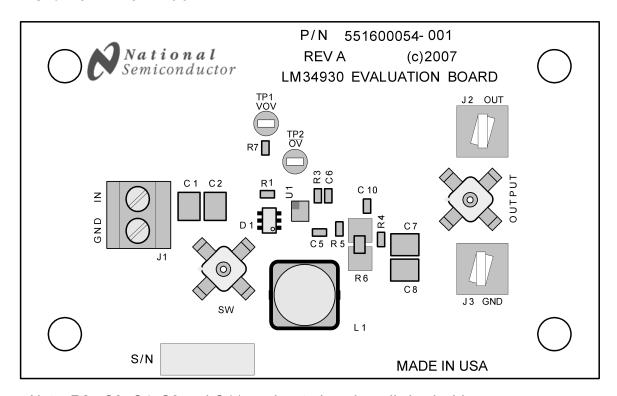
AN-1848 LM34930 Evaluation Board

1 Introduction

The LM34930EVAL evaluation board provides the design engineer with a fully functional buck regulator, employing the constant on-time (COT) operating principle. This evaluation board provides a 5V output over an input range of 8V to 33V. The circuit delivers load currents to 1A, with current limit set at a nominal 1.16A. The board is populated with all components except R5, C9 and C10. These components provide options for managing the output ripple as described later in this document.

The board's specification are:

• Input Voltage: 8V to 33V


Output Voltage: 5V

Maximum load current: 1A
Minimum load current: 0A
Current Limit: 1.14A to 1.19A

Measured Efficiency: 92.2% (V_{IN} = 8V, I_{OUT} = 400 mA)

· Nominal Switching Frequency: 1500 kHz

• Size: 2.6 in. x 1.6 in. x 0.5 in

Note: R2, C3, C4, C9 and C11 are located on board's back side.

Figure 1. Evaluation Board - Top Side

All trademarks are the property of their respective owners.

Theory of Operation www.ti.com

2 Theory of Operation

Refer to the evaluation board schematic in Figure 5. When the circuit is in regulation, the buck switch is on each cycle for a time determined by R1 and VIN according to the equation:

$$t_{\text{ON}} = \frac{4.15 \times 10^{-11} \times (\text{R1} + 0.5 \text{ k}\Omega)}{V_{\text{IN}} - 0.8 \text{V}} + 65 \text{ ns}$$
(1)

The on-time of this evaluation board ranges from \approx 416 ns at VIN = 8V, to \approx 144 ns at VIN = 33V. The ontime varies inversely with VIN to maintain a nearly constant switching frequency. At the end of each ontime the Minimum Off-Timer ensures the buck switch is off for at least 90 ns. In normal operation, the off-time is much longer. During the off-time, the load current is supplied by the output capacitor (C7, C8). When the output voltage falls sufficiently that the voltage at FB is below 2.52V, the regulation comparator initiates a new on-time period. For stable, fixed frequency operation, a minimum of 25 mV of ripple is required at FB to switch the regulation comparator. The current limit threshold, is \approx 1.19A at Vin = 8V, and \approx 1.14A at Vin = 33V. Refer to the *Ultra Small 33V, 1A Constant On-Time Buck Switching Regulator with Intelligent Current Limit* (SNVS571) data sheet for a more detailed block diagram, and a complete description of the various functional blocks.

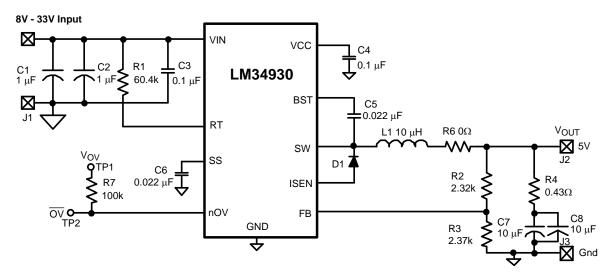
3 Board Layout and Probing

The pictorial in Figure 1 shows the placement of the circuit components. The following should be kept in mind when the board is powered:

- When operating at high input voltage and high load current, forced air flow may be necessary.
- The LM34930, and diode D1 may be hot to the touch when operating at high input voltage and high load current.
- Use CAUTION when probing the circuit at high input voltages to prevent injury, as well as possible damage to the circuit.
- At maximum load current (1A), the wire size and length used to connect the load becomes important.
- Ensure there is not a significant drop in the wires between this evaluation board and the load.

4 Board Connection/Start-up

- The input connections are made to the J1 connector.
- The load is connected to the J2 (OUT) and J3 (GND) terminals. Ensure the wires are adequately sized for the intended load current.
- Before start-up a voltmeter should be connected to the input terminals, and to the output terminals.
- The load current should be monitored with an ammeter or a current probe.
- It is recommended that the input voltage be increased gradually to 8V, at which time the output voltage should be 5V.
- If the output voltage is correct with 8V at VIN, then increase the input voltage as desired and proceed with evaluating the circuit. DO NOT EXCEED 40V AT VIN.


5 Output Ripple Control

The LM34930 requires a minimum of 25 mVp-p ripple at the FB pin, in phase with the switching waveform at the SW pin, for proper operation. The required ripple can be supplied from ripple at V_{OUT} , through the feedback resistors as described in Options A and B below, or the ripple can be generated separately (using R5, C9, and C10) in order to keep the ripple at V_{OUT} at a minimum (Option C).

Option A) Lowest Cost Configuration: In this configuration R4 is installed in series with the output capacitance (C7, C8). Since \geq 25 mVp-p are required at the FB pin, R4 must be chosen to generate \geq 50 mVp-p at V_{OUT}, knowing that the minimum ripple current in this circuit is \approx 125 mAp-p at minimum V_{IN}. Using 0.43 Ω for R4, the ripple at V_{OUT} ranges from \approx 54 mVp-p to \approx 160 mVp-p over the input voltage range. If the application can accept this ripple level, this is the most economical solution. The circuit is shown in Figure 2 and Figure 8.

www.ti.com Output Ripple Control

Figure 2. Lowest Cost Configuration

Option B) Intermediate Ripple Configuration: This evaluation board is supplied with this configuration installed. This configuration generates less ripple at V_{OUT} than option A above by the addition of one capacitor (C11) across R2, as shown in Figure 3.

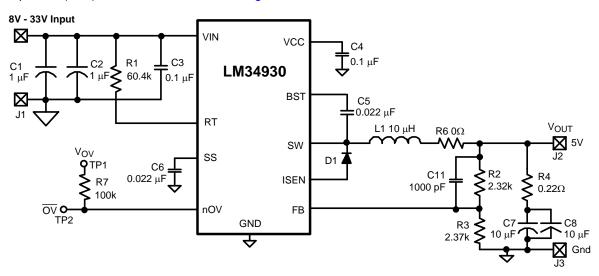


Figure 3. Intermediate Ripple Configuration

Since the output ripple is passed by Cff to the FB pin with little or no attenuation, R4 can be reduced so the minimum ripple at V_{OUT} is $\approxeq 25$ mVp-p. The minimum value for Cff is calculated from:

$$Cff \ge \frac{3 \times t_{ON \text{ (max)}}}{(R2//R3)}$$
 (2)

where $t_{ON(max)}$ is the maximum on-time (at minimum V_{IN}), and R2//R3 is the parallel equivalent of the feedback resistors. The ripple at V_{OUT} ranges from 32 mVp-p to 93 mVp-p over the input voltagr range. See Figure 8.

Option C) Minimum Ripple Configuration: To obtain minimum ripple at V_{OUT} , R4 is set to 0Ω , and R5, C9, and C10 are added to generate the required ripple for the FB pin. In this configuration, the output ripple is determined primarily by the characteristics of the output capacitance and the inductor's ripple current. See Figure 4.

Over-Voltage Indicator www.ti.com

The ripple voltage required by the FB pin is generated by R5, C10, and C9 since the SW pin switches from -1V to V_{IN} , and the right end of C10 is a virtual ground. The values for R5 and C10 are chosen to generate a 50-100 mVp-p triangle waveform at their junction. That triangle wave is then coupled to the FB pin through C9. The following procedure is used to calculate values for R5, C10 and C9:

1) Calculate the voltage V_A:

$$V_{A} = V_{OUT} - (V_{SW} \times (1 - (V_{OUT}/V_{IN})))$$
(3)

where V_{SW} is the absolute value of the voltage at the SW pin during the off-time (typically 1V), and V_{IN} is the minimum input voltage. For this circuit, V_A calculates to 4.63V. This is the approximate DC voltage at the R5/C10 junction, and is used in the next equation.

2) Calculate the R5 x C10 product:

R5 x C10 =
$$\frac{(V_{IN} - V_{A}) \times t_{ON}}{\Delta V}$$
 (4)

where t_{ON} is the maximum on-time (\approxeq 416 ns), V_{IN} is the minimum input voltage, and ΔV is the desired ripple amplitude at the R5/C10 junction, 100 mVp-p for this example.

R5 x C10 =
$$\frac{(8V - 4.63V) \times 416 \text{ ns}}{0.1V}$$
 = 14 x 10⁻⁶ (5)

R5 and C10 are then chosen from standard value components to satisfy the above product. Typically C10 is 3000 to 10000 pF, and R5 is 10 k Ω to 300 k Ω . C9 is chosen large compared to C10, typically 0.1 μ F. The ripple at V_{OUT} is typically less than 10 mVp-p. See Figure 4 and Figure 8.

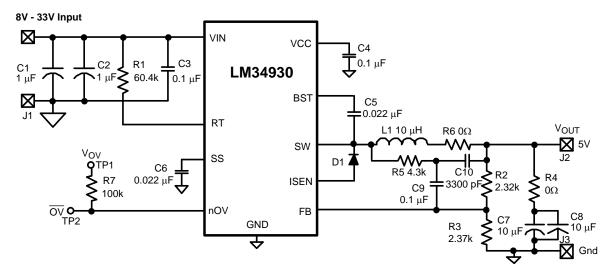


Figure 4. Minimum Output Ripple Configuration

6 Over-Voltage Indicator

The nOV pin, an open drain logic output, switches low when the voltage at VIN exceeds 19V. The overvoltage indicator comparator provides 1.95V hysteresis to reject noise and ripple on the VIN pin. A pull-up voltage not exceeding 7V must be connected to TP1. A 100 k Ω pull-up resistor (R7) is provided on this board. The state of the nOV pin can be monitored at TP2.

The pull-up voltage can exceed the voltage at VIN. When nOV is low, the current into the pin must not exceed 10 mA.

7 Input Over-Voltage Shutdown

If the input voltage at VIN increases above 36V an internal comparator disables the buck switch, and grounds the soft-start pin. The over-voltage shutdown comparator provides 400 mV hysteresis to reject noise and ripple on the VIN pin. Normal operation resumes when the voltage at VIN is reduced below the lower threshold.

8 Monitor The Inductor Current

The inductor's current can be monitored or viewed on a scope with a current probe. Remove R6, and install an appropriate current loop across the two large pads where R6 was located. In this way the inductor's ripple current and peak current can be accurately determined.

9 Scope Probe Adapters

Scope probe adapters are provided on this evaluation board for monitoring the waveform at the SW pin, and at the circuit's output (V_{OUT}) , without using the probe's ground lead which can pick up noise from the switching waveforms. The probe adapters are suitable for Tektronix P6137 or similar probes, with a 0.135" diameter.

10 Minimum Load Current

The LM34930 requires a minimum load current of ≈ 1 mA to ensure the boost capacitor (C5) is recharged sufficiently during each off-time. In this evaluation board, the minimum load current is provided by the feedback resistors allowing the board's minimum load current at V_{OUT} to be specified at zero.

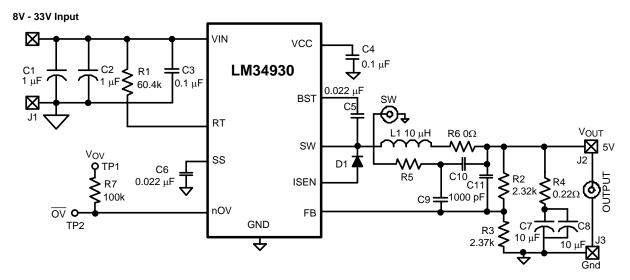


Figure 5. Complete Evaluation Board Schematic (As Supplied)

Minimum Load Current www.ti.com

Table 1. Bill of Materials

Item Description Mfg Part Number Package Value				
	Description	Mfg., Part Number	Package	
C1	Ceramic Capacitor	TDK C3216X7R1H105M	1206	1.0 μF, 50V
C2	Ceramic Capacitor	TDK C3216X7R1H105M	1206	1.0 µF, 50V
C3	Ceramic Capacitor	TDK C1608X7R1H104K	0603	0.1 μF, 50V
C4	Ceramic Capacitor	TDK C1608X7R1H104K	0603	0.1 μF, 50V
C5	Ceramic Capacitor	TDK C1608X7R1H223K	0603	0.022 μF, 50V
C6	Ceramic Capacitor	TDK C1608X7R1H223K	0603	0.022 μF, 50V
C7, C8	Ceramic Capacitor	TDK C3216X7R1C106K	1206	10 μF, 16V
C9	Ceramic Capacitor	Unpopulated	0603	
C10	Ceramic Capacitor	Unpopulated	0603	
C11	Ceramic Capacitor	TDK C1608X7R2A102M	0603	1000 pF
D1	Schottky Diode	Zetex ZLLS2000	SOT23-6	40V, 2.2A
L1	Power Inductor	Bussman DR73-100	7.6 mm x 7.6 mm	10 μH, 2A
R1	Resistor	Vishay CRCW06036042F	0603	60.4 kΩ
R2	Resistor	Vishay CRCW06032321F	0603	2.32 kΩ
R3	Resistor	Vishay CRCW06032371F	0603	2.37 kΩ
R4	Resistor	Panasonic ERJ3RQFR22	0603	0.22Ω
R5	Resistor	Unpopulated	0603	
R6	Resistor	Vishay CRCW08050000Z	0805	0Ω Jumper
R7	Resistor	Vishay CRCW06031003F	0603	100 kΩ
U1	Switching Regulator	Texas Instruments LM34930	12 Bump DSBGA	

www.ti.com Circuit Performance

11 Circuit Performance

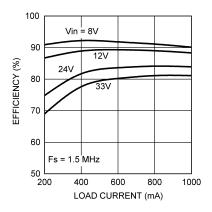


Figure 6. Efficiency vs Load Current

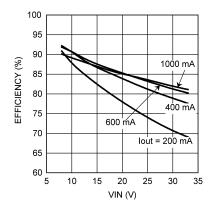


Figure 7. Efficiency vs Input Voltage

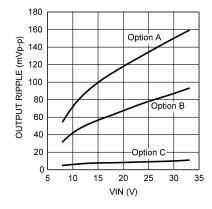


Figure 8. Output Voltage Ripple

Typical Waveforms www.ti.com

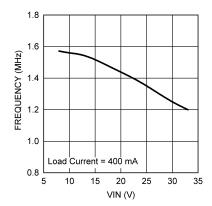


Figure 9. Switching Frequency vs. Input Voltage

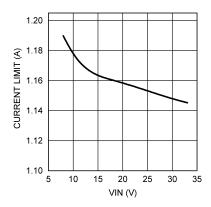
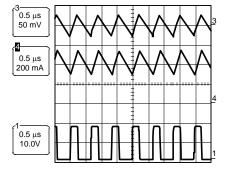
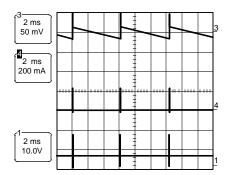



Figure 10. Load Current Limit vs Input Voltage

12 Typical Waveforms


Trace 1 = SW Pin
Trace 3 = V_{OUT}
Trace 4 = Industry Current

Trace 4 = Inductor Current Vin = 16V, Iout = 400 mA

Figure 11. Continuous Conduction Mode

www.ti.com PC Board Layout

Trace 1 = SW Pin

Trace $3 = V_{OUT}$

Trace 4 = Inductor Current

Vin = 16V, Iout = 0 mA

Figure 12. Discontinuous Conduction Mode

13 PC Board Layout

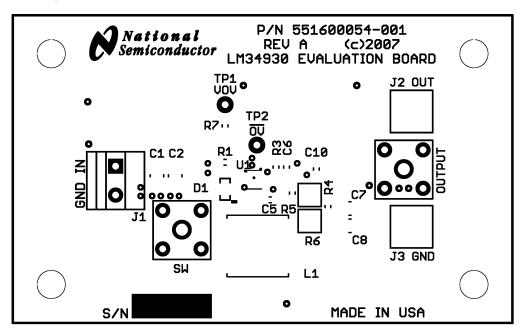


Figure 13. Board Silkscreen

PC Board Layout www.ti.com

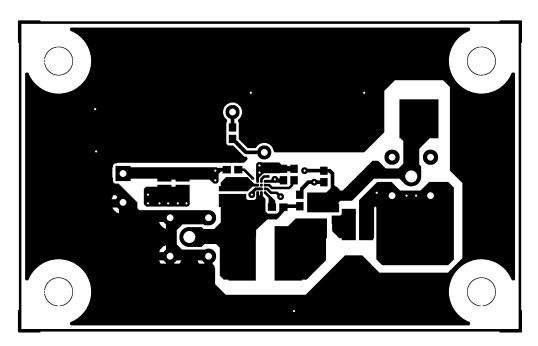


Figure 14. Board Top Layer

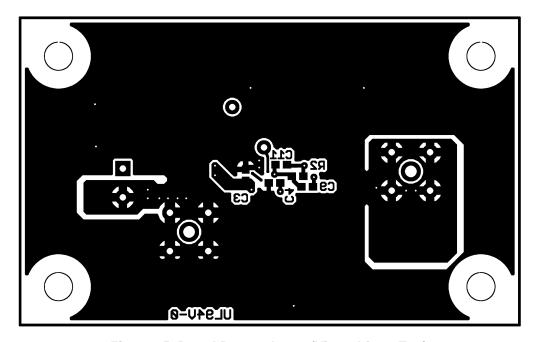


Figure 15. Board Bottom Layer (Viewed from Top)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>