FDP51N25 / FDPF51N25
N-Channel UniFET™ MOSFET
250 V, 51 A, 60 mΩ

Features
- $R_{DS(on)} = 48$ mΩ (Typ.) @ $V_{GS} = 10$ V, $I_D = 25.5$ A
- Low Gate Charge (Typ. 55 nC)
- Low C_{rss} (Typ. 63 pF)

Applications
- PDP TV
- Lighting
- Uninterruptible Power Supply
- AC-DC Power Supply

Description
UniFET™ MOSFET is Fairchild Semiconductor’s high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

Absolute Maximum Ratings $T_C = 25^\circ$C unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>FDP51N25</th>
<th>FDPF51N25</th>
<th>FDPF51N25YDTU</th>
<th>FDPF51N25RDTU</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DSS}</td>
<td>Drain-Source Voltage</td>
<td>250</td>
<td>250</td>
<td>250*</td>
<td>250*</td>
<td>V</td>
</tr>
<tr>
<td>I_D</td>
<td>Drain Current - Continuous ($T_C = 25^\circ$C)</td>
<td>51</td>
<td>51</td>
<td>51*</td>
<td>51*</td>
<td>A</td>
</tr>
<tr>
<td>I_{DM}</td>
<td>Drain Current - Continuous ($T_C = 100^\circ$C)</td>
<td>30</td>
<td>30</td>
<td>30*</td>
<td>30*</td>
<td>A</td>
</tr>
<tr>
<td>V_{GSS}</td>
<td>Gate-Source voltage</td>
<td>±30</td>
<td>±30</td>
<td>±30</td>
<td>±30</td>
<td>V</td>
</tr>
<tr>
<td>E_{AS}</td>
<td>Single Pulsed Avalanche Energy</td>
<td>1111</td>
<td>1111</td>
<td>1111*</td>
<td>1111*</td>
<td>mJ</td>
</tr>
<tr>
<td>I_{AR}</td>
<td>Avalanche Current</td>
<td>51</td>
<td>51</td>
<td>51*</td>
<td>51*</td>
<td>A</td>
</tr>
<tr>
<td>E_{AR}</td>
<td>Repetitive Avalanche Energy</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>mJ</td>
</tr>
<tr>
<td>dv/dt</td>
<td>Peak Diode Recovery dv/dt</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>V/ns</td>
</tr>
<tr>
<td>P_D</td>
<td>Power Dissipation ($T_C = 25^\circ$C)</td>
<td>320</td>
<td>320</td>
<td>320*</td>
<td>320*</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>(Derate Above 25°C)</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>W/°C</td>
</tr>
<tr>
<td>T_J, T_{STG}</td>
<td>Operating and Storage Temperature Range</td>
<td>-55 to +150</td>
<td>-55 to +150</td>
<td>-55 to +150</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>T_L</td>
<td>Maximum Lead Temperature for Soldering, 1/8” from Case for 5 Seconds</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

*Drain current limited by maximum junction temperature.

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>FDP51N25</th>
<th>FDPF51N25</th>
<th>FDPF51N25YDTU</th>
<th>FDPF51N25RDTU</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{ujc}</td>
<td>Thermal Resistance, Junction-to-Case, Max.</td>
<td>0.39</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{uja}</td>
<td>Thermal Resistance, Junction-to-Ambient, Max.</td>
<td>62.5</td>
<td>62.5</td>
<td>62.5</td>
<td>62.5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Top Mark</th>
<th>Package</th>
<th>Packing Method</th>
<th>Reel Size</th>
<th>Tape Width</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP51N25</td>
<td>FDP51N25</td>
<td>TO-220</td>
<td>Tube</td>
<td>N/A</td>
<td>N/A</td>
<td>50 units</td>
</tr>
<tr>
<td>FDP51N25</td>
<td>FDP51N25</td>
<td>TO-220F</td>
<td>Tube</td>
<td>N/A</td>
<td>N/A</td>
<td>50 units</td>
</tr>
<tr>
<td>FDPF51N25YDTU</td>
<td>FDPF51N25</td>
<td>TO-220F (Y-formed)</td>
<td>Tube</td>
<td>N/A</td>
<td>N/A</td>
<td>50 units</td>
</tr>
<tr>
<td>FDPF51N25RDTU</td>
<td>FDPF51N25</td>
<td>TO-220F (LG-formed)</td>
<td>Tube</td>
<td>N/A</td>
<td>N/A</td>
<td>50 units</td>
</tr>
</tbody>
</table>

Electrical Characteristics \(T_C = 25^\circ C \) unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{BDSS})</td>
<td>Drain-Source Breakdown Voltage (V_{GS} = 0 , V, , I_D = 250 , \mu A, , T_J = 25 ^\circ C)</td>
<td>250</td>
<td>--</td>
<td>--</td>
<td>250</td>
<td>V</td>
</tr>
<tr>
<td>(\Delta V_{BDSS} / \Delta T_J)</td>
<td>Breakdown Voltage Temperature Coefficient (I_D = 250 , \mu A,) Referenced to 25(^\circ)C (V_{DD} = 250 , V, , V_{GS} = 0 , V)</td>
<td>--</td>
<td>0.25</td>
<td>--</td>
<td>V/°C</td>
<td></td>
</tr>
<tr>
<td>(I_{DSS})</td>
<td>Zero Gate Voltage Drain Current (V_{DS} = 250 , V, , V_{GS} = 0 , V)</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>(I_{GS})</td>
<td>Gate-Body Leakage Current, Forward (V_{GS} = 30 , V, , V_{DS} = 0 , V)</td>
<td>--</td>
<td>--</td>
<td>100</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>(I_{GSR})</td>
<td>Gate-Body Leakage Current, Reverse (V_{GS} = -30 , V, , V_{DS} = 0 , V)</td>
<td>--</td>
<td>--</td>
<td>-100</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>(V_{GS(th)})</td>
<td>Gate Threshold Voltage (V_{DS} = V_{GS}, , I_D = 250 , \mu A)</td>
<td>3.0</td>
<td>--</td>
<td>5.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(R_{ON})</td>
<td>Static Drain-Source On-Resistance (V_{GS} = 10 , V, , I_P = 25.5 , A)</td>
<td>--</td>
<td>0.048</td>
<td>0.060</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>(g_{FS})</td>
<td>Forward Transconductance (V_{DS} = 40 , V, , I_P = 25.5 , A)</td>
<td>--</td>
<td>43</td>
<td>--</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>(C_{iss})</td>
<td>Input Capacitance (V_{DS} = 25 , V, , V_{GS} = 0 , V, , f = 1 , MHz)</td>
<td>--</td>
<td>2620</td>
<td>3410</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>(C_{oss})</td>
<td>Output Capacitance (V_{GS} = 0 , V, , V_{DS} = 0 , V)</td>
<td>--</td>
<td>530</td>
<td>690</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>(C_{rss})</td>
<td>Reverse Transfer Capacitance (V_{GS} = 0 , V, , V_{DS} = 0 , V)</td>
<td>--</td>
<td>63</td>
<td>90</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>(t_{d(on)})</td>
<td>Turn-On Delay Time (V_{DD} = 125 , V, , I_D = 51 , A, , V_{GS} = 10 , V, , R_O = 25 , \Omega)</td>
<td>--</td>
<td>62</td>
<td>135</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{r})</td>
<td>Turn-On Rise Time (V_{DD} = 125 , V, , I_D = 51 , A, , V_{GS} = 10 , V, , R_O = 25 , \Omega)</td>
<td>--</td>
<td>465</td>
<td>940</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{d(off)})</td>
<td>Turn-Off Delay Time (V_{DD} = 125 , V, , I_D = 51 , A, , V_{GS} = 10 , V, , R_O = 25 , \Omega)</td>
<td>--</td>
<td>98</td>
<td>205</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{f})</td>
<td>Turn-Off Fall Time (V_{DD} = 125 , V, , I_D = 51 , A, , V_{GS} = 10 , V, , R_O = 25 , \Omega)</td>
<td>--</td>
<td>130</td>
<td>270</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(Q_{g})</td>
<td>Total Gate Charge (V_{DD} = 200 , V, , I_D = 51 , A, , V_{GS} = 0 , V) ((Note 4))</td>
<td>--</td>
<td>55</td>
<td>70</td>
<td>nC</td>
<td></td>
</tr>
<tr>
<td>(Q_{gs})</td>
<td>Gate-Source Charge (V_{DD} = 200 , V, , I_D = 51 , A, , V_{GS} = 0 , V) ((Note 4))</td>
<td>--</td>
<td>16</td>
<td>--</td>
<td>nC</td>
<td></td>
</tr>
<tr>
<td>(Q_{gd})</td>
<td>Gate-Drain Charge (V_{DD} = 200 , V, , I_D = 51 , A, , V_{GS} = 0 , V) ((Note 4))</td>
<td>--</td>
<td>27</td>
<td>--</td>
<td>nC</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Repetitive rating: pulse-width limited by maximum junction temperature.
2. \(L = 0.68 \, mH, \, I_D = 51 \, A, \, V_{DD} = 50 \, V, \, R_O = 25 \, \Omega \), starting \(T_J = 25 ^\circ C \).
3. \(I_D = 51 \, A, \, \frac{dI}{dt} = 200 \, A/\mu s \), \(V_{DD} \leq V_{BDSS} \), starting \(T_J = 25 ^\circ C \).
4. Essentially independent of operating temperature typical characteristics.

Drain-Source Diode Characteristics and Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_S)</td>
<td>Maximum Continuous Drain-Source Diode Forward Current</td>
<td>--</td>
<td>--</td>
<td>51</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>(I_{SM})</td>
<td>Maximum Pulsed Drain-Source Diode Forward Current</td>
<td>--</td>
<td>--</td>
<td>204</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>(V_{SD})</td>
<td>Drain-Source Diode Forward Voltage (V_{GS} = 0 , V, , I_S = 51 , A)</td>
<td>--</td>
<td>--</td>
<td>1.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(t_{rr})</td>
<td>Reverse Recovery Time (V_{GS} = 0 , V, , I_S = 51 , A, , \frac{dI}{dt} = 100 , A/\mu s)</td>
<td>--</td>
<td>178</td>
<td>--</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(Q_{tr})</td>
<td>Reverse Recovery Charge (V_{GS} = 0 , V, , I_S = 51 , A, , \frac{dI}{dt} = 100 , A/\mu s)</td>
<td>--</td>
<td>4.0</td>
<td>--</td>
<td>μC</td>
<td></td>
</tr>
</tbody>
</table>
Typical Performance Characteristics

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics
Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation

- **Breakdown Voltage Variation** vs. Temperature
- Graph showing breakdown voltage variation vs. temperature.
- Notes: 1. $V_{GS} = 0$ V
 2. $I_D = 250$ μA

Figure 8. On-Resistance Variation

- **On-Resistance Variation** vs. Temperature
- Graph showing on-resistance variation vs. temperature.
- Notes: 1. $V_{GS} = 10$ V
 2. $I_D = 25.5$ A

Figure 9-1. Maximum Safe Operating Area

- Maximum Safe Operating Area for FDP51N25
- Graph showing maximum safe operating area.
- Notes: 1. $T_J = 25$ °C
 2. $T_J = 150$ °C
 3. Single Pulse

Figure 9-2. Maximum Safe Operating Area

- Maximum Safe Operating Area for FDPF51N25 / FDPF51N25YDTU
- Graph showing minimum safe operating area.
- Notes: 1. $T_J = 25$ °C
 2. $T_J = 150$ °C
 3. Single Pulse

Figure 10. Maximum Drain Current

- Maximum Drain Current vs. Case Temperature
- Graph showing maximum drain current vs. case temperature.
- Notes: 1. $T_C = 25$ °C
 2. $T_C = 150$ °C
 3. Single Pulse
Typical Performance Characteristics (Continued)

Figure 11-1. Transient Thermal Response Curve for FDP51N25

![Graph showing transient thermal response curve for FDP51N25](image)

- Notes:
 1. \(Z_{\theta JC(t)} \) = 0.39 °C/W Max.
 2. Duty Factor, \(D = \frac{t_1}{t_2} \)
 3. \(T_{JM} - T_C = P_{DM} * Z_{\theta JC(t)} \)

- \(Z_{\theta JC(t)} \), Thermal Response
- \(t_1 \), Square Wave Pulse Duration [sec]

Figure 11-2. Transient Thermal Response Curve for FDPF51N25 / FDPF51N25YDTU

![Graph showing transient thermal response curve for FDPF51N25](image)

- Notes:
 1. \(Z_{\theta JC(t)} \) = 3.3 °C/W Max.
 2. Duty Factor, \(D = \frac{t_1}{t_2} \)
 3. \(T_{JM} - T_C = P_{DM} * Z_{\theta JC(t)} \)

- \(Z_{\theta JC(t)} \), Thermal Response
- \(t_1 \), Square Wave Pulse Duration [sec]
Figure 12. Gate Charge Test Circuit & Waveform

Figure 13. Resistive Switching Test Circuit & Waveforms

Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms
Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

- DUT
- V_DS
- I_SD
- L
- R_G
- V_GS
- V_DD

- Driver
- Same Type as DUT
- • dv/dt controlled by R_G
- • I_SD controlled by pulse period

- V_GS (Driver)
- D = Gate Pulse Width
- Gate Pulse Period
- → 10V

- I_SD (DUT)
- I_FM, Body Diode Forward Current
- I_RM, Body Diode Reverse Current
- dl/dt
- Body Diode Recovery dv/dt

- V_DS (DUT)
- V_SD
- V_DD

Body Diode Forward Voltage Drop

Body Diode Forward Voltage Drop
NOTES:

A. EXCEPT WHERE NOTED CONFORMS TO EIAJ SC91A.

B. DOES NOT COMPLY EIAJ STD. VALUE.

C. ALL DIMENSIONS ARE IN MILLIMETERS.

D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.

F. DRAWING FILE NAME: TO220N03REV1
NOTES:
A) REFERENCE JEDEC, TO-220, VARIATION AB
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS COMMON TO ALL PACKAGE SUPPLIERS EXCEPT WHERE NOTED [].
D) LOCATION OF MOLDED FEATURE MAY VARY (LOWER LEFT CORNER, LOWER CENTER AND CENTER OF THE PACKAGE)
E) DOES NOT COMPLY JEDEC STANDARD VALUE.
F) "A1" DIMENSIONS AS BELOW:
 SINGLE GAUGE = 0.51 - 0.61
 DUAL GAUGE = 1.10 - 1.45
G) DRAWING FILE NAME: TO220B03REV8
H) PRESENCE IS SUPPLIER DEPENDENT
I) SUPPLIER DEPENDENT MOLD LOCKING HOLES IN HEATSINK.
J) FAIRCHILD SEMICONDUCTOR
NOTES:

A. EXCEPT WHERE NOTED CONFORMS TO EIAJ SC91A.
B. DOES NOT COMPLY EIAJ STD. VALUE.
C. ALL DIMENSIONS ARE IN MILLIMETERS.
D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
F. OPTION 1 - WITH SUPPORT PIN HOLE.
 OPTION 2 - NO SUPPORT PIN HOLE.
G. DRAWING FILE NAME: TO220M03REV3
NOTES:

A. EXCEPT WHERE NOTED CONFORMS TO EIAJ SC91A.
B. DOES NOT COMPLY EIAJ STD. VALUE.
C. ALL DIMENSIONS ARE IN MILLIMETERS.
D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
F. DRAWING FILE NAME: TO220Q03REV1
<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>Active</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

- **AccuPower™**
- **AttitudeEngine™**
- **AWINDS™**
- **AX-CAP®**
- **BitSIC™**
- **Build It Now™**
- **CorePLUS™**
- **CorePOWER™**
- **CROSSVOLT™**
- **CTL™**
- **Current Transfer Logic™**
- **DEUXPEED™**
- **Dual Cool™**
- **EcoSpark®**
- **EfficientMax™**
- **ESBC™**
- **Fairchild®**
- **Fairchild Semiconductor®**
- **FACT Quiet Series™**
- **FACT™**
- **FAST™**
- **FastvCore™**
- **FETBench™**
- **FPS™**
- **F-PFS™**
- **FRFET™**
- **Global Power Resource™**
- **GreenBridge™**
- **Green FPS™**
- **Green FPS™ e-Series™**
- **Gmax™**
- **GOS™**
- **IntelliMAX™**
- **ISPLANAR™**
- **Making Smaller Speakers Sound Louder and Better™**
- **MegaBuck™**
- **MICROCOUPLER™**
- **MicroFET™**
- **MicroPak™**
- **MicroPak2™**
- **MillerDrive™**
- **MotionMax™**
- **MotionGrid™**
- **MicroLog™**
- **mWSaver®**
- **OptoHIT™**
- **OPTOLOGIC®**
- **OPTOPLANAR®**
- **PowerTrench®**
- **PowerXS™**
- **Programmable Active Droop™**
- **QFET™**
- **QS™**
- **Quiet Series™**
- **RapidConfigure™**
- **Saving our world, 1mW/W/kW at a time™**
- **SignalWise™**
- **SmartMax™**
- **SMART START™**
- **Solutions for Your Success™**
- **SPM®**
- **STEALTH™**
- **SuperFET™**
- **SuperSOT™-3**
- **SuperSOT™-6**
- **SuperSOT™-8**
- **SupreMOS®**
- **SyncFET™**
- **Sync-Lock™**
- **System General™**
- **TinyBoost™**
- **TinyBuck™**
- **TinyCalc™**
- **TinyLogic™**
- **TINYOPTO™**
- **TinyPower™**
- **TinyPWM™**
- **TinyWire™**
- **TranSIC™**
- **TriFault Detect™**
- **TRUECURRENT™**
- **µSerDes™**
- **UHC™**
- **Ultra FRFET™**
- **UniFET™**
- **VCX™**
- **VisualMax™**
- **VoltagePlus™**
- **XS™**
- **Xsens™**
- **仙童™**

Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FARICHLD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

2. A critical component in any component of a life support device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy, Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products bought from Unauthorized Sources are not genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>Active</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>