SMV1247-SMV1255 Series: Hyperabrupt Junction Tuning Varactors

Applications
- Low tuning voltage VCOs
- High-volume commercial systems

Features
- High capacitance ratio: $C_{0.3V}/C_{4.7V} = 12$ typical
- Packages rated MSL1, 260 °C per JEDEC J-STD-020

Skyworks Green™ products are compliant with all applicable legislation and are halogen-free. For additional information, refer to Skyworks Definition of Green™, document number SQ04-0074.

Description
The SMV1247-SMV1255 group of silicon hyperabrupt junction varactor diodes is designed for use in Voltage Controlled Oscillators (VCOs) with a low tuning voltage operation. This group of varactors is characterized for capacitance and resistance over temperature.

Table 1 describes the various packages and markings of the SMV1247 to SMV1255 varactors.
Table 1. Packaging and Marking

<table>
<thead>
<tr>
<th>Single</th>
<th>Single</th>
<th>Single</th>
<th>Common Anode</th>
<th>Common Cathode</th>
<th>Single</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC-79 Green™</td>
<td>SOD-323 Green™</td>
<td>SOT-23</td>
<td>SOT-23</td>
<td>SOT-23</td>
<td>SOD-882 Green™</td>
</tr>
</tbody>
</table>

♦ SMV1247-079LF Marking: Cathode
- SMV1247-011LF Marking: GF
- SMV1247-040LF Marking: H

♦ SMV1248-079LF Marking: Cathode
- SMV1248-001LF Marking: BG1
- SMV1248-001LF Green™ Marking: GG1
- SMV1248-003LF Marking: AF9
- SMV1248-004LF Marking: AF3

♦ SMV1249-079LF Marking: Cathode
- SMV1249-011LF Marking: EF
- SMV1249-001LF Green™ Marking: EF1
- SMV1249-003LF Green™ Marking: EF9
- SMV1249-004LF Green™ Marking: EF3
- SMV1249-040LF Marking: K

SMV1251-004 Marking: AH5
- SMV1251-001LF Marking: EH
- SMV1251-001LF Green™ Marking: EH3
- SMV1251-004LF Marking: AH3
- SMV1251-004LF Green™ Marking: EH1

SMV1253-004 Marking: AJ3
- SMV1253-001LF Marking: EJ
- SMV1253-001LF Green™ Marking: EJ3
- SMV1253-004LF Green™ Marking: EJ3
- SMV1253-040LF Marking: 3

SMV1255-004 Marking: AK1
- SMV1255-001LF Marking: EK
- SMV1255-001LF Green™ Marking: EK1
- SMV1255-004LF Green™ Marking: EK3
- SMV1255-004LF Green™ Marking: EK4

The Pb-free symbol or “LF” in the part number denotes a lead-free, RoHS-compliant package unless otherwise noted as Green™. Tin/lead (Sn/Pb) packaging is not recommended for new designs.

Electrical and Mechanical Specifications

The absolute maximum ratings of the SMV1247-SMV1255 group of varactors are provided in Table 2. Electrical specifications are provided in Table 3. Typical capacitance values are listed in Table 4. Typical performance characteristics of the SMV1247-SMV1255 varactors are illustrated in Figures 1 through 4.

The SPICE model for the SMV1247-SMV1255 varactors is shown in Figure 5 and the associated model parameters are provided in Table 5.

Package dimensions are shown in Figures 6 to 12 (even numbers), and tape and reel dimensions are provided in Figures 7 to 13 (odd numbers).
Package and Handling Information

Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SMV1247-SMV1255 group of varactors are rated to Moisture Sensitivity Level 1 (MSL1) at 260 °C. They can be used for lead or lead-free soldering. For additional information, refer to the Skyworks Application Note, *Solder Reflow Information*, document number 200164.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format.

Table 2. SMV1247-SMV1255 Absolute Maximum Ratings (Note 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse voltage</td>
<td>(V_{R})</td>
<td>15</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Forward current</td>
<td>(I_{R})</td>
<td>20</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{DS})</td>
<td>250</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>(T_{OP})</td>
<td>–55</td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{STG})</td>
<td>–55</td>
<td>+150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Electrostatic discharge:
- Charged Device Model (CDM), Class 4
- Human Body Model (HBM), Class 1A
- Machine Model (MM), Class A

<table>
<thead>
<tr>
<th></th>
<th>ESD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charged Device Model (CDM), Class 4</td>
<td>1000 V</td>
</tr>
<tr>
<td>Human Body Model (HBM), Class 1A</td>
<td>250 V</td>
</tr>
<tr>
<td>Machine Model (MM), Class A</td>
<td><50 V</td>
</tr>
</tbody>
</table>

Note 1: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

CAUTION: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times.

Table 3. SMV1247-SMV1255 Electrical Specifications (Note 1)

(Top = 25 °C, Unless Otherwise Noted)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>(C_{T} \text{ @ } 0.3 \text{ V (pF)})</th>
<th>(C_{T} \text{ @ } 4.7 \text{ V (pF)})</th>
<th>(C_{T} \text{ @ } 1 \text{ V (pF)})</th>
<th>(C_{T} \text{ @ } 3 \text{ V (pF)})</th>
<th>(C_{T} \text{ @ } 0.3 \text{ V} \div C_{T} \text{ @ } 4.7 \text{ V (Ratio)})</th>
<th>(C_{T} \text{ @ } 1 \text{ V} \div C_{T} \text{ @ } 3 \text{ V (Ratio)})</th>
<th>(R_{s} \text{ @ } 3 \text{ V, 500 MHz (Ω)})</th>
<th>(Q \text{ @ } 3 \text{ V, 50 MHz})</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMV1247</td>
<td>6.5 7</td>
<td>0.7 0.78</td>
<td>4.4</td>
<td>0.95</td>
<td>9.5</td>
<td>10.0</td>
<td>4.6</td>
<td>6.0</td>
</tr>
<tr>
<td>SMV1248</td>
<td>15.0 17</td>
<td>1.5 1.70</td>
<td>12.3</td>
<td>2.60</td>
<td>10.8</td>
<td>12.0</td>
<td>4.7</td>
<td>3.3</td>
</tr>
<tr>
<td>SMV1249</td>
<td>28.0 31</td>
<td>2.6 2.80</td>
<td>18.2</td>
<td>3.40</td>
<td>11.0</td>
<td>12.1</td>
<td>5.3</td>
<td>2.2</td>
</tr>
<tr>
<td>SMV1251</td>
<td>38.0 42</td>
<td>3.4 3.80</td>
<td>28.1</td>
<td>5.80</td>
<td>11.0</td>
<td>12.2</td>
<td>4.8</td>
<td>1.6</td>
</tr>
<tr>
<td>SMV1253</td>
<td>48.0 53</td>
<td>4.3 4.80</td>
<td>37.0</td>
<td>7.80</td>
<td>11.0</td>
<td>12.3</td>
<td>4.7</td>
<td>1.4</td>
</tr>
<tr>
<td>SMV1255</td>
<td>58.0 64</td>
<td>5.2 5.80</td>
<td>43.3</td>
<td>8.50</td>
<td>11.0</td>
<td>12.3</td>
<td>5.1</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Note 1: Performance is guaranteed only under the conditions listed in this table.
Reverse voltage \(V_{R} (I_{R} = 10 \mu A) = 15 V\) minimum
Reverse current \(I_{R} (V_{R} = 12 V) = 20 nA\) maximum
Table 4. Capacitance vs Reverse Voltage

<table>
<thead>
<tr>
<th>Vr (V)</th>
<th>SMV1247</th>
<th>SMV1248</th>
<th>SMV1249</th>
<th>SMV1251</th>
<th>SMV1253</th>
<th>SMV1255</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.86</td>
<td>22.62</td>
<td>37.35</td>
<td>53.65</td>
<td>69.32</td>
<td>81.21</td>
</tr>
<tr>
<td>0.5</td>
<td>6.17</td>
<td>16.32</td>
<td>25.88</td>
<td>38.23</td>
<td>50.23</td>
<td>58.28</td>
</tr>
<tr>
<td>1.0</td>
<td>4.37</td>
<td>12.33</td>
<td>18.18</td>
<td>28.09</td>
<td>37.07</td>
<td>43.27</td>
</tr>
<tr>
<td>1.5</td>
<td>2.96</td>
<td>9.12</td>
<td>12.08</td>
<td>20.13</td>
<td>27.57</td>
<td>31.49</td>
</tr>
<tr>
<td>2.0</td>
<td>1.88</td>
<td>6.27</td>
<td>7.27</td>
<td>13.55</td>
<td>19.37</td>
<td>21.50</td>
</tr>
<tr>
<td>2.5</td>
<td>1.22</td>
<td>3.93</td>
<td>4.44</td>
<td>8.60</td>
<td>12.39</td>
<td>13.40</td>
</tr>
<tr>
<td>3.0</td>
<td>0.95</td>
<td>2.57</td>
<td>3.40</td>
<td>5.78</td>
<td>7.77</td>
<td>8.51</td>
</tr>
<tr>
<td>3.5</td>
<td>0.83</td>
<td>1.95</td>
<td>2.96</td>
<td>4.57</td>
<td>5.77</td>
<td>6.51</td>
</tr>
<tr>
<td>4.0</td>
<td>0.77</td>
<td>1.71</td>
<td>2.72</td>
<td>3.95</td>
<td>4.86</td>
<td>5.58</td>
</tr>
<tr>
<td>4.5</td>
<td>0.73</td>
<td>1.59</td>
<td>2.51</td>
<td>3.58</td>
<td>4.34</td>
<td>5.07</td>
</tr>
<tr>
<td>5.0</td>
<td>0.70</td>
<td>1.49</td>
<td>2.38</td>
<td>3.33</td>
<td>4.01</td>
<td>4.76</td>
</tr>
<tr>
<td>5.5</td>
<td>0.68</td>
<td>1.44</td>
<td>2.30</td>
<td>3.16</td>
<td>3.78</td>
<td>4.58</td>
</tr>
<tr>
<td>6.0</td>
<td>0.67</td>
<td>1.40</td>
<td>2.24</td>
<td>3.03</td>
<td>3.62</td>
<td>4.46</td>
</tr>
<tr>
<td>6.5</td>
<td>0.66</td>
<td>1.36</td>
<td>2.19</td>
<td>2.94</td>
<td>3.50</td>
<td>4.39</td>
</tr>
<tr>
<td>7.0</td>
<td>0.65</td>
<td>1.33</td>
<td>2.14</td>
<td>2.88</td>
<td>3.41</td>
<td>4.33</td>
</tr>
<tr>
<td>7.5</td>
<td>0.64</td>
<td>1.31</td>
<td>2.09</td>
<td>2.83</td>
<td>3.34</td>
<td>4.29</td>
</tr>
<tr>
<td>8.0</td>
<td>0.64</td>
<td>1.30</td>
<td>2.03</td>
<td>2.79</td>
<td>3.28</td>
<td>4.26</td>
</tr>
</tbody>
</table>
Typical Performance Characteristics

Figure 1. Capacitance vs Reverse Voltage

Figure 2. Series Resistance vs Reverse Voltage @ 500 MHz

Figure 3. Relative Capacitance Change vs Temperature

Figure 4. Relative Series Resistance Change vs Temperature @ 500 MHz
Figure 5. SPICE Model

Table 5. SPICE Model Parameters

<table>
<thead>
<tr>
<th>Part Number</th>
<th>CJO (pF)</th>
<th>VJ (V)</th>
<th>M</th>
<th>Cp (pF)</th>
<th>Rs (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMV1247</td>
<td>8.47</td>
<td>80</td>
<td>70</td>
<td>0.54</td>
<td>4.9</td>
</tr>
<tr>
<td>SMV1248</td>
<td>22.12</td>
<td>138</td>
<td>100</td>
<td>0.87</td>
<td>2.4</td>
</tr>
<tr>
<td>SMV1249</td>
<td>36.40</td>
<td>80</td>
<td>70</td>
<td>1.68</td>
<td>1.7</td>
</tr>
<tr>
<td>SMV1251</td>
<td>52.48</td>
<td>100</td>
<td>76</td>
<td>2.00</td>
<td>1.4</td>
</tr>
<tr>
<td>SMV1253</td>
<td>68.30</td>
<td>100</td>
<td>71</td>
<td>2.00</td>
<td>1.1</td>
</tr>
<tr>
<td>SMV1255</td>
<td>80.00</td>
<td>135</td>
<td>100</td>
<td>2.74</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Model was designed to fit measured data in the range of up to 4 V.
For package inductance (LS), refer to Table 1.
For more details, refer to the Skyworks Application Note, Varactor SPICE Model for Approved RF VCO Applications, document number 200315.
Figure 6. SC-79 Package Dimensions

Figure 7. SC-79 Tape and Reel Dimensions

Notes:
1. Carrier tape: black conductive polycarbonate or polystyrene.
2. Cover tape material: transparent conductive FSA.
3. Cover tape size: 5.4 mm width.
4. ESD-surface resistivity is ≤ 1 x 10^8 Ohms/square per EIA, JEDEC TNR Specification.
5. All measurements are in millimeters.
Figure 8. SOD-323 Package Dimensions

Figure 9. SOD-323 Tape and Reel Dimensions

Notes:
1. Carrier tape: black conductive polystyrene.
2. Cover tape: transparent conductive PSA.
3. Cover tape size: 5.4 mm width.
4. 10 sprocket hole pitch cumulative tolerance: \(\pm 0.20 \) mm.
5. All measurements are in millimeters.
NOTES:
1. All measurements are in millimeters.
3. These packages are used principally for discrete devices.
4. This dimension includes stand-off height and package body thickness, but does not include attached features, e.g., external heatsink or chip capacitors. An integral heatslug is not considered an attached feature.
5. This dimension is primarily terminal plating, but does not include small metal protrusion.

Figure 10. SOD-882 Package Dimensions

Notes:
1. Carrier tape: black conductive polycarbonate.
2. Cover tape: transparent conductive material.
3. Cover tape size: 5.4 mm width.
4. ESD surface resistivity is $\geq 1 \times 10^6$ – $\leq 1 \times 10^8$ Ohms/square.
5. All dimensions are in millimeters.

Figure 11. SOD-882 Tape and Reel Dimensions
Table of dimensions for SMV1247-SMV1255 Varactors:

- **Height**: Min. 0.035 (0.89 mm), Max. 0.044 (1.12 mm)
- **Width**: Min. 0.0005 (0.01 mm), Max. 0.004 (0.10 mm)
- **Length**: Min. 0.012 (0.30 mm), Max. 0.020 (0.50 mm)
- **Thickness**: Ref. 0.003 (0.080 mm), Min. 0.008 (0.20 mm), Max. 0.022 (0.55 mm)
- **Diameter**: Min. 0.0035 (0.089 mm), Max. 0.0045 (0.114 mm)
- **Pitch**: Min. 0.020 (0.51 mm)

Notes:
1. Carrier tape: black conductive polycarbonate.
2. Cover tape material: transparent conductive PSA.
3. Cover tape size: 5.40 mm width.
4. Tolerance ±0.10 mm.
5. Ten sprocket hole pitch cumulative tolerance: ±0.2 mm.
6. All measurements are in millimeters.

Figure 12. SOT-23 Package Dimensions

Figure 13. SOT-23 Tape and Reel Dimensions