

MB39C604

ASSP PSR LED Driver IC for LED Lighting Data Sheet (Full Production)

Notice to Readers: This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur.

Notice On Data Sheet Designations

Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers of product information or intended specifications throughout the product life cycle, including development, qualification, initial production, and full production. In all cases, however, readers are encouraged to verify that they have the latest information before finalizing their design. The following descriptions of Spansion data sheet designations are presented here to highlight their presence and definitions.

Advance Information

The Advance Information designation indicates that Spansion Inc. is developing one or more specific products, but has not committed any design to production. Information presented in a document with this designation is likely to change, and in some cases, development on the product may discontinue. Spansion Inc. therefore places the following conditions upon Advance Information content:

"This document contains information on one or more products under development at Spansion Inc. The information is intended to help you evaluate this product. Do not design in this product without contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this proposed product without notice."

Preliminary

The Preliminary designation indicates that the product development has progressed such that a commitment to production has taken place. This designation covers several aspects of the product life cycle, including product qualification, initial production, and the subsequent phases in the manufacturing process that occur before full production is achieved. Changes to the technical specifications presented in a Preliminary document should be expected while keeping these aspects of production under consideration. Spansion places the following conditions upon Preliminary content:

"This document states the current technical specifications regarding the Spansion product(s) described herein. The Preliminary status of this document indicates that product qualification has been completed, and that initial production has begun. Due to the phases of the manufacturing process that require maintaining efficiency and quality, this document may be revised by subsequent versions or modifications due to changes in technical specifications."

Combination

Some data sheets contain a combination of products with different designations (Advance Information, Preliminary, or Full Production). This type of document distinguishes these products and their designations wherever necessary, typically on the first page, the ordering information page, and pages with the DC Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first page refers the reader to the notice on this page.

Full Production (No Designation on Document)

When a product has been in production for a period of time such that no changes or only nominal changes are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include those affecting the number of ordering part numbers available, such as the addition or deletion of a speed option, temperature range, package type, or VIO range. Changes may also include those needed to clarify a description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following conditions to documents in this category:

"This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur."

Questions regarding these document designations may be directed to your local sales office.

MB39C604

ASSP PSR LED Driver IC for LED Lighting Data Sheet (Full Production)

1. Description

MB39C604 is a PSR (Primary Side Regulation) LED driver IC for LED lighting. Using the information of the primary peak current and the transformer-energy-zero time, it is able to deliver a well regulated current to the secondary side without using an opto-coupler in an isolated flyback topology. Operating in critical conduction mode, smaller transformer is required. In addition, MB39C604 has a built-in dimmable circuit and can constitute the lighting system for PWM dimming.

It is most suitable for the general lighting applications, for example replacement of commercial and residential incandescent lamps.

2. Features

- PSR topology in an isolated flyback circuit
- High power factor (>0.9 : Not dimming) in Single Conversion
- High efficiency (>85% : Not dimming) and low EMI by detecting transformer zero energy
- PWM Dimmable LED lighting
- Highly reliable protection functions
 - Under voltage lock out (UVLO)
 - Over voltage protection (OVP)
 - Over current protection (OCP)
 - Short circuit protection (SCP)
 - Over temperature protection (OTP)
- Switching frequency setting : 30kHz to 133kHz
- Input voltage range VDD : 9V to 20V
- Input voltage for LED lighting applications : AC110V_{RMS}, AC230V_{RMS}
- Output power range for LED lighting applications : 5W to 50W
- Small Package : SOP-8 (3.9mm × 5.05mm × 1.75mm[Max])

3. Applications

- LED lighting
- PWM dimmable LED lighting

Online Design Simulation Easy DesignSim

This product supports the web-based design simulation tool. It can easily select external components and can display useful information. Please access from the following URL. http://www.spansion.com/easydesignsim/

Publication Number MB39C604_DS405-00016 Revision 2.0 Issue Date August 15, 2014

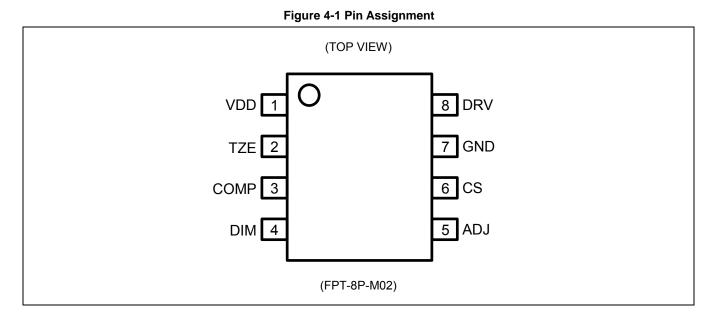
This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur.

Table of Contents

1.	Des	cription	3
2.	Feat	tures	3
3.	Арр	lications	3
4.	Pin	Assignment	6
5.	Descriptions	6	
6.	Bloc	ck Diagram	7
7.	Abs	olute Maximum Ratings	8
8.	Rec	commended Operating Conditions	9
9.	Elec	ctrical Characteristics	10
10.		ndard Characteristics	
11.	Fun	ction Explanations	
1	1.1	LED Current Control by PSR (Primary Side Regulation)	13
1	1.2	PFC (Power Factor Correction) Function	
1	1.3	Dimming Function	14
1	1.4	Power-On Sequence	
1	1.5	Power-Off Sequence	16
1	1.6	I _{P_PEAK} Detection Function	
1	1.7	Zero Voltage Switching Function	
-	1.8	Protection Functions	
		Pin Equivalent Circuit Diagram	
13.	Арр	lication Examples	
1	3.1	50W Isolated and PWM Dimming Application	
-	3.2	3. Hb	
14.		ge Precautions	
15.		ering Information	
16.		king Format	
17.		eling Sample	
18.	Rec	commended Conditions of Moisture Sensitivity Level	
1	8.1	Recommended Reflow Condition	
1	8.2	Reflow Profile	35
	8.3	JEDEC Condition	
	8.4	Recommended manual soldering (partial heating method)	
		kage Dimensions	
20.	Majo	or Changes	38

Figures

Figure 4-1 Pin Assignment	6
Figure 6-1 Block Diagram (Isolated Flyback application)	
Figure 7-1 Power Dissipation	
Figure 10-1 Standard Characteristics	
Figure 11-1 LED Current Control Waveform	13
Figure 11-2 Dimming Curve	14
Figure 11-3 DIM Pin Input Circuit	14
Figure 11-4 VDD Supply Path at Power-On	15
Figure 11-5 Power-On Waveform	15
Figure 11-6 Power-Off Waveform	16
Figure 12-1 I/O Pin Equivalent Circuit Diagram	18
Figure 13-1 50W EVB Schematic	20
Figure 13-2 50W Reference Data	22
Figure 13-3 5W EVB Schematic	26
Figure 13-4 5W Reference Data	28


Figure 16-1 Marking Format	33
Figure 17-1 Labeling Sample	34
Figure 18-1 Reflow Profile	
· · · · · · · · · · · · · · · · · · ·	

Tables

Table 5-1 Pin Descriptions	6
Table 7-1 Absolute Maximum Rating	8
Table 8-1 Recommended Operating Conditions	9
Table 9-1 Electrical Characteristics	10
Table 11-1 Protection Functions Table	17
Table 13-1 50W BOM List	21
Table 13-2 5W BOM List	27
Table 15-1 Ordering Information	32
Table 18-1 Recommended Reflow Condition	35
Table 18-2 Recommended manual soldering	

4. Pin Assignment

5. Pin Descriptions

Table 5-1 Pin Descriptions

Pin No.	Pin Name	I/O	Description
1	VDD	-	Power supply pin.
2	TZE	I	Transformer Zero Energy detecting pin.
3	COMP	0	External Capacitor connection pin for the compensation.
4	DIM	I	Dimming control pin.
5	ADJ	0	Pin for adjusting the switch-on timing.
6	CS	I	Pin for detecting peak current of transformer primary winding.
7	GND	-	Ground pin.
8	DRV	0	External MOSFET gate connection pin.

6. Block Diagram

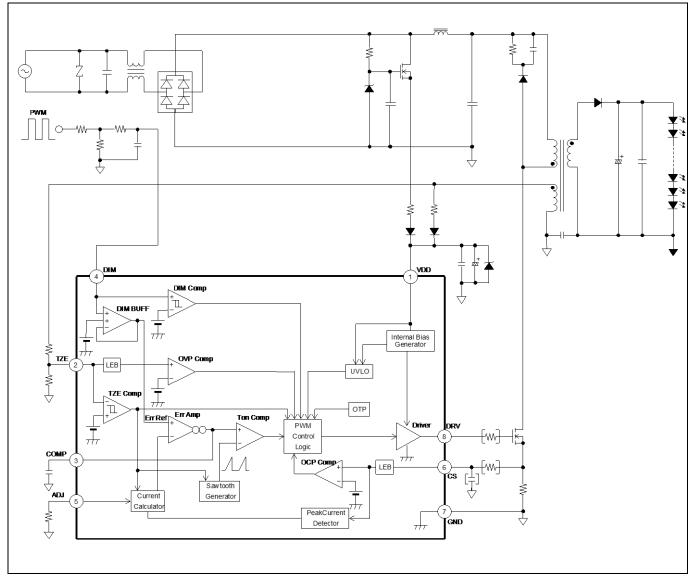
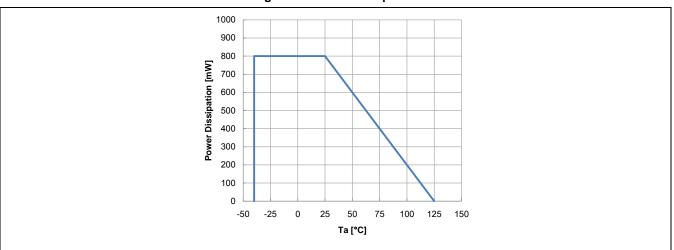


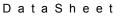
Figure 6-1 Block Diagram (Isolated Flyback application)



7. Absolute Maximum Ratings

Table 7-1 Absolute Maximum Rating										
Parameter Symbol Condition Rating										
Parameter	Symbol	Condition	Min	Мах	Unit					
Power Supply Voltage	V _{VDD}	VDD pin	-0.3	+25	V					
	V _{CS}	CS pin	-0.3	+6.0	V					
Input Voltage	V _{TZE}	TZE pin	-0.3	+6.0	V					
	V _{DIM}	DIM pin	-0.3	+6.0	V					
Output Voltage	V _{DRV}	DRV pin	-0.3	+25	V					
	I _{ADJ}	ADJ pin	-1	-	mA					
Output Current	I _{DRV}	DRV pin DC level	-50	+50	mA					
Power Dissipation	P _D	Ta≤+25°C	-	800 (*1)	mW					
Storage temperature	T _{STG}	-	-55	+125	°C					
ESD Voltage 1	V _{ESDH}	Human Body Model	-2000	+2000	V					
ESD Voltage 2	V _{ESDM}	Machine Model	-200	+180	V					
ESD Voltage 3	V _{ESDC}	Charged Device Model	-1000	+1000	V					

*1: The value when using two layers PCB.


Reference: 0ja (wind speed 0m/s): 125°C/W

WARNING:

1. Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.

8. Recommended Operating Conditions

Denemeter	0 milest	Condition		Value			
Parameter	Symbol	Condition	Min	Тур	Мах	Unit	
VDD pin Input Voltage	VDD	VDD pin	9	-	20	V	
DIM pin Input Voltage	V _{DIM}	DIM pin After UVLO release	0	-	5	V	
DIM pin Input Current	I _{DIM}	DIM pin Before UVLO release	0	-	2.5	μA	
TZE pin Resistance	R _{TZE}	TZE pin	50	-	200	kΩ	
ADJ pin Resistance	R _{ADJ}	ADJ pin	9.3	-	185.5	kΩ	
COMP pin Capacitance	C _{COMP}	COMP pin	-	4.7	-	μF	
VDD pin Capacitance	C _{BP}	Set between VDD pin and GND pin	-	100	-	μF	
Operating Junction Temperature	Tj	-	-40	-	+125	°C	

Table 8-1 Recommended Operating Conditions

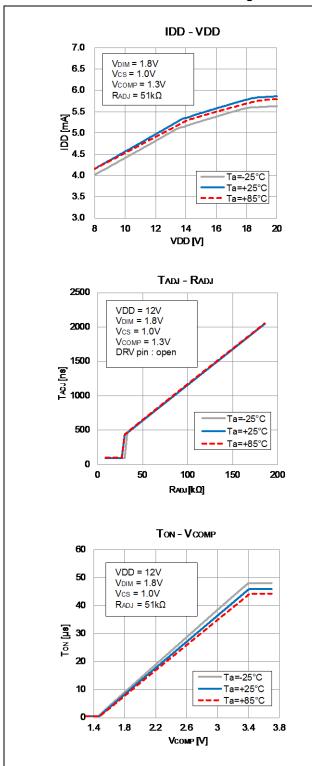
WARNING:

- 1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.
- 2. Any use of semiconductor devices will be under their recommended operating condition.
- 3. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.
- 4. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

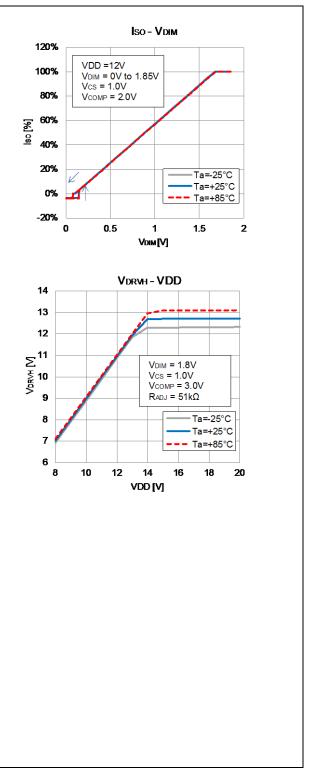
9. Electrical Characteristics

Table 9-1 Electrical Characteristics

To	_	1259	^o	V	_	121/1	
Id	-	720	Ο,	V_{VDD}	_	120)	


	Т		Condition					
I	Symbol	Pin		Min	Value Typ	Max	Unit	
	UVLO Turn-on threshold voltage	V _{TH}	VDD	-	12.25	13	13.75	V
UVLO	UVLO Turn-off threshold voltage	V _{TL}	VDD	-	7.55	7.9	8.5	V
	Startup current	I _{start}	VDD	V _{VDD} =7V	-	65	160	μA
	Zero energy threshold voltage	V _{TZETL}	TZE	TZE="H" to "L"	-	20	-	mV
	Zero energy threshold voltage	V _{TZETH}	TZE	TZE="L" to "H"	0.6	0.7	0.8	V
TRANSFORMER ZERO ENERGY	TZE clamp voltage	V _{TZECLAMP}	TZE	Ι _{τΖΕ} =-10μΑ	-200	-160	-100	mV
DETECTION	OVP threshold voltage	V _{TZEOVP}	TZE	-	4.15	4.3	4.45	V
	OVP blanking time	t _{ovpblank}	TZE	-	0.6	1	1.7	μs
	TZE input current	I _{TZE}	TZE	V _{TZE} =5V	-1	-	+1	μA
COMPENSATION	Source current	Iso	COMP	V _{COMP} =2V, V _{CS} =0V V _{DIM} =1.85V	-	-27	-	μΑ
	Trans conductance	gm	COMP	V_{COMP} =2.5V, V_{CS} =1V	-	96	-	μA/V
	ADJ voltage	V_{ADJ}	ADJ	-	1.81	1.85	1.89	V
	ADJ source current	I _{ADJ}	ADJ	V _{ADJ} =0V	-650	-450	-250	μA
ADJUSTMENT	ADJ time	T _{ADJ}	TZE DRV	T _{ADJ} (R _{ADJ} =51kΩ) - T _{ADJ} (R _{ADJ} =9.1kΩ)	490	550	610	ns
	Minimum switching period	T _{sw}	TZE DRV	-	6.75	7.5	8.25	μs
	OCP threshold voltage	V _{OCPTH}	CS	-	1.9	2	2.1	V
CURRENT SENSE	OCP delay time	tocpdly	CS	-	-	400	500	ns
	CS input current	I _{CS}	CS	V _{CS} =5V	-1	-	+1	μA

(Ta = +25	$^{\circ}C, V_{VDE}$	5 = 12V)
-----------	----------------------	----------


Parameter		0 milest	Dia	O an allither		l Init		
		Symbol	Pin	Condition	Min	Тур	Max	Unit
	DRV high voltage	V _{DRVH}	DRV	VDD=18V, I _{DRV} =-30mA	7.6	9.4	-	v
	DRV low voltage	V _{DRVL}	DRV	VDD=18V, I _{DRV} =30mA	-	130	260	mV
	Rise time	t _{RISE}	DRV	VDD=18V, CLOAD=1nF	-	94	-	ns
	Fall time	t _{FALL}	DRV	VDD=18V, CLOAD=1nF	-	16	-	ns
DRV	Minimum on time	t _{onmin}	DRV	TZE trigger	300	500	700	ns
	Maximum on time	t _{onmax}	DRV	-	27	44	60	μs
	Minimum off time	t _{OFFMIN}	DRV	-	1	1.5	1.93	μs
	Maximum off time	t _{offmax}	DRV	TZE=GND	270	320	370	μs
075	OTP threshold	T _{OTP}	-	Tj, temperature rising	-	150	-	°C
OTP	OTP hysteresis	T _{OTPHYS}	-	Tj, temperature falling, degrees below T _{OTP}	-	25	-	°C
	DIM input current	I _{DIM}	DIM	V _{DIM} =5V	-0.1	-	+0.1	μΑ
DIMMING	DIMCMP threshold voltage	VDIMCMPVTH	DIM	-	135	150	165	mV
	DIMCMP hysteresis	VDIMCMPHYS	DIM	-	-	70	-	mV
POWER SUPPLY	Dower cumply ourrent	I _{VDD(STATIC)}	VDD	V _{VDD} =20V, V _{TZE} =1V	-	3	3.6	mA
CURRENT	Power supply current	I _{VDD(OPERATING)}	VDD	V_{VDD} =20V, Qg=20nC, f _{SW} =133kHz	-	5.6	-	mA

10. Standard Characteristics

Figure 10-1 Standard Characteristics

11. Function Explanations

11.1 LED Current Control by PSR (Primary Side Regulation)

MB39C604 regulates the average LED current (I_{LED}) by feeding back the information based on Primary Winding peak current (I_{P_PEAK}) and Secondary Winding energy discharge time (T_{DIS}) and switching period (T_{SW}). Figure 11-1 shows the operating waveform in steady state. I_P is Primary Winding current and I_S is Secondary Winding current. I_{LED} as an average current of the Secondary Winding is described by the following equation.

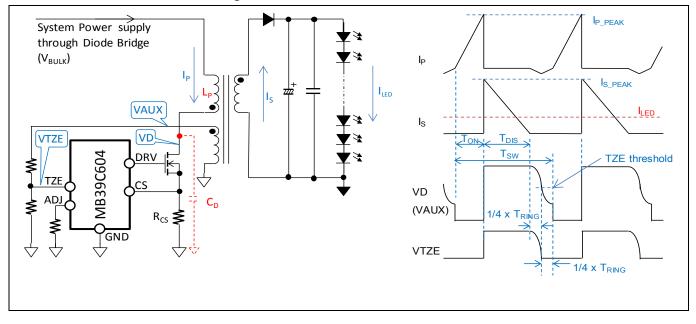
$$I_{\text{LED}} = \frac{1}{2} \times I_{\text{S}_{\text{PEAK}}} \times \frac{\text{T}_{\text{DIS}}}{\text{T}_{\text{SW}}}$$

Using I_{P_PEAK} and the transformer Secondary to Primary turns ratio (N_P/N_S), Secondary Winding peak current (I_{S_PEAK}) is described by the following equation.

$$I_{S_PEAK} = \frac{N_P}{N_S} \times I_{P_PEAK}$$

Therefore,

$$I_{LED} = \frac{1}{2} \times \frac{N_{P}}{N_{S}} \times I_{P_{P}EAK} \times \frac{T_{DIS}}{T_{SW}}$$


MB39C604 detects T_{DIS} by monitoring the TZE pin and I_{P_PEAK} by monitoring the CS pin and then controls I_{LED} . An internal Err Amp sinks gm current proportional to I_{P_PEAK} from the COMP pin during T_{DIS} piriod. In steady state, since the average of the gm current is equal to internal referense current (I_{SO}), the voltage on the COMP pin (V_{COMP}) is nearly constant.

$$I_{P_PEAK} \times R_{CS} \times gm \times T_{DIS} = I_{SO} \times T_{SW}$$

In above equation, gm is transconductance of the Err Amp and R_{CS} is a sence resistance. Eventually, I_{LED} can be calculated by the following equation.

$$I_{\text{LED}} = \frac{1}{2} \times \frac{N_{\text{P}}}{N_{\text{S}}} \times \frac{I_{\text{SO}}}{gm} \times \frac{1}{R_{\text{CS}}}$$

Figure 11-1 LED Current Control Waveform

11.2 PFC (Power Factor Correction) Function

Switching on time (T_{ON}) is generated by comparing V_{COMP} with an internal sawtooth waveform (refer to Figure 6-1). Since V_{COMP} is slow varying with connecting an external capacitor (C_{COMP}) from the COMP pin to the GND pin, T_{ON} is nearly constant within an AC line cycle. In this state, I_{P_PEAK} is nearly proportional to the AC Line voltage (V_{BULK}). It can bring the phase differences between the input voltage and the input current close to zero, so that high Power Factor can be achieved.

11.3 Dimming Function

MB39C604 has the built-in dimmable circuit to control I_{LED} by changing a reference of Err Amp based on the input voltage level on the DIM pin (V_{DIM}), and realizes dimming. Figure 11-2 shows I_{LED} dimming ratio based on V_{DIM} .

Figure 11-3 shows the input circuit to the DIM pin for PWM dimming. PWM signal is divided and filtered into an analog voltage with RC network. It is possible to configurate PWM dimmable system by inputting the voltage to the DIM pin.

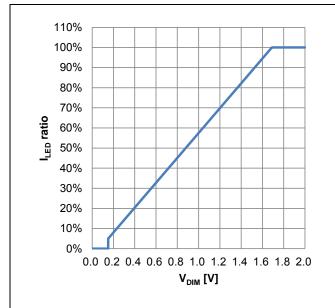
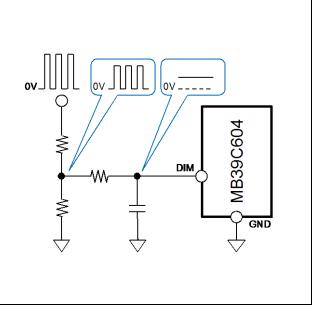



Figure 11-3 DIM Pin Input Circuit

11.4 Power-On Sequence

When the AC line voltage is supplied, V_{BULK} is powered from the AC line through a diode bridge, and the VDD pin is charged from V_{BULK} through an external source-follower BiasMOS.(Figure 11-4 red path) When the VDD pin is charged up and the voltage on the VDD pin (V_{VDD}) rises above the UVLO threshold voltage, an internal Bias circuit starts operating, and MB39C604 starts the dimming control. After the UVLO is released, this device enables switching and is operating in a forced switching mode (T_{ON} =1.5µs, T_{OFF} =78µs to 320µs). When the voltage on the TZE pin reaches the Zero energy threshold voltage (V_{TZETH} =0.7V), MB39C604 enters normal operation mode. After the switching begins, the VDD pin is also charged from Auxiliary Winding through an external diode (DBIAS).(Figure 11-4 blue path) Around zero cross points of the AC line voltage V_{VDD} is not supplied from V_{BULK} nor Auxiliary Winding. It is necessary to set an appropriate capacitor of the VDD pin in order to keep V_{VDD} above the UVLO threshold voltage in this period. An external diode (D1) between BiasMOS and the VDD pin is used to prevent discharge from the VDD pin to V_{BULK} at the zero cross points.

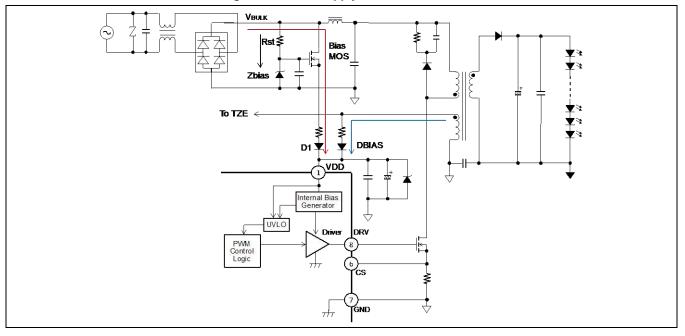
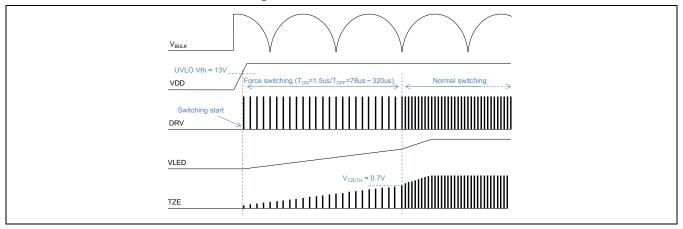
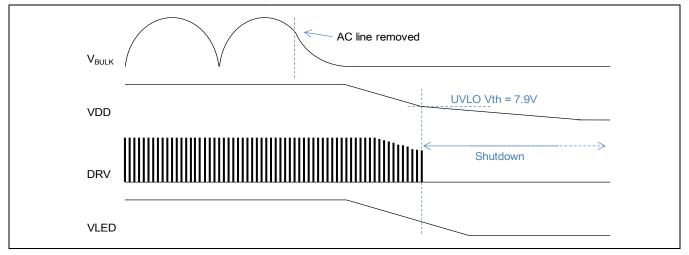



Figure 11-4 VDD Supply Path at Power-On

Figure 11-5 Power-On Waveform



11.5 Power-Off Sequence

After the AC line voltage is removed, V_{BULK} is discharged by switching operation. Since any Secondary Winding current does not flow, I_{LED} is supplied only from output capacitors and decreases gradually. V_{VDD} also decreases because there is no current supply from both Auxiliary Winding and V_{BULK} . When V_{VDD} falls below the UVLO threshold voltage, MB39C604 shuts down.

Figure 11-6 Power-Off Waveform

11.6 I_{P_PEAK} Detection Function

MB39C604 detects Primary Winding peak current (I_{P_PEAK}) of Transformer. I_{LED} is set by connecting a sence resistance (Rcs) between the CS pin and the GND pin. Maximum I_{P_PEAK} ($I_{P_PEAKMAX}$) limited by Over Current Protection (OCP) can also be set with the resistance.

Using the Secondary to Primary turns ratio (N_P/N_S) and I_{LED} , R_{CS} is set as the following equation (refer to 11.1)

$$R_{CS} = \frac{N_{P}}{N_{S}} \times \frac{0.14}{I_{LED}}$$

In addition, using the OCP threshold voltage (V_{OCPTH}) and R_{CS} , $I_{P_PEAKMAX}$ is caluculated with the following equation.

$$I_{P_{PEAKMAX}} = \frac{V_{OCPTH}}{R_{CS}}$$

11.7 Zero Voltage Switching Function

MB39C604 has built-in zero voltage switching function to minimize switching loss of the external switching MOSFET. This device detects a zero crossing point through a resistor divider connected from the TZE pin to Auxiliary Winding. A zero energy detection circuit detects a negative crossing point of the voltage on the TZE pin to Zero energy threshold voltage (V_{TZETL}). On-timing of switching MOSFET is decided with waitting an adjustment time (t_{ADJ}) after the negative crossing occurs.

 t_{ADJ} is set by connecting an external resistance (R_{ADJ}) between the ADJ pin and the GND pin. Using Primary Winding inductance (L_P) and the parasitic drain capacitor of switching MOSFET (C_D), t_{ADJ} is caluculated with the following equation.

$$t_{\rm ADJ} = \frac{\pi \sqrt{L_{\rm P} \times C_{\rm D}}}{2}$$

Using t_{ADJ} , R_{ADJ} is set as the following equation. R_{ADJ} [k Ω] = 0.0927 × t_{ADJ} [ns]

11.8 Protection Functions

Under Voltage Lockout Protection (UVLO)

The under voltage lockout protection (UVLO) prevents IC from a malfunction in the transient state during V_{VDD} startup and a malfunction caused by a momentary drop of V_{VDD} , and protects the system from destruction/deterioration. An UVLO comparator detects the voltage decrease below the UVLO threshold voltage on the VDD pin, and then the DRV pin is turned to "L" and the switching stops. MB39C604 automatically returns to normal operation mode when V_{VDD} increases above the UVLO threshold voltage.

Over Voltage Protection (OVP)

The over voltage protection (OVP) protects Secondary side components from an excessive voltage stress. If the LED is disconnected, the output voltage of Secondary Winding rises up. The output overvoltage can be detected by monitoring the TZE pin. During Secondary Winding energy discharge time, V_{TZE} is proportional to V_{AUX} and the voltage of Secondary Winding (refer to 11.1). When V_{TZE} rises higher than the OVP threshold voltage for 3 continues switching cycles, the DRV pin is turned to "L", and the switching stops (latch off). When V_{VDD} drops below the UVLO threshold voltage, the latch is removed.

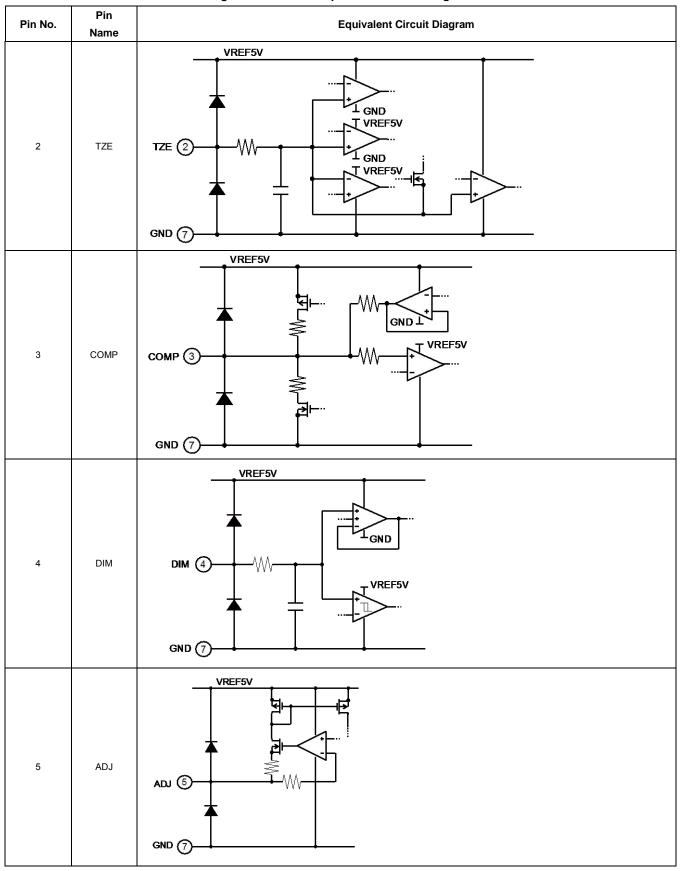
Over Current Protection (OCP)

The over current protection (OCP) prevents inductor or transformer from saturation. The drain current of the external switching MOSFET is limited by OCP. When the voltage on the CS pin reaches the OCP threshold voltage, the DRV pin is turned to "L" and the switching cycle ends. After zero crossing is detected on the TZE pin again, the DRV pin is turned to "H" and the next switching cycle begins.

Short Circuit Protection (SCP)

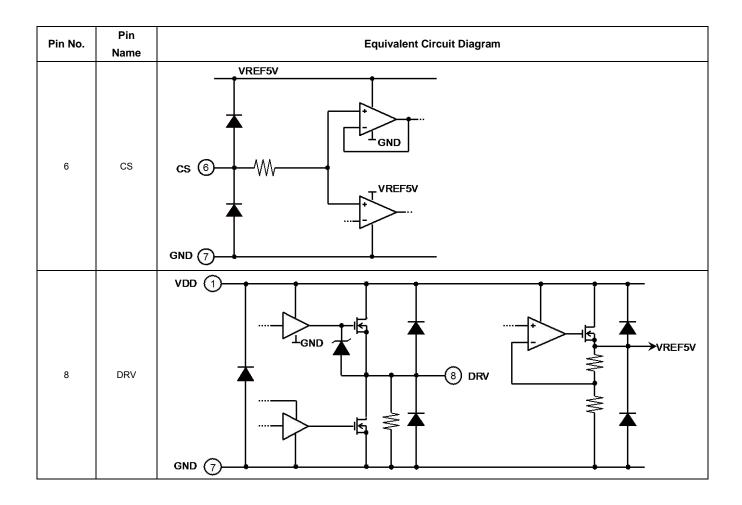
The short circuit protection (SCP) protects the transformer and the Secondary side diode from an excessive current stress. When the short circuit between LED terminals occurs, the output voltage decreases. If the voltage on the TZE pin falls below SCP threshold voltage, V_{COMP} is discharged and fixed at 1.5V and then the switching enters a low frequency mode.(T_{ON} =1.5 μ s / T_{OFF} =78 μ s to 320 μ s)

Over Temperature Protection (OTP)


The over temperature protection (OTP) protects IC from thermal destruction. When the junction temperature reaches +150°C, the DRV pin is turned to "L", and the switching stops. It automatically returns to normal operation mode if the junction temperature falls back below +125°C.

Function	DRV	СОМР	ADJ	Detection Condition	Return Condition	Remarks
Normal Operation	Active	Active	Active	-	-	-
Under Voltage Lockout Protection (UVLO)	L	L	L	VDD < 7.9V	VDD > 13V	Auto Restart
Over Voltage Protection (OVP)	L	1.5V fixed	Active	TZE > 4.3V	VDD < 7.9V → VDD > 13V	Latch off
Over Current Protection (OCP)	L	Active	Active	CS > 2V	Cycle by cycle	Auto Restart
Short Circuit Protection (SCP)	Active	1.5V fixed	Active	TZE (peak) < 0.7V	TZE (peak) > 0.7V	Auto Restart
Over Temperature Protection (OTP)	L	1.5V fixed	Active	Tj > +150°C	Tj < +125°C	Auto Restart

Table 11-1 Protection Functions Table



12. I/O Pin Equivalent Circuit Diagram

Figure 12-1 I/O Pin Equivalent Circuit Diagram

13. Application Examples

13.1 50W Isolated and PWM Dimming Application

Input: AC85V_{\text{RMS}} to 265V_{\text{RMS}}, Output: 1.5A/27V to 36V

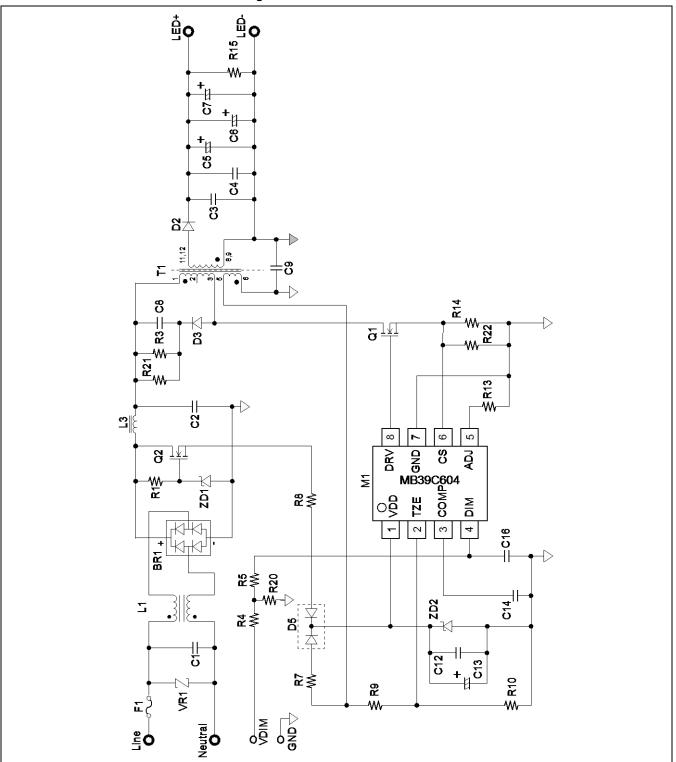
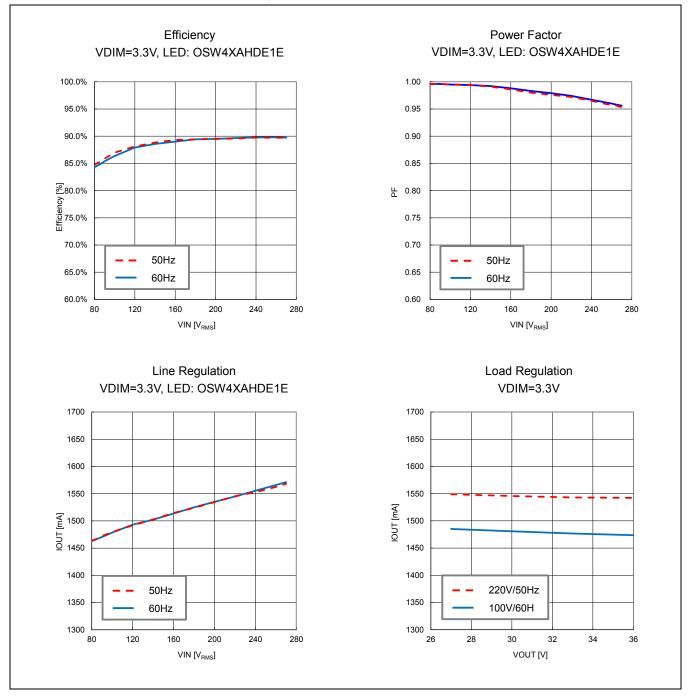
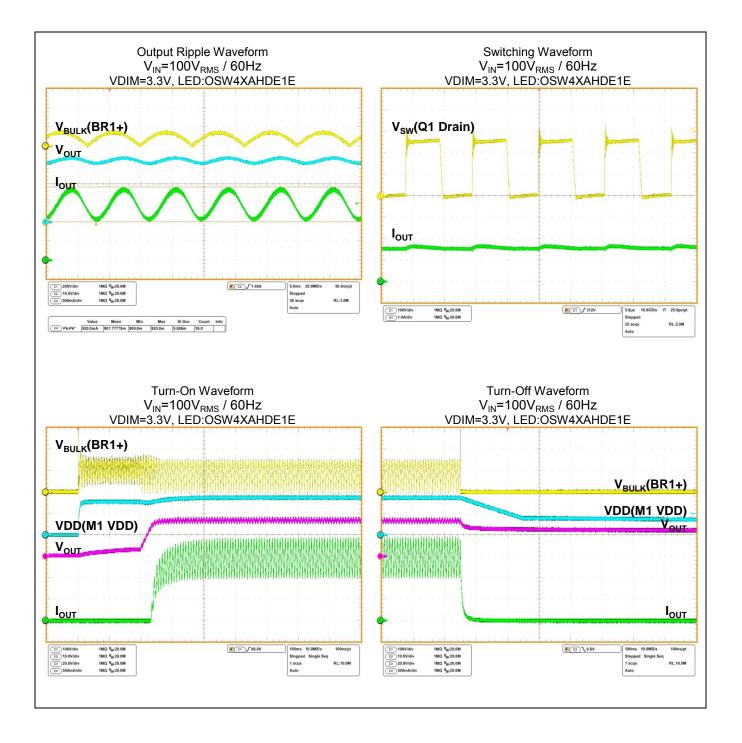
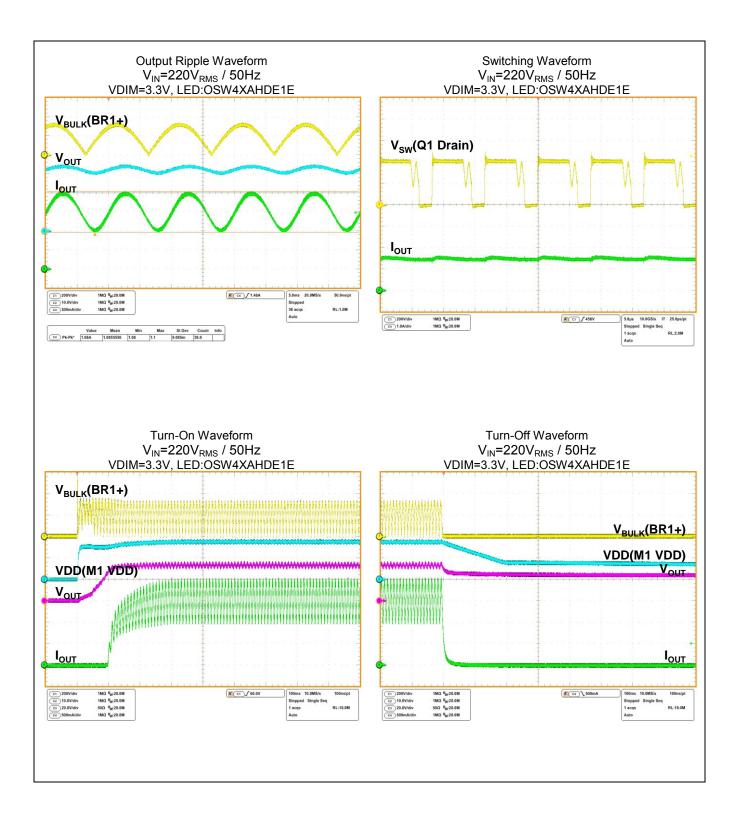


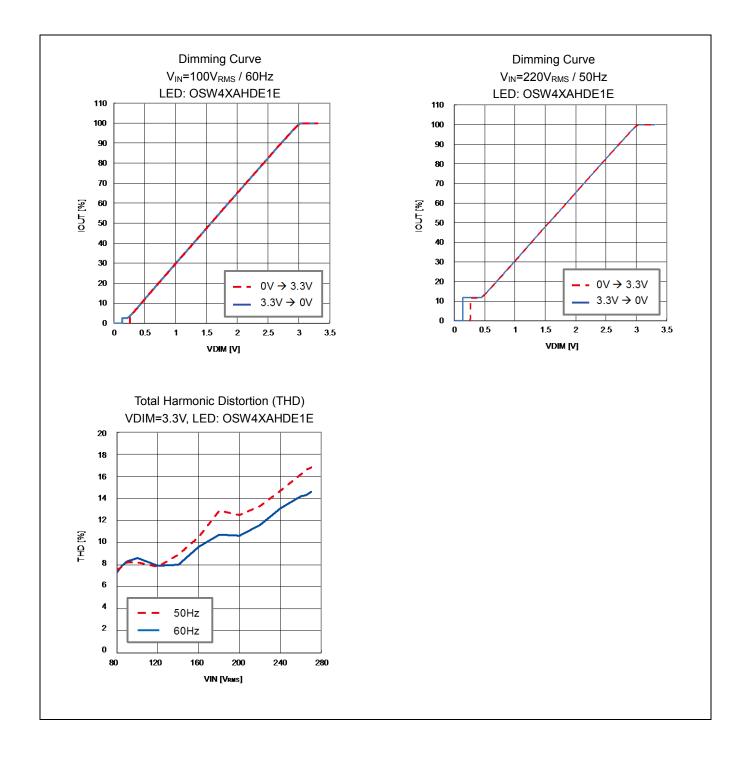
Figure 13-1 50W EVB Schematic


Table 13-1 50W BOM List

No.	COMPONENT	DESCRIPTION	PART No.	VENDOR
1	M1	Driver IC for LED Lighting, SO-8	MB39C604	Spansion
2	Q1	MOSFET, N-channel, 800V, 5.5A, TO-220F	FQPF8N80C	Fairchild
3	Q2	MOSFET, N-channel, 600V, 2.8A, TO-251	FQU5N60C	Fairchild
4	BR1	Bridge rectifier, 3A, 600V, GBU-4L	GBU4J	Fairchild
5	D2	Diode, ultra fast rectifier, 10A, 200V, TO-220F	FFPF10UP20S	Fairchild
6	D3	Diode, fast rectifier, 1A, 800V, DO-41	UF4006	Fairchild
7	D5	Diode, 200mA, 200V, SOT-23	MMBD1404	Fairchild
8	ZD1	Diode, Zener, 20V, 500mW, SOD-123	MMSZ20T1G	ON Semiconductor
9	ZD2	Diode, Zener, 18V, 500mW, SOD-123	MMSZ18T1G	ON Semiconductor
10	T1	Transformer, 200µH, Np/Ns=3.5/1 Np/Na=7/1	PQ-2625	-
11	L1	Common mode choke, 47.0mH	LF2429NP-T473	Sumida
12	L3	Inductor, 1.0mH, 0.65A, 0.9Ω, φ12.5 × 16.0	RCH1216BNP-102K	Sumida
13	C1	Capacitor, X2, 305VAC, 0.1µF	B32921C3104M	EPCOS
14	C2	Capacitor, polyester film, 220nF, 400V, 18.5 × 5.9	ECQ-E4224KF	Panasonic
15	C3,C4	Capacitor, ceramic, 10µF, 50V, X7S, 1210	C3225X7S1H106K250AB	TDK
16	C5,C6,C7	Capacitor, aluminum electrolytic, 470µF 50V, ¢10.0 × 20	EKMG500ELL471MJ20S	NIPPON-CHEMI-CON
17	C8	Capacitor, ceramic, 33nF, 250V, 1206	C3216X7R2E333K160AA	TDK
18	C9	Capacitor, ceramic, 2.2nF, X1/Y1 radial	DE1E3KX222M	muRata
19	C12,C16	Capacitor, ceramic, 0.1µF, 25V, 0603	-	-
20	C13	Capacitor, aluminum, 47µF, 25V	-	-
21	C14	Capacitor, ceramic, 4.7µF, 16V, 0805	-	-
22	R1	Resistor, chip, 1.00MΩ, 1/4W, 1206	-	-
23	R3,R21	Resistor, 100kΩ, 2W	-	-
24	R4	Resistor, chip, 68kΩ, 1/10W, 0603	-	-
25	R5	Resistor, chip, 1.0MΩ, 1/10W, 0603	-	-
26	R7	Resistor, chip, 10Ω, 1/8W, 0805	-	-
27	R8	Resistor, chip, 22Ω, 1/10W, 0603	-	-
28	R9	Resistor, chip, 91kΩ, 1/10W, 0603	-	-
29	R10	Resistor, chip, 24kΩ, 1/10W, 0603	-	-
30	R13	Resistor, chip, 27kΩ, 1/10W, 0603	-	-
31	R14,R22	Resistor, chip, 0.68Ω, 1/4W, 1206	-	-
32	R15	Resistor, chip, 30kΩ, 1/10W, 0603	-	-
33	R20	Resistor, chip, 100kΩ, 1/10W, 0603	-	-
34	VR1	Varistor, 275VAC, 7mm DISK	ERZ-V07D431	Panasonic
35	F1	Fuse, 2A, 300VAC	3691200000	Littelfuse


Spansion	:	Spansion, Inc
Fairchild	:	Fairchild Semiconductor International, Inc
On Semiconductor	:	ON Semiconductor
Sumida	:	SUMIDA CORPORATION
EPCOS	:	EPCOS AG
Panasonic	:	Panasonic Corporation
TDK	:	TDK Corporation
NIPPON-CHEMI-CON	:	Nippon Chemi-Con Corporation
muRata	:	Murata Manufacturing Co., Ltd.
Littelfuse	:	Littelfuse Inc


Figure 13-2 50W Reference Data



13.2 5W Non-isolated and Non-Dimming Application

Input: AC85V_{\text{RMS}} to 145V_{\text{RMS}}, Output: 70mA/67V to 82V

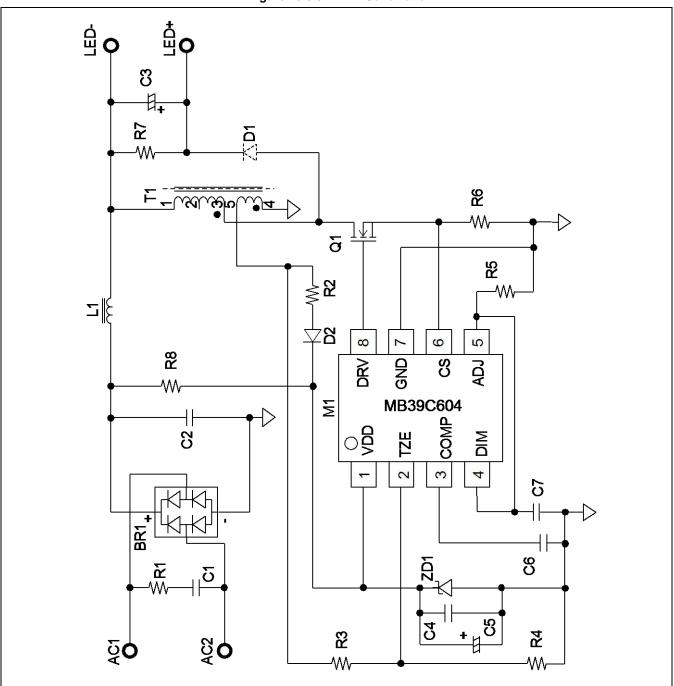


Figure 13-3 5W EVB Schematic

DataSheet

Table 13-2 5W BOM List

No.	COMPONENT	DESCRIPTION	PART No.	VENDOR
1	M1	Driver IC for LED Lighting, SO-8	MB39C604	Spansion
2	Q1	MOSFET, N-channel, 600V, 2.8A, TO-251	FQU5N60C	Fairchild
3	BR1	Bridge rectifier, 1A, 600V, Micro-DIP	MDB6S	Fairchild
4	D1	Diode, ultra fast rectifier, 1A, 600V, SMA	ES1J	Fairchild
5	D2	Diode, 200mA, 200V, SOT-23	MMBD1404	Fairchild
6	ZD1	Diode, Zener, 18V, 500mW, SOD-123	MMSZ18T1G	ON Semiconductor
7	T1	Transformer, Lp= 430µH, Np/Na=5.33/1	EE808	-
8	L1	Inductor 470µH 0.31A ¢7.2mm × 10.5mm	22R474C	muRata
9	C1	Capacitor, polyester film, 100nF, 630V, 18.5 × 6.3	ECQ-E6104KF	Panasonic
10	C2	Capacitor, polyester film, 100nF, 250V, 7.9 × 5.9	ECQE2104KB	Panasonic
11	C3	Capacitor, aluminum electrolytic, 100µF 100V, ¢10.0 × 20	EKMG101ELL101MJ20S	NIPPON-CHEMI-CON
12	C4	Capacitor, ceramic, 0.1µF, 25V, 0603	-	-
13	C5	Capacitor, aluminum, 47µF, 25V	-	-
14	C6	Capacitor, ceramic, 4.7µF, 16V, 0805	-	-
15	C7	Capacitor, ceramic, 0.1µF, 25V, 0603	-	-
16	R1	Resistor, 510Ω, 1/2W	-	-
17	R2	Resistor, chip, 10Ω, 1/8W, 0805	-	-
18	R3	Resistor, chip, 110kΩ, 1/10W, 0603	-	-
19	R4	Resistor, chip, 30kΩ, 1/10W, 0603	-	-
20	R5	Resistor, chip, 22kΩ, 1/10W, 0603	-	-
21	R6	Resistor, 2Ω, 1W	-	-
22	R7	Resistor, chip, 100kΩ, 1/10W, 0603	-	-
23	R8	Resistor, 47kΩ, 2W	-	-
	Spansion	: Spansion,Inc		

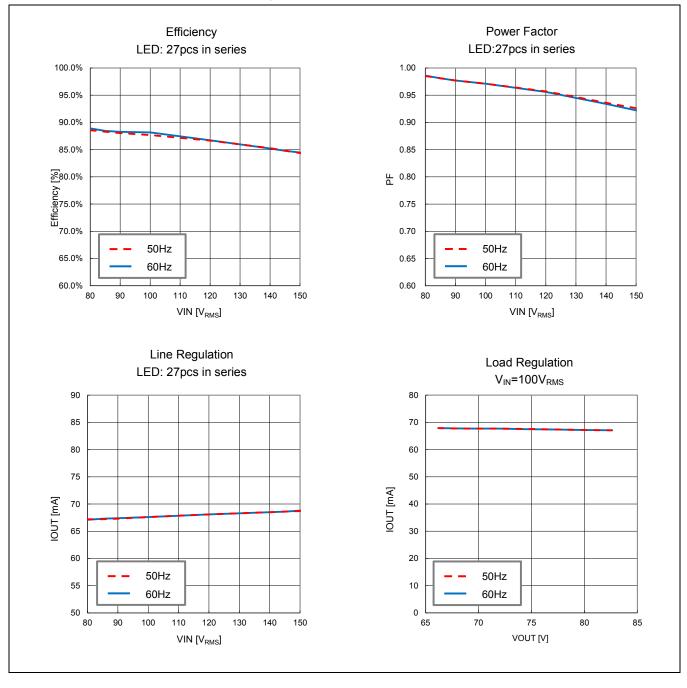
Spansion Fairchild On Semiconductor Panasonic

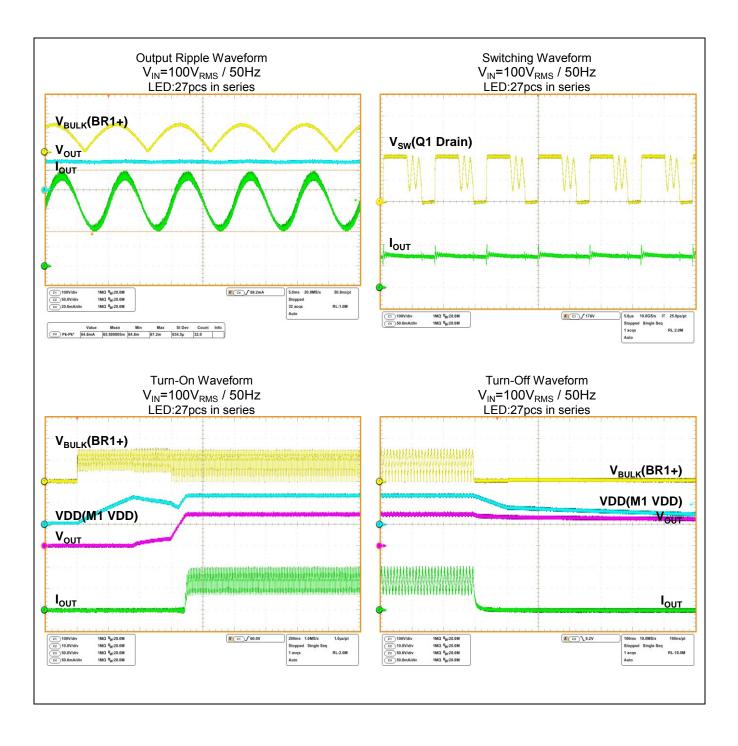
Fairchild Semiconductor International, Inc

ON Semiconductor

Panasonic Corporation

NIPPON-CHEMI-CON


muRata


Nippon Chemi-Con Corporation

: Murata Manufacturing Co., Ltd.

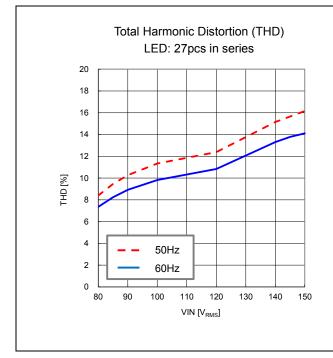


Figure 13-4 5W Reference Data

14. Usage Precautions

Do not configure the IC over the maximum ratings.

If the IC is used over the maximum ratings, the LSI may be permanently damaged.

It is preferable for the device to normally operate within the recommended usage conditions. Usage outside of these conditions can have an adverse effect on the reliability of the LSI.

Use the device within the recommended operating conditions.

The recommended values guarantee the normal LSI operation under the recommended operating conditions.

The electrical ratings are guaranteed when the device is used within the recommended operating conditions and under the conditions stated for each item.

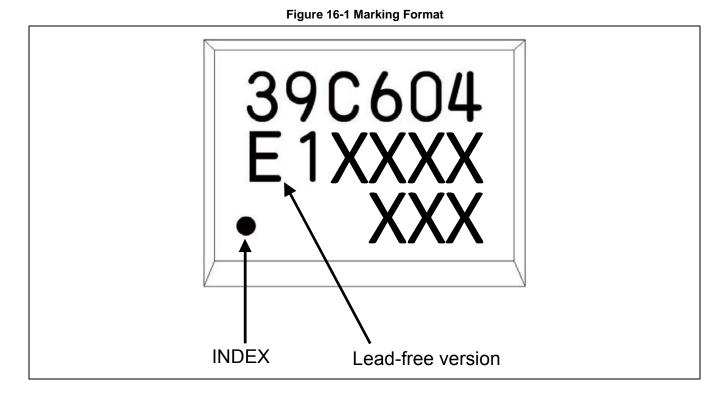
Printed circuit board ground lines should be set up with consideration for common impedance.

Take appropriate measures against static electricity.

- Containers for semiconductor materials should have anti-static protection or be made of conductive material.
- After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.
- Work platforms, tools, and instruments should be properly grounded.
- Working personnel should be grounded with resistance of 250 kΩ to 1 MΩ in serial between body and ground.

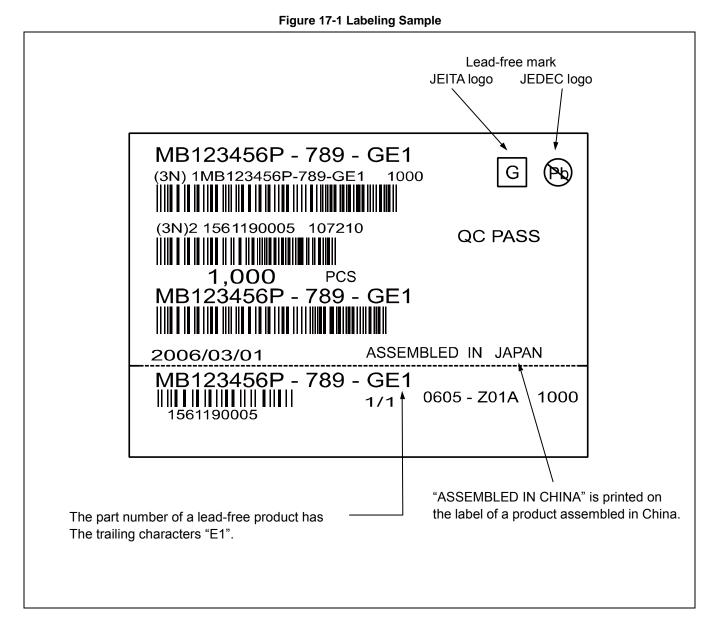
Do not apply negative voltages.

The use of negative voltages below - 0.3 V may make the parasitic transistor activated to the LSI, and can cause malfunctions.


15. Ordering Information

Part Number	Package	Shipping Form	
MB39C604PNF-G-JNEFE1	8-pin plastic SOP	Emboss	
MB39C604PNF-G-JNE1	(FPT-8P-M02)	Tube	

Table 15-1 Ordering Information



16. Marking Format

17. Labeling Sample

18. Recommended Conditions of Moisture Sensitivity Level

18.1 Recommended Reflow Condition

Table 18-1 Recommended Reflow Condition

Item	Condition		
Mounting Method	IR (infrared reflow), warm air reflow		
Mounting times	2 times		
	Before opening	Please use it within 2 years after manufacture.	
	From opening to the 2nd reflow Less than 8 days		
Storage period	iod	Please process within 8 days after baking	
	When the storage period after opening was exceeded	(125°C±3°C, 24H+2H/-0H).	
		Baking can be performed up to 2 times.	
Storage conditions	5°C to 30°C, 70% RH or less (the lowest possible humidity)		

18.2 Reflow Profile

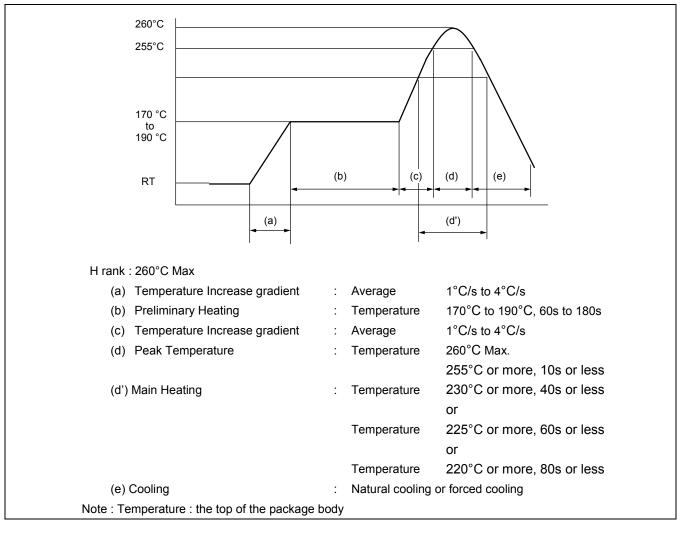
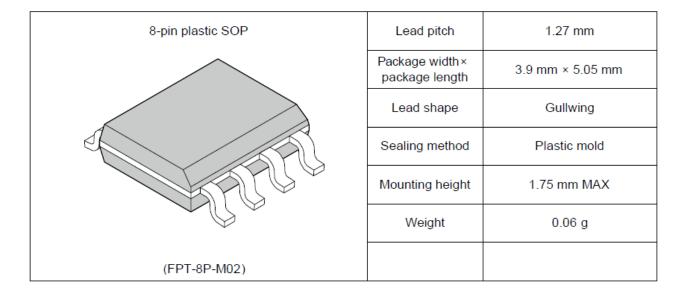


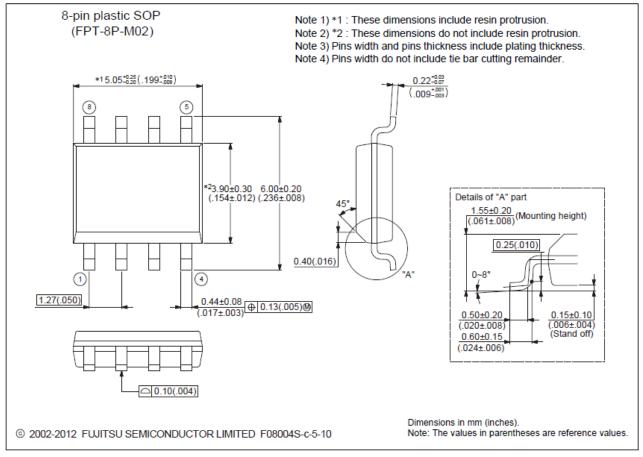
Figure 18-1 Reflow Profile

18.3 JEDEC Condition

Moisture Sensitivity Level3 (IPC/JEDEC J-STD-020D)

18.4 Recommended manual soldering (partial heating method)


Table 18-2 Recommended manual soldering


Item Condition		lition	
	Before opening	Within 2 years after manufacture	
Storage period	Between opening and mounting	Within 2 years after manufacture	
otorage ponou		(No need to control moisture during the storage	
		period because of the partial heating method.)	
Storage conditions	5°C to 30°C, 70%RH or less (the lowest possible humidity)		
Mounting conditions	Temperature at the tip of a soldering iron : 400°C Max.		
Mounting conditions	Time : 5 seconds or below per pin (*1)		

*1: Make sure that the tip of a soldering iron does not come in contact with the package body.

19. Package Dimensions

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/jp-search/

20. Major Changes

Page	Section	Descriptions	
Revision 1.0	Revision 1.0		
-	-	Initial release	
Revision 2.0			
16	11. Function Explanations	Corrected the R _{ADJ} formula	
16	11.7 Zero Voltage Switching Function		
32	15. Ordering Information	Added Shipping in Table 15-1	
		Rewrote entire document for improving the ease of understanding (the original	
-	-	intentions are remained unchanged).	

Colophon

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products.

Trademarks and Notice

The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out of the use of the information in this document.

Copyright © 2014 Spansion All rights reserved. Spansion[®], the Spansion logo, MirrorBit[®], MirrorBit[®] Eclipse[™], ORNAND[™] and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries. Other names used are for informational purposes only and may be trademarks of their respective owners.