Peltier cooler module

Data sheet

- Input (Black) + Input (Red)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imax</td>
<td>[A]</td>
<td>6.0</td>
</tr>
<tr>
<td>Vmax</td>
<td>[Vdc]</td>
<td>8.6</td>
</tr>
<tr>
<td>Pc max</td>
<td>[W]</td>
<td>23</td>
</tr>
<tr>
<td>ΔTmax</td>
<td>[°C]</td>
<td>65</td>
</tr>
<tr>
<td>A</td>
<td>[mm]</td>
<td>20</td>
</tr>
<tr>
<td>A1</td>
<td>[mm]</td>
<td>20</td>
</tr>
<tr>
<td>B</td>
<td>[mm]</td>
<td>20</td>
</tr>
<tr>
<td>H</td>
<td>[mm]</td>
<td>2.8</td>
</tr>
<tr>
<td>L</td>
<td>[mm]</td>
<td>100</td>
</tr>
<tr>
<td>Wire</td>
<td>AWG</td>
<td>n/a</td>
</tr>
</tbody>
</table>

(At hot side temperature Th = 25°C / 298K, under dry N₂).

Pc max = Cooling power at ΔT = 0 and I = Imax.
ΔTmax = Temperature difference at I = Imax and Pc = 0.
Max hot side temperature Th = 80°C for best long term performance.
Max mounting pressure: 1.5MPa.
Wires: UL-style 1569, 105°C (Unstripped).
Data sheet - At hot side temperature 25°C

Heat removed (W)
- **Temperature difference (°C)**
 - I = 5.5 A
 - I = 4.0 A
 - I = 3.0 A
 - I = 2.0 A
 - I = 1.5 A
 - I = 1.0 A
 - Max COP

Waste heat (W)
- **Temperature difference (°C)**
 - I = 5.5 A
 - I = 4.0 A
 - I = 3.0 A
 - I = 2.0 A
 - I = 1.5 A
 - I = 1.0 A

Input Voltage (V)
- **Temperature difference (°C)**
 - I = 5.5 A
 - I = 4.0 A
 - I = 3.0 A
 - I = 2.0 A
 - I = 1.5 A
 - I = 1.0 A

COP
- **Current (A)**
- Delta T = 0 C
- Delta T = 10 C
- Delta T = 20 C
- Delta T = 30 C
- Delta T = 40 C
- Delta T = 50 C
- Delta T = 60 C

Adaptive is a registered trademark of European Thermodynamics Limited.
Web: www.etedyn.com Tel: +44(0)116 279 6899 E-mail: info@etdyn.com
Data sheet - At hot side temperature 50°C

Heat removed (W) vs Temperature difference (°C)

Waste heat (W) vs Temperature difference (°C)

Input Voltage (V) vs Temperature difference (°C)

COP vs Current (A)
APH-071-10-08-S
Peltier cooler module

Data sheet - At hot side temperature 75°C

[Graphs showing heat removed, waste heat, input voltage, and COP vs. temperature difference for different currents and temperature differences.]