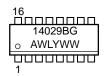
Binary/Decade Up/Down Counter

The MC14029B Binary/Decade up/down counter is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. The counter consists of type D flip-flop stages with a gating structure to provide toggle flip-flop capability. The counter can be used in either Binary or BCD operation. This complementary MOS counter finds primary use in up/down and difference counting and frequency synthesizer applications where low power dissipation and/or high noise immunity is desired. It is also useful in A/D and D/A conversion and for magnitude and sign generation.

Features

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Internally Synchronous for High Speed
- Logic Edge-Clocked Design Count Occurs on Positive Going Edge of Clock
- Asynchronous Preset Enable Operation
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Pin for Pin Replacement for CD4029B
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- This Device is Pb–Free and is RoHS Compliant


ON Semiconductor®

www.onsemi.com

SOIC-16 D SUFFIX CASE 751B

MARKING DIAGRAM

A = Assembly Location

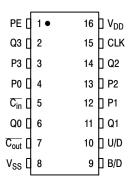
WL = Wafer Lot
 YY, Y = Year
 WW = Work Week
 G = Pb-Free Indicator

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P_{D}	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8–Second Soldering)	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

^{1.} Temperature Derating: "D/DW" Packages: -7.0 mW/°C From 65°C To 125°C

PIN ASSIGNMENT

TRUTH TABLE

Carry In	Up/Down	Preset Enable	Action
1	X	0	No Count
0	1	0	Count Up
0	0	0	Count Down
X	X	1	Preset

X = Don't Care

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14029BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
NLV14029BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging

Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

				-5	5°C		25°C		125	5°C	
Characteristic		Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage	"0" Level	V_{OL}	5.0	_	0.05	_	0	0.05	_	0.05	Vdc
$V_{in} = V_{DD}$ or 0			10	_	0.05	_	0	0.05	_	0.05	
			15	_	0.05	_	0	0.05	_	0.05	
	"1" Level	V _{OH}	5.0	4.95	_	4.95	5.0	_	4.95	-	Vdc
$V_{in} = 0 \text{ or } V_{DD}$	i Lovei	0	10	9.95	_	9.95	10	_	9.95	_	
Vin = 0 Oi VDD			15	14.95	_	14.95	15	_	14.95	_	
Input Voltage	"0" Level	V _{IL}									Vdc
$(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$			5.0	_	1.5	_	2.25	1.5	_	1.5	
$(V_0 = 9.0 \text{ or } 1.0 \text{ Vdc})$			10	_	3.0	_	4.50	3.0	_	3.0	
$(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$			15	_	4.0	_	6.75	4.0	_	4.0	
	"1" Level	V _{IH}									Vdc
$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$. 2010.		5.0	3.5	_	3.5	2.75	_	3.5	_	
$(V_0 = 1.0 \text{ or } 9.0 \text{ Vdc})$			10	7.0	_	7.0	5.50	_	7.0	_	
$(V_0 = 1.5 \text{ or } 13.5 \text{ Vdc})$			15	11	_	11	8.25	_	11	_	
Output Drive Current		I _{OH}									mAdc
(V _{OH} = 2.5 Vdc)	Source	011	5.0	-3.0	_	-2.4	-4.2	_	-1.7	_	
$(V_{OH} = 4.6 \text{ Vdc})$			5.0	-0.64	_	-0.51	-0.88	_	-0.36	_	
$(V_{OH} = 9.5 \text{ Vdc})$			10	-1.6	_	-1.3	-2.25	_	-0.9	_	
$(V_{OH} = 13.5 \text{ Vdc})$			15	-4.2	_	-3.4	-8.8	-	-2.4	_	
(V _{OL} = 0.4 Vdc)	Sink	I _{OL}	5.0	0.64	_	0.51	0.88	_	0.36	_	mAdc
$(V_{OL} = 0.5 \text{ Vdc})$			10	1.6	_	1.3	2.25	-	0.9	_	
$(V_{OL} = 1.5 \text{ Vdc})$			15	4.2	_	3.4	8.8	_	2.4	_	
Input Current		I _{in}	15	_	±0.1	_	±0.00001	±0.1	_	±1.0	μAdc
Input Capacitance, (V _{in} = 0)		C _{in}	-	_	_	-	5.0	7.5	-	_	pF
Quiescent Current		I _{DD}	5.0	_	5.0	_	0.005	5.0	_	150	μAdc
(Per Package)			10	_	10	_	0.010	10	_	300	1
- '			15	_	20	_	0.015	20	_	600	
Total Supply Current (Notes 3 & 4)		Ι _Τ	5.0		•	I _T = (0	.58 μA/kHz)	f + I _{DD}	•		μAdc
(Dynamic plus Quiescent, Per Package)			10				.20 μA/kHz)				
(C _L = 50 pF on all outputs, all buffers switching)			15			$I_T = (1$.70 μA/kHz)	f + I _{DD}			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

3. The formulas given are for the typical characteristics only at 25°C.

4. To calculate total supply current at loads other than 50 pF:

I_T(C_L) = I_T(50 pF) + (C_L – 50) Vfk

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ VfI}$$

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.001.

SWITCHING CHARACTERISTICS (Note 5) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$)

				All Types			
Characteristic	Symbol	V _{DD}	Min	Typ (Note 6)	Max	Unit	
Output Rise and Fall Time $t_{TLH}, t_{THL} = (1.5 \text{ ns/pF}) \text{ C}_L + 25 \text{ ns} \\ t_{TLH}, t_{THL} = (0.75 \text{ ns/pF}) \text{ C}_L + 12.5 \text{ ns} \\ t_{TLH}, t_{THL} = (0.55 \text{ ns/pF}) \text{ C}_L + 9.5 \text{ ns} \\ \end{cases}$	t _{TLH} , t _{THL}	5.0 10 15	- - -	100 50 40	200 100 80	ns	
Propagation Delay Time Clk to Q $t_{PLH},t_{PHL}=(1.7\;\text{ns/pF})\;C_L+230\;\text{ns}$ $t_{PLH},t_{PHL}=(0.66\;\text{ns/pF})\;C_L+97\;\text{ns}$ $t_{PLH},t_{PHL}=(0.5\;\text{ns/pF})\;C_L+75\;\text{ns}$	t _{PLH} , t _{PHL}	5.0 10 15	- - -	200 100 90	400 200 180	ns	
Clk to $\overline{C_{out}}$ t_{PLH} , t_{PHL} = (1.7 ns/pF) C_L + 230 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 97 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 75 ns	t _{PLH} , t _{PHL}	5.0 10 15	- - -	250 130 85	500 260 190	ns	
$\overline{C_{in}}$ to $\overline{C_{out}}$ t_{PLH} , t_{PHL} = (1.7 ns/pF) C_L + 95 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 47 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 35 ns	t _{PLH} , t _{PHL}	5.0 10 15		175 50 50	360 120 100	ns	
PE to Q t_{PLH} , t_{PHL} = (1.7 ns/pF) C_L + 230 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 97 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 75 ns	t _{PLH} , t _{PHL}	5.0 10 15	- - -	235 100 80	470 200 160	ns	
PE to $\overline{C_{out}}$ t_{PLH} , t_{PHL} = (1. 7 ns/pF) C_L + 465 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 192 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 125 ns	t _{PLH} , t _{PHL}	5.0 10 15	- - -	320 145 105	640 290 210	ns	
Clock Pulse Width	t _{W(cl)}	5.0 10 15	180 80 60	90 40 30	- - -	ns	
Clock Pulse Frequency	f _{cl}	5.0 10 15	- - -	4.0 8.0 10	2.0 4.0 5.0	MHz	
Preset Removal Time The Preset Signal must be low prior to a positive–going transition of the clock.	t _{rem}	5.0 10 15	160 80 60	80 40 30	- - -	ns	
Clock Rise and Fall Time	$\begin{matrix}t_{r(\text{cl})}\\t_{f(\text{cl})}\end{matrix}$	5.0 10 1 5	- - -	- - -	15 5 4	μs	
Carry In Setup Time	t _{su}	5.0 10 15	150 60 40	75 30 20	- - -	ns	
Up/Down Setup Time		5.0 10 15	340 140 100	170 70 50	- - -	ns	
Binary/Decade Setup Time		5.0 10 15	320 140 100	160 70 50	- - -	ns	
Preset Enable Pulse Width	t _W	5.0 10 15	130 70 50	65 35 25	- - -	ns	

^{5.} The formulas given are for the typical characteristics only at 25°C.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

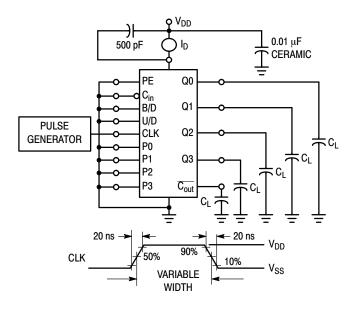


Figure 1. Power Dissipation Test Circuit and Waveform

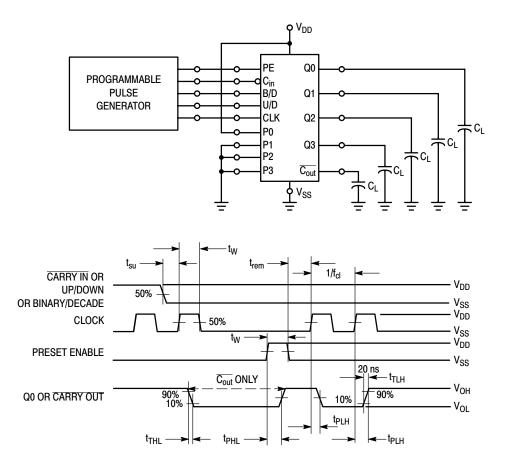
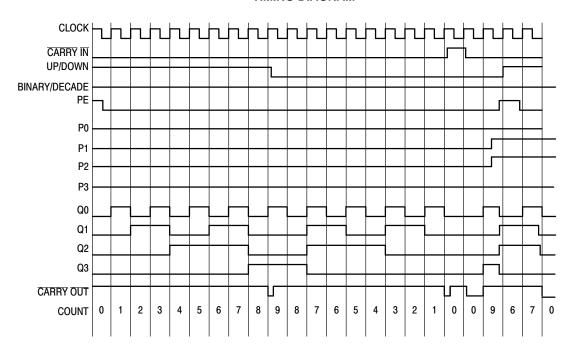
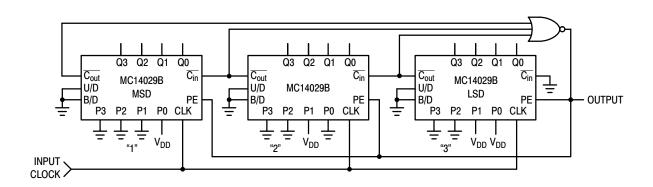




Figure 2. Switching Time Test Circuit and Waveforms

TIMING DIAGRAM

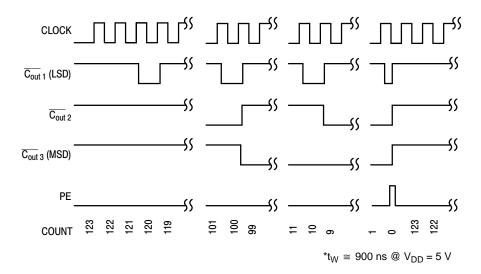
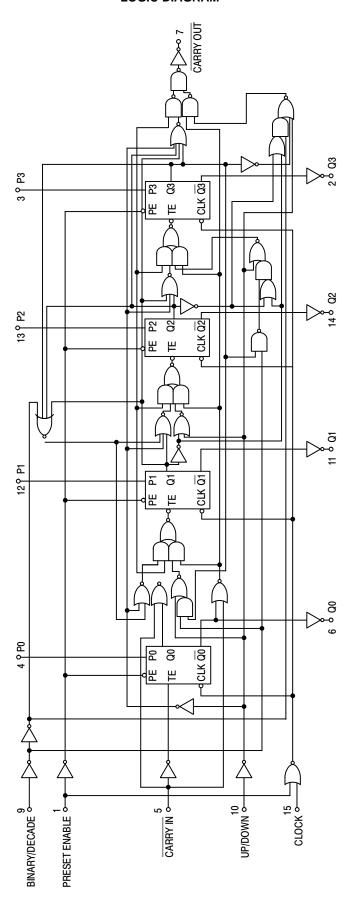
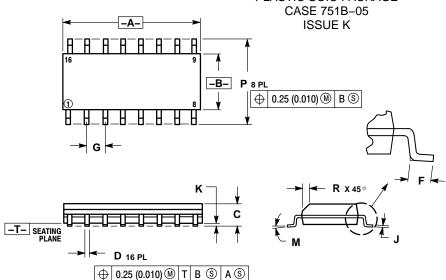
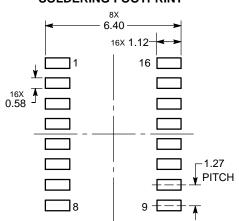



Figure 3. Divide by N BCD Down Counter and Timing Diagram (Shown for N = 123)


LOGIC DIAGRAM

PACKAGE DIMENSIONS

SOIC-16 **D SUFFIX**


PLASTIC SOIC PACKAGE CASE 751B-05

- 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050	BSC	
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative