General Description

The 'LS574 is a high speed low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable ($\overline{\mathrm{OE}})$. The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

This device is functionally identical to the 'LS374 except for the pinouts.

Logic Symbol

$V_{C C}=\operatorname{Pin} 20$
GND $=\operatorname{Pin} 10$

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V

Operating Free Air Temperature Range DM74LS
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM74LS574			Units
		Min	Nom	Max	
V_{Cc}	Supply Voltage	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8	V
I_{OH}	High Level Output Current			-2.6	mA
I_{OL}	Low Level Output Current			24	mA
T_{A}	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW Dn to CP	$\begin{aligned} & 20 \\ & 20 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW Dn to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 15 \\ & 15 \end{aligned}$			ns

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ (\text { Note 2) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	2.4	3.3		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$			0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-400	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OZH }}$	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzL }}$	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			-20	$\mu \mathrm{A}$
l OS	Short Circuit (Note 3) Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	-30		-130	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}($ Note 4)			45	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second
Note 4: I_{CC} is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5 V .

Switching Characteristics

Symbol	Parameter	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \end{aligned}$		Units
		Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	35		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to On		$\begin{aligned} & 28 \\ & 28 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time		$\begin{aligned} & 28 \\ & 28 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time		$\begin{aligned} & 20 \\ & 25 \end{aligned}$	ns

Functional Description

The LS574 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Outputs Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ($\overline{\mathrm{OE}}$) LOW, the contents of the eight flip-flops are available at the outputs. When the $\overline{\mathrm{OE}}$ is HIGH, the outputs go to the high impedence state. Operation of the $\overline{\mathrm{OE}}$ input does not affect the state of the flip-flops.

Truth Table

Inputs		Outputs	
Dn		CP	OE
H	-	L	H
L	-	L	L
X	X	H	Z

$\mathrm{H}=\mathrm{HIGH}$ Voltage Leve
L = LOW Voltage Level
X = Immaterial
Z = High Impedance

Logic Diagram

\square

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Molded Dual-In-Line Package (N)
Order Number DM74LS574N
Package Number N20A
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

