

Features:

- · Epitaxial planar die construction.
- · Ideal for low power amplification and switching.
- Ultra-small surface mount package
- Also available in lead free version.

Applications:

· General switching and amplification

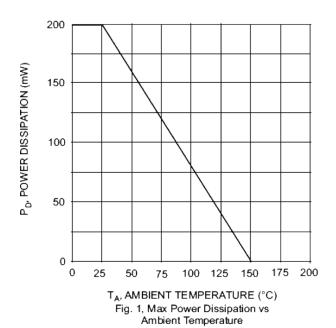
SOT-363

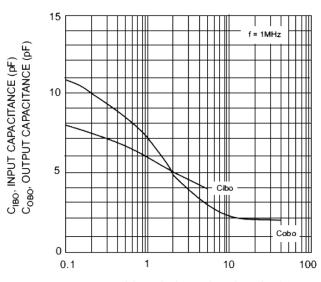
Maximum Rating @ TA=25°C unless otherwise specified

Parameter	Symbol	Value	Unit	
Collector-Base Voltage	V _{CBO}	60		
Collector-Emitter Voltage	VCEO	40	V	
Emitter-Base Voltage	V _{EBO}	6		
Collector Current -Continuous	Ic	0.0	Α	
Total Power Dissipation	P _{tot}	0.2	W	
Thermal Resistance, Junction To Ambient	R _{0JA}	625	°C/W	
Storage Temperature	T _{stg}	150	°C	
Junction Temperature	Tj	-55 to 150		

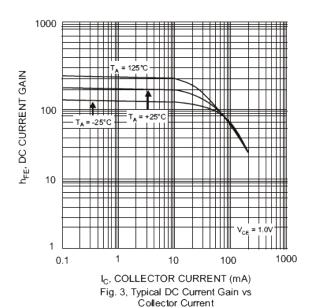
Electrical Characteristics @ TA=25°C unless otherwise specified

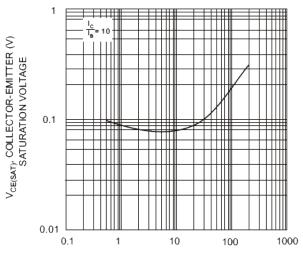
Parameter	Symbol	Conditions	Min.	Max.	Unit
Collector-Base Breakdown Voltage	V _{(BR)CBO}	IC = 10μA, IE = 0	60		
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	IC = 1mA, IB = 0	40		V
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	IE = 10μA, IC = 0	5		
Collector Cut-Off Current	I _{CEX}	VCE = 30V, VEB(OFF) = 3V		50	A
Base Cut-Off Current	I _{BL}	VCE = 30V, VEB(OFF) = 3V	-	50	nA
DC Current Gain	h _{FE}	VCE = 1V, IC = 0.1mA VCE = 1V, IC = 1mA VCE = 1V, IC = 10mA VCE = 1V, IC = 50mA VCE = 1V, IC = 100mA	40 70 100 60 30	- 300 -	
Collector Emitter Saturation Voltage	Vor(+)	IC = 10mA, IB = 1mA		200	m\/
Collector-Emitter Saturation Voltage V	V _{CE(sat)}	Ic = 50mA, IB = 5mA	-	300	mV

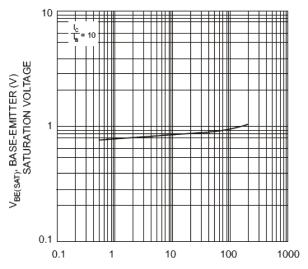




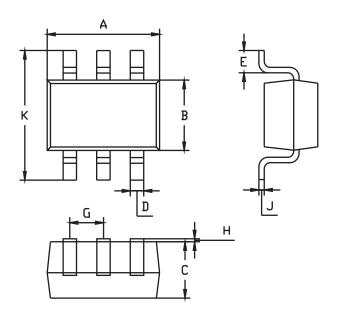
Parameter	Symbol	Conditions	Min.	Max.	Unit
Base-Emitter Saturation Voltage	Vocas	Ic = 10mA, IB = 1mA	650 850		
	V _{BE(sat)}	Ic = 50mA, IB =5mA		950	mV
Output Capacitance	C _{obo}	IE = 0, VCB = 5V, f = 1MHz] -	4	
Input Capacitance	Cibo	IC = 0, VEB = 0.5V, f =1MHz		8	pF
Transition Frequency	fT	Ic = 10mA, VcE = 20V, f = 100MHz	300	-	MHz
Noise Figure	NF	IC = 0.1mA, VCE = 5V, RS = $1k\Omega$, f = $1kHz$		5	dB
Delay Time	td	Vcc = 3V, VBE(off) = -0.5V	1	25	
Rise Time	tr	IC = 10mA IB1 = 1mA	-	35	
Storage Time	ts	Vcc = 3V, Ic = 10mA]	200	ns
Fall Time	tf	IB1 = IB2 = 1mA		50	


Typical Characteristics @ Ta=25°C unless otherwise specified

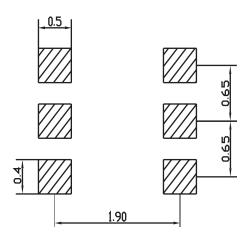



V_{CB}, COLLECTOR-BASE VOLTAGE (V) Fig. 2, Input and Output Capacitance vs. Collector-Base Voltage

I_C, COLLECTOR CURRENT (mA) Fig. 4, Typical Collector-Emitter Saturation Voltage vs. Collector Current



I_C, COLLECTOR CURRENT (mA) Fig. 5, Typical Base-Emitter Saturation Voltage vs. Collector Current



Package Outline

SOT-363			
Dim	Min	Max	
Α	1.8	2.2	
В	1.15	1.35	
С	1Typical		
D	0.10	0.30	
E	0.25	0.40	
G	0.65Typical		
Н	0.02	0.10	
J	0.1Typical		
K	2.1	2.3	
All Dimensions in mm			

Soldering Footprint

Dimensions: Millimetres

Part Number Table

Description	Part Number
Transistor, Array, Dual NPN, 40V, 200mA, SOT-363-6	MMDT3904-7-F

Important Notice: This data sheet and its contents (the "Information") belong to the members of the Premier Farnell group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp is the registered trademark of the Group. © Premier Farnell plc 2012.

www.element14.com www.farnell.com www.newark.com

