MPSA42 / MMBTA42 / PZTA42
NPN High-Voltage Amplifier

Features

• This device is designed for application as a video output and other high-voltage applications.
• Sourced from process 48.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Top Mark</th>
<th>Package</th>
<th>Packing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPSA42</td>
<td>MPSA42</td>
<td>TO-92 3L</td>
<td>Bulk</td>
</tr>
<tr>
<td>MMBTA42</td>
<td>1D</td>
<td>SOT-23 3L</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td>PZTA42</td>
<td>A42</td>
<td>SOT-223 4L</td>
<td>Tape and Reel</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings\(^{(1), (2)}\)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at \(T_A = 25°C\) unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CEO})</td>
<td>Collector-Emitter Voltage</td>
<td>300</td>
<td>V</td>
</tr>
<tr>
<td>(V_{CBO})</td>
<td>Collector-Base Voltage</td>
<td>300</td>
<td>V</td>
</tr>
<tr>
<td>(V_{EBO})</td>
<td>Emitter-Base Voltage</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>(I_C)</td>
<td>Collector Current - Continuous</td>
<td>500</td>
<td>mA</td>
</tr>
<tr>
<td>(T_J, T_{STG})</td>
<td>Operating and Storage Junction Temperature Range</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:

1. These ratings are based on a maximum junction temperature of 150°C.
2. These are steady-state limits. Fairchild Semiconductor should be consulted on applications involving pulsed or low-duty-cycle operations.
Thermal Characteristics
Values are at $T_A = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>MPSA42</th>
<th>MMBTA42</th>
<th>PZTA42</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_D</td>
<td>Total Device Dissipation</td>
<td>625</td>
<td>240</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>Derate Above 25°C</td>
<td>5.00</td>
<td>1.92</td>
<td>8.00</td>
</tr>
<tr>
<td>R_{JRC}</td>
<td>Thermal Resistance, Junction-to-Case</td>
<td>83.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{JRA}</td>
<td>Thermal Resistance, Junction-to-Ambient</td>
<td>200</td>
<td>515</td>
<td>125</td>
</tr>
</tbody>
</table>

Notes:
3. Device is mounted on FR-4 PCB 1.6 inch x 1.6 inch x 0.06 inch.
4. Device is mounted on FR-4 PCB 36 mm x 18 mm x 1.5 mm, mounting pad for the collector lead minimum 6 cm².

Electrical Characteristics
Values are at $T_A = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions 1</th>
<th>Conditions 2</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{(BR)CEO}$</td>
<td>Collector-Emitter Breakdown Voltage 5</td>
<td>$I_C = 1.0 \text{ mA}, I_B = 0$</td>
<td>$I_C = 100 \mu\text{A}, I_E = 0$</td>
<td>300</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{(BR)CBO}$</td>
<td>Collector-Base Breakdown Voltage</td>
<td>$I_C = 1.0 \text{ mA}, I_B = 0$</td>
<td>$I_C = 100 \mu\text{A}, I_E = 0$</td>
<td>300</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{(BR)EBO}$</td>
<td>Emitter-Base Breakdown Voltage</td>
<td>$I_E = 1.0 \text{ mA}, I_C = 0$</td>
<td>$I_E = 100 \mu\text{A}, I_C = 0$</td>
<td>6</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{CBO}</td>
<td>Collector Cut-Off Current</td>
<td>$V_{CB} = 200 \text{ V}, I_E = 0$</td>
<td>$V_{CB} = 200 \text{ V}, I_C = 0$</td>
<td>0.1</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>I_{EBO}</td>
<td>Emitter Cut-Off Current</td>
<td>$V_{EB} = 6 \text{ V}, I_C = 0$</td>
<td>$V_{EB} = 6 \text{ V}, I_E = 0$</td>
<td>0.1</td>
<td></td>
<td>μA</td>
</tr>
</tbody>
</table>

On Characteristics 5

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions 1</th>
<th>Conditions 2</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{FE}</td>
<td>DC Current Gain</td>
<td>$V_{CE} = 10 \text{ V}, I_C = 1.0 \text{ mA}$</td>
<td>$V_{CE} = 10 \text{ V}, I_C = 10 \text{ mA}$</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CE} = 10 \text{ V}, I_C = 30 \text{ mA}$</td>
<td>$V_{CE} = 10 \text{ V}, I_C = 30 \text{ mA}$</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{CEO(sat)}$</td>
<td>Collector-Emitter Saturation Voltage</td>
<td>$I_C = 20 \text{ mA}, I_B = 2.0 \text{ mA}$</td>
<td>$I_C = 20 \text{ mA}, I_B = 2.0 \text{ mA}$</td>
<td>0.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{BE(sat)}$</td>
<td>Base-Emitter Saturation Voltage</td>
<td>$I_C = 20 \text{ mA}, I_B = 20 \text{ mA}$</td>
<td>$I_C = 20 \text{ mA}, I_B = 2.0 \text{ mA}$</td>
<td>0.9</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Small Signal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions 1</th>
<th>Conditions 2</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_T</td>
<td>Current Gain - Bandwidth Product</td>
<td>$I_C = 10 \text{ mA}, V_{CE} = 20 \text{ V}$, $f = 100 \text{ MHz}$</td>
<td>$I_C = 20 \text{ mA}, V_{CE} = 10 \text{ V}$, $f = 2.0 \text{ MHz}$</td>
<td>50</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>C_{cb}</td>
<td>Collector-Base Capacitance</td>
<td>$V_{CB} = 20 \text{ V}, I_E = 0$, $f = 1.0 \text{ MHz}$</td>
<td>$V_{CB} = 20 \text{ V}, I_E = 0$, $f = 1.0 \text{ MHz}$</td>
<td>3.0</td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

Notes:
5. Pulse test: pulse width $\leq 300 \mu\text{s}$, duty cycle $\leq 2\%$.
Typical Performance Characteristics

- Figure 1. DC Current Gain vs. Collector Current
- Figure 2. Collector-Emitter Saturation Voltage vs. Collector Current
- Figure 3. Base-Emitter Saturation Voltage vs. Collector Current
- Figure 4. Base-Emitter On Voltage vs. Collector Current
- Figure 5. Collector Cut-Off Current vs. Ambient Temperature
- Figure 6. Collector-Base and Emitter-Base Capacitance vs. Reverse-Bias Voltage
Typical Performance Characteristics (Continued)

![Graph showing power dissipation vs. ambient temperature for different packages](image)

Figure 7. Power Dissipation vs. Ambient Temperature
NOTES: UNLESS OTHERWISE SPECIFIED

A) REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE H.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE INCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS.
E) DRAWING FILE NAME: MA03DREV10
NOTES: UNLESS OTHERWISE SPECIFIED

A) DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DRAWING CONFORMS TO ASME Y14.5M-1994.
D) TO-92 (92, 94, 96, 97, 98) PIN CONFIGURATION:

<table>
<thead>
<tr>
<th>PIN</th>
<th>92</th>
<th>94</th>
<th>96</th>
<th>97</th>
<th>98</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>M</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>S</td>
<td>E</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>D</td>
<td>G</td>
<td>S</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

LEGEND:
P = BIPOLAR
E = EMITTER
D = DRAIN
F = JFET
B = BASE
S = SOURCE
M = DMOS
C = COLLECTOR
G = GATE

E) FOR PACKAGE 92, 94, 96, 97 AND 98:
PIN CONFIGURATION DRAIN "D" AND SOURCE "S"
ARE INTERCHANGEABLE AT JFET "F" OPTION.
F) DRAWING FILENAME: MKT-ZA03DREV3.
NOTES: UNLESS OTHERWISE SPECIFIED

A) DRAWING BASED ON JEDEC REGISTRATION TO-261, VARIATION AA.

B) DIMENSIONS ARE INCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS.

C) ALL DIMENSIONS ARE IN MILLIMETERS.

D) DRAWING CONFORMS TO ASME Y14.5M-1994.

E) LANDPATTERN NAME: SOT230P700X180-4BN

F) DRAWING FILENAME: MKT-MA04AREV2
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AcuPower™
AttitudeEngine™
Avinds®
AX-CAP®
BitSiC™
Build It Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSpark®
EfficientMax™
ESBC®
Fairchild®
Fairchild Semiconductor®
Fact Quiet Series™
FACT®
FAST®
FastVCore™
FETBench™
FPS™
F-PFS™
FRFET®
Global Power Resource®
GreenBridge™
Green FPS™
Green FPS™ e-Series™
Gmax™
GSS™
IntelliMAX™
ISPLANAR™
Making Smaller Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
MotionGrid™
MVT™
MVT®
MVN®
mWSaver®
OptoHIT™
OPTOLOGIC®
OPTOPLANAR®
PowerTrench®
PowerXS™
Programmable Active Droop™
QFET®
QS™
Quiet Series™
RapidConfigure™
Saving our world, 1mW/With/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TINYQTOPT™
TinyPower™
TinyPWM™
TinyWire™
TranSiC™
Trifault Detect™
TRUECURRENT™
μSerDes™
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
Xtens™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. NO LIABILITY IS ASSUMED BY FAIRCHILD SEMICONDUCTOR FOR ANY DAMAGES INCURRED DIRECTLY OR INDIRECTLY FROM USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

2. A critical component in any component of a life support device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise.

Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>Active</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>