Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.

- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

- Microchip is willing to work with the customer who is concerned about the integrity of their code.

- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
MCP4725 PICtail™ Plus DAUGHTER BOARD USER’S GUIDE

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Document Layout</td>
<td>1</td>
</tr>
<tr>
<td>Conventions Used in this Guide</td>
<td>2</td>
</tr>
<tr>
<td>Recommended Reading</td>
<td>3</td>
</tr>
<tr>
<td>The Microchip Web Site</td>
<td>3</td>
</tr>
<tr>
<td>Customer Support</td>
<td>3</td>
</tr>
<tr>
<td>Document Revision History</td>
<td>4</td>
</tr>
<tr>
<td>Chapter 1. Quick Start Instructions</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Description of the MCP4725 PICtail™ Plus Daughter Board</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Getting Started With Explorer 16 Development Board</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Getting Started with PICkit™ Serial Analyzer</td>
<td>14</td>
</tr>
<tr>
<td>1.5 Examples of The MCP4725 Programming using the PICkit™ Serial Analyzer</td>
<td>25</td>
</tr>
<tr>
<td>1.6 References</td>
<td>26</td>
</tr>
<tr>
<td>Appendix A. Schematic and Layouts</td>
<td></td>
</tr>
<tr>
<td>A.1 Introduction</td>
<td>27</td>
</tr>
<tr>
<td>A.2 Board – Schematic</td>
<td>28</td>
</tr>
<tr>
<td>A.3 Board – Top Layer</td>
<td>29</td>
</tr>
<tr>
<td>A.4 Board – Top Metal Layer</td>
<td>30</td>
</tr>
<tr>
<td>A.5 Board – Bottom Layer</td>
<td>31</td>
</tr>
<tr>
<td>A.6 Board – Bottom Metal Layer</td>
<td>32</td>
</tr>
<tr>
<td>Appendix B. Bill Of Materials (BOM)</td>
<td></td>
</tr>
<tr>
<td>Worldwide Sales and Service</td>
<td>34</td>
</tr>
</tbody>
</table>
NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is “DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help. Select the Help menu, and then Topics to open a list of available on-line help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the MCP4725 PICtail™ Plus Daughter Board. Items discussed in this chapter include:

• Document Layout
• Conventions Used in this Guide
• Recommended Reading
• The Microchip Web Site
• Customer Support
• Document Revision History

DOCUMENT LAYOUT

This document describes how to use the MCP4725 PICtail™ Plus Daughter Board as a development tool to emulate and debug firmware on a target board. The manual layout is as follows:

• Chapter 1. “Quick Start Instructions” – this chapter provides an overview of the MCP4725 PICtail™ Plus Daughter Board and instructions on how to program the DAC register and EEPROM of the MCP4725 device.
• Appendix A. “Schematics and Board Layouts” – shows the schematic and layout diagrams for the MCP4725 PICtail™ Plus Daughter Board.
• Appendix B. “Bill Of Materials (BOM)” – lists the parts used to build the MCP4725 PICtail™ Plus Daughter Board.
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial font:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italic characters</td>
<td>Referenced books</td>
<td>MPLAB® IDE User's Guide</td>
</tr>
<tr>
<td>Emphasized text</td>
<td>the Output window</td>
<td>...is the only compiler...</td>
</tr>
<tr>
<td>Initial caps</td>
<td>A window</td>
<td>the Settings dialog</td>
</tr>
<tr>
<td></td>
<td>A dialog</td>
<td>select Enable Programmer</td>
</tr>
<tr>
<td></td>
<td>A menu selection</td>
<td></td>
</tr>
<tr>
<td>Quotes</td>
<td>A field name in a window or dialog</td>
<td>"Save project before build"</td>
</tr>
<tr>
<td>Underlined, italic text with right angle bracket</td>
<td>A menu path</td>
<td>File>Save</td>
</tr>
<tr>
<td>Bold characters</td>
<td>A dialog button</td>
<td>Click OK</td>
</tr>
<tr>
<td></td>
<td>A tab</td>
<td>Click the Power tab</td>
</tr>
<tr>
<td>N'\Rnnnn</td>
<td>A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.</td>
<td><code>4'b0010</code>, <code>2'hF1</code></td>
</tr>
<tr>
<td>Text in angle brackets < ></td>
<td>A key on the keyboard</td>
<td>Press <Enter>, <F1></td>
</tr>
</tbody>
</table>

Courier New font:

<table>
<thead>
<tr>
<th>Description</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain Courier New</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample source code</td>
<td>#define START</td>
<td></td>
</tr>
<tr>
<td>Filenames</td>
<td>autoexec.bat</td>
<td></td>
</tr>
<tr>
<td>File paths</td>
<td><code>c:\mcc18\h</code></td>
<td></td>
</tr>
<tr>
<td>Keywords</td>
<td>_asm, _endasm, static</td>
<td></td>
</tr>
<tr>
<td>Command-line options</td>
<td><code>-Opa+, -Opa-</code></td>
<td></td>
</tr>
<tr>
<td>Bit values</td>
<td><code>0, 1</code></td>
<td></td>
</tr>
<tr>
<td>Constants</td>
<td><code>0xFF, ‘A’</code></td>
<td></td>
</tr>
<tr>
<td>Italic Courier New</td>
<td>A variable argument</td>
<td>file.o, where file can be any valid filename</td>
</tr>
<tr>
<td>Square brackets []</td>
<td>Optional arguments</td>
<td>mcc18 [options] file [options]</td>
</tr>
<tr>
<td>**Curly brackets and pipe character: {</td>
<td>Choice of mutually exclusive arguments; an OR selection</td>
<td>errorlevel {0</td>
</tr>
<tr>
<td>Ellipses...</td>
<td>Replaces repeated text</td>
<td>var_name [, var_name...]</td>
</tr>
<tr>
<td>Represents code supplied by user</td>
<td>void main (void) { ... }</td>
<td></td>
</tr>
</tbody>
</table>
RECOMMENDED READING

This user’s guide describes how to use MCP4725 PICtail™ Plus Daughter Board. The following Microchip documents are available and recommended as supplemental reference resources.

PICkit™ Serial Analyzer User’s Guide (DS51647)
Consult this document for instructions on how to use the PICkit Serial Analyzer hardware and software.

MCP4725 Data Sheet, “12-Bit DAC with EEPROM Memory in SOT-23-6” (DS22039)
This data sheet provides detailed information regarding the MCP4725 product family.

MCP4725 SOT-23 Evaluation Board User’s Guide (DS51669)
PIC24FJ128GA010 Family Data Sheet (DS39747)
Explore 16 Development Board User’s Guide (DS51589)
AN1079, “Using the C3 Compiler and the I2C Peripheral to Interface Serial EEPROMs with dsPIC33F” (DS01079)
PICkit™ Serial Analyze User’s Guide (DS51647)

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com
DOCUMENT REVISION HISTORY

Revision A (March 2008)

• Initial Release of this Document.
Chapter 1. Quick Start Instructions

1.1 INTRODUCTION

The following sections provide an overview of the MCP4725 PICtail™ Plus Daughter Board and demonstrate how to use (a) the MCP4725 device in a 16-bit MCU environment and (b) evaluate the MCP4725 device features using the PICkit™ Serial Analyzer (P/N: DV164122). The MCP4725 PICtail™ Plus Daughter Board is designed to work with both the Explorer 16 Development Board (P/N: DV164033) and the PICkit™ Serial Analyzer (P/N: DV164122).

The following topics are covered:

- Description of the MCP4725 PICtail™ Plus Daughter Board
- How to use the MCP4725 PICtail™ Plus Daughter Board with the Explorer 16 Starter Kit
- How to use MCP4725 PICtail™ Plus Daughter Board with the PICkit™ Serial Analyzer

1.2 DESCRIPTION OF THE MCP4725 PICtail™ Plus DAUGHTER BOARD

The MCP4725 PICtail™ Plus Daughter Board (P/N MCP4725DM-PTPLS) contains an MCP4725 12-bit Digital-to-Analog Converter (DAC). This daughter board has the following two interfaces:

- Explorer 16 Starter Kit (P/N: DV164033) for 16-bit MCU environment
- PICkit™ Serial Analyzer (P/N: DV164122) for reading and writing the DAC register and observing the DAC output

The user can connect this daughter board to one of the above tools and perform their own experiments.

The board has test points for SDL, SDA, and VOUT. By connecting an oscilloscope to these test points (to SCL, SDA, VOUT) or Digital Multimeter to VOUT, the user can examine the data communications through the \text{I}^2\text{C}™ bus line and observe the resulting DAC output (VOUT). Refer to Appendix A. “Schematic and Layouts”

1.2.1 \text{I}^2\text{C} Address Bits and A0 Address Bit Selection

The \text{I}^2\text{C} device code and address bits of the MCP4725 device are:

- Device Code: 1100
- A2, A1, A0 Address Bits: 00X, where X is for the A0 bit which is determined by the logic state of the A0 pin

Note that the first two address bits (A2 and A1) are programmed at factory during device production and A0 bit is programmed by the user during applications. The A2 and A1 address bits of the MCP4725 device used for the MCP4725 PICtail™ Plus Daughter Board are programmed at the factory to 00. The JMP1 connector on the MCP4725 PICtail™ Plus Daughter Board selects the A0 bit. The following conditions show the A0 bit selection:

- A0 bit = 1 if JMP1 is connected to VDD
- A0 bit = 0 if JMP1 is connected to VSS (Default setting)
- Address bits A2, A1 = 00
Based on the above information, the combined device code and address bits for the I²C Serial Communication are:

- 1100-001W/R: if JMP1 is connected to V_DD
- 1100-000W/R: if JMP1 is connected to V_SS
- Where W/R is write(‘0’) or read (‘1’) bit.

FIGURE 1-1: Front and Back Views of the MCP4725 PICtail™ Plus Daughter Board.

1.3 GETTING STARTED WITH EXPLORER 16 DEVELOPMENT BOARD

Figure 1-2 shows the MCP4725 PICtail™ Plus Daughter Board with the Explorer 16 Development Board. When they are connected, the user can program the 16-bit PIC24FJ128 MCU on the Explorer 16 Starter Kit. The Explorer 16 Development Board sends I²C serial communication commands to the MCP4725 PICtail™ Plus Daughter Board for the MCP4725 DAC output. The Explorer 16 MCU firmware for this MCP4725 PICtail™ Plus Daughter Board writes to the DAC input register continuously in 1 LSB increments. The user can see the DAC output (V_OUT) changes using an oscilloscope. Also, a buzzer on the MCP4725 PICtail™ Plus Daughter Board makes sounds driven by the DAC output (V_OUT).
1.3.1 Connecting to the Explorer 16 Starter Kit

1. Connect the MCP4725 PICtail™ Plus Daughter Board to the J5 socket on the Explorer 16 Development Board as shown in Figure 1-2.

![Figure 1-2: Connecting the MCP4725 PICtail™ Plus Daughter Board to the Explorer 16 Development Board.](explorer_16_board_with_board.png)

1.3.2 Programming the PIC24FJ128 MCU

The Explorer 16 Development Board contains the PIC24FJ128 MCU. The user can download the firmware to the MCU using the MPLAB ICD2 programmer. Refer to Chapter 2 of the Explorer 16 Development Board User’s Guide (DS51589) for details on the programming of the Explorer 16 Development Board.

1.3.2.1 THE PIC24FJ128 MCU FIRMWARE FOR THE MCP4725 PICtail™ Plus DAUGHTER BOARD

The original firmware for the Explorer 16 Development Board is modified for the MCP4725 PICtail™ Plus Daughter Board demonstration. The firmware uses most of the original codes for the Explorer 16 Development Board except the I2C peripheral control routines for the PIC24FJ128 MCU.

The following four routines are added or modified from the original Explorer 16 Development Board firmware.

- PIC24ExplDemo_MCP4725_Main.c
- MCP4725_i2C_Func.c
- Banner_MCP4725.c
- i2C_MCP4725.h

The user can modify the above routines for their own application.

The source code is compiled by using Microchip’s C30 Compiler and the hex code is programmed to the MCU using the MPLAB ICD 2. Figure 1-3 shows connection of the MPLAB ICD 2 and the Explorer 16 Development Board. Figure 1-4 shows the MPLAB IDE programming environment.
1.3.2.2 FIRMWARE FLOW CHART FOR THE MCP4725 DAUGHTER BOARD

Figure 1-5 shows the flow chart of the firmware. Once the MCU firmware is programmed, the user can observe the following events:

1. V_{OUT} changes as the MCU rewrites the DAC codes. See Figure 1-6 for the V_{OUT} waveform.
2. Audible sounds (Buzzer) if JP4 is connected.
3. I^2C data communication (SDA and SCL) waveform over the I^2C bus line. See Figure 1-6 and Figure 1-7.

1.3.3 DAC Output (VOUT)

The MCU sends write commands for EEPROM and DAC input register.

The MCU writes EEPROM only once, but writes continuously the DAC input register. The EEPROM is written for the $V_{OUT} = V_{DD}/2$, and the DAC input register is continuously written for the V_{OUT} to be ramp: The DAC input code is written from "000h" to "FFFh" with 1 LSB increment. When it reaches "FFFh", resets to "000h" and repeats the writing from "000h" to "FFFh" with 1 LSB again.

The user can observe the V_{OUT} at the V_{OUT} test pin using a digital voltmeter or oscilloscope. Figure 1-7 shows the I^2C clock (SCL) and data (SDA) signals, and DAC output waveform.

The DAC input register is written with fast mode write command which does not affect the EEPROM. The user can confirm the data written in EEPROM ($V_{OUT} = V_{DD}/2$) by disconnecting the MCP4725 PICtail™ Plus Daughter Board from the Explorer 16 Development Board. When the board is first powered, the MCP4725 device loads the EEPROM data to the DAC input register by itself and then outputs an analog voltage determined by the EEPROM data.

1.3.4 Audible Buzzer

The MCP4725 PICtail™ Plus Daughter Board includes a buzzer. This buzzer is directly connected to the V_{OUT}. The user can disable the buzzer by disconnecting JP4. The buzzer sounds also can be adjusted by VR1.
FIGURE 1-3: MPLAB ICD2 connection to Explorer 16 Development Board with the MCP4725 PICtail™ Plus Daughter Board for programming.
FIGURE 1-4: MPLAB IDE Programming Environment.
FIGURE 1-5: Flow Chart for the MCP4725 PICTail™ Plus Daughter Board Firmware.
FIGURE 1-6: I²C Write Command Waveforms for the MCP4725.

(a) Write DAC Input Register and EEPROM
(DAC Code = 1000-0000-0000)

\[
\text{Expected DAC Output} = \frac{V_{DD} \cdot D_n}{4096} = \frac{5 \cdot 800(\text{hex})}{4096} = 2.5V
\]

(b) Fast Write Command
(DAC Code = 0110-1101-1001)

\[
\text{Expected DAC Output} = \frac{V_{DD} \cdot D_n}{4096} = \frac{5 \cdot 6D9(\text{hex})}{4096} = 2.1398V
\]
Write Data (Dn) = 1111 - 01101111 (binary)

\[V_{OUT} = \frac{V_{DD} \cdot Dn}{4096} = 4.823V \]
for \(V_{DD} = 5V \)

FIGURE 1-7: \(^2 \text{C} \) SCL, SDA, and \(V_{OUT} \) Waveforms while incrementing the DAC code by 1 LSB.
1.4 GETTING STARTED WITH PICKIT™ SERIAL ANALYZER

The user can use the MCP4725 PICtail™ Plus Daughter Board with the PICkit™ Serial Analyzer by setting up as shown in Figure 1-8.

The following describes how to use them together:

1. Connect the MCP4725 PICtail™ Plus Daughter Board’s J2 pin socket to the PICkit™ Serial Analyzer.
2. Connect a Digital Voltmeter to V_{OUT} pin and V_{SS}.

FIGURE 1-8: MCP4725 PICtail™ Plus Daughter Board with the PICkit™ Serial Analyzer.
1.4.1 PICkit™ Serial Analyzer PC Software Set-Up for the MCP4725 Daughter Board

The following steps describe how to set and use the PICkit™ Serial Analyzer PC Graphic User Interface (GUI) to control the MCP4725 PICtail™ Plus Daughter Board.

1. Install the PICkit™ Serial Analyzer software onto your personal computer (PC).
2. Connect the USB cable between the PICkit™ Serial Analyzer and your PC.
3. Run the PICkit™ Serial PC Software: It will open up to the following graphic user interface (GUI). Click the Next button and follow the instructions:

![Configuration Wizard](image)

4. Select the Communication Mode type: I²C Master, and click the Next button.
5. Select 100 kHz or 400 kHz. Either one will be fine. Click the Next button.

![Configuration Wizard](image)

Note: The MCP4725 device supports the I^2^C bus data rate up to 3.4 MHz, but the current version of the PICkit™ Serial Analyzer supports the I^2^C bus data rate up to 400 kHz only.

6. Select No on Enable Pull-ups, and click the Next button.

Note: The MCP4725 PICtail™ Plus Daughter Board has its own pull-up resistors, therefore, you don’t need additional pull-up resistors from the PICkit™ Serial Analyzer.
7. Select the V_{DD} voltage of the MCP4725 PICtail™ Plus Daughter Board and click the Next button.

Case 1: When you use V_{DD} from the PICkit™ Serial Analyzer:

If you choose PICkit™ Serial will power my device and 5 Volts as shown below, the MCP4725 PICtail™ Plus Daughter Board is powered by the 5V DC from the PICkit™ Serial Analyzer through the JP1 jumper. In this case, make sure that the JP1 jumper on the MCP4725 PICtail™ Plus Daughter Board is connected.

Case 2: When you use your own V_{DD}:

You can also provide your own V_{DD} voltage by applying a V_{DD} voltage at TP1. In this case, make sure that the JP1 jumper is disconnected.
8. Click the OK button. You have made all of the PICkit™ Serial Analyzer Configuration Set-ups. You are now ready to program the MCP4725 PICtail™ Plus Daughter Board using the PICkit™ Serial Analyzer.
1.4.2 Creating Script Files

In order to make a communication between the PICkit™ Serial Analyzer and the MCP4725 PICtail™ Plus Daughter Board, it needs a script file. The following procedure shows how to create script files and how to use them.

1. Select Communication ----> Script ---> Script Builder.
1.4.2.1 CREATING SCRIPT FILES TO PROGRAM DAC REGISTER

1. Click on **WriteBlockAddrA8** in “Example I2C Scripts” column.

 This will fill in the spaces under **Script Detail** column.

Modifying the Script Details Parameters:

2. Under the Script Detail column, select the item in the parameter box.

3. Right click the mouse button and an option box appears to the right of your selection. This gives you the options that are available for the parameter selected.

4. Select the desired option.

5. Keep the parameters in the same order as shown below:

 I2CSTART

 I2CWRTBYT

 03

 C0

 0F

 FF

 I2CSTOP

Note: All 7 parameters above must be listed in order. The parameters with * are not modifyable. Address bits A2, A1, A0 = 1, 1, 0 if both JMP2 and JMP3 are tied to VDD. You can choose any data you want for the 2nd and 3rd write bytes. If you use the above write data, the MCP4725 device will output:

\[
V_{OUT} = \frac{V_{DD} \cdot \text{FFF}(\text{hex})}{4096} = V_{DD}(V)
\]
1.4.2.2 SAVING THE SCRIPT FILE AND PROGRAMMING DAC REGISTER (FAST MODE)

1. Change 2nd and 3rd data bytes you want in the Script Detail.
2. Type in any script name (i.e., MCP4725_Write) in the space below the Script Name menu.
3. Click Save Script button.
4. Click Execute Script button.

Note: At this point, the PICkit™ Serial transmits the Fast Write Command to the MCP4725 device. The saved file name will appear in Users I2C Scripts column and can be reused any time by selecting the file name.

5. The device provides analog output voltage (V_{OUT}) at the V_{OUT} terminal on the MCP4725 PICtail™ Plus Daughter Board.
6. V_{OUT} can be monitored by using a voltmeter.

Note: When you click on the “Execute Script” menu, the “Busy” LED on the PICkit Serial Analyzer will momentarily turn on and then turn off. If the LED remains ON, a communications problem has occurred. Remove the PICkit Serial Analyzer from the personal computer and recheck the parameter value in the order of the parameters under the Script Detail column. Try again until the “Busy” LED goes OFF after executing the write command.
1.4.2.3 CREATING SCRIPT FILE TO PROGRAM DAC REGISTER AND EEPROM

1. Get a new script file by selecting the `WriteAddrA8` from the “Example I2C Scripts” column.
2. Modify the Script Detail column as shown below:

<table>
<thead>
<tr>
<th>Script Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>I2CSTART</td>
</tr>
<tr>
<td>I2CWRTBYT</td>
</tr>
<tr>
<td>04</td>
</tr>
<tr>
<td>C0</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>00</td>
</tr>
<tr>
<td>I2CSTOP</td>
</tr>
</tbody>
</table>

Now the device will output $V_{OUT} = \frac{V_{DD} \cdot Dn}{4096} = \frac{5V \cdot 800(\text{hex})}{4096} = 2.5V$

3. Type in the script name (i.e., `MCP4725_EEWrite`) in the space below the Script Name menu.
4. Click the Execute Script button.
1.4.3 Verifying the EEPROM Data

One of the important features of the MCP4725 device is non-volatile memory. When the device is first powered up, it outputs an analog voltage corresponding to the data in the EEPROM. The user can confirm this feature using the following procedures:

1. Program the EEPROM memory. Refer to Section 1.4.2.2 “Saving the Script File and Programming DAC Register (Fast Mode)”.
2. Remove power (V_DD) from the MCP4725 PICtail™ Plus Daughter Board, or remove the daughter board from the Explorer 16 Development Board.
3. Connect power (V_DD) to the MCP4725 device.
4. You can confirm the V_OUT voltage by using a digital multimeter.

1.4.4 Reading the DAC Register Data using the PICkit™ Serial Analyzer

You can read back the DAC code stored in the DAC register with the following steps:

1. Create a read command script file name as shown below and execute it.
2. The results (DAC code) will appear on the PICkit™ Serial Transactions page.
1.4.4.1 READING BOTH THE DAC REGISTER AND EEPROM DATA:

The following script file can read both DAC input register and EEPROM.

1. Modify the script file as shown below and save it. Click on **Execute Script** button.
2. The results (DAC code and EEPROM data) will appear on the PICkit™ Serial Transactions page.

Script Builder

Example I2C Scripts

- ReadAddrA8
- WriteAddrA8
- WriteBlockAddrA8
- ReadBlockAddrA8

Script Detail

- I2CSTART
- I2CWRTBYTE
- 01
- 00
- I2CTORBYTNLB
- 00
- I2CSTOP

Transactions

6:41:13 PM Sent script from Script Builder page, 11 bytes:

```
[S_] [W_] [04] [C0] [60] [60] [00] [P_]
```

6:41:27 PM Sent script from Script Builder page, 10 bytes:

```
[S_] [W_] [01] [C1] [03] [F0] [00] [P_]
```

Written Data using a Write Command

Register Data

EEPROM Data

Reading Data using a Read Command
1.5 EXAMPLES OF THE MCP4725 PROGRAMMING USING THE PICKIT™ SERIAL ANALYZER

FIGURE 1-9: MCP4725 Device Address Bytes.

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>A2</th>
<th>A1</th>
<th>A0</th>
<th>R/W</th>
</tr>
</thead>
</table>

Device Code
Address Byte

* **Address Byte:** A2 = A1 = 0 for Default Samples
 A0 = 0 if A0 pin is Grounded
 = 1 if A0 pin is tied to Vdd

Example:

Write Mode: 0XC0 for (A2 = A1 = A0)
0XC2 for (A2 = A1 = 0, A0 = Tied to VDD)

Read Mode: 0XC1 for (A2 = A1 = A0)
0XC3 for (A2 = A1 = 0, A0 = Tied to VDD)

DAC Output
\[DAC \text{ Output} = \frac{V_{REF} \times D_n}{4096} = \frac{5V \times 2^{11}}{4096} = 2.5V \]

FIGURE 1-10: Fast Mode Write Command for \(V_{OUT} = 2.5V \) when \(V_{REF} = 5V \).
FIGURE 1-11: Write Command for EEPROM and DAC Register for $V_{OUT} = V_{DD}/2$.

\[
DAC \text{ Output} = \frac{V_{REF} \times D_n}{4096} = \frac{5V \times 2^{11}}{4096} = 2.5V
\]
Appendix A. Schematic and Layouts

A.1 INTRODUCTION

This appendix contains the following schematics and layouts for the MCP4725 PICtail™ Plus Daughter Board:

- Board – Schematic
- Board – Top Layer
- Board – Top Metal Layer
- Board – Bottom Layer
A.4 BOARD – TOP METAL LAYER

MCP4725 PICTail™ Plus Daughter Board

- SDA1
- VSS
- SCL1
- VSS
- Vout
- VDD1
- JP1
- J2
- R1
- R4
- R2
- C1
- C2
- JP4
- R5
- R3
- U1
- AVDD
- VSS
- J3
Appendix B. Bill Of Materials (BOM)

<table>
<thead>
<tr>
<th>Qty</th>
<th>Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1</td>
<td>CAP .1UF 16V CERAMIC X7R 0603</td>
<td>Panasonic - ECG</td>
<td>ECJ-1VB1C104K</td>
</tr>
<tr>
<td>1</td>
<td>C2</td>
<td>CAP 1.0UF 16V CERAMIC X5R 0603</td>
<td>Panasonic - ECG</td>
<td>ECJ-1VB1C105K</td>
</tr>
<tr>
<td>1</td>
<td>J2</td>
<td>DO NOT POPULATE CONN HEADER 6POS .100 VERT TIN</td>
<td>Molex/Waldom Electronics Corp</td>
<td>22-28-4060</td>
</tr>
<tr>
<td>1</td>
<td>JMP1</td>
<td>CONN HEADER 3POS .100" STR TIN</td>
<td>Molex/Waldom Electronics Corp</td>
<td>90120-0123</td>
</tr>
<tr>
<td>3</td>
<td>JMP1, JP1, JP2</td>
<td>SHUNT LP W/HANDLE 2 POS 30AU Bag shunts with kit</td>
<td>Tyco Electronics/Amp</td>
<td>881545-2</td>
</tr>
<tr>
<td>2</td>
<td>JP1, JP2</td>
<td>CONN HEADER 2POS .100 VERT TIN</td>
<td>Molex/Waldom Electronics</td>
<td>22-03-2021</td>
</tr>
<tr>
<td>1</td>
<td>PCB</td>
<td>RoHS Compliant Bare PCB, MCP4725 PICtail Plus Daughter Board</td>
<td>—</td>
<td>104-00186</td>
</tr>
<tr>
<td>1</td>
<td>R1</td>
<td>RES 100 OHM 1/10W 1% 0603 SMD</td>
<td>Panasonic - ECG</td>
<td>ERJ-3EKF1000V</td>
</tr>
<tr>
<td>2</td>
<td>R2, R3</td>
<td>RES 10.0K OHM 1/10W 1% 0603 SMD</td>
<td>Panasonic - ECG</td>
<td>ERJ-3EKF1002V</td>
</tr>
<tr>
<td>4</td>
<td>R4, R5, R6, R7</td>
<td>RES 0.0 OHM 1/10W 5% 0603 SMD</td>
<td>Yageo Corporation</td>
<td>RC0603JR-070RL</td>
</tr>
<tr>
<td>1</td>
<td>SP1</td>
<td>BUZZER PIEZO 3KHZ 24MM PC MT</td>
<td>Mallory Sonalert Products Inc</td>
<td>PK-21N30PQ</td>
</tr>
<tr>
<td>5</td>
<td>TP1, TP2, T3 TP4, TP5</td>
<td>PC TEST POINT COMPACT SMT</td>
<td>Keystone Electronics</td>
<td>5016</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>12-Bit Digital-to-Analog Converter with EEPROM Memory in SOT-23-6</td>
<td>Microchip Technology Inc</td>
<td>MCP4725A0T-E/CH</td>
</tr>
<tr>
<td>1</td>
<td>VR1</td>
<td>POT 5.0K OHM THUMBWHEEL CERM ST</td>
<td>Bourns Inc.</td>
<td>3352T-1-502</td>
</tr>
</tbody>
</table>

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.