

ABOUT METRINCH

The Difference that Counts

A nut or a bolt has flats and corners. The corners are more easily damaged and do not offer the optimum grip for a tool. In developing the Metrinch tool system Jozef Ruzicka had the aim to design sockets and spanners, which would not only have longer effective life, but would also ensure minimal damage to the fasteners on which they are used. The patented Metrinch Wall Drive profile drives only on the flats and not on the corners.

The dimensions of Metrinch sockets and

spanners have been precisely calculated, so that a single Metrinch tool will operate on both metric and inch series fasteners. For example, with a spanner 19mm it is possible not only to tighten or undo a metric not or bolt, but also the inch bolts 3/4" AF, 3/8" BSW and 7/16" BSF. Even when such bolts have become worn. damaged or completely rounded by abrasion. A further major advantage in terms of application is that the Metrinch Wall Drive profile can be used on open-end spanners as well as on sockets and ringspanners. Metrinch open-end spanners always provide a 4-point grip instead of the 2-point grip characterizing the traditional profile.

Torque Loading

The Metrinch Wall Drive Profile was designed to provide a greater area of force application, compared with that applied by conventional tools. This profile, because of the buttress effect of its load bearing lugs, does not transmit the extreme peaks found when a tool with a wedge shaped profile is used. In distributing the torque load to the fastener trough the flats, the Metrinch tool does not only achieve greater force, but also lowers the possibility of distortion to the nut or bolt head.

Having a thin wall is an advantage in every socket. We can afford to provide such a wall, because with Metrinch spanners and sockets the force is

absorbed where the wall has its greatest strength. Metrinch sockets are capable of exceeding the tightening torques specified in the DIN standard by 70 to 100%, depending on the socket size.

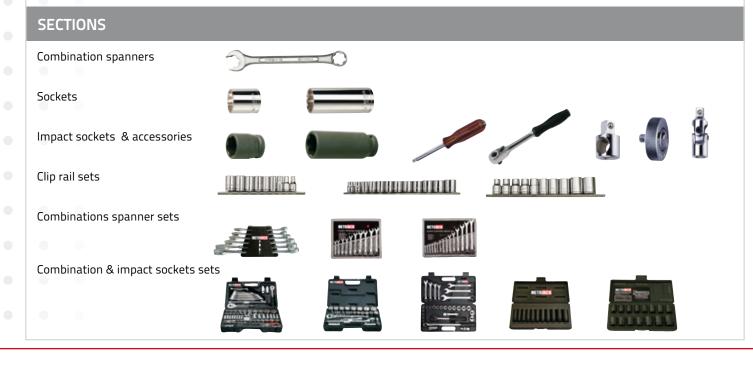
Quality & Safety

The Metrinch Wall Drive profile is not the only feature we rely on. The steel our tools are made of, forms another important aspect. To achieve the best, it is imperative to use a steel alloy this being Chrome Vanadium 46CrV4, which provides a margin of safety, particularly in conditions involving extreme stresses. We also attach great value to product finish, all our tools are chrome-plated and polished. This is not just for visual reasons, but because it provides the most effective protection against rust, even in extreme conditions. We take the principles of on-the-job safety and accident prevention very seriously. The patented Metrinch Wall Drive profile has been precisely calculated to ensure a secure and even application of torque to the flats of a nut or bolt and not to the corners. In most instances the greater the

force applied to a Metrinch tool the more positive the grip becomes thus minimising the risk of injury to an operator which may be caused through a socket or a spanner slipping off a fastener. Laboratory test results prove that torque loadings of 1.5 times greater than those possible with a conventional socket can be achieved using a Metrinch tool.

Quality Assurance and Guarantee

All Metrinch tools are forged from high quality Chrome Vanadium Alloy Steel, and meet with the torque and hardness requirements necessary with the relevant international standards, DIN, U.S. Federal Specification and British Standard. Our factory has an exacting quality assurance program, monitored by a highly trained


technical staff using the most up to date laboratory equipment. Constant inspections are made during the stages in the production

process, and we make a 100% check of all components at the time of packing to make sure that our high standards are maintained. Metrinch tools are used all over the world, and carry an unconditional worldwide free replacement guarantee if for any reason a tool happens to fail.

Award Winner

Discerning judges in Germany granted the Metrinch tool system the coveted award for innovation in design at Munich in 1991.

SOCKETS & SPANNERS

APPLICATIONS OF METRINCH SOCKETS & COMBINATION SPANNERS

Metric (MM)	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Inch (SAE AF)	5⁄32	3⁄16	1⁄4	% 2	5⁄16	11/32	3⁄8	7⁄16	15/32	1⁄2	%16	¹⁹ ⁄32	5⁄8	11⁄16	²³ ⁄32	3⁄4	²⁵ /32	13/16	7⁄8	²⁹ /32	15/16	1	1 1⁄16	13⁄32	11⁄8	15⁄32	1¾6	17/32	1¼
BSW						1⁄8		3⁄16			1⁄4		5⁄16			3⁄8		7⁄16		1⁄2			%16			5⁄8			11⁄16
BS BSF								1⁄4			5⁄16		3⁄8			7⁄16		1⁄2		%16			5⁄8			1 1⁄16			3⁄4
BA		6BA	4BA	3BA	2BA		0BA																						

COMBINATION SPANNERS

5		(17mmä11/16		METR	INCH	T	$\mathbf{)}$									
Art. Nr.	мм	INCH	Art. Nr.	мм	INCH	Art. Nr.	мм	INCH	Art. Nr.	мм	INCH	Art. Nr.	мм	INCH	Art. Nr.	мм	INCH
MET-1108	8	5⁄16	MET-1111	11	7/16	MET-1114	14	%16	MET-1117	17	11/16	MET-1120	20/21	¹³ ⁄16	MET-1126	26/27	1 1⁄16
MET-1109	9	11/32	MET-1112	12	15/32	MET-1115	15	¹⁹ ⁄32	MET-1118	18	²³ ⁄32	MET-1122	22/23	7⁄8	MET-1129	29/30	13/16
			MET-1113		1/2	MET-1116	16	5⁄8	MET-1119	19	3⁄4	MET-1124		15/16	MET-1132		11⁄4

SOCKETS

1/4″			3/8″			1/2″			1/4" D	еер		3/8" D	еер		1/2" Deep		
Art. Nr.	мм	INCH	Art. Nr.	мм	INCH	Art. Nr.	мм	INCH	Art. Nr.	мм	INCH	Art. Nr.	мм	INCH	Art. Nr.	мм	INCH
MET-1404	4	5⁄32	MET-1308	8	5⁄16	MET-1210	10	3⁄8	MET-1454	4	5⁄32	MET-1350	10	3⁄8	MET-1250	10	3⁄8
MET-1405	5	3⁄16	MET-1309	9	11/32	MET-1211	11	7⁄16	MET-1455	5	3⁄16	MET-1351	11	7⁄16	MET-1251	11	7⁄16
MET-1406	6	1⁄4	MET-1310	10	3⁄8	MET-1212	12	15/32	MET-1456	6	1⁄4	MET-1352	12	15/32	MET-1252	12	15/32
MET-1407	7	%32	MET-1311	11	7⁄16	MET-1213	13	1⁄2	MET-1457	7	⁹ ⁄32	MET-1353	13	1⁄2	MET-1253	13	1⁄2
MET-1408	8	5⁄16	MET-1312	12	15/32	MET-1214	14	%16	MET-1458	8	5⁄16	MET-1354	14	%16	MET-1254	14	%16
MET-1409	9	11/32	MET-1313	13	1⁄2	MET-1215	15	¹⁹ ⁄32	MET-1459	9	¹¹ ⁄ ₃₂	MET-1355	15	¹⁹ ⁄32	MET-1255	15	19⁄32
MET-1410	10	3⁄8	MET-1314	14	%16	MET-1216	16	5⁄8	MET-1460	10	3⁄/8	MET-1356	16	5⁄8	MET-1256	16	5⁄8
MET-1411	11	7⁄16	MET-1315	15	19/32	MET-1217	17	11/16	MET-1461	11	7⁄16	MET-1357	17	11/16	MET-1257	17	11/16
MET-1412	12	15/32	MET-1316	16	5⁄8	MET-1218	18	²³ /32	MET-1462	12	15/32	MET-1358	18	²³ ⁄32	MET-1258	18	²³ / ₃₂
MET-1413	13	1⁄2	MET-1317	17	11/16	MET-1219	19	3⁄4	MET-1463	13	1⁄2	MET-1359	19	3⁄4	MET-1259	19	3⁄4
			MET-1318	18	²³ / ₃₂	MET-1220	20/21	¹³ ⁄16				MET-1360	20/21	13/16	MET-1260	20/21	13/16
			MET-1319	19	3⁄4	MET-1222	22	7⁄8		T		MET-1362	22	7∕8	MET-1262	22	7⁄8
			MET-1320	20/21	13/16	MET-1223	23	²⁹ ⁄32							MET-1263	23	²⁹ ⁄32
			MET-1322	22	7⁄8	MET-1224	24	15/16							MET-1264	24	15/16
1011	7 8					MET-1225	25	1							MET-1265	25	1
	-1					MET-1226	26/27	1 1⁄16							MET-1267	26/27	11⁄16
						MET-1228	28	11⁄8							MET-1268	28	11⁄8
						MET-1229	29/30	1¾16							MET-1270	29/30	1¾16
In Tret	ndh					MET-1231	31/32	1¼	den Theory	nd					MET-1272	31/32	1¼