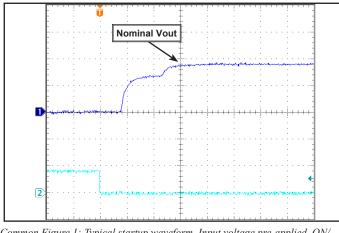
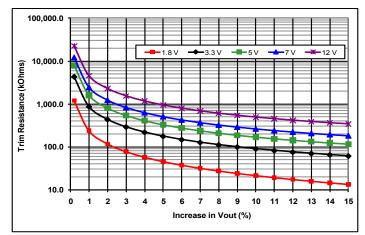


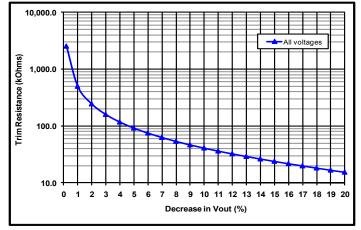
Phone 1-888-567-9596

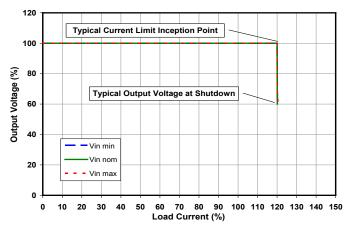
Page 1

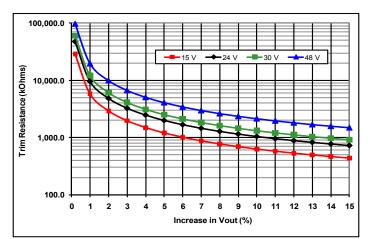


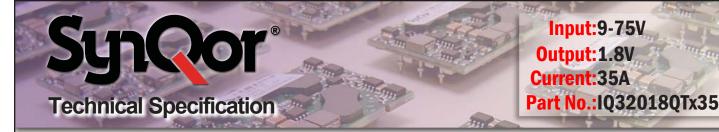
IQ32-QT FAMILY ELECTRICAL CHARACTERISTICS (all output voltages) Ta = 25 °C, airflow rate = 300 LFM, Vin = 32V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature with appropriate power derating. Specifications subject to change without notice.


Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
ABSOLUTE MAXIMUM RATINGS		- / [
nput Voltage					
Non-Operating	-1		100	V	Continuous
Operating			75	V	Continuous
Operating Transient Protection			100	V	
nsulation Voltage					
Input to Output			2250	V dc	
Input to Base-Plate			2250	V dc	
Output to Base-Plate			2250	V dc	
perating Temperature	-40		100	°C	Baseplate temperature
torage Temperature	-45		125	°C	
oltage at ON/OFF input pin	-2		18	V	
NPUT CHARACTERISTICS	•	•			
Dperating Input Voltage Range	9	32	75	V	
nput Under-Voltage Lockout					
Turn-On Voltage Threshold	9.0	9.5	10.0	V	
Turn-Off Voltage Threshold	8.1	8.5	8.9	V	
Lockout Voltage Hysteresis		1.0		V	
nput Over-Voltage Shutdown		-		V	Not Available
Recommended External Input Capacitance		330.0		μF	Typical ESR 0.1-0.2 Ω
nput Filter Component Values (L\C)		0.47\6.6		μΗ∖μF	Internal values; see Figure D
DYNAMIC CHARACTERISTICS	÷	·			
Furn-On Transient					
Turn-On Time		9		ms	Full load, Vout=90% nom.
Start-Up Inhibit Time	200	230	250	ms	Figure E
Output Voltage Overshoot		0		%	Maximum Output Capacitance
SOLATION CHARACTERISTICS					
solation Voltage (dielectric strength)					See Absolute Maximum Ratings
solation Resistance	30			MΩ	
solation Capacitance (input to output)		1000		pF	
EMPERATURE LIMITS FOR POWER DERATI	NG CURVES				
Semiconductor Junction Temperature			125	°C	Package rated to 150 °C
Board Temperature			125	°C	UL rated max operating temp 130 °C
Fransformer Temperature			125	°C	
Maximum Baseplate Temperature, Tb			100	°C	
EATURE CHARACTERISTICS					
Switching Frequency	260	275	290	kHz	Isolation stage switching freq. is half this
DN/OFF Control					
Off-State Voltage	2.4		18	V	
On-State Voltage	-2		0.8		
DN/OFF Control					Application notes Figures A & B
Pull-Up Voltage		5		V	
Pull-Up Resistance		50		kΩ	
Over-Temperature Shutdown OTP Trip Point		125		°C	Average PCB Temperature
Over-Temperature Shutdown Restart Hysteresis		10		°C	
RELIABILITY CHARACTERISTICS					
Calculated MTBF (Telcordia) TR-NWT-000332		1.49			Tb = 70°C
Calculated MTBF (MIL-217) MIL-HDBK-217F		1.31			Tb = 70°C
Field Demonstrated MTBF				10 ⁶ Hrs.	See our website for details


Family Figures (all output voltages)


Common Figure 1: Typical startup waveform. Input voltage pre-applied, ON/ OFF Pin on Ch 2.


Common Figure 3: Trim graph for trim-up 1.8 to 12 V outputs.


Common Figure 5: Trim graph for trim down.

Common Figure 2: Output voltage vs. load current showing typical current limit curves and converter shutdown points.

Common Figure 4: Trim graph for trim-up 15 to 48 V outputs.

IQ32018QTx35 ELECTRICAL CHARACTERISTICS (1.8 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 32V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature with appropriate power derating. Specifications subject to change without notice.

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
INPUT CHARACTERISTICS			1	·	
Maximum Input Current			12.0	A	Vin min; trim up; in current limit
No-Load Input Current		200	250	mA	
Disabled Input Current		4	6	mA	
Response to Input Transient		0.2		V	See Figure 6
Input Terminal Ripple Current		100		mA	RMS
Recommended Input Fuse			20	A	Fast acting external fuse recommended
OUTPUT CHARACTERISTICS					
Output Voltage Set Point	1.782	1.800	1.818	V	
Output Voltage Regulation					
Over Line		±0.1	±0.3	%	
Over Load		±0.1	±0.3	%	
Over Temperature	-27		27	mV	
Total Output Voltage Range	1.755		1.845	V	Over sample, line, load, temperature & life
Output Voltage Ripple and Noise					20 MHz bandwidth; see Note 1
Peak-to-Peak		100	200	mV	Full load
RMS		10	20	mV	Full load
Operating Output Current Range	0		35	A	Subject to thermal derating
Output DC Current-Limit Inception	38.5	42.0	45.5	A	Output voltage 10% Low
Output DC Current-Limit Shutdown Voltage		0.9		V	
Back-Drive Current Limit while Enabled		0.8		A	Negative current drawn from output
Back-Drive Current Limit while Disabled		15		mA	Negative current drawn from output
Maximum Output Capacitance			15,000	μF	Vout nominal at full load (resistive load)
Output Voltage during Load Current Transient					
Step Change in Output Current (0.1 A/µs)		90		mV	50% to 75% to 50% Iout max
Settling Time		500		μs	To within 1% Vout nom
Output Voltage Trim Range	-20		10	%	Across Pins 8&4; Common Figures 3-5; see Note 2
Output Voltage Remote Sense Range			10	%	Across Pins 8&4
Output Over-Voltage Protection	2.1	2.2	2.3	V	Over full temp range
EFFICIENCY					
100% Load		77		%	See Figure 1 for efficiency curve
50% Load		79		%	See Figure 1 for efficiency curve

Note 1: Output is terminated with 1 µF ceramic and 15 µF low-ESR tantalum capacitors. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com)

Note 2: Trim-up range is limited below 10% at lower line and full load. Contact SynQor applications support for more detail (email: support@synqor.com)

Input:9-75V Output:1.8V Current:35A Part No.:IQ32018QTx35

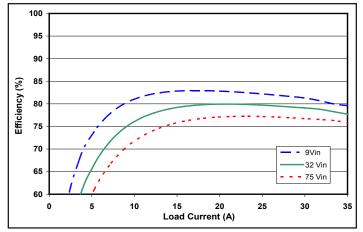
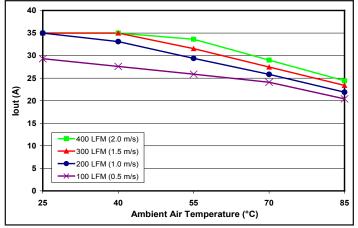
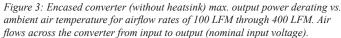




Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

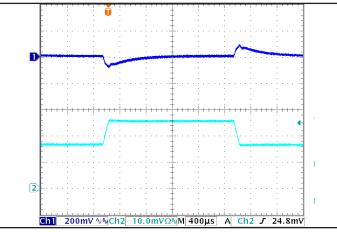


Figure 5: Output voltage response to step-change in load current (50%-75%-50% of Iout(max); $dI/dt = 0.6A/\mu s$). Load cap: $15\mu F$ tantalum cap and $1\mu F$ ceramic cap. Ch 1: Vout, Ch 2: Iout (10A/div).

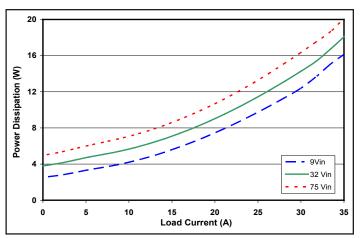


Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

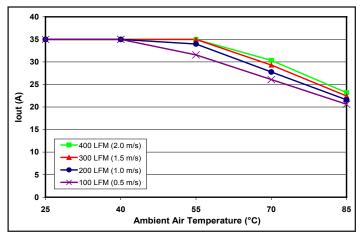


Figure 4: Encased converter (with 1/2" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

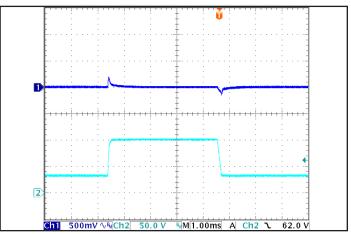


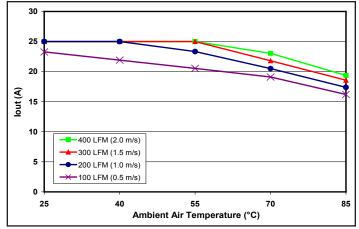
Figure 6: Output voltage response to step-change in input voltage (nominal to maximum), at full load current. Load cap: 15μ F tantalum capacitor and 1uF ceramic cap. Ch 1: Vout, Ch 2: Vin.

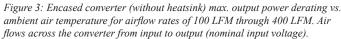
School (1975) Sc

IQ32033QTx25 ELECTRICAL CHARACTERISTICS (3.3 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 32V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature with appropriate power derating. Specifications subject to change without notice.

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
INPUT CHARACTERISTICS	1				
Maximum Input Current			14.1	A	Vin min; trim up; in current limit
No-Load Input Current		200	250	mA	
Disabled Input Current		4	6	mA	
Response to Input Transient		0.19		V	See Figure 6
Input Terminal Ripple Current		100		mA	RMS
Recommended Input Fuse			20	А	Fast acting external fuse recommended
OUTPUT CHARACTERISTICS					
Output Voltage Set Point	3.267	3.300	3.333	V	
Output Voltage Regulation					
Over Line		±0.1	±0.3	%	
Over Load		±0.1	±0.3	%	
Over Temperature	-50		50	mV	
Total Output Voltage Range	3.217		3.383	V	Over sample, line, load, temperature & life
Output Voltage Ripple and Noise					20 MHz bandwidth; see Note 1
Peak-to-Peak		100	200	mV	Full load
RMS		10	20	mV	Full load
Operating Output Current Range	0		25	А	Subject to thermal derating
Output DC Current-Limit Inception	27.5	30.0	32.5	A	Output voltage 10% Low
Output DC Current-Limit Shutdown Voltage		1.5		V	
Back-Drive Current Limit while Enabled		1		A	Negative current drawn from output
Back-Drive Current Limit while Disabled		15		mA	Negative current drawn from output
Maximum Output Capacitance			10,000	μF	Vout nominal at full load (resistive load)
Output Voltage during Load Current Transient					
Step Change in Output Current (0.1 A/µs)		125		mV	50% to 75% to 50% Iout max
Settling Time		500		μs	To within 1% Vout nom
Output Voltage Trim Range	-20		10	%	Across Pins 8&4; Common Figures 3-5
Output Voltage Remote Sense Range			10	%	Across Pins 8&4
Output Over-Voltage Protection	3.9	4.0	4.2	V	Over full temp range
EFFICIENCY					
100% Load		86		%	See Figure 1 for efficiency curve
50% Load		87		%	See Figure 1 for efficiency curve


Note 1: Output is terminated with 1 μ F ceramic and 15 μ F low-ESR tantalum capacitors. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com)


Input:9-75V Output:3.3V Current:25A Part No.:IQ32033QTx25

100 95 90 85 % Efficiency 80 75 70 9Vin 32 Vin 65 75 Vin 60 0 5 10 15 20 25 Load Current (A)

Technical Specification

Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

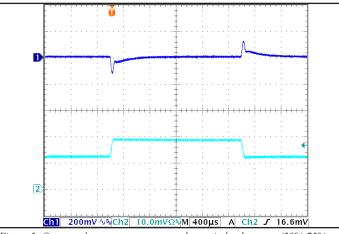


Figure 5: Output voltage response to step-change in load current (50%-75%-50% of lout(max); $dI/dt = 0.6A/\mu s$). Load cap: $15\mu F$ tantalum cap and $1\mu F$ ceramic cap. Ch 1: Vout, Ch 2: lout (10A/div).

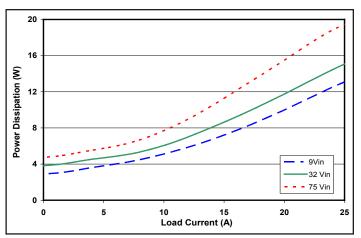


Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

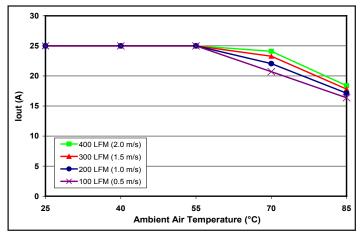


Figure 4: Encased converter (with 1/2" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

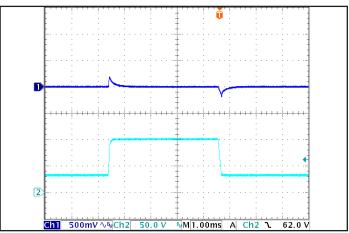


Figure 6: Output voltage response to step-change in input voltage (nominal to maximum), at full load current. Load cap: 15μ F tantalum capacitor and 1uF ceramic cap. Ch 1: Vout, Ch 2: Vin.

School Input:9-75V Output:5V Current:17A Part No.:IQ32050QTx17

IQ32050QTx17 ELECTRICAL CHARACTERISTICS (5.0 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 32V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature with appropriate power derating. Specifications subject to change without notice.

Parameter	Min.	Typ.	Max.	Units	Notes & Conditions
INPUT CHARACTERISTICS			1	1	
Maximum Input Current			14.8	A	Vin min; trim up; in current limit
No-Load Input Current		200	250	mA	
Disabled Input Current		4	6	mA	
Response to Input Transient		0.24		V	See Figure 6
Input Terminal Ripple Current		100		mA	RMS
Recommended Input Fuse			20	А	Fast acting external fuse recommended
OUTPUT CHARACTERISTICS					
Output Voltage Set Point	4.950	5.000	5.050	V	
Output Voltage Regulation					
Over Line		±0.1	±0.3	%	
Over Load		±0.1	±0.3	%	
Over Temperature	-75		75	mV	
Total Output Voltage Range	4.875		5.125	V	Over sample, line, load, temperature & life
Output Voltage Ripple and Noise					20 MHz bandwidth; see Note 1
Peak-to-Peak		100	200	mV	Full load
RMS		10	20	mV	Full load
Operating Output Current Range	0		17	A	Subject to thermal derating
Output DC Current-Limit Inception	18.7	20.4	22.1	A	Output voltage 10% Low
Output DC Current-Limit Shutdown Voltage		2.5		V	
Back-Drive Current Limit while Enabled		0.6		A	Negative current drawn from output
Back-Drive Current Limit while Disabled		15		mA	Negative current drawn from output
Maximum Output Capacitance			8,000	μF	Vout nominal at full load (resistive load)
Output Voltage during Load Current Transient					
Step Change in Output Current (0.1 A/µs)		200		mV	50% to 75% to 50% Iout max
Settling Time		500		μs	To within 1% Vout nom
Output Voltage Trim Range	-20		10	%	Across Pins 8&4; Common Figures 3-5; see Note 2
Output Voltage Remote Sense Range			10	%	Across Pins 8&4
Output Over-Voltage Protection	5.9	6.1	6.4	V	Over full temp range
EFFICIENCY	· ·	' 	· 	·	·
100% Load		84		%	See Figure 1 for efficiency curve
50% Load		85		%	See Figure 1 for efficiency curve
Note 1: Output is terminated with 1 uE coramic an		CD tantalum	canacitors	For appli	ations requiring reduced output voltage ripple an

Note 1: Output is terminated with 1 μ F ceramic and 15 μ F low-ESR tantalum capacitors. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com)

Note 2: Trim-up range is limited below 10% at lower line and full load. Contact SynQor applications support for more detail (email: support@synqor.com)

Input:9-75V Output:5V Current:17A Part No.:IQ32050QTx17

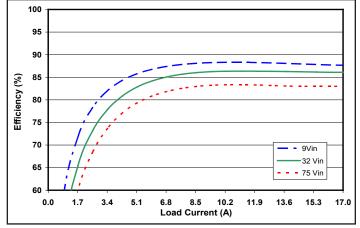


Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

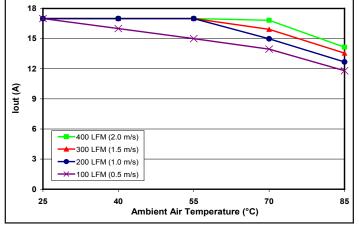


Figure 3: Encased converter (without heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

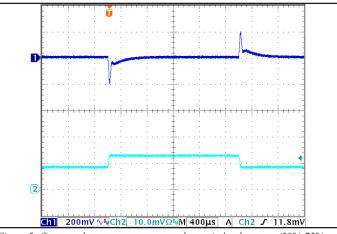


Figure 5: Output voltage response to step-change in load current (50%-75%-50% of Iout(max); $dI/dt = 0.6A/\mu s$). Load cap: $15\mu F$ tantalum cap and $1\mu F$ ceramic cap. Ch 1: Vout, Ch 2: Iout (10A/div).

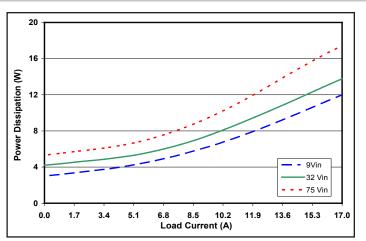


Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

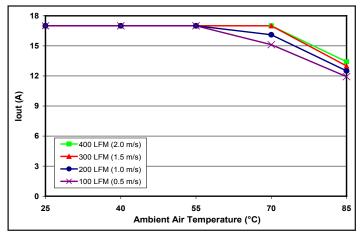


Figure 4: Encased converter (with 1/2" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

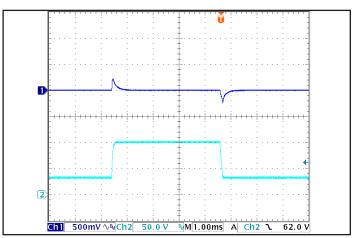


Figure 6: Output voltage response to step-change in input voltage (nominal to maximum), at full load current. Load cap: $15\mu F$ tantalum capacitor and 1uF ceramic cap. Ch 1: Vout, Ch 2: Vin.

Input:9-75V Output:7V Current:12A Part No.: IQ32070QTx12 **Technical Specification**

IQ32070QTx12 ELECTRICAL CHARACTERISTICS (7.0 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 32V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature Specifications subject to change without notic

·				Notes & Conditions
		14.3	А	Vin min; trim up; in current limit
	200	250	mA	
	4	6	mA	
	0.35		V	See Figure 6
	300		mA	RMS
		20	А	Fast acting external fuse recommended
6.930	7.000	7.070	V	
	±0.1	±0.3	%	
	±0.1	±0.3	%	
-105		105	mV	
6.825		7.175	V	Over sample, line, load, temperature & life
				20 MHz bandwidth; see Note 1
	100	200	mV	Full load
	10	20	mV	Full load
0		12	А	Subject to thermal derating
13.2	14.4	15.6	A	Output voltage 10% Low
	4		V	
	0.6		A	Negative current drawn from output
	15		mA	Negative current drawn from output
		8,000	μF	Vout nominal at full load (resistive load)
	300		mV	50% to 75% to 50% Iout max
	400		μs	To within 1% Vout nom
-20		10	%	Across Pins 8&4; Common Figures 3-5
		10	%	Across Pins 8&4
8.2	8.5	8.9	V	Over full temp range
				·
	86		%	See Figure 1 for efficiency curve
	87		%	See Figure 1 for efficiency curve
	-105 6.825 0 13.2 -20 8.2	4 4 0.35 300 6.930 5.930 6.930 1 6.930 1 1 6.930 1	200 250 4 6 0.35 0.35 300 20 0.30 20 0.30 20 0.30 20 0.30 20 0.0 20 0.10 20 0.10 20 0.11 ±0.3 10.1 ±0.3 10.1 ±0.3 10.1 ±0.3 10.1 ±0.3 10.1 ±0.3 10.1 ±0.3 10.1 ±0.3 10.1 ±0.3 10.1 ±0.3 10.1 ±0.3 10.1 ±0.3 10.1 200 10 20 10 20 113.2 14.4 15.6 115 8,000 10 300 10 300 10 300 10 10 8.2	1 200 250 mA 4 6 mA 0.35 V W 300 MA MA 1 0.35 V MA 300 20 MA 1 1 20 A 6.930 7.000 7.070 V 6.930 7.000 7.070 V 1 ±0.1 ±0.3 % 1 ±0.1 ±0.3 % 1 ±0.1 ±0.3 % 1 105 mV % 6.825 7.175 V W 10 200 mV M 10 100 200 mV 113.2 14.4 15.6 A 13.2 14.4 15.6 A 13.2 14.4 15.6 A 14 4 V M M 13.00 M M M

Note 1: Output is terminated with 1 μ F ceramic and 15 μ F low-ESR tantalum capacitors. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com)

Input:9-75V Output:7V Current:12A Part No.:IQ32070QTx12

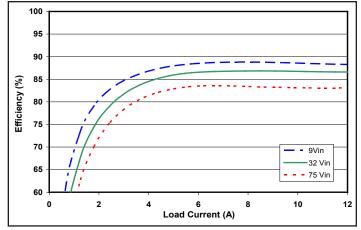


Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

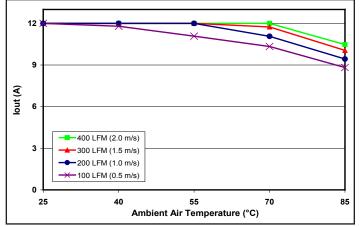


Figure 3: Encased converter (without heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

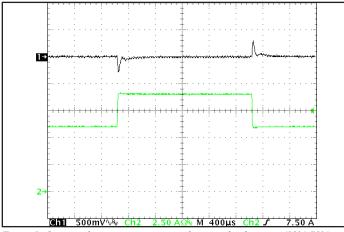


Figure 5: Output voltage response to step-change in load current (50%-75%-50% of Iout(max); $dI/dt = 0.6A/\mu s$). Load cap: $15\mu F$ tantalum cap and $1\mu F$ ceramic cap. Ch 1: Vout, Ch 2: Iout.

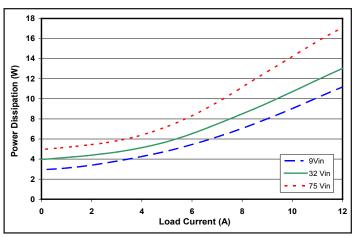


Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

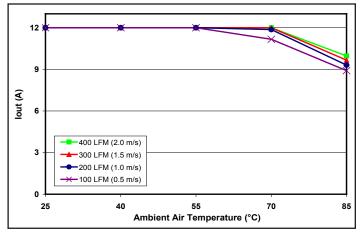


Figure 4: Encased converter (with 1/2" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).



Figure 6: Output voltage response to step-change in input voltage (nominal to maximum), at full load current. Load cap: 15μ F tantalum capacitor and 1uF ceramic cap. Ch 1: Vout, Ch 2: Vin.

Input:9-75V **Output:12V Current:7A** Part No.: IQ32120QTx07 **Technical Specification**

IQ32120QTx07 ELECTRICAL CHARACTERISTICS (12.0 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 32V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature with appropriate power derating. Specifications subject to change without notice

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
INPUT CHARACTERISTICS					
Maximum Input Current			14.2	А	Vin min; trim up; in current limit
No-Load Input Current		200	250	mA	
Disabled Input Current		4	6	mA	
Response to Input Transient		0.97		V	See Figure 6
Input Terminal Ripple Current		100		mA	RMS
Recommended Input Fuse			20	A	Fast acting external fuse recommended
OUTPUT CHARACTERISTICS		·	·	Ì	
Output Voltage Set Point	11.88	12.00	12.12	V	
Output Voltage Regulation					
Over Line		±0.1	±0.3	%	
Over Load		±0.1	±0.3	%	
Over Temperature	-180		180	mV	
Total Output Voltage Range	11.70		12.30	V	Over sample, line, load, temperature & life
Output Voltage Ripple and Noise					20 MHz bandwidth; see Note 1
Peak-to-Peak		100	200	mV	Full load
RMS		10	20	mV	Full load
Operating Output Current Range	0		7	А	Subject to thermal derating
Output DC Current-Limit Inception	7.7	8.4	9.1	А	Output voltage 10% Low
Output DC Current-Limit Shutdown Voltage		6		V	
Back-Drive Current Limit while Enabled		0.6		A	Negative current drawn from output
Back-Drive Current Limit while Disabled		15		mA	Negative current drawn from output
Maximum Output Capacitance			1,500	μF	Vout nominal at full load (resistive load)
Output Voltage during Load Current Transient					
Step Change in Output Current (0.1 A/µs)		430		mV	50% to 75% to 50% Iout max
Settling Time		200		μs	To within 1% Vout nom
Output Voltage Trim Range	-20		10	%	Across Pins 8&4; Common Figures 3-5; see Note 2
Output Voltage Remote Sense Range			10	%	Across Pins 8&4
Output Over-Voltage Protection	14.0	14.6	15.2	V	Over full temp range
EFFICIENCY	·	·			
100% Load		87		%	See Figure 1 for efficiency curve
50% Load		85		%	See Figure 1 for efficiency curve
late 1. Output is terminated with 1 uE coramic an		CD tantalum	canacitore	Eor applic	stions requiring reduced output voltage ripple and

Note 1: Output is terminated with 1 µF ceramic and 15 µF low-ESR tantalum capacitors. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com)

Note 2: Trim-up range is limited below 10% at lower line and full load. Contact SynQor applications support for more detail (email: support@synqor.com)

Input:9-75V Output:12V Current:7A Part No.:IQ32120QTx07

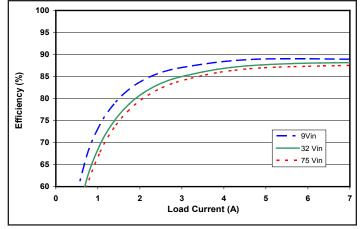
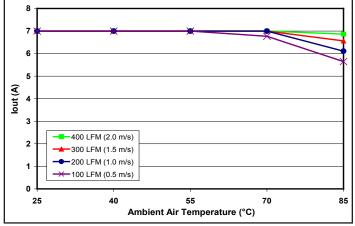
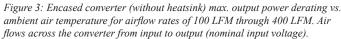




Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

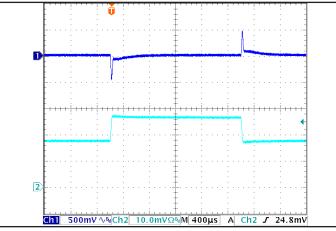


Figure 5: Output voltage response to step-change in load current (50%-75%-50% of Iout(max); $dI/dt = 0.6A/\mu s$). Load cap: $15\mu F$ tantalum cap and $1\mu F$ ceramic cap. Ch 1: Vout, Ch 2: Iout (2A/div).

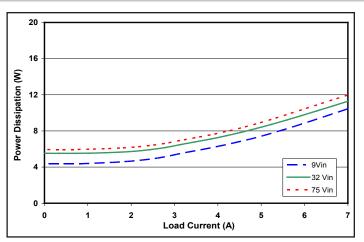


Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

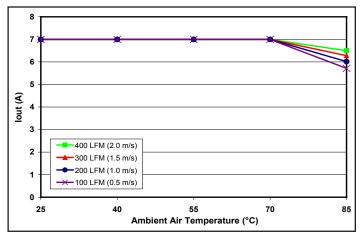


Figure 4: Encased converter (with 1/2" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

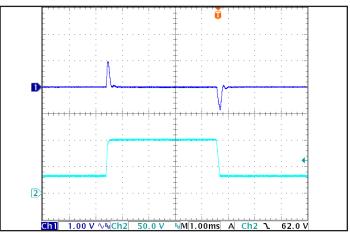


Figure 6: Output voltage response to step-change in input voltage (nominal to maximum), at full load current. Load cap: 15μ F tantalum capacitor and 1μ F ceramic cap. Ch 1: Vout, Ch 2: Vin.

Input:9-75V Output:15V Current:5.5A Part No.: IQ32150QTx06 **Technical Specification**

IQ32150QTx06 ELECTRICAL CHARACTERISTICS (15.0 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 32V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature Specifications subject to change without notic

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
INPUT CHARACTERISTICS	,			1	
Maximum Input Current			14.2	А	Vin min; trim up; in current limit
No-Load Input Current		200	250	mA	
Disabled Input Current		4	6	mA	
Response to Input Transient		0.72		V	See Figure 6
Input Terminal Ripple Current		100		mA	RMS
Recommended Input Fuse			20	А	Fast acting external fuse recommended
OUTPUT CHARACTERISTICS					
Output Voltage Set Point	14.85	15.00	15.15	V	
Output Voltage Regulation					
Over Line		±0.1	±0.3	%	
Over Load		±0.1	±0.3	%	
Over Temperature	-225		225	mV	
Total Output Voltage Range	14.62		15.38	V	Over sample, line, load, temperature & life
Output Voltage Ripple and Noise					20 MHz bandwidth; see Note 1
Peak-to-Peak		100	200	mV	Full load
RMS		10	20	mV	Full load
Operating Output Current Range	0		5.5	А	Subject to thermal derating
Output DC Current-Limit Inception	6.1	6.6	7.2	А	Output voltage 10% Low
Output DC Current-Limit Shutdown Voltage		9		V	
Back-Drive Current Limit while Enabled		0.4		А	Negative current drawn from output
Back-Drive Current Limit while Disabled		15		mA	Negative current drawn from output
Maximum Output Capacitance			1,000	μF	Vout nominal at full load (resistive load)
Output Voltage during Load Current Transient					
Step Change in Output Current (0.1 A/µs)		950		mV	50% to 75% to 50% Iout max
Settling Time		200		μs	To within 1% Vout nom
Output Voltage Trim Range	-20		10	%	Across Pins 8&4; Common Figures 3-5; see Note 2
Output Voltage Remote Sense Range			10	%	Across Pins 8&4
Output Over-Voltage Protection	17.6	18.3	19.1	V	Over full temp range
EFFICIENCY	·	·	·	•	
100% Load		85		%	See Figure 1 for efficiency curve
50% Load		86		%	See Figure 1 for efficiency curve
late 1. Output is terminated with 1 uE coromic and		CD tantalum	canacitore	Eor applic	sations requiring reduced output voltage ripple and

Note 1: Output is terminated with 1 µF ceramic and 15 µF low-ESR tantalum capacitors. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com)

Note 2: Trim-up range is limited below 10% at lower line and full load. Contact SynQor applications support for more detail (email: support@synqor.com)

Input:9-75V Output:15V Current:5.5A Part No.:IQ32150QTx06

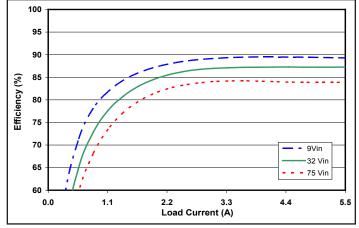


Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

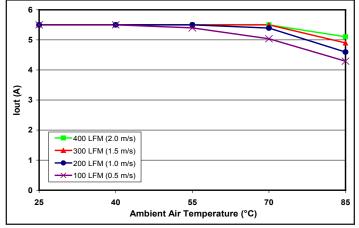


Figure 3: Encased converter (without heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

Figure 5: Output voltage response to step-change in load current (50%-75%-50% of lout(max); $dI/dt = 0.6A/\mu s$). Load cap: $15\mu F$ tantalum cap and $1\mu F$ ceramic cap. Ch 1: Vout, Ch 2: lout (2A/div).

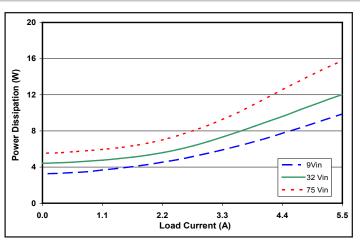


Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

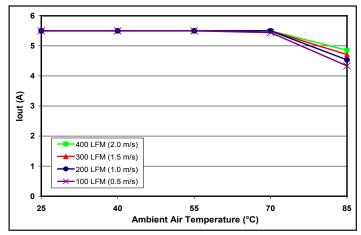


Figure 4: Encased converter (with 1/2" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

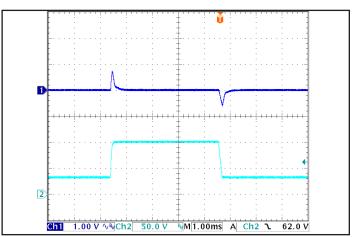


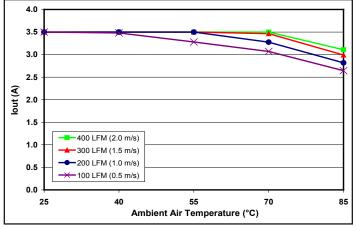
Figure 6: Output voltage response to step-change in input voltage (nominal to maximum), at full load current. Load cap: 15μ F tantalum capacitor and 1μ F ceramic cap. Ch 1: Vout, Ch 2: Vin.

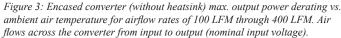
Input:9-75V Output:24V Current:3.5A Part No.: IQ32240QTx04 **Technical Specification**

IQ32240QTx04 ELECTRICAL CHARACTERISTICS (24.0 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 32V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature Specifications subject to change without notic

INPUT CHARACTERISTICS Maximum Input Current 14.7 A Vin min; trim up; in current limit No-Load Input Current 200 250 mA Disabled Input Current 4 6 mA Response to Input Transient 1.1 V See Figure 6 Input Terminal Ripple Current 100 mA RMS Recommended Input Fuse 20 A Fast acting external fuse recommended Output Voltage Set Point 23.76 24.00 24.24 V Output Voltage Regulation	ed
No-Load Input Current200250mADisabled Input Current46mAResponse to Input Transient1.1VSee Figure 6Input Terminal Ripple Current100mARMSRecommended Input Fuse20AFast acting external fuse recommendedOUTPUT CHARACTERISTICS23.7624.0024.24VOutput Voltage Set Point23.7624.0024.24VOutput Voltage Regulation*********************************	ed
Disabled Input CurrentImage: sponse to Input TransientImage: sponse to Input Transien	ed
Response to Input Transient1.1VSee Figure 6Input Terminal Ripple Current100mARMSRecommended Input Fuse20AFast acting external fuse recommendedOUTPUT CHARACTERISTICS23.7624.0024.24VOutput Voltage Set Point23.7624.0024.24VOutput Voltage Regulation±0.1±0.3%Over Line±0.1±0.1±0.3%Over Load±0.1±0.3%Over Temperature-36024.60VOver sample, line, load, temperatureOutput Voltage Range23.4024.60VOver sample, line, load, temperatureOutput Voltage Ripple and Noise100200mVFull loadPeak-to-Peak100200mVFull loadRMS1020mVFull loadOutput DC Current Range03.5ASubject to thermal deratingOutput DC Current-Limit Inception3.94.24.6AOutput voltage 10% LowOutput DC Current-Limit Shutdown Voltage16VVSubject current drawn from output	ed
Input Terminal Ripple Current100mARMSRecommended Input Fuse20AFast acting external fuse recommendedOUTPUT CHARACTERISTICSOutput Voltage Set Point23.7624.0024.24VOutput Voltage Regulation±0.1±0.3%Over Line±0.1±0.3%Over Load±0.1±0.3%Over Temperature-360360mVTotal Output Voltage Range23.4024.60VOver sample, line, load, temperatureOutput Voltage Ripple and Noise100200mVFull loadPeak-to-Peak100200mVFull loadRMS03.5ASubject to thermal deratingOutput DC Current-Limit Inception3.94.24.6AOutput voltage 10% LowOutput DC Current-Limit while Enabled0.2ANegative current drawn from output	ed
Recommended Input Fuse20AFast acting external fuse recommendedOUTPUT CHARACTERISTICSOutput Voltage Set Point23.7624.0024.24VOutput Voltage RegulationOver Line±0.1±0.3%-Over Load±0.1±0.3%-Over Temperature-360360mV-Total Output Voltage Range23.4024.60VOver sample, line, load, temperatureOutput Voltage Ripple and Noise-100200mVFull loadPeak-to-Peak100200mVFull load-RMS0-3.5ASubject to thermal deratingOutput DC Current-Limit Inception3.94.24.6AOutput voltage 10% LowOutput DC Current Limit while Enabled0.2MNegative current drawn from output	ed
OUTPUT CHARACTERISTICS23.7624.0024.24VOutput Voltage Set Point23.7624.0024.24VOutput Voltage Regulation±0.1±0.3%Over Line±0.1±0.1±0.3%Over Load±0.1±0.1±0.3%Over Temperature-360360mVTotal Output Voltage Range23.4024.60VOver sample, line, load, temperatureOutput Voltage Ripple and Noise-100200mVFull loadPeak-to-Peak100200mVFull load10RMS03.5ASubject to thermal deratingOutput DC Current-Limit Inception3.94.24.6AOutput voltage 10% LowOutput DC Current-Limit Shutdown Voltage16VVANegative current drawn from output	ed
Output Voltage Set Point23.7624.0024.24VOutput Voltage RegulationIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
Output Voltage RegulationImage: Second S	
Over Line ± 0.1 ± 0.3 %Over Load ± 0.1 ± 0.3 %Over Temperature-360 ± 0.1 ± 0.3 %Over Temperature-360360mVTotal Output Voltage Range23.4024.60VOver sample, line, load, temperatureOutput Voltage Ripple and Noise-100200mVFull loadPeak-to-Peak100200mVFull load10RMS1020mVFull load03.5ASubject to thermal deratingOutput DC Current-Limit Inception3.94.24.6AOutput voltage 10% Low10Back-Drive Current Limit while Enabled0.2-ANegative current drawn from output	
Over Load±0.1±0.3%Over Temperature-360360mVTotal Output Voltage Range23.4024.60VOver sample, line, load, temperatureOutput Voltage Ripple and Noise23.40100200mV20 MHz bandwidth; see Note 1Peak-to-Peak100200mVFull loadRMS1020mVFull loadOperating Output Current Range03.5ASubject to thermal deratingOutput DC Current-Limit Inception3.94.24.6AOutput voltage 10% LowBack-Drive Current Limit while Enabled0.2ANegative current drawn from output	
Over Temperature-360360mVTotal Output Voltage Range23.4024.60VOver sample, line, load, temperatureOutput Voltage Ripple and Noise	
Total Output Voltage Range23.4024.60VOver sample, line, load, temperature 20 MHz bandwidth; see Note 1Output Voltage Ripple and Noise100200mVFull loadPeak-to-Peak100200mVFull loadRMS1020mVFull loadOperating Output Current Range03.5ASubject to thermal deratingOutput DC Current-Limit Inception3.94.24.6AOutput voltage 10% LowBack-Drive Current Limit while Enabled0.20.2ANegative current drawn from output	
Output Voltage Ripple and Noise100200mV20 MHz bandwidth; see Note 1Peak-to-Peak100200mVFull loadRMS1020mVFull loadOperating Output Current Range03.5ASubject to thermal deratingOutput DC Current-Limit Inception3.94.24.6AOutput voltage 10% LowOutput DC Current-Limit Shutdown Voltage16VVBack-Drive Current Limit while Enabled0.2ANegative current drawn from output	
Peak-to-Peak100200mVFull loadRMS1020mVFull loadOperating Output Current Range03.5ASubject to thermal deratingOutput DC Current-Limit Inception3.94.24.6AOutput voltage 10% LowOutput DC Current-Limit Shutdown Voltage16VVBack-Drive Current Limit while Enabled0.2ANegative current drawn from output	& life
RMS1020mVFull loadOperating Output Current Range03.5ASubject to thermal deratingOutput DC Current-Limit Inception3.94.24.6AOutput voltage 10% LowOutput DC Current-Limit Shutdown Voltage16VVBack-Drive Current Limit while Enabled0.2ANegative current drawn from output	
Operating Output Current Range03.5ASubject to thermal deratingOutput DC Current-Limit Inception3.94.24.6AOutput voltage 10% LowOutput DC Current-Limit Shutdown Voltage16VVBack-Drive Current Limit while Enabled0.2ANegative current drawn from output	
Output DC Current-Limit Inception3.94.24.6AOutput voltage 10% LowOutput DC Current-Limit Shutdown Voltage16VBack-Drive Current Limit while Enabled0.2ANegative current drawn from output	
Output DC Current-Limit Shutdown Voltage 16 V Back-Drive Current Limit while Enabled 0.2 A Negative current drawn from output	
Back-Drive Current Limit while Enabled 0.2 A Negative current drawn from output	
Back-Drive Current Limit while Disabled 15 mA Negative current drawn from output	
Maximum Output Capacitance 400 µF Vout nominal at full load (resistive loa	id)
Output Voltage during Load Current Transient	
Step Change in Output Current (0.1 A/µs)1200mV50% to 75% to 50% Iout max	
Settling Time 200 µs To within 1% Vout nom	
Dutput Voltage Trim Range -20 10 % Across Pins 8&4; Common Figures 3-5	
Dutput Voltage Remote Sense Range 10 % Across Pins 8&4	
Output Over-Voltage Protection 28.1 29.3 30.5 V Over full temp range	
EFFICIENCY	
100% Load 84 % See Figure 1 for efficiency curve	
50% Load 85 % See Figure 1 for efficiency curve	


Note 1: Output is terminated with 1 µF ceramic capacitor. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com)


Page 16

Input:9-75V Output:24V Current:3.5A Part No.:IQ32240QTx04

100 95 90 85 Efficiency (%) 80 75 70 9Vin 32 Vir 65 75 Vin 60 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 Load Current (A)

Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

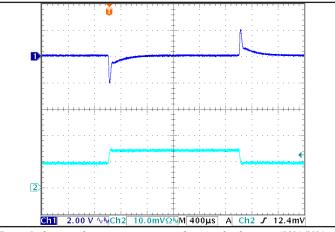


Figure 5: Output voltage response to step-change in load current (50%-75%-50% of lout(max); $dI/dt = 0.6A/\mu s$). Load cap: $1\mu F$ ceramic cap. Ch 1: Vout, Ch 2: lout (1A/div).

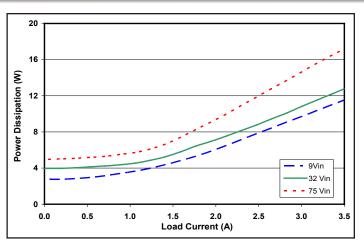


Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

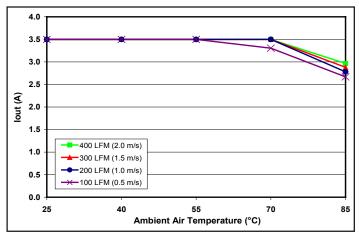


Figure 4: Encased converter (with 1/2" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

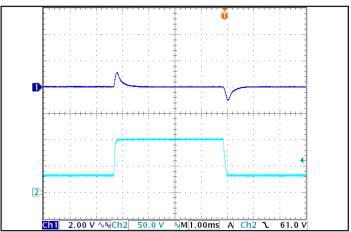


Figure 6: Output voltage response to step-change in input voltage (nominal to maximum), at full load current. Load cap: 1uF ceramic cap. Ch 1: Vout, Ch 2: Vin.

Input:9-75V **Output:30V** Current:2.8A Part No.: IQ32300QTx03 **Technical Specification**

IQ32300QTx03 ELECTRICAL CHARACTERISTICS (30.0 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 32V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature Specifications subject to change without notic

Min.	Тур.	Max.	Units	Notes & Conditions
		14.7	А	Vin min; trim up; in current limit
	200	250	mA	
	4	6	mA	
	1.3		V	See Figure 6
	100		mA	RMS
		20	A	Fast acting external fuse recommended
29.70	30.00	30.30	V	
	±0.1	±0.3	%	
	±0.1	±0.3	%	
-450		450	mV	
29.25		30.75	V	Over sample, line, load, temperature & life
				20 MHz bandwidth; see Note 1
	100	200	mV	Full load
	10	20	mV	Full load
0		2.8	А	Subject to thermal derating
3.1	3.4	3.6	А	Output voltage 10% Low
	22		V	
	0.12		А	Negative current drawn from output
	15		mA	Negative current drawn from output
		250	μF	Vout nominal at full load (resistive load)
	1500		mV	50% to 75% to 50% Iout max
	200		μs	To within 1% Vout nom
-20		10	%	Across Pins 8&4; Common Figures 3-5
		10	%	Across Pins 8&4
35.1	36.6	38.1	V	Over full temp range
	84		%	See Figure 1 for efficiency curve
	85		%	See Figure 1 for efficiency curve
	29.70 29.70 3 4 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	200 200 4 1.3 1.3 1.00 29.70 20.0 29.70 30.00 4 1.3 100 29.70 30.00 4 29.70 30.00 4 29.70 30.00 4 29.70 30.00 4 29.70 30.00 4 29.70 30.00 4 10 100 10 10 10 10 110 10 110 110 110 110 110 110 110 110 110 110 110 110 115 115	Image: 1 and 1 an	11 14.7 A 200 250 mA 4 6 mA 1.3 V V 1.3 V mA 1.3 100 mA 20.1 20.0 A 29.70 30.00 30.30 V 29.70 100 20 mV 29.25 20.12 30.75 V 0 10 20 mV 0 222 V V 150 A 36 A 150<

Note 1: Output is terminated with 1 µF ceramic capacitor. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com)

Input:9-75V Output:30V Current:2.8A Part No.:IQ32300QTx03

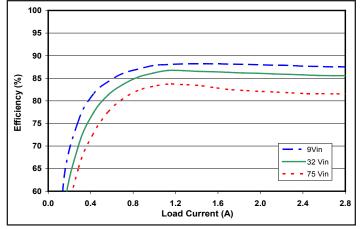
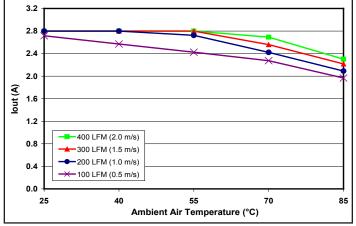
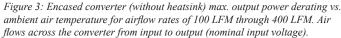




Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.



Figure 5: Output voltage response to step-change in load current (50%-75%-50% of Iout(max); $dI/dt = 0.6A/\mu s$). Load cap: $1\mu F$ ceramic cap. Ch 1: Vout, Ch 2: Iout (IA/div).

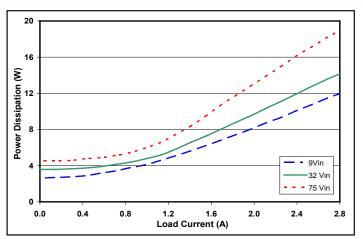


Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

Figure 4: Encased converter (with 1/2" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

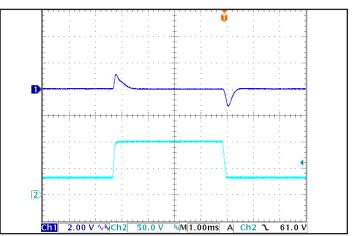


Figure 6: Output voltage response to step-change in input voltage (nominal to maximum), at full load current. Load cap: 1uF ceramic cap. Ch 1: Vout, Ch 2: Vin.

Input:9-75V **Output:48V Current: 1.8A** Part No.: IQ32480QTx02 **Technical Specification**

IQ32480QTx02 ELECTRICAL CHARACTERISTICS (48.0 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 32V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature with appropriate power derating. Specifications subject to change without notice

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
INPUT CHARACTERISTICS			1		
Maximum Input Current			15.5	А	Vin min; trim up; in current limit
No-Load Input Current		200	250	mA	
Disabled Input Current		4	6	mA	
Response to Input Transient		1.2		V	See Figure 6
Input Terminal Ripple Current		100		mA	RMS
Recommended Input Fuse			20	А	Fast acting external fuse recommended
OUTPUT CHARACTERISTICS					
Output Voltage Set Point	47.52	48.00	48.48	V	
Output Voltage Regulation					
Over Line		±0.1	±0.3	%	
Over Load		±0.1	±0.3	%	
Over Temperature	-720		720	mV	
Total Output Voltage Range	46.80		49.20	V	Over sample, line, load, temperature & life
Output Voltage Ripple and Noise					20 MHz bandwidth; see Note 1
Peak-to-Peak		150	300	mV	Full load
RMS		20	40	mV	Full load
Operating Output Current Range	0		1.8	А	Subject to thermal derating
Output DC Current-Limit Inception	2.0	2.2	2.3	А	Output voltage 10% Low
Output DC Current-Limit Shutdown Voltage		35		V	
Back-Drive Current Limit while Enabled		0.08		А	Negative current drawn from output
Back-Drive Current Limit while Disabled		15		mA	Negative current drawn from output
Maximum Output Capacitance			100	μF	Vout nominal at full load (resistive load)
Output Voltage during Load Current Transient					
Step Change in Output Current (0.1 A/µs)		2000		mV	50% to 75% to 50% Iout max
Settling Time		200		μs	To within 1% Vout nom
Output Voltage Trim Range	-20		10	%	Across Pins 8&4; Common Figures 3-5
Output Voltage Remote Sense Range			10	%	Across Pins 8&4
Output Over-Voltage Protection	56.2	58.6	61.0	V	Over full temp range
EFFICIENCY	·	·	· 		
100% Load		82		%	See Figure 1 for efficiency curve
50% Load		84		%	See Figure 1 for efficiency curve

Note 1: Output is terminated with 1 µF ceramic capacitor. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com)

Input:9-75V Output:48V Current:1.8A Part No.:IQ32480QTx02

100 95 90 85 Efficiency (%) 80 75 70 9Vin 32 Vir 65 - 75 Vin 60 0.3 0.6 0.9 0.0 1.2 1.5 1.8 Load Current (A)

Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

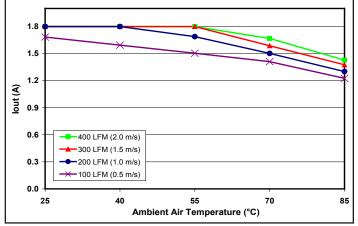


Figure 3: Encased converter (without heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

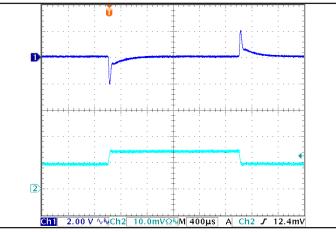


Figure 5: Output voltage response to step-change in load current (50%-75%-50% of lout(max); $dI/dt = 0.6A/\mu s$). Load cap: $1\mu F$ ceramic cap. Ch 1: Vout, Ch 2: Iout (IA/div).

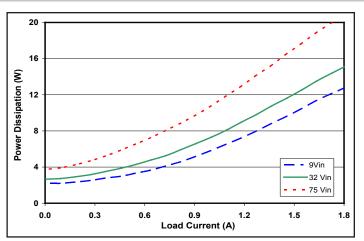


Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

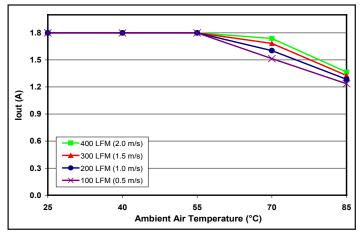


Figure 4: Encased converter (with 1/2" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

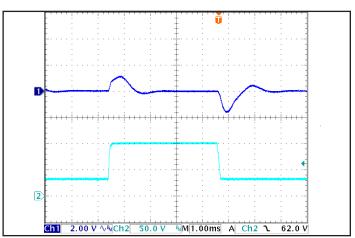


Figure 6: Output voltage response to step-change in input voltage (nominal to maximum), at full load current. Load cap: 1uF ceramic cap. Ch 1: Vout, Ch 2: Vin.

BASIC OPERATION AND FEATURES

This converter series uses a two-stage power conversion topology. The first stage is a buck-converter that keeps the output voltage constant over variations in line, load, and temperature. The second stage uses a transformer to provide the functions of input/output isolation and voltage step-up or step-down to achieve the output voltage required.

Both the first stage and the second stage switch at a fixed frequency for predictable EMI performance. Rectification of the transformer's output is accomplished with synchronous rectifiers. These devices, which are MOSFETs with a very low on-state resistance, dissipate far less energy than Schottky diodes. This is the primary reason that the converter has such high efficiency, even at very low output voltages and very high output currents.

These converters are offered totally encased to withstand harsh environments and thermally demanding applications. Dissipation throughout the converter is so low that it does not require a heatsink for operation in many applications; however, adding a heatsink provides improved thermal derating performance in extreme situations.

This series of converters use the industry standard footprint and pin-out configuration.

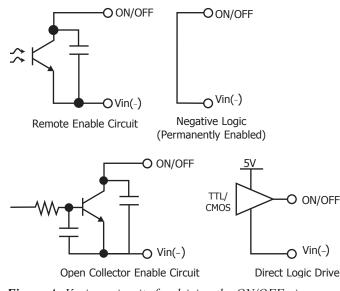


Figure A: Various circuits for driving the ON/OFF pin.

CONTROL FEATURES

REMOTE ON/OFF (Pin 2): The ON/OFF input, Pin 2, permits the user to control when the converter is on or off. This input is referenced to the return terminal of the input bus, Vin(-). The ON/OFF signal is active low (meaning that a low turns the converter on). Figure A details four possible circuits for driving the ON/OFF pin. Figure B is a detailed look of the internal ON/ OFF circuitry.

REMOTE SENSE(\pm) (Pins 7 and 5): The SENSE(\pm) inputs correct for voltage drops along the conductors that connect the converter's output pins to the load.

Pin 7 should be connected to Vout(+) and Pin 5 should be connected to Vout(-) at the point on the board where regulation is desired. A remote connection at the load can adjust for a voltage drop only as large as that specified in this datasheet, that is

$$[Vout(+) - Vout(-)] - [Vsense(+) - Vsense(-)] \le$$

Sense Range % x Vout

Pins 7 and 5 must be connected for proper regulation of the output voltage. If these connections are not made, the converter will deliver an output voltage that is slightly higher than its specified value.

<u>Note</u>: the output over-voltage protection circuit senses the voltage across the output (pins 8 and 4) to determine when it should trigger, not the voltage across the converter's sense leads (pins 7 and 5). Therefore, the resistive drop on the board should be small enough so that output OVP does not trigger, even during load transients.

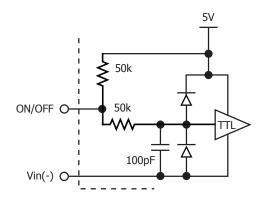


Figure B: Internal ON/OFF pin circuitry

OUTPUT VOLTAGE TRIM (Pin 6): The TRIM input permits the user to adjust the output voltage across the sense leads up or down according to the trim range specifications.

To decrease the output voltage, the user should connect a resistor between Pin 6 and Pin 5 (SENSE(-) input). For a desired decrease of the nominal output voltage, the value of the resistor should be

 $R_{\text{trim-down}} = \left(\frac{511}{\Delta\%}\right) - 10.22 \quad (k\Omega)$

$$\Delta\% = \left| \frac{\text{Vnominal} - \text{Vdesired}}{\text{Vnominal}} \right| \times 100\%$$

where

To increase the output voltage, the user should connect a resistor between Pin 6 and Pin 7 (SENSE(+) input). For a desired increase of the nominal output voltage, the value of the resistor should be

$$R_{\text{trim-up}} = \left(\frac{5.11V_{\text{OUT}} \times (100 + \Delta\%)}{1.225\Delta\%} - \frac{511}{\Delta\%} - 10.22\right) (k\Omega)$$

where $V_{\text{out}} = \text{Nominal Output Voltage}$

Trim graphs show the relationship between the trim resistor value and Rtrim-up and Rtrim-down, showing the total range the output voltage can be trimmed up or down.

<u>Note</u>: the TRIM feature does not affect the voltage at which the output over-voltage protection circuit is triggered. Trimming the output voltage too high may cause the over-voltage protection circuit to engage, particularly during transients.

It is not necessary for the user to add capacitance at the Trim pin. The node is internally bypassed to eliminate noise.

Total DC Variation of VOUT: For the converter to meet its full specifications, the maximum variation of the dc value of VOUT, due to both trimming and remote load voltage drops, should not be greater than that specified for the output voltage trim range.

PROTECTION FEATURES

Input Under-Voltage Lockout: The converter is designed to turn off when the input voltage is too low, helping avoid an input system instability problem, described in more detail in the application note titled "Input System Instability" on our website. The lockout circuitry is a comparator with dc hysteresis. When the input voltage is rising, it must exceed the typical Turn-On Voltage Threshold value (listed on the specifications page) before the converter will turn on. Once the converter is on, the input voltage must fall below the typical Turn-Off Voltage Threshold value before the converter will turn off.

Output Current Limit: The maximum current limit remains constant as the output voltage drops. However, once the impedance of the load across the output is small enough to make the output voltage drop below the specified Output DC Current-Limit Shutdown Voltage, the converter turns off.

The converter then enters a "hiccup mode" where it repeatedly turns on and off at a 5 Hz (nominal) frequency with a 5% duty cycle until the short circuit condition is removed. This prevents excessive heating of the converter or the load board.

Output Over-Voltage Limit: If the voltage across the output pins exceeds the Output Over-Voltage Protection threshold, the converter will immediately stop switching. This prevents damage to the load circuit due to 1) excessive series resistance in output current path from converter output pins to sense point, 2) a release of a short-circuit condition, or 3) a release of a current limit condition. Load capacitance determines exactly how high the output voltage will rise in response to these conditions. After 200 ms the converter will automatically restart.

Over-Temperature Shutdown: A temperature sensor on the converter senses the average temperature of the module. The thermal shutdown circuit is designed to turn the converter off when the temperature at the sensed location reaches the Over-Temperature Shutdown value. It will allow the converter to turn on again when the temperature of the sensed location falls by the amount of the Over-Temperature Shutdown Restart Hysteresis value.

APPLICATION CONSIDERATIONS

Input System Instability: This condition can occur because any dc-dc converter appears incrementally as a negative resistance load. A detailed application note titled "Input System Instability" is available on the SynQor website which provides an understanding of why this instability arises, and shows the preferred solution for correcting it. **Application Circuits:** Figure C provides a typical circuit diagram which details the input filtering and voltage trimming.

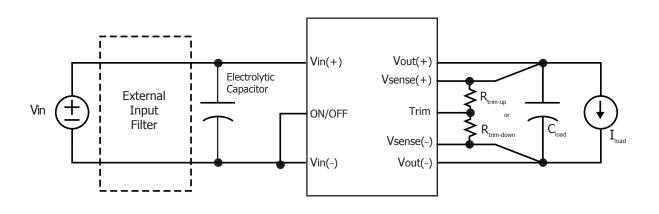


Figure C: Typical application circuit (negative logic unit, permanently enabled).

Input Filtering and External Capacitance: Figure D provides a diagram showing the internal input filter components. This filter dramatically reduces input terminal ripple current, which otherwise could exceed the rating of an external electrolytic input capacitor.

The recommended external input capacitance is specified in the Input Characteristics section on the Electrical Characteristics page. More detailed information is available in the application note titled "EMI Characteristics" on the SynQor website.

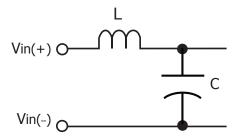


Figure D: Internal Input Filter Diagram (component values listed on the specifications page).

Startup Inhibit Period: The Startup Inhibit Period ensures that the converter will remain off for approximately 200 ms when it is shut down for any reason. When an output short is present, this generates a 5 Hz "hiccup mode," which prevents the converter from overheating. In all, there are seven ways that the converter can be shut down, initiating a Startup Inhibit Period:

- Input Under-Voltage Lockout
- Input Over-Voltage Lockout
- Output Over-Voltage Protection
- Over Temperature Shutdown
- Current Limit
- Short Circuit Protection
- Turned off by the ON/OFF input

Figure E shows three turn-on scenarios, where a Startup Inhibit Period is initiated at t_0 , t_1 , and t_2 :

Before time t_0 , when the input voltage is below the UVL threshold, the unit is disabled by the Input Under-Voltage Lockout feature. When the input voltage rises above the UVL threshold, the Input Under-Voltage Lockout is released, and a Startup Inhibit Period is initiated. At the end of this delay, the ON/OFF pin is evaluated, and since it is active, the unit turns on.

At time t_1 , the unit is disabled by the ON/OFF pin, and it cannot be enabled again until the Startup Inhibit Period has elapsed.

When the ON/OFF pin goes high after t_2 , the Startup Inhibit Period has elapsed, and the output turns on within the typical Turn-On Time.

Thermal Considerations: The maximum operating base-plate temperature, T_B, is 100 °C. As long as the user's thermal system keeps T_B \leq 100 °C, the converter can deliver its full rated power.

A power derating curve can be calculated for any heatsink that is attached to the base-plate of the converter. It is only necessary to determine the thermal resistance, $R_{TH_{BA}}$, of the chosen heatsink between the base-plate and the ambient air for a given airflow rate. This information is usually available from the heatsink vendor. The following formula can the be used to determine the maximum power the converter can dissipate for a given thermal condition if its base-plate is to be no higher than 100 °C.

$$P_{diss}^{max} = \frac{100 \text{ oC} - T_A}{R_{TH_{BA}}}$$

This value of power dissipation can then be used in conjunction with the data shown in Figure 2 to determine the maximum load current (and power) that the converter can deliver in the given thermal condition.

For convenience, power derating curves for an encased converter without a heatsink and with a typical heatsink are provided for each output voltage.

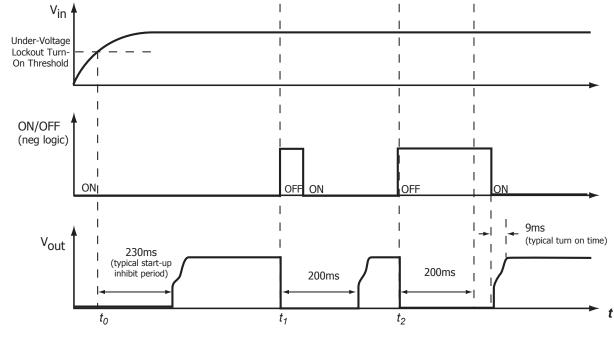
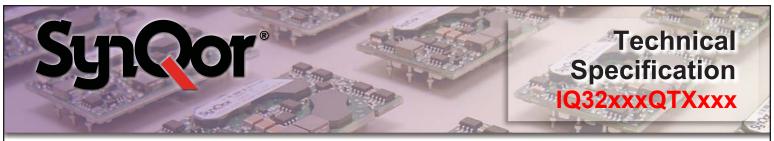
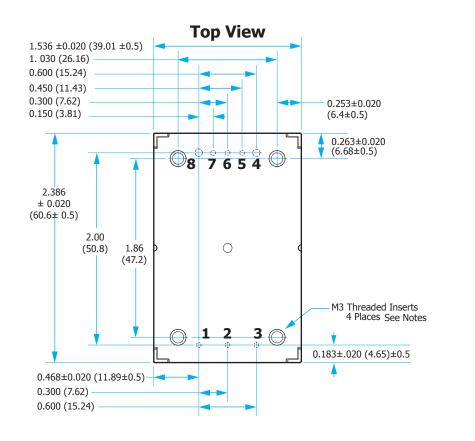
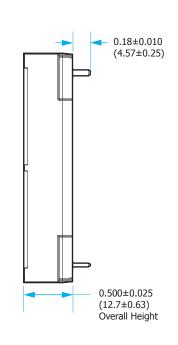



Figure E: Startup Inhibit Period (turn-on time not to scale)

Standards & Qualification Testing


Parameter	Notes & Conditions
STANDARDS COMPLIANCE	
UL 60950-1/R:2011-12	Basic Insulation
CAN/CSA-C22.2 No. 60950-1/A1:2011	
EN 60950-1/A12:2011	Certified by TUV

Note: An external input fuse must always be used to meet these safety requirements. Contact SynQor for official safety certificates on new releases or download from the SynQor website.


Parameter	# Units	Test Conditions
QUALIFICATION TESTING		
Life Test	32	95% rated Vin and load, units at derating point, 1000 hours
Vibration	5	10-55 Hz sweep, 0.060" total excursion, 1 min./sweep, 120 sweeps for 3 axis
Mechanical Shock	5	100g minimum, 2 drops in x, y, and z axis
Temperature Cycling	10	-40 °C to 100 °C, unit temp. ramp 15 °C/min., 500 cycles
Power/Thermal Cycling	5	Toperating = min to max, Vin = min to max, full load, 100 cycles
Design Marginality	5	Tmin-10 °C to Tmax+10 °C, 5 °C steps, Vin = min to max, 0-105% load
Humidity	5	85 °C, 95% RH, 1000 hours, continuous Vin applied except 5 min/day
Solderability	15 pins	MIL-STD-883, method 2003
Altitude	2	70,000 feet (21 km), see Note

Note: A conductive cooling design is generally needed for high altitude applications because of naturally poor convective cooling at rare atmospheres.

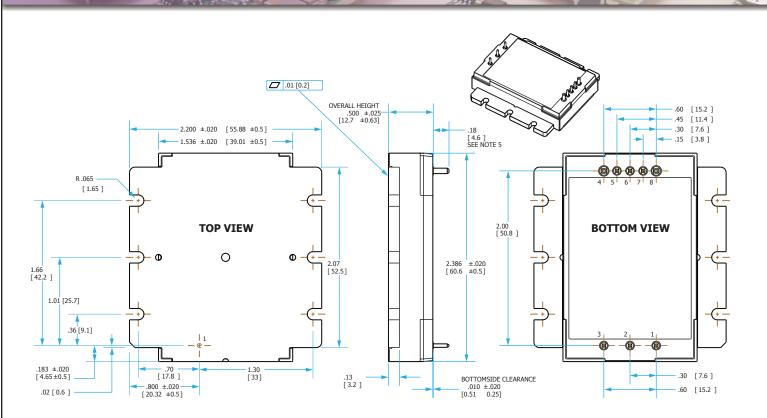
Side View

NOTES

- 1)M3 screws used to bolt unit's baseplate to other surfaces (such as a heatsink) must not exceed 0.100" (2.54 mm) depth below the surface of the baseplate.
- 2)Applied torque per screw should not exceed 6in-lb. (0.7 Nm).
- 3)Baseplate flatness tolerance is 0.004" (.10mm) TIR for surface.
- 4)Pins 1-3, 5-7 are 0.040" (1.02mm) diameter, with 0.080" (2.03mm) diameter standoff shoulders.
- 5)Pins 4 and 8 are 0.062" (1.57 mm) diameter with 0.100" (2.54 mm) diameter standoff shoulders.
- 6)All Pins: Material Copper Alloy- Finish (RoHS 6/6) Matte Tin over Nickel plate
- 7)Weight: 3.02 oz. (85.7 g) typical
- 8)All dimensions in inches (mm)

Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm) x.xxx +/-0.010 in. (x.xx +/-0.25mm)

- 9)Workmanship: Meets or exceeds IPC-A-610 Class II
- 10)Recommended pin length is 0.03" (0.76mm) greater than the PCB thickness.


PIN DESIGNATIONS

Pin	Name	Function
1	Vin(+)	Positive input voltage
2	ON/OFF	TTL input to turn converter on and off, referenced to Vin(–), with internal pull up.
3	Vin(-)	Negative input voltage
4	Vout(-)	Negative output voltage
5	SENSE(-)	Negative remote sense ¹
6	TRIM	Output voltage trim ²
7	SENSE(+)	Positive remote sense ³
8	Vout(+)	Positive output voltage

Notes:

- 1) SENSE(-) should be connected to Vout(-) either remotely or at the converter.
- 2) Leave TRIM pin open for nominal output voltage.
- 3) SENSE(+) should be connected to Vout(+) either remotely or at the converter.

Flanged Mechanical Diagram

NOTES

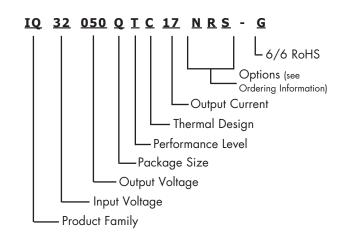
- Applied torque per screw should not exceed 5in-lb. (3in-lb recommended).
- 2) Baseplate flatness tolerance is 0.01" (.2mm) TIR for surface.
- Pins 1-3, 5-7 are 0.040" (1.02mm) diameter, with 0.080" (2.03mm) diameter standoff shoulders.
- Pins 4 and 8 are 0.062" (1.57 mm) diameter with 0.100" (2.54 mm) diameter standoff shoulders.
- 5) All Pins: Material Copper Alloy, Finish (RoHS 6/6) Matte Tin over Nickel plate
- 6) Total Weight: 3.12 oz (88.5 g)
- 7) All dimensions in inches (mm)
 - Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm) x.xxx +/-0.010 in. (x.xx +/-0.25mm)
- 8) Workmanship: Meets or exceeds IPC-A-610 Class II
- 9) Recommended pin length is 0.03" (0.76mm) greater than the PCB thickness.
- 10) A thermal interface material is required to assure proper heat transfer from the flanged baseplate to the cooling surface. Thermal grease may be used, or materials such as Thermalloy's Grafoil or Bergquist HiFlow and Softflow. Other similar products are available from many heatsink manufacturers.

PIN DESIGNATIONS

Technical

Specification

Pin	Name	Function
1	Vin(+)	Positive input voltage
2	ON/OFF	TTL input to turn converter on and off, referenced to Vin(–), with internal pull up.
3	Vin(-)	Negative input voltage
4	Vout(-)	Negative output voltage
5	SENSE(-)	Negative remote sense ¹
6	TRIM	Output voltage trim ²
7	SENSE(+)	Positive remote sense ³
8	Vout(+)	Positive output voltage


Notes:

- 1) SENSE(-) should be connected to Vout(-) either remotely or at the converter.
- 2) Leave TRIM pin open for nominal output voltage.
- 3) SENSE(+) should be connected to Vout(+) either remotely or at the converter.

PART NUMBERING SYSTEM

The part numbering system for SynQor's dc-dc converters follows the format shown in the example below.

The first 12 characters comprise the base part number and the last 3 characters indicate available options. The "-G" suffix indicates 6/6 RoHS compliance.

Application Notes

A variety of application notes and technical white papers can be downloaded in pdf format from our **Website**.

RoHS Compliance: The EU led RoHS (Restriction of Hazardous Substances) Directive bans the use of Lead, Cadmium, Hexavalent Chromium, Mercury, Polybrominated Biphenyls (PBB), and Polybrominated Diphenyl Ether (PBDE) in Electrical and Electronic Equipment. This SynQor product is 6/6 RoHS compliant. For more information please refer to SynQor's RoHS addendum available at our <u>RoHS Compliance / Lead</u> Free Initiative web page or e-mail us at rohs@synqor.com.

Contact SynQor for further information and to order:

Phone:	978-849-0600
Toll Free:	888-567-9596
Fax:	978-849-0602
<u>E-mail</u> :	power@synqor.com
<u>Web</u> :	www.synqor.com
Address:	155 Swanson Road
	Boxborough, MA 01719
	USA

ORDERING INFORMATION

The tables below show the valid model numbers and ordering options for converters in this product family. When ordering SynQor converters, please ensure that you use the complete 15 character part number consisting of the 12 character base part number and the additional characters for options. Add "-G" to the model number for 6/6 RoHS compliance.

Model Number	Input Voltage	Output Voltage	Max Output Current
IQ32018QTw35xyz	9-75V	1.8	35
IQ32033QTw25xyz	9-75V	3.3	25
IQ32050QTw17xyz	9-75V	5.0	17
IQ32070QTw12xyz	9-75V	7.0	12
IQ32120QTw07xyz	9-75V	12.0	7.0
IQ32150QTw06xyz	9-75V	15.0	5.5
IQ32240QTw04xyz	9-75V	24.0	3.5
IQ32300QTw03xyz	9-75V	30.0	2.8
IQ32480QTw02xyz	9-75V	48.0	1.8

The following options must be included in place of the w x y z spaces in the model numbers listed above.

Options Description					
Thermal Design	Enable Logic Pin Style		Feature Set		
w	X	У	Z		
C - Encased V - Encased with Flanged Baseplate	N - Negative	R - 0.180"	S - Standard		

Not all combinations make valid part numbers, please contact SynQor for availability.

PATENTS

SynQor holds the following U.S. patents, one or more of which apply to each product listed in this document. Additional patent applications may be pending or filed in the future.

5,999,417	6,222,742	6,545,890	6,577,109	6,594,159	6,731,520
6,894,468	6,896,526	6,927,987	7,050,309	7,072,190	7,085,146
7,119,524	7,269,034	7,272,021	7,272,023	7,558,083	7,564,702
7,765,687	7,787,261	8,023,290	8,149,597	8,493,751	

Warranty

SynQor offers a two (2) year limited warranty. Complete warranty information is listed on our website or is available upon request from SynQor.

Information furnished by SynQor is believed to be accurate and reliable. However, no responsibility is assumed by SynQor for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SynQor.