FMB MB9A420L Series

32-bit ARM[™] Cortex[™]-M3 based Microcontroller MB9AF421K/L

Data Sheet (Full Production)

Notice to Readers: This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur.

Notice On Data Sheet Designations

Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers of product information or intended specifications throughout the product life cycle, including development, qualification, initial production, and full production. In all cases, however, readers are encouraged to verify that they have the latest information before finalizing their design. The following descriptions of Spansion data sheet designations are presented here to highlight their presence and definitions.

Advance Information

The Advance Information designation indicates that Spansion Inc. is developing one or more specific products, but has not committed any design to production. Information presented in a document with this designation is likely to change, and in some cases, development on the product may discontinue. Spansion Inc. therefore places the following conditions upon Advance Information content:

"This document contains information on one or more products under development at Spansion Inc. The information is intended to help you evaluate this product. Do not design in this product without contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this proposed product without notice."

Preliminary

The Preliminary designation indicates that the product development has progressed such that a commitment to production has taken place. This designation covers several aspects of the product life cycle, including product qualification, initial production, and the subsequent phases in the manufacturing process that occur before full production is achieved. Changes to the technical specifications presented in a Preliminary document should be expected while keeping these aspects of production under consideration. Spansion places the following conditions upon Preliminary content:

"This document states the current technical specifications regarding the Spansion product(s) described herein. The Preliminary status of this document indicates that product qualification has been completed, and that initial production has begun. Due to the phases of the manufacturing process that require maintaining efficiency and quality, this document may be revised by subsequent versions or modifications due to changes in technical specifications."

Combination

Some data sheets contain a combination of products with different designations (Advance Information, Preliminary, or Full Production). This type of document distinguishes these products and their designations wherever necessary, typically on the first page, the ordering information page, and pages with the DC Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first page refers the reader to the notice on this page.

Full Production (No Designation on Document)

When a product has been in production for a period of time such that no changes or only nominal changes are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include those affecting the number of ordering part numbers available, such as the addition or deletion of a speed option, temperature range, package type, or VIO range. Changes may also include those needed to clarify a description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following conditions to documents in this category:

"This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur."

Questions regarding these document designations may be directed to your local sales office.

FMB MB9A420L Series

32-bit ARM[™] Cortex[™]-M3 based Microcontroller MB9AF421K/L

Data Sheet (Full Production)

DESCRIPTION

The MB9A420L Series are highly integrated 32-bit microcontrollers dedicated for embedded controllers with low-power consumption mode and competitive cost.

These series are based on the ARM Cortex-M3 Processor with on-chip Flash memory and SRAM, and have peripheral functions such as various timers, ADCs, DACs and Communication Interfaces (CAN, UART, CSIO, I²C, LIN).

The products which are described in this data sheet are placed into TYPE11 product categories in "FM3 Family PERIPHERAL MANUAL".

Note: ARM and Cortex are the trademarks of ARM Limited in the EU and other countries.

Publication Number MB9AF421L_DS706-00054

Revision 1.0

Issue Date March 13, 2014

This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur.

FEATURES

• 32-bit ARM Cortex-M3 Core

- Processor version: r2p1
- Up to 40 MHz Frequency Operation
- Integrated Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and 48 peripheral interrupts and 16 priority levels
- 24-bit System timer (Sys Tick): System timer for OS task management
- On-chip Memories

[Flash memory]

- 64 Kbytes
- Read cycle: 0 wait-cycle
- Security function for code protection

[SRAM]

This series contains 4Kbyte on-chip SRAM memories. This is composed of two independent SRAM (SRAM0, SRAM1). SRAM0 is connected to I-code bus or D-code bus of Cortex-M3 core. SRAM1 is connected to System bus of Cortex-M3 core.

- SRAM0: None
- SRAM1: 4Kbyte
- CAN Interface (Max 1channel)
 - Compatible with CAN Specification 2.0A/B
 - Maximum transfer rate: 1 Mbps
 - Built-in 32 message buffer

Multi-function Serial Interface (Max 4channels)

- 4 channels without FIFO (ch.0, ch.1, ch.3, ch.5)
- Operation mode is selectable from the followings for each channel.
 - UART
 - CSIO
 - LIN
 - I²C

[UART]

- Full duplex double buffer
- · Selection with or without parity supported
- · Built-in dedicated baud rate generator
- · External clock available as a serial clock
- · Various error detection functions available (parity errors, framing errors, and overrun errors)

[CSIO]

- Full duplex double buffer
- Built-in dedicated baud rate generator
- Overrun error detection function available

[LIN]

- LIN protocol Rev.2.1 supported
- Full duplex double buffer
- Master/Slave mode supported
- LIN break field generation (can be changed to 13-bit to 16-bit length)
- LIN break delimiter generation (can be changed to 1-bit to 4-bit length)
- · Various error detection functions available (parity errors, framing errors, and overrun errors)

$[I^2C]$

Standard-mode (Max 100kbps) / Fast-mode (Max 400kbps) supported

- A/D Converter (Max 8channels)
- [12-bit A/D Converter]
 - Successive Approximation type
 - Conversion time: 0.8µs @ 5V
 - Priority conversion available (priority at 2levels)
 - Scanning conversion mode
 - Built-in FIFO for conversion data storage (for SCAN conversion: 16steps, for Priority conversion: 4steps)

• D/A Converter (Max 1channel)

- R-2R type
- 10-bit resolution

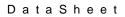
• Base Timer (Max 8channels)

Operation mode is selectable from the followings for each channel.

- 16-bit PWM timer
- 16-bit PPG timer
- 16/32-bit reload timer
- 16/32-bit PWC timer

• General-Purpose I/O Port

This series can use its pins as general-purpose I/O ports when they are not used for peripherals. Moreover, the port relocate function is built-in. It can set which I/O port the peripheral function can be allocated to.


- Capable of pull-up control per pin
- Capable of reading pin level directly
- · Built-in the port relocate function
- Up to 51 high-speed general-purpose I/O Ports@64pin Package
- Some ports are 5V tolerant

See "■LIST OF PIN FUNCTIONS" and "■I/O CIRCUIT TYPE" to confirm the corresponding pins.

• Dual Timer (32/16-bit Down Counter)

The Dual Timer consists of two programmable 32/16-bit down counters. Operation mode is selectable from the followings for each channel.

- Free-running
- Periodic (=Reload)
- One-shot

Multi-function Timer

The Multi-function timer is composed of the following blocks.

- 16-bit free-run timer \times 3ch.
- Input capture \times 3ch.
- Output compare \times 6ch.
- A/D activation compare \times 1ch.
- Waveform generator \times 3ch.
- 16-bit PPG timer × 3ch. IGBT mode is contained

The following function can be used to achieve the motor control.

- PWM signal output function
- DC chopper waveform output function
- Dead time function
- Input capture function
- A/D convertor activate function
- DTIF (Motor emergency stop) interrupt function

Real-time clock (RTC)

The Real-time clock can count Year/Month/Day/Hour/Minute/Second/A day of the week from 01 to 99.

- The interrupt function with specifying date and time (Year/Month/Day/Hour/Minute/Second/A day of the week.) is available. This function is also available by specifying only Year, Month, Day, Hour or Minute.
- Timer interrupt function after set time or each set time.
- Capable of rewriting the time with continuing the time count.
- Leap year automatic count is available.
- External Interrupt Controller Unit
 - Up to 19 external interrupt input pins @ 64pin Package
 - Include one non-maskable interrupt (NMI) input pin

• Watchdog Timer (2channels)

A watchdog timer can generate interrupts or a reset when a time-out value is reached.

This series consists of two different watchdogs, a "Hardware" watchdog and a "Software" watchdog.

The "Hardware" watchdog timer is clocked by the built-in low-speed CR oscillator. Therefore, the "Hardware" watchdog is active in any low-power consumption modes except RTC, STOP modes.

Clock and Reset

[Clocks]

Selectable from five clock sources (2 external oscillators, 2 built-in CR oscillators, and Main PLL).

- Main Clock : 4 MHz to 48 MHz
 - : 32.768 kHz
- Sub Clock : 32.768
 Built-in high-speed CR Clock : 4 MHz
- Built-in low-speed CR Clock : 100 kHz
- Main PLL Clock

[Resets]

- Reset requests from INITX pin
- Power-on reset
- Software reset
- Watchdog timers reset
- · Low-voltage detection reset
- Clock Super Visor reset

- Clock Super Visor (CSV) Clocks generated by built-in CR oscillators are used to supervise abnormality of the external clocks.
 - If external clock failure (clock stop) is detected, reset is asserted.
 - If external frequency anomaly is detected, interrupt or reset is asserted.
- Low-Voltage Detector (LVD)

This Series includes 2-stage monitoring of voltage on the VCC pins. When the voltage falls below the voltage that has been set, Low-Voltage Detector generates an interrupt or reset.

- LVD1: error reporting via interrupt
- LVD2: auto-reset operation

• Low-Power Consumption Mode

Four low-power consumption modes supported.

- SLEEP
- TIMER
- RTC
- STOP
- Debug Serial Wire JTAG Debug Port (SWJ-DP)
- Unique ID Unique value of the device (41-bit) is set.
- Power Supply Wide range voltage: VCC = 2.7V to 5.5V

PRODUCT LINEUP

• Memory size

Product name		MB9AF421K/L	
On-chip Flash memory		MB9AF421K/L 64 Kbytes 4 Kbytes	
On-chip SRAM	SRAM1	4 Kbytes	

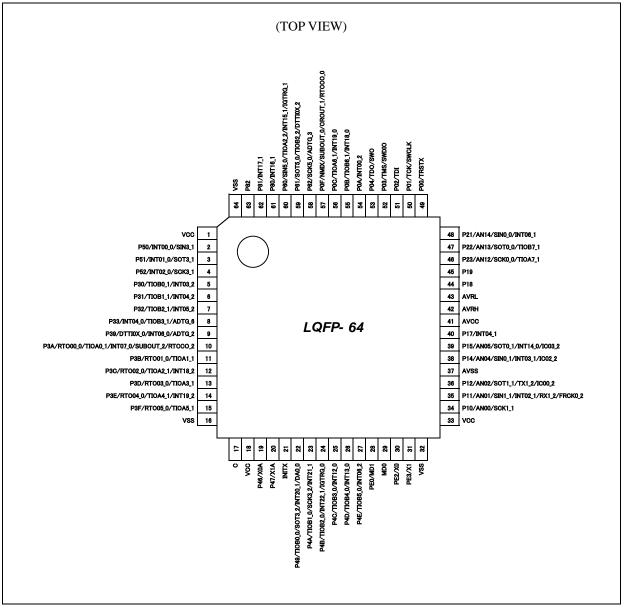
• Function

	Produ	ict name		MB9AF421K	MB9AF421L			
Pin cou	nt			48/52	64			
				Corte				
CPU	Fr	eq.		40 N	ИНz			
Power s		oltage range	1ge 2.7V to 5.5V 1ch. (Max)					
CAN		0 0		1ch. (Max)			
available.)		4ch. (Max) ch.0, ch.1, ch.3, ch.5: No FIFO						
Base Ti (PWC/I		mer/PWM/	PPG)	8ch. (Max)			
	A/D ac compar	tivation re	1ch.					
	Input c		3ch.					
MF-	Free-run timer		3ch.					
Timer		compare	6ch.	1 unit				
Timer	Wavefo generat		3ch.					
	PPG (IGBT	mode)	3ch.					
Dual Ti	imer			1 unit				
Real-Ti	me Cloc	k		1 u	nit			
Watchd	log timer	:		1ch. (SW) +	1ch. (HW)			
Externa	l Interru	pts		14pins (Max) + NMI \times 1	19pins (Max) + NMI \times 1			
I/O por				36pins (Max)	51pins (Max)			
	A/D conv			8ch. (1				
10-bit D/A converter			1ch. (,				
		per Visor)		Ye				
LVD (I	Low-Vol	tage Detect		2c				
Built-in	I CR	High-spee Low-spee		4 M 100				
Debug	Function			SWJ	-DP			
Unique	ID			Ye	es			

Note: All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the I/O port according to your function use. See "■ ELECTRICAL CHARACTERISTICS 4.AC Characteristics (3)Built-in CR Oscillation Characteristics" for accuracy of built-in CR.

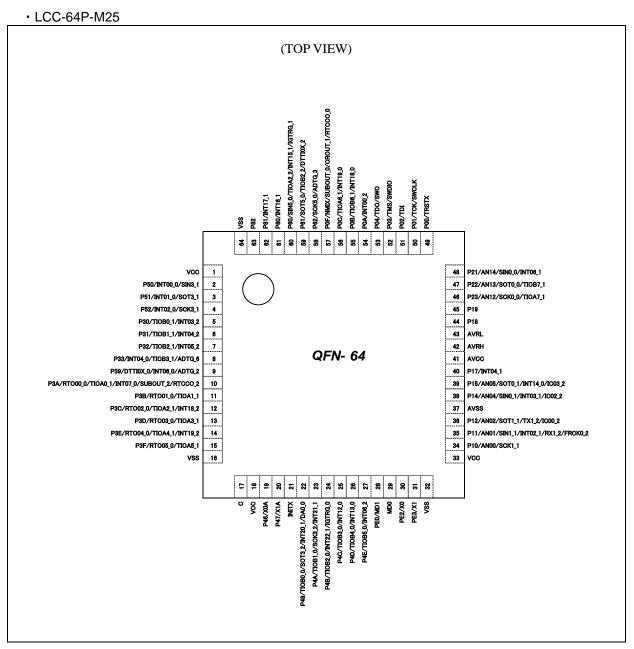
PACKAGES

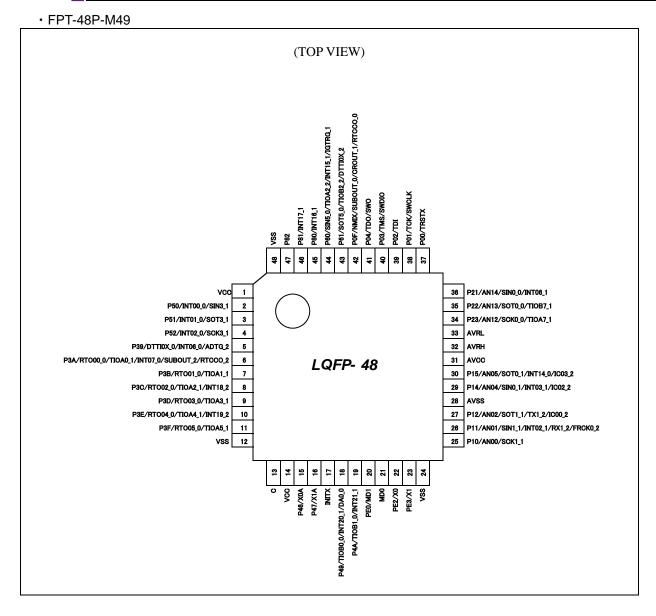
Product name Package	MB9AF421K	MB9AF421L
LQFP: FPT-48P-M49 (0.5mm pitch)	0	-
QFN: LCC-48P-M74 (0.5mm pitch)	0	-
LQFP: FPT-52P-M02 (0.65mm pitch)	0	-
LQFP: FPT-64P-M38 (0.5mm pitch)	-	Ο
LQFP: FPT-64P-M39 (0.65mm pitch)	-	O
QFN: LCC-64P-M25 (0.5mm pitch)	-	O

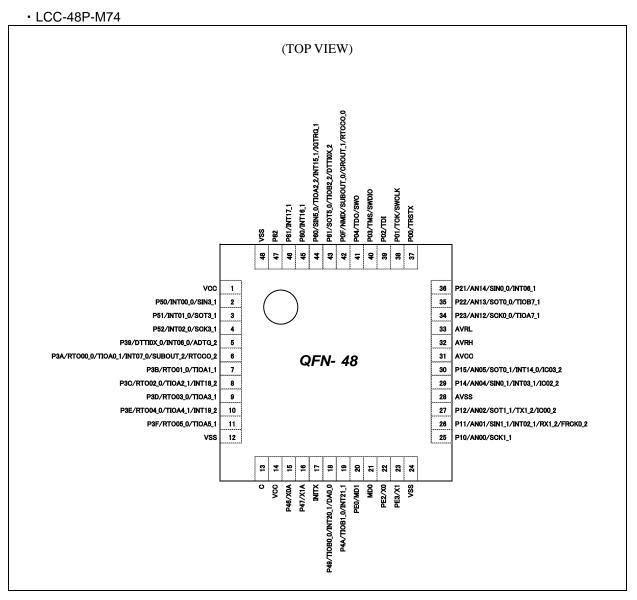

• Supported

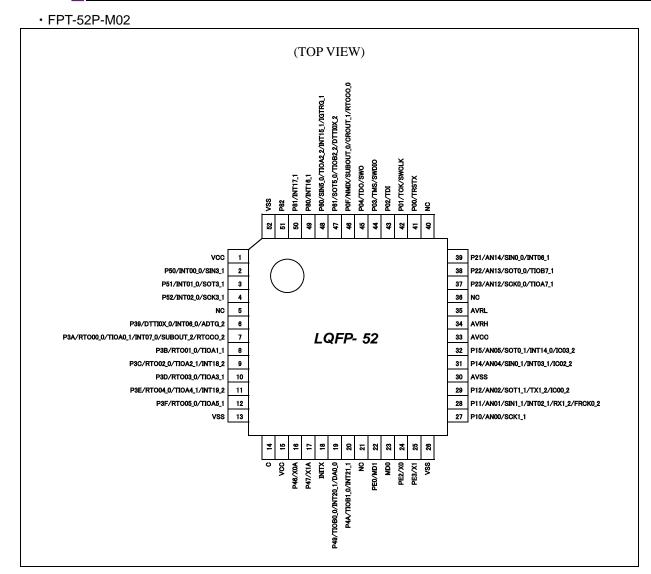
Note: See "■PACKAGE DIMENSIONS" for detailed information on each package.

PIN ASSIGNMENT


• FPT-64P-M38/M39


<Note>


DataSheet



■ LIST OF PIN FUNCTIONS

• List of pin numbers

	Pin No				Disatata
LQFP-64 QFN-64	LQFP-52	LQFP-48 QFN-48	Pin Name	I/O circuit type	Pin state type
1	1	1	VCC	-	
			P50		
2	2	2	INT00_0	H^{*1}	К
			SIN3_1		
			P51		
3	3	3	INT01_0	H* ²	K
5	5	5	SOT3_1		K
			(SDA3_1)		
			P52		
4	4	4	INT02_0	H* ²	K
·			SCK3_1		
			(SCL3_1)		
			P30	_	
5	-	-	TIOB0_1	E	K
			INT03_2		
			P31	_	
6	-	-	TIOB1_1	E	K
			INT04_2		
			P32		
7	-	-	TIOB2_1	E	Κ
			INT05_2		
			P33		
8	-	-	INT04_0	E	K
Ũ			TIOB3_1		
			ADTG_6		<u> </u>
			P39		
9	6	5	DTTI0X_0	E	Κ
-	Ũ	C C	INT06_0		
			ADTG_2		
			P3A		
			RTO00_0		
			(PPG00_0)	_	
10	7	6	TIOA0_1	G	K
			INT07_0	_	
			SUBOUT_2	_	
			RTCCO_2		
			P3B	_	
11	8	7	RTO01_0	G	J
			(PPG00_0)	_	
			TIOA1_1		

	Pin No	-		I/O circuit	Pin state
LQFP-64 QFN-64	LQFP-52	LQFP-48 QFN-48	Pin Name	type	type
Q. 11 0 1			P3C		
			RTO02_0		
12	9	8	(PPG02_0)	G	К
		-	TIOA2_1		
			 INT18_2		
			P3D		
	10		RTO03_0	_	-
13	10	9	(PPG02_0)	G	J
			TIOA3_1		
			P3E		
			RTO04_0		
14	11	10	(PPG04_0)	G	K
			TIOA4_1		
			INT19_2		
			P3F		
15	10	11	RTO05_0		Ŧ
15	12	11	(PPG04_0)	G	J
			TIOA5_1		
16	13	12	VSS	-	-
17	14	13	С	-	-
18	15	14	VCC	-	-
			P46		
19	16	15	X0A	D	F
			P47		
20	17	16	X1A	D	G
21	18	17	INITX	В	С
	10		P49		
	10	18	TIOB0_0		
22	19	18	INT20_1	К	К
22			DA0_0	ĸ	K
	-	_	SOT3_2		
			(SDA3_2)		
	20	10	P4A	_	
22	20	19	TIOB1_0	F	V
23			INT21_1	E	K
	-	-	SCK3_2		
			(SCL3_2)		
			P4B	_	
24	-	-	TIOB2_0	— Е	K
			INT22_1		
			IGTRG_0		
			P4C		
25	-	-	TIOB3_0	E	К
			INT12_0		
			P4D		
26	-	-	TIOB4_0	E	Κ
			INT13_0		

DataSheet

	Pin No			I/O circuit	Din state
LQFP-64 QFN-64	LQFP-52	LQFP-48 QFN-48	Pin Name	type	Pin state type
			P4E		
27	-	-	TIOB5_0	Е	К
			INT06_2		
29	22	20	PE0	G	Б
28	22	20	MD1	C	E
29	23	21	MD0	J	D
30	24	22	PE2	A	А
30	24	22	X0	A	A
31	25	23	PE3	A	В
51	23	23	X1	A	D
32	26	24	VSS		-
33	-	-	VCC		-
			P10		
34	27	25	AN00	F	L
			SCK1_1	_	_
			(SCL1_1)		
			P11		
			AN01		
35	28	26	SIN1_1	— F	М
			INT02_1		
			RX1_2		
			FRCK0_2		
			P12 AN02		
			SOT1_1		
36	29	27	(SDA1_1)	F	L
			TX1_2		
			IC00_2		
37	30	28	AVSS		-
			P14		
			AN04		
38	31	29	SIN0_1	F	М
			INT03_1		
			IC02_2		
			P15		
			AN05		
39	32	30	SOT0_1	F	М
39	52	50	(SDA0_1)		111
			INT14_0		
			IC03_2		
40	-	-	P17	— Е	К
			INT04_1		
41	33	31	AVCC		-
42	34	32	AVRH		-
43	35	33	AVRL		-
44	-	-	P18	E	J
45	-	-	P19	E	J

	Pin No				Din state
LQFP-64 QFN-64	LQFP-52	LQFP-48 QFN-48	Pin Name	I/O circuit type	Pin state type
			P23		
			AN12		
46	37	34	SCK0_0	I* ²	М
			(SCL0_0)		
			TIOA7_1		
			P22		
17	20	25	AN13	2	
47	38	35	SOT0_0	I* ²	М
			(SDA0_0) TIOB7_1	_	
			P21		
			AN14	_	
48	39	36	SIN0_0	$- I^{*1}$	М
			INT06_1	_	
			P00		
49	41	37	TRSTX	E	Ι
			P01		
50	42	38	ТСК	— Е	Ι
20	12	50	SWCLK		-
			P02		
51	43	39	TDI	— Е	Ι
			P03		
52	44	40	TMS	E	Ι
			SWDIO	_	
			P04		
53	45	41	TDO	Е	Ι
			SWO		
5.4			P0A	Б	V
54	-	-	INT00_2	E	K
			P0B		
55	-	-	TIOB6_1	Е	K
			INT18_0		
			P0C		
56	-	-	TIOA6_1	Е	K
			INT19_0		
			P0F		
			NMIX	_	
57	46	42	SUBOUT_0	E	Н
			CROUT_1	_	
			RTCCO_0		
			P62	_	
58	-	-	SCK5_0	Е	J
			(SCL5_0)	_	
			ADTG_3		

DataSheet

	Pin No				Din state
LQFP-64 QFN-64	LQFP-52	LQFP-48 QFN-48	Pin Name	I/O circuit type	Pin state type
			P61		
59	47	43	SOT5_0 (SDA5_0)	Е	J
			TIOB2_2		
			DTTI0X_2		
			P60		
	48	44	SIN5_0		K
60			TIOA2_2	I* ²	
			INT15_1		
			IGTRG_1		
61	49	45	P80	L	K
01	47	45	INT16_1	L	K
62	50	46	P81	L	K
02	50	40	INT17_1	L	K
63	51	47	P82	L	J
64	52	48	VSS	-	-
-	5, 21, 36, 40	-	NC	-	-

*1: 5V tolerant I/O, without PZR function

*2: 5V tolerant I/O, with PZR function

• List of pin functions

Pin				Pin No	
function	Pin name	Function description	LQFP-64	LQFP-52	LQFP-48
			QFN-64		QFN-48
ADC	ADTG_2		9	6	5
	ADTG_3	A/D converter external trigger input pin	58	-	-
	ADTG_6		8	-	-
	AN00		34	27	25
	AN01		35	28	26
	AN02		36	29	27
	AN04	A/D converter analog input pin.	38	31	29
	AN05	ANxx describes ADC ch.xx.	39	32	30
	AN12		46	37	34
	AN13		47	38	35
	AN14		48	39	36
Base Timer	TIOA0_1	Base timer ch.0 TIOA pin	10	7	6
0	TIOB0_0		22	19	18
	TIOB0_1	Base timer ch.0 TIOB pin	5	-	-
Base Timer	TIOA1_1	Base timer ch.1 TIOA pin	11	8	7
1	TIOB1_0		23	20	19
	TIOB1_1	Base timer ch.1 TIOB pin	6	-	-
Base Timer	TIOA2_1		12	9	8
2	TIOA2_2	Base timer ch.2 TIOA pin	60	48	44
	TIOB2_0		24	-	-
	TIOB2_1	Base timer ch.2 TIOB pin	7	-	-
	TIOB2_2	1	59	47	43
Base Timer	TIOA3_1	Base timer ch.3 TIOA pin	13	10	9
3	TIOB3_0		25	-	-
_	TIOB3_1	Base timer ch.3 TIOB pin	8	-	-
Base Timer	TIOA4_1	Base timer ch.4 TIOA pin	14	11	10
4	TIOB4_0	Base timer ch.4 TIOB pin	26	-	-
Base Timer	TIOA5_1	Base timer ch.5 TIOA pin	15	12	11
5	TIOB5_0	Base timer ch.5 TIOB pin	27	-	-
Base Timer	TIOA6_1	Base timer ch.6 TIOA pin	56	-	-
6	TIOB6_1	Base timer ch.6 TIOB pin	55	-	-
Base Timer	TIOA7_1	Base timer ch.7 TIOA pin	46	37	34
7	TIOB7_1	Base timer ch.7 TIOB pin	47	38	35
Debugger	SWCLK	Serial wire debug interface clock input pin	50	42	38
Desugger		Serial wire debug interface data input / output			
	SWDIO	pin	52	44	40
	SWO	Serial wire viewer output pin	53	45	41
	TCK	J-TAG test clock input pin	50	42	38
	TDI	J-TAG test data input pin	51	43	39
	TDO	J-TAG debug data output pin	53	45	41
	TMS	J-TAG test mode state input/output pin	52	44	40
	TRSTX	J-TAG test reset input pin	49	41	37
	11017	a mis courober input pill		1 11	51

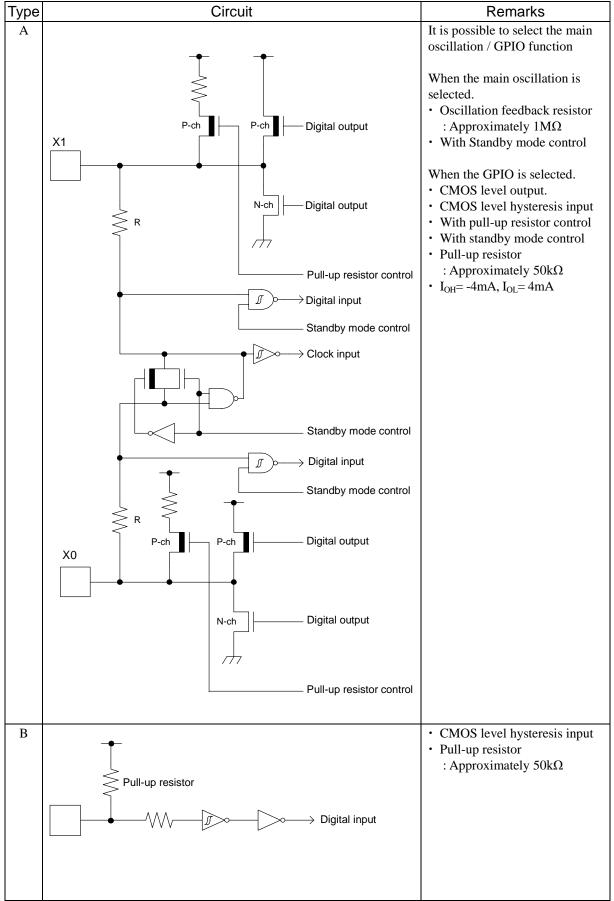
D	а	t	а	S	h	е	е	t	
---	---	---	---	---	---	---	---	---	--

Pin				Pin No	-
function	Pin name	Function description	LQFP-64	I OFP-52	LQFP-48
			QFN-64		QFN-48
External	INT00_0	External interrupt request 00 input pin	2	2	2
Interrupt	INT00_2	External interrupt request 00 input pin	54	-	-
	INT01_0	External interrupt request 01 input pin	3	3	3
	INT02_0	External interrupt request 02 input pin	4	4	4
	INT02_1	External interrupt request 02 input pin	35	28	26
	INT03_1	External interrupt request 03 input pin	38	31	29
	INT03_2	External interrupt request 05 input pin	5	-	-
	INT04_0		8	-	-
	INT04_1	External interrupt request 04 input pin	40	-	-
	INT04_2		6	-	-
	INT05_2	External interrupt request 05 input pin	7	-	-
	INT06_0		9	6	5
	INT06_1	External interrupt request 06 input pin	48	39	36
	INT06_2		27	-	-
	INT07_0	External interrupt request 07 input pin	10	7	6
	INT12_0	External interrupt request 12 input pin	25	-	-
	INT13_0	External interrupt request 13 input pin	26	-	-
	INT14_0	External interrupt request 14 input pin	39	32	30
	INT15_1	External interrupt request 15 input pin	60	48	44
	INT16_1	External interrupt request 16 input pin	61	49	45
	INT17_1	External interrupt request 17 input pin	62	50	46
	INT18_0	External interrupt request 18 input pin	55	-	-
	INT18_2	External interrupt request 18 input pin	12	9	8
	INT19_0	External interrupt request 19 input pin	56	-	-
	INT19_2	External interrupt request 19 input pin	14	11	10
	INT20_1	External interrupt request 20 input pin	22	19	18
	INT21_1	External interrupt request 21 input pin	23	20	19
	INT22_1	External interrupt request 22 input pin	24	-	-
	NMIX	Non-Maskable Interrupt input pin	57	46	42

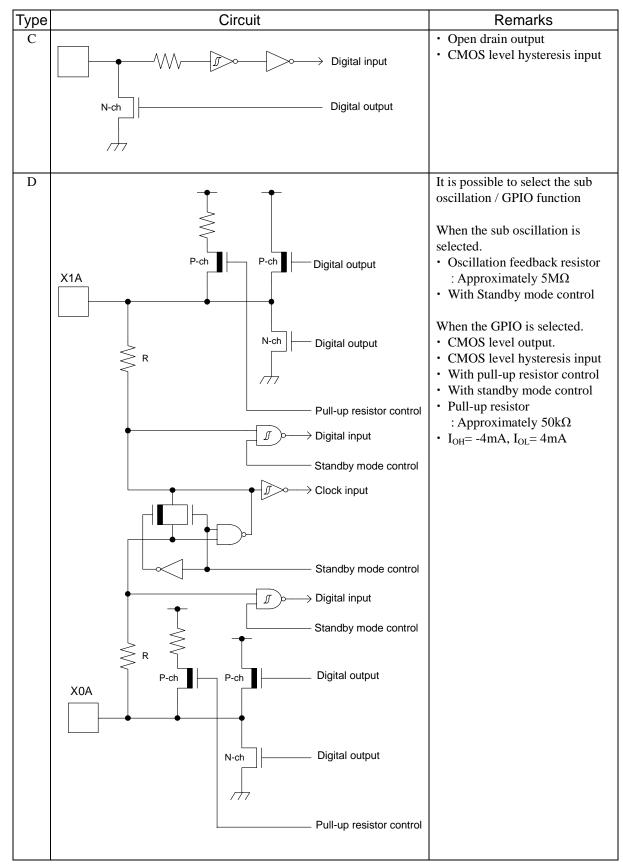
Pin				Pin No	
function	Pin name	Function description	LQFP-64 QFN-64	LQFP-52	LQFP-48 QFN-48
GPIO	P00		49	41	37
	P01		50	42	38
	P02		51	43	39
	P03		52	44	40
	P04	General-purpose I/O port 0	53	45	41
	P0A		54	-	-
	P0B		55	-	-
	POC		56	_	-
	P0F		57	46	42
	P10		34	27	25
	P11		35	28	26
	P12		36	29	27
	P14		38	31	29
	P15	General-purpose I/O port 1	39	32	30
	P17		40	_	-
	P18		44	-	-
	P19		45	_	-
	P21		48	39	36
	P22	General-purpose I/O port 2	47	38	35
	P23		46	37	34
	P30		5	-	-
	P31		6	_	-
	P32		7	_	-
	P33		8	_	-
	P39		9	6	5
	P3A	General-purpose I/O port 3	10	7	6
	P3B		10	8	7
	P3C		12	9	8
	P3D		12	10	9
	P3E		13	10	10
	P3F		15	12	10
	P46		19	16	15
	P47		20	10	16
	P49	1	20	19	10
	P4A	1	22	20	10
	P4B	General-purpose I/O port 4	23	-	-
	P4C		25	-	-
	P4D		26	-	-
	P4E		20	-	-
	P50		2	2	2
	P51	General-purpose I/O port 5	3	3	3
	P52	· · · · · · · · · · · · · · · · · · ·	4	4	4
	P60		60	48	44
	P61	General-purpose I/O port 6	59	47	43
	P62	r r r · · · · · · · · ·	58	-	-
			61	49	45
	P80		~ -		
	P80 P81	General-purpose I/O port 8	62	50	46
	P81	General-purpose I/O port 8	62 63	50 51	46 47
	P81 P82	General-purpose I/O port 8	63	51	47
	P81	General-purpose I/O port 8 General-purpose I/O port E			

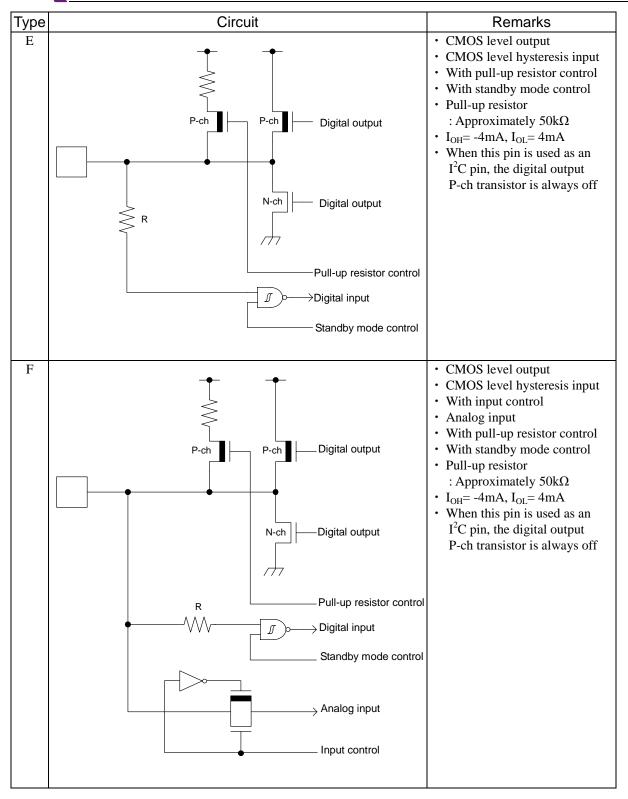
Pin	Pin name		Pin No			
function		Function description	LQFP-64 QFN-64	LQFP-52	LQFP-48 QFN-48	
Multi- function	SIN0_0	Multi-function serial interface ch.0 input pin	48	39	36	
	SIN0_1	Multi-function serial interface cir.o input pin	38	31	29	
Serial 0	SOT0_0 (SDA0_0)	Multi-function serial interface ch.0 output pin. This pin operates as SOT0 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and	47	38	35	
	SOT0_1 (SDA0_1)	as SDA0 when it is used in an I^2C (operation mode 4).	39	32	30	
	SCK0_0 (SCL0_0)	Multi-function serial interface ch.0 clock I/O pin. This pin operates as SCK0 when it is used in a CSIO (operation mode 2) and as SCL0 when it is used in an I^2C (operation mode 4).	46	37	34	
Multi-	SIN1_1	Multi-function serial interface ch.1 input pin	35	28	26	
function Serial 1	SOT1_1 (SDA1_1)	Multi-function serial interface ch.1 output pin. This pin operates as SOT1 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA1 when it is used in an I ² C (operation mode 4).	36	29	27	
	SCK1_1 (SCL1_1)	Multi-function serial interface ch.1 clock I/O pin. This pin operates as SCK1 when it is used in a CSIO (operation mode 2) and as SCL1 when it is used in an I^2C (operation mode 4).	34	27	25	
Multi-	SIN3_1	Multi-function serial interface ch.3 input pin	2	2	2	
function Serial 3	SOT3_1 (SDA3_1)	Multi-function serial interface ch.3 output pin. This pin operates as SOT3 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and	3	3	3	
	SOT3_2 (SDA3_2)	$SOT3_2$ as SDA3 when it is used in an I ² C (operation	22	-	-	
	SCK3_1 (SCL3_1)	Multi-function serial interface ch.3 clock I/O pin. This pin operates as SCK3 when it is used in a	4	4	4	
	SCK3_2 (SCL3_2)	CSIO (operation mode 2) and as SCL3 when it is used in an I^2C (operation mode 4).	23	-	-	

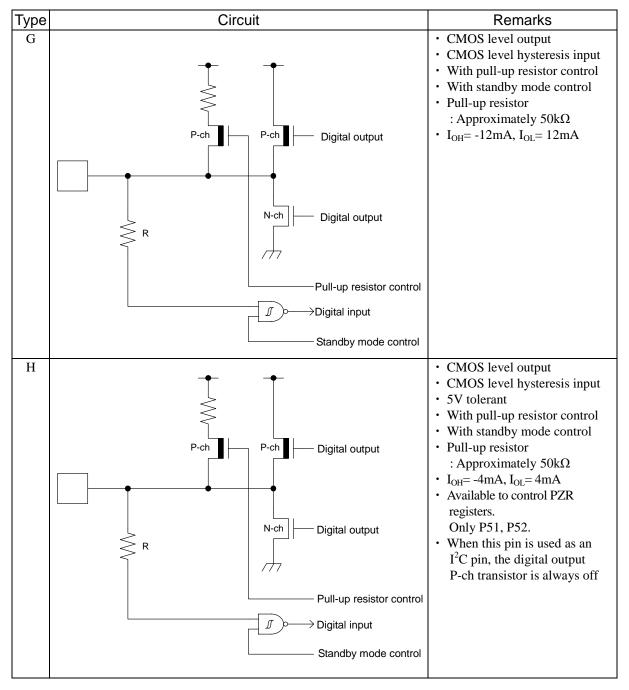
Pin	Pin name	Function description	Pin No			
function			LQFP-64 QFN-64	LQFP-52	LQFP-48 QFN-48	
Multi-	SIN5_0	Multi-function serial interface ch.5 input pin	60	48	44	
function Serial 5	SOT5_0 (SDA5_0)	Multi-function serial interface ch.5 output pin. This pin operates as SOT5 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA5 when it is used in an I ² C (operation mode 4).	59	47	43	
	SCK5_0 (SCL5_0)	Multi-function serial interface ch.5 clock I/O pin. This pin operates as SCK5 when it is used in a CSIO (operation mode 2) and as SCL5 when it is used in an I ² C (operation mode 4).	58	-	-	
Multi- function	DTTI0X_0	Input signal of waveform generator to control outputs RTO00 to RTO05 of Multi-function	9	6	5	
Timer	DTTI0X_2	timer 0.	59	47	43	
0	FRCK0_2	16-bit free-run timer ch.0 external clock input pin	35	28	26	
	IC00_2	16-bit input capture input pin of Multi-function	36	29	27	
	IC02_2	timer 0.	38	31	29	
	IC03_2	ICxx describes channel number.	39	32	30	
	RTO00_0 (PPG00_0)	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output mode.	10	7	6	
	RTO01_0 (PPG00_0)	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output mode.	11	8	7	
	RTO02_0 (PPG02_0)	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output mode.	12	9	8	
	RTO03_0 (PPG02_0)	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output mode.	13	10	9	
	RTO04_0 (PPG04_0)	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output mode.	14	11	10	
	RTO05_0 (PPG04_0)	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output mode.	15	12	11	
	IGTRG_0	PPG IGBT mode external trigger input pin	24	-	-	
	IGTRG_1	rro rob r mode external trigger mput pm	60 48	44		

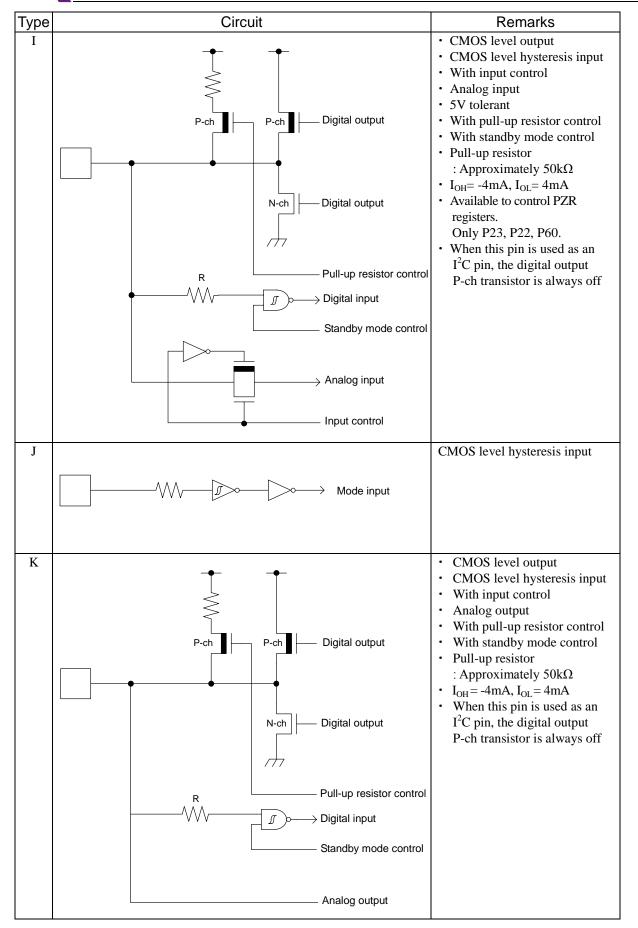


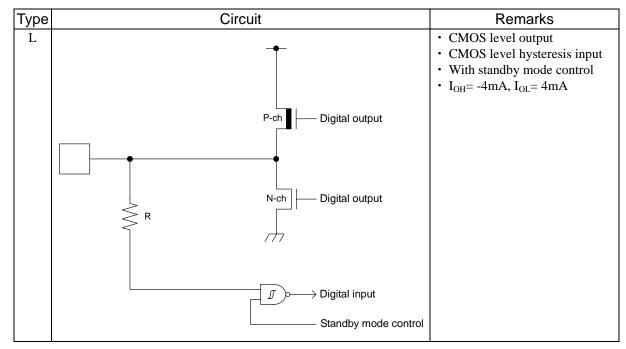
D	а	t	а	S	h	е	е	t	


Pin	Pin name		Pin No			
function		Function description	LQFP-64	LQFP-52	LQFP-48	
			QFN-64		QFN-48	
CAN	TX1_2	CAN interface TX output pin	36	29	27	
	RX1_2	CAN interface RX input pin	35	28	26	
Real-time	RTCCO_0	0.5 seconds pulse output pin of Real-time clock	57	46	42	
clock	RTCCO_2	0.5 seconds pulse output pill of Real-time clock	10	7	6	
	SUBOUT_0	Sub clock output pin	57	46	42	
	SUBOUT_2		10	7	6	
DAC	DA0_0	D/A converter ch.0 analog output pin	22	19	18	
RESET	INITX	External Reset Input pin.	21	18	17	
	INTX	A reset is valid when INITX="L".	21	10	1/	
Mode		Mode 0 pin.				
	MD0	During normal operation, MD0="L" must be	29	23	21	
	MIDO	input. During serial programming to Flash	2)	25		
		memory, MD0="H" must be input.				
		Mode 1 pin.				
	MD1 During serial programming to Flash memory,		28	22	20	
		MD1="L" must be input.				
POWER			1	1	1	
VCC		Power supply Pin	18	15	14	
			33	-	-	
GND	VSS	GND Pin	16	13	12	
			32	26	24	
			64	52	48	
CLOCK	X0	Main clock (oscillation) input pin	30	24	22	
	X0A	Sub clock (oscillation) input pin	19	16	15	
	X1	Main clock (oscillation) I/O pin	31	25	23	
	X1A	Sub clock (oscillation) I/O pin	20	17	16	
	CROUT_1	Built-in high-speed CR-osc clock output port	57	46	42	
Analog	AVCC	A/D converter and D/A converter analog power	4.1	33	31	
POWER		supply pin	41			
	AVRH	A/D converter analog reference voltage input pin	42	34	32	
Analog	AVSS	A/D converter and D/A converter GND pin	37	30	28	
GND	AVRL	A/D converter analog reference voltage input pin	43	35	33	
C pin	С	Power supply stabilization capacity pin	17	14	13	


■ I/O CIRCUIT TYPE






DataSheet

HANDLING PRECAUTIONS

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Spansion semiconductor devices.

1. Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

• Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

• Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

• Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

(1) Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

(2) Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device.

Therefore, avoid this type of connection.

(3) Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

• Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- (1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- (2) Be sure that abnormal current flows do not occur during the power-on sequence.

Code: DS00-00004-3E

• Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

• Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Precautions Related to Usage of Devices

Spansion semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

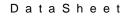
2. Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Spansion's recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Spansion recommended mounting conditions.


If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Spansion recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Spansion ranking of recommended conditions.

• Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

• Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- (1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- (2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.
 When you open Dry Package that recommends humidity 40% to 70% relative humidity.
- (3) When necessary, Spansion packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- (4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

• Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Spansion recommended conditions for baking.

Condition: 125°C/24 h

• Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
- (4) Ground all fixtures and instruments, or protect with anti-static measures.
- (5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

3. Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

(1) Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

- (2) Discharge of Static Electricity When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.
- (3) Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

(4) Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

(5) Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Spansion products in other special environmental conditions should consult with sales representatives.

Please check the latest handling precautions at the following URL. http://www.spansion.com/fjdocuments/fj/datasheet/e-ds/DS00-00004.pdf

HANDLING DEVICES

• Power supply pins

In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 μ F be connected as a bypass capacitor between each Power supply pin and GND pin near this device.

• Stabilizing power supply voltage

A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/ μ s when there is a momentary fluctuation on switching the power supply.

• Crystal oscillator circuit

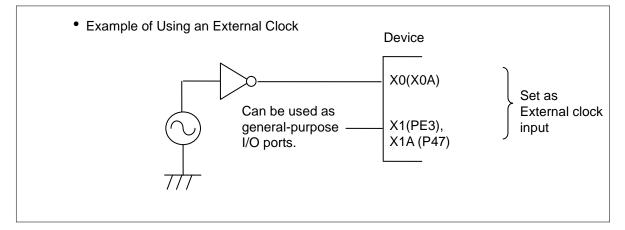
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation.

Evaluate oscillation of your using crystal oscillator by your mount board.

• Sub crystal oscillator

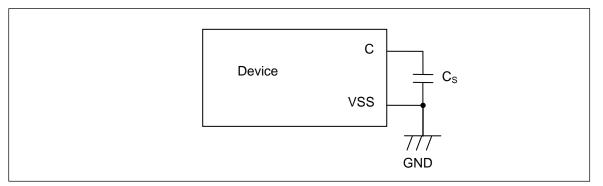
This series sub oscillator circuit is low gain to keep the low current consumption. The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation.


- Surface mount type Size : More than 3.2mm × 1.5mm Load capacitance : Approximately 6pF to 7pF
- Lead type Load capacitance : Approximately 6pF to 7pF

Using an external clock

When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1(PE3) can be used as a general-purpose I/O port.

Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input, and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port.



• Handling when using Multi-function serial pin as I²C pin If it is using the multi-function serial pin as I²C pins, P-ch transistor of digital output is always disabled. However, I²C pins need to keep the electrical characteristic like other pins and not to connect to the external I²C bus system with power OFF.

• C Pin

This series contains the regulator. Be sure to connect a smoothing capacitor (C_S) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor.

However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor. A smoothing capacitor of about 4.7μ F would be recommended for this series.

• Mode pins (MD0)

Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise.

Notes on power-on

Turn power on/off in the following order or at the same time. If not using the A/D converter and D/A converter, connect AVCC = VCC and AVSS = VSS.

Turning on : VCC \rightarrow AVCC \rightarrow AVRH Turning off : AVRH \rightarrow AVCC \rightarrow VCC

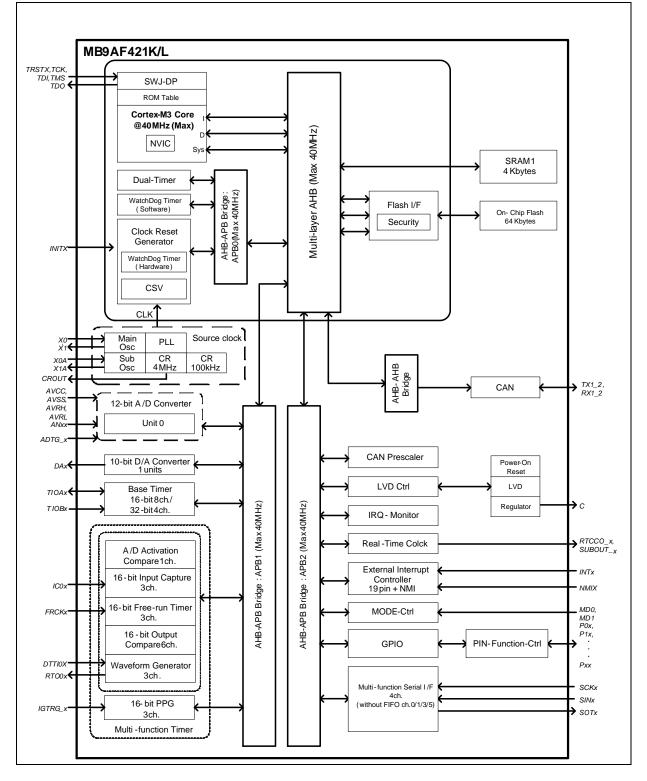
• Serial Communication

There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise.

Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data.

 Differences in features among the products with different memory sizes and between Flash memory products and MASK products

The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash memory products and MASK products are different because chip layout and memory structures are different.


If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.

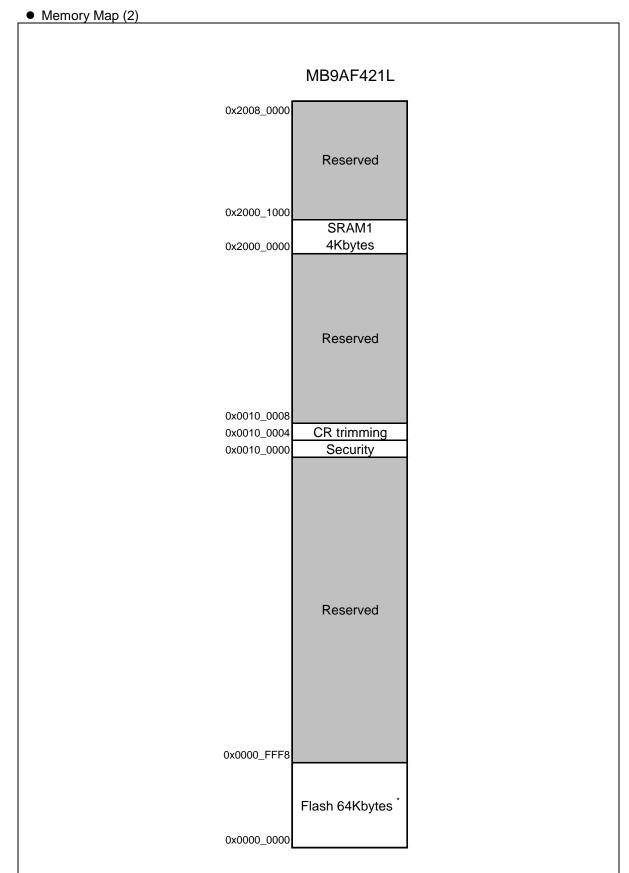
• Pull-Up function of 5V tolerant I/O

Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5V tolerant I/O.

BLOCK DIAGRAM

MEMORY SIZE

See " • Memory size" in "**PRODUCT LINEUP**" to confirm the memory size.



■ MEMORY MAP

Memory Map (1)

					Peripherals Area
			- F	- 0x41FF_FFFF	
			1		
			į		
					Reserved
	0xFFFF_FFFF				
		Reserved	ļ.		
	0xE010_0000		i i		
		Cortex-M3 Private		0x4006_4000	0.001 1.4
	0xE000_0000	Peripherals	1	0x4006_3000	CAN ch.1
			i	0x4006_1000	Reserved
			:	0x4006_0000	Reserved
			1	0x4005_0000	Reserved
		Reserved	į	0x4004_0000	Reserved
			;	0x4003_C000	Reserved
			į	0x4003_B000	RTC
			į	0x4003_A000	Reserved
	0x6000_0000			0x4003_9000	Reserved
		D	1	0x4003_8000	MFS
		Reserved	i	0x4003_7000	CAN Prescaler
	0x4400_0000	20Mbs theo		0x4003_6000	Reserved
	0x4200_0000	32Mbytes	1	0x4003_5800	Reserved LVD
	0x4200_0000	Bit band alias	/	0x4003_5000 0x4003_4000	Reserved
	0x4000_0000	Peripherals		0x4003_4000	GPIO
	0,4000_0000	_	,	0x4003_2000	Reserved
	0x2400_0000	Reserved		0x4003_1000	Int-Req.Read
		32Mbytes		0x4003_0000	EXTI
	0x2200_0000	Bit band alias		0x4002_F000	Reserved
		Reserved		0x4002_E000	CR Trim
	0x2008_0000			0x4002_9000	Reserved
	0x2000_0000	SRAM1		0x4002_8000	D/AC
	0x1FF8_0000	Reserved		0x4002_7000	A/DC
	0x0020_8000	Reserved		0x4002_6000 0x4002 5000	Reserved Base Timer
	0x0020_8000	Reserved		0x4002_3000 0x4002_4000	PPG
See " • Memory Map	0x0010_0008	Reserved		00002_10000	110
(2)" for the memory size	0x0010_0000	Security/CR Trim	1		Reserved
details.				0x4002_1000	
				0x4002_0000	MFT unit0
		Flash		0x4001_6000	Reserved
				0x4001_6000 0x4001_5000	Dual Timer
	0x0000_0000			0,4001_0000	
				0x4001_3000	Reserved
			1	0x4001_2000	SW WDT
			1	0x4001_1000	HW WDT
				0x4001_0000	Clock/Reset
			1	0×4000 4000	Reserved
				0x4000_1000 0x4000_0000	Flash I/F
			•	_ 374000_0000	1 10311 1/1

*: See "MB9A420L/120L/MB9B120J Series FLASH PROGRAMMING MANUAL" to confirm the detail of Flash memory.

Start address	End address	Bus	Peripherals
0x4000_0000	0x4000_0FFF		Flash Memory I/F register
0x4000_1000	0x4000_FFFF	AHB	Reserved
0x4001_0000	0x4001_0FFF		Clock/Reset Control
0x4001_1000	0x4001_1FFF	-	Hardware Watchdog timer
 0x4001_2000		-	Software Watchdog timer
 0x4001_3000		APB0	Reserved
0x4001_5000			Dual-Timer
0x4001_6000	0x4001_FFFF	-	Reserved
0x4002_0000	0x4002_0FFF		Multi-function timer unit0
0x4002_1000	0x4002_3FFF		Reserved
0x4002_4000	0x4002_4FFF		PPG
0x4002_5000	0x4002_5FFF		Base Timer
0x4002_6000	0x4002_6FFF		Reserved
0x4002_7000	0x4002_7FFF	APB1	A/D Converter
0x4002_8000	0x4002_8FFF		D/A Converter
0x4002_9000	0x4002_DFFF		Reserved
0x4002_E000	0x4002_EFFF		Built-in CR trimming
0x4002_F000	0x4002_FFFF		Reserved
0x4003_0000	0x4003_0FFF		External Interrupt
0x4003_1000	0x4003_1FFF		Interrupt Source Check Resister
0x4003_2000	0x4003_2FFF		Reserved
0x4003_3000	0x4003_3FFF		GPIO
0x4003_4000	0x4003_4FFF		Reserved
0x4003_5000	0x4003_57FF		Low-Voltage Detector
0x4003_5800	0x4003_5FFF	APB2	Reserved
0x4003_6000	0x4003_6FFF	AI D2	Reserved
0x4003_7000	0x4003_7FFF		CAN prescaler
0x4003_8000	0x4003_8FFF		Multi-function serial Interface
0x4003_9000	0x4003_9FFF		Reserved
0x4003_A000	0x4003_AFFF		Reserved
0x4003_B000	0x4003_BFFF		Real-time clock
0x4003_C000	0x4003_FFFF		Reserved
0x4004_0000	0x4004_FFFF		Reserved
0x4005_0000	0x4005_FFFF		Reserved
0x4006_0000	0x4006_0FFF	AHB	Reserved
0x4006_1000	0x4006_2FFF		Reserved
0x4006_3000	0x4006_3FFF		CAN ch.1
0x4006_4000	0x41FF_FFFF		Reserved

Peripheral Address Map

PIN STATUS IN EACH CPU STATE

The terms used for pin status have the following meanings.

• INITX=0

This is the period when the INITX pin is the "L" level.

• INITX=1

This is the period when the INITX pin is the "H" level.

• SPL=0

This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to "0".

• SPL=1

This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to "1".

- Input enabled Indicates that the input function can be used.
- Internal input fixed at "0"

This is the status that the input function cannot be used. Internal input is fixed at "L".

• Hi-Z

Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.

- Setting disabled Indicates that the setting is disabled.
- Maintain previous state

Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained.

• Analog input is enabled Indicates that the analog input is enabled.

• List of Pin Status

Pin status type	Function group	Power-on reset or low-voltage detection state Power supply unstable	INITX input state Power su	Device internal reset state	Run mode or SLEEP mode state Power supply stable	RTC m STOP m	mode, node, or ode state pply stable
		-	INITX = 0	INITX = 1	INITX = 1	INIT	X = 1
		-	-	-	-	SPL = 0	SPL = 1
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous Hi-Z / Internal ir state fixed at "0"	
А	Main crystal oscillator input pin/ External main clock input selected	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at "0"
	External main clock input selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at "0"
В	Main crystal oscillator output pin	Hi-Z / Internal input fixed at "0"/ or Input enable	Hi-Z / Internal input fixed at "0"	Hi-Z / Internal input fixed at "0"	Maintain previous state / When oscillation stops* ¹ , Hi-Z / Internal input fixed at "0"	Maintain previous state / When oscillation stops* ¹ , Hi-Z / Internal input fixed at "0"	Maintain previous state / When oscillation stops* ¹ , Hi-Z / Internal input fixed at "0"
С	INITX input pin	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled
D	Mode input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled
	Mode input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled
Е	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Input enabled

			· · · · ·				
Pin status type	Function group	Power-on reset or low-voltage detection state	INITX input state	Device internal reset state	Run mode or SLEEP mode state	RTC m	mode, node, or ode state
Pin		Power supply	Power su	oply stable	Power supply	Powersu	oply stable
		unstable -	INITX = 0	INITX = 1	stable INITX = 1		X = 1
		-	-	-	-	SPL = 0	SPL = 1
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at "0"
F	Sub crystal oscillator input pin / External sub clock input selected	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at "0"
	External sub clock input selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at "0"
G	Sub crystal oscillator output pin	Hi-Z / Internal input fixed at "0"/ or Input enable	Hi-Z / Internal input fixed at "0"	Hi-Z / Internal input fixed at "0"	Maintain previous state	Maintain previous state / When oscillation stops* ² , Hi-Z / Internal input fixed at "0"	Maintain previous state / When oscillation stops* ² , Hi-Z / Internal input fixed at "0"
	NMIX selected	Setting disabled	Setting disabled	Setting disabled			Maintain previous state
н	Resource other than above selected GPIO selected	Hi-Z	Hi-Z / Input enabled	Hi-Z / Input enabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at "0"
	JTAG selected	Hi-Z	Pull-up / Input enabled	Pull-up / Input enabled	Maintain previous	Maintain previous	Maintain previous state
	I GPIO selected	Setting disabled	Setting disabled	Setting disabled	state	state	Hi-Z / Internal input fixed at "0"

Pin status type	Function group	Power-on reset or low-voltage detection state	INITX input state	Device internal reset state	Run mode or SLEEP mode state	RTC m	er mode, mode, or mode state	
Pin		Power supply unstable	Power supply stable		Power supply stable		pply stable	
		-	INITX = 0	INITX = 1	INITX = 1		X = 1	
J	Resource selected	Hi-Z	- Hi-Z / Input enabled	Hi-Z /	- Maintain previous state	SPL = 0 Maintain previous state	SPL = 1 Hi-Z / Internal input fixed at "0"	
	GPIO selected		input enabled	Input enabled	state	state		
	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled			Maintain previous state	
К	Resource other than above selected GPIO	han above selected Hi-Z		Hi-Z / Input enabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at "0"	
	selected							
	Analog input selected	Hi-Z	Hi-Z / Internal input fixed at "0" / Analog input enabled					
L	Resource other than above selected GPIO	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at "0"	
	selected Analog input selected	Hi-Z	Hi-Z / Internal input fixed at "0" / Analog input enabled					
м	External interrupt enabled selected						Maintain previous state	
	Resource other than above selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at "0"	
	GPIO selected						ince at 0	

Pin status type	Function group	Power-on reset or low-voltage detection state	INITX input state			RTC m	mode, lode, or ode state	
Ë		Power supply unstable	Power supply stable		Power supply stable	Power supply stable		
		-	INITX = 0	INITX = 1	INITX = 1	INITX = 1		
		-	-	-	-	SPL = 0	SPL = 1	
	Analog output selected	Setting disabled	Setting disabled	Setting disabled		*3	*4	
N	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous		Maintain previous state	
N	Resource other than above selected	Hi-Z	Hi-Z/	Hi-Z /	state	Maintain previous state	Hi-Z / Internal input fixed	
	GPIO selected		Input enabled	Input enabled			at "0"	

*1 : Oscillation is stopped at Sub timer mode, sub CR timer mode, RTC mode, STOP mode.

*2 : Oscillation is stopped at STOP mode.

*3 : Maintain previous state at timer mode. GPIO selected Internal input fixed at "0" at RTC mode, STOP mode.

*4 : Maintain previous state at timer mode. Hi-Z/Internal input fixed at "0" at RTC mode, STOP mode.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Baramatar	Symbol	Rat	ting	Unit	Pomorko
Parameter	Symbol	Min	Max	Unit	Remarks
Power supply voltage ^{*1, *2}	V _{CC}	V _{SS} - 0.5	$V_{SS} + 6.5$	V	
Analog power supply voltage ^{*1, *3}	AV _{CC}	V _{SS} - 0.5	$V_{SS} + 6.5$	V	
Analog reference voltage ^{*1, *3}	AVRH	V _{SS} - 0.5	$V_{SS} + 6.5$	V	
Input voltage* ¹	VI	V _{SS} - 0.5	$\begin{array}{l} V_{CC} + 0.5 \\ (\leq 6.5 V) \end{array}$	v	
		V _{SS} - 0.5	$V_{SS} + 6.5$	V	5V tolerant
Analog pin input voltage*1	V _{IA}	V _{SS} - 0.5	$\begin{array}{l} AV_{CC}+0.5\\ (\leq 6.5V) \end{array}$	v	
Output voltage* ¹	Vo	V _{SS} - 0.5	$\begin{array}{l} V_{CC} + 0.5 \\ (\leq 6.5 V) \end{array}$	v	
"L" level maximum output current* ⁴	т		10	mA	4mA type
	I _{OL}	-	20	mA	12mA type
"L" level average output current* ⁵	т		4	mA	4mA type
L level average output current	I _{OLAV}	-	12	mA	12mA type
"L" level total maximum output current	$\sum I_{OL}$	-	100	mA	
"L" level total average output current* ⁶	$\sum I_{OLAV}$	-	50	mA	
"H" level maximum output current* ⁴			- 10	mA	4mA type
H level maximum output current.	I _{OH}	-	- 20	mA	12mA type
"II" lovel evene as output current* ⁵	т		- 4	mA	4mA type
"H" level average output current* ⁵	I _{OHAV}	-	- 12	mA	12mA type
"H" level total maximum output	Σī		- 100	mA	
current	$\sum I_{OH}$	-	- 100	ША	
"H" level total average output current* ⁶	$\sum I_{OHAV}$	-	- 50	mA	
Power consumption	P _D	-	350	mW	
Storage temperature	T _{STG}	- 55	+150	°C	

*1 : These parameters are based on the condition that $V_{SS} = AV_{SS} = 0.0V$.

*2 : V_{CC} must not drop below V_{SS} - 0.5V.

*3 : Ensure that the voltage does not exceed V_{CC} + 0.5 V, for example, when the power is turned on.

- *4 : The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.
- *5 : The average output current is defined as the average current value flowing through any one of the corresponding pins for a 100ms period.
- *6 : The total average output current is defined as the average current value flowing through all of corresponding pins for a 100ms.

<WARNING>

Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.

0.010

AX7D1

2. Recommended Operating Conditions

$(V_{SS} = AV_{SS} = A)$										
Par	ameter	Symbol	Conditions	Va	lue	Unit	Remarks			
Fai	ameter	Symbol	Conditions	Min	Max	Onic	Remarks			
Power supply	v voltage	V _{CC}	-	2.7^{*2}	5.5	V				
Analog powe	r supply voltage	AV _{CC}	-	2.7	5.5	V	$AV_{CC} = V_{CC}$			
A mala a mafam	Analog reference voltage		AVRH		-	2.7	AV _{CC}	V		
Analog refere			-	AV _{SS}	AV _{SS}	V				
Smoothing ca	apacitor	Cs	-	1	10	μF	For Regulator* ¹			
	FPT-64P-M39,		When mounted							
	FPT-52P-M02,		on four-layer	- 40	+ 105	°C				
Operating	FPT-64P-M38,	Та	PCB							
temperature	FPT-48P-M49,	1a	When mounted							
	LCC-64P-M25,		on double-sided	- 40	+ 85	°C				
	LCC-48P-M74		single-layer PCB							

(1)

AX 7

*1: See " • C Pin" in "HANDLING DEVICES" for the connection of the smoothing capacitor.

*2: In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR(including Main PLL is used) or built-in Low-speed CR is possible to operate only.

<WARNING>

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.

Any use of semiconductor devices will be under their recommended operating condition.

Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.

No warranty is made with respect to any use, operating conditions, or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

3. DC Characteristics

(1) Current Rating

Parameter	Symbol	Pin	() ()	Conditions	Va	lue	l Init	Remarks
raiamelei	Symbol	name			Тур	Max	Unit	INCHIAIKS
				CPU : 40MHz, Peripheral : 40MHz Instruction on Flash	15.5	16	mA	*1
			Normal operation (PLL)	CPU:40MHz, Peripheral : the clock stops NOP operation Instruction on Flash	9	10.6	mA	*1
	I _{CC}			CPU : 40MHz, Peripheral : 40MHz Instruction on RAM	14	15	mA	*1
			Normal operation (built-in high-speed CR)	CPU/ Peripheral : 4MHz* ² Instruction on Flash	1.7	3.0	mA	*1
			Normal operation (sub oscillation)	CPU/ Peripheral : 32kHz Instruction on Flash	63	900	μΑ	*1
			Normal operation (built-in low-speed CR)	CPU/ Peripheral : 100kHz Instruction on Flash	88	920	μΑ	*1
Power		VCC	SLEEP operation (PLL)	Peripheral : 40MHz	9	12	mA	*1
supply current	T	vee	SLEEP operation (built-in high-speed CR)	Peripheral : 4MHz* ²	1	2.1	mA	*1
	I _{CCS}		SLEEP operation (sub oscillation)	Peripheral : 32kHz	58	880	μΑ	*1
			SLEEP operation (built-in low-speed CR)	Peripheral : 100kHz	71	890	μΑ	*1
	T		STOP mode	Ta = $+ 25^{\circ}$ C, When LVD is off	9	32	μΑ	*1
	I _{CCH}			$Ta = + 85^{\circ}C$, When LVD is off	-	540	μΑ	*1
	I _{CCT}		TIMER mode	$Ta = +25^{\circ}C$, When LVD is off	13	44	μΑ	*1
	+CCT		(sub oscillation)	$Ta = + 85^{\circ}C$, When LVD is off	-	730	μΑ	*1
	Igen		RTC mode	$Ta = +25^{\circ}C$, When LVD is off	10	38	μΑ	*1
	I _{CCR}		(sub oscillation)	$Ta = + 85^{\circ}C$, When LVD is off	-	570	μΑ	*1

*1: When all ports are fixed.

*2: When setting it to 4MHz by trimming.

• LVD current

	arrent							
		$(V_{CC} = $	$AV_{CC} = 2.7V$ to 5.5	$V, V_{SS} = AV$	$V_{\rm SS} = AVR^2$	L = 0V, T	$a = -40^{\circ}C \text{ to } + 105^{\circ}C)$	
Deremeter	Symbol	Pin	Conditions	Value		Unit	Pomorko	
Parameter	Symbol	name Conditions		Тур	Max	Unit	Remarks	
Low-Voltage detection				0.13	0.3	μΑ	For occurrence of reset	
circuit (LVD) power supply current	I _{CCLVD}	VCC	At operation	0.13	0.3	μΑ	For occurrence of interrupt	

• Flash n	• Flash memory current $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = AVRL = 0V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$										
Boromotor	Symbol	Pin	Conditions	Value		Unit	Remarks				
Parameter	Symbol	name	Conditions	Тур	Max	Offic	IVEIIIdIK5				
Flash memory write/erase current	I _{CCFLASH}	VCC	At Write/Erase	9.5	11.2	mA					

• A/D convertor current

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = AVRL = 0V, Ta = -40^{\circ}C \text{ to } +105^{\circ}C)$

Parameter	Symbol	Pin	Conditions	Va	lue	Unit	Remarks	
Falameter	Symbol	name	Conditions	Тур	Max	Unit	IVEIIIdIK5	
Power supply	т	AVCC	At operation	0.7	0.9	mA		
current	I _{CCAD}	AVCC	At stop	0.13	13	μΑ		
Reference power supply	T	AVRH	At operation	1.1	1.97	mA	AVRH=5.5V	
current (AVRH)	ent I _{CCAVRH}	АуКП	At stop	0.1	1.7	μΑ	AVRH=5.5V	

• D/A convertor current

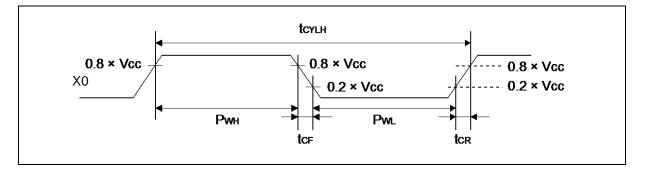
$(\mathbf{V}_{cc} = \mathbf{A}\mathbf{V}_{cc} = 2.7)$	V to 5.5V, $V_{SS} = AV_{SS}$	= AVRI = 0V Ta =	-40° C to $+105^{\circ}$ C)
$(v_{CC} - Av_{CC} - 2.7)$	$v_{10} 0.5 v, v_{SS} - Av_{SS}$	= AVKL = 0V, 1a =	$-40 \ C \ 10 + 103 \ C)$

Parameter	Symbol	Pin	Conditions	Va	lue	Unit	Remarks	
	Symbol	name	ame		Max	Unit	IVEIIIdIK5	
Dower cumply	IDDA		At operation $AV_{CC} = 3.3V$	315	380	μΑ	*	
Power supply current	IDSA	AVCC	At operation $AV_{CC} = 5.0V$	475	580	μΑ	*	
			At stop	-	8	μΑ	*	

*: No-load

(2) Pin Characteristics

(2) Pin Chara		$(V_{CC} = A)$	$AV_{CC} = 2.7V$ to 5.5	$V, V_{SS} = AV_{SS}$	s = AV	RL = 0V, Ta =	= - 40° ($C \text{ to } + 105^{\circ}\text{C}$
Deverseter	Cumphel		Conditions		Value	;	1.1	Demerika
Parameter	Symbol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks
"H" level input voltage (hysteresis	V _{IHS}	CMOS hysteresis input pin, MD0, MD1	-	$V_{CC} imes 0.8$	-	V _{CC} + 0.3	v	
input)		5V tolerant input pin	-	$V_{CC} imes 0.8$	-	$V_{SS} + 5.5$	v	
"L" level input voltage	V _{ILS}	CMOS hysteresis input pin, MD0, MD1	-	V _{SS} - 0.3	-	$V_{CC} imes 0.2$	v	
(hysteresis input)	5V tolerant input pin	-	V _{SS} - 0.3	-	$V_{CC} \times 0.2$	v		
"H" level	V	4mA type	$V_{CC} \ge 4.5 \text{ V}, \\ I_{OH} = - 4\text{mA} \\ V_{CC} < 4.5 \text{ V}, \\ I_{OH} = - 2\text{mA} \\ \end{cases}$	V _{CC} - 0.5	-	V _{CC}	v	
output voltage	V OH	12mA type	$V_{CC} \ge 4.5 \text{ V}, \\ I_{OH} = -12\text{mA} \\ V_{CC} < 4.5 \text{ V}, \\ I_{OH} = -8\text{mA} \\ \end{cases}$	V _{CC} - 0.5	-	V _{CC}	v	
"L" level	V	4mA type	$V_{CC} \ge 4.5 \text{ V},$ $I_{OL} = 4\text{mA}$ $V_{CC} < 4.5 \text{ V},$ $I_{OL} = 2\text{mA}$	V _{SS}	-	0.4	v	
output voltage	V _{OL}	12mA type	$V_{CC} \ge 4.5 \text{ V},$ $I_{OL} = 12\text{mA}$ $V_{CC} < 4.5 \text{ V},$ $I_{OL} = 8\text{mA}$	V _{SS}	-	0.4	v	
Input leak current	I _{IL}	-	-	- 5	-	+ 5	μΑ	
Pull-up		D 11 .	$V_{CC} \!\geq\! 4.5~V$	33	50	90	1.0	
resistance value	R _{PU}	Pull-up pin	$V_{CC}{<}4.5~V$	-	-	180	kΩ	
Input capacitance	C _{IN}	Other than VCC, VSS, AVCC, AVSS, AVRH, AVRL	-	-	5	15	pF	

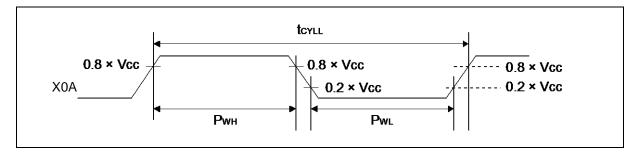

4. AC Characteristics

(1) Main Clock Input Characteristics

			-	$(V_{CC} = 2$.7V to 5.5V	$V, V_{\rm SS} = 0$	$0V, Ta = -40^{\circ}C \text{ to} + 105^{\circ}C)$
Parameter	Symbol	Pin	Conditions	Va	lue	Unit	Remarks
Falameter	Symbol	name	Conditions	Min	Max	Unit	Remains
			$V_{CC}\!\geq\!4.5V$	4	48	MHz	When crystal oscillator
Input frequency	F _{CH}		$V_{CC} < 4.5V$	4	20	WIIIZ	is connected
input nequency	I CH		-	4	48	MHz	When using external Clock
Input clock cycle	t _{CYLH}	X0, X1	-	20.83	250	ns	When using external Clock
Input clock pulse width	-	AI	Pwh/tcylh, Pwl/tcylh	45	55	%	When using external Clock
Input clock rising time and falling time	t _{CF,} t _{CR}		-	-	5	ns	When using external Clock
	F _{CM}	-	-	-	40	MHz	Master clock
Internal operating	F _{CC}	-	-	-	40	MHz	Base clock (HCLK/FCLK)
clock frequency ^{*1}	F _{CP0}	-	-	-	40	MHz	APB0 bus clock* ²
	F _{CP1}	-	-	-	40	MHz	APB1 bus clock* ²
	F _{CP2}	-	-	-	40	MHz	APB2 bus clock* ²
To to see all a second t	t _{CYCC}	-	-	25	-	ns	Base clock (HCLK/FCLK)
Internal operating	t _{CYCP0}	-	-	25	-	ns	APB0 bus clock* ²
clock cycle time ^{*1}	t _{CYCP1}	-	-	25	-	ns	APB1 bus clock* ²
1. For more informe	t _{CYCP2}	-	-	25	-	ns	APB2 bus clock ²

*1: For more information about each internal operating clock, see "Chapter: Clock" in "FM3 Family PERIPHERAL MANUAL".

*2: For about each APB bus which each peripheral is connected to, see "
BLOCK DIAGRAM" in this data sheet.



(2) Sub Clock Input Characteristics

(_) cas cicon inp				$(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$					
Parameter	Symbol	Pin	Conditions		Value		Unit	Remarks	
Falameter	Symbol	name	Conditions	Min	Тур	Max	Unit	ITEIIIdIKS	
					32.768			When crystal	
	F _{CL}		-	-		-	kHz	oscillator is	
Input frequency								connected	
		X0A,	-	32	-	100	kHz	When using	
						100	KIIZ	external clock	
Input aloak avala	+	X1A		10		31.25		When using	
Input clock cycle	t _{CYLL}		-	10	-	51.25	μs	external clock	
Input clock pulse			Pwh/tcyll,	45		55	0/	When using	
width	-		Pwl/tcyll	45	-	55	%	external clock	

* : See "• Sub crystal oscillator" in "**HANDLING DEVICES**" for the crystal oscillator used.

(3) Built-in CR Oscillation Characteristics

• Built-in High-speed CR

$(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$									
Paramotor	Symbol	Conditions		Value			Remarks		
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Remarks		
		$Ta = + 25^{\circ}C, \\ 3.6V < V_{CC} \le 5.5V$	3.92	4	4.08				
		Ta =0°C to + 85°C, $3.6V < V_{CC} \le 5.5V$	3.9	4	4.1				
		Ta = -40° C to $+105^{\circ}$ C, 3.6 V $<$ V _{CC} ≤ 5.5 V	3.88	4	4.12		When trimming ^{*1}		
Clock frequency	F _{CRH}	$Ta = +25^{\circ}C,$ $2.7V \le V_{CC} \le 3.6V$	3.94	4	4.06	MHz			
1 2	ciui	$Ta = -20^{\circ}C \text{ to } + 85^{\circ}C, \\ 2.7V \le V_{CC} \le 3.6V$	3.92	4	4.08				
		Ta = -20° C to $+105^{\circ}$ C, $2.7V \le V_{CC} \le 3.6V$	3.9	4	4.1				
		Ta = -40° C to $+105^{\circ}$ C, $2.7V \le V_{CC} \le 3.6V$	3.88	4	4.12				
		$Ta = -40^{\circ}C \text{ to} + 105^{\circ}C$	2.8	4	5.2		When not trimming		
Frequency stabilization time	t _{CRWT}	-	-	-	30	μs	*2		

*1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming/temperature trimming.

*2: This is time from the trim value setting to stable of the frequency of the High-speed CR clock. After setting the trim value, the period when the frequency stability time passes can use the High-speed CR clock as a source clock.

• Built-in Low-speed CR

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Parameter	Symbol Conditions			Value	`	Unit	Bomorko
	Symbol	Conditions	Min	Тур	Max	Unit	Remarks
Clock frequency	F _{CRL}	-	50	100	150	kHz	

(4-1) Operating Conditions of Main PLL (In the case of using main clock for input of Main PLL)

Parameter	Symbol	× 66	Value	/ 55	Unit	Remarks	
Farameter	Symbol	Min	Тур	Max	Unit		
PLL oscillation stabilization wait time* ¹ (LOCK UP time)	t _{LOCK}	100	-	-	μs		
PLL input clock frequency	F _{PLLI}	4	-	16	MHz		
PLL multiplication rate	-	5	-	37	multiplier		
PLL macro oscillation clock frequency	F _{PLLO}	75	-	150	MHz		
Main PLL clock frequency ^{*2}	F _{CLKPLL}	-	-	40	MHz		

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V, Ta = -40^{\circ}C \text{ to } +105^{\circ}C)$

*1: Time from when the PLL starts operating until the oscillation stabilizes.

*2: For more information about Main PLL clock (CLKPLL), see "Chapter: Clock" in "FM3 Family PERIPHERAL MANUAL".

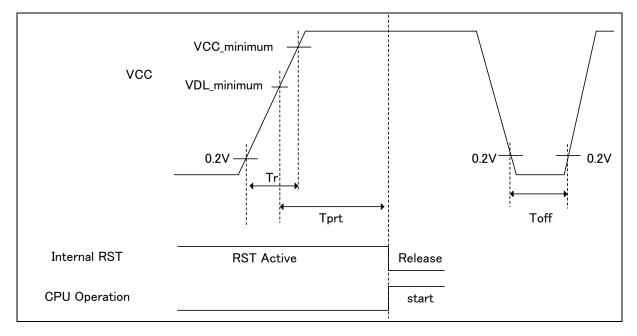
(4-2) Operating Conditions of Main PLL (In the case of using built-in high-speed CR for input clock of Main PLL) (**X** 7 2 7V += 5 5V V <u>о</u>у т. 10500

		$(V_{CC} =$	2.7V to 5.	$5V, V_{SS} =$	0V, Ta = -40	$0^{\circ}C \text{ to } + 105^{\circ}C)$	
Parameter	Symbol		Value		Unit	Remarks	
Falameter	Symbol	Min	Тур	Max	Unit	Remarks	
PLL oscillation stabilization wait time* ¹ (LOCK UP time)	t _{LOCK}	100	-	-	μs		
PLL input clock frequency	F _{PLLI}	3.8	4	4.2	MHz		
PLL multiplication rate	-	19	-	35	multiplier		
PLL macro oscillation clock frequency	F _{PLLO}	72	-	150	MHz		
Main PLL clock frequency* ²	F _{CLKPLL}	-	-	40	MHz		

*1: Time from when the PLL starts operating until the oscillation stabilizes.

*2: For more information about Main PLL clock (CLKPLL), see "Chapter: Clock" in "FM3 Family PERIPHERAL MANUAL".

Note: Make sure to input to the main PLL source clock, the high-speed CR clock (CLKHC) that the frequency has been trimmed.


-

(5) Reset Input Characteristics

	$(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V, 1a = -40^{\circ}C \text{ to } + 105^{\circ}C)$												
Parameter	Symbol	Pin	Conditions	Va	lue	Unit	Remarks						
	Symbol	name	Conditions	Min	Max		Remarks						
Reset input time	t _{INITX}	INITX	-	500	-	ns							

(6) Power-on Reset Timing

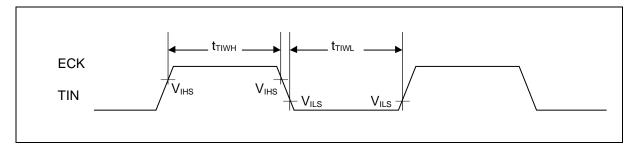
			$(V_{\rm CC} = 2.7)$	V to 5.5 V, V	$V_{\rm SS} = 0V,$	$Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$
Parameter	Cumhal	Pin	Value		Unit	Bomorko
	Symbol	name	Min	Max	Unit	Remarks
Power supply rising time	Tr		0	-	ms	
Power supply shut down time	Toff	VCC	1	-	ms	
Time until releasing Power-on reset	Tprt		0.34	3.15	ms	

Glossary

• VCC_minimum

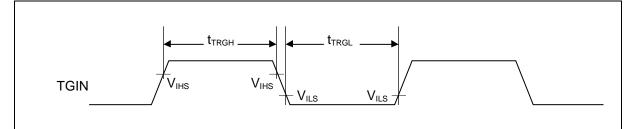
VDL_minimum

Minimum V_{CC} of recommended operating conditions.
 Minimum detection voltage of Low-Voltage detection reset.


See "7. Low-Voltage Detection Characteristics".

(7) Base Timer Input Timing

Timer input timing


			$(V_{CC} = 2.7)$	/ to 5.5 V, V	$_{\rm SS} = 0$ V, Ta :	= - 40°C	$C \text{ to } + 105^{\circ}\text{C}$
Parameter	Symbol Pin na		Conditions	Value		Unit	Remarks
		Fin hame		Min	Max	Unit	Remarks
Input pulse width	t _{TIWH} , t _{TIWL}	TIOAn/TIOBn (when using as ECK, TIN)	-	2t _{CYCP}	-	ns	

• Trigger input timing

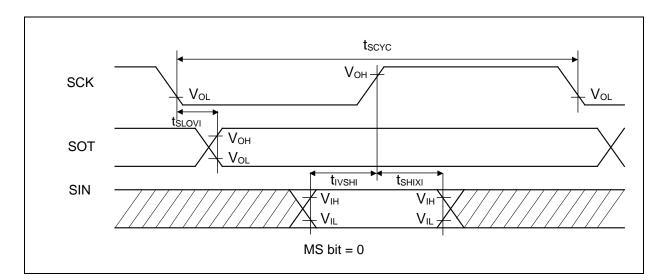
 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$

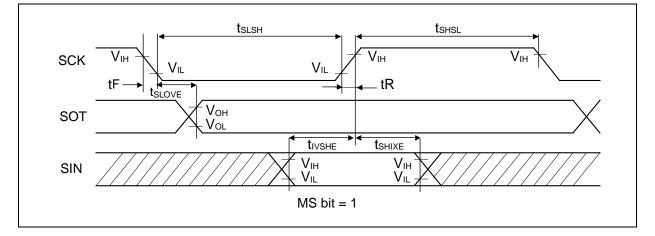
Parameter	Symbol	Pin name	n name Conditions		ue	Unit	Remarks
Falameter	Symbol	Finname	Conditions	Min	Max	Onit	Remarks
Input pulse width	t _{TRGH} , t _{TRGL}	TIOAn/TIOBn (when using as TGIN)	-	2t _{CYCP}	-	ns	

Note: t_{CYCP} indicates the APB bus clock cycle time.

About the APB bus number which the Base Timer is connected to, see "BLOCK DIAGRAM" in this data sheet.

(8) CSIO Timing

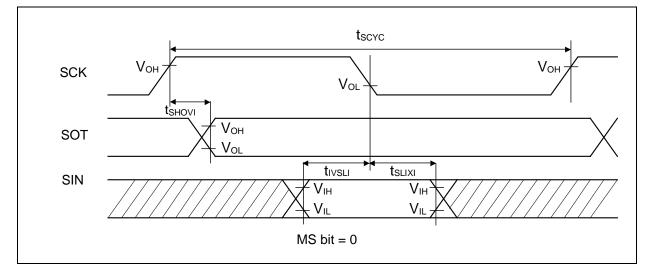

• Synchronous serial (SPI = 0, SCINV = 0)

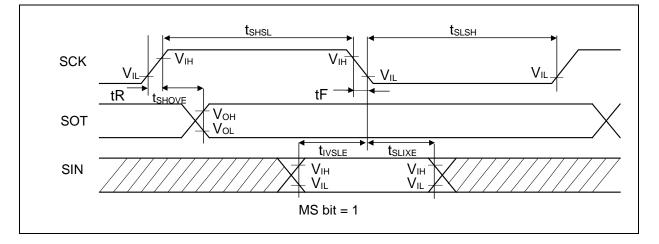

			$(V_{CC} = 2)$.7V to 5.5V	$V_{\rm SS} = 0^{-1}$	V, Ta = - 40	0° C to + 1	05°C)
Parameter	Symbol	Pin	Conditions	$V_{\rm CC}$ < 4	4.5V	V _{CC} ≥	4.5V	Unit
Falameter	Symbol	name	Conditions	Min	Max	Min	Max	Unit
Serial clock cycle time	t _{SCYC}	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	t _{SLOVI}	SCKx, SOTx	Internal shift	- 30	+ 30	- 20	+ 20	ns
SIN \rightarrow SCK \uparrow setup time	t _{IVSHI}	SCKx, SINx	clock operation	50	-	30	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	t _{SHIXI}	SCKx, SINx		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	t _{SLOVE}	SCKx, SOTx	External shift clock	-	50	-	30	ns
SIN \rightarrow SCK \uparrow setup time	t _{IVSHE}	SCKx, SINx	operation	10	-	10	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	t _{SHIXE}	SCKx, SINx		20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx		-	5	-	5	ns

Notes: • The above characteristics apply to CLK synchronous mode.

- t_{CYCP} indicates the APB bus clock cycle time.
- About the APB bus number which Multi-function serial is connected to, see "■BLOCK DIAGRAM" in this data sheet.
- These characteristics only guarantee the same relocate port number. For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 30 pF$.

			$(V_{CC} = 2)$.7V to 5.5V	$V_{\rm SS}=0$	V, Ta = - 40	0° C to + 1	05°C)	
Parameter	Symbol	Pin	Conditions	$V_{CC} < 4$	4.5V	V _{CC} ≥	4.5V	Unit	
Farameter	Symbol	name	Conditions	Min	Max	Min	Max	Onit	
Serial clock cycle time	t _{SCYC}	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	ns	
SCK $\uparrow \rightarrow$ SOT delay time	t _{SHOVI}	SCKx, SOTx	Internal shift	- 30	+ 30	- 20	+ 20	ns	
$SIN \rightarrow SCK \downarrow$ setup time	t _{IVSLI}	SCKx, SINx	clock operation	50	-	30	I	ns	
SCK $\downarrow \rightarrow$ SIN hold time	t _{SLIXI}	SCKx, SINx		0	-	0	-	ns	
Serial clock "L" pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns	
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns	
SCK $\uparrow \rightarrow$ SOT delay time	t _{SHOVE}	SCKx, SOTx	External shift clock	-	50	-	30	ns	
$SIN \rightarrow SCK \downarrow$ setup time	t _{IVSLE}	SCKx, SINx	operation	10	-	10	I	ns	
SCK $\downarrow \rightarrow$ SIN hold time	t _{SLIXE}	SCKx, SINx		20	-	20	-	ns	
SCK falling time	tF	SCKx]	_	5	_	5	ns	
SCK rising time	tR	SCKx		-	5	-	5	ns	


• Synchronous serial (SPI = 0, SCINV = 1)


Notes: • The above characteristics apply to CLK synchronous mode.

• t_{CYCP} indicates the APB bus clock cycle time.

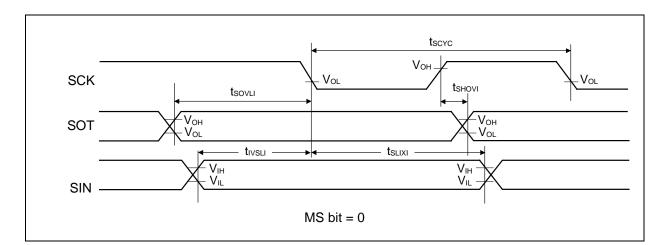
- About the APB bus number which Multi-function serial is connected to, see "■BLOCK DIAGRAM" in this data sheet.
- These characteristics only guarantee the same relocate port number. For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 30 pF$.

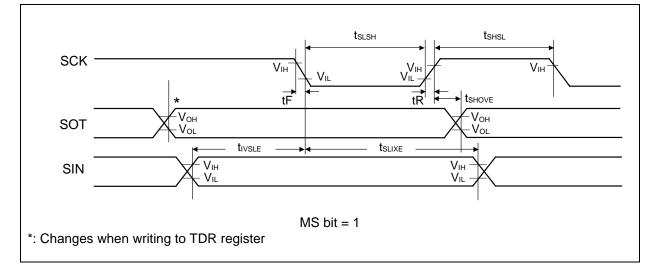
			$(V_{CC} = 2)$.7V to 5.5V	$V_{\rm SS}=0$	V, Ta = - 40	0° C to + 1	105°C)
Parameter	Symbol	Pin	Conditions	$V_{CC} < 4$	4.5V	V _{CC} ≥	4.5V	Unit
Falameter	Symbol	name	Conditions	Min	Max	Min	Max	Unit
Serial clock cycle time	t _{SCYC}	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	t _{SHOVI}	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
$SIN \rightarrow SCK \downarrow$ setup time	t _{IVSLI}	SCKx, SINx	Internal shift clock	50	-	30	-	ns
SCK $\downarrow \rightarrow$ SIN hold time	t _{SLIXI}	SCKx, SINx	operation	0	-	0	-	ns
$SOT \rightarrow SCK \downarrow delay time$	t _{SOVLI}	SCKx, SOTx		2t _{CYCP} - 30	-	2t _{CYCP} - 30	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	t _{SHOVE}	SCKx, SOTx	External shift clock	-	50	-	30	ns
$SIN \rightarrow SCK \downarrow setup time$	t _{IVSLE}	SCKx, SINx	operation	10	-	10	-	ns
SCK $\downarrow \rightarrow$ SIN hold time	t _{SLIXE}	SCKx, SINx		20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx		-	5	-	5	ns

• Synchronous serial (SPI = 1, SCINV = 0)

Notes:

• The above characteristics apply to CLK synchronous mode.


- t_{CYCP} indicates the APB bus clock cycle time.

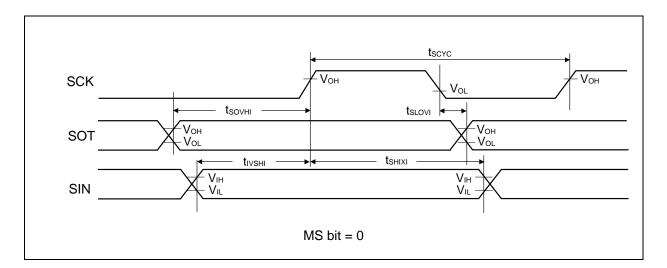

• About the APB bus number which Multi-function serial is connected to, see "■BLOCK DIAGRAM" in this data sheet.

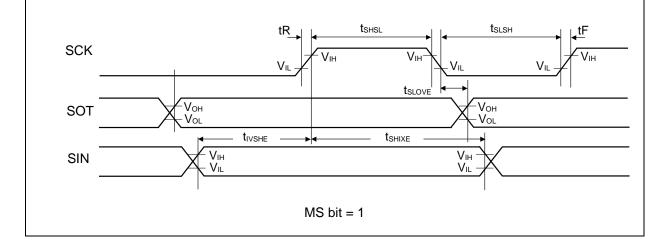
• These characteristics only guarantee the same relocate port number. For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed.

• When the external load capacitance $C_L = 30 \text{pF}$.

			$(V_{CC} = 2)$.7V to 5.5V	$V_{\rm SS} = 0$	V, Ta = -40	0° C to + 1	(05°C)
Parameter	Symbol	Pin	Conditions	$V_{CC} < 4$	4.5V	V _{CC} ≥	4.5V	Unit
Falameter	Symbol	name	Conditions	Min	Max	Min	Max	Offic
Serial clock cycle time	t _{SCYC}	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	ns
$SCK \downarrow \rightarrow SOT$ delay time	t _{SLOVI}	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
SIN \rightarrow SCK \uparrow setup time	t _{IVSHI}	SCKx, SINx	Internal shift clock	50	-	30	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	t _{SHIXI}	SCKx, SINx	operation	0	-	0	-	ns
SOT \rightarrow SCK \uparrow delay time	t _{SOVHI}	SCKx, SOTx		2t _{CYCP} - 30	-	2t _{CYCP} - 30	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	t _{SLOVE}	SCKx, SOTx	External shift	-	50	-	30	ns
SIN \rightarrow SCK \uparrow setup time	t _{IVSHE}	SCKx, SINx	clock operation	10	-	10	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	t _{SHIXE}	SCKx, SINx		20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx		-	5	-	5	ns

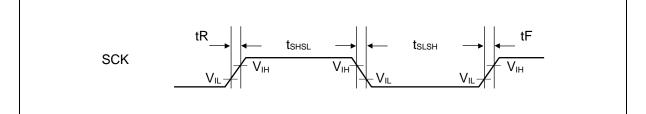
• Synchronous serial (SPI = 1, SCINV = 1)


Notes: • The above characteristics apply to CLK synchronous mode.


• t_{CYCP} indicates the APB bus clock cycle time.

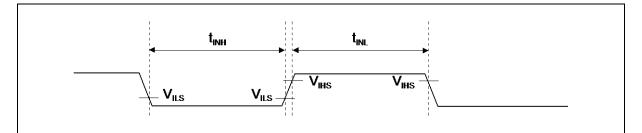
• About the APB bus number which Multi-function serial is connected to, see "■BLOCK DIAGRAM" in this data sheet.

- These characteristics only guarantee the same relocate port number. For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 30 pF$.



• External clock (EXT = 1) : asynchronous only α

(-/ • •••• J • ••• • • J							
		($V_{\rm CC} = 2.7 \text{V}$ to 5.5 V	$V_{SS} = 0V, Ta =$	- 40°C	to + 105°C)		
Deremeter	Symbol	Conditions	Valu	е	Llnit	Remarks		
Parameter	Symbol	Conditions	Min	Max	Unit			
Serial clock "L" pulse width	t _{SLSH}		$t_{CYCP} + 10$	-	ns			
Serial clock "H" pulse width	t _{SHSL}	$C_L = 30 pF$	$t_{CYCP} + 10$	-	ns			
SCK falling time	tF	$C_L = 50 pr$	-	5	ns			
SCK rising time	tR		-	5	ns			


(9) External Input Timing

$(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C$												
Doromotor	Symbol	Din nomo	Conditions	Value	alue		Domorko					
Parameter Symbo		Pin name	Conditions	Min Max		Unit	Remarks					
		ADTG					A/D converter					
		ADIO					trigger input					
		FRCKx	-	$2t_{CYCP}^{*1}$	-	ns	Free-run timer input					
Innut nulsa	+	ГКСКА					clock					
Input pulse width	t _{INH,}	ICxx					Input capture					
width	t _{INL}	DTTIxX	-	$2t_{CYCP}*^1$	-	ns	Waveform enerator					
		IGTRG	-	$2t_{CYCP}^{*1}$	-	ns	PPG IGBT mode					
		INTxx,		$2t_{CYCP} + 100*^{1}$	-	ns	External interrupt,					
		NMIX	-	500^{*2}	-	ns	NMI					

*1 : t_{CYCP} indicates the APB bus clock cycle time except stop when in stop mode, in timer mode.

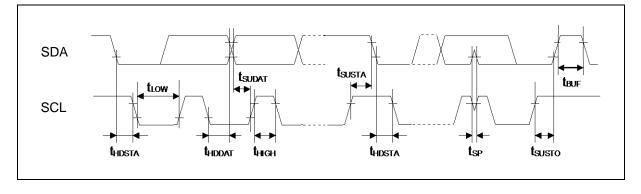
About the APB bus number which the A/D converter, Multi-function Timer, External interrupt are connected to, see "BLOCK DIAGRAM" in this data sheet.

*2 : When in stop mode, in timer mode.

(10) I²C Timing

		(V	$f_{\rm CC} = 2.7 {\rm V}$ to	<u>5.5V, V</u>	$V_{\rm SS} = 0$ V, '	l'a = -4	<u>0°C t</u>	$o + 105^{\circ}C)$	
Parameter	Symbol	Conditions	Standard-	mode	Fast-m	node	Linit	Remarks	
Falameter	Symbol	Conditions	Min	Max	Min	Max	Unit	Remarks	
SCL clock frequency	F _{SCL}		0	100	0	400	kHz		
(Repeated) START condition									
hold time	t _{HDSTA}		4.0	-	0.6	-	μs		
$SDA \downarrow \rightarrow SCL \downarrow$									
SCLclock "L" width	t _{LOW}		4.7	-	1.3	-	μs		
SCLclock "H" width	t _{HIGH}		4.0	-	0.6	-	μs		
(Repeated) START condition									
setup time	t _{SUSTA}	$C_L = 30 pF,$ R =	4.7	-	0.6	-	μs		
$\operatorname{SCL}\uparrow\to\operatorname{SDA}\downarrow$									
Data hold time	t	$(Vp/I_{OL})^{*1}$	0	3.45^{*2}	0	0.9^{*^3}	μs		
$\operatorname{SCL} \downarrow \to \operatorname{SDA} \downarrow \uparrow$	t _{HDDAT}	$(\mathbf{v} \mathbf{p} \mathbf{I}_{0L})$	0	5.45	0	0.9	μs		
Data setup time	tarm im		250	-	100	_	ns		
$SDA \downarrow \uparrow \rightarrow SCL \uparrow$	t _{SUDAT}		230	-	100	_	115		
STOP condition setup time	t		4.0	_	0.6	_			
$\operatorname{SCL}\uparrow\to\operatorname{SDA}\uparrow$	t _{SUSTO}		4.0	-	0.0	_	μs		
Bus free time between									
"STOP condition" and	$t_{\rm BUF}$		4.7	-	1.3	-	μs		
"START condition"									
Noise filter	t _{SP}	-	$2 t_{CYCP}^{*4}$	-	$2 t_{CYCP}^{*4}$	-	ns		

*1 :R and C_L represent the pull-up resistor and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistor and I_{OL} indicates V_{OL} guaranteed current.

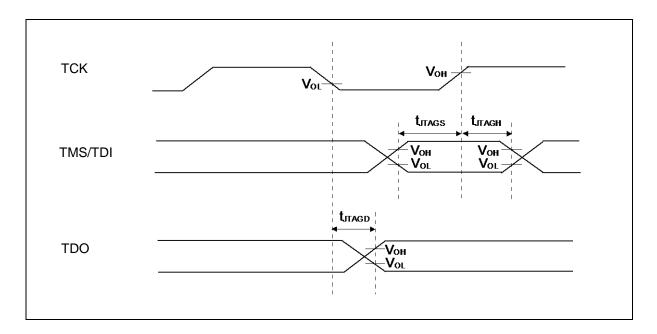

*2 :The maximum t_{HDDAT} must satisfy that it does not extend at least "L" period (t_{LOW}) of device's SCL signal.

*3 :A Fast-mode I²C bus device can be used on a Standard-mode I²C bus system as long as the device satisfies the requirement of " $t_{SUDAT} \ge 250$ ns".

*4 :t_{CYCP} is the APB bus clock cycle time.

About the APB bus number that I²C is connected to, see "**B**LOCK DIAGRAM" in this data sheet. To use Standard-mode, set the APB bus clock at 2MHz or more.

To use Fast-mode, set the APB bus clock at 8MHz or more.



(11) JTAG Timing

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V, Ta = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
Falametei	Symbol	Finname	Conditions	Min	Max	Unit	Remarks
TMS, TDI setup	t	TCK,	$V_{CC}\!\geq\!4.5V$	15		ne	
time	t _{JTAGS}	TMS, TDI	$V_{CC} < 4.5V$	15	-	ns	
TMS, TDI hold time	t	TCK,	$V_{CC}\!\geq\!4.5V$	15	-	ns	
TWIS, TDI HOId time	t _{JTAGH}	TMS, TDI	$V_{CC} < 4.5V$	15		115	
TDO delay time		TCK,	$V_{CC}\!\geq\!4.5V$	-	25		
	t _{JTAGD}	TDO	$V_{CC} < 4.5 V$	-	45	ns	

Note: When the external load capacitance $C_L = 30 pF$.

5. 12-bit A/D Converter

· Electrical characteristics for the A/D converter

$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = AVRL = 0V, Ta = -40^{\circ}C \text{ to } +105^{\circ}C)$											
Parameter	Symbol	Pin name		Value		Unit	Remarks				
Falameter	Symbol	FIIIIaiiie	Min	Тур	Max	Unit	Remarks				
Resolution	-	-	-	-	12	bit					
Integral Nonlinearity	-	-	- 4.5	-	+ 4.5	LSB					
Differential Nonlinearity	-	-	- 2.5	-	+ 2.5	LSB	AVRH =				
Zero transition voltage	V _{ZT}	ANxx	- 15	-	+ 15	mV	2.7V to 5.5V				
Full-scale transition	V	ANxx	AVRH - 15		AVRH + 15	mV	2.7 V to 5.5 V				
voltage	V _{FST}	AINXX		-	AVKH + 13	III V					
Conversion time	-	-	0.8^{*^1}	-	-	μs	$AV_{CC} \ge 4.5V$				
Sampling time* ²	Ts	-	0.24	-	10	μs					
Compare clock cycle* ³	Tcck	-	40	-	1000	ns					
State transition time to	Tstt				1.0	116					
operation permission	150	-		-	1.0	μs					
Analog input capacity	C _{AIN}	-	-	-	9.7	pF					
Analog input resistor					1.5	kΩ	$AV_{CC} \!\geq\! 4.5V$				
Analog input resistor	R _{AIN}	-	-	-	2.2	K32	$AV_{CC} < 4.5V$				
Interchannel disparity	-	-	-	-	4	LSB					
Analog port input current	-	ANxx	-	-	5	μA					
Analog input voltage	-	ANxx	AV _{SS}	-	AVRH	V					
Deference voltege	-	AVRH	2.7	-	AV _{CC}	v					
Reference voltage		AVRL	AV _{SS}	-	AV _{SS}	v					

*1: The conversion time is the value of sampling time (Ts) + compare time (Tc).

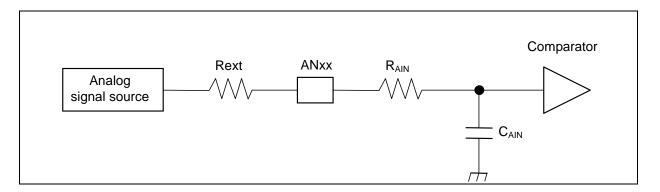
The condition of the minimum conversion time is when the value of sampling time: 240ns, the value of compare time: 560ns. Must be set 25MHz to the Base clock (HCLK).

Ensure that it satisfies the value of the sampling time (Ts) and compare clock cycle (Tcck).

For setting of the sampling time and compare clock cycle, see "Chapter: A/D Converter" in "FM3 Family PERIPHERAL MANUAL Analog Macro Part".

The register settings of the A/D Converter are reflected in the operation according to the APB bus clock timing.

For the number of the APB bus to which the A/D Converter is connected, see "■ Block Diagram".


The Base clock (HCLK) is used to generate the sampling time and the compare clock cycle.

*2: A necessary sampling time changes by external impedance.

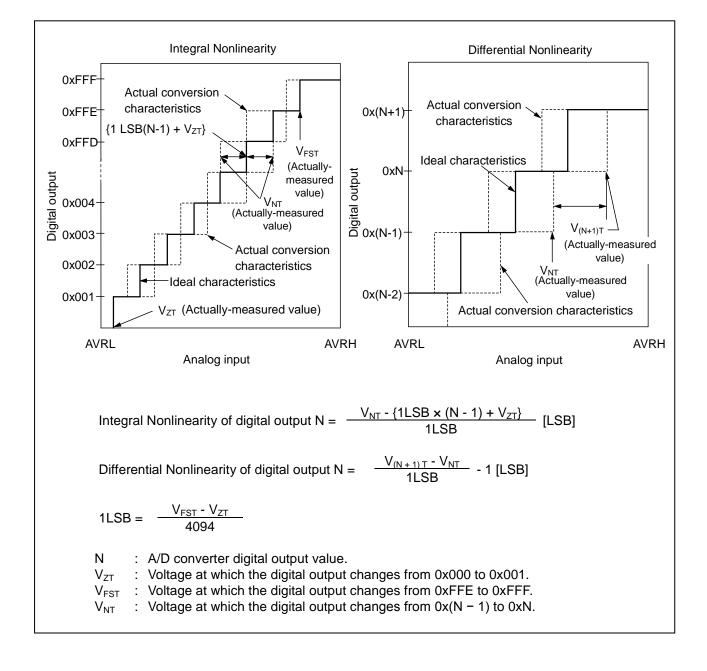
Ensure that it sets the sampling time to satisfy (Equation 1).

*3: The compare time (Tc) is the value of (Equation 2).

(Equation 1) Ts \geq ($R_{AIN}+Rext$) \times $C_{AIN}\times9$

- Ts : Sampling time
- $$\begin{split} R_{AIN} &: Input \ resistor \ of \ A/D = 1.3 k\Omega \ at \ 4.5 V \leq AV_{CC} \leq 5.5 V \ ch.0 \ to \ ch.2, \ ch.4, \ ch.5 \\ Input \ resistor \ of \ A/D = 1.5 k\Omega \ at \ 4.5 V \leq AV_{CC} \leq 5.5 V \ ch.12 \ to \ ch.14 \\ Input \ resistor \ of \ A/D = 1.9 k\Omega \ at \ 2.7 V \leq AV_{CC} < 4.5 V \ ch.0 \ to \ ch.2, \ ch.4, \ ch.5 \\ Input \ resistor \ of \ A/D = 2.2 k\Omega \ at \ 2.7 V \leq AV_{CC} < 4.5 V \ ch.12 \ to \ ch.14 \\ \end{split}$$
- C_{AIN} : Input capacity of A/D = 9.7pF at 2.7V \leq AV $_{CC} \leq$ 5.5V
- Rext : Output impedance of external circuit

(Equation 2) $Tc = Tcck \times 14$


Tc : Compare time

Tcck : Compare clock cycle

Definition of 12-bit A/D Converter Terms

- Resolution
 - : Analog variation that is recognized by an A/D converter.
- Integral Nonlinearity
- Deviation of the line between the zero-transition point
- $(0b0000000000 \leftrightarrow \rightarrow 0b0000000001)$ and the full-scale transition point $(0b11111111110 \leftrightarrow 0b1111111111)$ from the actual conversion characteristics.
- Differential Nonlinearity :
- Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB.

6. 10-bit D/A Converter

• Electrical Characteristics for the D/A Converter

	$(V_{CC} = AV_{CC})$	$_{\rm CC} = 2.7 {\rm V} {\rm t}$	o 5.5V, V	$ss = AV_{SS}$	= AVRL	= 0V, Ta =	- $40^{\circ}C$ to + $105^{\circ}C$)
Parameter	Symbol	Pin	Value			Unit	Remarks
Falameter	Symbol	name	Min	Тур	Max	Unit	Remarks
Resolution	-		-	-	10	bit	
Conversion time	tc20		0.47	0.58	0.69	μs	Load 20pF
Conversion time	tc100		2.37	2.90	3.43	μs	Load 100pF
Integral Nonlinearity	INL		- 4.0	-	+ 4.0	LSB	*
Differential Nonlinearity	DNL	DAx	- 0.9	-	+ 0.9	LSB	*
Output Voltage offset	V _{OFF}	DAX	-	-	10.0	mV	Code is 0x000
Output voltage offset	V OFF		- 20.0	-	+ 5.4	mV	Code is 0x3FF
Analog output impedance	D		3.10	3.80	4.50	kΩ	D/A operation
Analog output impedance	R _o		2.0	-	-	MΩ	D/A stop
Output undefined period	t _R		_	-	70	ns	
Output undefined period	t _R		-	-	70	ns	

*: No-load

7. Low-Voltage Detection Characteristics

(1) Low-Voltage Detection Reset

(I) LOW-VOILage	Deteotion	110001				Γ)	$a = -40^{\circ}C \text{ to } + 105^{\circ}C)$
Deremeter	Cumphed	Canditiana		Value		الم ال	Demorte
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Remarks
Detected voltage	VDL	$SVHR^{*1} = 00000$	2.25	2.45	2.65	V	When voltage drops
Released voltage	VDH	SVHK = 00000	2.30	2.50	2.70	V	When voltage rises
Detected voltage	VDL	$SVHR^{*1} = 00001$	2.39	2.60	2.81	V	When voltage drops
Released voltage	VDH	SVHR = 00001	Same as	SVHR = 00	000 value	V	When voltage rises
Detected voltage	VDL	$SVHR^{*1} = 00010$	2.48	2.70	2.92	V	When voltage drops
Released voltage	VDH	5VHK = 00010	Same as	SVHR = 00	000 value	V	When voltage rises
Detected voltage	VDL	$SVHR^{*1} = 00011$	2.58	2.80	3.02	V	When voltage drops
Released voltage	VDH	SVHK = 00011	Same as	SVHR = 00	000 value	V	When voltage rises
Detected voltage	VDL	$SVHR^{*1} = 00100$	2.76	3.00	3.24	V	When voltage drops
Released voltage	VDH	5VHK = 00100	Same as	SVHR = 00	000 value	V	When voltage rises
Detected voltage	VDL	$SVHR^{*1} = 00101$	2.94	3.20	3.46	V	When voltage drops
Released voltage	VDH	5VHK = 00101	Same as	SVHR = 00	000 value	V	When voltage rises
Detected voltage	VDL	$SVHR^{*1} = 00110$	3.31	3.60	3.89	V	When voltage drops
Released voltage	VDH	SVHK = 00110	Same as	SVHR = 00	000 value	V	When voltage rises
Detected voltage	VDL	$SVHR^{*1} = 00111$	3.40	3.70	4.00	V	When voltage drops
Released voltage	VDH	SVHK = 00111	Same as	SVHR = 00	000 value	V	When voltage rises
Detected voltage	VDL	$SVHR^{*1} = 01000$	3.68	4.00	4.32	V	When voltage drops
Released voltage	VDH	SVHK = 01000	Same as	SVHR = 00	000 value	V	When voltage rises
Detected voltage	VDL	$SVHR^{*1} = 01001$	3.77	4.10	4.43	V	When voltage drops
Released voltage	VDH	SVHK = 01001	Same as	SVHR = 00	000 value	V	When voltage rises
Detected voltage	VDL	$SVHR^{*1} = 01010$	3.86	4.20	4.54	V	When voltage drops
Released voltage	VDH	SVHR = 01010	Same as	SVHR = 00	000 value	V	When voltage rises
LVD stabilization	Т				8160 ×	110	
wait time	T _{LVDW}	-	-	-	t _{CYCP} ^{*2}	μs	
LVD detection delay time	T _{LVDDL}	-	-	-	200	μs	

*1: SVHR bit of Low-Voltage Detection Voltage Control Register (LVD_CTL) is reset to SVHR = 00000 by low voltage detection reset.

*2: t_{CYCP} indicates the APB2 bus clock cycle time.

	on ronag	Deteolion				Γ)	$a = -40^{\circ}C \text{ to } + 105^{\circ}C)$
Doromotor	Symbol	Value Value		Linit	Domorko		
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Remarks
Detected voltage	VDL	SVIII 00011	2.58	2.80	3.02	V	When voltage drops
Released voltage	VDH	SVHI = 00011	2.67	2.90	3.13	V	When voltage rises
Detected voltage	VDL	SVHI = 00100	2.76	3.00	3.24	V	When voltage drops
Released voltage	VDH	SVHI = 00100	2.85	3.10	3.35	V	When voltage rises
Detected voltage	VDL	SVHI = 00101	2.94	3.20	3.46	V	When voltage drops
Released voltage	VDH	SVHI = 00101	3.04	3.30	3.56	V	When voltage rises
Detected voltage	VDL	SVHI = 00110	3.31	3.60	3.89	V	When voltage drops
Released voltage	VDH	3 V HI = 00110	3.40	3.70	4.00	V	When voltage rises
Detected voltage	VDL	SVHI = 00111	3.40	3.70	4.00	V	When voltage drops
Released voltage	VDH	3 V HI = 00111	3.50	3.80	4.10	V	When voltage rises
Detected voltage	VDL	SVHI = 01000	3.68	4.00	4.32	V	When voltage drops
Released voltage	VDH	SVHI = 01000	3.77	4.10	4.43	V	When voltage rises
Detected voltage	VDL	SVHI = 01001	3.77	4.10	4.43	V	When voltage drops
Released voltage	VDH	S VIII – 01001	3.86	4.20	4.54	V	When voltage rises
Detected voltage	VDL	SVHI = 01010	3.86	4.20	4.54	V	When voltage drops
Released voltage	VDH	3VHI - 01010	3.96	4.30	4.64	V	When voltage rises
LVD stabilization	т				8160 ×		
wait time	T _{LVDW}	-	-	-	t _{CYCP} *	μs	
LVD detection delay time	T _{LVDDL}	-	-	-	200	μs	

(2) Interrupt of Low-Voltage Detection

*: t_{CYCP} indicates the APB2 bus clock cycle time.

DataSheet

8. Flash Memory Write/Erase Characteristics

$(V_{CC} = 2.7V \text{ to } 5.5V, \text{ Ta} = -40^{\circ}\text{C to} + 10^{\circ}\text{C}$					
Parameter	Value		Unit	Remarks	
Falameter	Min	Тур	Max	Unit	Remarks
Sector erase time	_	0.3	0.7	s	Includes write time prior to internal
Sector crase time	- 0.3 0.7 S	3	erase		
Half word (16-bit) write time		16	282		Not including system-level overhead
Hall word (10-bit) write time	-	10	202	μs	time
Chin areas time		2.4	5.6		Includes write time prior to internal
Chip erase time	-	2.4	3.0	S	erase

Write cycles and data hold time

Erase/write cycles (cycle)	Data hold time (year)	Remarks
1,000	20*	
10,000	10*	

*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature acceleration test result into average temperature value at + 85°C).

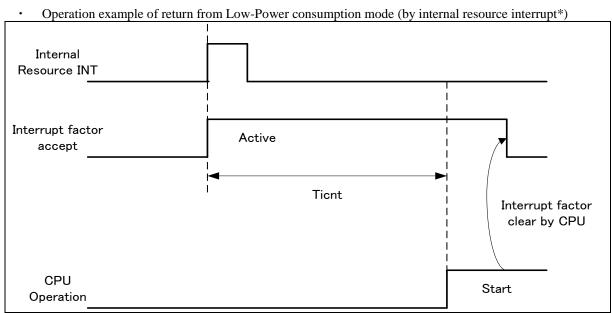
9. Return Time from Low-Power Consumption Mode

(1) Return Factor: Interrupt/WKUP

The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the program operation.

Return Count Time •

			$(V_{\rm CC} = 2.7 V \text{ to } 5.5)$	V, Ta = -	40° C to + 105° C)
Parameter	Symbol	Va	lue	Unit	Remarks
Falameter	Symbol	Тур	Max*	Onit	Remains
SLEEP mode		t _C	YCC	μs	
High-speed CR TIMER mode, Main TIMER mode, PLL TIMER mode		43	83	μs	
Low-speed CR TIMER mode	Ticnt	310	620	μs	
Sub TIMER mode		534	724	μs	
RTC mode, STOP mode		278	479	μs	


*: The maximum value depends on the accuracy of built-in CR.

Operation example of return from Low-Power consumption mode (by external interrupt*) • Ext.INT I I Interrupt factor I Active accept Ticnt Interrupt factor clear by CPU CPU Start Operation

*: External interrupt is set to detecting fall edge.

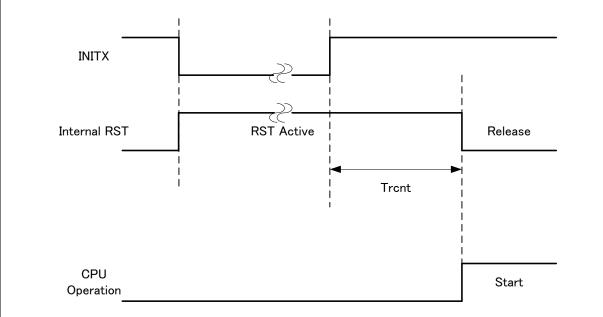
DataSheet

*: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.

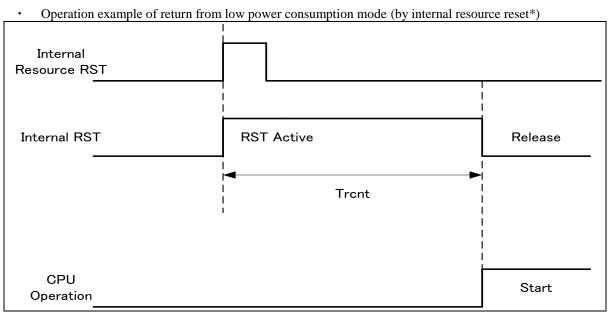
- Notes: The return factor is different in each Low-Power consumption modes. See "Chapter: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family PERIPHERAL MANUAL.
 - When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "CHAPTER: Low Power Consumption Mode" in "FM3 Family PERIPHERAL MANUAL".

(2) Return Factor: Reset

The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation.


• Return Count Time

$(V_{CC} = 2.7V \text{ to } 5.5V, \text{ Ta} = -40^{\circ}\text{C to} +$	105°C)
$(V_{CC} = 2.7 V \text{ to } 5.5 V, 10 = 40 \text{ C to } 1$	105 C)

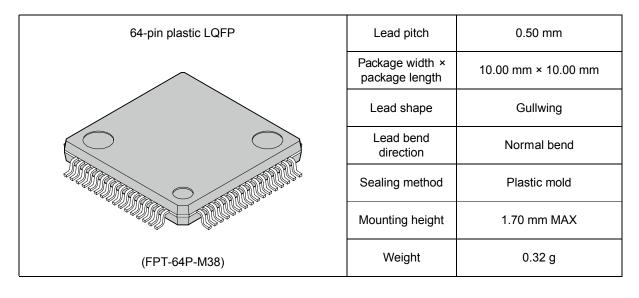

Deremeter	Symbol	Va	Value		Domorko
Parameter	Symbol	Тур	Max*	Unit	Remarks
SLEEP mode		149	264	μs	
High-speed CR TIMER mode, Main TIMER mode, PLL TIMER mode		149	264	μs	
Low-speed CR TIMER mode	Trent	318	603	μs	
Sub TIMER mode		308	583	μs	
RTC/STOP mode		248	443	μs	

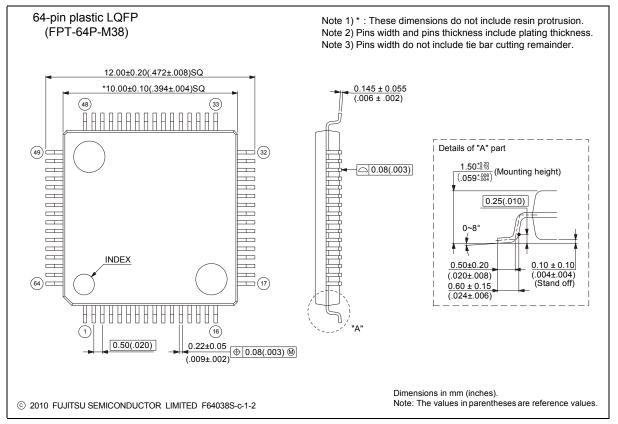
*: The maximum value depends on the accuracy of built-in CR.

• Operation example of return from Low-Power consumption mode (by INITX)

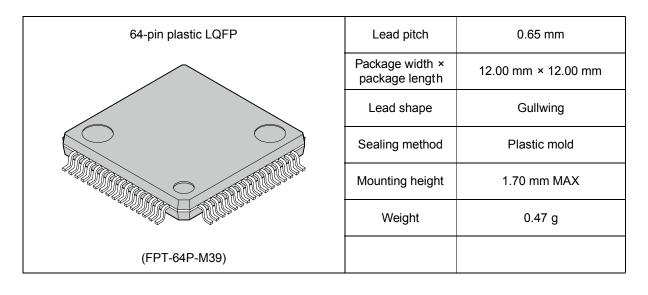
*: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.

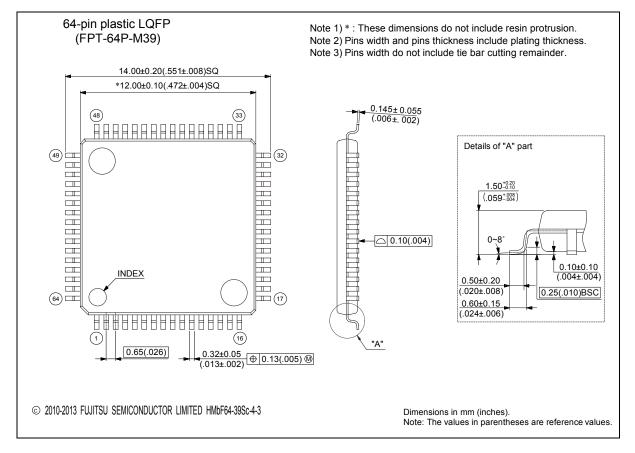
- Notes: The return factor is different in each Low-Power consumption modes. See "Chapter: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family PERIPHERAL MANUAL.
 - When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "CHAPTER: Low Power Consumption Mode" in "FM3 Family PERIPHERAL MANUAL".
 - The time during the power-on reset/low-voltage detection reset is excluded. See "(6) Power-on Reset Timing in 4. AC Characteristics in ■ELECTRICAL CHARACTERISTICS" for the detail on the time during the power-on reset/low -voltage detection reset.
 - When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the main PLL clock stabilization wait time.
 - The internal resource reset means the watchdog reset and the CSV reset.

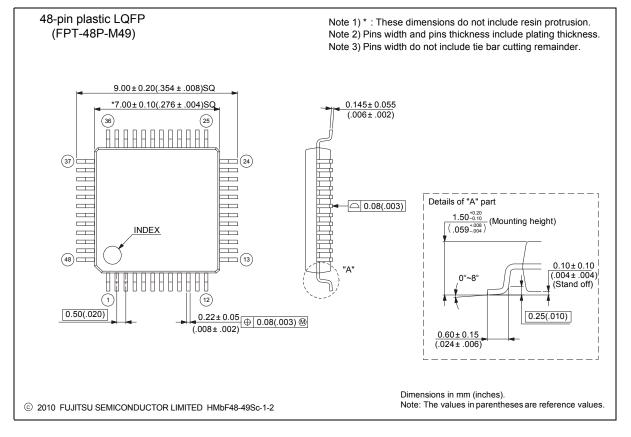


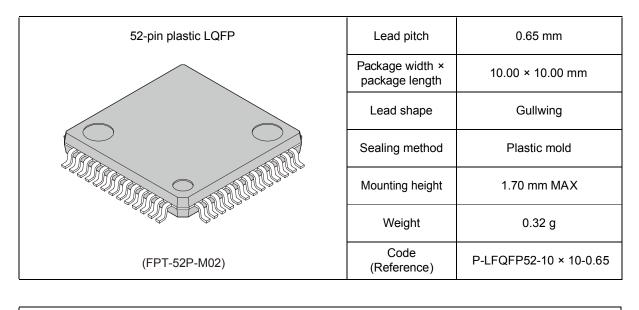

■ ORDERING INFORMATION

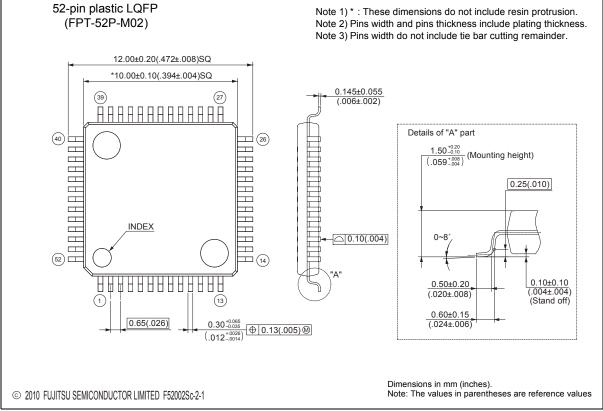
Part number	Package			
MB9AF421KWQN	Plastic • QFN (0.5mm pitch), 48-pin (LCC-48P-M74)			
MB9AF421KPMC	Plastic • LQFP (0.5mm pitch), 48-pin (FPT-48P-M49)			
MB9AF421KPMC1	Plastic • LQFP (0.65mm pitch), 52-pin (FPT-52P-M02)			
MB9AF421LPMC1	Plastic • LQFP (0.5mm pitch), 64-pin (FPT-64P-M38)			
MB9AF421LPMC	Plastic • LQFP (0.65mm pitch), 64-pin (FPT-64P-M39)			
MB9AF421LWQN	Plastic • QFN (0.5mm pitch), 64-pin (LCC-64P-M25)			



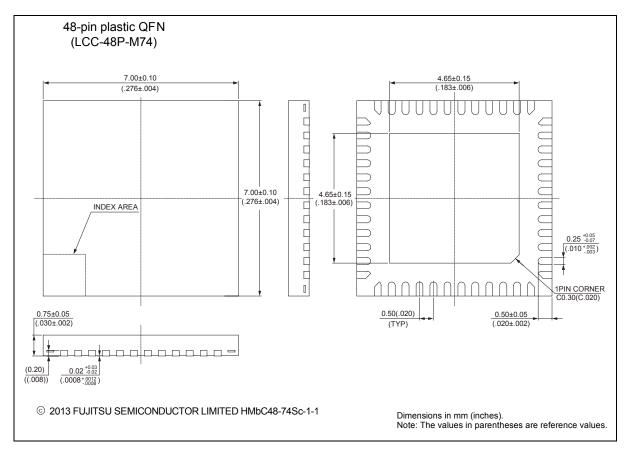

PACKAGE DIMENSIONS

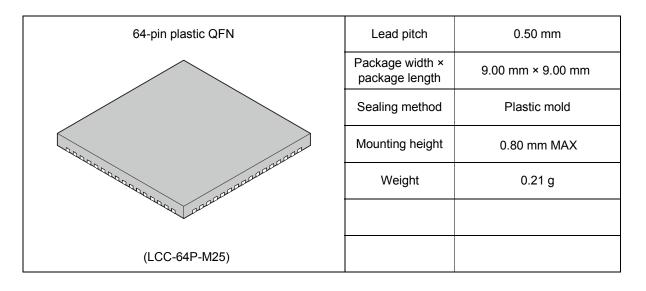


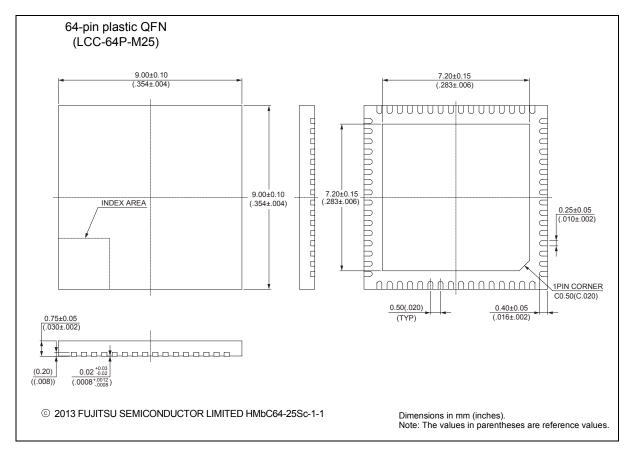




Package width ×	
package length	7.00 mm × 7.00 mm
Lead shape	Gullwing
Lead bend direction	Normal bend
Sealing method	Plastic mold
Mounting height	1.70 mm MAX
Weight	0.17 g
	Lead bend direction Sealing method Mounting height







48-pin plastic QFN	Lead pitch	0.50 mm
	Package width× package length	7.00 mm × 7.00 mm
	Sealing method	Plastic mold
	Mounting height	0.80 mm MAX
	Weight	0.12 g
and a manual		
(LCC-48P-M74)		

Major Changes

Page	Section	Change Results
Revision ().1	·
-	-	Initial release
Revision (0.2	
-	-	Company name and layout design change
Revision 1	.0	
-	-	Preliminary \rightarrow Full Production
2	■FEATURES	Revised I ² C operation mode name
3	FEATURES	Revised the value of A/D conversion time
4	■FEATURES	Revised Channel number of MFT A/D activation compare
6	■PRODUCT LINEUP	Added notes of Built-in high speed CR accuracy
		Revised channel number of MFT A/D activation compare
17	LIST OF PIN FUNCTIONList of pin numbers	Corrected I/O circuit type of P80,P81,P82
29	■I/O CIRCUIT TYPE	Added the remarks of type L
37	■BLOCK DIAGRAM	Revised Channel number of MFT A/D activation compare
47	ELECTRICAL CHARACTERISTICS2. Recommended Operating Conditions	Corrected the minimum value of AVRH voltage
48,49	ELECTRICAL CHARACTERISTICS3.DC Characteristics (1) Current Rating	Revised the values of "TBD"
	■ELECTRICAL CHARACTERISTICS	Corrent the pin name of power supply current
49	3.DC Characteristics (1) Current Rating	Added the at stop condition of power supply current
	• A/D converter current	Added the remark of reference power supply current
55	ELECTRICAL CHARACTERISTICS3.AC Characteristics (6)Power-on Reset Timing	Revised the values of "TBD"
66	■ELECTRICAL CHARACTERISTICS	Revised I ² C operation mode name
00	3.AC Characteristics (10) I ² C Timing	Revised the value of noise filter
68	■ELECTRICAL CHARACTERISTICS 5. 12-bit A/D Converter	 Revised the value of zero transition valtage and full-scale transiton valtage Revised the value of conversion time, sampling time, compare clock cycle Corrected the value of state transition time to operation permission Corrected the minimum value of AVRH voltage Revised the notes explanation Delete (Preliminary value) description
71	ELECTRICAL CHARACTERISTICS6. 10-bit D/A Converter	Delete (Preliminary value) description
72,73	ELECTRICAL CHARACTERISTICS7. Low-Voltage Detection Characteristics	Corrected the values of SVHR and SVHI
74	 ELECTRICAL CHARACTERISTICS 8. Flash Memory Write/Erase Characteristics 	 Revised the values of "TBD" Revised the values of typical Revised the notes of Erase/write cycles and data hold time Delete (target value) description
75,77	 ELECTRICAL CHARACTERISTICS 9. Return Time from Low-Power Consumption Mode 	Revised the values of "TBD"
84,85	■PACKAGE DIMENSIONS	Added the figures of LCC-48P-M74 and LCC-64P-M25

Colophon

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products.

Trademarks and Notice

The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out of the use of the information in this document.

Copyright © 2013-2014 Spansion Inc. All rights reserved. Spansion[®], the Spansion logo, MirrorBit[®], MirrorBit[®] EclipseTM, ORNANDTM and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries. Other names used are for informational purposes only and may be trademarks of their respective owners.