Features and Benefits

- Automotive AEC-Q100 qualified
- Fully integrated 42 V MOSFET for Boost Converter
- Fully integrated LED current sinks
- Withstands surge input up to 40 VIN for load dump
- Operates down to 3.9 VIN (max) for idle stop
- Drives four strings of LEDs
- Maximum Output voltage 40V
 - Up to 11 white LEDs in series
- Drive current for each string is 100 mA
- Programmable boost switching frequency (200 kHz to 2.15 MHz)
- Synchronized boost switching frequency option (260 kHz to 2.3 MHz)
- Dithering of boost switching frequency to reduce EMI
- Extremely high LED contrast ratio
 - 10,000:1 using PWM dimming alone
 - 100,000:1 when combining PWM and analog dimming

Packages:

- 20-Pin TSSOP with Exposed Thermal Pad (suffix LP)
- 28-Pin QFN with Exposed Thermal Pad (suffix ET)

Description

The A8519 is a multi-output LED driver for small-size LCD backlighting. It integrates a current-mode boost converter with internal power switch and four current sinks. The boost converter can drive up to 44 white LEDs, 11 LED per string, at 100 mA. The LED sinks can be paralleled together to achieve higher LED currents up to 400 mA. The A8519 operates from single power supply from 4.5 V to 40 V, which allows the part to withstand load dump condition encountered in automotive systems.

The A8519 can control LED brightness through digital (PWM) signal. LED brightness contrast ratio of 10,000:1 can be achieved using PWM dimming at 100 Hz. Higher ratio of 100,000:1 is possible when using a combination of PWM and analog dimming.

If required, the A8519 can drive an external P-Channel MOSFET to disconnect input supply from the system in the event of a fault. The A8519 provides protection against output short, over voltage, open or shorted diode, open or shorted LED pin, and over-temperature. A cycle-by-cycle current limit protects the internal boost switch against high current overloads.

Applications:

- Automotive Infotainment Backlighting
- Automotive Cluster
- Automotive Center Stack

Typical Application Diagram

![Typical Application Diagram](image-url)

Typical Application Circuit Showing VOUT to ground Short Protection Using Optional P-MOSFET

A8519-DS, Rev. 1
Wide Input Voltage Range High Efficiency Fault Tolerant LED Driver

Features and Benefits (continued)
- Excellent input voltage transient response at lowest PWM duty cycle
- Gate driver for optional P-Channel MOSFET input disconnect switch
- LED current accuracy 0.7%
- LED string current matching accuracy 0.8%
- Protection against:
 - Shorted boost switch, inductor or output capacitor
 - Shorted FSET or ISET resistor
 - Open or shorted LED pins and LED strings
 - Open boost diode
- Over temperature

Description (continued)
The A8519 has a synchronization pin that allows boost switching frequencies to be synchronized in the range of 300 kHz to 2.3 MHz. The high switching frequency allows the converter to operate above the AM radio band. The IC contains a clock output pin that allows other converters to be synchronized to the A8519’s boost switching frequency.

Selection Guide

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Operating Ambient Temperature Range T_A, (°C)</th>
<th>Package</th>
<th>Packaging</th>
<th>Leadframe Plating</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8519KLPTR-T</td>
<td>–40 to 125</td>
<td>20-Pin TSSOP with Exposed Thermal Pad</td>
<td>4000 pieces per reel</td>
<td>100% matte tin</td>
</tr>
<tr>
<td>A8519KETTR-R</td>
<td>–40 to 125</td>
<td>28-Pin 5 x 5 mm QFN with Exposed Thermal Pad and Sidewall Plated</td>
<td>1500 pieces per reel</td>
<td>100% matte tin</td>
</tr>
</tbody>
</table>

Contact Allegro for additional packing options.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Notes</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEDx Pin $x = 1, 2, 3, or 4</td>
<td></td>
<td></td>
<td>–0.3 to 40 V</td>
<td>V</td>
</tr>
<tr>
<td>OVP Pin</td>
<td></td>
<td></td>
<td>–0.3 to 40 V</td>
<td>V</td>
</tr>
<tr>
<td>VIN, VOUT</td>
<td></td>
<td></td>
<td>–0.3 to 40 V</td>
<td>V</td>
</tr>
<tr>
<td>VSENSE, GATE</td>
<td></td>
<td>$V_{IN} - 7.4$ to $V_{IN} + 0.4$ V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW 2</td>
<td></td>
<td>Continuous</td>
<td>–0.6 to 42 V</td>
<td>V</td>
</tr>
<tr>
<td>t < 50 ns</td>
<td></td>
<td></td>
<td>–1 to 48 V</td>
<td>V</td>
</tr>
<tr>
<td>FAULT</td>
<td></td>
<td></td>
<td>–0.3 to 40 V</td>
<td>V</td>
</tr>
<tr>
<td>APWM, PWM, CLKOUT, COMP, FSET,</td>
<td></td>
<td></td>
<td>–0.3 to 5.5 V</td>
<td>V</td>
</tr>
<tr>
<td>ISET, VDD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Ambient Temperature</td>
<td>T_A</td>
<td>K temperature range</td>
<td>–40 to 125 °C</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{J\text{max}}$</td>
<td></td>
<td>150 °C</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td></td>
<td>–55 to 150 °C</td>
<td>°C</td>
</tr>
</tbody>
</table>

1Operation at levels beyond the ratings listed in this table may cause permanent damage to the device. The absolute maximum ratings are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the electrical characteristics table is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

2SW DMOS is self-protecting and will conduct when V_{SW} exceeds 48 V.
Thermal Characteristics may require derating at maximum conditions, see application information

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Test Conditions*</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package Thermal Resistance</td>
<td>$R_{\text{θJA}}$</td>
<td>LP Package on 2-layer 3 in2 PCB</td>
<td>40</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ET Package on 2-layer 3 in2 PCB</td>
<td>Contact factory</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LP Package on 4-layer PCB Based on JEDEC Standards</td>
<td>29</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ET Package on 4-layer PCB Based on JEDEC Standards</td>
<td>32</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

*Additional thermal information available on the Allegro website.

Table of Contents

Specifications 2
Selection Guide 2
Absolute Maximum Ratings 2
Thermal Characteristics 3
Functional Block Diagram 4
Pin-out Diagram and Terminal List 5
Characteristic Performance 10
Functional Description 12
Enabling the IC 12
Powering Up: LED Pin Short to GND Check 12
Powering Up: Boost Output Under Voltage 13
Soft Start Function 14
Frequency Selection 14
SYNC 14
LED Current Setting and LED Dimming 15
Pulse Width Modulation Dimming 15
Analog Dimming 18
LED Short Detect 19
Over Voltage Protection 19
Boost Switch Over Current Protection 21
Input Over Current Protection and Disconnect Switch 22
Setting the Current Sense Resistor 22
Input UVLO 22
VDD 23
Sutdown 23
Dithering Feature 23
Fault Protection During Operation 24
Application Information 27
Design Example 27
Package Outline Drawing 31
Wide Input Voltage Range High Efficiency Fault Tolerant LED Driver

AFX Block Diagram

- Functional Block Diagram
- CLKOUT
- COMP
- VIN
- VDD
- VSENSE
- GATE
- PWM
- SW

- Regulator UVLO Block
- 1.235 V Reference
- Internal Soft Start Block
- Internal V_{ss}
- Input Current Sense Amplifier
- Error Amplifier
- Current Sense
- OCP2
- TSD
- OVP2
- VOUT Hyst. Control
- VOUT
- VSENSE
- VIN
- VDD
- GATE
- PWM
- SW

- Frequency Dithering
- Diode Open Sense
- AGND
- AGND
- AGND
- AGND
- AGND

- VIN
- VDD
- VSENSE
- GATE
- PWM
- SW

- Error Amplifier
- Current Sense
- OCP2
- TSD
- OVP2
- VOUT Hyst. Control
- VOUT
- VSENSE
- VIN
- VDD
- GATE
- PWM
- SW

- Internal V_{cc}
- AGND
- AGND
- AGND
- AGND

- Oscillator
- Internal VCC
- Internal VCC
- Internal VCC
- Internal VCC

- LED1
- LED2
- LED3
- LED4

- APWM
- ISET
- ISET Block
- Internal V_{cc}
- AGND
- AGND

- Enable Block
- PWM Block
- SW
- PGND
- AGND

- NMOS Driver
- Gate Off
- Vin
- AGND

- Diode Open Sense
- AGND

- Open/Short LED Detect
- AGND

- OVP Sense
- AGND

- Fault Block
- AGND

- LED Driver Block
- AGND

- VOUT
- AGND

- COMP
- CLKOUT
- PGND
- AGND

Allegro MicroSystems, LLC
115 Northeast Cutoff
Worcester, Massachusetts 01615-0036 U.S.A.
1.508.853.5000; www.allegromicro.com
Pin-out Diagram

20-Pin TSSOP with Exposed Thermal Pad (suffix LP)
28-Pin QFN with Exposed Thermal Pad (suffix ET)

Terminal List Table

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COMP</td>
<td>Output of the error amplifier and compensation node. Connect an Rz-Cz-Cp network from this pin to GND for control loop compensation.</td>
</tr>
<tr>
<td>2</td>
<td>PGND</td>
<td>Power Ground for internal N-Channel MOSFET switching device. Connect to PCB ground plane.</td>
</tr>
<tr>
<td>3</td>
<td>OVP</td>
<td>Over Voltage Protection. Connect external resistor from VOUT to this pin to adjust the over voltage protection level.</td>
</tr>
<tr>
<td>4</td>
<td>VOUT</td>
<td>Connect directly to boost output voltage.</td>
</tr>
<tr>
<td>5</td>
<td>SW</td>
<td>The drain of the internal N-Channel MOSFET switching device of the boost converter.</td>
</tr>
<tr>
<td>6</td>
<td>GATE</td>
<td>Output gate driver pin for external P-Channel MOSFET control.</td>
</tr>
<tr>
<td>7</td>
<td>VSENSE</td>
<td>Connect this pin to the negative sense side of the current sense resistor Rsc. The threshold voltage is measured as (V_{IN} - V_{SENSE}). There is also fixed current sink to allow for trip threshold adjustment.</td>
</tr>
<tr>
<td>8</td>
<td>VIN</td>
<td>Input power to the IC as well as the positive input used for current sense resistor</td>
</tr>
<tr>
<td>9</td>
<td>FAULT</td>
<td>The pin is an open-drain type configuration that will be pulled low when a fault occurs. Connect a 100 k(\Omega) resistor between this pin and desired logic level voltage.</td>
</tr>
<tr>
<td>10</td>
<td>CLKOUT</td>
<td>Logic output representing the switching frequency of internal boost oscillator. This allows other converters to be synchronized to the same frequency (with the same frequency dithering, if applicable)</td>
</tr>
<tr>
<td>11</td>
<td>VDD</td>
<td>Output of internal LDO (bias regulator). Connect a 1(\mu)F decoupling capacitor between this pin and GND</td>
</tr>
<tr>
<td>12</td>
<td>APWM</td>
<td>Analog trimming option or dimming. Applying a digital PWM signal to this pin adjusts the internal (I_{SET}) current.</td>
</tr>
<tr>
<td>13</td>
<td>PWM</td>
<td>Enables the IC when this pin is pulled high. Also serves to control the LED intensity by using pulse width modulation. Typical PWM dimming frequency is in the range of 100 to 400 Hz.</td>
</tr>
<tr>
<td>14</td>
<td>FSET</td>
<td>Frequency/synchronization pin. A resistor (R_{FSET}) from this pin to GND sets the switching frequency (with dithering super-imposed). It can also be used to synchronize two or more converters in the system to an external frequency between 260 kHz and 2.3 MHz (dithering is disabled in this case)</td>
</tr>
<tr>
<td>15</td>
<td>ISET</td>
<td>Connect (R_{ISET}) resistor between this pin and GND to set the desired LED current setting.</td>
</tr>
<tr>
<td>16</td>
<td>AGND</td>
<td>LED current Ground. Connect to PCB ground plane.</td>
</tr>
<tr>
<td>17-20</td>
<td>LED 1-4</td>
<td>LED current sinks #1 - 4. Connect the cathode of each LED string to associated pin. Unused LED pin must be terminated to GND through a 3.09 k(\Omega) resistor.</td>
</tr>
<tr>
<td>–</td>
<td>NC</td>
<td>No connect. Leave open or connect to GND</td>
</tr>
<tr>
<td>–</td>
<td>PAD</td>
<td>Exposed pad of the package providing enhanced thermal dissipation. This pad must be connected to the ground plane(s) of the PCB with at least 8 vias, directly in the pad.</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS

Unless otherwise specified, specifications are valid at $V_{IN} = 16\,\text{V}$, $T_A = 25\,\text{ºC}$; ● indicates specifications guaranteed over the full operating temperature range with $T_A = T_J = -40\,\text{ºC}$ to $125\,\text{ºC}$; typical specifications are at $T_A = 25\,\text{ºC}$.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Range</td>
<td>V_{IN}</td>
<td>●</td>
<td>4.5</td>
<td>–</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>UVLO Start Threshold</td>
<td>$V_{IN,\text{rise}}$</td>
<td>$V_{IN,\text{rising}}$</td>
<td>●</td>
<td>–</td>
<td>–</td>
<td>4.35</td>
</tr>
<tr>
<td>UVLO Stop Threshold</td>
<td>$V_{IN,\text{fall}}$</td>
<td>$V_{IN,\text{falling}}$</td>
<td>●</td>
<td>–</td>
<td>–</td>
<td>3.90</td>
</tr>
<tr>
<td>UVLO Hysteresis</td>
<td>$UVLO_{\text{HYS}}$</td>
<td></td>
<td>300</td>
<td>450</td>
<td>600</td>
<td>mV</td>
</tr>
<tr>
<td>Input Quiescent Current</td>
<td>I_Q</td>
<td>PWM = V_{IH}, SW = 2 MHz</td>
<td>●</td>
<td>–</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Input Sleep Supply Current</td>
<td>I_{SLEEP}</td>
<td>VIN = 16 V, VPWM = SYNC = 0V</td>
<td>●</td>
<td>–</td>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Input Logic Levels (PWM, APWM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input logic Level-Low</td>
<td>V_{IL}</td>
<td>●</td>
<td>–</td>
<td>–</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Input logic Level-High</td>
<td>V_{IH}</td>
<td>●</td>
<td>1.5</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>PWM input pull-down resistor</td>
<td>R_{EN}</td>
<td>PWM = 5 V</td>
<td>60</td>
<td>100</td>
<td>140</td>
<td>kΩ</td>
</tr>
<tr>
<td>APWM input pull-down resistor</td>
<td>R_{APWM}</td>
<td>PWM = V_{IH}</td>
<td>60</td>
<td>100</td>
<td>140</td>
<td>kΩ</td>
</tr>
<tr>
<td>APWM frequency</td>
<td>f_{APWM}</td>
<td>●</td>
<td>40</td>
<td>–</td>
<td>1000</td>
<td>kHz</td>
</tr>
<tr>
<td>Output Logic Levels (CLKOUT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Logic Level-Low</td>
<td>V_{OL}</td>
<td>5 V < V_{IN} < 40 V</td>
<td>●</td>
<td>–</td>
<td>–</td>
<td>0.3</td>
</tr>
<tr>
<td>Output Logic Level-High</td>
<td>V_{OH}</td>
<td>5 V < V_{IN} < 40 V</td>
<td>●</td>
<td>1.8</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Error Amplifier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Current</td>
<td>$I_{\text{EA(source)}}$</td>
<td>$V_{COMP} = 1.5,\text{V}$</td>
<td>–</td>
<td>–600</td>
<td>–</td>
<td>µA</td>
</tr>
<tr>
<td>Sink Current</td>
<td>$I_{\text{EA(sink)}}$</td>
<td>$V_{COMP} = 1.5,\text{V}$</td>
<td>–</td>
<td>+600</td>
<td>–</td>
<td>µA</td>
</tr>
<tr>
<td>COMP Pin Pull Down Resistance</td>
<td>R_{COMP}</td>
<td>FAULT = 0, $V_{COMP} = 1.5,\text{V}$</td>
<td>–</td>
<td>1.4</td>
<td>–</td>
<td>kΩ</td>
</tr>
<tr>
<td>Over Voltage Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVP pin Voltage Threshold</td>
<td>$V_{\text{OVP(th)}}$</td>
<td>OVP pin connected to V_{OUT}</td>
<td>●</td>
<td>7.6</td>
<td>8.3</td>
<td>9.0</td>
</tr>
<tr>
<td>OVP pin Sense Current Threshold</td>
<td>$I_{\text{OVP(th)}}$</td>
<td>Current into OVP pin</td>
<td></td>
<td>190</td>
<td>200</td>
<td>210</td>
</tr>
<tr>
<td>OVP pin Leakage Current</td>
<td>$I_{\text{OVP(LKG)}}$</td>
<td>$V_{IN} = 16,\text{V}$, PWM = L</td>
<td>●</td>
<td>–</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>OVP accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Under Voltage Protection Threshold</td>
<td>$V_{\text{UVP(th)}}$</td>
<td>Measured at OUT pin when $R_{\text{OVP}} = 160,\text{kΩ}$</td>
<td>●</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measured at OUT pin when $R_{\text{OVP}} = 0$</td>
<td>–</td>
<td>0.55</td>
<td>0.7</td>
<td>V</td>
</tr>
<tr>
<td>Secondary Over Voltage Protection</td>
<td>$V_{\text{OVP(sec)}}$</td>
<td>Measured at SW pin</td>
<td>●</td>
<td>42</td>
<td>45</td>
<td>48</td>
</tr>
<tr>
<td>BOOST Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch On Resistance</td>
<td>R_{SW}</td>
<td>$I_{SW} = 0.750,\text{A}$, $V_{IN} = 16,\text{V}$</td>
<td>●</td>
<td>100</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>Switch Leakage Current</td>
<td>$I_{\text{SW(LKG)}}$</td>
<td>$V_{SW} = 16,\text{V}$, PWM = V_{IL}</td>
<td>●</td>
<td>–</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>Switch Current Limit</td>
<td>$I_{\text{SW(LIM)}}$</td>
<td></td>
<td>3.0</td>
<td>3.65</td>
<td>4.5</td>
<td>A</td>
</tr>
</tbody>
</table>

1 For input and output current specifications, negative current is defined as coming out of the node or pin (sourcing); positive current is defined as going into the node or pin (sinking).
2 Ensured by design and characterization, not production tested.
3 Minimum $V_{IN} = 4.5\,\text{V}$ is only required at startup. After startup is completed, IC can continue to operate down to $V_{IN} = 3.9\,\text{V}$.
4 LED current is trimmed to cancel variations in both Gain and ISET voltage.

Continued on the next page...
A8519

Wide Input Voltage Range High Efficiency Fault Tolerant LED Driver

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, specifications are valid at $V_{IN} = 16\,\text{V}$, $T_A = 25^\circ\text{C}$; ● indicates specifications guaranteed over the full operating temperature range with $T_A = T_J = -40^\circ\text{C}$ to 125°C; typical specifications are at $T_A = 25^\circ\text{C}$

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary switch current Limit2</td>
<td>$I_{SW(LIM2)}$</td>
<td>Higher than max $I_{SW(LIM)}$ under all conditions when detected</td>
<td>–</td>
<td>4.9</td>
<td>–</td>
<td>A</td>
</tr>
<tr>
<td>Minimum Switch on time</td>
<td>$t_{SW(on)}$</td>
<td>● 45 65 85 ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Switch off time</td>
<td>$t_{SW(off)}$</td>
<td>● – 65 85 ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oscillator Frequency

<table>
<thead>
<tr>
<th>Oscillator Frequency6</th>
<th>F_{SW}</th>
<th>$RFSET = 9.3,\text{k}\Omega$</th>
<th>● 1.95</th>
<th>2.15</th>
<th>2.35</th>
<th>MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$RFSET = 20,\text{k}\Omega$</td>
<td>● 0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$RFSET = 105,\text{k}\Omega$</td>
<td>– 200</td>
<td>–</td>
<td>–</td>
<td>kHz</td>
</tr>
<tr>
<td>FSET Pin Voltage</td>
<td>V_{FSET}</td>
<td>$RFSET = 10,\text{k}\Omega$</td>
<td>– 1.02</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
</tbody>
</table>

Synchronization

<table>
<thead>
<tr>
<th>Sync input logic level</th>
<th>V_{SYNC}</th>
<th>$FSET$ pin logic Low</th>
<th>● – 0.4 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronized PWM Frequency</td>
<td>$f_{SW(sync)}$</td>
<td>● 260 – 2300 kHz</td>
<td></td>
</tr>
<tr>
<td>Synchronization Input Min off time</td>
<td>$t_{SYNC(off)}$</td>
<td>● 150 – ns</td>
<td></td>
</tr>
<tr>
<td>Synchronization Input Min on time</td>
<td>$t_{SYNC(on)}$</td>
<td>● 150 – ns</td>
<td></td>
</tr>
</tbody>
</table>

LED Current Sinks

<table>
<thead>
<tr>
<th>LEDx Accuracy4</th>
<th>Err_{LED}</th>
<th>$R_{SET} = 8.33,\text{k}\Omega$</th>
<th>● – 0.7 3 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEDx Matching</td>
<td>Δ_{LED}</td>
<td>$I_{SET} = 120,\mu\text{A}$</td>
<td>● – 0.8 2 %</td>
</tr>
<tr>
<td>LEDx Regulation Voltage</td>
<td>V_{LEDx}</td>
<td>$V_{LED1} = V_{LED2} = V_{LED3} = V_{LED4}$, $I_{SET} = 120,\mu\text{A}$</td>
<td>● 750 850 975 mV</td>
</tr>
<tr>
<td>ISET to I_{LEDx} Current Gain</td>
<td>A_{ISET}</td>
<td>$I_{SET} = 120,\mu\text{A}$</td>
<td>● 696 710 727 A/A</td>
</tr>
<tr>
<td>ISET Pin Voltage</td>
<td>V_{ISET}</td>
<td>0.987 1.017 1.047 V</td>
<td></td>
</tr>
<tr>
<td>Allowable ISET Current</td>
<td>I_{ISET}</td>
<td>● 20 – 144 µA</td>
<td></td>
</tr>
<tr>
<td>V_{LEDx} Short detect</td>
<td>$V_{LED(SC)}$</td>
<td>While LED sinks are in regulation. Sensed from V_{LEDx} to AGND</td>
<td>● 4.7 5.2 5.7 µV</td>
</tr>
<tr>
<td>LED Startup Ramp Time2</td>
<td>t_{SS}</td>
<td>Time duration before all LED channels come into regulation, or OVP is tripped</td>
<td>– 20 – ms</td>
</tr>
<tr>
<td>Maximum PWM Dimming Until Off Time2</td>
<td>t_{PWM}</td>
<td>Measured while PWM = low, during dimming control and internal references are powered on (exceeding t_{PWM} results in shutdown)</td>
<td>– 32750 – f_{SW} cycles</td>
</tr>
<tr>
<td>Minimum PWM On-Time</td>
<td>$t_{PWM(min1)}$</td>
<td>First cycle when powering up IC (PWM = 0 to 3.3 V)</td>
<td>● – 0.75 2 µs</td>
</tr>
<tr>
<td></td>
<td>$t_{PWM(min2)}$</td>
<td>Subsequent PWM pulses</td>
<td>● – 0.5 1 µs</td>
</tr>
</tbody>
</table>

Continued on the next page...

1For input and output current specifications, negative current is defined as coming out of the node or pin (sourcing); positive current is defined as going into the node or pin (sinking).

2Ensured by design and characterization, not production tested.

3Minimum $VIN = 4.5\,\text{V}$ is only required at startup. After startup is completed, IC can continue to operate down to $VIN = 3.9\,\text{V}$

4LED current is trimmed to cancel variations in both Gain and ISET voltage

5F$_{SW}$ measurements were taken with dithering function is disabled.
ELECTRICAL CHARACTERISTICS

Unless otherwise specified, specifications are valid at $V_{IN} = 16$ V, $T_A = 25^\circ$C; • indicates specifications guaranteed over the full operating temperature range with $T_A = T_J = -40^\circ$C to 125°C; typical specifications are at $T_A = 25^\circ$C

![Image of the table](image-url)

1For input and output current specifications, negative current is defined as coming out of the node or pin (sourcing); positive current is defined as going into the node or pin (sinking).

2Ensured by design and characterization, not production tested.

3Minimum $V_{IN} = 4.5$ V is only required at startup. After startup is completed, IC can continue to operate down to $V_{IN} = 3.9$ V

4LED current is trimmed to cancel variations in both Gain and ISET voltage.
Wide Input Voltage Range High Efficiency Fault Tolerant LED Driver

A8519

Typical Application Showing Boost Configuration with Input Disconnect Switch to Protect Against Vout-to-ground Short

*Notes:
- Input disconnect switch is not necessary in this case to protect against VOUT-to-ground short.
- R1 and D2 are used to provide a leakage path so the OVP pin is above 100 mV during startup. Otherwise, the IC would assume an VOUT-to-GND short and not proceed with soft start.

Typical Application Showing SEPIC Configuration for Flexible Input/Output Voltage Ratio
Wide Input Voltage Range High Efficiency Fault Tolerant LED Driver

Characteristic Performance

Efficiency Measurement

Efficiency at 60 mA/Ch for Various LED Configurations

A8519 Evaluation Board Efficiency versus Input Voltage while Disconnect Switch and Snubber Circuit are Used

Efficiency at V_in = 12 V for Various LED Configurations

A8519 Evaluation Board Efficiency versus Total LED Current while Disconnect Switch and Snubber Circuit are Used

Higher efficiency can be achieved by:

- Using an inductor with low DCR.
- Using lower forward voltage drop and smaller junction capacitance schottky diode.
- Removing the snubber circuit; however, this might compromise the EMI performance.
- Shorting out the disconnect switch and the input current sense resistor; however, this will eliminate the output short to GND protection feature.
- Lowering switching frequency. This will significantly improve the efficiency; however, to avoid the EMI AM band limits, careful switching frequency selection is required. In addition, a larger inductor will be needed.
Functional Description

Enabling the IC

The IC turns on when a logic high signal is applied on the PWM pin with a minimum duration of \(t_{PWMH} \) for the first clock cycle, and the input voltage present on the VIN pin is greater than 4.35 V to clear the UVLO threshold. Before the LED's are enabled the A8519 driver goes through a system check to see if there are any possible fault conditions that might prevent the system from functioning correctly. Also if the FSET pin is pulled low the IC will not power up. More information on the FSET pin can be found in the Synchronization section of the data sheet.

Powering Up: LED Pin Check

Once VIN pin goes above UVLO and a high signal is present on the PWM pin, the IC proceeds to power up. The A8519 then enables the disconnect switch (GATE) and checks to see if the LED pins are shorted to ground and/or are not used. The LED detect phase starts when the GATE voltage of the disconnect switch is equal to \(V_{IN} - 3.3 \) V.

Figure 2 shows the relation of LEDx pins with respect to the gate voltage of the disconnect switch (if used) during LED detect phase, as well as the duration of the LED detect for a switching frequency of 2 MHz.

When the voltage threshold on VLEDx pins exceeds 120 mV a delay between 3000 and 4000 clock cycles (1.5 to 2 ms) is used to determine the status of the pins.

Table 1: LED Detection Duration for Given Switching Frequency

<table>
<thead>
<tr>
<th>Switching Frequency</th>
<th>Detection Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 MHz</td>
<td>1.5 to 2 ms</td>
</tr>
<tr>
<td>1 MHz</td>
<td>3 to 4 ms</td>
</tr>
<tr>
<td>800 kHz</td>
<td>3.75 to 5 ms</td>
</tr>
<tr>
<td>600 kHz</td>
<td>5 to 6.7 ms</td>
</tr>
</tbody>
</table>

All unused LED pins should be connected with a 3.09 kΩ resistor to GND. The unused pin, with the pull down resistor, will be taken out of regulation at this point and will not contribute to the boost regulation loop.

![Figure 1: Power Up Diagram Showing PWM, ISET, and VDD Voltages and Total LED Current](image)

![Figure 2: Power Up Diagram Showing Disconnect V_GATE, V_LED1, V_ISET, and V_PWM During LED Pins Detect and Regulation Period](image)

![Figure 3: Channel Select Setup](image)
Table 2: LED Detection Voltage Thresholds

<table>
<thead>
<tr>
<th>LED Pin Voltage Level</th>
<th>LED Pin</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 70 mV</td>
<td>Indicates a short to PCB GND</td>
<td>A8519 will not proceed with power up.</td>
</tr>
<tr>
<td>150 mV</td>
<td>Not used</td>
<td>LED string connected with the unused LED pin is removed from operation</td>
</tr>
<tr>
<td>325 mV</td>
<td>LED pin in use</td>
<td>None</td>
</tr>
</tbody>
</table>

If an LED pin is shorted to ground, the A8519 will not proceed with soft start until the short is removed from the LED pin. This prevents the A8519 from powering up and putting an uncontrolled amount of current through the LEDs.

![Figure 4: LED String Detect Occurs when All LED Strings are Selected to be Used](image)

![Figure 5: Detect Voltage is about 150 mV when LED Pin 2 is not Used](image)

Powering Up: Boost Output Under Voltage Protection

During startup, after the input disconnect switch has been enabled, the output voltage is checked through the OVP pin. If the sensed voltage does not rise above $V_{UVP(th)}$, the output is assumed to be at fault and the IC will not proceed with soft start.

Under voltage protection may be caused by one of the following faults:

- Output capacitor shorted to GND
- Boost inductor or diode open
- OVP sense resistor open

After an undervoltage fault, the A8519 is immediately shutdown and latched off. To enable the IC again, the PWM pin must be pulled low for at least 32750 clock cycles (about 16 ms at 2 MHz), then pulled high again.

![Figure 6: One LED Pin is Shorted to GND. The IC will not proceed with power up until LED pin is released, at which point the LED pin is checked to see if it is used.](image)
Soft Start Function

During startup, the A8519 ramps up its boost output voltage following a fixed ramp function. This technique limits the input inrush current and ensures the same startup time regardless of the PWM duty cycle.

The soft start process is completed when any one of the following conditions is met:

1. All LED currents have reached their regulation targets,
2. Output voltage has reached 93% of its OVP threshold, or
3. Soft start ramp time (t_{SS}) has expired.

Frequency Selection

The switching frequency on the boost regulator is set by a single resistor connected to the FSET pin. The switching frequency can be anywhere from 200 kHz to 2.15 MHz. Figure 8 shows typical switching frequency in MHz for a given resistor value (in kΩ). The following equation can also be used to determine typical switching frequency from FSET resistance:

$$f_{SW} = \frac{20.3}{R_{FSET}} + 0.008$$

where f_{SW} is in MHz, R_{FSET} is in kΩ.

If a fault occurs during operation that will increase the switching frequency, the FSET pin is clamped to a maximum switching frequency of no more than 3.5MHz. If the FSET pin is shorted to GND the part will shut down. For more details see the fault mode table on page 25.

Synchronization

The A8519 can also be synchronized using an external clock. At power up, if the FSET pin is held low, the IC will not power up. Only when the FSET pin is tri-stated to allow for the pin to rise, to about 1 V, or when a sync clock is detected the A8519 will try to power up. The basic requirement of the sync signal is 150 ns minimum on-time and 150 ns minimum off-time as dictated by the requirements of pulse width on and off times.

Figure 9 shows timing for a synchronization clock into the A8519 at 2.2 MHz.

Any pulse with a duty cycle of 33% to 66% at 2.2 MHz can be used to synchronize the IC. Table 3 summarizes the duty cycle range at various synchronization frequencies.
Table 3: Sync Pulse Duty Cycle Range for Selected Switching Frequencies.

<table>
<thead>
<tr>
<th>Sync Pulse Frequency</th>
<th>Duty Cycle Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 MHz</td>
<td>33% to 66%</td>
</tr>
<tr>
<td>2 MHz</td>
<td>30% to 70%</td>
</tr>
<tr>
<td>1 MHz</td>
<td>15% to 85%</td>
</tr>
<tr>
<td>600 kHz</td>
<td>9% to 91%</td>
</tr>
<tr>
<td>300 kHz</td>
<td>4.5% to 95.5%</td>
</tr>
</tbody>
</table>

If during operation a sync clock is lost, the IC will revert to the preset switching frequency that is set by the RFSET. During this period the IC will stop switching for a maximum period of approximately 7µs to allow for the sync detection circuitry to switch over to external preset switching frequency. If the clock is held low for more than 7µs the A8519 will shut down. In this shut down mode the IC will stop switching, the input disconnect switch is open and the LED’s will stop sinking current. To shut down the IC into low power mode the user needs to disable the IC using the PWM pin by keeping the pin low for a period of 32750 clock cycles. If FSET pin is released at any time after 7µs the A8519 will proceed to soft start.

LED Current Setting and LED Dimming

The maximum LED current can be up to 100 mA per channel, and is set through the ISET pin. Connect a resistor, R_{ISET}, between this pin and GND. To set I_{LED} calculate R_{ISET} as follows:

\[
I_{LED} = I_{SET} \cdot A_{ISET}
\]

\[
I_{SET} = \frac{V_{SET}}{R_{ISET}}
\]

\[
R_{ISET} = \frac{(V_{SET} \cdot A_{ISET})}{I_{LED}}
\]

Where I_{LED} current is in A

R_{ISET} is in Ω.

This sets the maximum current through the LEDs, referred to as the 100% current.

Table 4: LED Current Setting Resistors (Values Rounded to the Nearest Standard Resistor Value)

<table>
<thead>
<tr>
<th>Standard Closest R_{ISET} Resistor</th>
<th>LED Current I_{LED}</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.15 kΩ</td>
<td>100 mA per LED</td>
</tr>
<tr>
<td>8.87 kΩ</td>
<td>80 mA per LED</td>
</tr>
<tr>
<td>11.8 kΩ</td>
<td>60 mA per LED</td>
</tr>
<tr>
<td>14.3 kΩ</td>
<td>50 mA per LED</td>
</tr>
<tr>
<td>17.8 kΩ</td>
<td>40 mA per LED</td>
</tr>
</tbody>
</table>

PWM Dimming

The LED current can be reduced from the 100% current level by PWM dimming using the PWM pin. When the PWM pin is pulled high, the A8519 turns on and all enabled LEDs sink 100% current. When PWM is pulled low, the boost converter and LED
sinks are turned off. The compensation (COMP) pin is floated, and critical internal circuits are kept active. The typical PWM dimming frequencies fall between 200 Hz and 1 kHz.

The A8519 is designed to deliver a maximum dimming ratio of 10,000:1 at PWM frequency of 100 Hz. That means a minimum PWM duty cycle of 0.01%, or an on-time of just 1 μS out of a period of 10 ms.

High PWM dimming ratio is achieved by regulating the output voltage during PWM off-time. The VOUT pin samples the output voltage during PWM on-time and regulates it during off-time. A hysteresis control loop brings VOUT higher by approximately 350 mV whenever it drops below the target voltage. In a highly noisy switching environment, it is necessary to insert an RC filter at the VOUT pin. A typical value of R = 10 k and C = 47 pF is recommended.

Another important feature of the A8519 is the PWM signal to LED current delay. This delay is typically less than 500 ns, which allows for greater LED current accuracy at low PWM dimming duty cycles.

The error introduced by LED turn-on delay is partially offset by LED turn-off delay. Therefore a PWM pulse width of under 1 μs is still feasible, but the percentage error of LED current will increase with narrower pulse width.

![Figure 12: Typical PWM Diagram Showing VOUT, ILED and COMP Pin, as well as the PWM Signal. (PWM dimming Frequency is 500 Hz 50% duty cycle.)](image1)

![Figure 13: Typical PWM Diagram Showing VOUT, ILED and COMP Pin, as well as the PWM Signal. (PWM dimming frequency is 500 Hz 1% duty cycle.)](image2)

![Figure 14: Rising Edge PWM Signal to Total LED Current Turn On Delay; Time base = 100 ns](image3)

![Figure 15: Falling Edge PWM Signal to Total LED Current Turn Off Delay; Time base = 100 ns](image4)
The APWM pin is used in conjunction with the ISET pin. This is a digital signal pin that internally adjusts the ISET current. The typical input signal frequency is between 40 kHz and 1 MHz. The duty cycle of this signal is inversely proportional to the percentage of current that is delivered to the LED. As an example, a system that delivers ILED(TOTAL) = 240 mA would deliver ILED(TOTAL) = 180 mA when an APWM signal with a duty-cycle of 25% is applied. When this pin is not used it should be tied to AGND.

To use the APWM pin as a trim function, the user should set the maximum output current to a value higher than the desired current by at least 5%. The LED ISET current is then trimmed down to the appropriate desired value. Another consideration is the limitation of the APWM signal’s duty cycle. In some cases it might be more desirable to set the maximum ISET current to be 25-50% higher thus allowing the APWM signal to have duty cycles that are between 25 and 50%.

Although the APWM dimming function has a wide frequency range, if used strictly as an analog dimming function it is recommended to use frequency ranges between 50 kHz and 500 kHz for best accuracy. The frequency range needs to be considered only if the user is not using APWM as a closed loop trim function. It takes about 1 millisecond to change the actual LED current due to propagation delay between the APWM signal and the ILED(TOTAL).
Extending LED Dimming Ratio

The dynamic range of LED brightness can be further extended, by using a combination of PWM duty cycle, APWM duty cycle, and analog dimming method.

For example, the following approach can be used to achieve a 50,000:1 dimming ratio at 200 Hz PWM frequency:

- Vary PWM duty cycle from 100% down to 0.02% to give 5,000:1 dimming.
- With PWM duty cycle at 0.02%, vary APWM duty from 0% to 90% to reduce LED current down to 10%. This gives a net effect of 50,000:1 dimming.

Analog Dimming

Besides using APWM signal, the LED current can also be reduced by using an external DAC or another voltage source. Connect R_{ISET} between the DAC output and the ISET pin. The limit of this type of dimming is dependant of the range of the ISET pin. In the case of the A8519 the limit is 20 µA to 144 µA.

The ISET current is controlled by the following formula:

$$I_{ISET} = \frac{V_{ISET} - V_{DAC}}{R_{SET}}$$

Where V_{ISET} is the ISET pin Voltage

V_{DAC} is the DAC output voltage

When the DAC voltage is 0V the LED current will be at its maximum. To keep the internal gain amplifier stable, do not decrease the current through the R_{ISET} resistor to less than 20 µA.

Below is a typical application circuit using a DAC to control the LED current using a two-resistor configuration. The advantage of this circuit is that the DAC voltage can be higher or lower thus adjusting the LED current to a higher or lower value of the preset LED current set by the R_{ISET} resistor.
The LED current can be adjusted using the following formula:

\[I_{\text{SET}} = \frac{V_{\text{SET}}}{R_{\text{SET}}} - \left(\frac{V_{\text{DAC}} - V_{\text{SET}}}{R_{\text{L}}}\right) \]

Where \(V_{\text{SET}} \) is the ISET pin Voltage

\(V_{\text{DAC}} \) is the DAC output voltage

When \(V_{\text{DAC}} \) is equal to 1.00 V the output is strictly controlled by the \(R_{\text{SET}} \) resistor. When \(V_{\text{DAC}} \) is higher than 1.00 V the LED current is reduced. When \(V_{\text{DAC}} \) is lower that 1.00 V the LED current is increased.

LED String Short Detect

All LEDx pins are capable to handle the maximum \(V_{\text{OUT}} \) that the converter can deliver, thus allowing for LEDx pin to \(V_{\text{OUT}} \) protection in case of a connector short.

In case some of the LEDs in an LED string are shorted, the voltage at the corresponding LEDx pin will increase. Any LEDx pin that has a voltage exceeding \(V_{\text{LEDx(SC)}} \) will be removed from operation. This will prevent the IC from dissipating too much power by having a large voltage present on an LEDx pin.

While the IC is being PWM dimmed, the IC will recheck the disabled LED every time the PWM signal goes high to prevent false tripping of LED short. This also allows for some self correction if an intermittent LED pin short to \(V_{\text{OUT}} \) is present.

At least one LED must be in regulation for the LED string short-detect protection to activate. In case all of the LED pins are above regulation voltage (this could happen when the input voltage rises too high for the LED strings), they will continue to operate normally.

Overvoltage Protection

The A8519 has an output overvoltage protection (OVP) and open schottky diode protection (secondary OVP). The OVP pin has a threshold level of 8.3 V typical. A resistor can be used to set the output overvoltage protection threshold up to 40 V approximately. This is sufficient for driving 11 white LED in series.

The formula for calculating the OVP resistor is shown below:

\[R_{\text{OVP}} = \frac{(V_{\text{OVP}} - V_{\text{OVP(th)}})}{I_{\text{OVP(th)}}} \]

where \(V_{\text{OVP(th)}} = 8.3 \text{ V typical}, \]

\(I_{\text{OVP(th)}} = 200 \mu\text{A typical} \)

The OVP function is not a latched fault. If the OVP condition occurs during a load dump, the IC will stop switching but not shut down.

There are several possibilities why an OVP condition is encountered during operation. The two most common being an open LED string and a disconnected output condition.

Figure 23 illustrates when the output of the A8519 is disconnected from load during normal operation. The output voltage instantly increases up to OVP voltage level, and then the boost stops switching to prevent damage to the IC. When the output voltage decreases to a low value, the boost converter will begin switching. If the condition that caused the OV event still exists, OVP will be triggered again.
A8519 also has built-in secondary overvoltage protection to protect internal switch in the event of an open diode condition. Open Schottky diode detection is implemented by detecting overvoltage on the SW pin of the device. If voltage on the SW pin exceeds the device safe operating voltage rating, the A8519 disables and remains latched. To clear this fault, the IC must be shut down by either using the PWM signal or by going below the UVLO threshold on the VIN pin.

Figure 25 illustrates open Schottky diode protection while the IC is in normal operation. As soon as the switch node voltage (SW) exceeds 48 V the IC will shut down. Due to small delays in the detection circuit, as well as there being no load present, the switch node voltage (SW) will rise above the trip point voltage.
Boost Switch Over Current Protection

The boost switch is protected with cycle-by-cycle current limiting set at a minimum of 3.0 A. Figure 27 illustrates the normal operation of the switch node (VSW), inductor current, and output voltage (VOUT) for a 11x4 LED configuration.

There is also a secondary current limit (Isw(LIM2)) that is sensed through the boost switch. This current limit once detected immediately shuts down the A8519. The level of this current limit is set above the cycle-by-cycle current limit to protect the switch from destructive currents when boost inductor is shorted. Figure 29 shows the secondary boost switch OCP. Once this limit is hit, the A8519 will immediately shut down.

Figure 27: Normal Operation of Switch Node (VSW), Inductor Current, and Output Voltage (VOUT)

Figure 28: Cycle-by-Cycle Current Limit

Figure 29: Secondary Boost Switch OCP
Input Over Current Protection and Disconnect Switch

The primary function of the input disconnect switch is to protect the system and the device from catastrophic input currents during a fault condition.

If the input current level goes above the preset current limit threshold, the part will be shut down in less than 3 μs. This is a latched condition. The fault flag is also set low to indicate a fault. This protection feature prevents catastrophic failure in the system due to a short of the inductor, inductor short to GND, or short at the output GND. Figure 31 illustrates the typical input over current fault condition. As soon as input OCP limit is reached, the part disables the gate of the disconnect switch Q1.

Setting the Current Sense Resistor

As shown in Figure 30:

\[\frac{V_{IN} - V_{SENSE}}{R_{SC}} = I_{adj} + R_{adj} \]

or

\[I_{SC} = \left(\frac{V_{IN} - V_{SENSE}}{R_{SC}} \right) - I_{adj} \cdot R_{adj} \]

where \(V_{SC} \) = the voltage drop across \(R_{SC} \). The typical threshold for the current sense is \(V_{IN} - V_{SENSE} = 110 \text{ mV} \) when \(R_{adj} = 0 \). The A8519 can have this voltage trimmed using the \(R_{adj} \) resistor. It is recommended to set trip point to be above 3.65 A to avoid conflicts with the cycle-by-cycle current limit typical threshold. A sample calculation is done below for 4.25 A of input current.

Calculated max value of sense resistor \(R_{SC} = 0.11 \text{ V} / 4.25 \text{ A} = 0.0259 \Omega \).

0.024 Ω is a standard value. With \(R_{SC} = 0.024 \Omega \), the voltage drop across \(R_{SC} \) is therefore:

\[V_{SC} = 4.25 \text{ A} \cdot 0.024 \Omega = 0.102 \text{ V} \]

\[R_{adj} = \frac{V_{SENSE} - V_{SC}}{I_{adj}} \]

\[R_{adj} = \frac{0.11 \text{ V} - 0.102 \text{ V}}{21.5 \mu A} = 372 \Omega \]

Input UVLO

When \(V_{IN} \) and \(V_{SENSE} \) rise above UVLOrise threshold, the A8519 is enabled. The A8519 is disabled when \(V_{IN} \) falls below UVLOfall threshold for more than 50 μs. This small delay is used to avoid shutting down because of momentary glitches in the input power supply.

Figure 32 illustrates a shutdown due to a falling input voltage (\(V_{IN} \)). When \(V_{IN} \) falls below 3.90 V, the IC will shut down.
VDD

The VDD pin provides regulated bias supply for internal circuits. Connect a capacitor with a value of 1 μF or greater to this pin. The internal LDO can deliver no more than 2 mA of current with a typical VDD voltage of about 3.5 V, enabling this pin to serve as the pull up voltage for the fault pin.

Shutdown

If PWM pin is pulled low for more than \(t_{\text{PWM}} \) (32750 clock cycles), the device enters shutdown mode and clears all internal fault registers. As an example, at 2 MHz clock frequency it will take approximately 16.3 ms to shut down the IC into the low power mode. When shut down, the IC will disable all current sources and wait until the PWM goes high to re-enable the IC.

Figure 33 depicts the shutdown using the PWM enable showing the 16.3 ms delay between PWM signal and when the VDD and GATE of disconnect switch turn off.

Dithering Feature

To minimize the switching frequency harmonics, a dithering feature is implemented in A8519. This feature simplifies the input filters needed to meet the automotive CISPR 25 conducted and radiated emission limits. The dithering sweep is internally set at ±5%. The switching frequency will ramp from 0.95 times the programmed frequency to 1.05 times the programmed frequency. The rate or modulation at which the frequency sweeps is governed by an internal 12.5 kHz triangle pattern.

![Figure 34: Minimum Dithering Switching Frequency = 2.02 MHz at Vin = 12 V, and PWM Ratio = 100%](image1)

![Figure 35: Maximum Dithering Switching Frequency = 2.23 MHz at Vin = 12 V, and PWM Ratio = 100%](image2)

If faster shut down is required the FSET pin can be used. To immediately shut down the device, the user can pull FSET pin low for more than 7 μs. Once the FSET is low for a period longer than 7 μs the IC will stop switching, the input disconnect switch is open and the LEDs stop sinking current.
Fault Protection During Operation

The A8519 series devices constantly monitor the state of the system to determine if any fault conditions occur during normal operation. The response to a triggered fault condition is summarized in the table below. There are several points at which the A8519 monitors for faults during operation. The locations are input current, switch current, output voltage, switch voltage, and LED pins. (Note: some protection features might not be active during startup to prevent false triggering of fault conditions.)

The detectable fault conditions are:

- open LED Pin
- shorted LED pin to GND
- open or shorted inductor
- open or shorted boost diode
- shorted inductor
- \(V_{OUT}\) short to GND
- SW pin shorted to GND
- ISET pin shorted to GND
- input disconnect switch source shorted to GND.

Note: Some faults will not be protected if the input disconnect switch is not used. An example of this is \(V_{OUT}\) short to GND.
Table 5: Fault Mode Table

<table>
<thead>
<tr>
<th>Fault Name</th>
<th>Type</th>
<th>Active</th>
<th>Fault Flag Set</th>
<th>Description</th>
<th>Boost</th>
<th>Disconnect Switch</th>
<th>LED Sink Drivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary switch over current protection</td>
<td>Auto-restart</td>
<td>Always</td>
<td>NO</td>
<td>This fault condition is triggered when the SW current exceeds the cycle-by-cycle current limit, I_{SW(LIM)}. The present SW on-time is truncated immediately to limit the current. Next switching cycle starts normally.</td>
<td>Off for a single cycle</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Secondary switch current limit</td>
<td>Latched</td>
<td>Always</td>
<td>YES</td>
<td>When current through boost switch exceeds secondary SW current limit (I_{SW(LIM)}) the device immediately shuts off the disconnect switch, LED drivers and boost. The Fault flag is set. To re-enable the part the PWM pin needs to be pulled low for 32750 clock cycles.</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Input Disconnect current limit</td>
<td>Latched</td>
<td>Always</td>
<td>YES</td>
<td>The device is immediately shut off if the voltage across the input sense resistor is above the V_{VSENSE(trip)} threshold. To re-enable the device the PWM pin must be pulled low for 32750 clock cycles.</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Secondary OVP</td>
<td>Latched</td>
<td>Always</td>
<td>YES</td>
<td>Secondary overvoltage protection is used for open diode detection. When diode D1 opens, the SW pin voltage will increase until V_{OVP(sec)} is reached. This fault latches the IC. The input disconnect switch is disabled as well as the LED drivers. To re-enable the part the PWM pin needs to be pulled low for 32750 clock cycles.</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>LEDx Pin Short Protection</td>
<td>Auto-restart</td>
<td>Startup</td>
<td>NO</td>
<td>This fault prevents the part from starting-up if any of the LED pins are shorted. The part stops soft-start from starting while any of the LED pins are determined to be shorted. Once the short is removed, soft-start is allowed to start.</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>LEDx Pin open</td>
<td>Auto-restart</td>
<td>Normal operation</td>
<td>NO</td>
<td>When an LED pin is open the device will determine which LED pin is open by increasing the output voltage until OVP is reached. Any LED string not in regulation will be turned OFF. The device will then go back to normal operation by reducing the output voltage to the appropriate voltage level.</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>ISET Short Protection</td>
<td>Auto-restart</td>
<td>Always</td>
<td>NO</td>
<td>Fault occurs when the I_{ISET} current goes above 150% of max current. The boost will stop switching and the IC will disable the LED sinks until the fault is removed. When the fault is removed the IC will try to regulate to the preset LED current.</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>FSET Short Protection</td>
<td>Auto-restart</td>
<td>Always</td>
<td>YES</td>
<td>Fault occurs when the FSET current goes above 150% of max current. The boost will stop switching, Disconnect switch will turn off and the IC will disable the LED sinks until the fault is removed. When the fault is removed the IC will try to restart with soft-start.</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Over Voltage Protection</td>
<td>Auto-restart</td>
<td>Always</td>
<td>NO</td>
<td>Fault occurs when OVP pin exceeds V_{OVP(th)} threshold. The IC will immediately stop switching to try to reduce the output voltage. If the output voltage decreases then the IC will restart switching to regulate the output voltage.</td>
<td>STOP</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

1. Over Voltage Protection

2. Input Disconnect current limit

3. Secondary OVP

4. LEDx Pin Short Protection

5. ISET Short Protection

6. FSET Short Protection

7. Over Voltage Protection

8. Primary switch over current protection

9. Secondary switch current limit
<table>
<thead>
<tr>
<th>Fault Name</th>
<th>Type</th>
<th>Active</th>
<th>Fault Flag Set</th>
<th>Description</th>
<th>Boost</th>
<th>Disconnect Switch</th>
<th>LED Sink Drivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under Voltage Protection</td>
<td>Auto-restart</td>
<td>Always</td>
<td>YES</td>
<td>Device immediately shuts off boost and current sinks if the voltage at OVP pin is below $V_{UVP(th)}$. It will auto-restart once the fault is removed.</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>LED string short detection</td>
<td>Auto-restart</td>
<td>Always</td>
<td>NO</td>
<td>Fault occurs when the LED pin voltage exceeds 5.2 V. Once the LED string short fault is detected the LED string above the threshold will be removed from operation.</td>
<td>ON</td>
<td>ON</td>
<td>OFF for shorted pins. ON for all others.</td>
</tr>
<tr>
<td>Over Temperature Protection</td>
<td>Auto-restart</td>
<td>Always</td>
<td>NO</td>
<td>Fault occurs when the die temperature exceeds the over-temperature threshold, typically 170°C.</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>V_{IN} UVLO</td>
<td>Auto-restart</td>
<td>Always</td>
<td>NO</td>
<td>Fault occurs when V_{IN} drops below $UVLO_{fall}$, typically below 3.9 V. This fault resets all latched faults.</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>
Design Example

This section provides a method for selecting component values when designing an application using the A8519.

Assumptions: For the purposes of this example, the following are given as the application requirements:

- **VIN**: 10 to 14 V
- Quantity of LED channels, **#CHANNELS**: 4
- Quantity of series LEDs per channel, **#SERIESLEDS**: 10
- LED current per channel, **I_{LED}**: 60 mA
- LED **V_f** at 60 mA: 3.2V
- **f_{SW}**: 2 MHz
- PWM dimming frequency 200 Hz 1% Duty cycle

STEP 1: Connect LED strings to pins LED1, LED2, LED3, and LED4.

STEP 2: Determine the LED current set Resistor R_{SET}

\[
R_{SET} = \frac{(V_{SET} \cdot A_{SET})}{I_{LED}} = 12 \text{ k}\Omega
\]

An 11.8 kΩ resistor was chosen.

STEP 3a: Determining the OVP resistor.

The OVP resistor is connected between the OVP pin and the output voltage of the converter. The first step is to determine the maximum voltage based on the LED requirements. The regulation voltage for an LED pin (**V_{LEDs}**) of the A8519 is 850 mV. A 5 V headroom is added to give margin to the design due to noise and output voltage ripple.

\[
V_{OUT(ovp)} = \#SERIESLEDS \cdot V_f + V_{LED} + 5 \text{ V}
\]

\[
V_{OUT(ovp)} = 10 \cdot 3.2 \text{ V} + .850 \text{ V} + 5 \text{ V}
\]

\[
V_{OUT(ovp)} = 37.85 \text{ V}
\]

The OVP resistor is:

\[
R_{OVP} = \frac{(V_{OUT(ovp)} - V_{OVP(th)})}{I_{OVP(th)}}
\]

Where both I_{OVP(th)} and V_{OVP(th)} values are from the data sheet’s Electrical Characteristics table.

\[
R_{OVP} = \frac{37.85 - 8.3}{0.2} = 147.75 \text{ k}\Omega
\]

Choose a value of resistor that is higher value than the calculated R_{OVP}. In this case a value of 158 kΩ was selected. Below is the actual value of the minimum OVP trip level with the selected resistor.

\[
V_{OUT(ovp)} = 158 \text{ k}\Omega \cdot 0.2 \text{ mA} + 8.3 \text{ V} = 39.9 \text{ V}
\]

STEP 3b: At this point a quick check needs to be done to see if the conversion ratio is ok for the selected frequency. Where Vd is the boost diode forward voltage, minimum off time (t_{SW(off)}) is found in the data sheet.

\[
D_{\text{MAX(bound)}} = 1 - t_{SW(off)} \cdot f_{SW(\text{max})}
\]

\[
D_{\text{MAX(bound)}} = 1 - (85 \text{ ns} \cdot 2.2 \text{ MHz}) = 0.813
\]

\[
\text{Theoretical Max Vout} = \left[\frac{V_{\text{initial}}}{1 - D_{\text{MAX(bound)}}}\right] - Vd
\]

Vd is the voltage drop of the boost diode

\[
\text{Theoretical Max Vout} = \left[\frac{10 \text{ V}}{1 - 0.813}\right] - 0.4 = 53.1 \text{ V}
\]

Theoretical Max V_{OUT} value needs to greater than the value V_{OUT(ovp)}. If this is not the case, the switching frequency of the boost converter is going to have to be reduced to meet the maximum duty cycle requirements.

STEP 4: Inductor selection

The inductor needs to be chosen such that it can handle the necessary input current. In most applications due to stringent EMI requirements the system needs to operate in continues conduction mode throughout the whole input voltage range.

Step 4a: Determine the Duty Cycle
\[D_{\text{MAX}} = 1 - \frac{V_{\text{IN(min)}}}{(V_{\text{OUT(rop)}} + V_d)} \]

\[D_{\text{MAX}} = 1 - \left[\frac{10}{(39.9 + 0.4)} \right] = 0.75 \]

STEP 4b: Determine the maximum and minimum input current to the system. The minimum input current will dictate the inductor value. The maximum current rating will dictate the current rating of the inductor.

\[I_{\text{IN(max)}} = \frac{V_{\text{OUT(rop)}} \cdot I_{\text{OUT}}}{V_{\text{IN(max)}} \cdot \eta} \]

\[I_{\text{OUT}} = 4 \cdot 0.060 \text{A} = 0.240 \text{A} \]

A good approximation of efficiency \(\eta \) can be taken from the efficiency curves located on page 10. A value of 90% is a good starting approximation.

\[I_{\text{OUT}} = \frac{39.9 \cdot 240 \text{mA}}{10 \cdot 0.90} = 1.06 \text{A} \]

\[V_{\text{OUT}} = 10 \cdot 3.2 \text{V} + 0.85 \text{V} = 32.85 \text{V} \]

\[I_{\text{IN(max)}} = \frac{32.85 \cdot 240 \text{mA}}{14 \cdot 0.90} = 0.625 \text{A} \]

STEP 4c: Determining the inductor value. To ensure that the inductor operates in continuous conduction mode the value of the inductor needs to be set such that the \(\frac{1}{2} \) inductor ripple current is not greater than the average minimum input current. A first pass calculation for \(K_{\text{ripple}} \) should be 30% of the maximum inductor current.

\[\Delta I_L = I_{\text{IN(max)}} \cdot K_{\text{ripple}} \]

\[\Delta I_L = 1.06 \text{A} \cdot 0.3 = 0.318 \text{A} \]

\[L = \frac{(V_{\text{IN(min)}} \cdot D_{\text{MAX}})}{(\Delta I_L \cdot f_{SW})} \]

\[L = \frac{10 \text{V} \cdot 0.318 \text{A} \cdot 2 \text{MHz}}{0.75} = 11.79 \mu\text{H} \]

Double check to make sure that \(\frac{1}{2} \) current ripple is less than \(I_{\text{IN(min)}} \cdot \eta \)

\[I_{\text{IN(min)}} > \left(\frac{1}{2} \right) \Delta I_L \]

\[0.625 \text{A} > 0.159 \text{A} \]

A good inductor value to use would be 10 \(\mu \text{H} \):

STEP 4d: This step is used to verify that there is sufficient slope compensation for the inductor chosen. 6 \(\text{A/\mu s} \) slope compensation value is applied inside the IC at 2 MHz switching frequency. The slope compensation at any switching frequency can be determined by the following formula:

\[\text{Slope Comp} = \frac{6 \text{A/\mu s} \cdot f_{SW}}{2 \cdot 10^4} \]

Next insert the inductor value used in the design:

\[\Delta I_{L\text{used}} = \frac{V_{\text{OUT}} \cdot D_{\text{MAX}}}{L(\text{used}) \cdot f_{SW}} \]

\[\Delta I_{L\text{used}} = \frac{10 \text{V} \cdot 0.75}{10 \mu\text{H} \cdot 2.0 \text{MHz}} = 0.375 \text{A} \]

\[\text{Required Min Slope} = \frac{\Delta I_{L\text{used}} \cdot \Delta S \cdot 10^4}{f_{SW} \cdot (1 - D_{\text{MAX}})} \]

where \(\Delta S \) is taken from the following formula:

\[\Delta S = 1 - \frac{0.18}{D_{\text{MAX}}} \]

\[\Delta S = 0.76 \]

\[\text{Required Min Slope} = \frac{0.375 \cdot 0.76 \cdot 10^4}{2.0 \text{MHz} \cdot (1 - 0.75)} = 2.28 \text{A/\mu s} \]
If the required minimum slope is larger than the calculated slope compensation, the inductor value needs to be increased. Note that the slope compensation value is in A/μs the 1 x 10⁻⁶ is constant multiplier.

STEP 4e: Determining the inductor current rating.

\[
I_{L(max)} = I_{L(min)} + \left(\frac{1}{2}\right) \cdot \Delta I
\]

\[
I_{L(max)} = 1.06 A + \frac{0.375 A}{2} = 1.25 A
\]

Step 5: To determine the resistor value for a switching frequency refer to the graph in Figure 8. 10 KΩ resistor will result in a 2 MHz switching frequency.

Step 6: Choosing the proper output Schottky diode. The diode needs to be chosen for three characteristics when it is used in LED lighting circuitry. The most obvious two are the current rating of the diode and the reverse voltage rating. The reverse voltage rating should be larger than the maximum output \(V_{OVP}\). The peak current through the diode is:

\[
I_{D(pk)} = I_{L(min)} + \frac{\Delta I_{L(min)}}{2}
\]

\[
I_{D(pk)} = 1.06 + \frac{0.375 A}{2} = 1.25 A
\]

The other major factor in deciding the switching diode is the reverse current characteristic of the diode. This characteristic is especially important when PWM dimming is implemented. During PWM off time the boost converter is not switching. This results in a slow bleeding off of the output voltage due to leakage currents. \(I_R\) or reverse current can be a large contributor especially at high temperatures. The reverse current of the selected diode varies between 1 μA and 100 μA. For higher efficiency, use a small forward voltage drop diode. For lower high-frequency noise, choose a small junction capacitor diode.

STEP 7: Choosing the output capacitors. The output capacitors need to be chosen such that they can provide filtering for both the boost converter and for the PWM dimming function. The biggest factor that contributes to the size of the output capacitor is PWM dimming frequency and the PWM Duty Cycle. Another major contributor is leakage current \(I_{LK}\). This current is the combination of the OVP current sense as well as the reverse current of the boost diode. In this design the PWM dimming frequency is 200 Hz the minimum duty cycle is 0.02%. Typically the voltage variation on the output during PWM dimming needs to be less than 250 mV \(V_{COUT}\) so that no audible hum can be heard.

\[
C_{OCT} = I_{LK} \cdot \frac{(1 - \text{minimum dimming duty cycles})}{\text{PWM dimming frequency} \cdot V_{COUT}}
\]

The selected diode leakage current at a 150°C junction temperature and 30 V output is 100 μA, and the maximum leakage current through OVP pin is 1 μA. The total leakage current can be calculated as follows:

\[
I_{LK} = I_{LK(diode)} + I_{LK(oop)} = 100 \mu A + 1 \mu A = 101 \mu A
\]

\[
C_{OCT} = 101 \mu A \cdot \frac{(1 - 0.02)}{200 Hz \cdot 0.250 V} = 2 \mu F
\]

A capacitor larger than 2 μF should be selected. Due to degradation of capacitance at dc voltages, a 4.7 μF 50 V capacitor is a good choice.

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Value</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murata</td>
<td>4.7 μF 50 V</td>
<td>GRM21BC18H475KE11K</td>
</tr>
</tbody>
</table>

It is also necessary to note that, if a high dimming ratio of 5000:1 must be maintained at lower input voltages, then larger output capacitors will be needed. 4 X 4.7 μF 50 V X6S 0805 capacitors are chosen. 0805 size is selected to minimize possible audible noise.

The RMS current through the capacitor is given by:

\[
C_{OCT(max)} = I_{OCT} \cdot \frac{D_{MAX} + \frac{\Delta I_{L(max)}}{12}}{1 - D_{MAX}}
\]

\[
C_{OCT(max)} = 0.240 \cdot \frac{0.75 + \frac{0.375}{1.06}}{1 - 0.75} = 0.424 A
\]

The output capacitor needs to have a current rating of at least 0.424 A. The capacitors selected in this design 4 x 4.7 μF 50 V X6S 0805, have a combined current rating of more than 3 A current rating.
STEP 8: Selection of input capacitor. The input capacitor needs to be selected such that it provides good filtering of the input voltage waveform. A good rule of thumb is to set the input voltage ripple ΔV_{IN} to be 1% of the minimum input voltage. The minimum input capacitor requirements are as follows:

$$C_{IN} = \frac{\Delta I_{L_{(rms)}}}{8 \cdot f_{SW} \cdot \Delta V_{IN}}$$

$$C_{IN} = \frac{0.375 A}{8 \cdot 2 MHz \cdot 0.1 V} = 0.234 \mu F$$

$$C_{IN(rms)} = \frac{I_{OUT} \cdot \Delta I_{L_{(rms)}}}{(1 - D_{max}) \cdot \sqrt{2}} = 0.1 A$$

$$C_{IN(rms)} = \frac{0.240 A \cdot 0.375 A}{(1 - 0.75) \cdot \sqrt{2}} = 0.1 A$$

A good ceramic input capacitor with ratings of 50 V 2.2 µF or 50 V 4.7 µF will suffice for this application.

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Value</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murata</td>
<td>4.7 µF 50 V</td>
<td>GRM32ER71H475KA88L</td>
</tr>
<tr>
<td>Murata</td>
<td>2.2 µF 50 V</td>
<td>GRM31CR71H225KA88L</td>
</tr>
</tbody>
</table>

If long wires are used for the input, it is necessary to use a much larger input capacitor. A larger input capacitor is also required to have stable input voltage during line transients. Combinations of aluminum electrolytic and ceramic capacitors can be used.

STEP 9: Choosing the input disconnect switch components.

Set the input disconnect current limit to 4.25 A.

$$R_{SC} = \frac{0.11 V}{4.25 A} = 0.0259 \Omega$$

The R_{SC} chosen is .024 ohms. Therefore, the voltage drop across R_{SC} is:

$$V_{SC} = 4.25 A \cdot 0.024 \Omega = 0.102 V$$

$$R_{adj} = \frac{V_{SENSE(trip)} - V_{SC}}{I_{adj}}$$

$$R_{adj} = \frac{0.11 V - 0.102 V}{21.5 \mu A} = 372 \Omega$$

A value of 383 Ω was chosen for this design. The disconnect switch Q1 works as on or off. Therefore the R_{adj} value is not really critical.

For the input disconnect switch, AO4421 6.2 A / 60 V P-Channel MOSFET is selected.

To achieve proper operation at low dimming ratios, connect an RC filter to the VOUT pin. Use $R = 10 \, k\Omega$ and $C = 47 \, pF$.
Wide Input Voltage Range High Efficiency Fault Tolerant LED Driver

V_{in} = (4.5 to 40) \text{ V}

V_{\text{out}} > V_{in}

Figure 38: Schematic Showing Calculated Values from the Design Example Above
Wide Input Voltage Range High Efficiency Fault Tolerant LED Driver

A8519

Package Outline Drawings

For Reference Only – Not for Tooling Use

(Reference MO-153 ACT)
Dimensions in millimeters – NOT TO SCALE
Dimensions exclusive of mold flash, gate burns, and dambar protrusions
Exact case and lead configuration at supplier discretion within limits shown

Terminal #1 mark area
Reference land pattern layout (reference IPC7351 SOP6P640X110-21M): all pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout tolerances; when mounting on a multilayer PCB, thermal vias at the exposed thermal pad land can improve thermal dissipation (reference EIA/JEDEC Standard JESD51-5)
Exposed thermal pad (bottom surface)
Branding scale and appearance at supplier discretion

Figure 39: Package LP: 20-Pin, 0.65 mm Pin Pitch TSSOP with Exposed Thermal Pad
Figure 40: Package ET: 28-Pin QFN with Exposed Thermal Pad
Revision History

<table>
<thead>
<tr>
<th>Rev. No.</th>
<th>Rev. Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>September 10, 2014</td>
<td>Initial Release</td>
</tr>
<tr>
<td>1</td>
<td>October 24, 2014</td>
<td>Lowered minimum fSW (when using R_FSET) to 200 kHz and SYNC down to 260 kHz.</td>
</tr>
</tbody>
</table>