

1300 Henley Court
Pullman, WA 99163

509.334.6306
www.digilentinc.com

Embedded Linux
®
 Hands-on Tutorial for the ZYBO™

Revised December 5, 2014

DOC#: 594-008 Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 1 of 37

Overview

The purpose of this document is to provide step-by-step instructions for customizing your hardware, compiling the
Linux Kernel, and writing driver and user applications. This documentation intends to integrate knowledge and
skills in FPGA logic circuit design, standalone software programming, Linux operating system and user application
development, and apply them to the ZYBO. We will start from the ZYBO Base System Design (available on the ZYBO
product page of the Digilent website). The system architecture for the ZYBO Base System Design is shown in Fig. 1.

In the ZYBO Base System Design, we connect UART1 to USB-UART, SD0 to the SD Card Slot, USB0 to the USB-OTG
port, Enet0 to the Giga-bit Ethernet Port, and Quad SPI to the on-board QSPI Flash. These cores are hard IPs inside
the Processing System (PS) and connect to on-board peripherals via Multiplexed I/O (MIO) pins. The use of PS GPIO
is connected to Btn 4 and 5. In the Programmable Logic (PL), we have an HDMI TX Controller, VDMA, and GPIO IP
cores to talk to the ADV7511 HDMI transmitter chip and I2S and GPIO IP cores for ADAU1761 audio codec. More
details of the hardware design can be found in the documentation inside the ZYBO Base System Design package.

Figure 1. Reference Basic Hardware System Architecture for ZYBO.

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 2 of 37

In this tutorial, we are going to detach the LEDs from the AXI GPIO core and implement our own myLed core for it
in PL, as shown in Fig. 2. We will then add our own LED controller into the device tree, write a driver for it, and
develop user applications to control the status of the LEDs.

Figure 2. Hardware System Architecture of the system we are going to implement in this Tutorial.

Before going through this tutorial, we recommend that you read Getting Started with Embedded Linux - ZYBO. You
can follow this tutorial with the Embedded Linux Development Guide (available on the Digilent website Embedded
Linux Page). The guide will provide you with the knowledge you may need in each step of the development.

In this tutorial, we are going to use Xilinx® Vivado™ 2014.1 WebPACK™ in a Linux environment. All of the
screenshots and codes are done using Vivado Design Suite 2014.1 in CentOS 6 x86_64.

That’s it for the background information on this tutorial, now it’s time to get our hands dirty with some real design!

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 3 of 37

1 Hardware Customization

1.1 Prerequisites

 Vivado 2014.1 WebPACK: available at the Xilinx website Download Page.

 ZYBO Base System Design: available at the Digilent website on the ZYBO Page.

1.2 Instructions

1. Download the ZYBO Base System Design from the Digilent website and unzip it into our working directory,
as in Fig. 3 (our working directory is named tutorial throughout this document). For more information on
the hardware design, please refer to Project Guide under doc folder.

Figure 3. Unzip the ZYBO_Base_System.

2. Source Vivado 2014.1 settings and open the design with Vivado Design Suite. You will see the Vivado
window pop up as shown in Fig. 4.

 Note: There are four settings files available in the Vivado toolset: settings64.sh for use on 64-bit machines

with bash; settings32.sh for use on 32-bit machines with bash; settings32.csh for use on 32-bit machines
with C Shell; and settings64.csh for use on 64-bit machines with C Shell.

Figure 4. Open the Project.

http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2014-1.html
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1198&Prod=ZYBO

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 4 of 37

Figure 5. Vivado platform studio GUI.

3. We are going to detach LEDs from the GPIO core in the PS first. So we need to click on the IP integrator
and open the Block Diagram as shown in Fig. 5. Then we need to delete the current LED IP as shown in Fig.
6. We will handle the modification of external pin location configuration (xdc file) in later steps.

 Note: In Fig. 6 there is a yellow bar indicating the need for an upgrade. To upgrade, hit show IP status,

make sure all are selected and hit Upgrade Selected.

Figure 6. Delete existing LED IP.

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 5 of 37

4. (Vivado 2014.1 only) Before we can start implementing our myLed IP Core, we need to name the vendor
that will automatically be applied in the IP packager. In Vivado 2014.1, this is not automatically done for
the user. To do this, first go to the Project Settings under Project Manager on the left side of the window
(Fig. 7) and the project settings window will pop up. In the Project Settings window, select IP (Fig. 8).
Notice that the vendor is chosen as “(none)”, this will cause a Vivado internal exception. You can name the
Vendor whatever you like (Fig. 9).

Figure 7. Project settings.

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 6 of 37

Figure 8. Unnamed vendor. Figure 9. Named vendor.

5. Now we can start implementing our myLed IP Core. Click Tools -> Create and Package IP… from the menu
(as shown in Fig. 10). The Create and Package New IP window will pop up (as shown in Fig. 11), Click Next.
In the next window, name the new IP and click next again (Fig. 12).

Figure 10. Create and Package IP.

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 7 of 37

6. The next window will be the Add Interfaces Window. This will create the AX14 Interface for the myLed
peripheral (Fig. 13). Make sure the interface type is Lite, the mode is Slave, the data width is 32 bits and
the number of registers is 4. Change the Name to S_AXI rather than S00_AXI. We only need 1 register but
the minimum we can select is 4. Click next to proceed.

Figure 13. Add Interface

Figure 11. IP Options. Figure 12. Peripheral Details.

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 8 of 37

7. The next window will prompt the finishing steps to create the IP (Fig. 14). Change the Radio button to
select Edit IP and hit finish. We need to add user logic to the IP so that our slave is connected to the LED
output.

Figure 14. Edit IP.

8. After selecting finish, the Create and Package IP window will disappear and the next window you will see
is the edit_myLed window (Fig. 15). This is where we will add our user logic.

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 9 of 37

Figure 15. Edit_myLed.

9. In the Project Manager, click the circle next to myLed_v1_0 and highlight myLed_v1_0_S_AXI (Fig. 16).

This contains the user logic inside of the myLed IP. We need to add two lines of code to complete the user
logic for this module. First, we need to create a user port called led (Fig. 17). Next, we need to connect the
internal slave to this user port. We will connect slv_reg0[3:0] as we have four LEDs (Fig. 18).

Figure 16. Select user logic file.

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 10 of 37

Figure 18. Add user logic.

Figure 17. Add user port.

10. Next, we need to connect the user logic to myLed. In the project manager select the file myLed_v_0. To
complete the IP, there are two lines of code we need to add to this file. Under the comment that says
“Users to add ports here,” add a port for the LEDs (Fig. 19). Connect the led output from the previous file

containing the user logic to myLed (Fig. 20).

11. Now that our IP is created and the user logic is defined, we need to package our IP. Under Project
Manager on the left side of the window, select Package IP. A new tab will open that is called Package IP.
On the left side of this tap there are a series of labels. We need to complete those that do not have green
check marks.

First, select IP customization Parameters. At the top of that window select the option to merge changes
from IP Customization Parameters Wizard, as in Fig. 21.

Figure 19. Add External.

Figure 20. Connect myLed to User Logic.

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 11 of 37

Figure 21. Customization Parameters.

Next, select the IP Ports and Interfaces. Notice that your new LED IP is there (Fig. 22).

Figure 22. IP Ports and Interfaces.

 Next, select IP GUI Customization. Our IP GUI is fine as is, so we won’t make any changes here (Fig. 23).

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 12 of 37

Figure 23. GUI Customization.

 Now we can Review and Package our myLed IP. Select Review and Package IP and press the Re-Package
 IP button. Our IP is now completed and packaged.

12. We are going to add our IP to our design. Right click anywhere on the block design and click Add IP (as

shown in Fig. 24). Select the correct IP, myLed_v1.0, and press enter (Fig. 23).

Figure 24. Add IP.

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 13 of 37

Figure 25. Select IP.

13. The AXI4-Lite bus of myLed IP Core needs to be connected to the processing system. At the top of the
window, click the blue text that says Run connection automation (Fig. 26). This will connect the inputs of

the myLed IP Core. You should see that S_AXI is now connected to the first output of the AXI
Interconnect.

Figure 26. Connect IP.

14. Next, we need to connect the myLed IP to an external port. The myLed IP Core that we implemented will

not connect to the existing LEDs_4Bits port, so we need to make a new external port called led. Click on
the existing LED port and press delete. To create the new port, right click and select create port (Fig. 27).
Name the port, select output, select vector [3:0] and press enter.

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 14 of 37

Figure 27. Create Port.

Next, connect the LED port to the myLed IP by clicking on the port and dragging a connection to myLed
(Fig. 28).

Figure 28. Connect IP to Port.

15. The final step is to specify the pin numbers for myled_0_LED_pin to physically connect our customized
IP Core to the on-board LEDs. In the Project Manager, expand the Constraints section and select the
base.xdc file (Fig. 29). Within that file, change the names of the external LED pins so that they match the
name of our external led port (Fig. 30).

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 15 of 37

Figure 29. Open XDC File.

Figure 30. Connect Port led to the LEDs on the ZYBO Board.

16. Regenerate the bitstream for the hardware design by clicking on Generate Bitstream under Program and
Debug on the left side of the window.

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 16 of 37

2 Compile U-Boot (Optional)

2.1 Prerequisites

 Vivado 2014.1 WebPACK: available at the Xilinx Website Download Page.

 ZYBO Base System Design: available at the Digilent Website on the ZYBO Page.

2.2 Instructions (Use the Master-Next Branch Until Further Notice)

1. Get the source code for U-Boot from the Digilent Git repository. There are two ways to retrieve the source

code:

Using git command: If you have Git installed in your distribution, you can clone the repository to your
computer by command Git clone: https://github.com/DigilentInc/u-boot-Digilent-

Dev.git. The whole Git Repository is around 55MB, as shown in Fig. 31. If you want to get a separate
branch, follow Fig. 32. The next contains the U-boot that is not yet released. The clone URL referenced
above can be found on the Digilent GitHub page, as seen in Fig. 33.

Figure 31. U-Boot repository.

Figure 32. Next-repository.

http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2014-1.html
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1198&Prod=ZYBO
https://github.com/DigilentInc/u-boot-Digilent-Dev.git
https://github.com/DigilentInc/u-boot-Digilent-Dev.git

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 17 of 37

Figure 33. Clone URL.

2. To compile U-Boot, we need cross-compile tools which are provided by Vivado 2014.1. Those tools have a

prefix arm-xilinx-linux-gnueabi- to the standard names for the GCC tool chain. The prefix

references the platforms that are used. The ZYBO board has two arm cores, so we reference arm. In order

to use the cross-platform compilers, please make sure the Vivado 2014.1 settings have been sourced. If

not, please refer to step 1 above. To configure and build U-Boot for ZYBO, follow Fig. 34.

3. After the compilation, the ELF (Executable and Linkable File) generated is named u-boot. We need to

add a .elf extension to the file name so that Xilinx SDK can read the file layout and generate

BOOT.BIN. In this tutorial, we are going to move the u-boot.elf to the sd_image folder and

substitute the u-boot.elf that comes along with the ZYBO Base System Design Package, as shown in

Fig. 35.

Figure 35. Add .elf.

[kfranz@DIGILENT_LINUX u-boot-Digilent-Dev]$ make CROSS_COMPILE=arm-xilinx-linux-gnueabi-

zynq_zybo_config

Configuring for zynq_ZYBO board...

[kfranz@DIGILENT_LINUX u-boot-Digilent-Dev]$ make CROSS_COMPILE=arm-xilinx-linux-gnueabi-

Generating include/autoconf.mk

Generating include/autoconf.mk.dep

. . .

arm-xilinx-linux-gnueabi-ld –gc-sections –Ttext 0x1000000 –o demo crt0.o demo.o libgenwrap.o

lent-Dev/arch/arm/lib/eabi_compat.o –L /opt/Xilinx/SDK/2014.1/gnu/arm/lin/bin/../lib/gcc/arm

arm-xilinx-linux-gnueavi-objcopy –O binary demo demo.bin 2>/dev/null

make[1]: Leaving directory /home/kfranz/Tutorial/u-boot-Digilent-Dev/examples/api’

[kfranz@DIGILENT_LINUX u-boot-Digilent-Dev]$

Figure 34. Compile U-Boot.

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 18 of 37

3 Generate BOOT.BIN

3.1 Prerequisites

 Vivado 2014.1 WebPACK: available at the Xilinx Website Download Page.

 ZYBO Base System Design: available at the Digilent Website on the ZYBO Page.

 Finished the hardware customization from Section 1 and u-boot.elf from Section 2 (Section 2
optional).

3.2 Instructions

1. Export the hardware design (after Section 1, step 16) to Xilinx SDK by clicking on File -> Export -> Export

Hardware for SDK…, as shown in Fig. 36.

Figure 36. Export Hardware Design to SDK.

2. Leave the workspace as <Local to Project>.Make sure that the “Launch SDK” box is checked and click OK,

as shown in Fig. 37.

 Note: If you are using Vivado 2014.1, you may have to export twice.

http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2014-1.html
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1198&Prod=ZYBO

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 19 of 37

Figure 37. Set SDK Workspace Path.

3. After SDK launches, the hardware platform project is already present in Project Explorer on the left of the

SDK main window, as shown in Fig. 38. We now need to create a First Stage Bootloader (FSBL). Click File-

>New->Project…, as shown in Fig. 39.

Figure 38. Export hardware design to SDK.

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 20 of 37

Figure 39. Create new project in SDK.

4. In the New Project window, select Xilinx->Application Project, and then Click Next (Fig. 40).

Figure 40. Select Application Project Wizard.

5. We will name the project FSBL. Select hw_platform_0 for Target Hardware because it is the hardware

project we just exported. Select standalone for OS Platform. Click Next, as shown in Fig. 41.

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 21 of 37

Figure 41. New Application Project.

6. Select Zynq FSBL as template, and click Finish as shown in Fig. 42.

Figure 42. Select Zynq FSBL as template.

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 22 of 37

7. For the ZYBO, we need to set the mac address for the Ethernet in the fsbl hook. We want the mac address

for the Ethernet to remain constant when we turn the ZYBO board off and on. You can swap the

fsbl_hooks.c file in the FSBL project with the fsbl_hooks.c under

source/vivado/SDK/fsbl in the ZYBO Base System Design (Fig. 43).

Figure 43. fsbl_hooks.c

8. After you have saved the changes to fsbl_hooks.c, the project will rebuild itself automatically. If it

does not rebuild, click Project->Clean to clean the project files, and Project->Build All to rebuild all the

projects. The compiled ELF file is located in:

 ZYBO_base_system/source/vivado/hw/ZYBO_bsd.sdk/SDK/SDK_Export/FSBL/Debug

9. Now we have all of the files ready to create BOOT.BIN. Click Xilinx Tools -> Create Zynq Boot Image, as

shown in Fig. 44.

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 23 of 37

Figure 44. Create Zynq Boot Image.

10. In the Create Zynq Boot Image window (as shown in Fig. 45), Click Browse to set the path for FSBL elf.

Click Add to add the system.bit file found at:

/ZYBO_base_system/source/vivado/hw/ZYBO_bsd/ZYBO_bsd.sdk/SDK/SDK_Export

/hw_platform_0/.Click Add to add the u-boot.elf file found at:

ZYBO_base_system/sd_image/. It is very important that the 3 files are added in this order, or else

the FSBL will not work properly (the proper order can be seen in Fig. 45). It is also very important that you

set FSBL.elf as the bootloader and system.bit and u-boot.elf as data files. In this tutorial, the

sd_image folder is set as output folder for the BIN file. Click Create Image.

Figure 45. Create Zynq Boot Image Configuration.

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 24 of 37

11. The created BIN file was named BOOT.bin.

4 Compile Linux Kernel

4.1 Prerequisites

 Vivado 2014.1 WebPACK: available at the Xilinx Website Download Page.

 ZYBO Base System Design: available at the Digilent Website on the ZYBO Page.

4.2 Instructions (Use the Master-Next Branch Until Further Notice)

1. Get the Linux kernel source code from Digilent Git repository. There are two ways to retrieve the source

code:

Using git command: If you have Git installed in your distribution, you can clone the repository to your

computer by command git clone
https://github.com/DigilentInc/Linux-Digilent-Dev.git
The whole Git Repository is around 850MB, as shown in Fig. 46.

Figure 46. Clone Kernel.

2. We will start to configure the kernel with the default configuration for ZYBO. The configuration is

located at arch/arm/configs/xylinx_zynq_defconfig. To use the default configuration,

you can follow Fig. 47.

Figure 47. Default Configuration.

3. Follow Fig. 48 to compile the Linux Kernel.

http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2014-1.html
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1198&Prod=ZYBO

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 25 of 37

Figure 48. Compile Kernel.

4. After the compilation, the kernel image is located at arch/arm/boot/zImage. However, in this case the

kernel image has to be a uImage (unzipped) rather than a zimage. To make the uimage, follow Fig. 49.

Figure 49. Create uImage.

Note: Depending on your distribution of Linux, you may get an error regarding the path of the mkimage. If

this is the case, you can change the path following Fig. 50.

Figure 50. Change Path.

5 Test Kernel Image with Pre-built File System

5.1 Prerequisites

 Vivado 2014.1 WebPACK: available at the Xilinx Website Download Page.

 Linux Kernel Source Code: available at Digilent GitHub repository https://github.com/DigilentInc/Linux-
Digilent-Dev. (Use the Master-Next Branch Until Further Notice)

 Pre-built File System Image: ramdisk Image is available in ZYBO Linux Reference Design.

 BOOT.BIN from Section 3, uImage from Section 4.

5.2 Instructions

1. To boot the Linux operating system on the ZYBO, you need BOOT.BIN, a Linux kernel image (uImage), a

device tree blob (DTB file), and a file system. BOOT.BIN has been created in Section 3 and uImage has

been compiled in Section 4. We will now compile the DTB file. The default device tree source file is

http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2014-1.html
https://github.com/DigilentInc/Linux-Digilent-Dev
https://github.com/DigilentInc/Linux-Digilent-Dev

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 26 of 37

located in the Linux Kernel source at arch/arm/boot/dts/zynq-ZYBO.dts.

RAMDISK: modify the device tree source file according to Fig. 51. For Zynq, only the ramdisk image has

to be wrapped in a u-boot header in order for u-boot to boot with it. This is shown in Fig. 52.

Figure 51. Edit device tree.

Figure 52. Make Uramdisk Image.

2. Generate DTB file, as shown in Fig. 53.

Figure 53. Generate DTB File.

3. (RAMDISK) Copy BOOT.BIN, devicetree.dtb, uImage and uramdisk.image.gz to the first partition of an

SD card, as shown in Fig. 54.

Figure 54. Ramdisk.

4. Plug the SD card into the ZYBO. To boot from the SD card, jumper 7 needs to be configured for USB, as

shown on the ZYBO board, and Jumper 5 must be connected to SD. Connect UART port to PC with a

micro USB cable and set the UART terminal on PC to 115200 baud rate, 8 data bits, 1 stop bit, no parity,

and no flow control. After powering on the board, the console (shown in Fig. 55) should be seen at the

UART terminal if you use RamDisk. More information about these file systems can be found in Getting

Started with Embedded Linux - ZYBO.

 48 chosen {

 49 /* bootargs = "console=ttyPS0,115200 root=/dev/mmcblk0p2 rw earlyprintk

 rootfstype=ext4 rootwait devtmpfs.mount=1"; */

50 bootargs = "console=ttyPS0,115200 root=/dev/ram rw initrd=0x800000,8M

 init=/init earlyprintk rootwait devtmpfs.mount=1";

 51 linux,stdout-path = "/axi@0/serial@e0001000";

 52 };

[kfranz@DIGILENT_LINUX Tutorial]$ ls

devicetree.dtb linux-digilent-dev u-boot-digilent ZYBO_base_system

[kfranz@DIGILENT_LINUX Tutorial]$ cp ZYBO_base_system/sd_image/BOOT.BIN /media/ZYBO_BOOT/

[kfranz@DIGILENT_LINUX Tutorial]$ cp ZYBO_base_system/sd_image/ uramdisk.image.gz /BOOT.BIN
/media/ZYBO_BOOT/

[kfranz@DIGILENT_LINUX Tutorial]$ cp ./devicetree.dtb /media/ZYBO_BOOT/

[kfranz@DIGILENT_LINUX Tutorial]$ cp Linux-Digilent-Dev/arch/arm/boot/uImage /media/ZYBO_BOOT/

[kfranz@DIGILENT_LINUX Tutorial]$

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 27 of 37

Figure 55. Ramdisk, UART Console after boot up.

6 Modify Device Tree and Compose Kernel Driver

6.1 Prerequisites

 Vivado 2014.1 WebPACK: available at the Xilinx Website Download Page.

 Linux Kernel Source Code: available at Digilent GitHub repository https://github.com/Digilentinc/Linux-
Digilent-Dev (Use the Master-Next Branch Until Further Notice)

6.2 Instructions

1. Create a directory named “drivers” in the Tutorial folder, as shown in Fig. 56. Inside the driver’s

directory, we will compose the driver for the myLed controller.

Figure 56. Driver Directory.

2. We need a Makefile so that we can compile the driver. The Makefile is created in Fig. 57.

Figure 57. Create Makefile.

After creating the file, hit I to change to insert mode and insert the following text (Fig. 58).

http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2014-1.html
https://github.com/Digilentinc/linux-digilent-dev
https://github.com/Digilentinc/linux-digilent-dev

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 28 of 37

Figure 58. Makefile.

 Note: make sure the spacing in the Makefile is made up of tabs, not spaces, where necessary. Then hit esc

to exit insert mode and :x to save the file and exit vim editor.

3. We will start with a simple driver that creates a file named myled under the Linux /proc file system. The

status of the on-board LEDs can be changed by writing a number to the file. The driver is coded in Fig.

59.

Figure 59. Create myled.c

obj-m := myled.o

all:

 make -C ../Linux-Digilent-Dev/ M=$(PWD) modules

 clean:

 make -C ../Linux-Digilent-Dev/ M=$(PWD) clean

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 29 of 37

Figure 60. myled.c

 1 #include <linux/kernel.h>

 2 #include <linux/module.h>

 3 #include <asm/uaccess.h> /* Needed for copy_from_user */

 4 #include <asm/io.h> /* Needed for IO Read/Write Functions */

 5 #include <linux/proc_fs.h> /* Needed for Proc File System Functions */

 6 #include <linux/seq_file.h> /* Needed for Sequence File Operations */

 7 #include <linux/platform_device.h> /* Needed for Platform Driver Functions */

 8

 9 /* Define Driver Name */

 10 #define DRIVER_NAME "myled"

 11

 12 unsigned long *base_addr; /* Vitual Base Address */

 13 struct resource *res; /* Device Resource Structure */

 14 unsigned long remap_size; /* Device Memory Size */

 15

 16 /* Write operation for /proc/myled

 17 * -----------------------------------

 18 * When user cat a string to /proc/myled file, the string will be stored in

 19 * const char __user *buf. This function will copy the string from user

 20 * space into kernel space, and change it to an unsigned long value.

 21 * It will then write the value to the register of myled controller,

 22 * and turn on the corresponding LEDs eventually.

 23 */

 24 static ssize_t proc_myled_write(struct file *file, const char __user * buf,

 25 size_t count, loff_t * ppos)

 26 {

 27 char myled_phrase[16];

 28 u32 myled_value;

 29

 30 if (count < 11) {

 31 if (copy_from_user(myled_phrase, buf, count))

 32 return -EFAULT;

 33

 34 myled_phrase[count] = '\0';

 35 }

 36

 37 myled_value = simple_strtoul(myled_phrase, NULL, 0);

 38 wmb();

 39 iowrite32(myled_value, base_addr);

 40 return count;

 41 }

 42

 43 /* Callback function when opening file /proc/myled

 44 * --

 45 * Read the register value of myled controller, print the value to

 46 * the sequence file struct seq_file *p. In file open operation for /proc/myled

 47 * this callback function will be called first to fill up the seq_file,

 48 * and seq_read function will print whatever in seq_file to the terminal.

 49 */

 50 static int proc_myled_show(struct seq_file *p, void *v)

 51 {

 52 u32 myled_value;

 53 myled_value = ioread32(base_addr);

 54 seq_printf(p, "0x%x", myled_value);

 55 return 0;

 56 }

 57

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 30 of 37

Figure 60. myled.c (Cont.)

 58 /* Open function for /proc/myled

 59 * ------------------------------------

 60 * When user want to read /proc/myled (i.e. cat /proc/myled), the open function

 61 * will be called first. In the open function, a seq_file will be prepared and the

 62 * status of myled will be filled into the seq_file by proc_myled_show function.

 63 */

 64 static int proc_myled_open(struct inode *inode, struct file *file)

 65 {

 66 unsigned int size = 16;

 67 char *buf;

 68 struct seq_file *m;

 69 int res;

 70

 71 buf = (char *)kmalloc(size * sizeof(char), GFP_KERNEL);

 72 if (!buf)

 73 return -ENOMEM;

 74

 75 res = single_open(file, proc_myled_show, NULL);

 76

 77 if (!res) {

 78 m = file->private_data;

 79 m->buf = buf;

 80 m->size = size;

 81 } else {

 82 kfree(buf);

 83 }

 84

 85 return res;

 86 }

 87

 88 /* File Operations for /proc/myled */

 89 static const struct file_operations proc_myled_operations = {

 90 .open = proc_myled_open,

 91 .read = seq_read,

 92 .write = proc_myled_write,

 93 .llseek = seq_lseek,

 94 .release = single_release

 95 };

 96

 97 /* Shutdown function for myled

 98 * -----------------------------------

 99 * Before myled shutdown, turn-off all the leds

100 */

101 static void myled_shutdown(struct platform_device *pdev)

102 {

103 iowrite32(0, base_addr);

104 }

105

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 31 of 37

Figure 60. myled.c (Cont.)

106 /* Remove function for myled

107 * ----------------------------------

108 * When myled module is removed, turn off all the leds first,

109 * release virtual address and the memory region requested.

110 */

111 static int myled_remove(struct platform_device *pdev)

112 {

113 myled_shutdown(pdev);

114

115 /* Remove /proc/myled entry */

116 remove_proc_entry(DRIVER_NAME, NULL);

117

118 /* Release mapped virtual address */

119 iounmap(base_addr);

120

121 /* Release the region */

122 release_mem_region(res->start, remap_size);

123

124 return 0;

125 }

126

127 /* Device Probe function for myled

128 * ------------------------------------

129 * Get the resource structure from the information in device tree.

130 * request the memory regioon needed for the controller, and map it into

131 * kernel virtual memory space. Create an entry under /proc file system

132 * and register file operations for that entry.

133 */

134 static int myled_probe(struct platform_device *pdev)

135 {

136 struct proc_dir_entry *myled_proc_entry;

137 int ret = 0;

138

139 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

140 if (!res) {

141 dev_err(&pdev->dev, "No memory resource\n");

142 return -ENODEV;

143 }

144

145 remap_size = res->end - res->start + 1;

146 if (!request_mem_region(res->start, remap_size, pdev->name)) {

147 dev_err(&pdev->dev, "Cannot request IO\n");

148 return -ENXIO;

149 }

150

151 base_addr = ioremap(res->start, remap_size);

152 if (base_addr == NULL) {

153 dev_err(&pdev->dev, "Couldn't ioremap memory at 0x%08lx\n",

154 (unsigned long)res->start);

155 ret = -ENOMEM;

156 goto err_release_region;

157 }

158

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 32 of 37

Figure 60. myled.c (Cont.)

159 myled_proc_entry = proc_create(DRIVER_NAME, 0, NULL,

160 &proc_myled_operations);

161 if (myled_proc_entry == NULL) {

162 dev_err(&pdev->dev, "Couldn't create proc entry\n");

163 ret = -ENOMEM;

164 goto err_create_proc_entry;

165 }

166

167 printk(KERN_INFO DRIVER_NAME " probed at VA 0x%08lx\n",

168 (unsigned long) base_addr);

169

170 return 0;

171

172 err_create_proc_entry:

173 iounmap(base_addr);

174 err_release_region:

175 release_mem_region(res->start, remap_size);

176

177 return ret;

178 }

179

180 /* device match table to match with device node in device tree */

181 static const struct of_device_id myled_of_match[] = {

182 {.compatible = "dglnt,myled-1.00.a"},

183 {},

184 };

185

186 MODULE_DEVICE_TABLE(of, myled_of_match);

187

188 /* platform driver structure for myled driver */

189 static struct platform_driver myled_driver = {

190 .driver = {

191 .name = DRIVER_NAME,

192 .owner = THIS_MODULE,

193 .of_match_table = myled_of_match},

194 .probe = myled_probe,

195 .remove = myled_remove,

196 .shutdown = myled_shutdown

197 };

198

199 /* Register myled platform driver */

200 module_platform_driver(myled_driver);

201

202 /* Module Infomations */

203 MODULE_AUTHOR("Digilent, Inc.");

204 MODULE_LICENSE("GPL");

205 MODULE_DESCRIPTION(DRIVER_NAME ": MYLED driver (Simple Version)");

206 MODULE_ALIAS(DRIVER_NAME);

207

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 33 of 37

4. Compile and generate the driver module using make (as shown in Fig. 61). Don’t forget to source Vivado

settings.

Figure 61. Compile Driver.

5. We need to add the myLed device node into the device tree. Make a copy of the default device tree

source in the drivers folder, and modify it according to Fig. 62. The compatibility string of the node is

the same as we define in the driver source code (myled.c: line 182). The reg property defines the

physical address and size of the node. The address here should match with the address of the myLed IP

Core in the address editor tab of the Vivado design, as shown in Fig. 63.

Figure 62. Physical Address for myLed IP Core.

Figure 63. Edit device tree.

[kfranz@DIGILENT_LINUX drivers]$ make ARCH=arm CROSS_COMPILE=arm-xilinx-linux-gnueabi-

make -C ../Linux-Digilent-Dev/ M=/home/kfranz/Tutorial/drivers modules

make[1]: Entering directory `/home/kfranz/Tutorial/Linux-Digilent-Dev'

 CC [M] /home/kfranz//Tutorial/drivers/myLed.o

 Building modules, stage 2.

 MODPOST 1 modules

 CC /home/kfranz/Tutorial/drivers/myLed.mod.o

 LD [M] /home/kfranz/Tutorial/drivers/myLed.ko

make[1]: Leaving directory `/home/kfranz/Tutorial/Linux-Digilent-Dev'

[kfranz@DIGILENT_LINUX drivers]$

[kfranz@DIGILENT_LINUX drivers]$ cp ../Linux-Digilent-Dev/arch/arm/boot/dts/zynq-ZYBO.dts ./

[kfranz@DIGILENT_LINUX drivers]$ vim zynq-ZYBO.dts

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 34 of 37

Figure 64. zynq-ZYBO.dts

6. Recompile the device tree blob as shown in Fig. 65.

Figure 65. Compile DTB.

7. Copy these two files to the first partition of the SD card, as shown in Fig. 66. We are ready to test our

driver on-board now.

Figure 66. Copy files to SD.

8. Plug the SD card into the ZYBO and we can start testing our driver. Use the insmod command to install

the driver module into the kernel. After the driver is installed, an entry named myled will be created

under the /proc file system. Writing 0x0F to /proc/myled will light up LED 0~3. You can either

remove the driver with command rmmod or power off the system by command poweroff. In both

cases, all of the LEDs will be turned off, as shown in Fig. 67. For instructions on using the terminal with

the ZYBO, please refer to Section 5, Step 4 or the Section Boot from SD in Getting Started with

Embedded Linux – ZYBO.

549 spi-speed-hz = <4000000>;

550 spi-sclk-gpio = <&ps7_gpio_0 59 0>;

551 spi-sdin-gpio = <&ps7_gpio_0 60 0>;

552 };

553

554 myled {

555 compatible = "dglnt,myled-1.00.a";

556 reg = <0x43c30000 0x10000>;

557 };

558 };

559 };

[kfranz@DIGILENT_LINUX drivers]$../Linux-Digilent-Dev/scripts/dtc/dtc -I dts -O dtb -o

devicetree.dtb zynq-ZYBO.dts

DTC: dts->dtb on file "zynq-ZYBO.dts"

[kfranz@DIGILENT_LINUX drivers]$

[kfranz@DIGILENT_LINUX drivers]$ ls

devicetree.dtb Makefile Module.symvers myled.ko myled.mod.o

zynq-ZYBO.dts modules.order myled.c myled.mod.c myled.o

[kfranz@DIGILENT_LINUX drivers]$ cp myled.ko /media/ZYBO_BOOT/d

[kfranz@DIGILENT_LINUX drivers]$ cp devicetree.dtb /media/ZYBO_BOOT/

[kfranz@DIGILENT_LINUX drivers]$

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 35 of 37

Figure 67. RAMDISK

U-Boot 2012.04.01-dirty (June 30 2014 - 12:52:36)

DRAM: 512 MiB

WARNING: Caches not enabled

MMC: SDHCI: 0

Using default environment

...

reading uImage

2457328 bytes read

reading devicetree.dtb

9728 bytes read

reading uramdisk.image.gz

3694108 bytes read

Starting application at 0x00008000 ...

Uncompressing Linux... done, booting the kernel.

[0.000000] Booting Linux on physical CPU 0

[0.000000] Linux version 3.6.0-digilent-13.01-00002-g06b3889 (kfranz@DIGILENT_LINUX)

(gcc version 4.6.3 (Sourcery CodeBench Lite 2012.03-79)) #1 SMP PREEMPT Sun June 30

23:54:12 PST 2014

...

rcS Complete

zynq> mount /dev/mmcblk0p1 /mnt/

zynq> cd /mnt/

zynq> ls

BOOT.BIN devicetree.dtb uramdisk.image.gz

myled.ko uImage

zynq> insmod myled.ko

[122.160000] myled probed at va 0xe0d20000

zynq> ls /proc

1 567 9 fs partitions

10 582 asound interrupts scsi

11 588 buddyinfo iomem self

12 594 bus ioports slabinfo

13 595 cmdline irq softirqs

14 596 config.gz kallsyms stat

15 6 consoles kmsg swaps

2 608 cpu kpagecount sys

3 614 cpuinfo kpageflags sysvipc

317 615 crypto loadavg timer_list

318 621 device-tree locks tty

333 641 devices meminfo uptime

4 642 diskstats misc version

429 643 dma modules vmallocinfo

440 647 dri mounts vmstat

441 652 driver mtd zoneinfo

5 653 execdomains myled

515 7 fb net

548 8 filesystems pagetypeinfo

zynq> echo 0x0F > /proc/myled

zynq> cat /proc/myled

0x0f

zynq> mkdir –p /lib/modules/`uname –r`

zynq> cp myled.ko /lib/modules/`uname –r`

zynq> rmmod myled

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 36 of 37

7 User Application

7.1 Prerequisites

 Vivado 2014.1 WebPACK: available at the Xilinx Website Download Page.

7.2 Instructions

1. In this section, we will write a user application that makes the LEDs blink by writing to /proc/myled.

Create a directory named user_app in the Tutorial folder, as shown in Fig. 68. Inside the user_app

directory, we will compose the led_blink.c, as shown in Fig. 69.

2. Compose a Makefile and compile led_blink.c into led_blink.o, as shown in Figs. 71-73.

[kfranz@DIGILENT_LINUX Tutorial]$ mkdir user_app

[kfranz@DIGILENT_LINUX Tutorial]$ ls

devicetree.dtb drivers linux-digilent u-boot-digilent user_app ZYBO_base_system

[kfranz@DIGILENT_LINUX Tutorial]$

[kfranz@DIGILENT_LINUX user_app]$ vim led_blink.c

 0 #include <stdio.h>
 1 #include <stdlib.h>
 2 #include <unistd.h>
 3
 4 int main()
 5 {
 6 FILE* fp;
 7 while(1) {
 8 fp = fopen("/proc/myled", "w");
 9 if(fp == NULL) {
 10 printf("Cannot open /proc/myled for write\n");
 11 return -1;
 12 }
 13 fputs("0x0F\n", fp);
 14 fclose(fp);
 15 sleep(1);
 16 fp = fopen("/proc/myled", "w");
 17 if(fp == NULL) {
 18 printf("Cannot open /proc/myled for write\n");
 19 return -1;
 20 }
 21 fputs("0x00\n", fp);
 22 fclose(fp);
 23 sleep(1);
 24 }
 25 return 0;
 26 }

Figure 70. led_blink.c

Figure 69. led_blink

Figure 68. User_app

http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2014-1.html

Embedded Linux® Hands-on Tutorial for the ZYBO

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 37 of 37

Figure 71. Makefile.

Figure 72. Makefile.

Figure 73. Compile led_blink.

3. Insert the SD card into the computer, and copy the binary file led_blink onto the first partition of SD

card, as shown in Fig. 74.

Figure 74. Move led_blink.

Figure 75. RAMDISK.

[kfranz@DIGILENT_LINUX user_app]$ vim Makefile

 1 CC = arm-xilinx-linux-gnueabi-gcc
 2 CFLAGS = -g
 3

 4 all : led_blink
 5

 6 led_blink : led_blink.o
 7 ${CC} ${CFLAGS} $^ –o $@
 8

 9 clean :
 10 rm –rfv *.o
 11 rm –rfv led_blink
 12

 13 .PHONY : clean

[kfranz@DIGILENT_LINUX user_app]$ make

arm-xilinx-linux-gnueabi-gcc -g -c -o led_blink.o led_blink.c

arm-xilinx-linux-gnueabi-gcc -g -o led_blink led_blink.o

[kfranz@DIGILENT_LINUX user_app]$ ls

led_blink led_blink.c led_blink.o Makefile

[kfranz@DIGILENT_LINUX user_app]$

[kfranz@DIGILENT_LINUX user_app]$ cp led_blink /media/ZYBO_BOOT/

...

rcS Complete

zynq> mount /dev/mmcblk0p1 /mnt/

zynq> cd /mnt/

zynq> ls

BOOT.BIN devicetree.dtb led_blink

myled.ko ramdisk8M.image.gz zImage

zynq> insmod myled.ko

[122.160000] myled probed at va 0x8000

zynq> ./led_blink

^C

zynq> mkdir –p /lib/modules/`uname –r`

zynq> cp myled.ko /lib/modules/`uname –r`

zynq> rmmod myled

