
Beaglebone mikroBUS Cape
Manufacture Part number: 3651

Description

The mikroBUS Cape is an expansion board for the BeagleBone that allows users to connect up

to 4 mikroElektronika Click boards to the BeagleBone without any wiring.

Software Support & Compatibility

No software support is required by this board. All revisions are compatible with BeagleBone and

BeagleBone Black.

Examples are compatible with BeagleBone and BeagleBone Black.

NOTE: At this point in time the Debian kernel is experiencing issues with applying device tree

overlays, the examples may not work.

Getting Started

BeagleBone (White)

To allow BB to identify appropriate pin headers configuration, Click Cape have an onboard

EEPROM programmed to make the use of the Cape “plug and play”, just insert the Cape and

reboot the BB.

BeagleBone Black

From adoption of Linux kernel 3.x a new method to configure pin headers was introduced, at the

boot time an in-kernel utility named “capemgr” dynamically load Device Tree definitions to

configure an appropriate pin headers and bus initialization.

https://www.tigal.com/wiki/lib/exe/detail.php?id=tigalcapes%3Abb_mikrobus_cape&media=tigalcapes:beaglebone_mikrobus_cape-003.jpg
https://www.tigal.com/wiki/lib/exe/detail.php?id=tigalcapes%3Abb_mikrobus_cape&media=tigalcapes:beaglebone_mikrobus_cape-012.jpg

As in the case of the White, reading the information stored in the onboard EEPROM, the use of

Click Cape is “plug and play” but needs that the user (just one time) put the *.dtbo file

(downloadable form git or from our server) in /lib/firmware and reboot the system.

Before this setup it is strongly suggested to start with a fresh install of the OS, latest images are

found here:Latest images It is also recommended to try a fresh install to make sure that the

system has no user caused errors, or leftovers from previous projects.

Angström setup

$ git clone git://github.com/TIGAL/BBB-mikroBUS-Cape.git

$ cd BBB-mikroBUS-Cape

$ mkdir bbclickdtbo

$ tar -C /home/root/BBB-mikroBUS-Cape/bbclickdtbo/ -xvf BB_board_dtbo.tar

$ cd bbclickdtbo/

$ cp BB-MIKROBUS-01-00A1.dts /lib/firmware/

$ cp BB-MIKROBUS-01-00A1.dtbo /lib/firmware/

$ reboot

Debian setup

NOTE: At this time due to the changes being made in the kernel, the Device Tree Overlay is not

functional. The Linux comminity is currently working on the Device Tree handling.

$ git clone git://github.com/TIGAL/BBB-mikroBUS-Cape.git

$ cd BBB-mikroBUS-Cape

$ mkdir bbclickdtbo

$ tar -C /root/BBB-mikroBUS-Cape/bbclickdtbo/ -xvf BB_board_dtbo.tar

$ cd bbclickdtbo/

$ cp BB-MIKROBUS-01-00A1.dts /lib/firmware/

http://beagleboard.org/latest-images

$ cp BB-MIKROBUS-01-00A1.dtbo /lib/firmware/

$ reboot

HDMI Disable

For the BeagleBone Black to function properly wit the cape the HDMI has to be disabled. To do

this you have to replace the contents of the uEnv.txt file in the FAT partition of the BeagleBone

Black:

$ mkdir /mnt/boot

$ mount /dev/mmcbk0p1 /mnt/boot

$ nano /mnt/boot/uEnv.txt

Replace the contents of uEnv.txt to this

optargs=quiet capemgr.disable_partno=BB-BONELT-HDMI,BB-BONELT-HDMIN

Then save and exit (Control+X, then Y then Enter), and reboot.

On debian this can be done by uncommenting the same line in the uEnv.txt

Recommended software

For terminal access through the debug port of the BeagleBone it is recommended to use PuTTY

which can be downloaded here: PuTTY

For SD card imaging use Win32 Disk imager which is available from here: Win32 Disk Imager

Make your life easier

Make a .profile file in your root to make your life a lot easier when working with DT. Using the

export command you can route the $PINS and $SLOTS, this allows you to easily see the pin

statuses by using the 'cat $PINS' or 'cat $SLOTS' command. By adding this into a .profiles file

these mappings are applied every time you start your board.

$ nano .profile

Then add the text below to it for Angström

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://sourceforge.net/projects/win32diskimager/

export SLOTS=/sys/devices/bone_capemgr.8/slots

export PINS=/sys/kernel/debug/pinctrl/44e10800.pinmux/pins

Use this for Debian

export SLOTS=/sys/devices/bone_capemgr.9/slots

export PINS=/sys/kernel/debug/pinctrl/44e10800.pinmux/pins

Then save and exit (Control+X, then Y then Enter)

Use Github

All files and documents that are nessecary to get the Cape working is also availible on github. To

use our github repositories do the following:

$ git clone git://github.com/TIGAL/BBB-mikroBUS-Cape.git

RTC2 Click

As the RTC2 Click is connected via I²C it can be connected to any port on the cape. With the

default dtbo file in place it will certainly work without any programming. All you have to do is to

set the date and time first

$ date -s 2014.07.24-15:00

Then write it to the RTC2 by

$ hwclock -w

As long as you have a good battery the correct time should be kept by the device after

recovering from a power loss or a restart.

Specifications

Signal Usage

Click Host 1

Click

Pin

BBB Pin Signal Mode $PINS ADDR/

OFFSET

GPIO

NO.

AN P9.38

(default)

P8.26

(optional)

AIN3 (default)

GPIO1_29

(optional)

-

7

- - -

RST P9.12 GPIO1_28 7 30 0x878/078 60

CS P9.28 SPI1_CS0 3 103 0x99c/19c 113

SCK P9.31 SPI1_SCLK 3 100 0x990/190 110

MISO P9.29 SPI1_D0 3 101 0x994/194 111

MOSI P9.30 SPI1_D1 3 102 0x998/198 112

+3.3V P9.3 - P9.4 VDD_3V3EXP - - - -

GND P9.43 - P9.46 GND - - - -

PWM P9.14 EHRPWM1A 6 18 0x848/048 50

INT P9.15 GPIO1_16 7 16 0x840/040 48

RX P9.21 UART2_TXD 1 85 0x954/154 3

TX P9.22 UART2_RXD 1 84 0x950/150 2

SCL P9.19 I2C2_SCL 3 95 0x97c/17c 13

SDA P9.20 I2C2_SDA 3 94 0x978/178 12

+5V NC - - - - -

GND P9.43 - P9.46 GND - - - -

https://www.tigal.com/wiki/lib/exe/detail.php?id=tigalcapes%3Abb_mikrobus_cape&media=tigalcapes:bbmikrobuscape.jpg

Click Host 2

Click

Pin

BBB Pin Signal Mode $PINS ADDR/

OFFSET

GPIO

NO.

AN P9.37

(default)

P8.15

(optional)

AIN2 (default)

GPIO1_15

(optional)

-

7

- - -

RST P9.23 GPIO1_17 7 17 0x844/044 49

CS P9.42 SPI1_CS1 2 89 0x964/1a0 7

SCK P9.31 SPI1_SCLK 3 100 0x990/190 110

MISO P9.29 SPI1_D0 3 101 0x994/194 111

MOSI P9.30 SPI1_D1 3 102 0x998/198 112

+3.3V P9.3 - P9.4 VDD_3V3EXP - - - -

GND P9.43 - P9.46 GND - - - -

PWM P9.16 EHRPWM1B 6 19 0x84c/04c 51

INT P9.41 GPIO0_20 7 - 0x9a8/1a8 116

RX NC - - - - -

TX NC - - - - -

SCL P9.19 I2C2_SCL 3 95 0x97c/17c 13

SDA P9.20 I2C2_SDA 3 94 0x978/178 12

+5V NC - - - - -

Click Host 3

Click

Pin

BBB Pin Signal Mode $PINS ADDR/

OFFSET

GPIO

NO.

AN P9.40

(default)

P8.12

(optional)

AIN1 (default)

GPIO1_12

(optional)

-

7

- - -

RST P8.14 GPIO0_26 7 10 0x828/028 26

CS NC - - - - -

SCK NC - - - - -

MISO NC - - - - -

MOSI NC - - - - -

+3.3V P9.3 - P9.4 VDD_3V3EXP - - - -

GND P9.43 - P9.46 GND - - - -

PWM P8.19 EHRPWM2A 4 8 0x820/020 22

INT P8.18 GPIO2_1 7 35 0x88c/08c 65

RX P9.24 UART1_TXD 0 97 0x984/184 15

TX P9.26 UART1_RXD 0 96 0x980/189 14

SCL P9.19 I2C2_SCL 3 95 0x97c/17c 13

SDA P9.20 I2C2_SDA 3 94 0x978/178 12

+5V NC - - - - -

GND P9.43 - P9.46 GND - - - -

Click Host 4

Click

Pin

BBB Pin Signal Mode $PINS ADDR/

OFFSET

GPIO

NO.

AN P9.39

(default)

P8.11

(optional)

AIN0 (default)

GPIO1_13

(optional)

-

7

- - -

RST P8.16 GPIO1_14 7 14 0x838/038 46

CS NC - - - - -

SCK NC - - - - -

MISO NC - - - - -

MOSI NC - - - - -

+3.3V P9.3 - P9.4 VDD_3V3EXP - - - -

GND P9.43 - P9.46 GND - - - - -

PWM P8.13 EHRPWM2B 4 9 0x824/024 23

INT P8.17 GPIO0_27 7 11 0x82c/02c 27

RX P9.13 UART4_TXD 6 29 0x874/074 31

TX P9.11 UART4_RXD 6 28 0x879/070 30

SCL P9.19 I2C2_SCL 3 95 0x97c/17c 13

SDA P9.20 I2C2_SDA 3 94 0x978/178 12

+5V NC - - - - - -

GND P9.43 - P9.46 GND - - - -

Analog Pin note - Solder Jumpers

Each “AN” Click pin by default is connected to the analog pin of the BBB, if you want to use these

“AN” pin as a digital pin you must to cut the wire in the jumper in the bottom of the Cape and

solder it as needed.

+5 Volt Enable

To use clickboards that require 5 volts you must solder the 5V enable contact at the

bottom. WARNING: Be careful, the ARM processor is only 3.3V tolerant, giving 5v to any input

will result in a broken pin or even a broken ARM chip making the board nonfunctional.

EEPROM

The dip-switch “ADDR” in the bottom of the Cape allow user to

modify I2C address of the EEPROM, this is useful in case of conflict or cascade of Capes. The

two pin represent the last two bits of the address so the allowable address range is composed of

four address, from 0x54 to 0x57 (default 0x57).

EEPROM Support No

Board Name BeagleBone mikrobus Cape

Version Rev.1

Manufacturer Tigal

Part Number TIG-02413

Pins Used 0

Custom EEPROM

Data stored in the EEPROM is a simple structure formatted in JSON

(http://en.wikipedia.org/wiki/JSON) which describes Cape and pin configuration needed, for a

complete discussion see the BBB Reference Manual.

Here you can download the original JSON file we used to program Click Cape. Starting from

there the user can create his custom EEPROM data structure.

http://en.wikipedia.org/wiki/JSON
https://www.tigal.com/wiki/lib/exe/detail.php?id=tigalcapes%3Abb_mikrobus_cape&media=tigalcapes:beaglebone_mikrobus_cape-009.jpg

With the command line routine “eeprom.js” we can parse JSON file and create the binary file who

is write in the memory.

First create a symbolic link in the home to facilitate the work

$ cd

$ ln -s /usr/lib/node_modules/bonescript/eeprom.js eeprom.js

Write the binary file

$ node eeprom.js –w clickcape.json

Check the binary file

$ hexdump –C clickcape.eeprom

Write data in the EEPROM

$ cat clickcape.eeprom > /sys/bus/i2c/drivers/at24/1-0057/eeprom

Note: 1-0057 means I2C bus number 1 and address 0x57.

Reboot the system.

For more information see chapter 7 of the BeagleBone System Reference

Manualhttp://beagleboard.org/static/beaglebone/latest/Docs/Hardware/BONE_SRM.pdf.

Custom DTS

For each different pin configuration a new DTS file needs to be configured, so if you would like to

use a configuration that differs from the standard configuration then you need to build your own

configuration. On github there is a documentation for what the standard pins and values are for

and what default mode they are in.

At boot an in-kernel utility “capemgr” check the records “partNumber” and “version” in the

EEPROM header and load DT according the file name from directory /lib/firmware.

If you want a custom pin configuration you must edit DT Source file (.dts), compile it and copy in

the directory.

http://beagleboard.org/static/beaglebone/latest/Docs/Hardware/BONE_SRM.pdf

To use any of the build files from the git you will need to change its permissons using the “chmod

777 build” command.

$ dtc -O dtb -o BB-MIKROBUS-01-00A1.dtbo -b 0 -@ BB-MIKROBUS-01-00A1.dts

$ cp /lib/firmware/BB-MIKROBUS-01-00A1.dtbo /lib/firmware/BB-MIKROBUS-01-

00A1.dtbo.bak

$ cp BB-MIKROBUS-01-00A1.dtbo /lib/firmware/BB-MIKROBUS-01-00A1.dtbo

Then reboot.

Check if DT is already loaded on Angström by typing

$ cat /sys/devices/bone_capemgr.8/slots

To check on Debian there is only one number difference

$ cat /sys/devices/bone_capemgr.9/slots

If you added the recommended settings in the .profile file then you can just type

$ cat $SLOTS

Here you can download the original DTS file. Starting from there the user can create his custom

Device Tree definitions.

Note: you can load a DT definitions without reboot on Angström with

$ echo BB-MIKROBUS-01:00A1 > /sys/devices/bone_capemgr.8/slots

On debian

$ echo BB-MIKROBUS-01:00A1 > /sys/devices/bone_capemgr.9/slots

After this you can check again if the cape has been loaded.

$ cat $SLOTS

If you have left the PWM checks in the DT files then you should see the PWM pins being

checked. If there is a module connected that is not using PWM the PPWM check will fail, but

otherwise all tests should be successful.

Accessing pins directly

Once you have correctly built a dtbo file and successfully loaded the firmware with no errors, you

can directly access the gpios. To do this you will have to find the PIN number and export it. Lets

export the PWM pin that switches RL1 on the mikrobus relay click board.

$ cd /sys/class/gpio

$ echo 50 > export

$ cd gpio50

Within that folder the folders are what you can echo and set a value for, and see the status by

cat-ing the value. For example lets set gpio50 direction to out so that the relay can function.

$ echo "out" > direction

To turn on the relay just set the value in a similar fashion

$ echo 1 > value

After you are done you need to unexport the GPIO

$ echo 50 > unexport

