Absolute Pressure Sensor 2SMPB-01-01

High accuracy and small size absolute pressure sensor with low current consumption

- Measure absolute pressure and temperature with high accuracy.
- Built in low noise 24 bits ADC.
- Digital control and output via I2C interface.
- Automatically power down non-working circuit to minimize current consumption.
- Individual calibration parameters stored in OTP *.
 *One Time Programmable Non Volatile Memory
- RoHS Compliant

Application Example

- Smart Phone
- · Activity monitor
- · Wearable device

Ordering Information

Standard Models with Surface Mounting Terminals

Structure	Packaging Model		Minimum Order Quantity	Minimum Packing Unit
8-pin QFN	Tape and Reel	2SMPB-01-01-TR	1,000	1,000
о-ріп Qі-іч	Embossed Carrier Tape	2SMPB-01-01	10	10

Ratings, Specifications, and Function

■ Recommended Operating Conditions

Type of Pressure	Absolute pressure	
Medium	Air *	
Operating Pressure Range	30 kPa to 110 kPa	

^{*} Never use corrosive gases.

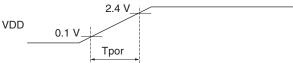
■ Absolute Maximum Ratings

Item	Symbol	Rating	Unit	Remark
Power Supply Voltage	V _{ddmax}	4.0	V	
Input Voltage (other than power)	V _{max}	-0.2 to V _{opr} +0.2	V	
Maximum Pressure	P _{max}	160	kPa	
Storage Temperature	T _{str}	-40 to 85	°C	with no condensation or icing
Storage Humidity	H _{str}	10 to 95	%RH	with no condensation

■ Operation Ratings

Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Operating Voltage	V _{opr}	2.25	2.5	3.6	V	V_{DD}
Operating Voltage	V _{ddio}	1.62	2.5	3.6	V	V_{DDIO}
Operating Temperature	T _{opr}	-40	-	85	°C	

■ Sensor Characteristics (At T_a = 25°C, V_{DD} = 2.5 V, unless otherwise noted)


Item	Name	Min.	Тур.	Max.	Unit	Remarks
Average Current *	I _{hp}	-	9	-	μΑ	1 sample/s High accuracy mode
Current Consumption	I _{dd}	-	500	610	μΑ	
Sleep Mode Current Consumption	I _{sleep}	-	0.3	0.6	μΑ	
Measureable Pressure Range	P _{opr}	30	-	110	kPa	
Absolute Pressure Accuracy *	P _{abs1}	-400	-	400	Pa	70 k to 110 kPa High accuracy mode
Relative Pressure Accuracy *	P _{rel1}	-	6	-	Pa	70 k to 110 kPa High accuracy mode
rms Noise *	P _{nois}	-	2	-	Pa	70 k to 110 kPa High accuracy mode
Absolute Temperature Accuracy	T _{abs}	-2	-	2	°C	
Pressure Resolution *	P _{res}	-	0.06	-	Pa	High accuracy mode
Temperature Resolution *	T _{res}	-	0.0002	-	°C	High accuracy mode
Discharge time of VDD *	T _{off}	-	60	-	sec	Time@ V _{DD} From 2.5 V to 0.01 V

^{*} These characteristics are guaranteed by design.

■ I^2C Characteristics (At $T_a = 25^{\circ}$ C, $V_{DD} = 2.5$ V, unless otherwise noted)

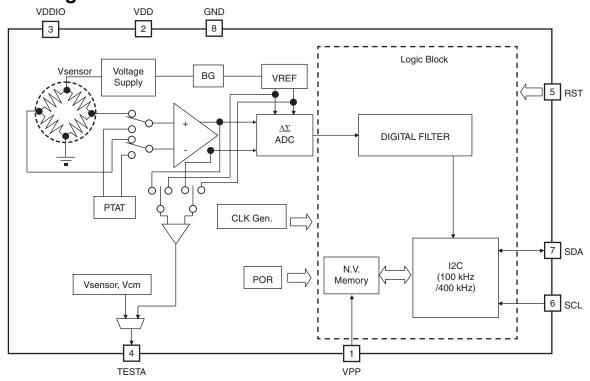
Item	Name	Standa	Standard Mode		Fast Mode		Remark
item	Name	MIN.	MAX.	MIN.	MAX.	Unit	nemark
SCLK Clock Frequency	f _{scl}	-	100	-	400	kHz	
Digital Input L (I ² C)	V _{il2}	-0.2	V _{DD} ×0.2	-0.2	V _{DD} ×0.2	V	
Digital Input H (I ² C)	V _{ih2}	V _{DD} ×0.8	V _{DD} +0.2	V _{DD} ×0.8	V _{DD} +0.2	V	
Digital Output L (I ² C)	V _{ol2}	0	0.4	0	0.4	V	
Pull-up Resister	R _{pullup}	2.2	10	2.2	10	kΩ	
Capacitive Load	C _b	-	400	-	400	pF	
Power On Supply Startup Waiting Time	T _{por}	-	0.8	-	0.8	msec	
Power On Start Up Time	t _{start}	-	2	-	2	msec	
Pulse Width of Asynchronous Reset	t _{rar}	100	-	100	-	μsec	

Power On Reset

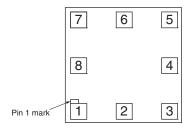
Note: 1. When the power is turned on, please activate power on reset. For more information, please refer to the section of "Power on Reset".

2. About detailed I²C bus information, please refer to the I²C-bus specification and user manual presented by NXP.

■ Characteristics by Power Mode

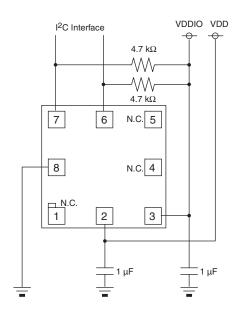

Mode *1	Waiting Time [msec] *2	Average Current @1 sample/s [μΑ] *2	rms Noise [Pa] *2
Low power mode	7	4	6
Standard mode	9	5	3
High accuracy mode	17	9	2

^{*1.} Please see "I2C_SREQ: Sensor Request Register" for setting up power mode.


^{*2.} Please see "Execute timing chart" for meaning of waiting time. These characteristics are guaranteed by design.

Connection

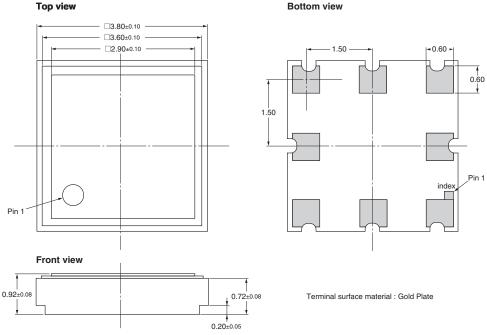
■ Block Diagram


■ Pin Description and Layout (Top view)

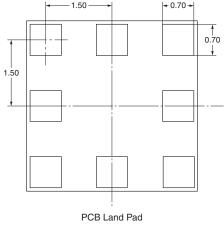
Pin No.	Symbol	Description
1	V_{PP}	OTP write enable *
2	V_{DD}	Power
3	V_{DDIO}	Digital I/O Power
4	TESTA	Analog out for test *
5	RST	Asynchronous reset
6	SCL	I ² C clock
7	SDA	I ² C data
8	GND	Ground

^{*} These pins are for test purpose only. Please leave disconnected while operating.

■ Typical Connection

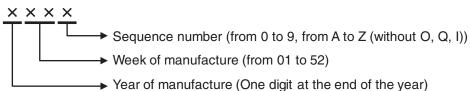


Dimensions (Unit: mm)


■ IC Package Structure

Package Type: QFN (Quad Flat No-lead package), 8 pin Package Size: $3.8 \text{ mm} \times 3.8 \text{ mm} \times 1.0 \text{ mm}$ (max.)

■ Outline Dimension



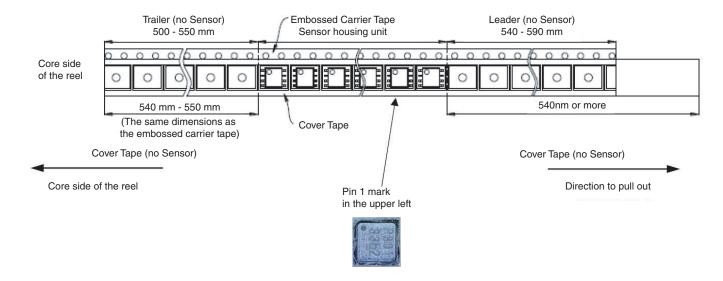
■ Mounting PAD Dimensions (Top View): recommended

■ Lot Code Marking structure

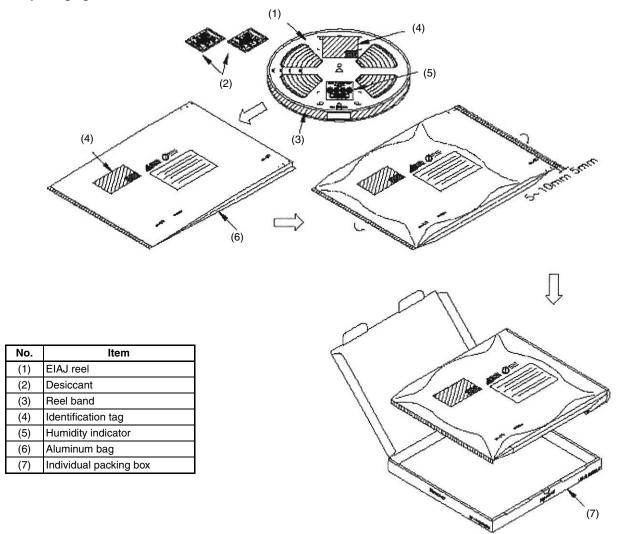
P B 0 1 (Type : Fixed)

Packaging

Model	Packaging	Minimum Order Quantity	Minimum Packing Unit
2SMPB-01-01-TR	Tape and Reel	1,000	1,000
2SMPB-01-01	Embossed Carrier Tape	10	10

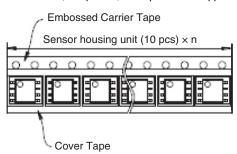

■ 2SMPB-01-01-TR / Tape and Reel

Configuration of shipment


Packaging	Embossed Carrier Tape		
	SPQ 1,000 pcs		
Quantity	Max. 5,000 pcs/reel		
	1 reel / 1 Interior box		
Reel model EIAJ reel (330 mm dia.)			
Insert method see below			

Taping

Emboss pitch 4 mm type & tape width 12 mm type


Individual packaging

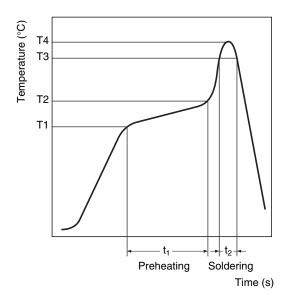
■ 2SMPB-01-01 / Embossed Carrier Tape

Taping

To ensure shipment of sample quantities that are less than 1,000 pieces, the tape will be supplied in multiple units of 10 pieces.

Recommended Soldering Method

■ Soldering method


Air reflow (Max. 2 times)

■ Temperature Condition

Max. 260° C, within 10 seconds

■ Recommended Soldering Method

Temperature profile conditions of reflow soldering should be set as shown in the below table, and then confirm that actual conditions coincide with the conditions shown in the table.

Item	Preheating (T1 to T2, t1)	Soldering (T3, t2)	Peak value (T4)
Terminal	150°C to 180°C 120 s max.	230° C min. 30 s max.	250° C max.
Upper surface of case	-	-	255°C max.

- \bullet We recommend a thickness of 150 to 200 μm for the solder cream.
- Since the pressure sensor chip is exposed to atmosphere, cleaning fluid shall not be allowed to enter inside the sensor's case.
- The recommended mounting PAD dimensions should be used for the land pattern.

Safety Precautions

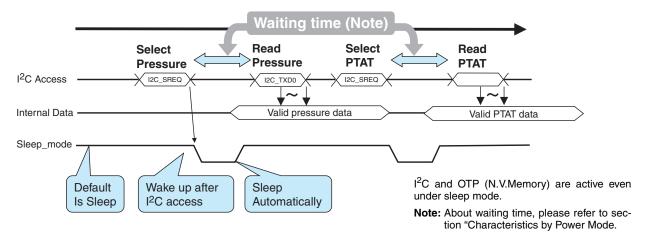
■ Correct Use

Handling

- Only air can be used as pressure media on the product directly. It is prohibited to use pressure media including corrosive gases (e.g. organic solvents gases, sulfur dioxide and hydrogen sulfide gases), fluid and any other foreign materials.
- 2. The product is not water proof. The product shall be kept dry in use including the sensor port.
- The product shall not be used under dew-condensing conditions. Frozen fluid on sensor chips may cause fluctuation of sensor output and other troubles.
- The product shall be used within rated pressure. Usage at pressure out of the range may cause damage.
- 5. The product may be damaged by static electricity. Charged materials (e.g. a workbench and a floor) and workers should provide measures against static electricity, including a ground connection.
- Overpowering pins may deform terminals and detract solder abilities of sensor terminals. The product shall not be dropped and handled roughly.
- **7.** The product shall not be used under dusty or damp conditions.
- Please connect the sensor terminals according to the connection diagram.
- The product shall not be used under high-frequency vibration including ultrasonic waves.
- 10. This product uses the elastic adhesive for bonding the lid, so do not add excessive stress to the lid.
- 11.Check the sensors within your actual application, if used under conditions not described in this document.

Environmental conditions for transport and storage

- 1. The product shall not be kept with corrosive gases (e.g. organic solvents gases, sulfur dioxide and hydrogen sulfide gases).
- The product is not water proof. The product shall be kept dry during storage.
- By condition of the place and storage period, there are cases that strength of outer boxes may be degraded. Please use the product in order.
- For this product, please keep away from direct sunlight or ultraviolet rays.
- The product shall be kept in appropriate conditions of temperature and humidity.
- Sometimes the color of the terminals of the product may change depending on the conditions. It is not covered under warranty.
- 7. The product shall not be kept under dusty or damp conditions.

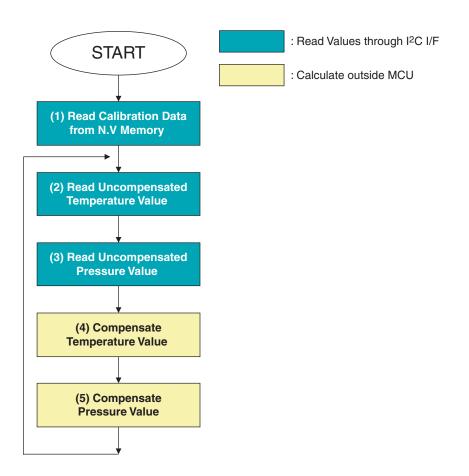

Operations

■ Outline of Sensor Operation

This page describes the typical operation after power on.

- 1. Wait until OTP initialization. (waiting for OTP automatically initialize finish)
- 2. Start-up ADC by setting up I2C_SETUP register
 - Write 02h in I2C_SETUP register.
- 3. Access COE_* registers and get calibration parameters.
 - Write 25h in I2C_AADJ register to enable OTP read operation.
 - Access COE_* registers and get calibration data.
 - After completion of read operation, write 65h to I2C_AADJ register.
- 4. Set up I2C_SREQ register to enable temperature measurement.
- 5. Get temperature data from I2C_TXD0 register after waiting time.
- **6.** Set up I2C_SREQ register to enable pressure measurement.
- **7.** Get pressure data from I2C_TXD0 register after waiting time.
- 8. Correct measured data with calibration data got at step 3.
- 9. Repeat 6 to 8. May need step 4, 5, and 8 when ambient temperature is changed.

Execute timing chart



■ Outline of Sleep Operation

Sleep operation of this sensor is controlled by start/stop internal clock.

- System will automatically stop clock and sleep after completion of analog to digital conversion.
- · ADC and Digital Filter Block are powered down while sleeping.
- Other part such as OTP (N.V.Memory) and I²C continue working during sleep, then can communicate outside via I²C interface.
- ADC and Digital Filter Block can be awakened by I2C_SREQ bit 4 (ACTBIT) = "1".

■ Compensation of pressure and temperature

- 1. Read calibration data which are contained in internal NVM through I²C. These coefficients are used at compensation calculation below step (4) or step (5).
- 2. Read temperature data which are output by absolute pressure sensor through I²C. This temperature data is used at step (4) using coefficients of step (1) for compensation.
- 3. Read pressure data which are output by absolute pressure sensor through I²C. This pressure data is used at step (5) using coefficients of step (1) for compensation.
- 4. Using coefficients of step (1) and temperature data of step (2), the operator corrects temperature data by using the following temperature compensation formula:

$$Tr = (Dt - ca) \times ba0$$

Tr: Calculation result [1/256°C]

Dt: 2SMPB-01-01 digital output of temperature (internal) [digit]

2SMPB-01-01 calibration coefficient (16 bits read value of COE_PTAT2 Reg) ba0:

2SMPB-01-01 calibration coefficient (24 bits read value of COE_PTAT3 Reg and COE_CEX Reg)

5. Using coefficients of step (1) and pressure data of step (3), the operator corrects pressure data by using the following pressure compensation

$$PI = (Dp - cp) \times bp0$$

Calculation result. This result is a relative value from 90 kPa. [Pa]

2SMPB-01-01 digital output of pressure [digit]

2SMPB-01-01 calibration coefficient (16 bits read value of COE_PR2 Reg) bp0:

2SMPB-01-01 calibration coefficient (24 bits read value of COE_PR3 Reg and COE_CEX Reg)

Next, by using the result data of step (4), the operator corrects pressure data temperature compensation:

$$Po = \begin{cases} Pl + 90000 + (Pl + 90000) (ct0 + bt0 \times Tr) - 90000 & Ta \ge 25 \ [^{\circ}C] \\ Pl + 90000 + (Pl + 90000) (ct20 + bt20 \times Tr) - 90000 & Ta < 25 \ [^{\circ}C] \end{cases}$$

Po: Final compensated result. This result is a relative value from 90 kPa. [Pa]

bt0: 2SMPB-01-01 calibration coefficient (16 bits read value of COE TEMP2 Reg)

ct0: 2SMPB-01-01 calibration coefficient (16 bits read value of COE_TEMP3 Reg)

bt20: 2SMPB-01-01 calibration coefficient (16 bits read value of COE_TEMP22 Reg)

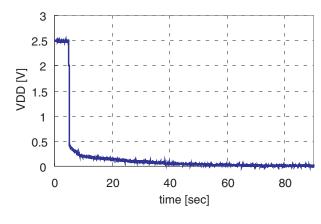
ct20: 2SMPB-01-01 calibration coefficient (16 bits read value of COE_TEMP23 Reg)

Note: Temperature calibration of the pressure is calculated after converting to an absolute pressure value because PI is a relative value from 90 [kPa].

■ Power on Reset

Power-on reset circuit of 2SMPB-01-01 is using the CR delay. Therefore power-on reset is not working properly on below situations.

At the time of the following circumstances when power is switched on again:

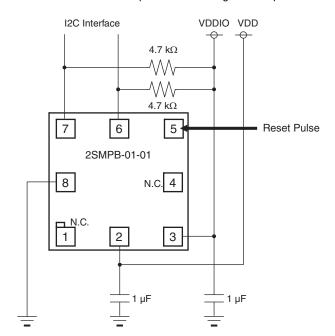

- The potential of the VDD pin is not 0 volt.
- The instantaneous voltage drop occurs in the VDD pin.

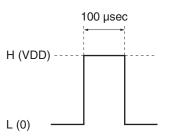
Circuit diagram of a power-on reset and discharge characteristics of the VDD pin are as follow:

Power On Reset Circuit

Reset circuit Digital clock Reset pulse

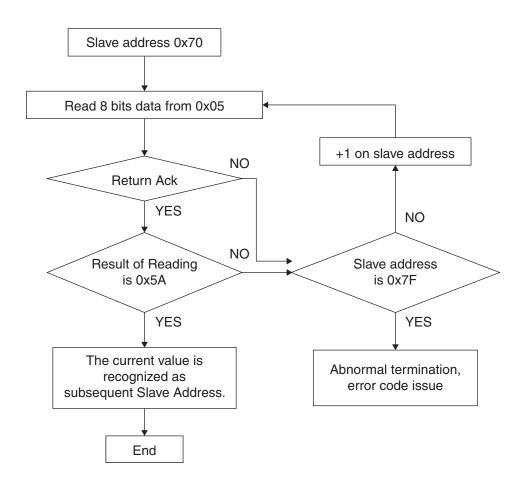
Discharge characteristic of VDD Terminal (VDD Terminal OPEN at OFF)




When the power is turned on, the power-on reset should be activated. If the power-on reset is not working properly, it can be returned to normal operation by executing reset using the asynchronous reset pin, hardware reset or software reset.

Example of reset using the asynchronous reset pin

Note: Please fix the No.5 pin into Low during normal operation.



Examples of the reset pulse (reset at the potential of High) Pulse width: 100 µsec. or more

Example of the software reset

No.	Register	Operation	Write address	I ² C Order MCU Operation	Explanation	
				(search slave address of module by I2C_FIND0)	Run for the searched slave address below.	
1	0x05	Read		Note: Refer to the next section of sequence for searching the slave address	The searched slave address is shown as Y.	
2	0x03	Write	0x10	Write 0x10 to slave address Y, register address 0x03	Single operation Setting low power mode for clear early	
3				Waiting 20 msec or more		
4	0x05	Read		Find the slave address of the module using the I2C_FINDO register Note: For details, see sequence for searching the slave address in next section	Run for the slave address that searched, slave address is Y	
5	0x04	Write	0x50	Write 0x50 to slave address Y, register address 0x04	To ASIC forced mode of operation (internal clock starts oscillating) => It is required for writing to 0x07 address	
6	0x0A	Write	0x02	Write 0x02 to slave address Y, register address 0x0A	Normal initialization of Setup register	
7	0x0C	Write	0x00	Write 0x00 to slave address Y, register address 0x0C	Normal initialization of IOTEST register	
8	0x08	Write	0x25	Write 0x25 to slave address Y, register address 0x08	Change AADJ resister, transition to OTP read mode	
9				Waiting 10 msec or more	Waiting for transition to OTP read mode	
10	0x09	Write	0x22	Write 0x22 to slave address Y, register address 0x09	Normal initialization of WAKEUP register	
11	0x30	Read		Read 16 bit from slave address Y, register address 0x30, and save as Z upper 8 bits.	Trimming value of W/T results acquisition Note: It is required OTP read mode on 8 Address of Z are 0x01, 0x02, 0x030x0F.	
12	0x07	Write		Write Z to slave address Y, register address 0x07	In particular, run the 1^2 C communication less than 100 kHz. Henceforth, slave address return 0x70.	
13	0x04	Write	0x10	Write 0x10 to slave address 0x70, register address 0x04	Normal initialization of MODESEL register ASIC; sleep mode, DSP; normal mode	
14	0x08	Write	0x65	Write 0x65 to slave address 0x70, register address 0x08	Normal initialization of AADJ register	
15	0x03	Write	0x16	Write 0x16 to slave address 0x70, register address 0x03	Single operation on high accuracy mode	
16				Waiting 20 msec or more		
17				Reset program of absolute pressure sensor module termination		

Sequence for searching the slave address

I²C Protocol

■ About I²C Slave Address

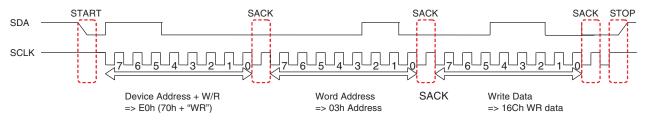
The 2SMPB-01-01 module I²C slave address is shown below.

Bit	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Add [6]	Add [5]	Add [4]	Add [3]	Add [2]	Add [1]	Add [0]	R/W
Value	1	1	1	0	0	0	0	1/0

Write Access: Please set LSB of slave address as "0", and this byte is E0h (1110_0000b). (70h << 1 + WR (0)) Read Access: Please set LSB of slave address as "1", and this byte is E1h (1110_0001b). (70h << 1 + RD (1))

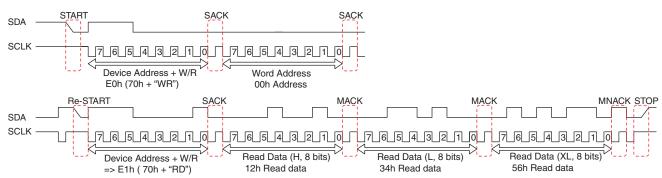
■ I²C Access Protocol Examples

Symbol


 START : START condition STOP : STOP condition

Re-START : Re-START condition for Read SACK : Acknowledge by Slave MACK : Acknowledge by Master **MNACK** : Not Acknowledge by Master

1. Register Write Access Protocol


(Application: Addresses other than OTP Registers (20h - 34h))

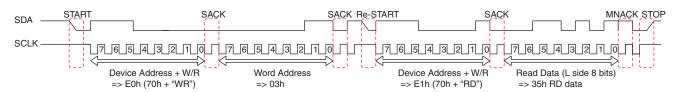
Example: Write data (8 bits) to address (03h)

2. Register Read Access Protocol (Application: Pressure/Temperature Data Register = I2C_TXD0)

Example: Read pressure data (24 bits) from I2C_TXD0=address (00h).

Pressure/Temperature data consists of 24 bits and output as three blocks of 8 bits.

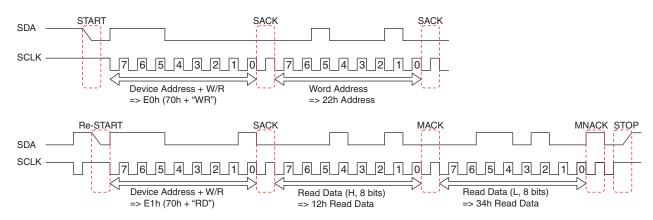
Data will be output as H, L and XL order and each 8 bits also output as MSB first.


24 bit data format is below.

Bit	bit23		bit16	bit15		bit8	bit7		bit0	
Data	Read Data H				Read Data L		Read Data XL			

In order to read only data (L) or data (XL), use next protocol (3).

Register Read Access Protocol (Application: Addresses other than OTP Registers (20h - 34h), I2C_TXD0.)


Example: Read data (8 bits) from I2C_SREQ = address (03h)

Each 8 bit data will be output as MSB first.

 Register Read Access Protocol (Application: OTP Registers (20h - 34h))

Example: Read calibration data (16 bits) from COE_PR2 = address (22h).

Set VBGACT bit "L" of I2C_AADJ before this operation.

Each 8 bit data will be output as MSB first.

■ I²C Register

Register Name	Address	Bits	R/W	Default	Contents
I2C_TXD0	00h	8 bits	R/-	00h	Data Register MSB (24-17 bits)
I2C_TXD1	01h	8 bits	R/-	00h	Data Register LSB (16-9 bits)
I2C_TXD2	02h	8 bits	R/-	00h	Data Register XLSB (8-1 bits)
I2C_SREQ	03h	8 bits	R/W	00h	Sense Request
I2C_AADJ	08h	8 bits	R/W	65h	OTP Read Register
I2C_SETUP	0Ah	8 bits	R/W	00h	Setup Register
COE_PR2	22h	16 bits	R/-	00h	Pressure Linearity Calib.2: 1st Coefficient
COE_PR3	24h	16 bits	R/-	00h	Pressure Linearity Calib.3: offset
COE_TEMP2	26h	16 bits	R/-	00h	Temp Calibration 2: 1st Coefficient
COE_TEMP3	28h	16 bits	R/-	00h	Temp Calibration 3: offset
COE_TEMP22	2Ah	16 bits	R/-	00h	Temp Calibration 2-2: 1st Coefficient-2
COE_TEMP23	2Ch	16 bits	R/-	00h	Temp Calibration 2-3: offset-2
COE_PTAT2	2Eh	16 bits	R/-	00h	PTAT Linearity Calib.2: 1st Coefficient
COE_PTAT3	32h	16 bits	R/-	00h	PTAT Linearity Calib.3: offset
COE_CEX	34h	16 bits	R/-	00h	Pressure & PTAT Linearity extend bits Bit [15:8] => COE_PR3 extend bit [23:16] Bit [7:0] => COE_PTAT3 extend bit [23:16]

I2C_TXDx: Sensor Data TXD0 (Address = 00h), TXD1 (Address = 01h) or TXD2 (Address = 02h)

Bit	bit23	bit22	bit21	 bit2	bit1	bit0
R/W	R/-	R/-	R/-	 R/-	R/-	R/-
Initial	0	0	0	 0	0	0

ADC output is stored with 22 to 24bit accuracy which depends on power mode.

Data can be retrieved as 24 bits by one operation. If data consists of less than 24 bits, additional "0" will be filled as shown in the table below. I2C_TXD0 address can be accessed by memory map method.

Bit	23	22	21	***	3	2	1	0
22 bits data (Low power mode)	valid	valid	valid		valid	valid	0	0
24 bits data (Standard & High Accuracy mode)	valid	valid	valid		valid	valid	valid	valid

I2C_SREQ: Sensor Request Register (Address = 03h)

Bit	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R/W	Resv	Resv	R/-	-/W	R/W	R/W	R/W	R/W
Initial	0	0	0	0	0	0	0	0

Bit7	Reserved	Reserved. Set "0" when write register I2C_SREQ
Bit6	Reserved	Reserved. Set "0" when write register I2C_SREQ
Bit5	Sleep state (SLEEPST)	Indicate operation mode while reading. 1: sleep mode 0: operating mode Set "0" when write register I2C_SREQ
Bit4	Wake up request (ACTREQ)	Control sleep mode. Set "1" when write register I2C_SREQ. 1: Awaken the system 0: Not awaken the system
Bit3 to 1	Mode select	Select measurement mode. "0_0_0" Low power mode "0_1_0" Standard mode "0_1_1" High accuracy mode
Bit0	Sensor select (PTATSEL)	Sensor Input Select 1: PTAT 0: Pressure (Default)

Note: Use of a bit combination other than what is specified above will not assure proper operation.

I2C_AADJ: OTP Read Register (Address = 08h)

Bit	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R/W	Resv	R/W	Resv	Resv	Resv	Resv	Resv	Resv
Initial	0	1	1	0	0	1	0	1

Bit7	Reserved	Reserved. Set "0" when write register I2C_ADDJ
Bit6		0: OTP Read Enabled 1: OTP Read Disabled (Default)
Bit5 to 4	Reserved	Reserved. Set "1_0" when write register I2C_ADDJ.
Bit3 to 2	Reserved	Reserved. Set "0_1" when write register I2C_ADDJ.
Bit1 to 0	Reserved	Reserved. Set "0_1" when write register I2C_ADDJ.

Note: Use of a bit combination other than what is specified above will not assure proper operation.

I2C_SETUP: Set Up Register (Address = 0Ah)

Bit	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R/W	Resv	Resv	Resv	Resv	Resv	Resv	R/W	R/W
Initial	0	0	0	0	0	0	1	0

bit7 to 2	Reserved	Reserved. Set "0" when write register I2C_SETUP
bit1 to 0	Setup	ADC Power Up Mode "1_0": Start ADC Setup (Default) "0_0"/"0_1"/"1_1": Please DO NOT USE

Note: 1. This set-up is required to start ADC operation.

2. Use of a bit combination other than what is specified above will not assure proper operation.

COE_PR*: Calibration Data Register for Pressure Linearity (OTP Register) (Address = 22h to 24h)

Bit	bit15	bit14	bit13	 bit3	bit2	bit1	bit0
R/W	R/-	R/-	R/-	 R/-	R/-	R/-	R/-
Initial	0	0	0	 0	0	0	0

Read only. Calibration data is stored.

I2C_AADJ bit6 (VBGACT bit) should be set to "0" to enable read operation of these OTP registers.

COE_TEMP*: Calibration Data Register for Temperature Correction of Pressure (OTP Register) (Address = 26h to 2Ah)

Bit	bit15	bit14	bit13	 bit3	bit2	bit1	bit0
R/W	R/-	R/-	R/-	 R/-	R/-	R/-	R/-
Initial	0	0	0	 0	0	0	0

Read only. Calibration data is stored.

I2C_AADJ bit6 (VBGACT bit) should be set to "0" to enable read operation of these OTP registers.

COE_PTAT*: Calibration Data Register for PTAT Linearity (OTP Register) (Address = 2Ch to 32h)

Bit	bit15	bit14	bit13	 bit3	bit2	bit1	bit0
R/W	R/-	R/-	R/-	 R/-	R/-	R/-	R/-
Initial	0	0	0	 0	0	0	0

Read only. Calibration data is stored.

I2C_AADJ bit6 (VBGACT bit) should be set to "0" to enable read operation of these OTP registers.

COE_CEX: Calibration Data Register for Extend Bits for PR3 & PTAT3 (OTP Register) (Address = 34h)

Bit	bit15	bit14	bit13	 bit3	bit2	bit1	bit0
R/W	R/-	R/-	R/-	 R/-	R/-	R/-	R/-
Initial	0	0	0	 0	0	0	0

Read only. Calibration data is stored.

Bit15 to 8: These bits are extend bits of COE_PR3 register.

Bit 7 to 0: These bits are extend bits of COE_PTAT3 register.

I2C_AADJ bit6 (VBGACT bit) should be set to "0" to enable read operation of these OTP registers.

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

Cat. No. A233-E-01 07/14

Specifications subject to change without notice

Printed in USA