NTE7162 Integrated Circuit DC-Coupled Vertical Deflection and East-West Output Circuit ### **Description:** The NTE7162 is a power circuit in a 13–Lead Staggered SIP type package designed for use in 90° and 110° color deflection systems for field frequencies of 50Hz to 120Hz. The circuit provides a DC driven vertical deflection output circuit, operating as a highly efficient class G system and an East–West driver for sinking the diode modulator current. #### Features: - Few External Components - Highly Efficient Fully DC-Coupled Vertical Output Bridge Circuit - Vertical Flyback Switch - Guard Circuit - Protection Against: Short-Circuit of the Output Pins Short-Circuit of the Output Pins to V_P - High EMC Immunity due to Common Mode Inputs - Temperature Protection - East-West Output Stage with One Single Conversion Resistor ## Absolute Maximum Ratings: | Supply Voltage, V _P | | |--|----| | Operating | 5V | | Non-Operating 4 | | | Flyback Supply Voltage, V _{FB} | 0V | | Flyback Supply Voltage (Note 1), V _{FB} | 0V | | Output Current (Peak-to-Peak Value, Note 2), IO | ЗА | | Output Voltage (Pin9), V _{O(A)} 5 | 2V | | Output Voltage (Pin9, Note 1), V _{O(A)} 5 | | | Peak Output Current, I _M | | | Output Voltage (I _{O(sink)} = 10 A, Note 3), V _{O(sink)} 4 | 0V | | Output Current (V _{O(sink)} = 2V, Note 3), I _{O(sink)} | | - Note 1. A flyback supply voltage of > 50V up to 60V i allowed in application. A 220nF capacitor in series with a 22° resistor (depending on I_O and the inductance of the coil) has to be connected between Pin9 and GND. The decoupling capacitor of V_{FB} has to be connected between Pin8 and Pin4. The supply voltage line must have a resistance of 33°. - Note 2. I_O maximum determined by current protection. - Note 3. The operating area is limited by a straight line between the points $V_{O(sink)} = 40V$; $I_{O(sink)} = 10$ A and $V_{O(sink)} = 2V$; $I_{O(sink)} = 500$ mA. **Absolute Maximum Ratings (Cont'd):** | Virtual Junction Temperature, T _{VJ} | +150°C | |---|-------------------------------------| | Operating Ambient Temperature Range, T _A | -25° to $+75^{\circ}$ C | | Storage Temperature Range, T _{stg} | . -65° to $+150^{\circ}$ C | | Thermal Resistance, Virtual Junction-to-Case, RthVJC | 4K/W | | Thermal Resistance, Virtual Junction-to-Ambient (In Free Air), RthVJA | 40K/W | | Short–Circuiting Time (Note 4), t _{sc} | 1 Hour | | Note 4. Up to $V_P = 10V$. | | | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | | | |--|--------------------|---|-------|-----|-----|------|--|--| | DC Supply | | | | | | | | | | Operating Supply Voltage | V_{P} | | 9 | _ | 25 | V | | | | Flyback Supply Voltage | V_{FB} | | V_P | _ | 50 | V | | | | | | Note 1 | _ | _ | 60 | V | | | | Supply Current | l _P | No Signal, No Load | _ | 30 | 55 | mΑ | | | | Vertical Circuit | Vertical Circuit | | | | | | | | | Output Voltage Swing (Scan) | Vo | I _{diff} = 0.6mA (Peak-to-Peak),
V _{diff} = 1.8V (Peak-to-Peak),
I _O = 3A (Peak-to-Peak) | 19.8 | - | - | V | | | | Linearity Error | LE | I _O = 3A (Peak-to-Peak), Note 5 | _ | 1 | 3 | % | | | | | | I _O = 50mA (Peak-to-Peak), Note 5 | _ | 1 | 3 | % | | | | Output Voltage Swing (Flyback) $V_{O(A)} - V_{O(B)}$ | V _O | $I_{\text{diff}} = 0.3\text{mA}, I_{\text{O}} = 1.5\text{A}$ | - | 39 | _ | V | | | | Forward Voltage of the Internal
Effeciency Diode (V _{O(A)} – V _{FB}) | V_{DF} | $I_{O} = -1.5A$, $I_{diff} = 0.3mA$ | _ | - | 1.5 | V | | | | Output Offset Current | I _{OS} | I _{diff} = 0, I _{I(sb)} = 50 A to 500 A | _ | _ | 30 | mΑ | | | | Offset Voltage at the Input of the Feedback Amplifier $V_{I(fb)} = V_{O(B)}$ | V _{OS} | $I_{diff} = 0$, $I_{I(sb)} = 50$ A to 500 A | _ | - | 18 | mV | | | | Output Offset Voltag as a
Function of Temperature | ±V _{OS} T | l _{diff} = 0 | - | - | 72 | V/K | | | | DC Output Voltage | V _{O(A)} | I _{diff} = 0, Note 6 | _ | 8 | - | V | | | | Open Loop Voltage Gain
V ₉₋₅ /V ₁₋₂ | G _V | Note 7, Note 8 | - | 80 | - | dB | | | | $V_{9-5}/V_{3-5}, V_{1-2} = 0$ | | Note 7 | _ | 80 | _ | dB | | | - Note 1. A flyback supply voltage of > 50V up to 60V i allowed in application. A 220nF capacitor in series with a 22° resistor (depending on I_O and the inductance of the coil) has to be connected between Pin9 and GND. The decoupling capacitor of V_{FB} has to be connected between Pin8 and Pin4. The supply voltage line must have a resistance of 33°. - Note 5. The linearity error is measured without S-correction and based on the same measurement priinciple as performed on the screen. The measuring method is as follows: Divide the output signal $I_5 I_9$ (V_{RM}) into 22 equal parts ranging from 1 to 22 inclusive. measure the value of two succeeding parts called one block starting with 2 and 3 (block 1) and ending with 20 an 21 (block 10). Thus part 1 and 22 are unused. The equations for linearity error for adjacent blocks (LEAB) and linearity error for not adjacent blocks (LENAB) are given below: $$LEAB = \frac{a_k - a_{(k+1)}}{a_{avg}} \; ; LENAB = \frac{a_{max} - a_{min}}{a_{avg}}$$ - Note 6. Referenced to V_P. - Note 7. The V values within formulae relate to voltages at or across the relative pin numbers, i.e. $V_{9-5}/V_{1-2} = voltage value across Pin9 and Pin5 divided by voltage value across Pin1 and Pin2.$ - Note 8. V₃₋₅ AC short-circuited. # <u>Electrical Characteristics Cont'd):</u> $(V_P = 17.5V, V_{FB} = 45V, V_{O(sink)} = 20V, f_i = 50Hz, I_{I(sb)} = 400 A, T_A = +25^{\circ}C \text{ unless otherwise specified})$ | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |--|----------------------|--|-----|------|------------------|------| | Voltage Ratio V ₁₋₂ /V ₃₋₅ | V_{R} | | _ | 0 | _ | dB | | Frequency Response (-3dB) | f _{res} | Note 9 | _ | 40 | _ | Hz | | Current Gain (I _O /I _{diff}) | G _l | | _ | 5000 | _ | | | Current Gain as a Function of
Temperature | ±G _l T | | _ | - | 10 ⁻⁴ | /K | | Signal Bias Current | I _{I(sb)} | | 50 | 400 | 500 | Α | | Flyback Supply Current | I _{FB} | During Scan | _ | _ | 100 | Α | | Power Supply Ripple Rejection | PSRR | Note 10 | _ | 80 | _ | dB | | DC Voltage at the Input | V _{I(DC)} | | - | 2.7 | _ | V | | Common Mode Input Voltage | V _{I(CM)} | $I_{I(sb)} = 0$ | 0 | _ | 1.6 | V | | Input Bias Current | I _{bias} | $I_{I(sb)} = 0$ | _ | 0.1 | 0.5 | Α | | Common Mode Output Current | I _{O(CM)} | $\pm I_{I(sb)} = 300$ A (Peak-to-Peak),
$f_i = 50$ Hz, $I_{diff} = 0$ | - | 0.2 | - | mA | | East-West Amplifier | • | | | | • | | | Saturation Voltage | V _{O(sink)} | $I_{O(sink)} = 500mA$, $I_{I(corr)} = 0$ A, Note 11 | _ | 2.0 | 2.5 | V | | Open Loop Voltage Gain (V ₁₁ /V ₁₂) | G_V | | _ | 47 | - | dB | | Frequency Response (-3dB) | f _{res} | | - | 4000 | - | Hz | | Linearity Error | LE | $V_{O(sink)} = 3V$ | - | _ | 1 | % | | | | $V_{O(sink)} = 10V$, Note 5 | - | _ | 0.5 | % | | Input Bias Current (Pin12) | I _{bias} | | - | _ | 2 | Α | | DC Input Voltage | V _{I(DC)} | | - | 1 | _ | V | | Offset Voltage Set Current | I _{set} | | - | 1 | - | mA | | Maximum Allowed Voltage at Pin13 | V ₁₃₋₇ | | - | _ | 0.3 | V | | Guard Circuit | | | | | | | | Output Current | Io | Not Active, V _{O(guard)} = 0V | - | _ | 50 | Α | | | | Active, V _{O(guard)} = 3.6V | 1.0 | - | 2.5 | mA | | Output Voltage | $V_{O(guard)}$ | I _O = 100 A | 4.6 | - | 5.5 | V | | Allowable Voltage on Pin10 | | Maximum Leakage Current = 10 A | - | _ | 40 | V | Note 5. The linearity error is measured without S-correction and based on the same measurement priinciple as performed on the screen. The measuring method is as follows: Divide the output signal $I_5 - I_9$ (V_{RM}) into 22 equal parts ranging from 1 to 22 inclusive. measure the value of two succeeding parts called one block starting with 2 and 3 (block 1) and ending with 20 an 21 (block 10). Thus part 1 and 22 are unused. The equations for linearity error for adjacent blocks (LEAB) and linearity error for not adjacent blocks (LENAB) are given below: LEAB = $$\frac{a_k - a_{(k+1)}}{a_{avg}}$$; LENAB = $\frac{a_{max} - a_{min}}{a_{avg}}$ Note 9. Frequency response V_{9-5}/V_{3-5} is equal to frequency response V_{9-5}/V_{1-2} . Note 10. At $V_{(ripple)} = 500 mV$ eff; measured across R_M ; $f_i = 50 Hz$. Note 11. The output Pin11 requires a capacitor with a minimum value of 68nF.