Ultra-Wideband, > 40dB Gain Adjust Range, Linear in dB
VARIABLE GAIN AMPLIFIER

FEATURES
• 710MHz SMALL-SIGNAL BANDWIDTH (G = +2V/V)
• 320MHz, 4VPp BANDWIDTH (G = +10V/V)
• 0.1dB GAIN FLATNESS to 135MHz
• 2500V/µS SLEW RATE
• > 40dB GAIN ADJUST RANGE
• HIGH GAIN ACCURACY: 20dB ±0.3dB
• HIGH OUTPUT CURRENT: ±90mA

APPLICATIONS
• AGC RECEIVERS with RSSI
• DIFFERENTIAL LINE RECEIVERS
• PULSE AMPLITUDE COMPENSATION
• VARIABLE ATTENUATORS
• VOLTAGE-TUNABLE ACTIVE FILTERS

DESCRIPTION
The VCA821 is a dc-coupled, wideband, linear in dB, continuously variable, voltage-controlled gain amplifier. It provides a differential input to single-ended conversion with a high-impedance gain control input used to vary the gain down 40dB from the nominal maximum gain set by the gain resistor (R_G) and feedback resistor (R_F).

The VCA821 internal architecture consists of two input buffers and an output current feedback amplifier stage integrated with a multiplier core to provide a complete variable gain amplifier (VGA) system that does not require external buffering. The maximum gain is set externally with two resistors, providing flexibility in designs. The maximum gain is intended to be set between 6dB and 32dB. Operating from ±5V supplies, the gain control voltage for the VCA821 adjusts the gain linearly in dB as the control voltage varies from 0V to +2V. For example, set at a maximum gain of 20dB, the VCA821 provides 20dB, at V_G = +2V, to less than -20dB at V_G = 0V. The VCA821 offers excellent gain linearity. For a 20dB maximum gain, and a gain-control input voltage varying between +1V and +2V, the gain does not deviate by more than ±0.3dB (maximum at +25°C).

VCA821 RELATED PRODUCTS

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLES</td>
<td>DUALS</td>
<td>GAIN ADJUST RANGE (dB)</td>
<td>INPUT NOISE (nV√/Hz)</td>
<td>SIGNAL BANDWIDTH (MHz)</td>
</tr>
<tr>
<td>VCA810</td>
<td>—</td>
<td>80</td>
<td>2.4</td>
<td>35</td>
</tr>
<tr>
<td>—</td>
<td>VCA2612</td>
<td>45</td>
<td>1.25</td>
<td>80</td>
</tr>
<tr>
<td>—</td>
<td>VCA2613</td>
<td>45</td>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>—</td>
<td>VCA2615</td>
<td>52</td>
<td>0.8</td>
<td>50</td>
</tr>
<tr>
<td>—</td>
<td>VCA2617</td>
<td>48</td>
<td>4.1</td>
<td>50</td>
</tr>
<tr>
<td>VCA820</td>
<td>—</td>
<td>40</td>
<td>8.2</td>
<td>150</td>
</tr>
<tr>
<td>VCA821</td>
<td>—</td>
<td>40</td>
<td>6.0</td>
<td>420</td>
</tr>
<tr>
<td>VCA822</td>
<td>—</td>
<td>40</td>
<td>8.2</td>
<td>150</td>
</tr>
<tr>
<td>VCA824</td>
<td>—</td>
<td>40</td>
<td>6.0</td>
<td>420</td>
</tr>
</tbody>
</table>

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

X2Y is a trademark of X2Y Attenuators LLC.
All other trademarks are the property of their respective owners.

Copyright © 2007–2008, Texas Instruments Incorporated
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION(1)

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>PACKAGE-LEAD</th>
<th>PACKAGE DESIGNATOR</th>
<th>SPECIFIED TEMPERATURE RANGE</th>
<th>PACKAGE MARKING</th>
<th>ORDERING NUMBER</th>
<th>TRANSPORT MEDIA, QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCA821</td>
<td>SO-14</td>
<td>D</td>
<td>–40°C to +85°C</td>
<td>VCA821ID</td>
<td>VCA821ID</td>
<td>Rail, 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VCA821IDR</td>
<td>Tape and Reel, 2500</td>
</tr>
<tr>
<td>VCA821</td>
<td>MSOP-10</td>
<td>DGS</td>
<td>–40°C to +85°C</td>
<td>BOR</td>
<td>VCA821DGST</td>
<td>Tape and Reel, 2500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VCA821DGSR</td>
<td>Tape and Reel, 2500</td>
</tr>
</tbody>
</table>

(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th></th>
<th>VCA821</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td>±6.5</td>
<td>V</td>
</tr>
<tr>
<td>Internal Power Dissipation</td>
<td></td>
<td>See Thermal Characteristics</td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>±V_S</td>
<td>V</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>–65 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Temperature (soldering, 10s)</td>
<td>+260</td>
<td>°C</td>
</tr>
<tr>
<td>Junction Temperature (T_J)</td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>Junction Temperature (T_J), Maximum Continuous Operation</td>
<td>+140</td>
<td>C</td>
</tr>
<tr>
<td>ESD Rating:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Body Model (HBM)</td>
<td>2000</td>
<td>V</td>
</tr>
<tr>
<td>Charge Device Model (CDM)</td>
<td>1000</td>
<td>V</td>
</tr>
<tr>
<td>Machine Model</td>
<td>200</td>
<td>V</td>
</tr>
</tbody>
</table>

D PACKAGE

SO-14
(TOP VIEW)

DGS PACKAGE

MSOP-10
(TOP VIEW)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

NC = No Connection
ELECTRICAL CHARACTERISTICS: \(V_S = \pm 5V \)

At \(A_{VMAX} = 20dB, \ R_F = 402\Omega, \ R_G = 80\Omega, \ R_L = 100\Omega \), unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>TYP</th>
<th>MIN/MAX OVER TEMPERATURE</th>
<th>UNITS</th>
<th>MIN/ MAX LEVEL(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>+25°C</td>
<td>+25°C</td>
<td>0°C to +70°C(2)</td>
</tr>
<tr>
<td>DC PERFORMANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small-Signal Bandwidth</td>
<td>G = 6dB, (V_G = 500mVpp)</td>
<td>710</td>
<td>MHz</td>
<td>typ</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>G = 20dB, (V_G = 500mVpp)</td>
<td>420</td>
<td>MHz</td>
<td>typ</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>G = 40dB, (V_G = 500mVpp)</td>
<td>170</td>
<td>MHz</td>
<td>typ</td>
<td>C</td>
</tr>
<tr>
<td>Large-Signal Bandwidth</td>
<td>G = 20dB, (V_G = 4Vpp)</td>
<td>320</td>
<td>MHz</td>
<td>typ</td>
<td>C</td>
</tr>
<tr>
<td>Gain Control Bandwidth</td>
<td>(V_G = 200mVpp)</td>
<td>330</td>
<td>240 235 235</td>
<td>MHz</td>
<td>min B</td>
</tr>
<tr>
<td>Bandwidth for 0.1dB Flatness</td>
<td>G = 20dB, (V_G = 200mVpp)</td>
<td>135</td>
<td>MHz</td>
<td>typ</td>
<td>C</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>G = 20dB, (V_G = 5V Step)</td>
<td>2500</td>
<td>1800 1700</td>
<td>1700</td>
<td>V/µs</td>
</tr>
<tr>
<td>Rise-and-Fall Time</td>
<td>G = 20dB, (V_G = 5V Step)</td>
<td>1.5</td>
<td>1.8 1.9 1.9</td>
<td>ns</td>
<td>max B</td>
</tr>
<tr>
<td>Settling Time to 0.01%</td>
<td>G = 20dB, (V_G = 5V Step)</td>
<td>11</td>
<td>ns</td>
<td>typ</td>
<td>C</td>
</tr>
<tr>
<td>Harmonic Distortion</td>
<td>2nd Harmonic (V_G = 2Vpp, f = 20MHz)</td>
<td>-66</td>
<td>-64 -64 -64</td>
<td>dBc</td>
<td>min B</td>
</tr>
<tr>
<td></td>
<td>3rd Harmonic (V_G = 2Vpp, f = 20MHz)</td>
<td>-63</td>
<td>-61 -61 -61</td>
<td>dBc</td>
<td>min B</td>
</tr>
<tr>
<td>Input Voltage Noise</td>
<td>f > 100kHz</td>
<td>6.0</td>
<td>n(V/\sqrt{Hz})</td>
<td>typ</td>
<td>C</td>
</tr>
<tr>
<td>Input Current Noise</td>
<td>f > 100kHz</td>
<td>2.6</td>
<td>p(V/\sqrt{Hz})</td>
<td>typ</td>
<td>C</td>
</tr>
<tr>
<td>GAIN CONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute Gain Error</td>
<td>(G_{MAX} = 20dB, \ V_G = 2V)</td>
<td>±0.1</td>
<td>±0.4 ±0.5 ±0.6</td>
<td>dB</td>
<td>max A</td>
</tr>
<tr>
<td></td>
<td>(V_{ref})</td>
<td>0.85</td>
<td>V</td>
<td>typ</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>(V_{inpp})</td>
<td>0.09</td>
<td>V</td>
<td>typ</td>
<td>C</td>
</tr>
<tr>
<td>Absolute Gain Error</td>
<td>(G_{MAX} = 20dB, \ V_G = 1V, \ (G = 18.06 \ dB))</td>
<td>±0.3</td>
<td>±0.4 ±0.5 ±0.6</td>
<td>dB</td>
<td>max A</td>
</tr>
<tr>
<td>Gain at (V_G = 0.2V) relative to max gain</td>
<td>-26</td>
<td>-24 -24 -23</td>
<td>dB</td>
<td>max A</td>
<td></td>
</tr>
<tr>
<td>Gain Control Bias Current</td>
<td>10</td>
<td>16</td>
<td>16.6 16.7</td>
<td>µA</td>
<td>max A</td>
</tr>
<tr>
<td>Average Gain Control Bias Current Drift</td>
<td>±12</td>
<td>±12</td>
<td>nA/°C</td>
<td>max B</td>
<td></td>
</tr>
<tr>
<td>Gain Control Input Impedance</td>
<td>1.5</td>
<td></td>
<td>0.6</td>
<td>MΩ</td>
<td></td>
</tr>
<tr>
<td>INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most Positive Common Mode Input Voltage</td>
<td>(R_L = 1000)</td>
<td>+1.6</td>
<td>+1.6 +1.6 +1.6</td>
<td>V</td>
<td>min A</td>
</tr>
<tr>
<td>Most Negative Common Mode Input Voltage</td>
<td>(R_L = 1000)</td>
<td>-2.1</td>
<td>-2.1 -2.1 -2.1</td>
<td>V</td>
<td>max A</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>(V_{CM} = 0µV)</td>
<td>80</td>
<td>65 60 60</td>
<td>dB</td>
<td>min A</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>Differential</td>
<td>0.9</td>
<td></td>
<td>0.6</td>
<td>MΩ</td>
</tr>
<tr>
<td>Common-Mode</td>
<td>1</td>
<td></td>
<td>2</td>
<td>MΩ</td>
<td></td>
</tr>
</tbody>
</table>

(1) Test levels: (A) 100% tested at +25°C. Over temperature limits set by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information.

(2) Junction temperature = ambient for +25°C tested specifications.

(3) Junction temperature = ambient at low temperature limit; junction temperature = ambient +23°C at high temperature limit for over temperature specifications.
ELECTRICAL CHARACTERISTICS: $V_S = \pm 5V$ (continued)

At $A_{V\text{MAX}} = 20\text{dB}$, $R_F = 402\Omega$, $R_G = 80\Omega$, $R_L = 100\Omega$, unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>V_{CA821}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TYP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$+25^\circ\text{C}$</td>
</tr>
<tr>
<td>OUTPUT Output Voltage Swing</td>
<td>$R_L = 1k\Omega$</td>
<td>± 3.9</td>
</tr>
<tr>
<td></td>
<td>$R_L = 100\Omega$</td>
<td>± 3.6</td>
</tr>
<tr>
<td>Output Current</td>
<td>$V_G = 0V$, $R_L = 100\Omega$</td>
<td>± 90</td>
</tr>
<tr>
<td>Output Impedance</td>
<td>$G = +10\text{V/V}, f > 100\text{kHz}$</td>
<td>0.01</td>
</tr>
</tbody>
</table>

POWER SUPPLY

Specified Operating Voltage	± 5	V typ C				
Minimum Operating Voltage	± 3.5	V typ C				
Maximum Operating Voltage	± 6	± 6	± 6	V max A		
Maximum Quiescent Current	$V_G = 1V$	34	35	35.5	36	mA max A
Minimum Quiescent Current	$V_G = 1V$	34	32.5	32	31.5	mA max A
Power-Supply Rejection Ratio	--PSRR	-68	-61	-59	-58	dB min A

THERMAL CHARACTERISTICS

Specified Operating Range D Package	-40 to $+85$	°C typ C	
Thermal Resistance θ_{JA}	Junction-to-Ambient	130	°C/W typ C
DGS MSOP-10	80	°C/W typ C	
D SO-14			

www.ti.com
TYPICAL CHARACTERISTICS: $V_S = \pm 5V$, DC Parameters

At $T_A = +25^\circ C$, $R_L = 100\Omega$, $V_O = +2V$, and V_{IN} is single-ended input on $+V_{IN}$ with $-V_{IN}$ at ground, unless otherwise noted.

MAXIMUM DIFFERENTIAL INPUT VOLTAGE vs R_G

$V_{IN,\text{MAX}}(V_{PP}) = 2 \times R_G \times I_{RG,\text{MAX}}(A_v)$

MAXIMUM GAIN ADJUST RANGE vs R_F

$A_{V,\text{MAX}}(V/V) = 2 \times \frac{R_F}{V_{IN}(V_{PP})} \times 2 \times I_{RG}(A_v)$

GAIN ERROR BAND vs GAIN CONTROL VOLTAGE

RECOMMENDED R_F vs $A_{V,\text{MAX}}$

NOTE: 3dB bandwidth varies with package type. See the Applications Information section for more details.
TYPICAL CHARACTERISTICS: $V_S = \pm 5V$, DC and Power-Supply Parameters

At $T_A = +25^\circ C$, $R_L = 100\Omega$, $V_O = +2V$, and $V_{IN} =$ single-ended input on $+V_{IN}$ with $-V_{IN}$ at ground, unless otherwise noted.

![Supply Current vs Control Voltage (AVMAX = 6dB)](image1)

![Supply Current vs Control Voltage (AVMAX = 20dB)](image2)

![Supply Current vs Control Voltage (AVMAX = 32dB)](image3)

![Typical DC Drift vs Temperature](image4)
TYPICAL CHARACTERISTICS: $V_S = \pm 5V$, $A_{\text{VMAX}} = 6dB$

At $T_A = +25^\circ C$, $R_L = 100\Omega$, $R_F = 453\Omega$, $R_G = 453\Omega$, $V_G = +2V$, $V_{\text{IN}} = $ single-ended input on $+V_{\text{IN}}$ with $-V_{\text{IN}}$ at ground, and SO-14 package, unless otherwise noted.

SMALL-SIGNAL FREQUENCY RESPONSE

![Small-Signal Frequency Response Graph](image)

LARGE-SIGNAL FREQUENCY RESPONSE

![Large-Signal Frequency Response Graph](image)

SMALL-SIGNAL PULSE RESPONSE

![Small-Signal Pulse Response Graph](image)

LARGE-SIGNAL PULSE RESPONSE

![Large-Signal Pulse Response Graph](image)

COMPOSITE VIDEO dG/dP

![Composite Video Gain Flatness Graph](image)

GAIN FLATNESS, DEVIATION FROM LINEAR PHASE

![Gain Flatness Graph](image)
TYPICAL CHARACTERISTICS: $V_S = \pm 5V, A_{VMAX} = 6dB$ (continued)

At $T_A = +25^\circ C, R_L = 100\Omega, R_F = 453\Omega, R_G = 453\Omega, V_G = +2V, V_{IN} = $ single-ended input on $+V_{IN}$ with $-V_{IN}$ at ground, and SO-14 package, unless otherwise noted.

HARMONIC DISTORTION vs FREQUENCY

- $A_{VMAX} = 6dB$
- $V_G = +2V$
- $V_O = 2V_{pp}$
- $R_L = 100\Omega$

HARMONIC DISTORTION vs LOAD RESISTANCE

- $A_{VMAX} = 6dB$
- $V_G = +2V$
- $V_O = 2V_{pp}$
- $f = 20MHz$

HARMONIC DISTORTION vs OUTPUT VOLTAGE

- Maximum Current Through R_G Limited

HARMONIC DISTORTION vs GAIN CONTROL VOLTAGE

- Maximum Current Through R_L Limited

TWO-TONE, 3RD-ORDER INTERMODULATION INTERCEPT vs GAIN CONTROL VOLTAGE

- Constant Input Voltage
- Constant Output Voltage
- $f = 20MHz$
- At 502 Matched Load
TYPICAL CHARACTERISTICS: $V_S = \pm 5\text{V}$, $A_{\text{VMAX}} = 6\text{dB}$ (continued)

At $T_A = +25^\circ\text{C}$, $R_L = 100\Omega$, $R_F = 453\Omega$, $R_G = 453\Omega$, $V_G = +2\text{V}$, V_{IN} = single-ended input on $+V_{\text{IN}}$ with $-V_{\text{IN}}$ at ground, and SO-14 package, unless otherwise noted.

![Gain vs Gain Control Voltage](image1)

Figure 23.

![Gain Control Frequency Response](image2)

Figure 24.

![Gain Control Pulse Response](image3)

Figure 25.

![Fully-Attenuated Response](image4)

Figure 26.

![Group Delay vs Gain Control Voltage](image5)

Figure 27.

![Group Delay vs Frequency](image6)

Figure 28.
TYPICAL CHARACTERISTICS: $V_S = \pm 5\text{V}, A_{V\text{MAX}} = 6\text{dB}$ (continued)

At $T_A = +25^\circ\text{C}$, $R_L = 100\Omega$, $R_F = 453\Omega$, $R_G = 453\Omega$, $V_G = +2\text{V}$, $V_{IN} = \text{single-ended input on } +V_{IN}$ with $-V_{IN}$ at ground, and SO-14 package, unless otherwise noted.

RECOMMENDED R_S vs CAPACITIVE LOAD

FREQUENCY RESPONSE vs CAPACITIVE LOAD

OUTPUT VOLTAGE NOISE DENSITY

INPUT CURRENT NOISE DENSITY

Figure 29.

Figure 30.

Figure 31.

Figure 32.
TYPICAL CHARACTERISTICS: $V_S = \pm 5V$, $A_{VMAX} = 20dB$

At $T_A = +25^\circ C$, $R_L = 100\Omega$, $R_F = 402\Omega$, $R_G = 800\Omega$, $V_G = +2V$, and V_{IN} = single-ended input on $+V_{IN}$ with $-V_{IN}$ at ground, unless otherwise noted.

SMALL-SIGNAL FREQUENCY RESPONSE

![Figure 33.]

LARGE-SIGNAL FREQUENCY RESPONSE

![Figure 34.]

SMALL-SIGNAL PULSE RESPONSE

![Figure 35.]

LARGE-SIGNAL PULSE RESPONSE

![Figure 36.]

GAIN FLATNESS, DEVIATION FROM LINEAR PHASE

![Figure 37.]

OUTPUT VOLTAGE NOISE DENSITY

![Figure 38.]
TYPICAL CHARACTERISTICS: $V_S = \pm 5V$, $A_{VMAX} = 20\,\text{dB}$ (continued)

At $T_A = +25^\circ\text{C}$, $R_L = 100\,\Omega$, $R_F = 402\,\Omega$, $R_G = 80\,\Omega$, $V_G = +2V$, and $V_{IN} = $ single-ended input on $+V_{IN}$ with $-V_{IN}$ at ground, unless otherwise noted.

Figure 39. HARMONIC DISTORTION vs FREQUENCY

Figure 40. HARMONIC DISTORTION vs LOAD RESISTANCE

Figure 41. HARMONIC DISTORTION vs OUTPUT VOLTAGE

Figure 42. HARMONIC DISTORTION vs GAIN CONTROL VOLTAGE

Figure 43. TWO-TONE, 3RD-ORDER INTERMODULATION INTERCEPT

Figure 44. TWO-TONE, 3RD-ORDER INTERMODULATION INTERCEPT vs GAIN CONTROL VOLTAGE
TYPICAL CHARACTERISTICS: $V_S = \pm 5V$, $A_{V\text{MAX}} = 20\text{dB}$ (continued)

At $T_A = +25^\circ\text{C}$, $R_L = 100\Omega$, $R_F = 402\Omega$, $R_G = 80\Omega$, $V_G = +2V$, and $V_{\text{IN}} = \text{single-ended input on } +V_{\text{IN}} \text{ with } -V_{\text{IN}} \text{ at ground}$, unless otherwise noted.

![GAIN vs GAIN CONTROL VOLTAGE](image)

![GAIN CONTROL FREQUENCY RESPONSE](image)

![GAIN CONTROL PULSE RESPONSE](image)

![OUTPUT VOLTAGE AND CURRENT LIMITATIONS](image)

![FULLY-ATTENUATED RESPONSE](image)

![I_{RG} LIMITED OVERDRIVE RECOVERY](image)
TYPICAL CHARACTERISTICS: \(V_S = \pm 5V, \; A_{VMAX} = 20dB \) (continued)

At \(T_A = +25^\circ C, \; R_L = 100\Omega, \; R_F = 402\Omega, \; R_G = 80\Omega, \; V_G = +2V, \) and \(V_{IN} = \) single-ended input on \(+V_{IN} \) with \(-V_{IN} \) at ground, unless otherwise noted.

Figure 51.

Figure 52.

Figure 53.
TYPICAL CHARACTERISTICS: $V_S = \pm 5V$, $A_{VMAX} = 32dB$

At $T_A = +25^\circ C$, $R_L = 100\Omega$, $R_F = 402\Omega$, $R_G = 18\Omega$, $V_G = +2V$, $V_{IN} = \text{single-ended input on } +V_{IN} \text{ with } -V_{IN} \text{ at ground, and SO-14 package, unless otherwise noted.}$

SMALL-SIGNAL FREQUENCY RESPONSE

![Small-Signal Frequency Response Graph](image1)

LARGE-SIGNAL FREQUENCY RESPONSE

![Large-Signal Frequency Response Graph](image2)

SMALL-SIGNAL PULSE RESPONSE

![Small-Signal Pulse Response Graph](image3)

LARGE-SIGNAL PULSE RESPONSE

![Large-Signal Pulse Response Graph](image4)

GAIN FLATNESS, DEVIATION FROM LINEAR PHASE

![Gain Flatness, Deviation from Linear Phase Graph](image5)

OUTPUT VOLTAGE NOISE DENSITY

![Output Voltage Noise Density Graph](image6)
TYPICAL CHARACTERISTICS: $V_S = \pm 5V$, $A_{VMAX} = 32dB$ (continued)

At $T_A = +25^\circ C$, $R_L = 100\Omega$, $R_F = 402\Omega$, $R_G = 18\Omega$, $V_G = +2V$, $V_{IN} = \text{single-ended input on } +V_{IN}$ with $-V_{IN}$ at ground, and SO-14 package, unless otherwise noted.

Figure 60. Harmonic Distortion vs Frequency

Figure 61. Harmonic Distortion vs Load Resistance

Figure 62. Harmonic Distortion vs Output Voltage

Figure 63. Harmonic Distortion vs Gain Control Voltage

Figure 64. Two-Tone, 3rd-Order Intermodulation Intercept vs Frequency

Figure 65. Two-Tone, 3rd-Order Intermodulation Intercept vs Gain Control Voltage

TYPICAL CHARACTERISTICS: $V_S = \pm 5V$, $A_{VMAX} = 32dB$

At $T_A = +25^\circ C$, $R_L = 100\Omega$, $R_F = 402\Omega$, $R_G = 18\Omega$, $V_G = +2V$, V_{IN} = single-ended input on $+V_{IN}$ with $-V_{IN}$ at ground, and SO-14 package, unless otherwise noted.
TYPICAL CHARACTERISTICS: $V_S = \pm 5V$, $A_{V\text{MAX}} = 32\text{dB}$ (continued)

At $T_A = +25^\circ\text{C}$, $R_L = 100\Omega$, $R_F = 402\Omega$, $R_G = 18\Omega$, $V_G = +2V$, $V_{IN} = \text{single-ended input on} +V_{IN}$ with $-V_{IN}$ at ground, and SO-14 package, unless otherwise noted.

GAIN vs GAIN CONTROL VOLTAGE

![GAIN vs GAIN CONTROL VOLTAGE](figure66)

GAIN CONTROL FREQUENCY RESPONSE

![GAIN CONTROL FREQUENCY RESPONSE](figure67)

GAIN CONTROL PULSE RESPONSE

![GAIN CONTROL PULSE RESPONSE](figure68)

FULLY ATTENUATED RESPONSE

![FULLY ATTENUATED RESPONSE](figure69)

I_{RG} LIMITED OVERDRIVE RECOVERY

![I_{RG} LIMITED OVERDRIVE RECOVERY](figure70)

OUTPUT LIMITED OVERDRIVE RECOVERY

![OUTPUT LIMITED OVERDRIVE RECOVERY](figure71)
TYPICAL CHARACTERISTICS: $V_S = \pm 5V$, $A_{\text{VMAX}} = 32\text{dB}$ (continued)

At $T_A = +25^\circ\text{C}$, $R_L = 100\Omega$, $R_F = 402\Omega$, $R_G = 18\Omega$, $V_G = +2V$, V_{IN} is single-ended input on $+V_{\text{IN}}$ with $-V_{\text{IN}}$ at ground, and SO-14 package, unless otherwise noted.

Figure 72.

Figure 73.
APPLICATION INFORMATION

WIDEBAND VARIABLE GAIN AMPLIFIER OPERATION

The VCA821 provides an exceptional combination of high output power capability with a wideband, greater than 40dB gain adjust range, linear in dB variable gain amplifier. The VCA821 input stage places the transconductance element between two input buffers, using the output currents as the forward signal. As the differential input voltage rises, a signal current is generated through the gain element. This current is then mirrored and gained by a factor of two before reaching the multiplier. The other input of the multiplier is the voltage gain control pin, V_G. Depending on the voltage present on V_G, up to two times the gain current is provided to the transimpedance output stage. The transimpedance output stage is a current-feedback amplifier providing high output current capability and high slew rate, 2500V/µs. This exceptional full-power performance comes at the price of relatively high quiescent current (34mA), but low input voltage noise for this type of architecture (6nV/√Hz).

Figure 74 shows the dc-coupled, gain of +10V/V, dual power-supply circuit used as the basis of the ±5V Electrical Characteristics and Typical Characteristics. For test purposes, the input impedance is set to 50Ω with a resistor to ground and the output impedance is set to 50Ω with a series output resistor. Voltage swings reported in the Electrical Characteristics table are taken directly at the input and output pins, while output power (dBm) is at the matched 50Ω load. For the circuit in Figure 74, the total effective load is 100Ω || 1kΩ. Note that for the SO-14 package, there is a voltage reference pin, V_REF (pin 9). For the SO-14 package, this pin must be connected to ground through a 20Ω resistor in order to avoid possible oscillations of the output stage. In the MSOP-10 package, this pin is internally connected and does not require such precaution. An X2Y™ capacitor has been used for power-supply bypassing. The combination of low inductance, high resonance frequency, and integration of three capacitors in one package (two capacitors to ground and one across the supplies) enables the VCA821 to achieve the low second-harmonic distortion reported in the Electrical Characteristics table. More information on how the VCA821 operates can be found in the Operating Suggestions section.

![Figure 74. DC-Coupled, AVMAX = 20dB, Bipolar Supply Specification and Test Circuit](image-url)
DIFFERENCE AMPLIFIER

Because both inputs of the VCA821 are high-impedance, a difference amplifier can be implemented without any major problem. Figure 75 shows this implementation. This circuit provides excellent common-mode rejection ratio (CMRR) as long as the input is within the CMRR range of \(-2.1\)V to \(+1.6\)V. Note that this circuit does not make use of the gain control pin, \(V_G\). Also, it is recommended to choose \(R_S\) such that the pole formed by \(R_S\) and the parasitic input capacitance does not limit the bandwidth of the circuit. Figure 76 shows the common-mode rejection ratio for this circuit implemented in a gain of 20dB for \(V_G = +2\)V. Note that because the gain control voltage is fixed and is normally set to \(+2\)V, the feedback element can be reduced in order to increase the bandwidth. When reducing the feedback element, make sure that the VCA821 is not limited by common-mode input voltage, the current flowing through \(R_G\), or any other limitation described in this data sheet.

![Figure 75. Difference Amplifier](image)

![Figure 76. Common-Mode Rejection Ratio](image)

DIFFERENTIAL EQUALIZER

If the application requires frequency shaping (the transition from one gain to another), the VCA821 can be used advantageously because its architecture allows the application to isolate the input from the gain setting elements. Figure 77 shows an implementation of such a configuration. The transfer function is shown in Equation 1.

\[
G = 2 \times \frac{R_F}{R_G} \times \frac{1 + sR_G C_1}{1 + sR_1 C_1}
\]

(1)

![Figure 77. Differential Equalizer](image)

This transfer function has one pole, \(P_1\) (located at \(R_G C_1\)), and one zero, \(Z_1\) (located at \(R_1 C_1\)). When equalizing an RC load, \(R_G\) and \(C_1\), compensate the pole added by the load located at \(R_1 C_1\) with the zero \(Z_1\). Knowing \(R_L\), \(C_L\), and \(R_G\) allows the user to select \(C_1\) as a first step and then calculate \(R_1\). Using \(R_L = 75\Omega\), \(C_L = 100\)pF and wanting the VCA821 to operate at a gain of \(+2\)V/V, which gives \(R_F = R_G = 453\Omega\), allows the user to select \(C_1 = 15.5\)pF to ensure a positive value for the resistor \(R_1\). With all these values known, to achieve greater than 300MHz bandwidth, \(R_1\) can be calculated to be 20Ω. Figure 78 shows the frequency response for both the initial, unequalized frequency response and the resulting equalized frequency response.

![Figure 78. Differential Equalization of an RC Load](image)
DIFFERENTIAL CABLE EQUALIZER

A differential cable equalizer can easily be implemented using the VCA821. An example of a cable equalization for 100 feet of Belden cable 1694F is illustrated in Figure 78, with Figure 79 showing the result for this implementation. This implementation has a maximum error of 0.2dB from dc to 70MHz.

Note that this implementation shows the cable attenuation side-by-side with the equalization in the same plot. For a given frequency, the equalization function realized with the VCA821 matches the cable attenuation. The circuit in Figure 80 is a driver circuit. To implement a receiver circuit, the signal is received differentially between the +V_IN and −V_IN inputs.

AGC LOOP

In the typical AGC loop shown in Figure 81, the OPA695 follows the VCA821 to provide 40dB of overall gain. The output of the OPA695 is rectified and integrated by an OPA820 to control the gain of the VCA821. When the output level exceeds the reference voltage (V_REF), the integrator ramps down reducing the gain of the AGC loop. Conversely, if the output is too small, the integrator ramps up increasing the net gain and the output voltage.

Figure 79. Cable Attenuation versus Equalizer Gain

Figure 80. Differential Cable Equalizer
DESIGN-IN TOOLS

DEMONSTRATION BOARDS

Two printed circuit boards (PCBs) are available to assist in the initial evaluation of circuit performance using the VCA821 in its two package options. Both of these are offered free of charge as unpopulated PCBs, delivered with a user’s guide. The summary information for these fixtures is shown in **Table 1**.

Table 1. EVM Ordering Information

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>PACKAGE</th>
<th>BOARD PART NUMBER</th>
<th>LITERATURE REQUEST NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCA821ID</td>
<td>SO-14</td>
<td>DEM-VCA-SO-1B</td>
<td>SBOU050</td>
</tr>
<tr>
<td>VCA821IDGS</td>
<td>MSOP-10</td>
<td>DEM-VCA-MSOP-1A</td>
<td>SBOU051</td>
</tr>
</tbody>
</table>

The demonstration fixtures can be requested at the Texas Instruments web site (www.ti.com) through the VCA821 product folder.

MACROMODELS AND APPLICATIONS SUPPORT

Computer simulation of circuit performance using SPICE is often useful when analyzing the performance of analog circuits and systems. This principle is particularly true for video and RF amplifier circuits where parasitic capacitance and inductance can play a major role in circuit performance. A **SPICE model** for the VCA821 is available through the TI web page. The applications group is also available for design assistance. The models available from TI predict typical small-signal ac performance, transient steps, dc performance, and noise under a wide variety of operating conditions. The models include the noise terms found in the electrical specifications of the relevant product data sheet.

OPERATING SUGGESTIONS

Operating the VCA821 optimally for a specific application requires trade-offs between bandwidth, input dynamic range and the maximum input voltage, the maximum gain of operation and gain, output dynamic range and the maximum input voltage, the package used, loading, and layout and bypass recommendations. The **Typical Characteristics** have been defined to cover as much ground as possible to describe the VCA821 operation. There are four sections in the **Typical Characteristics**:

- $V_S = \pm 5\text{V}$ DC Parameters and $V_S = \pm 5\text{V}$ DC and Power-Supply Parameters, which include dc operation and the intrinsic limitation of a VCA821 design
- $V_S = \pm 5\text{V}$, $A_{\text{VMAX}} = 6\text{dB}$ Gain of 6dB Operation
- $V_S = \pm 5\text{V}$, $A_{\text{VMAX}} = 20\text{dB}$ Gain of 20dB Operation
- $V_S = \pm 5\text{V}$, $A_{\text{VMAX}} = 32\text{dB}$ Gain of 32dB Operation

Where the Typical Characteristics describe the actual performance that can be achieved by using the amplifier properly, the following sections describe in detail the trade-offs needed to achieve this level of performance.
There are no differences between the packages in the recommended values for the gain and feedback resistors. However, the bandwidth for the VCA821DGS (MSOP-10 package) is lower than the bandwidth for the VCA821ID (SO-14 package). This difference is true for all gains, but especially true for gains greater than 5V/V, as can be seen in Figure 83 and Figure 84. Note that the scale must be changed to a linear scale to view the details.
MAXIMUM GAIN OF OPERATION

This section describes the use of the VCA821 in a fixed-gain application in which the V_G control pin is set at $V_G = +1V$. The tradeoffs described here are with bandwidth, gain, and output voltage range.

In the case of an application that does not make use of the V_{GAIN}, but requires some other characteristic of the VCA821, the R_G resistor must be set such that the maximum current flowing through the resistance I_{RG} is less than $\pm 2.6mA$ typical, or $5.2mA_{\text{PP}}$ as defined in the Electrical Characteristics table, and must follow Equation 2.

$$I_{RG} = \frac{V_{\text{OUT}}}{A_{VMAX} \times R_G}$$

(2)

As Equation 2 illustrates, once the output dynamic range and maximum gain are defined, the gain resistor is set. This gain setting in turn affects the bandwidth, because in order to achieve the gain (and with a set gain element), the feedback element of the output stage amplifier is set as well. Keeping in mind that the output amplifier of the VCA821 is a current-feedback amplifier, the larger the feedback element, the lower the bandwidth because the feedback resistor is the compensation element.

Limiting the discussion to the input voltage only and ignoring the output voltage and gain, Figure 1 illustrates the tradeoff between the input voltage and the current flowing through the gain resistor.

OUTPUT CURRENT AND VOLTAGE

The VCA821 provides output voltage and current capabilities that are unsurpassed in a low-cost monolithic VCA. Under no-load conditions at $+25^\circ\text{C}$, the output voltage typically swings closer than 1V to either supply rails; the $+25^\circ\text{C}$ swing limit is within 1.2V of either rails. Into a 15Ω load (the minimum tested load), it is tested to deliver more than $\pm 90\text{mA}$.

The specifications described above, though familiar in the industry, consider voltage and current limits separately. In many applications, it is the voltage x current, or $V-I$ product, that is more relevant to circuit operation. Refer to the Output Voltage and Current Limitations plot (Figure 48) in the Typical Characteristics. The X- and Y-axes of this graph show the zero-voltage output current limit and the zero-current output voltage limit, respectively. The four quadrants give a more detailed view of the VCA821 output drive capabilities, noting that the graph is bounded by a Safe Operating Area of 1W maximum internal power dissipation. Superimposing resistor load lines onto the plot shows that the VCA821 can drive $\pm 2.5\text{V}$ into 25Ω or $\pm 3.5\text{V}$ into 50Ω without exceeding the output capabilities or the 1W dissipation limit. A 10Ω load line (the standard test circuit load) shows the full $\pm 3.9\text{V}$ output swing capability, as shown in the Typical Characteristics.

The minimum specified output voltage and current over-temperature are set by worst-case simulations at the cold temperature extreme. Only at cold startup do the output current and voltage decrease to the numbers shown in the Electrical Characteristics tables. As the output transistors deliver power, the respective junction temperatures increase, thereby increasing the available output voltage swing and output current.

In steady-state operation, the available output voltage and current are always greater than the temperature shown in the over-temperature specifications because the output stage junction temperatures are higher than the specified operating ambient.

INPUT VOLTAGE DYNAMIC RANGE

The VCA821 has a input dynamic range limited to $+1.6\text{V}$ and -2.1V. Increasing the input voltage dynamic range can be done by using an attenuator network on the input. If the VCA821 is trying to regulate the amplitude at the output, such as in an AGC application, the input voltage dynamic range is directly proportional to Equation 3.

$$V_{\text{IN(PP)}} = R_G \times I_{RG(PP)}$$

(3)

As such, for unity-gain or under-attenuated conditions, the input voltage must be limited to the CMIR of $\pm 1.6\text{V}$ ($3.2V_{\text{PP}}$) and the current (I_{RG}) must flow through the gain resistor, $\pm 2.6\text{mA}$ ($5.2mA_{\text{PP}}$). This configuration sets a minimum value for R_E such that the gain resistor must be greater than Equation 4.

$$R_{GMIN} = \frac{3.2V_{\text{PP}}}{5.2mA_{\text{PP}}} = 615.4\Omega$$

(4)

Values lower than 615.4Ω are gain elements that result in reduced input range, as the dynamic input range is limited by the current flowing through the gain resistor $R_G (I_{RG})$. If the I_{RG} current limits the performance of the circuit, the input stage of the VCA821 goes into overdrive, resulting in limited output voltage range. Such I_{RG}-limited overdrive conditions are shown in Figure 50 for the gain of 20dB and Figure 70 for the 32dB gain.
OUTPUT VOLTAGE DYNAMIC RANGE
With its large output current capability and its wide output voltage swing of \(\pm 3.9V \) typical on 100Ω load, it is easy to forget other types of limitations that the VCA821 can encounter. For these limitations, careful analysis must be done to avoid input stage limitation: either voltage or \(I_{RG} \) current. Note that if control pin \(V_G \) varies, the gain limitation may affect other aspects of the circuit.

BANDWIDTH
The output stage of the VCA821 is a wideband current-feedback amplifier. As such, the feedback resistance is the compensation of the last stage. Reducing the feedback element and maintaining the gain constant limits the useful range of \(I_{RG} \) and therefore, reduces the gain adjust range. For a given gain, reducing the gain element limits the maximum achievable output voltage swing.

OFFSET ADJUSTMENT
As a result of the internal architecture used on the VCA821, the output offset voltage originates from the output stage and from the input stage and multiplier core. Figure 85 shows how to compensate both sources of the output offset voltage. Use this procedure to compensate the output offset voltage: starting with the output stage compensation, set \(V_G = -1V \) to eliminate all offset contribution of the input stage and multiplier core. Adjust the output stage offset compensation potentiometer. Finally, set \(V_G = +1V \) to the maximum gain and adjust the input stage and multiplier core potentiometer. This procedure effectively eliminates all offset contribution at the maximum gain. Because adjusting the gain modifies the contribution of the input stage and the multiplier core, some residual output offset voltage remains.

![Diagram of adjusting input and output voltage sources](image-url)

Figure 85. Adjusting the Input and Output Voltage Sources
NOISE

The VCA821 offers 6nV/√Hz input-referred voltage noise density at a gain of 20dB and 2.6pA/√Hz input-referred current noise density. The input-referred voltage noise density considers that all noise terms (except the input current noise but including the thermal noise of both the feedback resistor and the gain resistor) are expressed as one term.

\[
e_\text{o} = A_{\text{VMAX}} \times \sqrt{\frac{2}{\pi} \left(R_\text{S} \times i_\text{n} \right)^2 + e_\text{n}^2 + 2 \times 4kT R_\text{S}}
\]

(5)

This model is formulated in Equation 5 and Figure 86. A more complete model is shown in Figure 87. For additional information on this model and the actual modeled noise terms, please contact the High-Speed Product Application Support team at www.ti.com.

Figure 86. Simple Noise Model

Figure 87. Full Noise Model
THERMAL ANALYSIS

The VCA821 does not require heatsinking or airflow in most applications. The maximum desired junction temperature sets the maximum allowed internal power dissipation as described in this section. In no case should the maximum junction temperature be allowed to exceed +150°C.

Operating junction temperature \(T_J \) is given by Equation 6:

\[
T_J = T_A + P_D \times \theta_{JA}
\]

(6)

The total internal power dissipation \(P_D \) is the sum of quiescent power \(P_{DO} \) and additional power dissipated in the output stage \(P_{DL} \) to deliver load power. Quiescent power is simply the specified no-load supply current times the total supply voltage across the part. \(P_{DL} \) depends on the required output signal and load; for a grounded resistive load, however, it is at a maximum when the output is fixed at a voltage equal to one-half of either supply voltage (for equal bipolar supplies). Under this worst-case condition, \(P_{DL} = V_S^2/(4 \times R_L) \), where \(R_L \) is the resistive load.

Note that it is the power in the output stage and not in the load that determines internal power dissipation. As a worst-case example, compute the maximum \(T_J \) using a VCA821ID (SO-14 package) in the circuit of Figure 74 operating at maximum gain and at the maximum specified ambient temperature of +85°C.

\[
P_D = 10V(36mA) + 5^2/(4 \times 100\Omega) = 422.5mW
\]

(7)

Maximum \(T_J = +85^\circ C + (0.443W \times 80^\circ C/W) = 120.5^\circ C
\]

(8)

This maximum operating junction temperature is well below most system level targets. Most applications should be lower because an absolute worst-case output stage power was assumed in this calculation of \(V_{CC}/2 \), which is beyond the output voltage range for the VCA821.

BOARD LAYOUT

Achieving optimum performance with a high-frequency amplifier such as the VCA821 requires careful attention to printed circuit board (PCB) layout parasitics and external component types. Recommendations to optimize performance include:

a) **Minimize parasitic capacitance** to any ac ground for all of the signal I/O pins. This recommendation includes the ground pin (pin 2). Parasitic capacitance on the output can cause instability: on both the inverting input and the noninverting input, it can react with the source impedance to cause unintentional band limiting. To reduce unwanted capacitance, a window around the signal I/O pins should be opened in all of the ground and power planes around those pins. Otherwise, ground and power planes should be unbroken elsewhere on the board. Place a small series resistance (greater than 25Ω) with the input pin connected to ground to help decouple package parasitics.

b) **Minimize the distance** (less than 0.25 inches, or 6.3mm) from the power-supply pins to high-frequency 0.1µF decoupling capacitors. At the device pins, the ground and power plane layout should not be in close proximity to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling capacitors. The power-supply connections should always be decoupled with these capacitors. Larger (2.2µF to 6.8µF) decoupling capacitors, effective at lower frequencies, should also be used on the main supply pins. These capacitors may be placed somewhat farther from the device and may be shared among several devices in the same area of the PCB.

c) **Careful selection and placement** of external components preserve the high-frequency performance of the VCA821. Resistors should be a very low reactance type. Surface-mount resistors work best and allow a tighter overall layout. Metal-film and carbon composition, axially-leded resistors can also provide good high-frequency performance. Again, keep the leads and PCB trace length as short as possible. Never use wire-wound type resistors in a high-frequency application. Because the output pin is the most sensitive to parasitic capacitance, always position the series output resistor, if any, as close as possible to the output pin. Other network components, such as inverting or non-inverting input termination resistors, should also be placed close to the package.

d) **Connections to other wideband devices** on the board may be made with short direct traces or through onboard transmission lines. For short connections, consider the trace and the input to the next device as a lumped capacitive load. Relatively wide traces (50mils to 100mils, or 1.27mm to 2.54mm) should be used, preferably with ground and power planes opened up around them.

e) **Socketing a high-speed part like the VCA821 is not recommended.** The additional lead length and pin-to-pin capacitance introduced by the socket can create an extremely troublesome parasitic network, which can make it almost impossible to achieve a smooth, stable frequency response. Best results are obtained by soldering the VCA821 onto the board.
INPUT AND ESD PROTECTION

The VCA821 is built using a very high-speed complementary bipolar process. The internal junction breakdown voltages are relatively low for these very small geometry devices. These breakdowns are reflected in the Section 2 table.

All pins on the VCA821 are internally protected from ESD by means of a pair of back-to-back reverse-biased diodes to either power supply, as shown in Figure 88. These diodes begin to conduct when the pin voltage exceeds either power supply by about 0.7V. This situation can occur with loss of the amplifier power supplies while a signal source is still present. The diodes can typically withstand a continuous current of 30mA without destruction. To ensure long-term reliability, however, diode current should be externally limited to 10mA whenever possible.

![Figure 88. Internal ESD Protection](image-url)
Revision History

Changes from Revision A (August 2008) to Revision B

<table>
<thead>
<tr>
<th>Changes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revised second paragraph in Wideband Variable Gain Amplifier Operation section describing pin 9</td>
<td>19</td>
</tr>
</tbody>
</table>

Changes from Original (December 2007) to Revision A

<table>
<thead>
<tr>
<th>Changes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed storage temperature range rating in Absolute Maximum Ratings table from –40°C to +125°C to –65°C to +125°C</td>
<td>2</td>
</tr>
</tbody>
</table>
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCA821ID</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>VCA821ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCA8211DGST</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGS</td>
<td>10</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>BOR</td>
<td></td>
</tr>
<tr>
<td>VCA8211DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>VCA821ID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a “~” will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

Reel Dimensions

Dimensions:
- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- K0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P1: Pitch between successive cavity centers

Quadrant Assignments for Pin 1 Orientation in Tape

Pocket Quadrants

Sprocket Holes

User Direction of Feed

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCA821IDGST</td>
<td>VSSOP</td>
<td>DGS</td>
<td>10</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>VCA821IDR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCA821IDGST</td>
<td>VSSOP</td>
<td>DGS</td>
<td>10</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>VCA821IDR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
</tbody>
</table>

*All dimensions are nominal
MECHANICAL DATA

DGS (S–PDSO–G10) PLASTIC SMALL–OUTLINE PACKAGE

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. Falls within JEDEC MO–187 variation BA.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
MECHANICAL DATA

D (R-PDSO-G14) PLASTIC SMALL OUTLINE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AB.

Texas Instruments
www.ti.com
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products	Applications
Audio | www.ti.com/audio
Amplifiers | www.ti.com/automotive
Data Converters | www.ti.com/communications
DLP® Products | www.ti.com/computers
DSP | www.ti.com/consumer-apps
Clocks and Timers | www.ti.com/energy
Interface | www.ti.com/industrial
Logic | www.ti.com/medical
Power Mgmt | www.ti.com/security
Microcontrollers | www.ti.com/space-avionics-defense
RFID | www.ti.com/video
OMAP Applications Processors | www.ti.com/omap
Wireless Connectivity | www.ti.com/wirelessconnectivity

TI E2E Community | e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated