1300 Henley Court

Pullman, WA 99163

509.334.6306

BEYOND THEORY www.digilentinc.com

Embedded Linux® Hands-on Tutorial for the ZYBO™

Revised December 5, 2014

Overview

The purpose of this document is to provide step-by-step instructions for customizing your hardware, compiling the
Linux Kernel, and writing driver and user applications. This documentation intends to integrate knowledge and
skills in FPGA logic circuit design, standalone software programming, Linux operating system and user application
development, and apply them to the ZYBO. We will start from the ZYBO Base System Design (available on the ZYBO
product page of the Digilent website). The system architecture for the ZYBO Base System Design is shown in Fig. 1.

In the ZYBO Base System Design, we connect UART1 to USB-UART, SDO to the SD Card Slot, USBO to the USB-OTG
port, Enet0 to the Giga-bit Ethernet Port, and Quad SPI to the on-board QSPI Flash. These cores are hard IPs inside
the Processing System (PS) and connect to on-board peripherals via Multiplexed /0 (MIO) pins. The use of PS GPIO
is connected to Btn 4 and 5. In the Programmable Logic (PL), we have an HDMI TX Controller, VDMA, and GPIO IP
cores to talk to the ADV7511 HDMI transmitter chip and 12S and GPIO IP cores for ADAU1761 audio codec. More
details of the hardware design can be found in the documentation inside the ZYBO Base System Design package.

USB-UART SD Card USB-OTG Gb Ethernet
UART1 SDO USBO ‘ Enet0
g o grocessi ng System (PS) N
,!i, E* NEON/FPU Engine NEON/FPU Engine
2 S Cortex-A9 Cortex-A9
MMU MPCore MMU MPCore
CPU CPU
. 32KB | Cache | 32KB D Cache | | 32KB I Cache | 32KB D Cache
w
o o GIC | Snoop Control Unit ‘
= 3 512KB L2 Cache & Controller ‘
& = ocM 256KB OCM
5 Interconnect BootROM
-
VDMA VDMA H%'(“ ! AXLGPIO AXLI2C ~AXI_GPIO
VGA HDMI Audio i Leds | |Switches
Buttons

Figure 1. Reference Basic Hardware System Architecture for ZYBO.

. Copyright Digilent, Inc. All rights reserved. _
DOC#: 594-008 Other product and company names mentioned may be trademarks of their respective owners. Page 1of 37

Embedded Linux® Hands-on Tutorial for the ZYBO M

In this tutorial, we are going to detach the LEDs from the AXI GPIO core and implement our own myLed core for it
in PL, as shown in Fig. 2. We will then add our own LED controller into the device tree, write a driver for it, and
develop user applications to control the status of the LEDs.

USB-UART SD Card USB-OTG Gb Ethernet
UART1 SDO USBO Enet0
o 5 /Processi ng System (PS) \
[¥3]
=] NEON/FPU Engine NEON/FPU Engine
g ac) Cortex-A9 Cortex-A9
MMU MPCore MMU MPCore
CPU CPU
. 32KB | Cache | 32KBD Cache | | 32KB I Cache | 32KB D Cache
W : GIC | Snoop Control Unit |
—
2 = 512KB L2 Cache & Controller |
- - OCM 256KB OCM
o Interconnect BootROM
N J

VDMA VDMA H_[r))I(VI ! AXL GPIO AXI_I2C AXLGPIO my led
. Push .
VGA HDMI Audio Leds Switches
Buttons

Figure 2. Hardware System Architecture of the system we are going to implement in this Tutorial.

Before going through this tutorial, we recommend that you read Getting Started with Embedded Linux - ZYBO. You
can follow this tutorial with the Embedded Linux Development Guide (available on the Digilent website Embedded
Linux Page). The guide will provide you with the knowledge you may need in each step of the development.

In this tutorial, we are going to use Xilinx® Vivado™ 2014.1 WebPACK™ in a Linux environment. All of the
screenshots and codes are done using Vivado Design Suite 2014.1 in CentOS 6 x86_64.

That’s it for the background information on this tutorial, now it’s time to get our hands dirty with some real design!

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 20f37

Embedded Linux® Hands-on Tutorial for the ZYBO M

1 Hardware Customization

1.1 Prerequisites
» Vivado 2014.1 WebPACK: available at the Xilinx website Download Page.

» ZYBO Base System Design: available at the Digilent website on the ZYBO Page.

1.2 Instructions

1. Download the ZYBO Base System Design from the Digilent website and unzip it into our working directory,
as in Fig. 3 (our working directory is named tutorial throughout this document). For more information on
the hardware design, please refer to Project Guide under doc folder.

[kfranz@localhost Tutoriall$ unzip /home/kfranz/Downloads/zybo_base_system.zip
Archive: /home/kfranz/Downloads/zybo_base_system.zip
inflating: zybo base system/ProjectGuide.txt
creating: zybo_base system/sd_image/
inflating: zybo_base_system/sd_image/BOOT .bin
creating: zybo_base_system/source/
creating: zybo_base_system/source/ise/
creating: zybo_base system/source/ise/hw/
creating: zybo_base_system/source/ise/hw/data/
. R . f aticart f

Figure 3. Unzip the ZYBO_Base_System.

2. Source Vivado 2014.1 settings and open the design with Vivado Design Suite. You will see the Vivado
window pop up as shown in Fig. 4.

Note: There are four settings files available in the Vivado toolset: settings64.sh for use on 64-bit machines
with bash; settings32.sh for use on 32-bit machines with bash; settings32.csh for use on 32-bit machines
with C Shell; and settings64.csh for use on 64-bit machines with C Shell.

[kfranz@localhost Tutoriall$ source Jopt/Xilinx/Vivado/2014.1/settings64.sh
[kfranz@localhost Tutoriall$ vivado zybo base system/source/vivado/hw/zybo bsd/z
ybo bsd.xpr

FRERARE Vivado v2014.1 (64-bit)
#%% SW Build 881834 on Fri Apr 4 14:00:25 MDT 2014
* IP Build 877625 on Fri Mar 28 16:29:15 MDT 2014
** Copyright 1986-2014 Xilinx, Inc. ALl Rights Reserved.

start_gui

Figure 4. Open the Project.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 3 0f 37

http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2014-1.html
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1198&Prod=ZYBO

Embedded Linux® Hands-on Tutorial for the ZYBO

BEYOND THEORY

2ybo_bsd - b, bsdlzybo_bsd.xpr] - Vivade 2014.1
Ble Edi Flow Tools Windew Layout View Lelp T r—
B neRhX 3P > % @ XK I (S E0eful ayot - || ® Ready
Flow Navigatar « | Block Design system =
QT @ The design has 8 blocks that shauld be upgraded. Show |P Status Upgrade Late:
1o _ou = = ress Editor + x
+ Broject Manager Design Herarchy oe iagram x M Address Edtor X o
@ Project Settings B ¥l & system »
" BT E
e -1 Esternal Interfaces -
4F Ip Catalog & Interface Cannections. £ H
+ IP Integrator =
& Create Black Design i ¥ -
J* Open Block Design d + R =
#) Genarste Block Design | @_mam_irtercor : 1
&0 ai_protacol
4 Simulation 79 i vdma 0 -
N 1 @ vidma 1 &
@ simutation Settngs e 4 -
@ Fun Simuation »
4 RTL &nalysis s (A o]
&% Open Elaborated Design & proceseing system? 0 . L]
&-[5] processing_system?_0_ad periph be
- e e ot P =
@ synthesis Settings 4 Sources H Design Hierarchy & Signals
Run Synth
i d Desig
« imglementation
@ Implarentation Settings
I Fun Implementation
at ——r
+ Frogram and Debug
@ Bitstream Settings
¥ Generste Bitstresm
' Opan Hardware Manager
1P Status
L 43 Minor Changes 4 6 Revision Changes [17 Other Changes Show Al |
B4 Source File & [eetaue T]_recommendation | Change Log | Updradetog | IF Hiame
2 [¢ 1 system ba =] n Block Desigr
-G /i veima A1 Video Direct Memory Access 6.1 (Rev. 11 62 Inch
®| |G /anivima 0 Al Video Direct Memory Access &.1 (Rev. 1] 8.2 Incl
|-i@ /processing system?_o ZVNQT Processing System 5.3 (Rev. 1) 52 Inch
|- @ iprocassing_system?_0_sd_pariph a1 intarconnect 21 (Rev. 1) 21 (Rev. 2) ek
1@ /am_protocel converter o X Pratocol Comverter 2.1 (Rev. 1) 2.1 (Rev. 2) Inch
. 1§ (LEDs 28its =] A3 GPID 2.0 (Rev. 3] 2.0 [RT\. 4 hidJ\V\
[Upgratle Selected
STl Console © Messages Sllog & 1P Status % Reports | 3 Design Runs

Figure 5. Vivado platform studio GUI.

3. We are going to detach LEDs from the GPIO core in the PS first. So we need to click on the IP integrator
and open the Block Diagram as shown in Fig. 5. Then we need to delete the current LED IP as shown in Fig.
6. We will handle the modification of external pin location configuration (xdc file) in later steps.

Note: In Fig. 6 there is a yellow bar indicating the need for an upgrade. To upgrade, hit show IP status,
make sure all are selected and hit Upgrade Selected.

Block Design - systam * X

@ The design has 8 blocks that should be upgraded. Show IP Status Upgrade Later

Design Hierarchy e ZeDiagram x H Address Editor x v x
3 A system »
L= sws_4pits_GPI0 = o | ! o= o tion =
a5 Ports o F——mhoL_aREsETI00]
o) Nets = - ACLK
o~ axi_dispctrl_0 (& » ==MOZ_ARESETHIO:0]
o-5F ad_dispetr 1 (MO3_ACH
om£F a_(25_adi_L (20 |2t §——aMO3_ARESETH[O:0]
5@ axi_mem_intercon oaacLe
34F aw_protocol_converter_0 (4 Protocol Cony 2.1 04 ARESETIIO0]
b @i vdma_0 o BTNs_4Bits
o~ @ _vima_1 § 05 ARESETHIO] {00
54k BTs_4Bits 6_ACLK T I 1
o£F ground (C 0 $——=Mos_sRESETHIO:0] s aeesen
o~ hdmi_tx 0 (HOM| Transmitter:1.¢ L mor_acex
5-{F LEDs_4Bits (AXI GPIO:2.0) L amo7_areseminog AX GPIO
ik GPIO LEDs 4Bit
S_Ax r_ 3
-+
= s_ax_aclk f——D LeDs]
= 5_ax_aresetn - . =
41 i i Block Properties... cuke
& Sources o Design Hierarchy & Signals X Delete Doete |
] 1
Slock Propertias _oex —Swsd 3 cCopy e
P W Paste .y
j _axiack | O Search... cier
{F LEDs_4Bits s s Solect Al cartea
AaG P addIp., et
Name (LEps s5its £ Customize Block...
Parent name: system o jon 5
@ validate Design e
Create Hierarchy...
2. disp Create Commertt
Create Port.. ctridx
nronnd] Lis axi Creste Interface Port... st |[7]
General Properties o] " Layout x
IP Status 8 Save as PDF File... b
. M3Minor Changes [416 Revision Changes [J7 Other Changes show all |

Figure 6. Delete existing LED IP.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 4 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO

l@ BEYOND THEORY

4. (Vivado 2014.1 only) Before we can start implementing our myLed IP Core, we need to name the vendor
that will automatically be applied in the IP packager. In Vivado 2014.1, this is not automatically done for
the user. To do this, first go to the Project Settings under Project Manager on the left side of the window
(Fig. 7) and the project settings window will pop up. In the Project Settings window, select IP (Fig. 8).
Notice that the vendor is chosen as “(none)”, this will cause a Vivado internal exception. You can name the
Vendor whatever you like (Fig. 9).

Copyright Digilent, Inc. All rights reserved.

Activities

i—l-"'l.-‘:ru.f-.hF.ad

Elle Edit Flow Tools Window Layout View Help
22 E e Db ¥ & XK LGS0
Flow Navigator “«

O oo
oAy Do

4 Project Manager

3 Project Settings
¥ add Sources

Project Settings
1k IP Catalog

Configure synthesis, simulation, impleme
4 |P Integrator

% Create Block Design

;¥ open Block Design

53 Generate Block Design

4 Simulation
3 simulation Settings
U} Fun Simulation

4 RTL Analysis
=* Open Elaborated Design

2 Synthesis
Q},‘. Syrthesis Settings
P Run Synthesis
___.-15 nar . Ized [
4 Implement ation
& Implementation Settings
[» Run Implementation

4 Program and Debug
3 Bitstream Settings
¥ Generate Bltstream
g® Opan Hardware Manager

Figure 7. Project settings.

Other product and company names mentioned may be trademarks of their respective owners.

Page 5 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO

l@ BEYOND THEORY

Project Settings

Project Settings

&

General

(@

Simulation

A4

Synthesis

v

Implementation

B

oo

Bitstream

=

[Ip

Repository Manager Packager

&

Create IP Location: |../ip_repo

Default Values I~ General
(]
(@ The following values will be automatically applied after finishing the IP
Packager wizard, simulation
4 El
Wendor: ‘(nnne)| | ‘ %
Library: user
B ‘ ‘ Synthesis
Category: \fEaselP \ I)

Automatic Behavior

After Packaging

[create archive of IP
[# 4dd IP to the IP Catalog of the current project
[Close IF Packager window

Edit I in IP Packager
[Delete project after packaging

Filtered Extensions

a directory to a File Group.
File Extensions to Filter on Add Directory

(@ Create a list of file extensions that will be automatically filtered when adding |~

Implementation

P
Tou
S5

Bitstream

i

P

0K

H Cancel || Apply \

P

Repository Manager Packager

Default Values

@ The following values will be autematically applied after finishing the 1P
Packager Wizard,

Wendor: [Digitent € 1 |
Library: [user |
Category: |fBaseIP |

|

Create IP Location: |..fip7repu

Automatic Behavior
After Packaging
[Create archive of IP
[¥] Add I to the IF Catalog of the current project
[close IP Packager window

Edit IP in IP Packager
[¥| Delete project after packaging

Filtered Extensions

@ Create 3 list of file extensions that will be automatically filttered when adding
a directory te a File Group.

File Extensions to Filter on Add Directory

[»

| ok

H Cancel J| Apply

Figure 8. Unnamed vendor.

Figure 9. Named vendor.

Now we can start implementing our myLed IP Core. Click Tools -> Create and Package IP... from the menu
(as shown in Fig. 10). The Create and Package New IP window will pop up (as shown in Fig. 11), Click Next.
In the next window, name the new IP and click next again (Fig. 12).

~ O
L'\:vI

4 Project Mana
5 Project
gqj 2dd SoL
1F IP catall

4 P Integratnf
&F Create

i-F'I.-]n.u'\r'.n:-:nd

Eile Edit Flow Tools | Window Layout Wiew Help
'? == N

Flow Mavigator

& validste Dasign FE
Report
Create and Package IF'...<=
Run Tel Script...

& Property Editor
Aszaciate ELE Files...
Carmpile Simulation Libraries.
Xilinx Tcl Store...
Custamize Cammands

@ Project Settings...

Optlons...

el

4 Simulation
Q?,\ Simulation Settings
({1} Run Simulation

RTL finalysis

* Open Block Design
¥ Generate Block Design

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.

Figure 10. Create and Package IP.

Page 6 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO M

Create And Package New IP Create And Package New IP
Peripheral Details
Create and Package IP g) .)
Specify name, version and description for the new peripheral ‘
This wizard can be used to accomplish two tasks:

Package a new IP for the Vivado IP Catalog
This wizard will guide you through the process of creating a new Wivado IP using source files and Narme: mLed =
informatien from your current project or specified directory, ' (it

Create a new AXI4 Peripheral
This wizard will guicle you through the process of creating a new 14 peripheral which includes HOL, Display Name: [myLec_vl .0
driver, software test application, IPI BFM simulation and debug demonstration design.

Description: | by Led IP

|
Version: 110 |
|
|
|

IP Location: |jhnme,‘klranszutnr\a\2 Jzyho_base_system/source fvivado/hw/ip_repo H -

VIVADO!
l

Click Next to continue
\ < Back H Newt =]| Finish H Cancel J ‘ < Back I‘E Finist Cancel

Figure 11. IP Options. Figure 12. Peripheral Details.

6. The next window will be the Add Interfaces Window. This will create the AX14 Interface for the myLed
peripheral (Fig. 13). Make sure the interface type is Lite, the mode is Slave, the data width is 32 bits and
the number of registers is 4. Change the Name to S_AXI rather than SO0_AXI. We only need 1 register but
the minimum we can select is 4. Click next to proceed.

Create And Package New IP

Add Interfaces

Add i)(ld interfaces supported by your peripheral '

[] Enable Interrupt Support + X Mame [5_ax &= |

| i Interfaces -

ﬂl S AX Interface Typ |L|te |

i Interface Mode |Slave hd |
El

Data Width @Bits) |32 -

Memory Size (Bytas) |64

Mumber of Registers 4k [4.512]
|
b

| < Back J Next > | F Cancel

Figure 13. Add Interface

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 7 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO M

7. The next window will prompt the finishing steps to create the IP (Fig. 14). Change the Radio button to
select Edit IP and hit finish. We need to add user logic to the IP so that our slave is connected to the LED

output.

Create And Package New IP

Create Peripheral

Peripheral Generation Surmmary
1. IF (Digilent:user:myLED:1.0) with 1 interface(s)
2. Driver{vl_00_a) and testapp more info
3. A¥4 BFM Simulation demonstration design more info
4, p¥4 Debug Hardware Simulation dermonstration design more info

Feripheral created will be available in the catalog :
fhome/kfranz/Desktop/Tutorializybo_base system/sourcefvivado/hwiip repo

MNext Steps:
0 Add IP to the repository

@[dit IF| &=

O verify peripheral IP using AX4 BFM Simulation interface

(0 Verify peripheral IP using |TAG interface

VlVADO‘ Click Finish to continue

= Back H Mext = ||| Einish ||| Cancel

Figure 14. Edit IP.

8. After selecting finish, the Create and Package IP window will disappear and the next window you will see
is the edit_myLed window (Fig. 15). This is where we will add our user logic.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 8 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO

l@ BEYOND THEORY

A3 eoaD
Flow Nauigater
az®
4 Project Manager
@ Project settings
¥ add Sources
4 P Catalog
Fackage I®

+ P integrator
7 create Block Design
]

4+ simulation
@ Simulation Seftings
@ Run Simulstion

4 RTL Analysis
&* Open Elaborated Design

4 Synthesis
@ synthasis Settings
B Run Synthesis

M

+ implementation
@ Implemertation Settings
[Run Implementation

»

+ Frogram and Debug
@ Eitstream Settings
¥ Generate Bitstream
* Open Hardware Manager

dofhwiip-repoledit_myLED_v1_0.xpr] - Vivado 2014.1

dit_myLED_v1-0 -

Ele Eeit Flow Jools Wndow Layout View Help

K*D“!Hii-tmiﬁ\“

Project Manager edit_myE0 vl 0
Sources

LB

_oex

I Project summary X

Package IP - myLED %

MYLED_v1_0_S00_AXLY X

& nE ™

utorializzbo_biase

ip_repairiyLED_1 (/hdlimyLED_v1_0_S00_AXLY

1 e
-5 Design Sources .
@amyLED v1_0 :f: g wascale 1 ps / 1 ps
\p}mﬂ vi_0_500_AK_nst - mLED.v1_0_500_ 4% [b 1011650 4 o
Ll]
3 companert.mi H
$m5 Constraints 4
&~ Simulstion Sources il e
x 9
y| 10
it X
F|12 parancter integer C_S _AXI_DATA WIDTH = 32,
13 [x
% 1 sarancter imteger C_S_AXT_ADDR WIDTH = 4
15
i 16
17
: D=} 18
Hiararchy Lbraries Complle Order V19
A L 1E]
4 Sources ¥ Templates =k
F| 2 d
%
Source File Properties —ou - ot vire S AXI ALK,
« +[5[E] BE
Fol input wire S AXT_AFESET,
2
myLED_v1_0_S00_aX1v = " §
& 27 Anput wire [C_5_AXI_ADDR ¥ HIDYH 1 0] S_AXT_AWADDR,
Location: /home/kfranzDesktop/Tutorislayho_base_sys % " | | S Aa_AeDo
e variog | (=] = p "
Uibrang wil_defaultiio] (] 3 input wire [2 : 0] S_AKI_MWPROT
] Write addre: ignal
Size: 136K A "
Modfied: Today at 11:33:54 AM N input vire S AXI_MWVALTD,
Read-only: Na ;2 ¢ ad
Encrypled: Na El output vire S_AXI_ANREADY,
.] i e er, accepe o
Llgietal e : ") input wire [C_S_AXI_DATA WIDTH-1 : O] S_AXI_WOATA,
e e 0 Write st Tgnal i t =
General Froperties D
Design Runs —oex
a Name I Part 1_Constraints | [Host | Status | Prograss T Start [Elapsed | 1 THS | TPWS [Failed /|
o | Sy *c72010ciga00 constrs 1 Vwado >ynmes.s St Synthesis 20147 Fiot started o
- 5 impl_L #7201 0¢cigd00-1 constrs_1 1 Defaults (Vivado implementation 2014) Not started %
L]
»
L
&
» <0
ETcl Console > Messages G log A Reports D Design Runs

40 Insert | Verilog I

Figure 15. Edit_mylLed.

9. Inthe Project Manager, click the circle next tomyLed v1 0 and highlight myLed_v1_0_S_AXI (Fig. 16).
This contains the user logic inside of the myLed IP. We need to add two lines of code to complete the user
logic for this module. First, we need to create a user port called led (Fig. 17). Next, we need to connect the

internal slave to this user port. We will connect slv_reg0[3:0] as we have four LEDs (Fig. 18).

Project Manager - edit_rmyled_v1_0

SOurces

'q\ | '?_'

IP=3ACT
e Constralnts

7 R

@—= Design Sources (1)
g myLed_v1_0 royled vl
L@ myLed_v1_0_5_AX|_inst - rered v1_0_5_aX| {myled.

= Simulation Sources

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.

Figure 16. Select user logic file.

Page 9 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO

l@ BEYOND THEORY

1 395 end
2 timescale 1 ps / 1 ps 305 and
3 297 end
4 module myLed_vl_0O_S00_AXI # 368
5 ': ' [T S 399 _-"L Lser h 1ere
g Ers LU SO0 perafieters nere 400 3551gn led S'Lv r‘egEl[B (] R — |
8 i e e 401 User logic
0 o+ medifv the Daranst + 402
10 403 endmodule
11 Width of 5§ AXT dat
12 parame‘ti.-r 1nteger E 5 M:I DATA WICTH = 32, Figure 18. Add user logic.
13 AXT ad
14 parameter 1r1teger CS_ AKI ADDF-: WIDTH =
15]
16 (
1? o - + -
18 01|Tput wire [3 G]led <=l
19 Iser ports ends
ED not modi :., tha ports bevond +h1 o
21
Figure 17. Add user port.
10. Next, we need to connect the user logic to myLed. In the project manager select the file myLed_v_0. To
complete the IP, there are two lines of code we need to add to this file. Under the comment that says
“Users to add ports here,” add a port for the LEDs (Fig. 19). Connect the led output from the previous file
containing the user logic to myLed (Fig. 20).
2 timescale 1 ps / 1 ps 46 / nstantiation of Axl Bus Interface 588 A
3 . 47 myled vl_0 S60 _AXI # (
4 module myled vl 0O # 48 (C_S ANT_DATA WIDTH(C SO0 _AXI_DATA WIDTHI,
g (e 49 .C_S_AXI_ADDR WIDTH(C SO0 AXI_ADDR WIDTH)
2 vsers to add parameters here =0 :l mFLEd 'I'l D SIUD AKI 1I15‘t {
8 // User parameters ends -1 le“l‘e‘ﬂ I
] /f Do not modify the parameters beyond this 1 52 .S_AXI_ACLK(s00_axi_aclk),
10) ') =3 .S AXI_ARESETM(sO0 ax1_aresetn),
11 54 .S_AXI_AWADDR(s0O axi_awaddr),
12 // Parameters of Axi Slave Bus Interface S00_AXT S5 .S AXI_AWPROT (500 _axi_awprot),
13 parameter integer C_SE]EJ_AKI_DATA_WIDTH = 32, S5 .S ANI AWVALID(sO0 axi awvalid),
14 paraneter integer C SO0 AXI ADDR WIDTH = 4 57 .S _AXI_AWREADY (s00_axi_awready),
15) 58 .5_AXI_WDATA(s00_axi_wdata),
= Ueore o i sorte here 59 \S_AXI_WSTRE(s00_ax1_wstrb),
1g output [3 EJ] le |<=| 60 S AMT WVALID(s00 axi_wvalid),
19 // User ports en

Figure 19. Add External.

Figure 20. Connect myLed to User Logic.

11. Now that our IP is created and the user logic is defined, we need to package our IP. Under Project
Manager on the left side of the window, select Package IP. A new tab will open that is called Package IP.
On the left side of this tap there are a series of labels. We need to complete those that do not have green

check marks.

First, select IP customization Parameters. At the top of that window select the option to merge changes
from IP Customization Parameters Wizard, as in Fig. 21.

Copyright Digilent, Inc. All rights reserved.

Other product and company names mentioned may be trademarks of their respective owners.

Page 10 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO

l@ BEYOND THEORY

E Froject Summary ¥ © Package IP -myLed * o myled vl 0 S00_&Xlw % @ myled vl _Ow * 0w x
IF Fackaging Steps “@ | IP Customization Parameters wizard more info
« I Identification @ Merge changes from IP Custor ...i-.i-- ters Wizard | | |
o a Hame Merge changes from rl;-customlzatlnn arameters Wizard fus Bit String Length Valug Format | Value s
« |P Compatibilizy . gl Customization Pa £ o ¢ T N .l . .
=+ @ C 00 A pay Sanges cetected in Vivade project that reguire IP Packager to be updaled, lang
V|7 Fila Graups) R T L L L LR T — u long
. @ C_S00_A¥_SASEADDR C_S00_A¥] BASEADDR OWFFFFEFFF 32 bitString
IP Customization Parameters | @ C_S00_4¥_HIGHADDR C_S00_A¥_HIGHADDR — 0x00000000 32 bitstring
£ IP Parts and Interfaces
« |P fgldressing and Memory
& IF GUI Custamization
Feview snd Package
[0 | [[
Figure 21. Customization Parameters.
Next, select the IP Ports and Interfaces. Notice that your new LED IP is there (Fig. 22).
E Project Summany = & Package IP - myLed = & myled w1 0 500 MK = @ ryled vl Oy x O =
F Paclagng Steps “ ! IP Ports and interfaces mard mges e
L gl Hamne | nterface Mede Enatlenent Lependency | Uinection | Dneer Vaue | Seslef | s Left Uegerdency
1P Kertilicstio” AT] Slae
a, ; = Clack apd Aeget Signals
1P Compelib ity = | La e b at 3
+ IF Fle Grovps]
¥ IF CustomiEstian Farametars o
+ P Parts and Infarfacas gt
W IP rdviassing ard Memoey
< 1P UL Cuslomizslivn
Byl ant “arkzge
) | D E|

Figure 22. IP Ports and Interfaces.

Next, select IP GUI Customization. Our IP GUI is fine as is, so we won’t make any changes here (Fig. 23).

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.

Page 11 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO

l@ BEYOND THEORY

L Project Surmany =
F Packagng Steps 4
I ientification

+ IF Competiblity

+ IF Flo Groups

« IF Custcrmizatian Farametars

o IF Farta &7d Irtarasas

¢ Package P - myled =

& rmyLed Wl D SO0 AKLY % @ ryled vl Qv x
IF LU Customization

Prenaers

Shew dsabled pots
A F COMERnERT Nane

G0 A DATAWIDTH |22
Ca00 &1 ADDR YADTH |4

oS00 adl BesEADDE

W 1P fddeessing ard Memoey . A00 S¥1HIGHADDR

« IF GUI Cuslomizalion

Hrvizw anc “ackoge

adl 30]

ROO &= _argsatn

Figure 23. GUI Customization.

Now we can Review and Package our myLed IP. Select Review and Package IP and press the Re-Package

IP button. Our IP is now completed and packaged.

12. We are going to add our IP to our design. Right click anywhere on the block design and click Add IP (as
shown in Fig. 24). Select the correct IP, myLed_v1.0, and press enter (Fig. 23).

{3 BTNs_4Bits

[LEDs_4Bits[3:0]

{5 5Ws_aBits

' BTTS Ao
ground 2| -u5_AXI
const{o:0] ! s_axi_aclk GPIO-3 |}
s _axi_aresetn
nstant AT N
g Properties.. trl+E
X Delete D elete)
B Copy o SWs_48its
oL GEEG cerlby A
“ Search... ctrlp ik GFIO.
% Select &l Ctri+n [l-Aresetn
iF Add IP... kel AXI GO
| @validate Des#gn Fe
Create Hierarchy...
Create Comment
7T Create Port... Chrl4K
Create Interface Port,,. cel+L xi_dispetrl 1
@ Regenarate Layout PXLCLK O
||| B save as FOF File... PAL_CLK_5X_O
= LOCKED_O
TS AXIS_MM2S - D
n:s_::ﬁ_mm;_:suh{i-m HEYIC. ©
5 ax| adL VSYNC.O
= DE O
[

Figure 24. Add IP.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.

Page 12 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO M

[LEDs 4Bits
Search: [C- myled | (2 matches)
l MNarne I wimy |
“fLE myled v1.0 {dsf:user:...
4|1F myled 1.0 dsfiuser:... —DSW5_4Bit5

Select and press ENTER or drag and drop, ...

axi_dispctrl_1

(le__c#c.ﬂ]—

Figure 25. Select IP.

13. The AXl4-Lite bus of myLed IP Core needs to be connected to the processing system. At the top of the
window, click the blue text that says Run connection automation (Fig. 26). This will connect the inputs of
the myLed IP Core. You should see that S_AXI is now connected to the first output of the AXI

Interconnect.
i=Diagram x & Address Editor % =]t
¥ & system »
¢ | [§ Designer Assistance available. Aun Connect R.':u.-.. stion =
o LLLL L i H | | =
5 | ¥ 1}
)
BTNs_4Bits
- p
aQ s _Ax1
& ground s axiack GPIO4 ||} {2 BTNs_4Bits
- constlo'Ol.l axi_aresetn
X Tonetamt AXIGPIO
\} Lonstant
b mylLed_0
@ .
e “|e=500_Ax1
500_axi_aclk led[3:0] [LEDs_4Bits[3:0]
500_axi_aresatn
myLed v1.0 (Pre.Production)
SWs_4Bits
s _aoa
s axi_ack GPIOH- (|} {2 sWs_4Bits
, axi_aresetn
AXIGPIO
1
I I - I
1 -
@ f T ™1 : |>|;.|

Figure 26. Connect IP.

14. Next, we need to connect the myLed IP to an external port. The myLed IP Core that we implemented will
not connect to the existing LEDs_4Bits port, so we need to make a new external port called led. Click on
the existing LED port and press delete. To create the new port, right click and select create port (Fig. 27).
Name the port, select output, select vector [3:0] and press enter.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 13 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO M

BTNs_4Bits
| -pS_AxI
<_axi_aclk Grio-y || {2 BTNs_4Bits
,_axi_aresetn

AX| GPIO

myLed 0

|-HS00_AX] I-
MY sl sl Lowi[2-01
B Froperties
X Delete
W Copy
B Paste
&, Search... CtrdF
% Select All ctrkta [sws_4Bits
2 add P CriH
7 Validate Design F&
Create Hierarchy...
Create Comment
Create Port... [CrHK
tatus | Create Interface Port,,, ctritL
@ Regenerate Layout

| change Log | Upgrade Log | B save as POF File.., fion | Recommended Versiof

Figure 27. Create Port.

Next, connect the LED port to the myLed IP by clicking on the port and dragging a connection to myLed
(Fig. 28).

BTNs_4Bits

s _wa
5 Axi E
[System Met: rst_processing system? 0 87M peripheral aresetn

: } BTNs_4Bits

AX] GPIO
myLed 0

“|-ns00_Ax|
00_axi_aclk led[3:0] {3 led
00_axi_aresetn

myLed_v1.0 (Pre-Production)

S5Ws_4Bits

_u5_AX|
s ax_ack GPIO-& ||} {3 sws_aBits
<_axi_aresetn

AX1 GPIO

Figure 28. Connect IP to Port.

15. The final step is to specify the pin numbers formyled 0 LED pin to physically connect our customized
IP Core to the on-board LEDs. In the Project Manager, expand the Constraints section and select the
base.xdc file (Fig. 29). Within that file, change the names of the external LED pins so that they match the
name of our external led port (Fig. 30).

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 14 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO M

- Project Manager - Zybo_bsd

I
X

Sources - O
QaT= |2t R[E

&= Design Sources (11

Wi system_wrapper (system_wrapparv) (1
@& system_i - system (system, bd) (24
@ myLed_v1_0_hw 1 _wrapper (myled v1 0 hw 1 wrapp

@ myled v1 0 hw 1 i-myled vl 0 _hw 1 (myled v1 |
= IP Update Log (9
&=~ Constraints (1)
&= constrs_1 (1
L base.xdc (target) €=
©-= Simulation Sources (2]

&-=sim_1 (2)
i?ié.'. system_wrapper (system wrappery) (1)
W myled v1_0_hw 1 wrapper (myled v1_0_hw 1 _wrg
n T] [»]O

Hierarchy P Sources Libraries Compile Order

£ Sources ' Templates

Figure 29. Open XDC File.

E Project Summary x & system_wrapper.w x| I base.xdc* x
£y /home/kfranz/Desktop/Tutorializybo_base_systern/sourcepivado/hwizybo_bs

1 set_property PACKAGE_PIN R18 [get_ports {btns_dbits_tri_1[G]}]
2set_property PACKAGE_PIN P16 [get_ports {btns_dbits_tri_i[1]}]
3 set_property PACKAGE_PIN V16 [get_ports {btns_dbits_tri_il2]}]
4 set_property PACKAGE PIN Y16 [get_ports {bins_dbits_tri_i[3]1}]
Sset_property TOSTANDARD LVCMOS33 [get_ports {btns_dbits_tri_il[*]}]

+ 85

7 set_property PACKAGE PIN ML4 [get_ports {led[0]}1¢=
8set_property PACKAGE PIN M15 [get_ports {led[1]}1¢=
9set_property PACKAGE PIN Gl4 [get_ports {led(2]}]1&=—
10set_property PACKAGE_PIN D1B [get_ports {led[3]}]1&=

11 set_property IOSTANDARD LVCMOS33 [get_ports {led[*]}]<=
12

o
Ep Ji
III"L |IIF

=X

Figure 30. Connect Port led to the LEDs on the ZYBO Board.

16. Regenerate the bitstream for the hardware design by clicking on Generate Bitstream under Program and
Debug on the left side of the window.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 15 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO M

2 Compile U-Boot (Optional)

2.1 Prerequisites
» Vivado 2014.1 WebPACK: available at the Xilinx Website Download Page.

» ZYBO Base System Design: available at the Digilent Website on the ZYBO Page.

2.2 Instructions (Use the Master-Next Branch Until Further Notice)

1. Getthe source code for U-Boot from the Digilent Git repository. There are two ways to retrieve the source

code:

Using git command: If you have Git installed in your distribution, you can clone the repository to your
computer by command Git clone: https://github.com/DigilentInc/u-boot-Digilent-
Dev.git. The whole Git Repository is around 55MB, as shown in Fig. 31. If you want to get a separate
branch, follow Fig. 32. The next contains the U-boot that is not yet released. The clone URL referenced
above can be found on the Digilent GitHub page, as seen in Fig. 33.

[kfranz@IGILENT LINUX ~]$ git clone https://github.com/DigilentInc/u-boot-Digil h
ent-Dev.git

Initialized empty Git repesitory in /home/kfranz/u-boot-Digilent-Dev/.git/
remote: Reusing existing pack: 253678, done.

remote: Counting objects: 18, done.

remote: Compressing objects: 186% (16/18), done.

remote: Total 253088 (delta ®), reused © (delta @)

Receiving objects: 180% (253088/253088), 69.54 MiB | 4.88 MiB/s, done.
Resolving deltas: 100% (201962/201962), done.

Figure 31. U-Boot repository.

[kfranz@IGILENT LINUX ~]% git clone -b master-next https://github.com/DigilentI b
nc/u-boot-Digilent-Dev.git

Initialized empty Git repository in /home/kfranz/u-boot-Digilent-Dev/.git/
remote: Reusing existing pack: 253878, done.

remote: Counting objects: 108, done.

remote: Compressing objects: 180% (10/10), done.

remote: Total 253088 (delta @), reused @ (delta @)

Receiving objects: 100% (253088/253088), 69.54 MiB | 5.24 MiB/s, done.
Resolving deltas: 160% (201962/201962), done.

[kfranz@DIGILENT LINUX ~]% [l

Figure 32. Next-repository.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 16 of 37

http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2014-1.html
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1198&Prod=ZYBO
https://github.com/DigilentInc/u-boot-Digilent-Dev.git
https://github.com/DigilentInc/u-boot-Digilent-Dev.git

Embedded Linux® Hands-on Tutorial for the ZYBO

& Clone in Desktop

> Download ZIP

Figure 33. Clone URL.

l@ BEYOND THEORY

2. To compile U-Boot, we need cross-compile tools which are provided by Vivado 2014.1. Those tools have a
prefix arm-xilinx-1linux—-gnueabi- to the standard names for the GCC tool chain. The prefix
references the platforms that are used. The ZYBO board has two arm cores, so we reference arm. In order
to use the cross-platform compilers, please make sure the Vivado 2014.1 settings have been sourced. If
not, please refer to step 1 above. To configure and build U-Boot for ZYBO, follow Fig. 34.

[kfranz@DIGILENT LINUX u-boot-Digilent-Dev]$ make CROSS_COMPILE=arm-xilinx-linux-gnueabi-

zynq_zybo_config

Configuring for zyng ZYBO board...
[kfranz@DIGILENT LINUX u-boot-Digilent-Dev]$ make CROSS_COMPILE=arm-xilinx-linux-gnueabi-

Generating include/autoconf.mk

Generating include/autoconf.mk.dep

=

arm-xilinx-linux-gnueabi-1d -gc-sections -Ttext 0x1000000 -o demo crt0.o demo.o libgenwrap.o
lent-Dev/arch/arm/lib/eabi compat.o -L /opt/Xilinx/SDK/2014.1/gnu/arm/lin/bin/../1lib/gcc/arm

arm-xilinx-linux-gnueavi-objcopy -0 binary demo demo.bin 2>/dev/null

make[l]: Leaving directory /home/kfranz/Tutorial/u-boot-Digilent-Dev/examples/api’
[kfranz@DIGILENT LINUX u-boot-Digilent-Dev]$

Figure 34. Compile U-Boot.

3. After the compilation, the ELF (Executable and Linkable File) generated is named u-boot. We need to
add a . elf extension to the file name so that Xilinx SDK can read the file layout and generate
BOOT .BIN. In this tutorial, we are going to move the u-boot.elf tothe sd_ image folder and
substitute the u-boot.elf that comes along with the ZYBO Base System Design Package, as shown in

Fig. 35.

I[kfranz@DIGILENT LINUX u-boot-Digilent-Dev]$ cp u-boot

[kf ranz@DIGILENT:LINUX u-boot-Digilent-Dev]$ l
__ _

../zybo _base system/sd image/u-boot.elf

Copyright Digilent, Inc. All rights reserved.

Figure 35. Add .elf.

Other product and company names mentioned may be trademarks of their respective owners.

Page 17 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO m
3 Generate BOOT.BIN

3.1 Prerequisites
» Vivado 2014.1 WebPACK: available at the Xilinx Website Download Page.
» ZYBO Base System Design: available at the Digilent Website on the ZYBO Page.

» Finished the hardware customization from Section 1 and u-boot .elf from Section 2 (Section 2
optional).

3.2 Instructions

1. Export the hardware design (after Section 1, step 16) to Xilinx SDK by clicking on File -> Export -> Export
Hardware for SDK..., as shown in Fig. 36.

zybo _bsd - [/home/kfranz/Tutorial/zybo_base system

Eile | Edit Flow Tools Window Layout Yiew Help
/& New Project.... WHIOBXK I JE
* Open Project .
_ . emented Design - xc7z010clg40()
it

Opgn Example Project b
Sgwve Project As
Wwrite Project Tl Etem_wrapper
A Archive Project | Nets
Close Project | Leaf Cells (4
- | system.i

B 5a
Sawe Constraints As.
Close Implemented Design
Open Checkpoint..

Write Checkpoint...

New IP Location Sources 4 Netlist

Qpen IP Location... nies
y k
New File
Qpen Fije Cir+0
Open Recem Eile »
& Add Soyrces A+ ins
Open Source File. . Cuiel | Hame
Synth Design
|mport » P I\'ln. % .m.__u.. F AT . P
Export v & Export Hardware for SDK. ..
Open Log File Export Constraints

Export Phlocks
Export IBGS Modeal.

& Expaort 10 Ports.

% Export Bitsiream File

Open Journal File
Ed Erm'r Cirl+P
Exit

u | 1

Figure 36. Export Hardware Design to SDK.

2. Leave the workspace as <Local to Project>. Make sure that the “Launch SDK” box is checked and click OK,
as shown in Fig. 37.

Note: If you are using Vivado 2014.1, you may have to export twice.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 18 of 37

http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2014-1.html
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1198&Prod=ZYBO

Embedded Linux® Hands-on Tutorial for the ZYBO M

Export Hardware for SDK

a Export harcware plaiform far SOK.

Dptions

Source: | . system. bd

Export ta: o <local to Project>

Workspace: | fhome/kiranz (Tutonalfzybo_base_system/source... =

@ <Local ta Project:>
Jhomefkiranz,/Tutorlalj zvoo_base_system/source Mvivado [l zybo_bsd/zvoo_bsd, sdk /50K S0E_Expor

Kone h

|#] Export Hal
[#] Include bi

[# Launch SDK.

| ok | cancel |

Figure 37. Set SDK Workspace Path.

3. After SDK launches, the hardware platform project is already present in Project Explorer on the left of the
SDK main window, as shown in Fig. 38. We now need to create a First Stage Bootloader (FSBL). Click File-

>New->Project..., as shown in Fig. 39.

[Project Explorer 2 = O [system.xml £ =8 Foux " @mMal =3
B % ¥ Y| hw_platform_0 Hardware Platform Specification H e 3 Tl Rl R
~ & hw_platform_0 Design Information
[ps7_init.c -
[ps7_inith Target FPGA Dew_ce: ?'2010
o Created With: Vivado 2014.1
@ ps7_inithtml Created On: Fri May 23 12:00:53 2014
& ps7_initkel
[2 system_wrapper.bit Address Map for processor ps7_cortexa9_0
BTNs_4Bits 0x4
SWs_4Bits 0x4
axi_dispctri_0 0x43c
axi_dispctri_1 0x43c
axi_i2s_adi_1 0x43c
axi_vdma_0 0x4
axi_vdma_1 0x4 3
ps7_afi_0 ¢ 8
ps7_afi_1 ¢ £8
ps7_afi_2 £8
ps7_afi_3 Oxf £8
£8
1f
£8
£8
£8
K £8
ps7_ethemnet_0 Oxe
ps7_globaltimer_0 0xfaf
ps7_gpv_0 0xf
ps7_i2c_0 Oxe
ps7_intc_dist_0 Oxfaf
4} Target Connections 2 =g ps?_inp__l')ul-s‘_cnr:ﬁg_g E‘xi“ =
@ Overview Source] o .
4 Local [default] [2 Problems 82 . ¥ Tasks El Console = Properties| @ Terminal, ¥ = O SDK Log 53 B =03
0items 13:41:21 INFO : Processing command line option -hwspec /hon
Description Resource Path
& I [3)|| I)
e
Figure 38. Export hardware design to SDK.
Copyright Digilent, Inc. All rights reserved. Page 19 of 37

Other product and company names mentioned may be trademarks of their respective owners.

Embedded Linux® Hands-on Tutorial for the ZYBO M

C/C++ - hw_platform
Edit Source Refactor MNavigate Search Runm Project Xilink Tools Window H

Application Project
Open File,.. Board Support Package

Close Crri+w |k |
Close All Shift-+Clrl+W Source Folder

Folder

Source File

Header File

File from Template

Class

Other... Ctri+N

Figure 39. Create new project in SDK.

4. Inthe New Project window, select Xilinx->Application Project, and then Click Next (Fig. 40).

New Project

P = General
P & CC++

- & Xilinx
W), Board Support Package
iyy Hardware Platform Specification

@ | Next> Cancel |

Figure 40. Select Application Project Wizard.

5. We will name the project FSBL. Select hw_platform_0 for Target Hardware because it is the hardware
project we just exported. Select standalone for OS Platform. Click Next, as shown in Fig. 41.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 20 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO

Application Project

Create a managed make application project.

New Project

Project name: [FSBL E

Target Hardware

Hardware Platform | hw_platform_o

Processor

Target Software

|
I
I
05 Platform
Language

|
| || Use default location
|
I
|

o) [new]
| ps7_cortexa9_0 ¢ |
\:standalone o] \
®C O CH+
Board Support Package @ Create New FSBL_bsp]
Next> | ‘ cancel | [Finish

Figure 41. New Application Project.

6. Select Zynq FSBL as template, and click Finish as shown in Fig. 42.

Templates

Create one of the available templates to generate a fully-functioning
application project.

Available Templates:

New Project

[y

Peripheral Tests
Zyng DRAM tests

SREC Bootloader
Memory Tests
Hello World

IwIP Echo Server
Empty Application

Dhrystone

RSA Authentication App
Xilkernel POSIX Threads Demo

First Stage Bootloader (FSBL) for Zynaq.
The FSBL configures the FPGA with HW
bit stream (if it exists) and loads the
Operating System (O0S) Image or
Standalone (SA) Image or 2nd Stage Boot
Loader image from the non-volatile
memory (NAND/NOR/QSPI) to RAM (DDR)
and starts executing it. It supports
multiple partitions, and each partition
can be a code image or a bit stream.

Copyright Digilent, Inc. All rights reserved.

Cancel | [Finish

Figure 42. Select Zynq FSBL as template.

Other product and company names mentioned may be trademarks of their respective owners.

l@ BEYOND THEORY

Page 21 of 37

L

Embedded Linux® Hands-on Tutorial for the ZYBO

l@ BEYOND THEORY

7. Forthe ZYBO, we need to set the mac address for the Ethernet in the fsbl hook. We want the mac address
for the Ethernet to remain constant when we turn the ZYBO board off and on. You can swap the
fsbl hooks.c filein the FSBL project with the £sbl hooks.c under
source/vivado/SDK/fsbl in the ZYBO Base System Design (Fig. 43).

I Project Explorer 23
¥ <

- (2 FSBL 4l
I 4 Binaries
+ @i Includes
b (e joptXilink/SDK/2014. 1/
b (8 JopuXilinx/SDK/2014.1/
P (5 joptXilink/SDK/2014.1/¢
6 FSBL_bsp/ps7_cortexad|
& hw_platform_0
I (= Debug
¥ [=2.5IC
b [ddr_init.c
b [n fsbl_debug.h L4
b 1§ fsbl_handoff.5
b [n fsbl_hooks.h
b [§ fsbl.h

b [g image_mover.c
b [image_moverh
b [integerh

b [¢ main.c

P lg md5.c

P[5 md5.h

P [g nand.c

4

[nand.h
- . |
g I3)

4 Target Connections &2

|

= 0 | g system.xml

[, system.mss lc| fsbl_hooks.c 88 . [s fshl_hooks.h [k fsbi.h =0
#include "fsbl.h" 1~]
#include "xstatus.h"”
#include "fsbl hooks.h"
#include "xparameters.h”
#include "xiicps.h”
#include "xemacps.h”
,,,,,,,,,,,,,,,,,,,,,,,,,,,, variable Definitions r
........................... FUNCTiON Prototypes s*+sss+srssssssssssssassnssssss;
* This i ook which will be called t k
* The add all the customized code required to be executed before the
* bi nload to this routine.
@param None
@return
- XST SUCCESS to indicate success
- XST FAILURE.to indicate failure

.. /
u32 FsblHookBeforeBitstreamDload(void)
{

u3? Status;

Status = XST_SUCCESS;

/*

* User logic to be added here. Errors to be stored in the status variable

* and returned

fsbl printf(DEBUG INFO,"In FsblHookBeforeBitstreamDload function \r\n");

return (Status); i~

Figure 43. fsbl_hooks.c

8. After you have saved the changes to £sbl hooks. ¢, the project will rebuild itself automatically. If it
does not rebuild, click Project->Clean to clean the project files, and Project->Build All to rebuild all the
projects. The compiled ELF file is located in:

ZYBO_base system/source/vivado/hw/ZYBO bsd.sdk/SDK/SDK Export/FSBL/Debug

9. Now we have all of the files ready to create BOOT . BIN. Click Xilinx Tools -> Create Zynq Boot Image, as

shown in Fig. 44.

Copyright Digilent, Inc. All rights reserved.

Other product and company names mentioned may be trademarks of their respective owners.

Page 22 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO M

File Edit Source Refactor MNavigate Search Bun Project Window Help
) Generate linker script i
[T = E e sl 5 & o o = o
BE S a & Board Support Package Settings i
-(1 Project Explorer £3 = B | system.xml W sys Repositories

¥ ¥ || FSBL bsp Board §| ProgramFPGA
Program Flash

I

= 5
b 4P Binaries Medify this BSP's Setti xMD Console
bl Includes Launch Shell
b (= Debug Target Information Configure JTAG Settings n
b s This Board Support Pack: System Generator Co-Debug Settings |t
~ M FSBL_bsp Hardware Speciﬁcation:| " ruc
i e AR Ao Target Processor: ps7 cortexad 0 i

Figure 44. Create Zynq Boot Image.

10. In the Create Zynq Boot Image window (as shown in Fig. 45), Click Browse to set the path for FSBL elf.
Click Add to add the system.bit file found at:
/ZYBO base system/source/vivado/hw/ZYBO bsd/ZYBO bsd.sdk/SDK/SDK Export
/hw_platform 0/.Click Add to add the u-boot.elf file found at:
ZYBO base system/sd image/. Itis very important that the 3 files are added in this order, or else
the FSBL will not work properly (the proper order can be seen in Fig. 45). It is also very important that you
set FSBL.elf as the bootloader and system.bit and u-boot.elf as data files. In this tutorial, the
sd_image folder is set as output folder for the BIN file. Click Create Image.

Create Zynq Boot Image

Create Zynqg Boot Image
Creates Zyng Boot Image in .bin and .mcs formats from given FSBL elf and partition files in specified output folder. .@

@ Create new BIF file O Import from existing BIF file

BIF file path /home/kfranz/Tutorialfzybo_base_system/sd_image/output.bif l [Erowse

| O Use Authentication
|

[] Use encryption

Boot image partitions

File path Encrypted | Authenticated
({bootloader) jhome/kfranz/Tutorial/zybo_base syster none none
Jhome/kfranz/Tutorial/zybo_base system/sourcefvive none none
Jhome/kfranz/Mutorial/zybo_base_system/sd_image/. none none

Output path Ifhomejkfranz,fTutoﬁalfzybo_base_systemjsd_image}BOOT.bin

Cancel ‘ ‘ Create Image |

Figure 45. Create Zynq Boot Image Configuration.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 23 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO M

11. The created BIN file was named BOOT.bin.

4 Compile Linux Kernel

4.1 Prerequisites
» Vivado 2014.1 WebPACK: available at the Xilinx Website Download Page.

» ZYBO Base System Design: available at the Digilent Website on the ZYBO Page.

4.2 Instructions (Use the Master-Next Branch Until Further Notice)

1. Getthe Linux kernel source code from Digilent Git repository. There are two ways to retrieve the source

code:

Using git command: If you have Git installed in your distribution, you can clone the repository to your

computer by command git clone
https://github.com/DigilentInc/Linux-Digilent-Dev.git
The whole Git Repository is around 850MB, as shown in Fig. 46.

[kfranz@DIGILENT LINUX ~]% git clone https://github.com/DigilentInc/Linux-Digile
nt-Dev.gité=

Initialized empty Git repository in /home/kfranz/Linux-Digilent-Dev/.git/
remote: Counting objects: 3586185, done.

remote: Compressing objects: 180% (549192/549192), done.

remote: Total 3586185 (delta 2887223), reused 3586185 (delta 3007223)

Receiving objects: 108% (3586185/3586185), 864.81 MiB | 2.76 MiB/s, done.
Resolving deltas: 100% (3807223/3087223), done.

[kfranz@DIGILENT LINUX ~]$]

Figure 46. Clone Kernel.

2. We will start to configure the kernel with the default configuration for ZYBO. The configuration is
located at arch/arm/configs/xylinx zyng defconfig. To use the default configuration,

you can follow Fig. 47.

[kfranz@IGILENT LINUX Linux-Digilent-Dev]$ make ARCH=arm CROSS COMPILE=arm-xilinx-linux-gnueabi- xilinx_zyng defconfig
configuration written to .config

[kfranz@IGILENT LINUX Linux-Digilent-Dev]$ l

Figure 47. Default Configuration.

3. Follow Fig. 48 to compile the Linux Kernel.

[kfranz@IGILENT LINUX Linux-Digilent-Dev]$ make ARCH=arm CROSS5 COMPILE=arm-xilinx-linux-gnueabi- ~—
scripts/kconfig/conf --silentoldconfig Keonfig

CHK include/config/kernel.release
CHK include/generated/uapi/linux/version.h
CHK include/generated/utsrelease.h

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 24 of 37

http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2014-1.html
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1198&Prod=ZYBO

Embedded Linux® Hands-on Tutorial for the ZYBO M

Kernel: arch/arm/boot/Image is ready
LD arch/arm/boot/compressed/vmlinux
OBJCOPY arch/arm/boot/zImage
Kernel: arch/arm/boot/zImage is ready
Building modules, stage 2.
MODPOST 23 modules

[kfranz@IGILENT LINUX Linux-Digilent-Dev]$ [

Figure 48. Compile Kernel.

4. After the compilation, the kernel image is located at arch/arm/boot/zlmage. However, in this case the
kernel image has to be a ulmage (unzipped) rather than a zimage. To make the uimage, follow Fig. 49.

[kfranz@IGILENT LINUX Linux-Digilent-Dev]$ make ARCH=arm CROS5S COMPILE=arm-xilinx-linux-gnueabi- UIMAGE_ LOADADDR=0x8080 uImag

CHKE includE/configfkernel.release
CHK include/generated/uapi/linux/version.h
CHK include/generated/utsrelease.h

make[1]: "include/generated/mach-types.h' is up to date.

Data Size: 3819232 Bytes = 3729.72 kB = 3.64 MB
Load Address: @fe08000
Entry Point: ©©0080800

Image arch/arm/boot/ulmage is ready
[kfranz@IGILENT LINUX Linux-Digilent-Dev]s |}

Figure 49. Create ulmage.

Note: Depending on your distribution of Linux, you may get an error regarding the path of the mkimage. If
this is the case, you can change the path following Fig. 50.

[kfranz@IGILENT LINUX Tutoriall$ PATH=$PATH: jhume?kfranz{Tutorialf’u -boot-Digilent-Dev/tools/
[kfranz@DIGILENT LINUX Tutoriall]$ echo $PATH

Figure 50. Change Path.

5 Test Kernel Image with Pre-built File System

5.1Prerequisites
» Vivado 2014.1 WebPACK: available at the Xilinx Website Download Page.

» Linux Kernel Source Code: available at Digilent GitHub repository https://github.com/Digilentinc/Linux-
Digilent-Dev. (Use the Master-Next Branch Until Further Notice)

» Pre-built File System Image: ramdisk Image is available in ZYBO Linux Reference Design.

» BOOT.BIN from Section 3, ulmage from Section 4.

5.2 Instructions

1. To boot the Linux operating system on the ZYBO, you need BOOT.BIN, a Linux kernel image (ulmage), a
device tree blob (DTB file), and a file system. BOOT.BIN has been created in Section 3 and ulmage has
been compiled in Section 4. We will now compile the DTB file. The default device tree source file is

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 25 of 37

http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2014-1.html
https://github.com/DigilentInc/Linux-Digilent-Dev
https://github.com/DigilentInc/Linux-Digilent-Dev

Embedded Linux® Hands-on Tutorial for the ZYBO M

located in the Linux Kernel source at arch/arm/boot/dts/zyng-ZYBO.dts.
RAMDISK: modify the device tree source file according to Fig. 51. For Zynq, only the ramdisk image has
to be wrapped in a u-boot header in order for u-boot to boot with it. This is shown in Fig. 52.

48
49

50

51
52

chosen {
/* bootargs = "console=ttyPS0,115200 root=/dev/mmcblk0p2 rw earlyprintk
rootfstype=ext4 rootwait devtmpfs.mount=1"; */
bootargs = "console=ttyPS0,115200 root=/dev/ram rw initrd=0x800000,8M
init=/init earlyprintk rootwait devtmpfs.mount=1";
linux, stdout-path = "/axi@0/serial@e0001000";
bi

Figure 51. Edit device tree.

[kfrﬁnz@D[GILENT LINUX Tutorial]$./u-boot-Digilent-Dev/tools/mkimage -A arm -T <===’
ramdisk -c gzip -d ./ramdisk8M.image.gz uramdisk.image.gz
Image Name:

Created: Mon Jun 9 12:39:18 2014

Image Type: ARM Linux RAMDisk Image (gzip compressed)
Data Size: 3694108 Bytes = 3607.53 kB = 3.52 MB

Load Address: 08000000

Entry Point: 00800008

[kfranz@IGILENT LINUX Tutorial]s$ I

Figure 52. Make Uramdisk Image.

Generate DTB file, as shown in Fig. 53.

[kfranz@DIGILENT LINUX Linux-Digilent-Dev]$./scripts/dtc/dtc -I dts -0 dtb -o

.jdevicetree.dtb arch/arm/boot/dts/zyng-zybo.dts
[kfranz@DIGILENT LINUX Linux-Digilent-Dev]$ I

Figure 53. Generate DTB File.

(RAMDISK) Copy BOOT.BIN, devicetree.dtb, uimage and uramdisk.image.gz to the first partition of an
SD card, as shown in Fig. 54.

[kfranz@DIGILENT LINUX Tutoriall$ 1s

devicetree.dtb linux-digilent-dev u-boot-digilent ZYBO base system

[kfranz@DIGILENT LINUX Tutorial]$ cp ZYBO_base_ system/sd_image/BOOT.BIN /media/ZYBO_BOOT/
[kfranz@DIGILENT LINUX Tutoriall$ cp ZYBO_base_system/sd_image/ uramdisk.image.gz /BOOT.BIN
/media/ZYBO_BOOT/

[kfranz@DIGILENT LINUX Tutoriall]$ cp ./devicetree.dtb /media/ZYBO_BOOT/

[kfranz@DIGILENT LINUX Tutoriall]$ cp Linux-Digilent-Dev/arch/arm/boot/ulImage /media/ZYBO_BOOT/
[kfranz@DIGILENT LINUX Tutoriall$

Figure 54. Ramdisk.

Plug the SD card into the ZYBO. To boot from the SD card, jumper 7 needs to be configured for USB, as
shown on the ZYBO board, and Jumper 5 must be connected to SD. Connect UART port to PC with a
micro USB cable and set the UART terminal on PC to 115200 baud rate, 8 data bits, 1 stop bit, no parity,
and no flow control. After powering on the board, the console (shown in Fig. 55) should be seen at the
UART terminal if you use RamDisk. More information about these file systems can be found in Getting
Started with Embedded Linux - ZYBO.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 26 of 37

T—
L—

Embedded Linux® Hands-on Tutorial for the ZYBO M

=

DEE S

2
2 D e 00 E e e D

=

il
o &
= =

oy
=
=
=
=

&S
=
=
=
=
=
=
=
=
=5 e
T
4;.-1 =

=
=
=
=
=

= &
=

Figure 55. Ramdisk, UART Console after boot up.

6 Modify Device Tree and Compose Kernel Driver

6.1 Prerequisites
» Vivado 2014.1 WebPACK: available at the Xilinx Website Download Page.

» Linux Kernel Source Code: available at Digilent GitHub repository https://github.com/Digilentinc/Linux-
Digilent-Dev (Use the Master-Next Branch Until Further Notice)

6.2 Instructions

1. Create a directory named “drivers” in the Tutorial folder, as shown in Fig. 56. Inside the driver’s
directory, we will compose the driver for the myLed controller.

[kfranz@IGILENT LINUX Tutoriall$ mkdir drivers &=

[kfranz@IGILENT LINUX Tutorialls$ 1s

00T.bin output.bif vivado.jou
ps_clock registers.log vivado.log

[kfranz@IGILENT LINUX Tutoriall$ I

Figure 56. Driver Directory.

2. We need a Makefile so that we can compile the driver. The Makefile is created in Fig. 57.

[kfranz@IGILENT LINUX Tutoriall$ cd drivers
[kfranz@IGILENT LINUX drivers]$ vim r-1akefilel

Figure 57. Create Makefile.
After creating the file, hit | to change to insert mode and insert the following text (Fig. 58).

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 27 of 37

http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2014-1.html
https://github.com/Digilentinc/linux-digilent-dev
https://github.com/Digilentinc/linux-digilent-dev

Embedded Linux® Hands-on Tutorial for the ZYBO

l@ BEYOND THEORY

obj-m := myled.o

all:
make -C ../Linux-Digilent-Dev/ M=$ (PWD) modules

clean:

make -C ../Linux-Digilent-Dev/ M=$ (PWD) clean

Figure 58. Makefile.

Note: make sure the spacing in the Makefile is made up of tabs, not spaces, where necessary. Then hit esc

to exit insert mode and :x to save the file and exit vim editor.

3. We will start with a simple driver that creates a file named myled under the Linux /proc file system. The

status of the on-board LEDs can be changed by writing a number to the file. The driver is coded in Fig.

59.

[kfranz@DIGILENT LINUX drivers]$ wvim myled.cl

Figure 59. Create myled.c

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.

Page 28 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO M

1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <asm/uaccess.h> /* Needed for copy_from user */
4 #include <asm/io.h> /* Needed for IO Read/Write Functions */
5 #include <linux/proc_fs.h> /* Needed for Proc File System Functions */
6 #include <linux/seq file.h> /* Needed for Sequence File Operations */
7 #include <linux/platform device.h> /* Needed for Platform Driver Functions */
8
9 /* Define Driver Name */
10 #define DRIVER NAME "myled"
11
12 unsigned long *base_addr; /* Vitual Base Address */
13 struct resource *res; /* Device Resource Structure */
14 unsigned long remap_ size; /* Device Memory Size */
15
16 /* Write operation for /proc/myled
17 % o e
18 * When user cat a string to /proc/myled file, the string will be stored in
19 * const char _ user *buf. This function will copy the string from user
20 * space into kernel space, and change it to an unsigned long value.
21 * It will then write the value to the register of myled controller,
22 * and turn on the corresponding LEDs eventually.
23 */
24 static ssize_t proc_myled write(struct file *file, const char _ user * buf,

25 size_t count, loff t * ppos)

26 {

27 char myled phrase[16];

28 u32 myled value;

29

30 if (count < 11) {

31 if (copy_from user (myled phrase, buf, count))

32 return -EFAULT;

33

34 myled phrase[count] = '\0';

35 }

36

37 myled value = simple_ strtoul (myled phrase, NULL, O0);

38 wmb () ;

39 iowrite32 (myled value, base addr);

40 return count;

41 }

42

43 /* Callback function when opening file /proc/myled

44 U

45 * Read the register value of myled controller, print the value to

46 * the sequence file struct seq _file *p. In file open operation for /proc/myled
47 * this callback function will be called first to fill up the seq file,
48 * and seq read function will print whatever in seq file to the terminal.

49 */

50 static int proc_myled show(struct seq file *p, void *v)
51 {

52 u32 myled value;

53 myled value = ioread32 (base_addr) ;

54 seq printf(p, "O0x%x", myled value);

55 return 0;

56 }

57

Figure 60. myled.c

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 29 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO M

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

/* Open function for /proc/myled
K e
* When user want to read /proc/myled (i.e. cat /proc/myled), the open function
* will be called first. In the open function, a seq_file will be prepared and the
* status of myled will be filled into the seq file by proc_myled show function.
*/
static int proc_myled open(struct inode *inode, struct file *file)
{

unsigned int size = 16;

char *buf;

struct seq_file *m;

int res;

buf = (char *)kmalloc(size * sizeof(char), GFP_KERNEL) ;
if ('buf)
return -ENOMEM;

res = single_open(file, proc myled show, NULL);

if ('res) {
m = file->private_data;
m->buf = buf;
m->size = size;
} else {
kfree (buf) ;
}

return res;

}

/* File Operations for /proc/myled */
static const struct file_ operations proc myled operations = {
.open = proc_myled open,
.read = seq_read,
.write = proc_myled write,
.llseek = seq lseek,
.release = single_release

}i
/* Shutdown function for myled

* Before myled shutdown, turn-off all the leds
*/
static void myled_shutdown (struct platform device *pdev)

{

iowrite32 (0, base addr);

}

Figure 60. myled.c (Cont.)

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 30 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO M

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

/* Remove function for myled

* When myled module is removed, turn off all the leds first,
* release virtual address and the memory region requested.
*/
static int myled remove (struct platform device *pdev)
{

myled_shutdown (pdev) ;

/* Remove /proc/myled entry */
remove_proc_entry (DRIVER NAME, NULL) ;

/* Release mapped virtual address */
iounmap (base_addr) ;

/* Release the region */
release mem region(res->start, remap size);

return O;

}

/* Device Probe function for myled
X e —————
* Get the resource structure from the information in device tree.
* request the memory regioon needed for the controller, and map it into
* kernel virtual memory space. Create an entry under /proc file system
* and register file operations for that entry.
*/
static int myled probe (struct platform device *pdev)
{
struct proc_dir entry *myled proc_entry;
int ret = 0;

res = platform get resource(pdev, IORESOURCE_MEM, O0);
if ('res) {
dev_err (&pdev->dev, "No memory resource\n");
return -ENODEV;
}

remap size = res->end - res->start + 1;

if ('request mem region(res->start, remap size, pdev->name)) {
dev_err (&pdev->dev, "Cannot request IO\n");
return -ENXIO;

}

base_addr = ioremap (res->start, remap size);
if (base_addr == NULL) {
dev_err (&pdev->dev, "Couldn't ioremap memory at 0x%081lx\n",
(unsigned long)res->start);
ret = -ENOMEM;
goto err release_region;

Figure 60. myled.c (Cont.)

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 31 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO M

159 myled proc_entry = proc_create (DRIVER NAME, 0, NULL,
160 &proc_myled operations);

161 if (myled proc_entry == NULL) {

162 dev_err (&pdev->dev, "Couldn't create proc entry\n");
163 ret = -ENOMEM;

164 goto err create_ proc_entry;

165 }

166

167 printk (KERN_INFO DRIVER NAME " probed at VA 0x%08lx\n",
168 (unsigned long) base_addr);

169

170 return 0;

171

172 err create_proc_entry:

173 iounmap (base_addr) ;

174 err release_region:

175 release mem region(res->start, remap size);

176

177 return ret;

178 }

179

180 /* device match table to match with device node in device tree */
181 static const struct of device_id myled of match[] = {

182 {.compatible = "dglnt,myled-1.00.a"},

183 {1,

184 };

185

186 MODULE DEVICE TABLE (of, myled of match);

187

188 /* platform driver structure for myled driver */
189 static struct platform driver myled driver = {
190 .driver = {

191 .name = DRIVER NAME,

192 .owner = THIS MODULE,

193 .of match table = myled of match},
194 .probe = myled probe,

195 .remove = myled remove,

196 .shutdown = myled_shutdown

197 };

198

199 /* Register myled platform driver */

200 module platform driver (myled driver);

201

202 /* Module Infomations */

203 MODULE_AUTHOR ("Digilent, Inc.");

204 MODULE_LICENSE("GPL") ;

205 MODULE_DESCRIPTION(DRIVER_NAME ": MYLED driver (Simple Version)");
206 MODULE_ALIAS (DRIVER_NAME) ;

207

Figure 60. myled.c (Cont.)

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 32 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO M

4. Compile and generate the driver module using make (as shown in Fig. 61). Don’t forget to source Vivado
settings.

[kfranz@DIGILENT LINUX drivers]$ make ARCH=arm CROSS_COMPILE=arm-xilinx-linux-gnueabi-
make -C ../Linux-Digilent-Dev/ M=/home/kfranz/Tutorial/drivers modules
make[l]: Entering directory ~/home/kfranz/Tutorial/Linux-Digilent-Dev'

CC [M] /home/kfranz//Tutorial/drivers/myLed.o

Building modules, stage 2.

MODPOST 1 modules

ccC /home/kfranz/Tutorial/drivers/myLed.mod.o
LD [M] /home/kfranz/Tutorial/drivers/myLed.ko
make[l]: Leaving directory °/home/kfranz/Tutorial/Linux-Digilent-Dev'

[kfranz@DIGILENT LINUX drivers]s$

Figure 61. Compile Driver.

5. We need to add the myLed device node into the device tree. Make a copy of the default device tree
source in the drivers folder, and modify it according to Fig. 62. The compatibility string of the node is
the same as we define in the driver source code (myled.c: line 182). The reg property defines the
physical address and size of the node. The address here should match with the address of the myLed IP
Core in the address editor tab of the Vivado design, as shown in Fig. 63.

Z=Diagram X H Address Editor x @ system_wrapper.y X iF[P Catalog X
a, Cell | Interface Pin | Base Name | Offset Address | Range | High Address |

= | §-1F processing_system7_0
=2 || &-m Data (32 address bits : 4G
= = axi_dispetrl_0 S_AX| 5_AX|_reg 0x43C00000 64K~ Ox43COFFFF
. == axi_disperr_1 S_AX| S_AXI|_reg 0x%43C10000 64K+ Ox43C1FFFF
2 e axi_i2s_adi_1 S_AX| S_AXI_reg 0x43C20000 64K+ Ox43C2FFFF
e axi_vdma_1 S_AXI|_LITE Reg 0x%43010000 64K~ Ox4301FFFF
| == BTNs_4Bits S_AX| Reg 0x%41200000 £4K v Ox4120FFFF
|-« SWs_4Bits S_AX| Reg 0x41220000 B4K v Ox4122FFFF
e axi_vdma_0 S_AXI_LITE Reg 043000000 B4K =
L= mryled_ 1 S00_AXI S00_AXI_reg 0x43C30000 B4 v §
o-{F axi_vdma_l
@ M Data_MM2S (32 address bits : 4G)
== processing_system7_0 S_AXI_HPO HPO_DDR_LO... 0x00000000 512M ~ Ox1FFFFFFF
E Data_S52MM acldress bit 1G)
M Data SG (32 address bits . 4G
@-{F axi_vdma_0
o-E Data_MM2s address bit
L == processing_system7_0 S_AXI_HPO HFO_DDR_LO... 0x00000000 512M ~ Ox1FFFFFFF
| B Data_52MM (22 address hits - 40)
B Data_SG (32 address bits ;. 4

Figure 62. Physical Address for myLed IP Core.

[kfranz@DIGILENT LINUX drivers]$ cp ../Linux-Digilent-Dev/arch/arm/boot/dts/zyng-ZYBO.dts
[kfranz@DIGILENT LINUX drivers]$ vim zyng-ZYBO.dts

./

Figure 63. Edit device tree.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 33 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO M

549 spi-speed-hz = <4000000>;

550 spi-sclk-gpio = <&ps7 gpio 0 59 0>;
551 spi-sdin-gpio = <&ps7 gpio 0 60 0>;
552 }i

553

554 myled {

555 compatible = "dglnt,myled-1.00.a";
556 reg = <0x43c30000 0x10000>;

557 };

558)i

559 };

Figure 64. zyng-ZYBO.dts

6. Recompile the device tree blob as shown in Fig. 65.

[kfranz@DIGILENT LINUX drivers]$../Linux-Digilent-Dev/scripts/dtc/dtc -I dts -0 dtb -o
devicetree.dtb zyng-ZYBO.dts

DTC: dts->dtb on file "zyng-ZYBO.dts"

[kfranz@DIGILENT LINUX drivers]$

Figure 65. Compile DTB.

7. Copy these two files to the first partition of the SD card, as shown in Fig. 66. We are ready to test our
driver on-board now.

[kfranz@DIGILENT LINUX drivers]s 1s

devicetree.dtb Makefile Module.symvers myled.ko myled.mod.o
zyng-z2YBO.dts modules.order myled.c myled.mod.c myled.o
[kfranz@DIGILENT LINUX drivers]$ cp myled.ko /media/ZYBO_BOOT/d
[kfranz@DIGILENT LINUX drivers]$ cp devicetree.dtb /media/ZYBO_BOOT/
[kfranz@DIGILENT LINUX drivers]$

Figure 66. Copy files to SD.

8. Plugthe SD card into the ZYBO and we can start testing our driver. Use the insmod command to install
the driver module into the kernel. After the driver is installed, an entry named myled will be created
under the /proc file system. Writing 0x0F to /proc/myled will light up LED 0~3. You can either
remove the driver with command rmmod or power off the system by command poweroff. In both
cases, all of the LEDs will be turned off, as shown in Fig. 67. For instructions on using the terminal with
the ZYBO, please refer to Section 5, Step 4 or the Section Boot from SD in Getting Started with
Embedded Linux — ZYBO.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 34 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO

l@ BEYOND THEORY

U-Boot 2012.04.01-dirty (June 30 2014 -
DRAM: 512 MiB

WARNING: Caches not enabled

MMC : SDHCI: O

Using default environment
reading ulmage

2457328 bytes read
reading devicetree.dtb

9728 bytes read
reading uramdisk.image.gz

3694108 bytes read

Starting application at 0x00008000
Uncompressing Linux... done,
[0.000000]
[0.000000]
(gcc version 4.6.3
23:54:12 PST 2014

rcS Complete
zyng> mount /dev/mmcblkOpl /mnt/
zyng> cd /mnt/

12:52:36)

booting the kernel.
Booting Linux on physical CPU 0

Linux version 3.6.0-digilent-13.01-00002-g06b3889
(Sourcery CodeBench Lite 2012.03-79)

(kfranz@DIGILENT LINUX)

) #1 SMP PREEMPT Sun June 30

uramdisk.image.qgz

zyng> ls

BOOT.BIN devicetree.dtb

myled. ko ulmage

zyng> insmod myled.ko

[122.160000] myled probed at va 0xe0d20000

zyng> ls /proc

1 567 9 fs

10 582 asound interrupts
11 588 buddyinfo iomem

12 594 bus ioports

13 595 cmdline irqg

14 596 config.gz kallsyms
15 6 consoles kmsg

2 608 cpu kpagecount
3 614 cpuinfo kpageflags
317 615 crypto loadavg
318 621 device-tree locks

333 641 devices meminfo

4 642 diskstats misc

429 643 dma modules
440 647 dri mounts

441 652 driver mtd

5 653 execdomains myled

515 7 fb net

548 8 filesystems pagetypeinfo

zyng> echo 0x0F > /proc/myled

zyng> cat /proc/myled

0x0f

zyng> mkdir -p /lib/modules/ uname -r°
zyng> cp myled.ko /lib/modules/ uname -r°
zyng> rmmod myled

partitions
scsi

self
slabinfo
softirgs
stat

swaps

sSys
sysvipc
timer list
tty

uptime
version
vmallocinfo
vmstat
zoneinfo

Figure 67. RAMDISK

Copyright Digilent, Inc. All rights reserved.

Other product and company names mentioned may be trademarks of their respective owners.

Page 35 of 37

Embedded Linux® Hands-on Tutorial for the ZYBO

7 User Application

7.1 Prerequisites

» Vivado 2014.1 WebPACK: available at the Xilinx Website Download Page.

7.2 Instructions

l@ BEYOND THEORY

1. In this section, we will write a user application that makes the LEDs blink by writing to /proc/myled.

Create a directory named user_app in the Tutorial folder, as shown in Fig. 68. Inside the user_app

directory, we will compose the led_blink.c, as shown in Fig. 69.

[kfranz@DIGILENT LINUX Tutoriall]$ mkdir user_app
[kfranz@DIGILENT LINUX Tutoriall$ 1ls

devicetree.dtb drivers linux-digilent u-boot-digilent
[kfranz@DIGILENT LINUX Tutoriall$

user app 2ZYBO base system

Figure 68. User_app

I [kfranz@DIGILENT LINUX user app]$ vim led blink.c

Figure 69. led_blink

0 #include <stdio.h>

1 #include <stdlib.h>

2 #include <unistd.h>

3

4 int main()

51

6 FILE* fp;

7 while(1) {

8 fp = fopen("/proc/myled”, "w");
9 if(fp == NULL) {

10 printf("Cannot open /proc/myled for write\n");
11 return -1;

12 }

13 fputs("OxeF\n", fp);

14 fclose(fp);

15 sleep(1);

16 fp = fopen("/proc/myled”, "w");
17 if(fp == NULL) {

18 printf("Cannot open /proc/myled for write\n");
19 return -1;

20 }

21 fputs("exee\n", fp);

22 fclose(fp);

23 sleep(1);

24 }

25 return 0;

26 }

Figure 70. led_blink.c

2. Compose a Makefile and compile led_blink.c into led_blink.o, as shown in Figs. 71-73.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.

Page 36 of 37

http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2014-1.html

Embedded Linux® Hands-on Tutorial for the ZYBO

l@ BEYOND THEORY

I [kfranz@DIGILENT LINUX user appl]$ vim Makefile

Figure 71. Makefile.

1 cCc = arm-xilinx-linux-gnueabi-gcc
2 CFLAGS = -g

3

4 all : led_blink

5

6 led blink : led_blink.o

7 ${CC} ${CFLAGS} $~ -0 $Q@
8

9 clean
10 rm -rfv *.o0
11 rm -rfv led_blink
12
13 .PHONY : clean

Figure 72. Makefile.

arm-xilinx-linux-gnueabi-gcc -g

[kfranz@DIGILENT LINUX user app]$ make

-c -o led blink.o led blink.c

arm-xilinx-linux-gnueabi-gcc -g -o led blink led blink.o
[kfranz@DIGILENT LINUX user_appl$ 1ls

led blink led blink.c led blink.o Makefile
[kfranz@DIGILENT LINUX user app]$

Figure 73. Compile led_blink.

3. Insert the SD card into the computer, and copy the binary file 1led blink onto the first partition of SD

card, as shown in Fig. 74.

I [kfranz@DIGILENT LINUX user appl]$ cp led blink /media/ZYBO_BOOT/

Figure 74. Move led_blink.

rcS Complete

zyng> cd /mnt/

zyng> insmod myled.ko

zyng> ./led blink
AC -

zyng> rmmod myled

zyng> mount /dev/mmcblkOpl /mnt/

zyng> ls
BOOT.BIN devicetree.dtb led blink
myled. ko ramdisk8M.image.gz zImage

[122.160000] myled probed at va 0x8000

zyng> mkdir -p /lib/modules/ uname -r°
zyng> cp myled.ko /lib/modules/ uname -r°

Copyright Digilent, Inc. All rights reserved.

Figure 75. RAMDISK.

Other product and company names mentioned may be trademarks of their respective owners.

Page 37 of 37

