Document Number: 93363 Revision: 31-May-11

Vishay Semiconductors

GA400TD60S

Dual INT-A-PAK Low Profile "Half-Bridge" (Standard Speed IGBT), 400 A

- Generation 4 IGBT technology
- Standard: Optimized for hard switching speed DC to 1 kHz COMPLIANT
- Low V_{CE(on)}
- Square RBSOA
- HEXFRED[®] antiparallel diode with ultrasoft reverse recovery characteristics
- Industry standard package
- Al₂O₃ DBC
- UL approved file E78996
- Compliant to RoHS Directive 2002/95/EC
- Designed for industrial level

BENEFITS

- Increased operating efficiency
- Performance optimized as output inverter stage for TIG welding machines
- Direct mounting on heatsink
- · Very low junction to case thermal resistance

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS		
Collector to emitter voltage	V _{CES}		600	V		
Continuous collector current	Ic ⁽¹⁾	$T_{\rm C} = 25 \ ^{\circ}{\rm C}$	750			
	IC ()	$T_{\rm C} = 80 \ ^{\circ}{\rm C}$	525			
Pulsed collector current	I _{CM}		1000	А		
Clamped inductive load current	I _{LM}		1000	A		
Diode continuous forward current		$T_{\rm C} = 25 \ ^{\circ}{\rm C}$	219			
	I _F	$T_{\rm C} = 80 \ ^{\circ}{\rm C}$	145			
Gate to emitter voltage	V _{GE}		± 20	V		
Maximum power dissipation (IGBT)	Р	$T_{\rm C} = 25 \ ^{\circ}{\rm C}$	1563	w		
	PD	$T_{\rm C} = 80 \ ^{\circ}{\rm C}$	875	vv		
RMS isolation voltage	V _{ISOL}	Any terminal to case (V _{RMS} t = 1 s, T _J = 25 °C)	3500	V		

Note

⁽¹⁾ Maximum continuous collector current must be limited to 500 A to do not exceed the maximum temperature of terminals

Dual INT-A-PAK Low Profile

600 V

750 A

1.24 V

PRODUCT SUMMARY

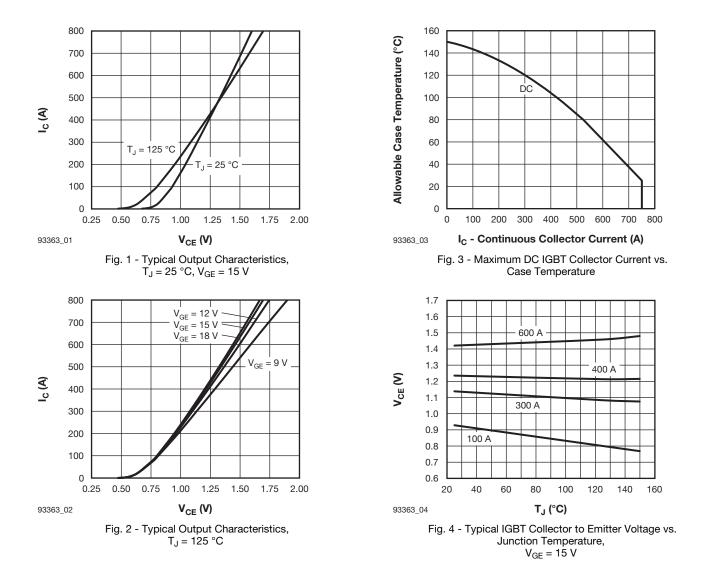
VCES

 I_C DC at T_C = 25 °C

V_{CE(on)} (typical) at 400 A, 25 °C

Vishay Semiconductors Dual INT-A-PAK Low Profile "Half-Bridge" (Standard Speed IGBT), 400 A

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	V _{BR(CES)}	$V_{GE} = 0 \text{ V}, \text{ I}_{C} = 500 \mu\text{A}$	600	-	-	
	V _{CE(on)}	$V_{GE} = 15 \text{ V}, \text{ I}_{C} = 300 \text{ A}$	-	1.14	1.35	V
Collector to emitter voltage		$V_{GE} = 15 \text{ V}, \text{ I}_{C} = 400 \text{ A}$	-	1.24	1.52	
		V_{GE} = 15 V, I_C = 300 A, T_J = 125 $^\circ C$	-	1.08	1.29	
		V_{GE} = 15 V, I_C = 400 A, T_J = 125 °C	-	1.21	1.5	
Gate threshold voltage	V _{GE(th)}	$V_{CE} = V_{GE}$, $I_C = 250 \ \mu A$	3.0	4.6	6.3	
Collector to emitter leakage current	I _{CES}	$V_{GE} = 0 V, V_{CE} = 600 V$	-	0.075	1	
		$V_{GE} = 0 \text{ V}, \text{ V}_{CE} = 600 \text{ V}, \text{ T}_{J} = 125 ^{\circ}\text{C}$	-	1.8	10	mA
		I _{FM} = 300 A	-	1.48	1.75	
Diode forward voltage drop	N/		1.63	1.98	N	
	V _{FM}	I _{FM} = 300 A, T _J = 125 °C	-	1.50	1.77	V
		I _{FM} = 400 A, T _J = 125 °C	-	1.70	2.04	
Gate to emitter leakage current	I _{GES}	V _{GE} = ± 20 V	-	-	± 200	nA


SWITCHING CHARACTERISTICS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Turn-on switching loss	E _{on}		-	8.5	-		
Turn-off switching loss	E _{off}	I _C = 400 A, V _{CC} = 360 V, V _{GE} = 15 V, R _g = 1.5 Ω, L = 500 μH, T _J = 25 °C	-	113	-		
Total switching loss	E _{tot}	ng = 1.0 11, 2 = 000 p. 1, 13 = 20 0	-	121.5	-		
Turn-on switching loss	Eon		-	21	-	mJ	
Turn-off switching loss	E _{off}		-	163	-		
Total switching loss	E _{tot}		-	184	-		
Turn-on delay time	t _{d(on)}	I_{C} = 400 A, V _{CC} = 360 V, V _{GE} = 15 V, R _q = 1.5 Ω, L = 500 µH, T _J = 125 °C	-	532	-		
Rise time	t _r	ng = 1.0 11, 2 = 000 p.n, 1j = 120 0	-	377	-		
Turn-off delay time	t _{d(off)}		-	496	-	ns	
Fall time	t _f		-	1303	-		
Reverse bias safe operating area	RBSOA	$ \begin{array}{l} T_J = 150 \ ^\circ C, \ I_C = 1000 \ A, \ V_{CC} = 400 \ V, \\ V_P = 600 \ V, \ R_g = 22 \ \Omega, \ V_{GE} = 15 \ V \ to \ 0 \ V, \\ L = 500 \ \mu H \end{array} $ Fullsquare					
Diode reverse recovery time	t _{rr}		-	150	179	ns	
Diode peak reverse current	I _{rr}	I _F = 300 A, dI _F /dt = 500 A/μs, V _{CC} = 400 V, T _J = 25 °C	-	43	59	А	
Diode recovery charge	Q _{rr}	V() = 400 V, 19 = 20 C	-	3.9	6.3	μC	
Diode reverse recovery time	t _{rr}		-	236	265	ns	
Diode peak reverse current	I _{rr}	l _F = 300 A, dl _F /dt = 500 A/μs, V _{CC} = 400 V, T _L = 125 °C	-	64	80	А	
Diode recovery charge	Q _{rr}		-	8.6	11.1	μC	

Dual INT-A-PAK Low Profile "Half-Bridge" (Standard Speed IGBT), 400 A

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNITS	
Operating junction and storage temperature range		T _J , T _{Stg}	- 40	-	150	°C	
lumetion to one on lon		D	-	-	0.08		
Junction to case per leg	Diode	R _{thJC}	-	-	0.4	°C/W	
Case to sink per module		R _{thCS}	-	0.05	-		
Mounting torque	case to heatsink: M6 screw		4	-	6	Nim	
Mounting torque	ase to terminal 1, 2, 3: M5 screw		2	-	4	Nm	
Weight			-	270	-	g	

Vishay Semiconductors Dual INT-A-PAK Low Profile "Half-Bridge" (Standard Speed IGBT), 400 A

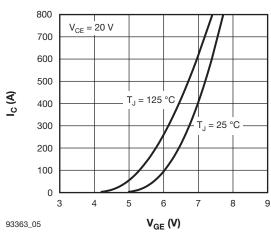
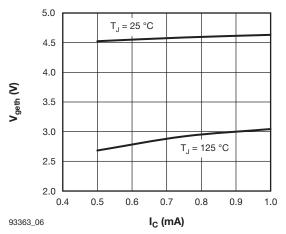
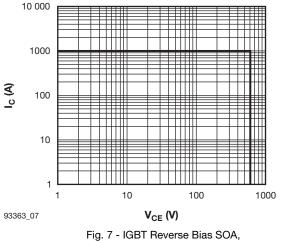
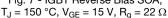





Fig. 5 - Typical IGBT Transfer Characteristics

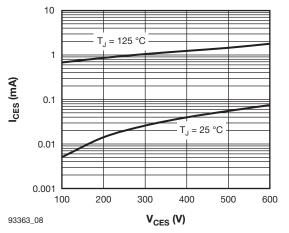
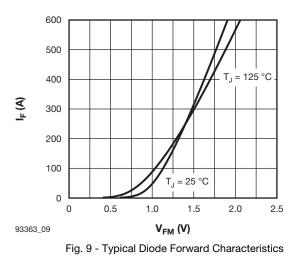
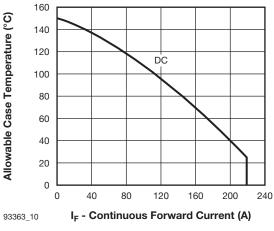
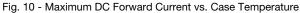
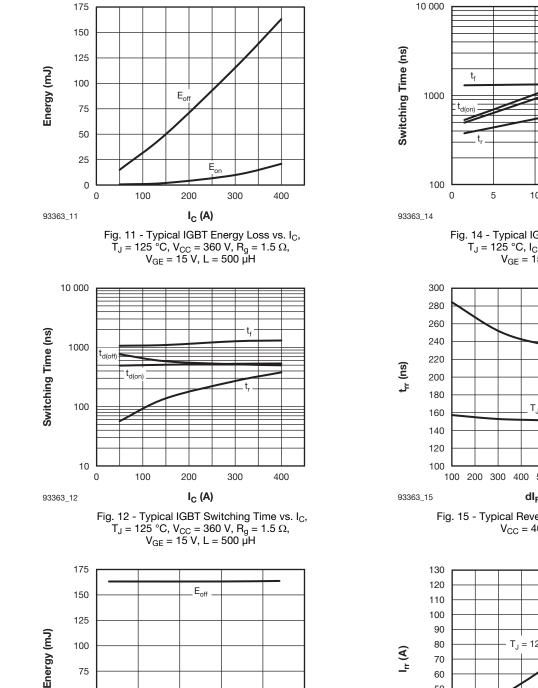
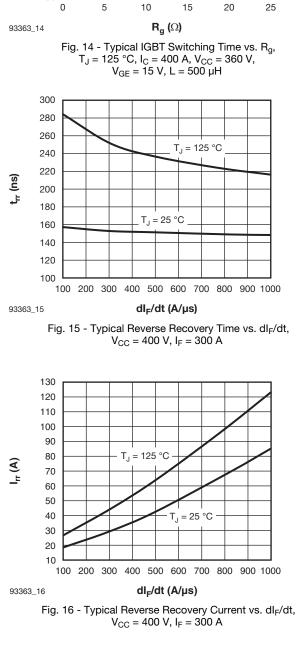





Fig. 8 - Typical IGBT Zero Gate Voltage Collector Current





Document Number: 93363 Revision: 31-May-11

Dual INT-A-PAK Low Profile "Half-Bridge" Vishay Semiconductors (Standard Speed IGBT), 400 A

Document Number: 93363 Revision: 31-May-11

75

50

25

0

93363_13

0

E_{on}

R_g (Ω)

Fig. 13 - Typical IGBT Energy Loss vs. Rg,

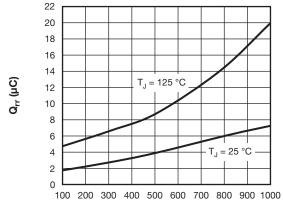
 $T_J = 125 \text{ °C}, I_C = 400 \text{ A}, V_{CC} = 360 \text{ V}, V_{GE} = 15 \text{ V}, L = 500 \,\mu\text{H}$

15

20

25

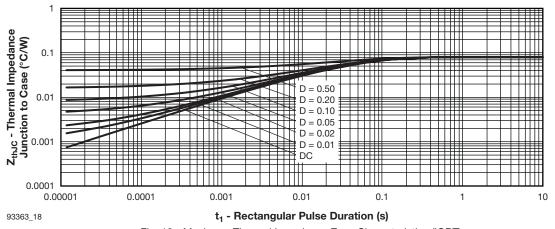
10

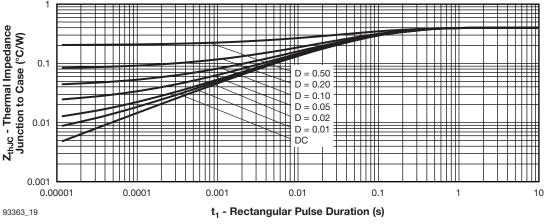

5

For technical questions, contact: indmodules@vishay.com

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors Dual INT-A-PAK Low Profile "Half-Bridge" (Standard Speed IGBT), 400 A




dl_F/dt (A/µs)

93363_17

Fig. 17 - Typical Reverse Recovery Charge vs. dl_F/dt, $V_{CC} = 400 \text{ V}, I_F = 300 \text{ A}$

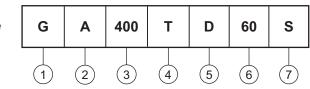
Document Number: 93363 Revision: 31-May-11

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Dual INT-A-PAK Low Profile "Half-Bridge" (Standard Speed IGBT), 400 A

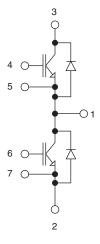
Vishay Semiconductors

ORDERING INFORMATION TABLE


Device code

1

3


4

5

- Insulated Gate Bipolar Transistor (IGBT) -
- 2 A = Generation 4 IGBT
 - Current rating (400 = 400 A)
 - Circuit configuration (T = Half-bridge)
 - Package indicator (D = Dual INT-A-PAK Low Profile) -
- 6 Voltage rating (60 = 600 V)-
- 7 Speed/type (S = Standard Speed IGBT)

CIRCUIT CONFIGURATION

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95435			

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.