

Data Sheet November 2013

15 A, 600 V, Ultrafast Diode

The RUR1S1560S is an ultrafast diode with low forward voltage drop. This device is intended for use as freewheeling and clamping diodes in a variety of switching power supplies and other power switching applications. It is specially suited for use in switching power supplies and industrial application.

Ordering Information

PART NUMBER	PACKAGE	BRAND
RUR1S1560S	TO-263-3L	RUR1560

NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-263 variant in tape and reel, i.e. RUR1S1560S9A.

Symbol

Features

- Ultrafast Recovery t_{rr} = 60 ns (@ I_F = 15 A)
- Max Forward Voltage, V_F = 1.5 V (@ T_C = 25°C)
- 600 V Reverse Voltage and High Reliability
- Avalanche Energy Rated
- RoHS Compliant

Applications

- · Switching Power Supplies
- · Power Switching Circuits
- General Purpose

Packaging JEDEC TO-263

Absolute Maximum Ratings T_C = 25°C, Unless Otherwise Specified

SYMBOL	PARAMETER	RUR1S1560S	UNIT	
V_{RRM}	Peak Repetitive Reverse Voltage	600	V	
V _{RWM}	Working Peak Reverse Voltage	600	V	
V _R	DC Blocking Voltage	600	V	
I _{F(AV)}	Average Rectified Forward Current	15	Α	
I _{FRM}	Repetitive Peak Surge Current (20 kHz Square Wave)	30	Α	
I _{FSM}	Nonrepetitive Peak Surge Current (Halfwave 1 Phase 60 Hz)	200	Α	
P _D	Power Dissipation	100	W	
E _{AVL}	Avalanche Energy (1 A, 40 mH)	20	mJ	
T _J , T _{STG}	Operating and Storage Temperature	-55 to 175	οС	
TL	Maximum Temperature for Soldering	300	οС	
T _{pkg}	Leads at 0.063 in (1.6 mm) from Case for 10 s	260	οС	
Ping	Package Body for 10s, See Techbrief TB334			
ERMAL SPECIFIC	CATIONS	1		
$R_{ heta JC}$	Thermal Resistance Junction to Case	1.5	°C/W	
$R_{\theta JA}$	Thermal Resistance Junction to Ambient	60	oC/W	

NOTES:

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications T_C = 25°C, Unless Otherwise Specified

SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
V _F	I _F = 15 A		-	1.5	V
	I _F = 15 A, T _C = 150°C		-	1.2	V
I _R	V _R = 600 V	-	-	100	μΑ
	$V_R = 600 \text{ V}, T_C = 150^{\circ}\text{C}$	-	-	500	μΑ
t _{rr}	I _F = 1 A, dI _F /dt = 100 A/μs, V _R = 30 V	-	-	55	ns
	$I_F = 15 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}, V_R = 30 \text{ V}$	-	-	60	ns
t _a	I _F = 1 A, dI _F /dt = 100 A/μs, V _R = 30 V	-	20	-	ns
	$I_F = 15 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}, V_R = 30 \text{ V}$	-	30	-	ns
t _b	I _F = 1 A, dI _F /dt = 100 A/μs, V _R = 30 V	-	15	-	ns
	$I_F = 15 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}, V_R = 30 \text{ V}$	-	17	-	ns

DEFINITIONS

 V_F = Instantaneous forward voltage (pw = 300 μ s, D = 2%).

 I_R = Instantaneous reverse current.

 T_{rr} = Reverse recovery time (See Figure 9), summation of t_a + t_b .

 t_a = Time to reach peak reverse current (See Figure 9).

 t_b = Time from peak I_{RM} to projected zero crossing of I_{RM} based on a straight line from peak I_{RM} through 25% of I_{RM} (See Figure 9).

pw = pulse width.

D = duty cycle.

Typical Performance Curves

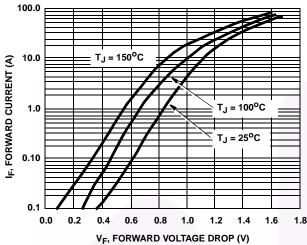


FIGURE 1. FORWARD VOLTAGE vs FORWARD CURRENT CHARACTERISTIC

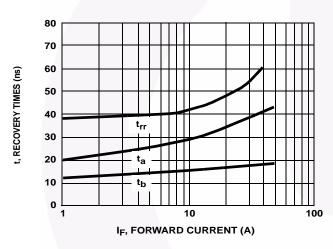


FIGURE 3. 5. TYPICAL t_{RR} , t_{A} AND t_{B} CURVES vs FORWARD CURRENT

200 100 T_J = 150⁰C 10 IR, REVERSE CURRENT (µA) $T_{\rm J} = 100^{\rm O}{\rm C}$ 0.1 0.010 $T_{\rm J} = 25^{\rm o}{\rm C}$ 0.001 100 200 300 400 500 600 V_R, REVERSE VOLTAGE (V) FIGURE 2. REVERSE VOLTAGE vs REVERSE CURRENT

CHARACTERISTIC

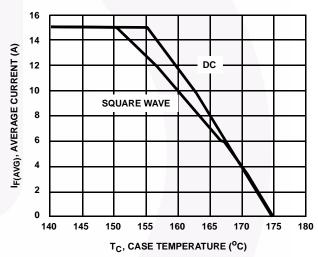


FIGURE 4. 6. TYPICAL CURRENT DERATING CURVE vs **CASE TEMPERATURE**

Test Circuits and Waveforms

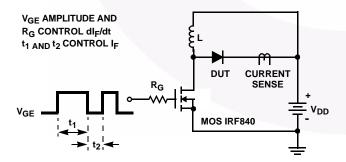


FIGURE 5. t_{rr} TEST CIRCUIT

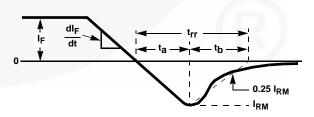


FIGURE 6. t_{rr} WAVEFORMS AND DEFINITIONS

Test Circuits and Waveforms (Continued)

I = 1A L = 40mH $R < 0.1\Omega$ $V_{DD} = 50V$ $E_{AVL} = 1/2LI^2 \left[V_{R(AVL)} / (V_{R(AVL)} - V_{DD}) \right]$ $Q_1 = IGBT \left(BV_{CES} > DUT \ V_{R(AVL)} \right)$ CURRENT + 0 $SENSE V_{DD}$ V_{DD} V_{DD}

FIGURE 7. AVALANCHE ENERGY TEST CIRCUIT

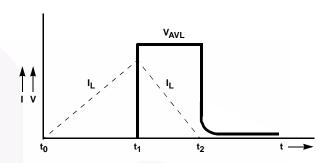


FIGURE 8. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS

Mechanical Dimensions

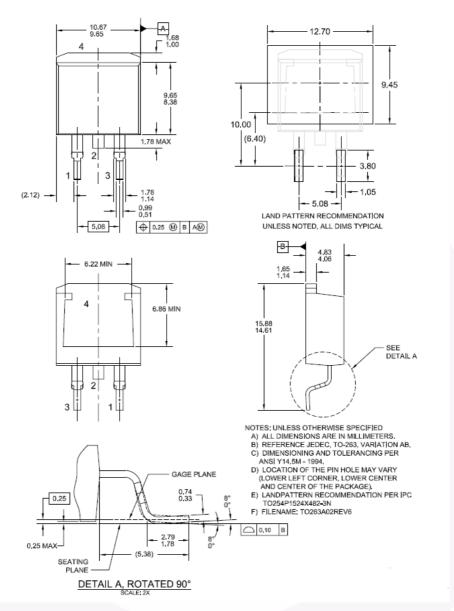


Figure 9. TO-263 2L (D2-PAK) - 2LD, TO263, SURFACE MOUNT

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN TT263-002.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFS™ AX-CAP® FRFET® BitSiC™ Global Power ResourceSM Build it Now™ GreenBridge™ Green FPS™ CorePLUS™ Green FPS™ e-Series™ CorePOWER™

 $CROSSVOLT^{\text{TM}}$ Gmax™ GTO™ Current Transfer Logic™ IntelliMAX™ ISOPLANAR™ DEUXPEED® Dual Cool™ Marking Small Speakers Sound Louder and Better™

EcoSPARK® EfficentMax™ ESBC™

Fairchild[®] FACT Quiet Series™ **FACT®** FAST[®] FastvCore™

Fairchild Semiconductor® FETBench™ FPS™

(1)® PowerTrench® PowerXS™

Programmable Active Droop™

QFET® $\mathsf{QS}^{\mathsf{TM}}$ Quiet Series™ RapidConfigure[™] тм

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS®

SyncFET™

SYSTEM ®*

GENERAL TinyBoost⁶ TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* μSerDes™

Sync-Lock™

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

MegaBuck™

MicroFET™

MicroPak™

MicroPak2™

MillerDrive™

MotionMax™

OPTOLOGIC®

OPTOPLANAR®

mWSaver®

OptoHiT™

MICROCOUPLER™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 166