March 1998

DM74LS574 Octal D Flip-Flop with 3-STATE Outputs

FAIRCHILD

DM74LS574 Octal D Flip-Flop with 3-STATE Outputs

General Description

The 'LS574 is a high speed low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable ($\overline{\text{OE}}$). The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

This device is functionally identical to the 'LS374 except for the pinouts.

Connection Diagram

Order Number DM74LS574WM or DM74LS574N See Package Number M20B or N20A

Logic Symbol

V_{CC} = Pin 20 GND = Pin 10

www.fairchildsemi.com

© 1998 Fairchild Semiconductor Corporation DS009815

Absolute Maximur	n Ratings (Note 1)
------------------	--------------------

Supply Voltage Input Voltage

 Operating Free Air Temperature Range

 DM74LS
 0°C to +70°C

 Storage Temperature Range
 -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM74LS574			Units
		Min	Nom	Max	1
V _{cc}	Supply Voltage	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			V
V _{IL}	Low Level Input Voltage			0.8	V
I _{он}	High Level Output Current			-2.6	mA
I _{OL}	Low Level Output Current			24	mA
T _A	Free Air Operating Temperature	0		70	°C
t _s (H)	Setup Time HIGH or LOW	20			ns
t _s (L)	Dn to CP	20			
t _h (H)	Hold Time HIGH or LOW	0			ns
t _h (L)	Dn to CP	0			
t _w (H)	CP Pulse Width	15			ns
t _w (L)	HIGH or LOW	15			

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
				(Note 2)		
Vi	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA			-1.5	V
V _{OH}	High Level Output	V_{CC} = Min, I_{OH} = Max,	2.4	3.3		V
	Voltage	$V_{IL} = Max, V_{IH} = Min$				
V _{OL}	Low Level Output	V_{CC} = Min, I_{OL} = Max,		0.35	0.5	
	Voltage	$V_{IL} = Max, V_{IH} = Min$				V
		I_{OL} = 12 mA, V_{CC} = Min		0.25	0.4	
I ₁	Input Current @ Max	$V_{CC} = Max, V_I = 7V$			0.1	mA
	Input Voltage					
IIH	High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V			20	μA
I _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-400	μA
I _{ozh}	Off-State Output Current	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 2.4V				
	with High Level Output	V _{IH} = Min, V _{IL} = Max			20	μA
	Voltage Applied					
I _{OZL}	Off-State Output Current	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 0.4V				
	with Low Level Output	V _{IH} = Min, V _{IL} = Max			-20	μA
	Voltage Applied					
l _{os}	Short Circuit (Note 3)	V _{CC} = Max	-30		-130	mA
	Output Current					
I _{cc}	Supply Current	V _{CC} = Max (Note 4)			45	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC} is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5V.

Switching Characteristics V _{cc} = +5.0V, T _A = +25°C				
Symbol	Parameter	R _L = C. =	Units	
		Min	Max	-
f _{max}	Maximum Clock Frequency	35		MHz
t _{PLH}	Propagation Delay		28	ns
t _{PHL}	CP to On		28	
t _{PZH}	Output Enable Time		28	ns
t _{PZL}			28	
t _{PHZ}	Output Disable Time		20	ns
t _{PLZ}			25	

Functional Description

The LS574 consists of eight edge-triggered flip-flops with in-dividual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Outputs Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When the $\overline{\text{OE}}$ is HIGH, the outputs go to the high impedence state. Operation of the $\overline{\text{OE}}$ input does not affect the state of the flip-flops.

Truth Table

Inp	outs	Out	puts
Dn	СР	OE	On
Н	~	L	н
L	~	L	L
Х	x	н	Z

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Z = High Impedance

www.fairchildsemi.com

www.fairchildsemi.com

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.