SN54298, SN54LS298, SN74298, SN74LS298 QUADRUPLE 2-INPUT MULTIPLEXERS WITH STORAGE

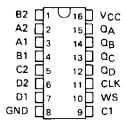
SDLS098 MARCH 1974 - REVISED MARCH 1988

- Selects One of Two 4-Bit Data Sources and Stores Data Synchronously with System Clock
- Applications:

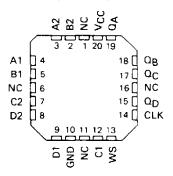
Dual Source for Operands and Constants in Arithmetic Processor; Can Release Processor Register Files for Acquiring New Data

Implement Separate Registers Capable of Parallel Exchange of Contents Yet Retain External Load Capability

Universal Type Register for Implementing Various Shift Patterns; Even Has Compound Left-Right Capabilities


description

These monolithic quadruple two-input multiplexers with storage provide essentially the equivalent functional capabilities of two separate MSI functions (SN54157/SN74157 or SN54LS157/SN74LS157 and SN54175/SN74175 or SN54LS175/SN74LS175) in a single 16-pin package.

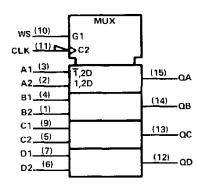

When the word-select input is low, word 1 (A1, B1, C1, D1) is applies to the flip-flops. A high input to word select will cause the selection of word 2 (A2, B2, C2, D2). The selected word is clocked to the output terminals on the negative-going edge of the clock pulse.

Typical power dissipation is 195 milliwatts for the '298 and 65 milliwatts for the 'LS298. SN54298 and SN54LS298 are characterized for operation over the full military temperature range of -55°C to 125°C; SN74298 and SN74LS298 are characterized for operation from 0°C to 70°C.

SN5429B, SN54LS298 . . . J OR W PACKAGE SN7429B . . . N PACKAGE SN74LS29B . . . D OR N PACKAGE (TOP VIEW)

SN54LS298 . . . FK PACKAGE (TOP VIEW)

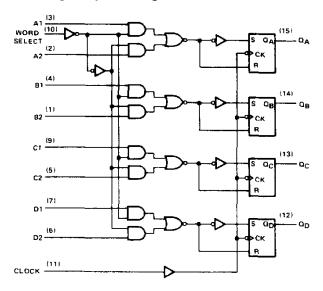
NC - No internal connection

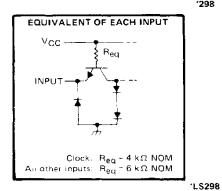

FUNCTION TABLE

INP	UTS		OUT	PUTS	
WORD SELECT	CLOCK	QΑ	αB	α_{C}	αD
L	;	a1	b1	c1	d1
Н	1	a2	b2	c2	d2
×	н	QAO	σ^{BO}	σ_{CD}	σ_{D0}

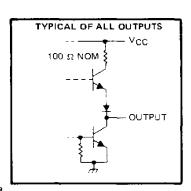
- H = high level (steady state)
- L = low level (steady state)
- X = irrelevant (any input, including transitions)
- } = transition from high to low level
- a1, a2, etc. the level of steady state input at A1, A2, etc.
- $\alpha_{A0}, \alpha_{B0},$ etc. = the level of $\alpha_{A}, \alpha_{B},$ etc. entered on the most recent + transition of the clock input.

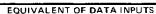
SN54298, SN54LS298, SN74298, SN74LS298 QUADRUPLE 2-INPUT MULTIPLEXERS WITH STORAGE

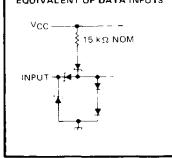

logic symbol†

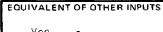

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

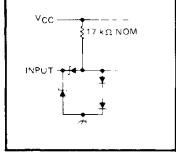
Pin numbers shown are for D, J, N, and W packages.

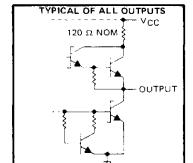

logic diagram (positive logic)




schematics of inputs and outputs




′298



SN54298, SN74298 QUADRUPLE 2-INPUT MULTIPLEXERS WITH STORAGE

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)				-	-											7	٧
Input voltage												-	-			5.5	٧
Operating free-air temperature range	SN54298											-	-5	5°C	c to	125	°C
	SN74298											٠.		0°	'C t	o 70°	,C
Storage temperature													-6	5°() to	150	°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN5429	8	SN74298			UNIT
		20 15 25 5 0	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-800			-800	μА
Low-level output current, IQL				16			16	mA
Width of clock pulse, high or low level, tw		20			20			กร
	Data	15			15			
Setup time, t _{su}	Word select	25			25			ns.
	Data	5			5			
Hold time, th	Word select	0			0			ns
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†	MIN	TYP‡	MAX	UNIT
ViH	High-level input voltage		2			V
VIL	Low-level input voltage				0.8	V
VIK	Input clamp voltage	V _{CC} ≈ MIN, i ₁ = -12 mA			-1.5	_ v
νон	High-level output voltage	$V_{CC} = MIN$, $V_{1H} = 2 V$, $V_{1L} = 0.8 V$, $I_{OH} = -800 \mu$	A 2.4	3,2		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA			0.4	v
Ъ	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1	mΑ
ин	High-level input current	V _{CC} ≈ MAX, V _i = 2.4 V			40	μА
HE	Low-level input current	V _{CC} = MAX, V _I = 0.4 V			-1.6	mA
		SN5429B	-20		-57	
os	Short-circuit output current \$	V _{CC} = MAX SN74298	-18		-57	mA
Icc	Supply current	V _{CC} = MAX, See Note 2		39	65	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output	C _L = 15 pF, R _L = 400 Ω,	18	27	ns
tphi_ Propagation delay time, high-to-low-level output	See Note 3	21	32	""

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

[‡]All typical values are at V_{CC} = 5 V, T_{A} = 25°C. §Not more than one output should be shorted at a time.

NOTE 2: With all outputs open and all inputs except clock low, ICC is measured after applying a momentary 4.5 V, followed by ground, to the clock input.

SN54LS298, SN74LS298 QUADRUPLE 2-INPUT MULTIPLEXERS WITH STORAGE

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)								-						7	V
Input voltage														7	' V
Operating free-air temperature range: SN54LS298	}										_£	55°	C to	125	°C
SN74LS298															
Storage temperature range														150	

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SI	V54LS2	98	S!	174LS2	98	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH				-40 0			-400	μА
Low-level output current, IOL		Ī		4			8	mA
Width of clock pulse, high or low level, tw		20			20			ns
	Data	15			15			
Setup time, t _{su}	Word select	25			25			ns
	Data	5			5			
Hold time, th	Word select	0			0			ns
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	242445752		ST CONDITIONS	et	SI	154LS2	98	SP	174LS2	98	
	PARAMETER	1 1 2	ST CONDITIONS	5'	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
ViH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	>
Vικ	Input clamp voltage	VCC = MIN,	I _I = −18 mA				-1.5			-1.5	<
Vон	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -400 μs	Α	2.5	3.4		2.7	3.4		٧
		V _{CC} = MIN,	V _{IH} = 2 V,	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	~
VOL	Low-level output voltage	V _{IL} = V _{IL} max		I _{OL} = 8 mA					0.35	0.5	
11	Input current at maximum input voltage	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
Тін	High-level input current	V _{CC} = MAX,	V ₁ = 2.7 V	- 112111			20			20	μА
ηL	Low-level input current	VCC = MAX,	V ₁ = 0.4 V			- "	~0.4			-0.4	mΑ
los	Short-circuit output current §	V _{CC} = MAX			-20		-100	-20		-100	mA
lac	Supply current	V _{CC} = MAX,	See Note 2			13	21		13	21	mА

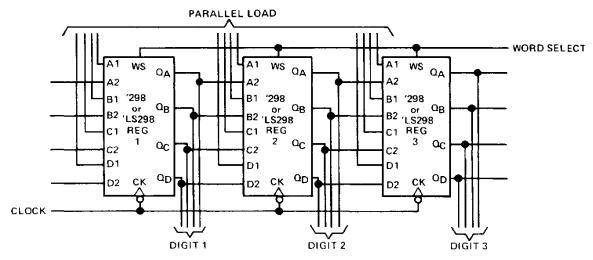
For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output	$C_L = 15 pF$, $R_L = 2 k\Omega$,		18	27	
tpHL Propagation delay time, high-to-low-level output	See Note 3		21	32	ns

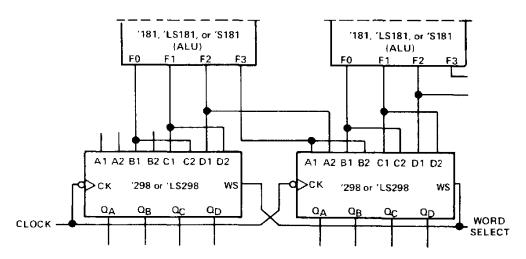
NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $[\]frac{1}{4}$ All typical values are at V_{CC} = 5 V, T_{A} = 25 °C.


Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: With all outputs open and all inputs except clock low, 1_{CC} is measured after applying a momentary 4.5 V, followed by ground, to the clock input.

TYPICAL APPLICATION DATA


This versatile multiplexer/register can be connected to operate as a shift register that can shift N-places in a single clock pulse.

The following figure illustrates a BCD shift register that will shift an entire 4-bit BCD digit in one clock pulse.

When the word-select input is high and the registers are clocked, the contents of register 1 is transferred (shifted) to register 2 and etc. In effect, the BCD digits are shifted one position. In addition, this application retains a parallel-load capability which means that new BCD data can be entered in the entire register with one clock pulse. This arrangement can be modified to perform the shifting of binary data for any number of bit locations.

Another function that can be implemented with the '298 or 'LS298 is a register that can be designed specifically for supporting multiplier or division operations. The example below is a one place/two-place shift register.

When word select is low and the register is clocked, the outputs of the arithmetic/logic units (ALU's) are shifted one place. When word select is high and the registers are clocked, the data is shifted two places.

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
7601901EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601901EA SNJ54LS298J	Samples
7601901FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601901FA SNJ54LS298W	Samples
7601901FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601901FA SNJ54LS298W	Samples
SN54298J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	-55 to 125		
SN54298J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	-55 to 125		
SN54LS298J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS298J	Sample
SN54LS298J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS298J	Sample
SN74298N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74298N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74298N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74298N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74LS298N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS298N	Sample
SN74LS298N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS298N	Sample
SN74LS298N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74LS298N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SNJ54298J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	-55 to 125		
SNJ54298J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	-55 to 125		
SNJ54298W	OBSOLETE	CFP	W	16		TBD	Call TI	Call TI	-55 to 125		
SNJ54298W	OBSOLETE	CFP	W	16		TBD	Call TI	Call TI	-55 to 125		
SNJ54LS298FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	SNJ54LS 298FK	Sampl
SNJ54LS298FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	SNJ54LS 298FK	Sample
SNJ54LS298J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601901EA SNJ54LS298J	Sample

PACKAGE OPTION ADDENDUM

10-Jun-2014

Orderable Device	Status	Package Type	_	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SNJ54LS298J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601901EA SNJ54LS298J	Samples
SNJ54LS298W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601901FA SNJ54LS298W	Samples
SNJ54LS298W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601901FA SNJ54LS298W	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component has a RohS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RohS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

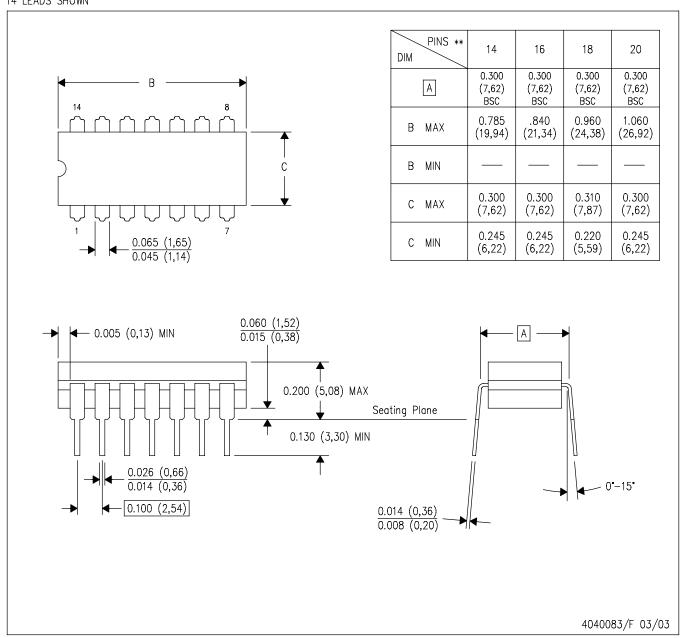
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

10-Jun-2014

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54298, SN54LS298, SN74298, SN74LS298:

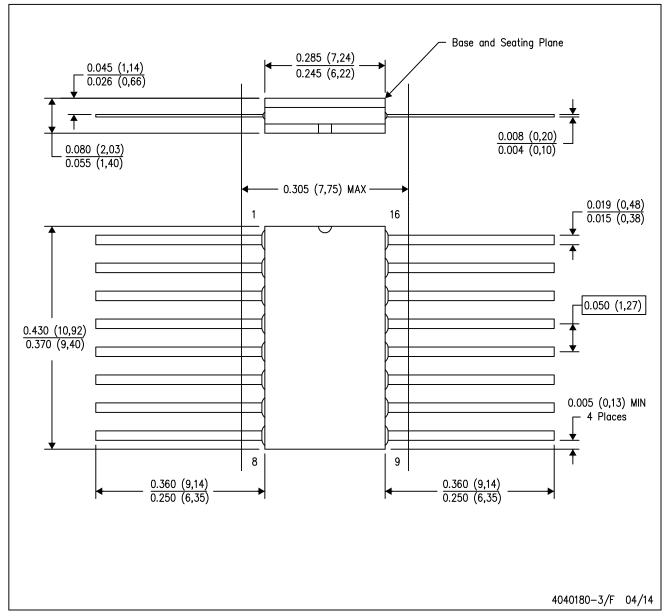

• Catalog: SN74298, SN74LS298

• Military: SN54298, SN54LS298

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

14 LEADS SHOWN



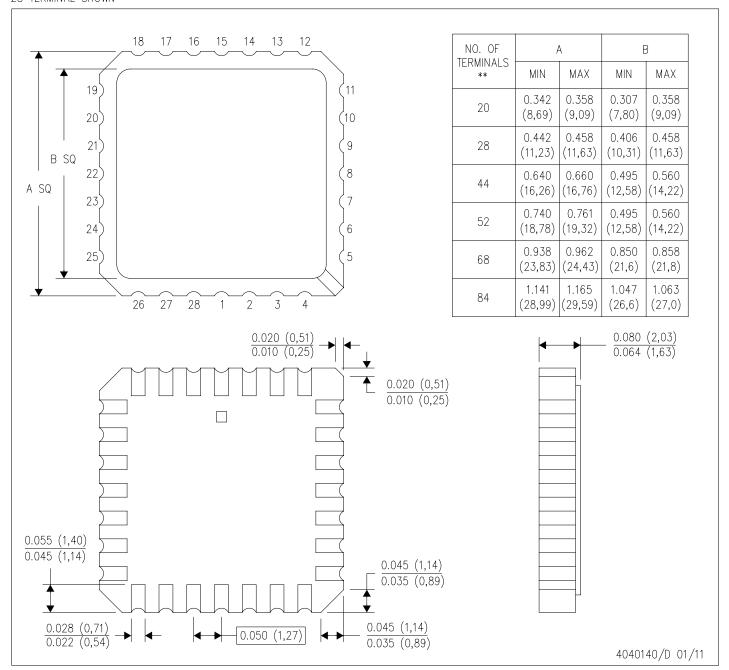
NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity