

PCD C Compiler Manual

PCD

March 2015

ALL RIGHTS RESERVED.

Copyright Custom Computer Services, Inc. 2015

ii

Table of Contents
Overview .. 1

C Compiler.. 1
PCD .. 1
Technical Support ... 1
Directories .. 2
File Formats.. 2
Invoking the Command Line Compiler .. 3
PCW Overview ... 5
Menu .. 6
Editor Tabs ... 6
Slide Out Windows ... 6
Editor .. 7
Debugging Windows ... 7
Status Bar ... 8
Output Messages ... 8

Program Syntax ... 9
Overall Structure ... 9
Comment .. 9
Trigraph Sequences ... 10
Multiple Project Files .. 10
Multiple Compilation Units .. 11
Full Example Program .. 11

Statements ... 13
Statements ... 13
if .. 13
while ... 14
do-while .. 14
for ... 15
switch ... 15
return .. 16
goto .. 16
label .. 16
break .. 16
continue .. 17
expr .. 17
; .. 17
stmt ... 18

Expressions ... 19
Constants ... 19
Identifiers .. 20
Operators.. 20
Operator Precedence ... 21

Data Definitions .. 23
Data Definitions .. 23
Type Specifiers ... 24
Type Qualifiers ... 24
Enumerated Types ... 25
Structures and Unions .. 26
typedef .. 27
Non-RAM Data Definitions ... 27
Using Program Memory for Data .. 28
Named Registers .. 30

Function Definition ... 31
Function Definition .. 31
Overloaded Functions .. 31
Reference Parameters ... 32
Default Parameters ... 32
Variable Argument Lists ... 32

Functional Overview ... 34

Table of Contents

iii

I2C .. 34
ADC .. 35
Analog Comparator .. 36
CAN Bus ... 36
Code Profile .. 40
Configuration Memory .. 41
CRC .. 41
DAC .. 42
Data Eeprom .. 43
DCI ... 43
DMA ... 44
Data Signal Modulator .. 45
Extended RAM ... 46
General Purpose I/O ... 46
Input Capture .. 47
Internal Oscillator .. 48
Interrupts .. 48
Output Compare/PWM Overview ... 49
Motor Control PWM .. 50
PMP/EPMP... 51
Program Eeprom .. 52
QEI ... 53
RS232 I/O ... 54
RTCC ... 56
RTOS ... 57
SPI .. 58
Timers .. 59
TimerA .. 60
TimerB .. 60
Voltage Reference .. 61
WDT or Watch Dog Timer .. 62
interrupt_enabled() ... 63
Stream I/O .. 63

PreProcessor ... 65
PRE-PROCESSOR DIRECTORY .. 65
__address__ ... 66
_attribute_x ... 66
#asm #endasm #asm asis .. 67
#bank_dma ... 73
#bankx .. 73
#banky .. 74
#bit .. 74
__buildcount__ ... 75
#build .. 75
#byte ... 76
#case .. 77
date .. 77
#define .. 77
definedinc ... 78
#device ... 79
device ... 81
#if expr #else #elif #endif .. 81
#error .. 82
#export (options) ... 82
__file__ ... 83
__filename__ .. 84
#fill_rom .. 84
#fuses ... 84
#hexcomment ... 85
#id ... 85
#if expr #else #elif #endif .. 86
#ifdef #ifndef #else #elif #endif ... 87

PCD_March 2015-1

iv

#ignore_warnings ... 87
#import (options) ... 88
#include .. 89
#inline ... 89
#int_xxxx .. 90
#INT_DEFAULT ... 92
__line__ .. 93
#list ... 93
#line .. 94
#locate .. 94
#module .. 95
#nolist ... 95
#ocs .. 96
#opt .. 96
#org .. 96
#pin_select ... 97
__pcd__ .. 100
#pragma ... 101
#profile .. 101
#recursive ... 102
#reserve ... 102
#rom ... 103
#separate ... 103
#serialize .. 104
#task ... 105
__time__ ... 106
#type ... 106
#undef .. 108
_unicode ... 108
#use capture ... 109
#use delay .. 110
#use dynamic_memory .. 110
#use fast_io .. 111
#use fixed_io .. 111
#use i2c .. 111
#use profile()... 113
#use pwm ... 113
#use rs232 .. 114
#use rtos ... 117
#use spi .. 118
#use standard_io .. 119
#use timer ... 119
#use touchpad .. 120
#warning ... 121
#word .. 122
#zero_ram .. 122

Built-in Functions .. 123
BUILT-IN FUNCTIONS ... 123
abs() .. 127
sin() cos() tan() asin() acos() atan() sinh() cosh() tanh() atan2() ... 128
adc_done() adc_done2() .. 129
assert() .. 129
atoe .. 130
atof() atof48() atof64() ... 130
strtof48() ... 130
pin_select() ... 131
atoi() atol() atoi32() .. 132
atol32() atoi48() atoi64() ... 132
bit_clear()... 132
bit_first() .. 133
bit_last() ... 133
bit_set() ... 134

Table of Contents

v

bit_test() .. 134
bsearch() ... 135
calloc() ... 136
ceil() ... 136
clear_interrupt() ... 137
cog_status() ... 137
cog_restart() .. 138
crc_calc() ... 138
crc_calc8() ... 138
crc_calc16() ... 138
crc_calc32() ... 138
crc_init(mode) ... 139
cwg_status() .. 139
cwg_restart() .. 140
dac_write() ... 140
dci_data_received() ... 141
dci_read() .. 141
dci_start()... 142
dci_transmit_ready() .. 143
dci_write() .. 143
delay_cycles() .. 144
delay_ms() ... 144
delay_us() .. 145
disable_interrupts() .. 146
div() ldiv() .. 147
dma_start() .. 147
dma_status().. 148
enable_interrupts() .. 148
erase_program_memory .. 149
exp() .. 150
ext_int_edge() .. 150
fabs() ... 151
getc() getch() getchar() fgetc() .. 151
gets() fgets() ... 152
floor() ... 152
fmod() .. 153
printf() fprintf() ... 153
putc() putchar() fputc() ... 155
puts() fputs() ... 155
free() .. 156
frexp() .. 156
scanf() ... 157
printf() .. 157
get_capture() ... 159
get_capture() ... 159
get_capture_ccp1() get_capture_ccp2() get_capture_ccp3() get_capture_ccp4() get_capture_ccp5(
) .. 160
get_capture32_ccp1() get_capture32_ccp2() get_capture32_ccp3() get_capture32_ccp4()
get_capture32_ccp5() .. 161
get_capture_event() ... 162
get_capture_time() ... 162
get_capture32() .. 163
get_motor_pwm_count() .. 163
get_nco_accumulator() .. 164
get_nco_inc_value() .. 164
get_ticks() .. 164
get_timerA() ... 165
get_timerB() ... 165
get_timerx() ... 166
get_timerxy() .. 166
get_timer_ccp1() get_timer_ccp2() get_timer_ccp3() get_timer_ccp4() get_timer_ccp5() 167
get_tris_x()... 168

PCD_March 2015-1

vi

getenv() ... 168
gets() fgets() ... 172
goto_address() .. 172
high_speed_adc_done() .. 173
i2c_init() ... 174
i2c_isr_state() .. 174
i2c_poll() .. 175
i2c_read() .. 175
i2c_slaveaddr() .. 176
i2c_speed() .. 176
i2c_start()... 177
i2c_stop() ... 178
i2c_write() .. 178
input() .. 179
input_change_x() ... 179
input_state()... 180
input_x() .. 180
interrupt_active() .. 181
isalnum(char) isalpha(char) .. 182
iscntrl(x) isdigit(char) .. 182
isgraph(x) islower(char) isspace(char) isupper(char) isxdigit(char) isprint(x) ispunct(x) ... 182
isamong()... 183
itoa() .. 183
kbhit() .. 184
label_address() .. 184
labs() ... 185
ldexp() ... 185
log() ... 186
log10() ... 186
longjmp().. 187
make8() ... 187
make16() ... 188
make32() ... 188
malloc() .. 189
memcpy() memmove() ... 189
memset() ... 190
modf() .. 190
_mul() .. 191
nargs() ... 191
offsetof() offsetofbit() .. 192
output_x() .. 193
output_bit() .. 193
output_drive() .. 194
output_float() ... 195
output_high() ... 195
output_low() ... 196
output_toggle() .. 196
perror() .. 197
pmp_address(address) ... 197
pmp_output_full() pmp_input_full() pmp_overflow() pmp_error() pmp_timeout() ... 198
pmp_read() .. 198
pmp_write().. 199
port_x_pullups () .. 200
pow() pwr() ... 200
printf() fprintf() ... 201
profileout() .. 202
psp_output_full() psp_input_full() psp_overflow() .. 203
psp_read() ... 204
psp_write() ... 204
putc_send();... 205
fputc_send();.. 205
pwm_off().. 205

Table of Contents

vii

pwm_on().. 206
pwm_set_duty() .. 206
pwm_set_duty_percent .. 206
pwm_set_frequency ... 207
qei_get_count() .. 207
qei_set_count() .. 208
qei_status() .. 208
qsort() .. 208
rand() ... 209
rcv_buffer_bytes() .. 210
rcv_buffer_full() .. 210
read_adc() read_adc2() .. 210
read_configuration_memory().. 211
read_eeprom() ... 212
read_extended_ram() .. 212
read_program_memory() ... 213
read_high_speed_adc() ... 213
read_rom_memory() .. 215
read_sd_adc() ... 215
realloc() ... 216
release_io()... 216
reset_cpu() .. 217
restart_cause() .. 217
restart_wdt() .. 218
rotate_left() .. 218
rotate_right() .. 219
rtc_alarm_read() .. 219
rtc_alarm_write() .. 220
rtc_read() ... 220
rtc_write()... 221
rtos_await() .. 221
rtos_disable() ... 222
rtos_enable() ... 222
rtos_msg_poll() .. 222
rtos_msg_read() .. 223
rtos_msg_send() .. 223
rtos_overrun() .. 224
rtos_run() ... 224
rtos_signal() ... 225
rtos_stats()... 225
rtos_terminate() ... 226
rtos_wait() .. 226
rtos_yield() ... 227
set_adc_channel() ... 227
set_adc_channel2() ... 227
scanf() ... 228
printf() .. 228
set_ccp1_compare_time() set_ccp2_compare_time() set_ccp3_compare_time()
set_ccp4_compare_time() set_ccp5_compare_time() .. 230
set_cog_blanking() .. 231
set_cog_dead_band() .. 231
set_cog_phase() .. 232
set_compare_time() ... 233
set_compare_time() ... 233
set_motor_pwm_duty() .. 234
set_motor_pwm_event() .. 234
set_motor_unit() .. 234
set_nco_inc_value() .. 235
set_pullup() .. 236
set_pwm1_duty() set_pwm2_duty() set_pwm3_duty() set_pwm4_duty() set_pwm5_duty() 237
set_rtcc() set_timer0() set_timer1() set_timer2() set_timer3() set_timer4() set_timer5() 237
set_ticks() .. 238

PCD_March 2015-1

viii

setup_sd_adc_calibration().. 239
set_sd_adc_channel() ... 239
set_timerA() ... 240
set_timerB() ... 240
set_timerx().. 241
set_timerxy() .. 241
set_rtcc() set_timer0() set_timer1() set_timer2() set_timer3() set_timer4() set_timer5() 241
set_timer_ccp1() set_timer_ccp2() set_timer_ccp3() set_timer_ccp4() set_timer_ccp5() 242
set_timer_period_ccp1() set_timer_period_ccp2() set_timer_period_ccp3() set_timer_period_ccp4(
) set_timer_period_ccp5() .. 243
set_tris_x() ... 244
set_uart_speed() ... 245
setjmp() ... 245
setup_adc(mode) .. 246
setup_adc2(mode) .. 246
setup_adc_ports() .. 246
setup_adc_ports2() .. 246
setup_capture() ... 247
setup_ccp1() setup_ccp2() setup_ccp3() setup_ccp4() setup_ccp5() setup_ccp6() ... 248
setup_clc1() setup_clc2() setup_clc3() setup_clc4() ... 249
setup_comparator() ... 250
setup_compare() ... 250
setup_crc(mode) ... 251
setup_cog().. 251
setup_crc()... 252
setup_cwg() ... 253
setup_dac().. 254
setup_dci() ... 254
setup_dma() .. 255
setup_high_speed_adc() ... 256
setup_high_speed_adc_pair() ... 256
setup_low_volt_detect() ... 257
setup_motor_pwm() ... 258
setup_oscillator() ... 258
setup_pmp(option,address_mask) ... 259
setup_power_pwm_pins() ... 260
setup_psp(option,address_mask) ... 260
setup_pwm1() setup_pwm2() setup_pwm3() setup_pwm4() .. 261
setup_qei()... 261
setup_rtc() ... 262
setup_rtc_alarm() .. 263
setup_sd_adc() .. 263
setup_smtx() .. 264
setup_spi() setup_spi2() ... 264
setup_timerx() .. 265
setup_timer_A() ... 266
setup_timer_B() ... 266
setup_timer_0() ... 267
setup_timer_1() ... 268
setup_timer_2() ... 268
setup_timer_3() ... 269
setup_timer_4() ... 269
setup_timer_5() ... 270
setup_uart() ... 270
setup_vref() ... 271
setup_wdt() .. 271
setup_zdc() .. 272
shift_left() ... 272
shift_right()... 273
sleep() ... 274
smtx_read() ... 275
smtx_reset_timer() ... 275

Table of Contents

ix

smtx_start().. 276
smtx_status() ... 276
smtx_stop() .. 277
smtx_write() ... 277
smtx_update() .. 278
spi_data_is_in() spi_data_is_in2() .. 278
spi_init() .. 279
spi_prewrite(data); .. 279
spi_read() spi_read2() .. 280
spi_read3() .. 280
spi_read4() .. 280
spi_read_16() ... 281
spi_read2_16() ... 281
spi_read3_16() ... 281
spi_read4_16() ... 281
spi_speed ... 281
spi_write() spi_write2() ... 282
spi_write3() .. 282
spi_write4() .. 282
spi_xfer().. 282
SPII_XFER_IN() ... 283
sqrt() .. 283
srand() ... 284
STANDARD STRING FUNCTIONS() memchr() memcmp() strcat() strchr() strcmp() strcoll()
strcspn() strerror() stricmp() strlen() strlwr() strncat() strncmp() strncpy() strpbrk() strrchr()
strspn() strstr() strxfrm() ... 285
strcpy() strcopy() ... 286
strtod() strtof() strtof48() .. 286
strtok() ... 287
strtol() .. 288
strtoul() .. 288
swap() .. 289
tolower() toupper() .. 289
touchpad_getc() ... 290
touchpad_hit() .. 291
touchpad_state() .. 291
tx_buffer_bytes() ... 292
tx_buffer_full() .. 292
va_arg() ... 293
va_end() .. 294
va_start ... 294
write_configuration_memory() ... 295
write_eeprom() .. 295
write_extended_ram() .. 296
write_program_memory() .. 296
zdc_status() ... 297

Standard C Include Files .. 298
errno.h .. 298
float.h .. 298
limits.h .. 299
locale.h ... 299
setjmp.h .. 299
stddef.h ... 300
stdio.h ... 300
stdlib.h .. 300

Error Messages .. 301
Compiler Error Messages ... 301

Compiler Warning Messages ... 308
Compiler Warning Messages.. 308

Common Questions & Answers ... 310
How are type conversions handled? ... 310
How can a constant data table be placed in ROM? .. 311

PCD_March 2015-1

x

How can I use two or more RS-232 ports on one PIC®? ... 311
How do I directly read/write to internal registers? ... 312
How do I do a printf to a string? .. 313
How do I get getc() to timeout after a specified time? ... 313
How do I wait only a specified time for a button press? .. 313
How do I write variables to EEPROM that are not a word? .. 314
How does one map a variable to an I/O port? .. 314
How does the compiler determine TRUE and FALSE on expressions? ... 315
How does the PIC® connect to a PC? .. 316
How does the PIC® connect to an I2C device? .. 316
How much time do math operations take? ... 316
What can be done about an OUT OF RAM error? .. 317
What is an easy way for two or more PICs® to communicate? .. 317
What is an easy way for two or more PICs® to communicate? .. 318
What is the format of floating point numbers? .. 319
Why does the .LST file look out of order? ... 320
Why is the RS-232 not working right? .. 321

Example Programs ... 323
EXAMPLE PROGRAMS ... 323

Software License Agreement ... 332
SOFTWARE LICENSE AGREEMENT ... 332

1

OVERVIEW

 C Compiler

PCD Overview

Technical Support

Directories

File Formats

Invoking the Command Line Compiler

PCD

PCD is a C Compiler for Microchip's 24bit opcode family of microcontrollers, which include the dsPIC30, dsPIC33 and
PIC24 families. The compiler is specifically designed to meet the unique needs of the dsPIC® microcontroller. This
allows developers to quickly design applications software in a more readable, high-level language.

The compiler can efficiently implement normal C constructs, input/output operations, and bit twiddling operations. All
normal C data types are supported along with special built in functions to perform common functions in the MPU with
ease.

Extended constructs like bit arrays, multiple address space handling and effective implementation of constant data in
Rom make code generation very effective.

Technical Support

Compiler, software, and driver updates are available to download at:
http://www.ccsinfo.com/download

Compilers come with 30 or 60 days of download rights with the initial purchase. One year maintenance plans may be
purchased for access to updates as released.

The intent of new releases is to provide up-to-date support with greater ease of use and minimal, if any, transition
difficulty.

To ensure any problem that may occur is corrected quickly and diligently, it is recommended to send an email to:
support@ccsinfo.com or use the Technical Support Wizard in PCW. Include the version of the compiler, an outline of

PCD_March 2015-1

2

the problem and attach any files with the email request. CCS strives to answer technical support timely and
thoroughly.

Technical Support is available by phone during business hours for urgent needs or if email responses are not
adequate. Please call 262-522-6500 x32.

Directories

The compiler will search the following directories for Include files.

 Directories listed on the command line

 Directories specified in the .CCSPJT file

 The same directory as the source.directories in the ccsc.ini file

By default, the compiler files are put in C:\Program Files\PICC and the example programs are in
 \PICC\EXAMPLES. The include files are in PICC\drivers. The device header files are in
PICC\devices.

The compiler itself is a DLL file. The DLL files are in a DLL directory by default in \PICC\DLL.

It is sometimes helpful to maintain multiple compiler versions. For example, a project was tested with a specific
version, but newer projects use a newer version. When installing the compiler you are prompted for what version to
keep on the PC. IDE users can change versions using Help>about and clicking "other versions." Command Line
users use start>all programs>PIC-C>compiler version.

Two directories are used outside the PICC tree. Both can be reached with start>all programs>PIC-C.

1.) A project directory as a default location for your projects. By default put in "My
 Documents." This is a good place for VISTA and up.

2.) User configuration settings and PCWH loaded files are kept in %APPDATA%\PICC

File Formats

.c This is the source file containing user C source code.

.h These are standard or custom header files used to define pins, register, register bits, functions and preprocessor directives.

.pjt This is the older pre- Version 5 project file which contains information related to the project.

.ccspjt This is the project file which contains information related to the project.

.lst

This is the listing file which shows each C source line and the associated assembly code generated for that line.

The elements in the .LST file may be selected in PCW under Options>Project>Output Files

CCS Basic Standard assembly instructions

with Opcodes Includes the HEX opcode for each instruction

Old Standard

Symbolic Shows variable names instead of addresses

.sym This is the symbol map which shows each register location and what program variables are stored in each location.

.sta
The statistics file shows the RAM, ROM, and STACK usage. It provides information on the source codes structural and textual
complexities using Halstead and McCabe metrics.

.tre
The tree file shows the call tree. It details each function and what functions it calls along with the ROM and RAM usage for
each function.

.hex
The compiler generates standard HEX files that are compatible with all programmers.

Overview

3

The compiler can output 8-bet hex, 16-bit hex, and binary files.

.cof

This is a binary containing machine code and debugging information.

The debug files may be output as Microchip .COD file for MPLAB 1-5, Advanced Transdata .MAP file, expanded .COD file for
CCS debugging or MPLAB 6 and up .xx .COF file. All file formats and extensions may be selected via Options File
Associations option in Windows IDE.

.cod This is a binary file containing debug information.

.rtf
The output of the Documentation Generator is exported in a Rich Text File format which can be viewed using the RTF editor or
Wordpad.

.rvf The Rich View Format is used by the RTF Editor within the IDE to view the Rich Text File.

.dgr The .DGR file is the output of the flowchart maker.

.esym

.xsym
These files are generated for the IDE users. The file contains Identifiers and Comment information. This data can be used for
automatic documentation generation and for the IDE helpers.

.o Relocatable object file

.osym This file is generated when the compiler is set to export a relocatable object file. This file is a .sym file for just the one unit.

.err Compiler error file

.ccsload used to link Windows 8 apps to CCSLoad

.ccssiow used to link Windows 8 apps to Serial Port Monitor

Invoking the Command Line Compiler

The command line compiler is invoked with the following command:
 CCSC [options] [cfilename]

Valid options:
+FB Select PCB (12 bit) -D Do not create debug file
+FM Select PCM (14 bit) +DS Standard .COD format debug file
+FH Select PCH (PIC18XXX) +DM .MAP format debug file
+Yx Optimization level x (0-9) +DC Expanded .COD format debug file

 +DF Enables the output of an COFF debug file.
+FS Select SXC (SX) +EO Old error file format
+ES Standard error file -T Do not generate a tree file
+T Create call tree (.TRE) -A Do not create stats file (.STA)
+A Create stats file (.STA) -EW Suppress warnings (use with +EA)
+EW Show warning messages -E Only show first error
+EA Show all error messages and all warnings +EX Error/warning message format uses GCC's

"brief format" (compatible with GCC editor
environments)

The xxx in the following are optional. If included it sets the file extension:

+LNxxx Normal list file +O8xxx 8-bit Intel HEX output file

+LSxxx MPASM format list file +OWxxx 16-bit Intel HEX output file

+LOxxx Old MPASM list file +OBxxx Binary output file

+LYxxx Symbolic list file -O Do not create object file

-L Do not create list file

+P Keep compile status window up after compile

+Pxx Keep status window up for xx seconds after compile

+PN Keep status window up only if there are no errors

+PE Keep status window up only if there are errors

+Z Keep scratch files on disk after compile

+DF COFF Debug file

I+="..." Same as I="..." Except the path list is appended to the current list

PCD_March 2015-1

4

I="..." Set include directory search path, for example:
I="c:\picc\examples;c:\picc\myincludes"
If no I= appears on the command line the .PJT file will be used to supply the include file paths.

-P Close compile window after compile is complete

+M Generate a symbol file (.SYM)

-M Do not create symbol file

+J Create a project file (.PJT)

-J Do not create PJT file

+ICD Compile for use with an ICD

#xxx="yyy" Set a global #define for id xxx with a value of yyy, example:
#debug="true"

+Gxxx="yyy" Same as #xxx="yyy"

+? Brings up a help file

-? Same as +?

+STDOUT Outputs errors to STDOUT (for use with third party editors)

+SETUP Install CCSC into MPLAB (no compile is done)

sourceline= Allows a source line to be injected at the start of the source file.
Example: CCSC +FM myfile.c sourceline=“#include <16F887.h>”

+V Show compiler version (no compile is done)

+Q Show all valid devices in database (no compile is done)

A / character may be used in place of a + character. The default options are as follows:
 +FM +ES +J +DC +Y9 -T -A +M +LNlst +O8hex -P -Z

If @filename appears on the CCSC command line, command line options will be read from the specified
file. Parameters may appear on multiple lines in the file.

If the file CCSC.INI exists in the same directory as CCSC.EXE, then command line parameters are read from that file
before they are processed on the command line.

Examples:
 CCSC +FM C:\PICSTUFF\TEST.C

 CCSC +FM +P +T TEST.C

Overview

5

PCW Overview

The PCW IDE provides the user an easy to use editor and environment for developing microcontroller
applications. The IDE comprises of many components, which are summarized below. For more
information and details, use the Help>PCW in the compiler..

Many of these windows can be re-arranged and docked into different positions.

PCD_March 2015-1

6

Menu

All of the IDE's functions are on the main menu. The main menu is divided into
separate sections, click on a section title ('Edit', 'Search', etc) to change the
section. Double clicking on the section, or clicking on the chevron on the right,
will cause the menu to minimize and take less space.

Editor Tabs

All of the open files are listed here. The active file, which is the file currently
being edited, is given a different highlight than the other files. Clicking on the X
on the right closes the active file. Right clicking on a tab gives a menu of useful
actions for that file.

Slide Out Windows

'Files' shows all the active files in the current project. 'Projects' shows all the
recent projects worked on. 'Identifiers' shows all the variables, definitions,
prototypes and identifiers in your current project.

Overview

7

Editor

The editor is the main work area of the IDE and the place where the user enters
and edits source code. Right clicking in this area gives a menu of useful actions
for the code being edited.

Debugging Windows

Debugger control is done in the
debugging windows. These
windows allow you set breakpoints,
single step, watch variables and
more.

PCD_March 2015-1

8

Status Bar

The status bar gives the user helpful information like the cursor position, project
open and file being edited.

Output Messages

Output messages are displayed here. This includes messages from the compiler
during a build, messages from the programmer tool during programming or the
results from find and searching.

9

PROGRAM SYNTAX

Overall Structure

A program is made up of the following four elements in a file:
Comment
Pre-Processor Directive
Data Definition
Function Definition
 Statements
 Expressions

Every C program must contain a main function which is the starting point of the program execution. The program can
be split into multiple functions according to the their purpose and the functions could be called from main or the sub-
functions. In a large project functions can also be placed in different C files or header files that can be included in the
main C file to group the related functions by their category. CCS C also requires to include the appropriate device file
using #include directive to include the device specific functionality. There are also some preprocessor directives like
#fuses to specify the fuses for the chip and #use delay to specify the clock speed. The functions contain the data
declarations,definitions,statements and expressions. The compiler also provides a large number of standard C
libraries as well as other device drivers that can be included and used in the programs. CCS also provides a large
number of built-in functions to access the various peripherals included in the PIC microcontroller.

Comment

Comments – Standard Comments

A comment may appear anywhere within a file except within a quoted string. Characters between /* and */ are
ignored. Characters after a // up to the end of the line are ignored.

Comments for Documentation Generator

The compiler recognizes comments in the source code based on certain markups. The compiler recognizes these
special types of comments that can be later exported for use in the documentation generator. The documentation
generator utility uses a user selectable template to export these comments and create a formatted output document
in Rich Text File Format. This utility is only available in the IDE version of the compiler. The source code markups are
as follows.

Global Comments

These are named comments that appear at the top of your source code. The comment names are case sensitive
and they must match the case used in the documentation template.
For example:
//*PURPOSE This program implements a Bootloader.
//*AUTHOR John Doe

A '//' followed by an * will tell the compiler that the keyword which follows it will be the named comment. The actual
comment that follows it will be exported as a paragraph to the documentation generator.
Multiple line comments can be specified by adding a : after the *, so the compiler will not concatenate the comments
that follow. For example:
/**:CHANGES
 05/16/06 Added PWM loop
 05/27.06 Fixed Flashing problem
*/

PCD_March 2015-1

10

Variable Comments

A variable comment is a comment that appears immediately after a variable declaration. For example:
int seconds; // Number of seconds since last entry
long day, // Current day of the month, /* Current Month */
long year; // Year

Function Comments

A function comment is a comment that appears just before a function declaration. For example:
// The following function initializes outputs
void function_foo()
{

init_outputs();
}

Function Named Comments

 The named comments can be used for functions in a similar manner to the Global Comments. These comments
appear before the function, and the names are exported as-is to the documentation generator.
For example:
//*PURPOSE This function displays data in BCD format
void display_BCD(byte n)
{

display_routine();
 }

Trigraph Sequences

The compiler accepts three character sequences instead of some special characters not available on
all keyboards as follows:

Sequence Same as

??= #

??([

??/ \

??)]

??' ^

??< {

??! |

??> }

??- ~

Multiple Project Files

When there are multiple files in a project they can all be included using the #include in the main file or
the sub-files to use the automatic linker included in the compiler. All the header files, standard
libraries and driver files can be included using this method to automatically link them.

For example: if you have main.c, x.c, x.h, y.c,y.h and z.c and z.h files in your project, you can say in:

main.c

#include <device header file>
#include<x.c>
#include<y.c>

Program Syntax

11

#include <z.c>

x.c #include <x.h>

y.c

#include <y.h>

z.c

#include <z.h>

In this example there are 8 files and one compilation unit. Main.c is the only file compiled.

Note that the #module directive can be used in any include file to limit the visibility of the symbol in that file.

To separately compile your files see the section "multiple compilation units".

Multiple Compilation Units

Multiple Compilation Units are only supported in the IDE compilers, PCW, PCWH, PCHWD and
PCDIDE. When using multiple compilation units, care must be given that pre-processor commands
that control the compilation are compatible across all units. It is recommended that directives such as
#FUSES, #USE and the device header file all put in an include file included by all units. When a unit is
compiled it will output a relocatable object file (*.o) and symbol file (*.osym).

There are several ways to accomplish this with the CCS C Compiler. All of these methods and
example projects are included in the MCU.zip in the examples directory of the compiler.

Full Example Program

Here is a sample program with explanation using CCS C to read adc samples over rs232:

//

/////////

/// This program displays the min and max of

30, ///

/// comments that explains what the program

does, ///

/// and A/D samples over the RS-232

interface. ///

//

/////////

#include <16F887.h> //

preprocessor directive that

 //

selects the chip PIC16F887

#fuses NOPROTECT //

Code protection turned off

#use delay(crystal=20mhz) //

preprocessor directive that

 //

specifies the clock type and speed

PCD_March 2015-1

12

#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7) //

preprocessor directive that

 //

includes the rs232 libraries

void main() { //

main function

 int i, value, min, max; //

local variable declaration

 printf("Sampling:"); //

printf function included in the

 //

RS232 library

 setup_port_a(ALL_ANALOG); //

A/D setup functions- built-in

 setup_adc(ADC_CLOCK_INTERNAL); //

Internal clock always works

 set_adc_channel(0); //

Set channel to AN0

 do { // do

forever statement

 min=255;

 max=0;

 for(i=0; i<=30; ++i) { //

Take 30 samples

 delay_ms(100); //

Wait for a tenth of a second

 value = read_adc(); //

A/D read functions- built-in

 if(value<min) //

Find smallest sample

 min=value;

 if(value>max) //

Find largest sample

 max=value;

 }

 printf("\n\rMin: %2X Max:

%2X\n\r",min,max);

 } while (TRUE);

}

13

STATEMENTS

Statements

STATEMENT Example

if (expr) stmt; [else stmt;]

if (x==25)

 x=0;

else

 x=x+1;

while (expr) stmt;
while (get_rtcc()!=0)

 putc(‘n’);

do stmt while (expr);

do {

 putc(c=getc());

} while (c!=0);

for (expr1;expr2;expr3) stmt;
for (i=1;i<=10;++i)

 printf(“%u\r\n”,i);

switch (expr) {
case cexpr: stmt; //one or more case
[default:stmt]
... }

switch (cmd) {

 case 0: printf(“cmd 0”);break;

 case 1: printf(“cmd 1”);break;

 default: printf(“bad

cmd”);break;

}

return [expr]; return (5);

goto label; goto loop;

label: stmt; loop: i++;

break; break;

continue; continue;

expr; i=1;

; ;

{[stmt]}

Zero or more

{a=1;

 b=1;}

declaration; int i;

Note: Items in [] are optional

if

if-else

The if-else statement is used to make decisions.
The syntax is:

 if (expr)

 stmt-1;
 [else

PCD_March 2015-1

14

 stmt-2;]

The expression is evaluated; if it is true stmt-1 is done. If it is false then stmt-2 is done.

else-if

 This is used to make multi-way decisions.
The syntax is:

 if (expr)

 stmt;
 [else if (expr)

 stmt;]
 ...
 [else

 stmt;]

The expressions are evaluated in order; if any expression is true, the statement associated with it is executed and it
terminates the chain. If none of the conditions are satisfied the last else part is executed.

Example:
if (x==25)

 x=1;

else

 x=x+1;

Also See: Statements

while

While is used as a loop/iteration statement.

The syntax is:

while (expr)

 statement

 The expression is evaluated and the statement is executed until it becomes false in which case the execution
continues after the statement.

Example:
while (get_rtcc()!=0)

 putc('n');

Also See: Statements

do-while

do-while: Differs from while and for loop in that the termination condition is

checked at the bottom of the loop rather than at the top and so the body of the
loop is always executed at least once. The syntax is:

 do

 statement

Statements

15

 while (expr);

The statement is executed; the expr is evaluated. If true, the same is repeated
and when it becomes false the loop terminates.

Also See: Statements , While

for

 For is also used as a loop/iteration statement.

 The syntax is:

for (expr1;expr2;expr3)

 statement

 The expressions are loop control statements. expr1 is the initialization, expr2 is
the termination check and expr3 is re-initialization. Any of them can be
omitted.

Example:
for (i=1;i<=10;++i)

 printf("%u\r\n",i);

Also See: Statements

switch

Switch is also a special multi-way decision maker.

The syntax is

switch (expr) {
 case const1: stmt sequence;
 break;
 ...
 [default:stmt]
}

This tests whether the expression matches one of the constant values and branches accordingly.
If none of the cases are satisfied the default case is executed. The break causes an immediate exit, otherwise control
falls through to the next case.

Example:

switch (cmd) {

 case 0:printf("cmd 0");

 break;

 case 1:printf("cmd 1");

 break;

 default:printf("bad cmd");

 break; }

Also See: Statements

PCD_March 2015-1

16

return

 return
 A return statement allows an immediate exit from a switch or a loop or function and also returns a value.

The syntax is:

 return(expr);

Example:
return (5);

Also See: Statements

goto

goto

The goto statement cause an unconditional branch to the label.

The syntax is:
 goto label;

A label has the same form as a variable name, and is followed by a colon. The goto's are used
sparingly, if at all.

Example:
goto loop;

Also See: Statements

label

label

The label a goto jumps to.
The syntax is:

label: stmnt;

Example:
loop: i++;

Also See: Statements

break

break.

Statements

17

The break statement is used to exit out of a control loop. It provides an early exit from while, for ,do and
switch.
The syntax is

 break;

It causes the innermost enclosing loop (or switch) to be exited immediately.

Example:
break;

Also See: Statements

continue

The continue statement causes the next iteration of the enclosing loop(While, For, Do) to begin.

The syntax is:

continue;

It causes the test part to be executed immediately in case of do and while and the control passes the
re-initialization step in case of for.

Example:

continue;

Also See: Statements

expr

The syntax is:
expr;

Example:
i=1;

Also See: Statements

;

Statement: ;

Example:

;

Also See: Statements

PCD_March 2015-1

18

stmt

Zero or more semi-colon separated.
The syntax is:

{[stmt]}

Example:
{a=1;

 b=1;}

Also See: Statements

19

EXPRESSIONS

Constants

123 Decimal

123L Forces type to & long (UL also allowed)

123LL Forces type to &; 64 for PCD

0123 Octal

0x123 Hex

0b010010 Binary

123.456 Floating Point

123F Floating Point (FL also allowed)

123.4E-5 Floating Point in scientific notation

'x' Character

'\010' Octal Character

'\xA5’ Hex Character

'\c' Special Character. Where c is one of:
 \n Line Feed - Same as \x0a
 \r Return Feed - Same as \x0d
 \t TAB - Same as \x09
 \b Backspace - Same as \x08
 \f Form Feed - Same as x0c
 \a Bell - Same as \x07
 \v Vertical Space - Same as \x0b
 \? Question Mark - Same as \x3f
 \' Single Quote - Same as \x22
 \" Double Quote - Same as \x22
 \\ A Single Backslash - Same as \x5c

"abcdef" String (null is added to the end)

PCD_March 2015-1

20

Identifiers

ABCDE Up to 32 characters beginning with a non-
numeric. Valid characters are A-Z, 0-9 and _
(underscore). By default not case sensitive Use
#CASE to turn on.

ID[X] Single Subscript
ID[X][X] Multiple Subscripts
ID.ID Structure or union reference
ID->ID Structure or union reference

Operators

+ Addition Operator

+= Addition assignment operator, x+=y, is the same as
x=x+y

[] Array subscrip operator
&= Bitwise and assignment operator, x&=y, is the same as

x=x&y
& Address operator
& Bitwise and operator
^= Bitwise exclusive or assignment operator, x^=y, is the

same as x=x^y
^ Bitwise exclusive or operator
l= Bitwise inclusive or assignment operator, xl=y, is the

same as x=xly
l Bitwise inclusive or operator
?: Conditional Expression operator
- - Decrement
/= Division assignment operator, x/=y, is the same as

x=x/y
/ Division operator
== Equality
> Greater than operator
>= Greater than or equal to operator
++ Increment
* Indirection operator
!= Inequality
<<= Left shift assignment operator, x<<=y, is the same as

x=x<<y
< Less than operator
<< Left Shift operator

Expressions

21

<= Less than or equal to operator
&& Logical AND operator
! Logical negation operator
ll Logical OR operator

. Member operator for structures and unions

%= Modules assignment operator x%=y, is the same as
x=x%y

% Modules operator
= Multiplication assignment operator, x=y, is the same as

x=x*y
* Multiplication operator
~ One's complement operator
>>= Right shift assignment, x>>=y, is the same as x=x>>y
>> Right shift operator
-> Structure Pointer operation
-= Subtraction assignment operator, x-=y, is the same as

x=x- y
- Subtraction operator

sizeof Determines size in bytes of operand

See also: Operator Precedence

Operator Precedence

PIN DESCENDING PRECEDENCE Associativity

(expr) exor++ expr->expr expr.expr Left to Right
++expr expr++ - -expr expr - - Left to Right

!expr ~expr +expr -expr Right to Left

(type)expr *expr &value sizeof(type) Right to
Left

expr*expr expr/expr expr%expr Left to Right

expr+expr expr-expr Left to Right

expr<<expr expr>>expr Left to Right
expr<expr expr<=expr expr>expr expr>=expr Left to Right

expr==expr expr!=expr Left to Right

expr&expr Left to Right
expr^expr Left to Right

expr | expr Left to Right

expr&& expr Left to Right

expr || expr Left to Right

expr ? expr:
expr

 Right to
Left

lvalue = expr lvalue+=expr lvalue-=expr Right to

PCD_March 2015-1

22

Left

lvalue*=expr lvalue/=expr lvalue%=expr Right to
Left

lvalue>>=expr lvalue<<=expr lvalue&=expr Right to
Left

lvalue^=expr lvalue|=expr Right to
Left

expr, expr Left to Right

(Operators on the same line are equal in precedence)

23

DATA DEFINITIONS

Data Definitions

This section describes what the basic data types and specifiers are and how variables can be declared
using those types. In C all the variables should be declared before they are used. They can be defined
inside a function (local) or outside all functions (global). This will affect the visibility and life of the
variables.

A declaration consists of a type qualifier and a type specifier, and is followed by a list of one or more
variables of that type.
For example:

int a,b,c,d;

mybit e,f;

mybyte g[3][2];

char *h;

colors j;

struct data_record data[10];

static int i;

extern long j;

Variables can also be declared along with the definitions of the special types.
For example:

enum colors{red, green=2,blue}i,j,k; // colors is the enum type and

i,j,k

 //are variables of that type

SEE ALSO:
Type Specifiers/ Basic Types
Type Qualifiers
Enumerated Types
Structures & Unions
typedef
Named Registers

Type-
Specifier

 Range

Size Unsigned Signed Digits
int1 1 bit number 0 to 1 N/A

1/2

int8 8 bit number 0 to 255 -128 to 127

2-3

int16 16 bit number 0 to 65535 -32768 to 32767

4-5

int32 32 bit number 0 to 4294967295 -2147483648 to 2147483647

9-10

int48 48 bit number 0 to
281474976710655

-140737488355328 to
140737488355327

14-15

int64 64 bit number N/A -9223372036854775808 to
9223372036854775807

18-19

PCD_March 2015-1

24

Type Specifiers

Basic Types

C Standard Type Default Type

short unsigned int8
char unsigned int8
int unsigned int16
long unsigned int32
long long unsigned int64
float float32
double

Note: All types, except float char , by default are un-signed; however, may be preceded by unsigned or
signed (Except int64 may only be signed) . Short and long may have the keyword INT following them
 with no effect. Also see #TYPE to change the default size.

SHORT INT1 is a special type used to generate very efficient code for bit operations and I/O. Arrays of
bits (INT1 or SHORT) in RAM are now supported. Pointers to bits are not permitted. The device
header files contain defines for BYTE as an int8 and BOOLEAN as an int1.

Integers are stored in little endian format. The LSB is in the lowest address. Float formats are
described in common questions.

SEE ALSO: Declarations, Type Qualifiers, Enumerated Types, Structures & Unions, typedef, Named
Registers

Type Qualifiers

Type-Qualifier

static Variable is globally active and initialized to 0. Only accessible from this compilation
unit.

auto Variable exists only while the procedure is active. This is the default and AUTO
need not be used.

double Is a reserved word but is not a supported data type.

extern External variable used with multiple compilation units. No storage is allocated. Is
used to make otherwise out of scope data accessible. there must be a non-extern
definition at the global level in some compilation unit.

register

If possible a CPU register instead of a RAM location.

_ fixed(n)

Creates a fixed point decimal number where n is how many decimal places to
implement.

float32

32 bit float -1.5 x 10
45

 to 3.4 x 10
38

 7-8

float48

48 bit float (higher
precision)

-2.9 x 10
39

 to 1.7 x 10
38

 11-12

float64

64 bit float -5.0 x 10
324

 to 1.7 x 10
308

 15-16

Data Definitions

25

unsigned Data is always positive.

signed Data can be negative or positive. This is the default data type if not specified.

volatile Tells the compiler optimizer that this variable can be changed at any point during

execution.

const Data is read-only. Depending on compiler configuration, this qualifier may just
make the data read-only -AND/OR- it may place the data into program memory to
save space. (see #DEVICE const=)

rom Forces data into program memory. Pointers may be used to this data but they can
not be mixed with RAM pointers.

roml Same as rom except only the even program memory locations are used.

void Built-in basic type. Type void is used to indicate no specific type in places where a
type is required.

readonly Writes to this variable should be dis-allowed
_bif Used for compiler built in function prototypes on the same line
__attribute__ Sets various attributes

SEE ALSO: Declarations, Type Specifiers, Enumerated Types, Structures & Unions, typedef, Named Registers

Enumerated Types

enum enumeration type: creates a list of integer constants.

enum [id] { [id [= cexpr]] }

One or more comma separated

The id after enum is created as a type large enough to the largest constant in

the list. The ids in the list are each created as a constant. By default the first id
is set to zero and they increment by one. If a = cexpr follows an id that id will
have the value of the constant expression an d the following list will increment
by one.

For example:

enum colors{red, green=2, blue}; // red will be 0, green will be 2 and

 // blue will be 3

SEE ALSO: Declarations, Type Specifiers, Type Qualifiers, Structures & Unions, typedef, Named Registers

PCD_March 2015-1

26

Structures and Unions

Struct structure type: creates a collection of one or more variables, possibly of

different types, grouped together as a single unit.

struct[*] [id]

{

type-qualifier [*] id [:bits]; } [id]

One or more,
 semi-colon
 separated

Zero
or more

For example:

struct data_record {

 int a[2];

 int b : 2; /*2 bits */

 int c : 3; /*3 bits*/

 int d;
} data_var; //data_record is a structure type

 //data_var is a variable

Field Allocation
- Fields are allocated in the order they appear.
- The low bits of a byte are filled first.
- Fields 16 bits and up are aligned to a even byte boundary. Some Bits may by unused.
- No Field will span from an odd byte to an even byte unless the field width is a multiple of 16 bits.

Union type: holds objects of different types and sizes, with the compiler keeping

track of size and alignment requirements. They provide a way to manipulate
different kinds of data in a single area of storage.

union[*] [id] { type-qualifier [*] id [:bits]; } [id]

One or more,
 semi-colon
 separated

Zero
or more

For example:

union u_tab {

 int ival;

 long lval;

 float fval;
 }; //u_tag is a union type that can hold a float

SEE ALSO: Declarations, Type Specifiers, Type Qualifiers, Enumerated Types, typedef, Named
Registers

Data Definitions

27

typedef

If typedef is used with any of the basic or special types it creates a new type

name that can be used in declarations. The identifier does not allocate space but
rather may be used as a type specifier in other data definitions.

typedef [type-qualifier] [type-specifier]
[declarator];

For example:

typedef int mybyte;
// mybyte can be used in declaration

to
 // specify the int type

typedef short mybit;
// mybyte can be used in declaration

to

 // specify the int type

typedef enum {red,

green=2,blue}colors;
//colors can be used to declare

 //variable of this enum type

SEE ALSO: Declarations, Type Specifiers, Type Qualifiers, Structures & Unions, Enumerated Types,
Named Registers

Non-RAM Data Definitions

CCS C compiler also provides a custom qualifier addressmod which can be used to
define a memory region that can be RAM, program eeprom, data eeprom or external
memory. Addressmod replaces the older typemod (with a different syntax).

The usage is :
addressmod

(name,read_function,write_function,start_address,end_address,

share);

Where the read_function and write_function should be blank for RAM, or for other
memory should be the following prototype:

// read procedure for reading n bytes from the memory starting at

location addr

void read_function(int32 addr,int8 *ram, int nbytes){

}

//write procedure for writing n bytes to the memory starting at

location addr

void write_function(int32 addr,int8 *ram, int nbytes){

}

For RAM the share argument may be true if unused RAM in this area can be used by the
compiler for standard variables.

PCD_March 2015-1

28

Example:
void DataEE_Read(int32 addr, int8 * ram, int bytes) {

 int i;

 for(i=0;i<bytes;i++,ram++,addr++)

 *ram=read_eeprom(addr);

}

void DataEE_Write(int32 addr, int8 * ram, int bytes) {

 int i;

 for(i=0;i<bytes;i++,ram++,addr++)

 write_eeprom(addr,*ram);

}

addressmod (DataEE,DataEE_read,DataEE_write,5,0xff);

// would define a region called DataEE between

// 0x5 and 0xff in the chip data EEprom.

void main (void)

{

 int DataEE test;

 int x,y;

 x=12;

 test=x; // writes x to the Data EEPROM

 y=test; // Reads the Data EEPROM

}

Note: If the area is defined in RAM then read and write functions are not required, the
variables assigned in the memory region defined by the addressmod can be treated as a
regular variable in all valid expressions. Any structure or data type can be used with an
addressmod. Pointers can also be made to an addressmod data type. The #type
directive can be used to make this memory region as default for variable allocations.

The syntax is :
#type default=addressmodname // all the variable declarations

that

 // follow will use this memory

region

#type default= // goes back to the default mode

For example:
Type default=emi //emi is the addressmod name

defined

char buffer[8192];

#include <memoryhog.h>

#type default=

Using Program Memory for Data

CCS C Compiler provides a few different ways to use program memory for data. The different ways are discussed
below:

Constant Data:
The const qualifier will place the variables into program memory. If the keyword const is used before the identifier,

the identifier is treated as a constant. Constants should be initialized and may not be changed at run-time. This is an
easy way to create lookup tables.

The rom Qualifier puts data in program memory with 3 bytes per instruction space. The address used for ROM data

is not a physical address but rather a true byte address. The & operator can be used on ROM variables however the
address is logical not physical.

The syntax is:

Data Definitions

29

const type id[cexpr] = {value}

For example:
Placing data into ROM

const int table[16]={0,1,2...15}

Placing a string into ROM
const char cstring[6]={"hello"}

Creating pointers to constants
const char *cptr;

cptr = string;

The #org preprocessor can be used to place the constant to specified address blocks.

For example:
The constant ID will be at 1C00.

#ORG 0x1C00, 0x1C0F

CONST CHAR ID[10]= {"123456789"};

Note: Some extra code will precede the 123456789.

The function label_address can be used to get the address of the constant. The constant variable can be accessed

in the code. This is a great way of storing constant data in large programs. Variable length constant strings can be
stored into program memory.

A special method allows the use of pointers to ROM. This method does not contain extra code at the start of the
structure as does constant.

For example:
char rom commands[] = {“put|get|status|shutdown”};

ROML may be used instead of ROM if you only to use even memory locations.

The compiler allows a non-standard C feature to implement a constant array of variable length strings.

The syntax is:
const char id[n] [*] = { "string", "string" ...};

Where n is optional and id is the table identifier.

For example:
const char colors[] [*] = {"Red", "Green", "Blue"};

#ROM directive:
Another method is to use #rom to assign data to program memory.

The syntax is:
#rom address = {data, data, … , data}

For example:
Places 1,2,3,4 to ROM addresses starting at 0x1000
#rom 0x1000 = {1, 2, 3, 4}

Places null terminated string in ROM
#rom 0x1000={"hello"}

This method can only be used to initialize the program memory.

Built-in-Functions:
The compiler also provides built-in functions to place data in program memory, they are:



 write_program_memory(address, dataptr, count);
- Writes count bytes of data from dataptr to address in program memory.

- Every fourth byte of data will not be written, fill with 0x00.

Please refer to the help of these functions to get more details on their usage and limitations regarding erase
procedures. These functions can be used only on chips that allow writes to program memory. The compiler uses the
flash memory erase and write routines to implement the functionality.

The data placed in program memory using the methods listed above can be read from width the following functions:

 read_program_memory((address, dataptr, count)
- Reads count bytes from program memory at address to RAM at dataptr. Every fourth byte of data is
read as 0x00

 read_rom_memory((address, dataptr, count)

PCD_March 2015-1

30

- Reads count bytes from program memory at the logical address to RAM at dataptr.

These functions can be used only on chips that allow reads from program memory. The compiler uses the flash
memory read routines to implement the functionality.

Named Registers

The CCS C Compiler supports the new syntax for filing a variable at the location of a processor register.
 This syntax is being proposed as a C extension for embedded use. The same functionality is provided
with the non-standard #byte, #word, #bit and #locate.

The syntax is:

register _name type id;
 Or

register constant type id;

name is a valid SFR name with an underscore before it.

Examples:

register _status int8 status_reg;
register _T1IF int8 timer_interrupt;
register 0x04 int16 file_select_register;

31

FUNCTION DEFINITION

Function Definition

The format of a function definition is as follows:

[qualifier] id ([type-specifier id]) { [stmt] }

Optional See Below

Zero or more comma separated.
See Data Types

Zero or more Semi-colon
separated. See Statements.

The qualifiers for a function are as follows:

 VOID

 type-specifier

 #separate

 #inline

 #int_..

When one of the above are used and the function has a prototype (forward declaration of the function before it is
defined) you must include the qualifier on both the prototype and function definition.

A (non-standard) feature has been added to the compiler to help get around the problems created by the fact that
pointers cannot be created to constant strings. A function that has one CHAR parameter will accept a constant string
where it is called. The compiler will generate a loop that will call the function once for each character in the string.

Example:

void lcd_putc(char c) {

...

}

lcd_putc ("Hi There.");

SEE ALSO:
 Overloaded Functions
 Reference Parameters
 Default Parameters
 Variable Parameters

Overloaded Functions

Overloaded functions allow the user to have multiple functions with the same name, but they must accept different
parameters.

Here is an example of function overloading: Two functions have the same name but differ in the types of parameters.
The compiler determines which data type is being passed as a parameter and calls the proper function.

This function finds the square root of a long integer variable.

long FindSquareRoot(long n){

}

PCD_March 2015-1

32

This function finds the square root of a float variable.

float FindSquareRoot(float n){

}

FindSquareRoot is now called. If variable is of long type, it will call the first FindSquareRoot() example. If variable is of
float type, it will call the second FindSquareRoot() example.

result=FindSquareRoot(variable);

Reference Parameters

The compiler has limited support for reference parameters. This increases the readability of code and the efficiency of
some inline procedures. The following two procedures are the same. The one with reference parameters will be
implemented with greater efficiency when it is inline.

funct_a(int*x,int*y){

 /*Traditional*/

 if(*x!=5)

 *y=*x+3;

}

funct_a(&a,&b);

funct_b(int&x,int&y){

 /*Reference params*/

 if(x!=5)

 y=x+3;

}

funct_b(a,b);

Default Parameters

Default parameters allows a function to have default values if nothing is passed to it when called.
int mygetc(char *c, int n=100){

}

This function waits n milliseconds for a character over RS232. If a character is received, it saves it to the pointer c
and returns TRUE. If there was a timeout it returns FALSE.

//gets a char, waits 100ms for timeout

mygetc(&c);

//gets a char, waits 200ms for a timeout

mygetc(&c, 200);

Variable Argument Lists

The compiler supports a variable number of parameters. This works like the ANSI requirements except that it does
not require at least one fixed parameter as ANSI does. The function can be passed any number of variables and any

Function Definition

33

data types. The access functions are VA_START, VA_ARG, and VA_END. To view the number of arguments
passed, the NARGS function can be used.

/*

stdarg.h holds the macros and va_list data type needed for variable number of parameters.

*/

#include <stdarg.h>

A function with variable number of parameters requires two things. First, it requires the ellipsis (...), which must be the
last parameter of the function. The ellipsis represents the variable argument list. Second, it requires one more
variable before the ellipsis (...). Usually you will use this variable as a method for determining how many variables
have been pushed onto the ellipsis.

Here is a function that calculates and returns the sum of all variables:

int Sum(int count, ...)

{

 //a pointer to the argument list

 va_list al;

 int x, sum=0;

 //start the argument list

 //count is the first variable before the ellipsis

 va_start(al, count);

 while(count--) {

 //get an int from the list

 x = var_arg(al, int);

 sum += x;

 }

 //stop using the list

 va_end(al);

 return(sum);

}

Some examples of using this new function:

x=Sum(5, 10, 20, 30, 40, 50);

y=Sum(3, a, b, c);

34

FUNCTIONAL OVERVIEW

I2C

I2C™ is a popular two-wire communication protocol developed by Phillips. Many PIC microcontrollers support
hardware-based I2C™. CCS offers support for the hardware-based I2C™ and a software-based master I2C™
device. (For more information on the hardware-based I2C module, please consult the datasheet for you target device;
not all PICs support I2C™.)

Relevant Functions:

i2c_start() Issues a start command when in the I2C master mode.
i2c_write(data) Sends a single byte over the I2C interface.
i2c_read() Reads a byte over the I2C interface.
i2c_stop() Issues a stop command when in the I2C master mode.
i2c_poll() Returns a TRUE if the hardware has received a byte in the buffer.

Relevant Preprocessor:
#USE I2C Configures the compiler to support I2C™ to your specifications.

Relevant Interrupts:
#INT_SSP I2C or SPI activity
#INT_BUSCOL Bus Collision
#INT_I2C I2C Interrupt (Only on 14000)
#INT_BUSCOL2 Bus Collision (Only supported on some PIC18's)
#INT_SSP2 I2C or SPI activity (Only supported on some PIC18's)
#INT_mi2c Interrupts on activity from the master I2C module
#INT_si2c Interrupts on activity form the slave I2C module

Relevant Include Files:
None, all functions built-in

Relevant getenv() Parameters:
I2C_SLAVE Returns a 1 if the device has I2C slave H/W
I2C_MASTER Returns a 1 if the device has a I2C master H/W

Example Code:
#define Device_SDA PIN_C3 // Pin defines
#define Device_SLC PIN_C4
#use i2c(master, sda=Device_SDA,
scl=Device_SCL)

// Configure Device as Master

..

..
BYTE data; // Data to be transmitted
i2c_start(); // Issues a start command when in the I2C master mode.
i2c_write(data); // Sends a single byte over the I2C interface.
i2c_stop(); // Issues a stop command when in the I2C master mode.

Functional Overview

35

ADC

These options let the user configure and use the analog to digital converter module. They are only available on
devices with the ADC hardware. The options for the functions and directives vary depending on the chip and are
listed in the device header file. On some devices there are two independent ADC modules, for these chips the
second module is configured using secondary ADC setup functions (Ex. setup_ADC2).

Relevant Functions:

setup_adc(mode) Sets up the a/d mode like off, the adc clock etc.
setup_adc_ports(value) Sets the available adc pins to be analog or digital.
set_adc_channel(channel) Specifies the channel to be use for the a/d call.
read_adc(mode) Starts the conversion and reads the value. The mode can also control

the functionality.
adc_done() Returns 1 if the ADC module has finished its conversion.

setup_adc2(mode) Sets up the ADC2 module, for example the ADC clock and ADC

sample time.
setup_adc_ports2(ports, reference) Sets the available ADC2 pins to be analog or digital, and sets the

voltage reference for ADC2.
set_adc_channel2(channel) Specifies the channel to use for the ADC2 input.
read_adc2(mode) Starts the sample and conversion sequence and reads the value The

mode can also control the functionality.
adc_done() Returns 1 if the ADC module has finished its conversion

Relevant Preprocessor:
#DEVICE ADC=xx Configures the read_adc return size. For example, using a PIC with a

10 bit A/D you can use 8 or 10 for xx- 8 will return the most significant
byte, 10 will return the full A/D reading of 10 bits.

Relevant Interrupts:
INT_AD Interrupt fires when a/d conversion is complete
INT_ADOF Interrupt fires when a/d conversion has timed out

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
ADC_CHANNELS Number of A/D channels
ADC_RESOLUTION Number of bits returned by read_adc

Example Code:
#DEVICE ADC=10
...
long value;
...
setup_adc(ADC_CLOCK_INTERNAL); //enables the a/d module

//and sets the clock to internal adc clock
setup_adc_ports(ALL_ANALOG); //sets all the adc pins to analog
set_adc_channel(0); //the next read_adc call will read channel 0
delay_us(10); //a small delay is required after setting the channel
 //and before read
value=read_adc(); //starts the conversion and reads the result
 //and store it in value
read_adc(ADC_START_ONLY); //only starts the conversion
value=read_adc(ADC_READ_ONLY); //reads the result of the last conversion and store it in //value. Assuming

the device hat a 10bit ADC module, //value will range between 0-3FF. If
#DEVICE ADC=8 had //been used instead the result will yield 0-FF. If
#DEVICE //ADC=16 had been used instead the result will yield 0-
//FFC0

PCD_March 2015-1

36

Analog Comparator

These functions set up the analog comparator module. Only available in some devices.

Relevant Functions:

setup_comparator(mode) Enables and sets the analog comparator module. The options
vary depending on the chip. Refer to the header file for details.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_COMP Interrupt fires on comparator detect. Some chips have more

than one comparator unit, and thus, more interrupts.
Relevant Include Files:
None, all functions built-in

Relevant getenv() Parameters:
Returns 1 if the device has a comparator

COMP

Example Code:

setup_comparator(A4_A5_NC_NC);

if(C1OUT)

output_low(PIN_D0);

else

output_high(PIN_D1);

CAN Bus

These functions allow easy access to the Controller Area Network (CAN) features included with the MCP2515 CAN
interface chip and the PIC24, dsPIC30 and dsPIC33 MCUs. These functions will only work with the MCP2515 CAN
interface chip and PIC microcontroller units containing either a CAN or an ECAN module. Some functions are only
available for the ECAN module and are specified by the word ECAN at the end of the description. The listed
interrupts are not available to the MCP2515 interface chip.

Relevant Functions:

can_init(void); Initializes the CAN module and clears all the filters and masks so
that all messages can be received from any ID.

can_set_baud(void); Initializes the baud rate of the CAN bus to125kHz, if using a 20 MHz
clock and the default CAN-BRG defines, it is called inside the
can_init() function so there is no need to call it.

can_set_mode (CAN_OP_MODE mode); Allows the mode of the CAN module to be changed to configuration
mode, listen mode, loop back mode, disabled mode, or normal
mode.

can_set_functional_mode
(CAN_FUN_OP_MODE mode);

Allows the functional mode of ECAN modules to be changed to
legacy mode, enhanced legacy mode, or first in firstout (fifo) mode.
ECAN

can_set_id(int* addr, int32 id, int1 ext); Can be used to set the filter and mask ID's to the value specified by
addr. It is also used to set the ID of the message to be sent.

can_get_id(int * addr, int1 ext); Returns the ID of a received message.

Functional Overview

37

can_putd (int32 id, int * data, int len, int
priority, int1 ext, int1 rtr);

Constructs a CAN packet using the given arguments and places it in
one of the available transmit buffers.

can_getd (int32 & id, int * data, int & len,
struct rx_stat & stat);

Retrieves a received message from one of the CAN buffers and
stores the relevant data in the referenced function parameters.

can_enable_rtr(PROG_BUFFER b); Enables the automatic response feature which automatically sends
a user created packet when a specified ID is received. ECAN

can_disable_rtr(PROG_BUFFER b); Disables the automatic response feature. ECAN

can_load_rtr (PROG_BUFFER b, int *
data, int len);

Creates and loads the packet that will automatically transmitted
when the triggering ID is received. ECAN

can_enable_filter(long filter);

Enables one of the extra filters included in the ECAN module. ECAN

can_disable_filter(long filter); Disables one of the extra filters included in the ECAN module.
ECAN

can_associate_filter_to_buffer
(CAN_FILTER_ASSOCIATION_BUFFERS
buffer,CAN_FILTER_ASSOCIATION
filter);

Used to associate a filter to a specific buffer. This allows only
specific buffers to be filtered and is available in the ECAN module.
ECAN

can_associate_filter_to_mask
(CAN_MASK_FILTER_ASSOCIATE
mask,
CAN_FILTER_ASSOCIATION filter);

Used to associate a mask to a specific buffer. This allows only
specific buffer to have this mask applied. This feature is available in
the ECAN module. ECAN

can_fifo_getd(int32 & id,int * data,
int &len,struct rx_stat & stat);

Retrieves the next buffer in the fifo buffer. Only available in the
ECON module while operating in fifo mode. ECAN

Relevant Preprocessor:
None

Relevant Interrupts:
 #int_canirx This interrupt is triggered when an invalid packet is received on the

CAN.
#int_canwake This interrupt is triggered when the PIC is woken up by activity on

the CAN.
#int_canerr This interrupt is triggered when there is an error in the CAN module.
#int_cantx0 This interrupt is triggered when transmission from buffer 0 has

completed.
#int_cantx1 This interrupt is triggered when transmission from buffer 1 has

completed.
#int_cantx2 This interrupt is triggered when transmission from buffer 2 has

completed.
#int_canrx0 This interrupt is triggered when a message is received in buffer 0.
#int_canrx1 This interrupt is triggered when a message is received in buffer 1.

Relevant Include Files:
can-mcp2510.c Drivers for the MCP2510 and MCP2515 interface chips
can-18xxx8.c Drivers for the built in CAN module
can-18F4580.c

Drivers for the build in ECAN module

Relevant getenv() Parameters:
none

Example Code:
can_init(); // initializes the CAN bus
can_putd(0x300,data,8,3,TRUE,FALSE); // places a message on the CAN buss with
 // ID = 0x300 and eight bytes of data pointed to by

PCD_March 2015-1

38

 // “data”, the TRUE creates an extended ID, the
 // FALSE creates
can_getd(ID,data,len,stat); // retrieves a message from the CAN bus storing the
 // ID in the ID variable, the data at the array pointed to by
 // “data', the number of data bytes in len, and statistics
 // about the data in the stat structure.

Relevant Functions:

can_init(void); Initializes the module to 62.5k baud for ECAN and 125k baud for
CAN and clears all the filters and masks so that all messages can
be received from any ID.

can_set_baud(void); Initializes the baud rate of the bus to 62.5kHz for ECAN and 125kHz
for CAN. It is called inside the can_init() function so there is no need
to call it.

can_set_mode
(CAN_OP_MODE mode);

Allows the mode of the CAN module to be changed to listen all
mode, configuration mode, listen mode, loop back mode, disabled
mode, or normal mode.

can_set_functional_mode
(CAN_FUN_OP_MODE mode);

Allows the functional mode of ECAN modules to be changed to
legacy mode, enhanced legacy mode, or first in firstout (fifo) mode.
ECAN

can_set_id(int16 *addr, int32 id, int1 ext) Can be used to set the filter and mask ID's to the value specified by
addr. It is also used to set the ID of the message to be sent on CAN
chips.

can_set_buffer_id(BUFFER buffer, int32
id, int1 ext)

Can be used to set the ID of the message to be sent for ECAN
chips. ECAN

can_get_id(BUFFER buffer, int1 ext)

Returns the ID of a received message.

can_putd(int32 id, int8 *data, int8 len,
int8 priority, int1 ext, int1 rtr)

Constructs a CAN packet using the given arguments and places it in
one of the available transmit buffers.

can_getd(int32 &id, int8 *data, int8 &len,
struct rx_stat &stat)

Retrieves a received message from one of the CAN buffers and
stores the relevant data in the referenced function parameters.

can_kbhit() Returns TRUE if valid CAN messages is available to be retrieved
from one of the receive buffers.

can_tbe() Returns TRUE if a transmit buffer is is available to send more data.
can_abort() Aborts all pending transmissions.
can_enable_b_transfer(BUFFER b) Sets the specified programmable buffer to be a transmit buffer.

 ECAN
can_enable_b_receiver(BUFFER b) Sets the specified programmable buffer to be a receive buffer. By

default all programmable buffers are set to be receive buffers.
 ECAN

can_enable_rtr(BUFFER b) Enables the automatic response feature which automatically sends
a user created packet when a specified ID is received. ECAN

can_disable_rtr(BUFFER b) Disables the automatic response feature. ECAN
can_load_rtr (BUFFER b, int8 *data, int8
len)

Creates and loads the packet that will automatically transmitted
when the triggering ID is received. ECAN

can_set_buffer_size(int8 size) Set the number of buffers to use. Size can be 4, 6, 8, 12, 16, 24,
and 32. By default can_init() sets size to 32. ECAN

can_enable_filter
(CAN_FILTER_CONTROL filter)

Enables one of the acceptance filters included in the ECAN module.
ECAN

can_disable_filter
(CAN_FILTER_CONTROL filter)

Disables one of the acceptance filters included in the ECAN module.
ECAN

can_associate_filter_to_buffer Used to associate a filter to a specific buffer. This allows only

Functional Overview

39

(CAN_FILTER_ASSOCIATION_BUFFERS
buffer, CAN_FILTER_ASSOCIATION
filter)

specific buffers to be filtered and is available in the ECAN module.
ECAN

can_associate_filter_to_mask
(CAN_MASK_FILTER_ASSOCIATION
mask, CAN_FILTER_ASSOCIATION
filter)

Used to associate a mask to a specific buffer. This allows only
specific buffer to have this mask applied. This feature is available in
the ECAN module. ECAN

can_fifo_getd(int32 &id, int8 *data, int8
&len, struct rx_stat &stat)

Retrieves the next buffer in the FIFO buffer. Only available in the
ECAN module. ECAN

can_trb0_putd(int32 id, int8 *data, int8
len, int8 pri, int1 ext, int1 rtr)

Constructs a CAN packet using the given arguments and places it in
transmit buffer 0. Similar functions available for all transmit buffers
0-7. Buffer must be made a transmit buffer with
can_enable_b_transfer() function before function can be used.
ECAN

can_enable_interrupts(INTERRUPT
setting)

Enables specified interrupt conditions that cause the #INT_CAN1
interrupt to be triggered. Available options are:
TB - Transmitt Buffer Interrupt ECAN
RB - Receive Buffer Interrupt ECAN
RXOV - Receive Buffer Overflow Interrupt ECAN
FIFO - FIFO Almost Full Interrupt ECAN
ERR - Error interrupt ECAN/CAN
WAK - Wake-Up Interrupt ECAN/CAN
IVR - Invalid Message Received Interrupt ECAN/CAN
RX0 - Receive Buffer 0 Interrupt CAN
RX1 - Receive Buffer 1 Interrupt CAN
TX0 - Transmit Buffer 0 Interrupt CAN
TX1 - Transmit Buffer 1 Interrupt CAN
TX2 - Transmit Buffer 2 Interrupt CAN

can_disable_interrupts(INTERRUPT
setting)

Disable specified interrupt conditions so they doesn't cause the
#INT_CAN1 interrupt to be triggered. Available options are the
same as for the can_enable_interrupts() function. By default all
conditions are disabled.

can_config_DMA(void) Configures the DMA buffers to use with the ECAN module. It is
called inside the can_init() function so there is no need to call it.
 ECAN

For PICs that have two CAN or ECAN
modules all the above function are
available for the second module, and
they start with can2 instead of can.

Examples:
can2_init();
can2_kbhit();

Relevant Preprocessor:
None

Relevant Interrupts:
#INT_CAN1 Interrupt for CAN or ECAN module 1. This interrupt is triggered

when one of the conditions set by the can_enable_interrupts() is
meet.

#INT_CAN2 Interrupt for CAN or ECAN module 2. This interrupt is triggered
when one of the conditions set by the can2_enable_interrupts() is
meet. This interrupt is only available on PICs that have two CAN or
ECAN modules.

Relevant Include Files:
can-mcp2510.c Drivers for the MCP2510 and MCP2515 interface chips.
can-dsPIC30.c Drivers for the built in CAN module on dsPIC30F chips.
can-PIC24.c Drivers for the build in ECAN module on PIC24HJ and dsPIC33FJ

chips.
Relevant getenv() Parameters:
None
Example Code:
can_init(); // Initializes the CAN bus.
can_putd(0x300,data,8,3,TRUE,FALSE); // Places a message on the CAN bus with
 // ID = 0x300 and eight bytes of data pointed to by

PCD_March 2015-1

40

 // “data”, the TRUE causes an extended ID to be

 // sent, the FALSE causes no remote transmission

 // to be requested.
can_getd(ID,data,len,stat); // Retrieves a message from the CAN bus storing the
 // ID in the ID variable, the data at the array

//pointed to by
 // to by “data”, the number of data bytes in len and staticstics

 / about the data in the stat structure.

Code Profile

Profile a program while it is running. Unlike in-circuit debugging, this tool grabs information
while the program is running and provides statistics, logging and tracing of it's execution. This
is accomplished by using a simple communication method between the processor and the ICD
with minimal side-effects to the timing and execution of the program. Another benefit of code
profile versus in-circuit debugging is that a program written with profile support enabled will run
correctly even if there is no ICD connected.

In order to use Code Profiling, several functions and pre-processor statements need to be included in the project
being compiled and profiled. Doing this adds the proper code profile run-time support on the microcontroller.

See the help file in the Code Profile tool for more help
and usage examples.

Relevant Functions:

profileout() Send a user specified message or variable to be displayed or

logged by the code profile tool.

Relevant Pre-Processor:
#use profile()

Global configuration of the code profile run-time on the

microcontroller.

#profile

Dynamically enable/disable specific elements of the profiler.

Relevant Interrupts: The profiler can be configured to use a microcontroller's internal

timer for more accurate timing of events over the clock on the PC.

 This timer is configured using the #profile pre-processor

command.

Relevant Include Files:

None – all the functions are built into the compiler.

Relevant getenv():

None

Example Code: #include <18F4520.h>
#use delay(crystal=10MHz, clock=40MHz)
#profile functions, parameters
void main(void)
{
 int adc;

Functional Overview

41

 setup_adc(ADC_CLOCK_INTERNAL);
 set_adc_channel(0);

 for(;;)
 {
 adc = read_adc();
 profileout(adc);
 delay_ms(250);
 }
}

Configuration Memory

On all dsPIC30, dsPIC33 and PIC24 families the configuration memory is readable and writable. The configuration
memory contains the configuration bits for things such as the oscillator mode, watchdog timer enable, etc. These
configuration bits are set by the CCS C compiler usually through a #fuse. CCS provides an API that allows these bits
to be changed in run-time.

Relevant Functions:

write_configuration_memory
(ramPtr, n);

 Writes n bytes to configuration from ramPtr, no erase needed

or

write_configuration_memory
(offset, ramPtr, n);

Write n bytes to configuration memory, starting at offset, from ramPtr */

read_configuration_memory
(ramPtr, n);

Read n bytes of configuration memory, save to ramPtr

Relevant Preprocessor: The initial value of the configuration memory is set through a #FUSE

Relevant Interrupts : None

Relevant Include Files: None, all functions built-in

Relevant getenv() parameters: None

Example Code:

int16 data = 0x0C32;
write_configuration_memory
(&data, 2);

//writes 2 bytes to the configuration memory

CRC

The programmable Cyclic Redundancy Check (CRC) is a software configurable CRC checksum generator in select
PIC24F, PIC24H, PIC24EP, and dsPIC33EP devices. The checksum is a unique number associated with a message
or a block of data containing several bytes. The built-in CRC module has the following features:

· Programmable bit length for the CRC generator polynomial. (up to 32 bit length)
· Programmable CRC generator polynomial.
· Interrupt output.
· 4-deep, 8-deep, 16-bit, 16-deep or 32-deep, 8-bit FIFO for data input.
· Programmed bit lenght for data input. (32-bit CRC Modules Only)

PCD_March 2015-1

42

Relevant Functions:

setup_crc (polynomial) This will setup the CRC polynomial.
crc_init (data) Sets the initial value used by the CRC module.
crc_calc (data)

Returns the calculated CRC value.

Relevant Preprocessor:
None

Relevant Interrupts :
#INT_CRC On completion of CRC calculation.

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:
Int16 data[8];
int16 result;

setup_crc(15, 3, 1); // CRC Polynomial is X16 + X15 + X3 + X1+ 1 or Polynomial = 8005h
crc_init(0xFEEE); Starts the CRC accumulator out at 0xFEEE
Result = crc_calc(&data[0], 8); Calculate the CRC

DAC

These options let the user configure and use the digital to analog converter module. They are only available on
devices with the DAC hardware. The options for the functions and directives vary depending on the chip and are
listed in the device header file.

Relevant Functions:

setup_dac(divisor) Sets up the DAC e.g. Reference voltages

dac_write(value) Writes the 8-bit value to the DAC module

setup_dac(mode, divisor) Sets up the d/a mode e.g. Right enable, clock divisor

dac_write(channel, value) Writes the 16-bit value to the specified channel

Relevant Preprocessor:
#USE DELAY Must add an auxiliary clock in the #use delay preprocessor. For example:
 #USE DELAY(clock=20M, Aux: crystal=6M, clock=3M)
Relevant Interrupts:
None

Relevant Include Files:

None, all functions built-in

Relevant getenv() parameters:
None

Example Code:
int16 i = 0;
setup_dac(DAC_RIGHT_ON, 5); //enables the d/a module with right channel enabled and a division of the

Functional Overview

43

clock by 5
While(1){
i++;
dac_write(DAC_RIGHT, i); //writes i to the right DAC channel
 }

Data Eeprom

The data eeprom memory is readable and writable in some chips. These options lets the user read and write to the
data eeprom memory. These functions are only available in flash chips.

Relevant Functions:

(8 bit or 16 bit depending on the
device)

read_eeprom(address) Reads the data EEPROM memory location

write_eeprom(address, value) Erases and writes value to data EEPROM location address.

read_eeprom(address, [N]) Reads N bytes of data EEPROM starting at memory location address. The
maximum return size is int64.

read_eeprom(address, [variable]) Reads from EEPROM to fill variable starting at address
read_eeprom(address, pointer, N) Reads N bytes, starting at address, to pointer
write_eeprom(address, value) Writes value to EEPROM address
write_eeprom(address, pointer, N) Writes N bytes to address from pointer

Relevant Preprocessor:
#ROM address={list}

Can also be used to put data EEPROM memory data into the hex file.

write_eeprom = noint Allows interrupts to occur while the write_eeprom() operations is polling the
done bit to check if the write operations has completed. Can be used as
long as no EEPROM operations are performed during an ISR.

Relevant Interrupts:
INT_EEPROM Interrupt fires when EEPROM write is complete

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
DATA_EEPROM Size of data EEPROM memory.

Example Code:

#ROM 0x007FFC00={1,2,3,4,5} // Inserts this data into the hex file
 // The data EEPROM address differs between PICs

// Please refer to the device editor for device specific values.
write_eeprom(0x10, 0x1337); // Writes 0x1337 to data EEPROM location 10.
value=read_eeprom(0x0); // Reads data EEPROM location 10 returns 0x1337.

DCI

DCI is an interface that is found on several dsPIC devices in the 30F and the 33FJ families. It is a multiple-protocol
interface peripheral that allows the user to connect to many common audio codecs through common (and highly
configurable) pulse code modulation transmission protocols. Generic multichannel protocols, I2S and AC’97 (16 & 20
bit modes) are all supported.

PCD_March 2015-1

44

Relevant Functions:

setup_dci(configuration, data
size, rx config, tx config, sample
rate);

Initializes the DCI module.

setup_adc_ports(value) Sets the available adc pins to be analog or digital.
set_adc_channel(channel) Specifies the channel to be use for the a/d call.
read_adc(mode) Starts the conversion and reads the value. The mode can also control the

functionality.
adc_done() Returns 1 if the ADC module has finished its conversion.

Relevant Preprocessor:
#DEVICE ADC=xx Configures the read_adc return size. For example, using a PIC with a 10 bit

A/D you can use 8 or 10 for xx- 8 will return the most significant byte, 10 will
return the full A/D reading of 10 bits.

Relevant Interrupts:
INT_DCI Interrupt fires on a number (user configurable) of data words received.
Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None
Example Code:
signed int16 left_channel, right_channel;

dci_initialize((I2S_MODE | DCI_MASTER | DCI_CLOCK_OUTPUT |
SAMPLE_RISING_EDGE | UNDERFLOW_LAST | MULTI_DEVICE_BUS),DCI_1WORD_FRAME
| DCI_16BIT_WORD | DCI_2WORD_INTERRUPT, RECEIVE_SLOT0 | RECEIVE_SLOT1,
TRANSMIT_SLOT0 | TRANSMIT_SLOT1, 6000);

…

dci_start();

…

while(1)
{
 dci_read(&left_channel, &right_channel);
 dci_write(&left_channel, &right_channel);
}

DMA

The Direct Memory Access (DMA) controller facilitates the transfer of data between the CPU and its peripherals
without the CPU's assistance. The transfer takes place between peripheral data registers and data space RAM. The
module has 8 channels and since each channel is unidirectional, two channels must be allocated to read and write to
a peripheral. Each DMA channel can move a block of up to 1024 data elements after it generates an interrupt to the
CPU to indicate that the lock is available for processing. Some of the key features of the DMA module are:

· Eight DMA Channels.
· Byte or word transfers.
· CPU interrupt after half or full block transfer complete.
· One-Shot or Auto-Repeat block transfer modes.
· Ping-Pong Mode (automatic switch between two DSPRAM start addresses after each block transfer is
complete).

Relevant Functions:

setup_dma(channel, peripheral,mode) Configures the DMA module to copy data from the specified
peripheral to RAM allocated for the DMA channel.

Functional Overview

45

dma_start(channel, mode,address) Starts the DMA transfer for the specified channel in the specified
mode of operation.

dma_status(channel)

This function will return the status of the specified channel in the
DMA module.

Relevant Preprocessor:
None

Relevant Interrupts :
#INT_DMAX Interrupt on channel X after DMA block or half block transfer.

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:
setup_dma(1,DMA_IN_SPI1,DMA_BYTE); Setup channel 1 of the DMA module to read the SPI1 channel in

byte mode.

dma_start(1, DMA_CONTINOUS| Start the DMA channel with the DMA RAM address of 0x2000
DMA_PING_PONG, 0x2000);

Data Signal Modulator

The Data Signal Modulator (DSM) allows the user to mix a digital data stream (the “modulator signal”) with a carrier
signal to produce a modulated output. Both the carrier and the modulator signals are supplied to the DSM module,
either internally from the output of a peripheral, or externally through an input pin. The modulated output signal is
generated by performing a logical AND operation of both the carrier and modulator signals and then it is provided to
the MDOUT pin. Using this method, the DSM can generate the following types of key modulation schemes:

 Frequency Shift Keying (FSK)

 Phase Shift Keying (PSK)

 On-Off Keying (OOK)

Relevant Functions:

(8 bit or 16 bit depending on the
device)

setup_dsm(mode,source,carrier)

Configures the DSM module and selects the source signal and carrier
signals.

setup_dsm(TRUE)

Enables the DSM module.

setup_dsm(FALSE)

Disables the DSM module.

Relevant Preprocessor:
None

Relevant Interrupts:
None

Relevant Include Files:
None, all functions built-in

PCD_March 2015-1

46

Relevant getenv() parameters: None

Example Code:
setup_dsm(DSM_ENABLED | //Enables DSM module with the output enabled and selects UART1
DSM_OUTPUT_ENABLED, //as the source signal and VSS as the high carrier signal and OC1's
DSM_SOURCE_UART1, //PWM output as the low carrier signal.
DSM_CARRIER_HIGH_VSS |
DSM_CARRIER_LOW_OC1);

if(input(PIN_B0))
 setup_dsm(FALSE);

Disable DSM module

else
 setup_dsm(TRUE);

Enable DSM module

Extended RAM

Some PIC24 devices have more than 30K of RAM. For these devices a special method is required to access the
RAM above 30K. This extended RAM is organized into pages of 32K bytes each, the first page of extended RAM
starts on page 1.

Relevant Functions:

write_extended_ram(p,addr,ptr,n); Writes n bytes from ptr to extended RAM page p starting at
address addr.

read_extended_ram(p,addr,ptr,n);

Reads n bytes from extended RAM page p starting a address addr
to ptr.

Relevant Preprocessor:
None

Relevant Interrupts :
None

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:
write_extended_ram(1,0x100,WriteData,8); //Writes 8 bytes from WriteData to addresses 0x100

//to 0x107 of extended RAM page 1.
read_extended_ram(1,0x100,ReadData,8); //Reads 8 bytes from addresses 0x100 to 0x107 of

//extended RAM page 1 to ReadData.

General Purpose I/O

These options let the user configure and use the I/O pins on the device. These functions will affect the pins that are
listed in the device header file.

Relevant Functions:

output_high(pin) Sets the given pin to high state.
output_low(pin) Sets the given pin to the ground state.

Functional Overview

47

output_float(pin) Sets the specified pin to the input mode. This will allow the pin to float high to
represent a high on an open collector type of connection.

output_x(value) Outputs an entire byte to the port.
output_bit(pin,value) Outputs the specified value (0,1) to the specified I/O pin.
input(pin) The function returns the state of the indicated pin.
input_state(pin) This function reads the level of a pin without changing the direction of the pin

as INPUT() does.
set_tris_x(value)

Sets the value of the I/O port direction register. A '1' is an input and '0' is for
output.

input_change_x() This function reads the levels of the pins on the port, and compares them to the
last time they were read to see if there was a change, 1 if there was, 0 if there
wasn't.

Relevant Preprocessor:
#USE STANDARD_IO(port) This compiler will use this directive be default and it will automatically inserts

code for the direction register whenever an I/O function like output_high() or
input() is used.

#USE FAST_IO(port) This directive will configure the I/O port to use the fast method of performing
I/O. The user will be responsible for setting the port direction register using the
set_tris_x() function.

#USE FIXED_IO
(port_outputs=;in,pin?)

This directive set particular pins to be used an input or output, and the compiler
will perform this setup every time this pin is used.

Relevant Interrupts:
None

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
PIN:pb

Returns a 1 if bit b on port p is on this part

Example Code:
#use fast_io(b)

...

Int8 Tris_value= 0x0F;

int1 Pin_value;

...

set_tris_b(Tris_value); //Sets B0:B3 as input and B4:B7 as output

output_high(PIN_B7); //Set the pin B7 to High

If(input(PIN_B0)){ //Read the value on pin B0, set B7 to low if pin B0 is high

output_high(PIN_B7);}

Input Capture

These functions allow for the configuration of the input capture module. The timer source for the input capture
operation can be set to either Timer 2 or Timer 3. In capture mode the value of the selected timer is copied to the
ICxBUF register when an input event occurs and interrupts can be configured to fire as needed.

Relevant Functions:

setup_capture(x, mode) Sets the operation mode of the input capture module x
get_capture(x, wait) Reads the capture event time from the ICxBUF result register. If wait is true,

program flow waits until a new result is present. Otherwise the oldest value in
the buffer is returned.

Relevant Preprocessor: None

PCD_March 2015-1

48

Relevant Interrupts:
INT_ICx

Interrupt fires on capture event as configured

Relevant Include Files: None, all functions built-in.

Relevant getenv() parameters: None

Example Code:
 setup_timer3(TMR_INTERNAL | TMR_DIV_BY_8);

 setup_capture(2, CAPTURE_FE | CAPTURE_TIMER3);

 while(TRUE) {

 timerValue = get_capture(2, TRUE);

 printf(“A module 2 capture event occurred at: %LU”, timerValue;

 }

Internal Oscillator

Two internal oscillators are present in PCD compatible chips, a fast RC and slow RC oscillator circuit. In many cases
(consult your target datasheet or family data sheet for target specifics) the fast RC oscillator may be connected to a
PLL system, allowing a broad range of frequencies to be selected. The Watchdog timer is derived from the slow
internal oscillator.

Relevant Functions:

setup_oscillator() Explicitly configures the oscillator.

Relevant Preprocessor: Specifies the values loaded in the device configuration memory.
#FUSES

May be used to setup the oscillator configuration.

Relevant Interrupts:
#int_oscfail Interrupts on oscillator failure

Relevant Include Files: None, all functions built-in

Relevant getenv() parameters:
CLOCK Returns the clock speed specified by #use delay()
FUSE_SETxxxx Returns 1 if the fuse xxxx is set.

Example Code: None

Interrupts

The following functions allow for the control of the interrupt subsystem of the microcontroller. With these functions,
interrupts can be enabled, disabled, and cleared. With the preprocessor directives, a default function can be called for
any interrupt that does not have an associated ISR, and a global function can replace the compiler generated
interrupt dispatcher.

Relevant Functions:

disable_interrupts() Disables the specified interrupt.

enable_interrupts() Enables the specified interrupt.

ext_int_edge() Enables the edge on which the edge interrupt should trigger. This can be
either rising or falling edge.

Functional Overview

49

clear_interrupt() This function will clear the specified interrupt flag. This can be used if a global
isr is used, or to prevent an interrupt from being serviced.

interrupt_active() This function checks the interrupt flag of specified interrupt and returns true if
flag is set.

interrupt_enabled() This function checks the interrupt enable flag of the specified interrupt and
returns TRUE if set.

Relevant Preprocessor:

 This directive tells the compiler to generate code for high priority interrupts.

 This directive tells the compiler that the specified interrupt should be treated
as a high priority interrupt.

#INT_XXX level=x x is an int 0-7, that selects the interrupt priority level for that interrupt.
#INT_XXX fast This directive makes use of shadow registers for fast register save.
 This directive can only be used in one ISR
Relevant Interrupts:
#int_default This directive specifies that the following function should be called if an

interrupt is triggered but no routine is associated with that interrupt.

#int_global This directive specifies that the following function should be called whenever
an interrupt is triggered. This function will replace the compiler generated
interrupt dispatcher.

#int_xxx This directive specifies that the following function should be called whenever
the xxx interrupt is triggered. If the compiler generated interrupt dispatcher is
used, the compiler will take care of clearing the interrupt flag bits.

Relevant Include Files:
none, all functions built in.

Relevant getenv() Parameters:
none

Example Code:
#int_timer0
void timer0interrupt() // #int_timer associates the following function with the
 // interrupt service routine that should be called
enable_interrupts(TIMER0); // enables the timer0 interrupt
disable_interrtups(TIMER0); // disables the timer0 interrupt
clear_interrupt(TIMER0); // clears the timer0 interrupt flag

Output Compare/PWM Overview

The following functions are used to configure the output compare module. The output compare has three modes of
functioning. Single compare, dual compare, and PWM. In single compare the output compare module simply
compares the value of the OCxR register to the value of the timer and triggers a corresponding output event on
match. In dual compare mode, the pin is set high on OCxR match and then placed low on an OCxRS match. This
can be set to either occur once or repeatedly. In PWM mode the selected timer sets the period and the OCxRS
register sets the duty cycle. Once the OC module is placed in PWM mode the OCxR register becomes read only so
the value needs to be set before placing the output compare module in PWM mode. For all three modes of operation,
the selected timer can either be Timer 2 or Timer 3.

Relevant Functions:

setup_comparex (x, mode)

Sets the mode of the output compare / PWM module x

set_comparex_time (x, ocr,
[ocrs])

Sets the OCR and optionally OCRS register values of module x.

PCD_March 2015-1

50

set_pwm_duty (x, value) Sets the PWM duty cycle of module x to the specified value

Relevant Preprocessor:
None

Relevant Interrupts:
INT_OCx Interrupt fires after a compare event has occurred

Relevant Include Files:
None, all functions built-in.

Relevant getenv() parameters:
None

Example Code:
 // Outputs a 1 second pulse on the OC2 PIN

 // using dual compare mode on a PIC
 // with an instruction clock of (20Mhz/4)

 int16 OCR_2 = 0x1000; // Start pulse when timer is at 0x1000

 int16 OCRS_2 = 0x5C4B; // End pulse after 0x04C4B timer counts (0x1000 + 0x04C4B

 // (1 sec)/[(4/20000000)*256] = 0x04C4B

 // 256 = timer prescaler value (set in code below)

set_compare_time(2, OCR_2, OCRS_2);

setup_compare(2, COMPARE_SINGLE_PULSE | COMPARE_TIMER3);

setup_timer3(TMR_INTERNAL | TMR_DIV_BY_256);

Motor Control PWM

These options lets the user configure the Motor Control Pulse Width Modulator (MCPWM) module. The MCPWM is
used to generate a periodic pulse waveform which is useful is motor control and power control applications. The
options for these functions vary depending on the chip and are listed in the device header file.

Relevant Functions:

setup_motor_pwm(pwm,options,
timebase);

Configures the motor control PWM module.

set_motor_pwm_duty(pwm,unit,time) Configures the motor control PWM unit duty.
set_motor_pwm_event(pwm,time) Configures the PWM event on the motor control unit.
set_motor_unit(pwm,unit,options,
active_deadtime, inactive_deadtime);

Configures the motor control PWM unit.

get_motor_pwm_event(pwm); Returns the PWM event on the motor control unit.

Relevant Preprocessor:
None

Relevant Interrupts :
#INT_PWM1 PWM Timebase Interrupt

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:
// Sets up the motor PWM module
setup_motor_pwm(1,MPWM_FREE_RUN | MPWM_SYNC_OVERRIDES, timebase);

// Sets the PWM1, Group 1 duty cycle value to 0x55

Functional Overview

51

set_motor_pwm_duty(1,1,0x55);

//Set the motor PWM event
set_motor_pmw_event(pwm,time);
//Enable pwm pair
set_motor_unit(1,1,mpwm_ENABLE,0,0); //Enables pwm1, Group 1 in complementary
 //mode, no deadtime

PMP/EPMP

The Parallel Master Port (PMP)/Enhanced Parallel Master Port (EPMP) is a parallel 8-bit/16-bit I/O module
specifically designed to communicate with a wide variety of parallel devices. Key features of the PMP module are:

· 8 or 16 Data lines
· Up to 16 or 32 Programmable Address Lines
· Up to 2 Chip Select Lines
· Programmable Strobe option
· Address Auto-Increment/Auto-Decrement
· Programmable Address/Data Multiplexing
· Programmable Polarity on Control Signals
· Legacy Parallel Slave(PSP) Support
· Enhanced Parallel Slave Port Support
· Programmable Wait States

Relevant Functions:

setup_pmp (options,address_mask) This will setup the PMP/EPMP module for various mode and specifies
which address lines to be used.

setup_psp (options,address_mask) This will setup the PSP module for various mode and specifies which
address lines to be used.

setup_pmp_csx(options,[offset]) Sets up the Chip Select X Configuration, Mode and Base Address registers
setup_psp_es(options) Sets up the Chip Select X Configuration and Mode registers
pmp_write (data) Write the data byte to the next buffer location.
psp_write(address,data)/
psp_write(data)

This will write a byte of data to the next buffer location or will write a byte to
the specified buffer location.

pmp_read() Reads a byte of data.
psp_read(address)/ psp_read() psp_read() will read a byte of data from the next buffer location and

psp_read (address) will read the buffer location address.
pmp_address(address) Configures the address register of the PMP module with the destination

address during Master mode operation.
pmp_overflow () This will return the status of the output buffer underflow bit.
pmp_input_full () This will return the status of the input buffers.
psp_input_full() This will return the status of the input buffers.
pmp_output_full() This will return the status of the output buffers.
psp_output_full() This will return the status of the output buffers.
Relevant Preprocessor:
None

Relevant Interrupts :
#INT_PMP Interrupt on read or write strobe

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:

PCD_March 2015-1

52

setup_pmp(PAR_ENABLE | Sets up Master mode with address lines PMA0:PMA7
PAR_MASTER_MODE_1 |
PAR_STOP_IN_IDLE,0x00FF);

If (pmp_output_full ())
{
pmp_write(next_byte);
}

Program Eeprom

The Flash program memory is readable and writable in some chips and is just readable in some. These options lets
the user read and write to the Flash program memory. These functions are only available in flash chips.

Relevant Functions:

read_program_eeprom(address) Reads the program memory location (16 bit or 32 bit
depending on the device).

write_program_eeprom(address, value) Writes value to program memory location address.

erase_program_eeprom(address) Erases FLASH_ERASE_SIZE bytes in program memory.

write_program_memory(address,dataptr,count) Writes count bytes to program memory from dataptr to
address. When address is a mutiple of FLASH_ERASE_SIZE
an erase is also performed.

read_program_memory(address,dataptr,count)

Read count bytes from program memory at address to dataptr.

write_rom_memory
(address, dataptr, count)

Writes count bytes to program memory from address (32 bits)

read_rom_memory (address, dataptr, count) Read count bytes to program memory from address (32 bits)

Relevant Preprocessor:
#ROM address={list} Can be used to put program memory data into the hex file.

#DEVICE(WRITE_EEPROM=ASYNC) Can be used with #DEVICE to prevent the write function from

hanging. When this is used make sure the eeprom is not
written both inside and outside the ISR.

Relevant Interrupts:
INT_EEPROM Interrupt fires when eeprom write is complete.

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters
PROGRAM_MEMORY Size of program memory
READ_PROGRAM Returns 1 if program memory can be read
FLASH_WRITE_SIZE Smallest number of bytes written in flash
FLASH_ERASE_SIZE Smallest number of bytes erased in flash

Example Code:

 #ROM 0x300={1,2,3,4} // Inserts this data into the hex file.
 erase_program_eeprom(0x00000300) // Erases 32 instruction locations starting at 0x0300

Functional Overview

53

;
 write_program_eeprom(0x00000300,0
x123456);

// Writes 0x123456 to 0x0300

 value=read_program_eeprom(0x0000
0300);

// Reads 0x0300 returns 0x123456

 write_program_memory(0x00000300,
data,12);

// Erases 32 instructions starting

 // at 0x0300 (multiple of erase block)
 // Writes 12 bytes from data to 0x0300
 read_program_memory(0x00000300,v
alue,12);

//reads 12 bytes to value from 0x0300

For chips where getenv(“FLASH_ERASE_SIZE”) > getenv(“FLASH_WRITE_SIZE”)
WRITE_PROGRAM_EEPROM - Writes 3 bytes, does not erase (use

ERASE_PROGRAM_EEPROM)
WRITE_PROGRAM_MEMORY - Writes any number of bytes, will erase a block whenever the

first (lowest) byte in a block is written to. If the first address is
not the start of a block that block is not erased

 - While writing, every fourth byte will be ignored. Fill ignored
bytes with 0x00. This is due to the 32 bit addressing and 24 bit
instruction length on the PCD devices.

WRITE_ROM_MEMORY - Writes any number of bytes, will erase a block whenever the
first (lowest) byte in a block is written to. If the first address is
not the start of a block that block is not erased.

ERASE_PROGRAM_EEPROM - Erases a block of size FLASH_ERASE_SIZE. The lowest
address bits are not used.

For chips where getenv(“FLASH_ERASE_SIZE”) = get(“FLASH_WRITE_SIZE”)
WRITE_PROGRAM_EEPROM - Writes 3 bytes, no erase is needed.
WRITE_PROGRAM_MEMORY - Writes any numbers of bytes, bytes outside the range of the

write block are not changed. No erase is needed.
 - While writing, every fourth byte will be ignored. Fill ignored

bytes with 0x00. This is due to the 32 bit addressing and 24 bit
instruction length on the PCD devices.

 WRITE_ROM_MEMORY

- Writes any numbers of bytes, bytes outside the range of the
write block are not changed. No erase is needed.

ERASE_PROGRAM_EEPROM - Erase a block of size FLASH_ERASE_SIZE. The lowest
address bits are not used.

QEI

The Quadrature Encoder Interface (QEI) module provides the interface to incremental encoders for obtaining
mechanical positional data.

Relevant Functions:

setup_qei(options,
filter,maxcount)

Configures the QEI module.

qei_status() Returns the status of the QUI module.

qei_set_count(value) Write a 16-bit value to the position counter.

qei_get_count()

Reads the current 16-bit value of the position counter.

Relevant Preprocessor:

PCD_March 2015-1

54

None

Relevant Interrupts :

#INT_QEI Interrupt on rollover or underflow of the position counter.

Relevant Include Files:

None, all functions built-in

Relevant getenv() parameters:

None

Example Code:

int16 Value;

setup_qei(QEI_MODE_X2 | Setup the QEI module

QEI_TIMER_INTERNAL,

QEI_FILTER_DIV_2,QEI_FORWARD);

Value = qei_get_count(); Read the count.

RS232 I/O

These functions and directives can be used for setting up and using RS232 I/O functionality.

Relevant Functions:

getc() or getch()
getchar() or fgetc()

Gets a character on the receive pin(from the specified stream in case of fgetc,
stdin by default). Use KBHIT to check if the character is available.

gets() or fgets() Gets a string on the receive pin(from the specified stream in case of fgets,
STDIN by default). Use getc to receive each character until return is
encountered.

putc() or putchar() or
fputc()

Puts a character over the transmit pin(on the specified stream in the case of
fputc, stdout by default)

puts() or fputs() Puts a string over the transmit pin(on the specified stream in the case of fputc,
stdout by default). Uses putc to send each character.

printf() or fprintf() Prints the formatted string(on the specified stream in the case of fprintf, stdout
by default). Refer to the printf help for details on format string.

Functional Overview

55

kbhit() Return true when a character is received in the buffer in case of hardware
RS232 or when the first bit is sent on the RCV pin in case of software RS232.
Useful for polling without waiting in getc.

setup_uart(baud,[stream])

or

setup_uart_speed(baud,[stream]) Used to change the baud rate of the hardware UART at run-time. Specifying
stream is optional. Refer to the help for more advanced options.

assert(condition) Checks the condition and if false prints the file name and line to STDERR. Will
not generate code if #DEFINE NODEBUG is used.

perror(message) Prints the message and the last system error to STDERR.

putc_send() or fputc_send() When using transmit buffer, used to transmit data from buffer. See function
description for more detail on when needed.

rcv_buffer_bytes() When using receive buffer, returns the number of bytes in buffer that still need
to be retrieved.

tx_buffer_bytes() When using transmit buffer, returns the number of bytes in buffer that still need
to be sent.

tx_buffer_full() When using transmit buffer, returns TRUE if transmit buffer is full.

receive_buffer_full() When using receive buffer, returns TRUE if receive buffer is full.

Relevant Interrupts:

INT_RDA Interrupt fires when the receive data available

INT_TBE Interrupt fires when the transmit data empty

Some chips have more than one hardware uart, and hence more interrupts.

Relevant Include Files:

None, all functions built-in

Relevant getenv() parameters:

UART Returns the number of UARTs on this PIC

AUART Returns true if this UART is an advanced UART

UART_RX Returns the receive pin for the first UART on this PIC (see PIN_XX)

UART_TX Returns the transmit pin for the first UART on this PIC

UART2_RX Returns the receive pin for the second UART on this PIC

UART2_TX TX – Returns the transmit pin for the second UART on this PIC

Example Code:

PCD_March 2015-1

56

/* configure and enable uart, use first hardware UART on PIC */

 #use rs232(uart1, baud=9600)

 /* print a string */

 printf(“enter a character”);

 /* get a character */

 if (kbhit()) //check if a character has been received

 c = getc(); //read character from UART

RTCC

The Real Time Clock and Calendar (RTCC) module is intended for applications where accurate time must be
maintained for extended periods of time with minimum or no intervention from the CPU. The key features of the
module are:

· Time: Hour, Minute and Seconds.
· 24-hour format (Military Time)
· Calendar: Weekday, Date, Month and Year.
· Alarm Configurable.
· Requirements: External 32.768 kHz Clock Crystal.

Relevant Functions:

setup_rtc (options,
calibration);

This will setup the RTCC module for operation and also allows for calibration
setup.

rtc_write(rtc_time_t datetime) Writes the date and time to the RTCC module.
rtc_read(rtctime_t datetime) Reads the current value of Time and Date from the RTCC module.
setup_rtc_alarm(options,
mask, repeat);

Configures the alarm of the RTCC module.

rtc_alarm_write(rtctime_t
datetime);

Writes the date and time to the alarm in the RTCC module.

rtc_alarm_read(rtctime_t
datetime);

Reads the date and time to the alarm in the RTCC module.

Relevant Preprocessor:
None

Relevant Interrupts :
#INT_RTC Interrupt on Alarm Event or half alarm frequency.

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:
setup_rtc(RTC_ENABLE |
RTC_OUTPUT_SECONDS,
0x00);

Enable RTCC module with seconds clock and no calibration.

rtc_write(datetime); Write the value of Date and Time to the RTC module
rtc_read(datetime); Reads the value to a structure time_t.

Functional Overview

57

RTOS

These functions control the operation of the CCS Real Time Operating System (RTOS). This operating system is
cooperatively multitasking and allows for tasks to be scheduled to run at specified time intervals. Because the RTOS
does not use interrupts, the user must be careful to make use of the rtos_yield() function in every task so that no one
task is allowed to run forever.

Relevant Functions:

rtos_run() Begins the operation of the RTOS. All task management tasks are
implemented by this function.

rtos_terminate() This function terminates the operation of the RTOS and returns operation to
the original program. Works as a return from the rtos_run()function.

rtos_enable(task) Enables one of the RTOS tasks. Once a task is enabled, the rtos_run()
function will call the task when its time occurs. The parameter to this
function is the name of task to be enabled.

rtos_disable(task) Disables one of the RTOS tasks. Once a task is disabled, the rtos_run()
function will not call this task until it is enabled using rtos_enable(). The
parameter to this function is the name of the task to be disabled.

rtos_msg_poll() Returns true if there is data in the task's message queue.

rtos_msg_read() Returns the next byte of data contained in the task's message queue.

rtos_msg_send(task,byte) Sends a byte of data to the specified task. The data is placed in the
receiving task's message queue.

rtos_yield() Called with in one of the RTOS tasks and returns control of the program to
the rtos_run() function. All tasks should call this function when finished.

rtos_signal(sem) Increments a semaphore which is used to broadcast the availability of a
limited resource.

rtos_wait(sem) Waits for the resource associated with the semaphore to become available
and then decrements to semaphore to claim the resource.

rtos_await(expre) Will wait for the given expression to evaluate to true before allowing the
task to continue.

rtos_overrun(task) Will return true if the given task over ran its alloted time.

rtos_stats(task,stat) Returns the specified statistic about the specified task. The statistics
include the minimum and maximum times for the task to run and the total
time the task has spent running.

Relevant Preprocessor:
#USE RTOS(options) This directive is used to specify several different RTOS attributes including

the timer to use, the minor cycle time and whether or not statistics should
be enabled.

#TASK(options) This directive tells the compiler that the following function is to be an RTOS
task.

#TASK

specifies the rate at which the task should be called, the maximum time the
task shall be allowed to run, and how large it's queue should be

Relevant Interrupts:
none

Relevant Include Files:
none all functions are built in

PCD_March 2015-1

58

Relevant getenv() Parameters:
none

Example Code:
#USE
RTOS(timer=0,minor_cycle=20ms)

 // RTOS will use timer zero, minor cycle will be 20ms

...
int sem;
...
#TASK(rate=1s,max=20ms,queue=5) // Task will run at a rate of once per second
void task_name(); // with a maximum running time of 20ms and
 // a 5 byte queue
rtos_run(); // begins the RTOS
rtos_terminate(); // ends the RTOS

rtos_enable(task_name); // enables the previously declared task.
rtos_disable(task_name); // disables the previously declared task

rtos_msg_send(task_name,5); // places the value 5 in task_names queue.
rtos_yield(); // yields control to the RTOS
rtos_sigal(sem); // signals that the resource represented by sem is available.

For more information on the CCS RTOS please

SPI

SPI™ is a fluid standard for 3 or 4 wire, full duplex communications named by Motorola. Most PIC devices support
most common SPI™ modes. CCS provides a support library for taking advantage of both hardware and software
based SPI™ functionality. For software support, see #USE SPI.

Relevant Functions:

setup_spi(mode)
setup_spi2(mode)
setup_spi3 (mode)
setup_spi4 (mode)

Configure the hardware SPI to the specified mode. The mode configures
setup_spi2(mode) thing such as master or slave mode, clock speed and
clock/data trigger configuration.

Note: for devices with dual SPI interfaces a second function, setup_spi2(), is provided to configure the
second interface.

spi_data_is_in() Returns TRUE if the SPI receive buffer has a byte of data.
spi_data_is_in2()

spi_write(value)
spi_write2(value)

Transmits the value over the SPI interface. This will cause the data to be
clocked out on the SDO pin.

spi_read(value)
spi_read2(value)

Performs an SPI transaction, where the value is clocked out on the SDO pin
and data clocked in on the SDI pin is returned. If you just want to clock in data
then you can use spi_read() without a parameter.

Relevant Preprocessor:
None

Relevant Interrupts:
#int_ssp
#int_ssp2

Transaction (read or write) has completed on the indicated peripheral.

#int_spi1 Interrupts on activity from the first SPI module
#int_spi2 Interrupts on activity from the second SPI module

Functional Overview

59

Relevant Include Files:
None, all functions built-in to the compiler.

Relevant getenv() Parameters:
SPI Returns TRUE if the device has an SPI peripheral

Example Code:
//configure the device to be a master, data transmitted on H-to-L clock transition
setup_spi(SPI_MASTER | SPI_H_TO_L | SPI_CLK_DIV_16);

spi_write(0x80); //write 0x80 to SPI device
value=spi_read(); //read a value from the SPI device
value=spi_read(0x80); //write 0x80 to SPI device the same time you are reading a value.

Timers

The 16-bit DSC and MCU families implement 16 bit timers. Many of these timers may be concatenated into a hybrid
32 bit timer. Also, one timer may be configured to use a low power 32.768 kHz oscillator which may be used as a real
time clock source.

Timer1 is a 16 bit timer. It is the only timer that may not be concatenated into a hybrid 32 bit timer. However, it alone
may use a synchronous external clock. This feature may be used with a low power 32.768 kHz oscillator to create a
real-time clock source.

Timers 2 through 9 are 16 bit timers. They may use external clock sources only asynchronously and they may not act
as low power real time clock sources. They may however be concatenated into 32 bit timers. This is done by
configuring an even numbered timer (timer 2, 4, 6 or 8) as the least significant word, and the corresponding odd
numbered timer (timer 3, 5, 7 or 9, respectively) as the most significant word of the new 32 bit timer.

Timer interrupts will occur when the timer overflows. Overflow will happen when the timer surpasses its period, which
by default is 0xFFFF. The period value may be changed when using setup_timer_X.

Relevant Functions:

setup_timer_X() Configures the timer peripheral. X may be any valid timer for the target device.
Consult the target datasheet or use getenv to find the valid timers.

get_timerX() Retrieves the current 16 bit value of the timer.
get_timerXY() Gets the 32 bit value of the concatenated timers X and Y (where XY may only be

23, 45, 67, 89)
set_timerX() Sets the value of timerX
set_timerXY() Sets the 32 bit value of the concatenated timers X and Y (where XY may only be

23, 45, 67, 89)

Relevant Preprocessor:
None

Relevant Interrupts:
#int_timerX Interrupts on timer overflow (period match). X is any valid timer number.
*When using a 32-bit timer, the odd numbered timer-interrupt of the hybrid timer must be used. (i.e. when
using 32-bit Timer23, #int_timer3)

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
TIMERX Returns 1 if the device has the timer peripheral X. X may be 1 - 9

Example Code:

PCD_March 2015-1

60

/* Setup timer1 as an external real time clock that increments every 16 clock cycles */
setup_timer1(T1_EXTERNAL_RTC | T2_DIV_BY_16);

/* Setup timer2 as a timer that increments on every instruction cycle and has a period of 0x0100 */
setup_timer2(TMR_INTERNAL, 0x0100);
byte value = 0x00;
value = get_timer2(); //retrieve the current value of timer2

TimerA

These options lets the user configure and use timerA. It is available on devices with Timer A hardware. The
clock/counter is 8 bit. It counts up and also provides interrupt on overflow. The options available are listed in the
device's header file.

Relevant Functions:

setup_timer_A(mode) Disable or sets the source and prescale for timerA

set_timerA(value) Initializes the timerA clock/counter

value=get_timerA() Returns the value of the timerA clock/counter

Relevant Preprocessor:
None

Relevant Interrupts :
INT_TIMERA Interrupt fires when timerA overflows

Relevant Include Files: None, all functions built-in

Relevant getenv() parameters:
TIMERA Returns 1 if the device has timerA

Example Code:
setup_timer_A(TA_OFF); //disable timerA
or
setup_timer_A //sets the internal clock as source
(TA_INTERNAL | TA_DIV_8); //and prescale as 8. At 20MHz timerA will increment
 //every 1.6us in this setup and overflows every

 //409.6us
set_timerA(0); //this sets timerA register to 0
time=get_timerA(); //this will read the timerA register value

TimerB

These options lets the user configure and use timerB. It is available on devices with TimerB hardware. The
clock/counter is 8 bit. It counts up and also provides interrupt on overflow. The options available are listed in the
device's header file.

Relevant Functions:

setup_timer_B(mode) Disable or sets the source and prescale for timerB

set_timerB(value) Initializes the timerB clock/counter

value=get_timerB() Returns the value of the timerB clock/counter

Relevant Preprocessor:
None

Functional Overview

61

Relevant Interrupts :
INT_TIMERB Interrupt fires when timerB overflows

Relevant Include Files: None, all functions built-in

Relevant getenv() parameters:
TIMERB Returns 1 if the device has timerB

Example Code:
setup_timer_B(TB_OFF); //disable timerB

or
setup_timer_B //sets the internal clock as source
(TB_INTERNAL | TB_DIV_8); //and prescale as 8. At 20MHz timerB will increment
 //every 1.6us in this setup and overflows every

 //409.6us

set_timerB(0); //this sets timerB register to 0
time=get_timerB(); //this will read the timerB register value

Voltage Reference

These functions configure the votlage reference module. These are available only in the supported chips.

Relevant Functions:

setup_vref(mode | value) Enables and sets up the internal voltage

reference value. Constants are defined in the

device's .h file.

Relevant Preprocesser:

none

Relevant Interrupts:

none

Relevant Include Files:

none, all functions built-in

Relevant getenv() parameters:

VREF Returns 1 if the device has VREF

Example code:

for PIC12F675

#INT_COMP //comparator interrupt handler

void isr() {

 safe_conditions = FALSE;

 printf("WARNING!!!! Voltage level is above

3.6V. \r\n");

}

setup_comparator(A1_VR_OUT_ON_A2)//sets

PCD_March 2015-1

62

2 comparators(A1 and VR and A2 as output)

{

 setup_vref(VREF_HIGH | 15);//sets 3.6(vdd

* value/32 + vdd/4) if vdd is 5.0V

 enable_interrupts(INT_COMP); // enable

the comparator interrupt

 enable_interrupts(GLOBAL); //enable

global interrupts

}

WDT or Watch Dog Timer

Different chips provide different options to enable/disable or configure the WDT.

Relevant Functions:

setup_wdt() Enables/disables the wdt or sets the prescalar.
restart_wdt() Restarts the wdt, if wdt is enables this must be periodically called to prevent a

timeout reset.

For PCB/PCM chips it is enabled/disabled using WDT or NOWDT fuses whereas on PCH device it is done
using the setup_wdt function.

The timeout time for PCB/PCM chips are set using the setup_wdt function and on PCH using fuses like
WDT16, WDT256 etc.
RESTART_WDT when specified in #USE DELAY, #USE I2C and #USE RS232 statements like this #USE
DELAY(clock=20000000, restart_wdt) will cause the wdt to restart if it times out during the delay or I2C_READ
or GETC.

Relevant Preprocessor:
#FUSES WDT/NOWDT Enabled/Disables wdt in PCB/PCM devices
#FUSES WDT16 Sets ups the timeout time in PCH devices

Relevant Interrupts:
None

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:
For PIC16F877
#fuses wdt
 setup_wdt(WDT_2304MS);

 while(true){
 restart_wdt();
 perform_activity();
 }
For PIC18F452
#fuse WDT1
setup_wdt(WDT_ON);
while(true){
 restart_wdt();

Functional Overview

63

 perform_activity();
 }
Some of the PCB chips are share the WDT prescalar bits with timer0 so the WDT prescalar constants can be
used with setup_counters or setup_timer0 or setup_wdt functions.

interrupt_enabled()

This function checks the interrupt enabled flag for the specified interrupt and returns
TRUE if set.

Syntax interrupt_enabled(interrupt);

Parameters interrupt- constant specifying the interrupt
Returns Boolean value
Function The function checks the interrupt enable flag of the specified interrupt and

returns TRUE when set.
Availability Devices with interrupts
Requires Interrupt constants defined in the device's .h file.

Examples if(interrupt_enabled(INT_RDA))
 disable_interrupt(INT_RDA);

Example Files None
Also see DISABLE_INTERRUPTS(_)Interrupts Overview, CLEAR_INTERRUPT(),

,ENABLE_INTERRUPTS(),INTERRUPT_ACTIVE()

Stream I/O

Syntax: #include <ios.h> is required to use any of the ios identifiers.

Output: output:

stream << variable_or_constant_or_manipulator ;

 one or more repeats
stream may be the name specified in the #use RS232 stream= option

or for the default stream use cout.

stream may also be the name of a char array. In this case the data is

written to the array with a 0 terminator.

stream may also be the name of a function that accepts a single char

parameter. In this case the function is called for each character to be output.

variables/constants: May be any integer, char, float or fixed type. Char arrays are

output as strings and all other types are output as an address of the variable.

manipulators:

hex -Hex format numbers
dec- Decimal format numbers (default)
setprecision(x) -Set number of places after the decimal point
setw(x) -Set total number of characters output for numbers
boolalpha- Output int1 as true and false
noboolalpha -Output int1 as 1 and 0 (default)
fixed Floats- in decimal format (default)
scientific Floats- use E notation

PCD_March 2015-1

64

iosdefault- All manipulators to default settings
endl -Output CR/LF
ends- Outputs a null ('\000')

Examples: cout << "Value is " << hex << data << endl;
cout << "Price is $" << setw(4) << setprecision(2) << cost << endl;
lcdputc << '\f' << setw(3) << count << " " << min << " " << max;
string1 << setprecision(1) << sum / count;
string2 << x << ',' << y;

Input: stream >> variable_or_constant_or_manipulator ;

 one or more repeats
stream may be the name specified in the #use RS232 stream= option
or for the default stream use cin.

stream may also be the name of a char array. In this case the data is
read from the array up to the 0 terminator.

stream may also be the name of a function that returns a single char and has
no parameters. In this case the function is called for each character to be input.
Make sure the function returns a \r to terminate the input statement.

variables/constants: May be any integer, char, float or fixed type. Char arrays are
input as strings. Floats may use the E format.
Reading of each item terminates with any character not valid for the type. Usually
items are separated by spaces. The termination character is discarded. At the end
of any stream input statement characters are read until a return (\r) is read. No
 termination character is read for a single char input.

manipulators:
hex -Hex format numbers
dec- Decimal format numbers (default)
noecho- Suppress echoing
strspace- Allow spaces to be input into strings
nostrspace- Spaces terminate string entry (default)
iosdefault -All manipulators to default settings

Examples: cout << "Enter number: ";
cin >> value;
cout << "Enter title: ";
cin >> strspace >> title;
cin >> data[i].recordid >> data[i].xpos >> data[i].ypos >> data[i].sample ;
string1 >> data;
lcdputc << "\fEnter count";
lcdputc << keypadgetc >> count; // read from keypad, echo to lcd
 // This syntax only works with
 // user defined functions.

65

PREPROCESSOR

PRE-PROCESSOR DIRECTORY

Pre-processor directives all begin with a # and are followed by a specific command. Syntax is dependent on the
command. Many commands do not allow other syntactical elements on the remainder of the line. A table of
commands and a description is listed on the previous page.

Several of the pre-processor directives are extensions to standard C. C provides a pre-processor directive that
compilers will accept and ignore or act upon the following data. This implementation will allow any pre-processor
directives to begin with #PRAGMA. To be compatible with other compilers, this may be used before non-standard
features.

Examples:
Both of the following are valid
#INLINE

#PRAGMA INLINE

Standard C

#IF expr #DEFINE #LIST

#IFDEF #UNDEF #NOLIST

#IFNDEF #INCLUDE #PRAGMA

#ELSE #WARNING #ERROR

#ELIF #ENDIF DEFINEDINC

Function
Qualifier

#INLINE #INT_xxxx #INT_GLOBAL

#SEPARATE #INT_DEFAULT #RECURSIVE

#INT_AUX #INT_xxxx a

Pre-Defined
Identifier

__DATE_ _ __LINE_ _ __PCH_ _

__DEVICE_ _ __FILENAME_ _ __PCM_ _

__FILE_ _ __TIME__ __PCB_ _

__ADDRESS__ __UNICODE__ __PCD__

__BUILDCOUNT__

RTOS #TASK #USE RTOS

Device
Specification

#DEVICE chip #ID "filename" #HEXCOMMENT

#FUSES #ID number #ID CHECKSUM

#SERIALIZE #PIN_SELECT a

Built-in
Libraries

#USE DELAY #USE FIXED_IO #USE RS232

#USE FAST_IO #USE I2C #USE STANDARD_IO

#USE SPI #USE TOUCHPAD #USE TIMER

#USE CAPTURE #USE PWM #USE PROFILE

Memory
Control

#ASM #ENDASM #ROM

#BIT #FILL_ROM #TYPE

#USE DYNAMIC_MEMORY #LOCATE #ZERO_RAM

PCD_March 2015-1

66

#LINE #ORG #WORD

#RESERVE #BYTE

Compiler
Control

#CASE #IMPORT #PRIORITY

#EXPORT #OPT #OCS

#IGNORE_WARNINGS #MODULE #PROFILE

Linker #IMPORT #EXPORT #BUILD

__address__

A predefined symbol __address__ may be used to indicate a type that must
hold a program memory address.

For example:

___address__ testa = 0x1000 //will allocate 16 bits for test a and

 //initialize to 0x1000

_attribute_x

Syntax: __attribute__x

Elements: x is the attribute you want to apply. Valid values for x are as follows:

((packed))

By default each element in a struct or union are padded to be evenly spaced by the size of 'int'. This
is to prevent an address fault when accessing an element of struct. See the following example:
struct
{
 int8 a;
 int16 b;
 } test;

On architectures where 'int' is 16bit (such as dsPIC or PIC24 PICmicrocontrollers), 'test' would take 4
bytes even though it is comprised of3 bytes. By applying the 'packed' attribute to this struct then it
would take 3 bytes as originally intended:
struct __attribute__((packed))
{
 int8 a;
 int16 b;
 } test;

Care should be taken by the user when accessing individual elements of a packed struct – creating a
pointer to 'b' in 'test' and attempting to dereference that pointer would cause an address fault. Any
attempts to read/write 'b' should be done in context of 'test' so the compiler knows it is packed:
test.b = 5;

((aligned(y))

By default the compiler will alocate a variable in the first free memory location. The aligned attribute
will force the compiler to allocate a location for the specified variable at a location that is modulus of
the y parameter. For example:

PreProcessor

67

 int8 array[256] __attribute__((aligned(0x1000)));

This will tell the compiler to try to place 'array' at either 0x0, 0x1000, 0x2000, 0x3000, 0x4000, etc.
Purpose To alter some specifics as to how the compiler operates

Examples: struct __attribute__((packed))
{
 int8 a;
 int8 b;
} test;
int8 array[256] __attribute__((aligned(0x1000)));

Example Files: None

#asm #endasm #asm asis

Syntax: #ASM or #ASM ASIS code #ENDASM

Elements: code is a list of assembly language instructions

Examples: int find_parity(int data){

 int count;

 #asm

 MOV #0x08, W0

 MOV W0, count

 CLR W0

 loop:

 XOR.B data,W0

 RRC data,W0

 DEC count,F

 BRA NZ, loop

 MOV #0x01,W0

 ADD count,F

 MOV count, W0

 MOV W0. _RETURN_

 #endasm

}

Example Files: ex_glint.c

Also See: None

ADD Wa,Wb,Wd Wd = Wa+Wb

ADD f,W W0 = f+Wd
ADD lit10,Wd Wd = lit10+Wd
ADD Wa,lit5,Wd Wd = lit5+Wa
ADD f,F f = f+Wd
ADD acc Acc = AccA+AccB
ADD Wd,{lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B lit10,Wd Wd = lit10+Wd (byte)
ADD Wd,{lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B lit10,Wd Wd = lit10+Wd (byte)
ADD.B f,F f = f+Wd (byte)
ADD.B Wa,Wb,Wd Wd = Wa+Wb (byte)

PCD_March 2015-1

68

ADD.B Wa,lit5,Wd Wd = lit5+Wa (byte)
ADD.B f,W W0 = f+Wd (byte)
ADDC f,W W

d

=

f
+
W
a
+
C

ADDC lit10,Wd Wd = lit10+Wd+C
ADDC Wa,lit5,Wd Wd = lit5+Wa+C
ADDC f,F Wd = f+Wa+C
ADDC Wa,Wb,Wd Wd = Wa+Wb+C
ADDC.B lit10,Wd Wd = lit10+Wd+C (byte)
ADDC.B Wa,Wb,Wd Wd = Wa+Wb+C (byte)
ADDC.B Wa,lit5,Wd Wd = lit5+Wa+C (byte)
ADDC.B f,W Wd = f+Wa+C (byte)
ADDC.B f,F Wd = f+Wa+C (byte)
AND Wa,Wb,Wd Wd = Wa.&.Wb
AND lit10,Wd Wd = lit10.&.Wd
AND f,W W0 = f.&.Wa
AND f,F f = f.&.Wa
AND Wa,lit5,Wd Wd = lit5.&.Wa
AND.B f,W W0 = f.&.Wa (byte)
AND.B Wa,Wb,Wd Wd = Wa.&.Wb (byte)
AND.B lit10,Wd Wd = lit10.&.Wd (byte)
AND.B f,F f = f.&.Wa (byte)
AND.B Wa,lit5,Wd Wd = lit5.&.Wa (byte)
ASR f,W W0 = f >> 1 arithmetic
ASR f,F f = f >> 1 arithmetic
ASR Wa,Wd Wd = Wa >> 1 arithmetic
ASR Wa,lit4,Wd Wd = Wa >> lit4 arithmetic
ASR Wa,Wb,Wd Wd = Wa >> Wb arithmetic
ASR.B f,F f = f >> 1 arithmetic (byte)
ASR.B f,W W0 = f >> 1 arithmetic (byte)
ASR.B Wa,Wd Wd = Wa >> 1 arithmetic (byte)
BCLR f,B f.bit = 0
BCLR Wd,B Wa.bit = 0
BCLR.B Wd,B Wa.bit = 0 (byte)
BRA a Branch unconditionally
BRA Wd Branch PC+Wa
BRA BZ a Branch if Zero
BRA C a Branch if Carry (no borrow)
BRA GE a Branch if greater than or equal
BRA GEU a Branch if unsigned greater than or equal
BRA GT a Branch if greater than
BRA GTU a Branch if unsigned greater than
BRA LE a Branch if less than or equal
BRA LEU a Branch if unsigned less than or equal
BRA LT a Branch if less than
BRA LTU a Branch if unsigned less than
BRA N a Branch if negative
BRA NC a Branch if not carry (Borrow)
BRA NN a Branch if not negative
BRA NOV a Branch if not Overflow
BRA NZ a Branch if not Zero
BRA OA a Branch if Accumulator A overflow
BRA OB a Branch if Accumulator B overflow

PreProcessor

69

BRA OV a Branch if Overflow
BRA SA a Branch if Accumulator A Saturate
BRA SB a Branch if Accumulator B Saturate
BRA Z a Branch if Zero
BREAK ICD Break
BSET Wd,B Wa.bit = 1
BSET f,B f.bit = 1
BSET.B Wd,B Wa.bit = 1 (byte)
BSW.C Wa,Wd Wa.Wb = C
BSW.Z Wa,Wd Wa.Wb = Z
BTG Wd,B Wa.bit = ~Wa.bit
BTG f,B f.bit = ~f.bit
BTG.B Wd,B Wa.bit = ~Wa.bit (byte)
BTSC f,B Skip if f.bit = 0
BTSC Wd,B Skip if Wa.bit4 = 0
BTSS f,B Skip if f.bit = 1
BTSS Wd,B Skip if Wa.bit = 1
BTST f,B Z = f.bit
BTST.C Wa,Wd C = Wa.Wb
BTST.C Wd,B C = Wa.bit
BTST.Z Wd,B Z = Wa.bit
BTST.Z Wa,Wd Z = Wa.Wb
BTSTS f,B Z = f.bit; f.bit = 1
BTSTS.C Wd,B C = Wa.bit; Wa.bit = 1
BTSTS.Z Wd,B Z = Wa.bit; Wa.bit = 1
CALL a Call subroutine
CALL Wd Call [Wa]
CLR f,F f = 0
CLR acc,da,dc,pi Acc = 0; prefetch=0
CLR f,W W0 = 0
CLR Wd Wd = 0
CLR.B f,W W0 = 0 (byte)
CLR.B Wd Wd = 0 (byte)
CLR.B f,F f = 0 (byte)
CLRWDT Clear WDT
COM f,F f = ~f
COM f,W W0 = ~f
COM Wa,Wd Wd = ~Wa
COM.B f,W W0 = ~f (byte)
COM.B Wa,Wd Wd = ~Wa (byte)
COM.B f,F f = ~f (byte)
CP W,f Status set for f - W0
CP Wa,Wd Status set for Wb â€“ Wa
CP Wd,lit5 Status set for Wa â€“ lit5
CP.B W,f Status set for f - W0 (byte)
CP.B Wa,Wd Status set for Wb â€“ Wa (byte)
CP.B Wd,lit5 Status set for Wa â€“ lit5 (byte)
CP0 Wd Status set for Wa â€“ 0
CP0 W,f Status set for f â€“ 0
CP0.B Wd Status set for Wa â€“ 0 (byte)
CP0.B W,f Status set for f â€“ 0 (byte)
CPB Wd,lit5 Status set for Wa â€“ lit5 â€“ C
CPB Wa,Wd Status set for Wb â€“ Wa â€“ C
CPB W,f Status set for f â€“ W0 - C
CPB.B Wa,Wd Status set for Wb â€“ Wa â€“ C (byte)
CPB.B Wd,lit5 Status set for Wa â€“ lit5 â€“ C (byte)
CPB.B W,f Status set for f â€“ W0 - C (byte)
CPSEQ Wa,Wd Skip if Wa = Wb
CPSEQ.B Wa,Wd Skip if Wa = Wb (byte)
CPSGT Wa,Wd Skip if Wa > Wb
CPSGT.B Wa,Wd Skip if Wa > Wb (byte)
CPSLT Wa,Wd Skip if Wa < Wb

PCD_March 2015-1

70

CPSLT.B Wa,Wd Skip if Wa < Wb (byte)
CPSNE Wa,Wd Skip if Wa != Wb
CPSNE.B Wa,Wd Skip if Wa != Wb (byte)
DAW.B Wd Wa = decimal adjust Wa
DEC Wa,Wd Wd = Wa â€“ 1
DEC f,W W0 = f â€“ 1
DEC f,F f = f â€“ 1
DEC.B f,F f = f â€“ 1 (byte)
DEC.B f,W W0 = f â€“ 1 (byte)
DEC.B Wa,Wd Wd = Wa â€“ 1 (byte)
DEC2 Wa,Wd Wd = Wa â€“ 2
DEC2 f,W W0 = f â€“ 2
DEC2 f,F f = f â€“ 2
DEC2.B Wa,Wd Wd = Wa â€“ 2 (byte)
DEC2.B f,W W0 = f â€“ 2 (byte)
DEC2.B f,F f = f â€“ 2 (byte)
DISI lit14 Disable Interrupts lit14 cycles
DIV.S Wa,Wd Signed 16/16-bit integer divide
DIV.SD Wa,Wd Signed 16/16-bit integer divide (dword)
DIV.U Wa,Wd UnSigned 16/16-bit integer divide
DIV.UD Wa,Wd UnSigned 16/16-bit integer divide (dword)
DIVF Wa,Wd Signed 16/16-bit fractional divide
DO lit14,a Do block lit14 times
DO Wd,a Do block Wa times
ED Wd*Wd,acc,da,db Euclidean Distance (No Accumulate)
EDAC Wd*Wd,acc,da,db Euclidean Distance
EXCH Wa,Wd Swap Wa and Wb
FBCL Wa,Wd Find bit change from left (Msb) side
FEX ICD Execute
FF1L Wa,Wd Find first one from left (Msb) side
FF1R Wa,Wd Find first one from right (Lsb) side
GOTO a GoTo
GOTO Wd GoTo [Wa]
INC f,W W0 = f + 1
INC Wa,Wd Wd = Wa + 1
INC f,F f = f + 1
INC.B Wa,Wd Wd = Wa + 1 (byte)
INC.B f,F f = f + 1 (byte)
INC.B f,W W0 = f + 1 (byte)
INC2 f,W W0 = f + 2
INC2 Wa,Wd Wd = Wa + 2
INC2 f,F f = f + 2
INC2.B f,W W0 = f + 2 (byte)
INC2.B f,F f = f + 2 (byte)
INC2.B Wa,Wd Wd = Wa + 2 (byte)
IOR lit10,Wd Wd = lit10 | Wd
IOR f,F f = f | Wa
IOR f,W W0 = f | Wa
IOR Wa,lit5,Wd Wd = Wa.|.lit5
IOR Wa,Wb,Wd Wd = Wa.|.Wb
IOR.B Wa,Wb,Wd Wd = Wa.|.Wb (byte)
IOR.B f,W W0 = f | Wa (byte)
IOR.B lit10,Wd Wd = lit10 | Wd (byte)
IOR.B Wa,lit5,Wd Wd = Wa.|.lit5 (byte)
IOR.B f,F f = f | Wa (byte)
LAC Wd,{lit4},acc Acc = Wa shifted slit4
LNK lit14 Allocate Stack Frame
LSR f,W W0 = f >> 1
LSR Wa,lit4,Wd Wd = Wa >> lit4
LSR Wa,Wd Wd = Wa >> 1
LSR f,F f = f >> 1
LSR Wa,Wb,Wd Wd = Wb >> Wa

PreProcessor

71

LSR.B f,W W0 = f >> 1 (byte)
LSR.B f,F f = f >> 1 (byte)
LSR.B Wa,Wd Wd = Wa >> 1 (byte)
MAC Wd*Wd,acc,da,dc Acc = Acc + Wa * Wa; {prefetch}
MAC Wd*Wc,acc,da,dc,pi Acc = Acc + Wa * Wb; {[W13] = Acc}; {prefetch}
MOV W,f f = Wa
MOV f,W W0 = f
MOV f,F f = f
MOV Wd,? F = Wa
MOV Wa+lit,Wd Wd = [Wa +Slit10]
MOV ?,Wd Wd = f
MOV lit16,Wd Wd = lit16
MOV Wa,Wd Wd = Wa
MOV Wa,Wd+lit [Wd + Slit10] = Wa
MOV.B lit8,Wd Wd = lit8 (byte)
MOV.B W,f f = Wa (byte)
MOV.B f,W W0 = f (byte)
MOV.B f,F f = f (byte)
MOV.B Wa+lit,Wd Wd = [Wa +Slit10] (byte)
MOV.B Wa,Wd+lit [Wd + Slit10] = Wa (byte)
MOV.B Wa,Wd Wd = Wa (byte)
MOV.D Wa,Wd Wd:Wd+1 = Wa:Wa+1
MOV.D Wa,Wd Wd:Wd+1 = Wa:Wa+1
MOVSAC acc,da,dc,pi Move ? to ? and ? To ?
MPY Wd*Wc,acc,da,dc Acc = Wa*Wb
MPY Wd*Wd,acc,da,dc Square to Acc
MPY.N Wd*Wc,acc,da,dc Acc = -(Wa*Wb)
MSC Wd*Wc,acc,da,dc,pi Acc = Acc â€“ Wa*Wb
MUL W,f W3:W2 = f * Wa
MUL.B W,f W3:W2 = f * Wa (byte)
MUL.SS Wa,Wd {Wd+1,Wd}= sign(Wa) * sign(Wb)
MUL.SU Wa,Wd {Wd+1,Wd} = sign(Wa) * unsign(Wb)
MUL.SU Wa,lit5,Wd {Wd+1,Wd}= sign(Wa) * unsign(lit5)
MUL.US Wa,Wd {Wd+1,Wd} = unsign(Wa) * sign(Wb)
MUL.UU Wa,Wd {Wd+1,Wd} = unsign(Wa) * unsign(Wb)
MUL.UU Wa,lit5,Wd {Wd+1,Wd} = unsign(Wa) * unsign(lit5)
NEG f,F f = - f
PUSH Wd Push Wa to TOS
PUSH.D Wd PUSH double Wa:Wa + 1 to TOS
PUSH.S PUSH shadow registers
PWRSAV lit1 Enter Power-saving mode lit1
RCALL a Call (relative)
RCALL Wd Call Wa
REPEAT lit14 Repeat next instruction (lit14 + 1) times
REPEAT Wd Repeat next instruction (Wa + 1) times
RESET Reset
RETFIE Return from interrupt enable
RETLW lit10,Wd Return; Wa = lit10
RETLW.B lit10,Wd Return; Wa = lit10 (byte)
RETURN Return
RLC Wa,Wd Wd = rotate left through Carry Wa
RLC f,F f = rotate left through Carry f
RLC f,W W0 = rotate left through Carry f
RLC.B f,F f = rotate left through Carry f (byte)
RLC.B f,W W0 = rotate left through Carry f (byte)
RLC.B Wa,Wd Wd = rotate left through Carry Wa (byte)
RLNC Wa,Wd Wd = rotate left (no Carry) Wa
RLNC f,F f = rotate left (no Carry) f
RLNC f,W W0 = rotate left (no Carry) f
RLNC.B f,W W0 = rotate left (no Carry) f (byte)
RLNC.B Wa,Wd Wd = rotate left (no Carry) Wa (byte)
RLNC.B f,F f = rotate left (no Carry) f (byte)

PCD_March 2015-1

72

RRC f,F f = rotate right through Carry f
RRC Wa,Wd Wd = rotate right through Carry Wa
RRC f,W W0 = rotate right through Carry f
RRC.B f,W W0 = rotate right through Carry f (byte)
RRC.B f,F f = rotate right through Carry f (byte)
RRC.B Wa,Wd Wd = rotate right through Carry Wa (byte)
RRNC f,F f = rotate right (no Carry) f
RRNC f,W W0 = rotate right (no Carry) f
RRNC Wa,Wd Wd = rotate right (no Carry) Wa
RRNC.B f,F f = rotate right (no Carry) f (byte)
RRNC.B Wa,Wd Wd = rotate right (no Carry) Wa (byte)
RRNC.B f,W W0 = rotate right (no Carry) f (byte)
SAC acc,{lit4},Wd Wd = Acc slit 4
SAC.R acc,{lit4},Wd Wd = Acc slit 4 with rounding
SE Wa,Wd Wd = sign-extended Wa
SETM Wd Wd = 0xFFFF
SETM f,F W0 = 0xFFFF
SETM.B Wd Wd = 0xFFFF (byte)
SETM.B f,W W0 = 0xFFFF (byte)
SETM.B f,F W0 = 0xFFFF (byte)
SFTAC acc,Wd Arithmetic shift Acc by (Wa)
SFTAC acc,lit5 Arithmetic shift Acc by Slit6
SL f,W W0 = f << 1
SL Wa,Wb,Wd Wd = Wa << Wb
SL Wa,lit4,Wd Wd = Wa << lit4
SL Wa,Wd Wd = Wa << 1
SL f,F f = f << 1
SL.B f,W W0 = f << 1 (byte)
SL.B Wa,Wd Wd = Wa << 1 (byte)
SL.B f,F f = f << 1 (byte)
SSTEP ICD Single Step
SUB f,F f = f â€“ W0
SUB f,W W0 = f â€“ W0
SUB Wa,Wb,Wd Wd = Wa â€“ Wb
SUB Wa,lit5,Wd Wd = Wa â€“ lit5
SUB acc Acc = AccA â€“ AccB
SUB lit10,Wd Wd = Wd â€“ lit10
SUB.B Wa,lit5,Wd Wd = Wa â€“ lit5 (byte)
SUB.B lit10,Wd Wd = Wd â€“ lit10 (byte)
SUB.B f,W W0 = f â€“ W0 (byte)
SUB.B Wa,Wb,Wd Wd = Wa â€“ Wb (byte)
SUB.B f,F f = f â€“ W0 (byte)
SUBB f,W W0 = f â€“ W0 â€“ C
SUBB Wa,Wb,Wd Wd = Wa â€“ Wb â€“ C
SUBB f,F f = f â€“ W0 â€“ C
SUBB Wa,lit5,Wd Wd = Wa â€“ lit5 - C
SUBB lit10,Wd Wd = Wd â€“ lit10 â€“ C
SUBB.B lit10,Wd Wd = Wd â€“ lit10 â€“ C (byte)
SUBB.B Wa,Wb,Wd Wd = Wa â€“ Wb â€“ C (byte)
SUBB.B f,F f = f â€“ W0 â€“ C (byte)
SUBB.B Wa,lit5,Wd Wd = Wa â€“ lit5 - C (byte)
SUBB.B f,W W0 = f â€“ W0 â€“ C (byte)
SUBBR Wa,lit5,Wd Wd = lit5 â€“ Wa - C
SUBBR f,W W0 = W0 â€“ f â€“ C
SUBBR f,F f = W0 â€“ f â€“ C
SUBBR Wa,Wb,Wd Wd = Wa â€“ Wb - C
SUBBR.B f,F f = W0 â€“ f â€“ C (byte)
SUBBR.B f,W W0 = W0 â€“ f â€“ C (byte)
SUBBR.B Wa,Wb,Wd Wd = Wa â€“ Wb - C (byte)
SUBBR.B Wa,lit5,Wd Wd = lit5 â€“ Wa - C (byte)
SUBR Wa,lit5,Wd Wd = lit5 â€“ Wb
SUBR f,F f = W0 â€“ f

PreProcessor

73

SUBR Wa,Wb,Wd Wd = Wa â€“ Wb
SUBR f,W W0 = W0 â€“ f
SUBR.B Wa,Wb,Wd Wd = Wa â€“ Wb (byte)
SUBR.B f,F f = W0 â€“ f (byte)
SUBR.B Wa,lit5,Wd Wd = lit5 â€“ Wb (byte)
SUBR.B f,W W0 = W0 â€“ f (byte)
SWAP Wd Wa = byte or nibble swap Wa
SWAP.B Wd Wa = byte or nibble swap Wa (byte)
TBLRDH Wa,Wd Wd = ROM[Wa] for odd ROM
TBLRDH.B Wa,Wd Wd = ROM[Wa] for odd ROM (byte)
TBLRDL Wa,Wd Wd = ROM[Wa] for even ROM
TBLRDL.B Wa,Wd Wd = ROM[Wa] for even ROM (byte)
TBLWTH Wa,Wd ROM[Wa] = Wd for odd ROM
TBLWTH.B Wa,Wd ROM[Wa] = Wd for odd ROM (byte)
TBLWTL Wa,Wd ROM[Wa] = Wd for even ROM
TBLWTL.B Wa,Wd ROM[Wa] = Wd for even ROM (byte)
ULNK Deallocate Stack Frame
URUN ICD Run
XOR Wa,Wb,Wd Wd = Wa ^ Wb
XOR f,F f = f ^ W0
XOR f,W W0 = f ^ W0
XOR Wa,lit5,Wd Wd = Wa ^ lit5
XOR lit10,Wd Wd = Wd ^ lit10
XOR.B lit10,Wd Wd = Wd ^ lit10 (byte)
XOR.B f,W W0 = f ^ W0 (byte)
XOR.B Wa,lit5,Wd Wd = Wa ^ lit5 (byte)
XOR.B Wa,Wb,Wd Wd = Wa ^ Wb (byte)
XOR.B f,F f = f ^ W0 (byte)
ZE Wa,Wd Wd = Wa & FF

#bank_dma

Syntax: #BANK_DMA

Elements: None
Purpose: Tells the compiler to assign the data for the next variable, array or structure into DMA bank
Examples: #bank_dma

struct {

int r_w;

int c_w;

long unused :2;

long data: 4;

}a_port; //the data for a_port will be forced into memory bank DMA

Example Files: None
Also See: None

#bankx

Syntax: #BANKX

PCD_March 2015-1

74

Elements: None

Purpose: Tells the compiler to assign the data for the next variable, array, or structure into Bank X.

Examples: #bankx

struct {

int r_w;

int c_d;

long unused : 2;

long data : 4;

} a_port;

// The data for a_port will be forced into memory bank x.

Example Files: None

Also See: None

#banky

Syntax: #BANKY

Elements: None

Purpose: Tells the compiler to assign the data for the next variable, array, or structure into Bank Y.

Examples: #banky

struct {

int r_w;

int c_d;

long unused : 2;

long data : 4;

} a_port;

// The data for a_port will be forced into memory bank y.

Example Files: None

Also See: None

#bit

Syntax: #BIT id = x.y

Elements: id is a valid C identifier,
x is a constant or a C variable,
y is a constant 0-7 (for 8-bit PICs)
y is a constant 0-15 (for 16-bit PICs)

Purpose: A new C variable (one bit) is created and is placed in memory at byte x and bit y. This is useful to gain

PreProcessor

75

access in C directly to a bit in the processors special function register map. It may also be used to easily
access a bit of a standard C variable.

Examples: #bit T1IF = 0x 84.3

...

T1IF = 0; // Clear Timer 0 interrupt flag

int result;

#bit result_odd = result.0

...

if (result_odd)

Example
Files:

ex_glint.c

Also See: #BYTE, #RESERVE, #LOCATE, #WORD

__buildcount__

Only defined if Options>Project Options>Global Defines has global defines
enabled.

This id resolves to a number representing the number of successful builds of
the project.

#build

Syntax: #BUILD(segment = address)
#BUILD(segment = address, segment = address)
#BUILD(segment = start:end)
#BUILD(segment = start: end, segment = start: end)
#BUILD(nosleep)
#BUILD(segment = size) : For STACK use only
#BUILD(ALT_INTERRUPT)
#BUILD(AUX_MEMORY)

Elements: segment is one of the following memory segments which may be assigned a location: RESET, INTERRUPT
, or STACK

address is a ROM location memory address. Start and end are used to specify a range in memory to be
used. Start is the first ROM location and end is the last ROM location to be used.

RESET will move the compiler's reset vector to the specified location. INTERRUPT will move the compiler's

interrupt service routine to the specified location. This just changes the location the compiler puts it's reset
and ISR, it doesn't change the actual vector of the PIC. If you specify a range that is larger than actually
needed, the extra space will not be used and prevented from use by the compiler.

STACK configures the range (start and end locations) used for the stack, if not specified the compiler uses

the last 256 bytes. The STACK can be specified by only using the size parameters. In this case, the compiler
uses the last RAM locations on the chip and builds the stack below it.

ALT_INTERRUPT will move the compiler's interrupt service routine to the alternate location, and configure

the PIC to use the alternate location.

PCD_March 2015-1

76

nosleep is used to prevent the compiler from inserting a sleep at the end of main()

Bootload produces a bootloader-friendly hex file (in order, full block size).

NOSLEEP_LOCK is used instead of A sleep at the end of a main A infinite loop.

AUX_MEMORY - Only available on devices with an auxiliary memory segment. Causes compiler to build

code for the auxiliary memory segment, including the auxiliary reset and interrupt vectors. Also enables the
keyword INT_AUX which is used to create the auxiliary interrupt service routine.

Purpose: When linking multiple compilation units, this directive must appear exactly the same in each compilation
unit.

These directives are commonly used in bootloaders, where the reset and interrupt needs to be moved to
make space for the bootloading application.

Examples: /* assign the location where the compiler will

place the reset and interrupt vectors */

#build(reset=0x200,interrupt=0x208)

/* assign the location and fix the size of the segments

used by the compiler for the reset and interrupt vectors */

#build(reset=0x200:0x207, interrupt=0x208:0x2ff)

/* assign stack space of 512 bytes */

#build(stack=0x1E00:0x1FFF)

#build(stack= 0x300) // When Start and End locations are not specified, the compiler uses

the last RAM locations available on the chip.

Example
Files:

None

Also See: #LOCATE, #RESERVE, #ROM, #ORG

#byte

Syntax: #byte id = x

Elements: id is a valid C identifier,
x is a C variable or a constant

Purpose: If the id is already known as a C variable then this will locate the variable at address x. In this case the
variable type does not change from the original definition. If the id is not known a new C variable is created
and placed at address x with the type int (8 bit)

Warning: In both cases memory at x is not exclusive to this variable. Other variables may be located at the
same location. In fact when x is a variable, then id and x share the same memory location.

Examples: #byte status _register = 0x42

#byte b_port = 0x02C8

struct {

 short int r_w;

 short int c_d;

 int data : 6 ; } E _port;

#byte a_port = 0x2DA

...

a_port.c_d = 1;

PreProcessor

77

Example
Files:

ex_glint.c

Also See: #bit, #locate, #reserve, #word, Named Registers, Type Specifiers, Type Qualifiers, Enumerated Types,
Structures & Unions, Typedef

#case

Syntax: #CASE

Elements: None

Purpose: Will cause the compiler to be case sensitive. By default the compiler is case insensitive. When linking
multiple compilation units, this directive must appear exactly the same in each compilation unit.

Warning: Not all the CCS example programs, headers and drivers have been tested with case sensitivity
turned on.

Examples: #case

int STATUS;

void func() {

int status;

...

STATUS = status; // Copy local status to

 //global

}

Example
Files:

ex_cust.c

Also See: None

date

Syntax: __DATE__

Elements: None

Purpose: This pre-processor identifier is replaced at compile time with the date of the compile in the form: "31-JAN-03"

Examples: printf("Software was compiled on ");

printf(__DATE__);

Example
Files:

None

Also See: None

#define

Syntax: #define id text

PCD_March 2015-1

78

 or
#define id(x,y...) text

Elements: id is a preprocessor identifier, text is any text, x,y is a list of local preprocessor identifiers, and in this form

there may be one or more identifiers separated by commas.

Purpose: Used to provide a simple string replacement of the ID with the given text from this point of the program and
on.

In the second form (a C macro) the local identifiers are matched up with similar identifiers in the text and
they are replaced with text passed to the macro where it is used.

If the text contains a string of the form #idx then the result upon evaluation will be the parameter id
concatenated with the string x.

If the text contains a string of the form #idx#idy then parameter idx is concatenated with parameter idy
forming a new identifier.

Within the define text two special operators are supported:
 #x is the stringize operator resulting in "x"
 x##y is the concatination operator resulting in xy

The varadic macro syntax is supported where the last parameter is specified as ... and the local identifier
used is __va_args__. In this case, all remaining arguments are combined with the commas.

Examples: #define BITS 8

a=a+BITS; //same as a=a+8;

#define hi(x) (x<<4)

a=hi(a); //same as a=(a<<4);

#define isequal(a,b) (primary_##a[b]==backup_##a[b])

 // usage iseaqual(names,5) is the same as

 // (primary_names[5]==backup_names[5])

#define str(s) #s

#define part(device) #include str(device##.h)

 // usage part(16F887) is the same as

 // #include "16F887.h"

#define DBG(...) fprintf(debug,__VA_ARGS__)

Example
Files:

ex_stwt.c, ex_macro.c

Also See: #UNDEF, #IFDEF, #IFNDEF

definedinc

Syntax: value = definedinc(variable);

Parameters: variable is the name of the variable, function, or type to be checked.

Returns: A C status for the type of id entered as follows:
0 – not known
1 – typedef or enum
2 – struct or union type
3 – typemod qualifier
4 – defined function

PreProcessor

79

5 – function prototype
6 – compiler built-in function
7 – local variable
8 – global variable

Function: This function checks the type of the variable or function being passed in and returns a specific C
status based on the type.

Availability: All devices
Requires: None.
Examples: int x, y = 0;

y = definedinc(x); // y will return 7 – x is a local variable

Example Files: None

Also See: None

#device

Syntax: #DEVICE chip options
#DEVICE Compilation mode selection

Elements: Chip Options-

chip is the name of a specific processor (like: dsPIC33FJ64GP306), To get a current list of supported
devices:

START | RUN | CCSC +Q

Options are qualifiers to the standard operation of the device. Valid options are:

ADC=x Where x is the number of bits read_adc() should return

ADC=SIGNED Result returned from read_adc() is signed.(Default is
unsigned)

ADC=UNSIGNED Return result from read_adc() is unsigned.(default is
UNSIGNED)

ICD=TRUE Generates code compatible with Microchips ICD debugging
hardware.

ICD=n For chips with multiple ICSP ports specify the port number
being used. The default is 1.

WRITE_EEPROM=ASYNC Prevents WRITE_EEPROM from hanging while writing is
taking place. When used, do not write to EEPROM from both
ISR and outside ISR.

WRITE_EEPROM = NOINT Allows interrupts to occur while the write_eeprom() operations
is polling the done bit to check if the write operations has
completed. Can be used as long as no EEPROM operations
are performed during an ISR.

HIGH_INTS=TRUE Use this option for high/low priority interrupts on the PIC® 18.
%f=. No 0 before a decimal pint on %f numbers less than 1.
OVERLOAD=KEYWORD Overloading of functions is now supported. Requires the use

of the keyword for overloading.
OVERLOAD=AUTO Default mode for overloading.
PASS_STRINGS=IN_RAM A new way to pass constant strings to a function by first

PCD_March 2015-1

80

copying the string to RAM and then passing a pointer to RAM
to the function.

CONST=READ_ONLY Uses the ANSI keyword CONST definition, making CONST
variables read only, rather than located in program memory.

CONST=ROM Uses the CCS compiler traditional keyword CONST definition,
making CONST variables located in program memory.

NESTED_INTERRUPTS=TRUE Enables interrupt nesting for PIC24, dsPIC30, and dsPIC33
devices. Allows higher priority interrupts to interrupt lower
priority interrupts.

NORETFIE ISR functions (preceeded by a #int_xxx) will use a RETURN
opcode instead of the RETFIE opcode. This is not a
commonly used option; used rarely in cases where the user is
writing their own ISR handler.

NO_DIGITAL_INIT Normally the compiler sets all I/O pins to digital and turns off
the comparator. This option prevents that action.

Both chip and options are optional, so multiple #DEVICE lines may be used to fully define the device. Be
warned that a #DEVICE with a chip identifier, will clear all previous #DEVICE and #FUSE settings.

Compilation mode selection-
The #DEVICE directive supports compilation mode selection. The valid keywords are CCS2, CCS3, CCS4
and ANSI. The default mode is CCS4. For the CCS4 and ANSI mode, the compiler uses the default fuse
settings NOLVP, PUT for chips with these fuses. The NOWDT fuse is default if no call is made to
restart_wdt().

CCS4 This is the default compilation mode.

ANSI Default data type is SIGNED all other modes default is UNSIGNED. Compilation is case
sensitive, all other modes are case insensitive.

CCS2
CCS3

var16 = NegConst8 is compiled as: var16 = NegConst8 & 0xff (no sign extension) . The
overload keyword is required.

CCS2 only The default #DEVICE ADC is set to the resolution of the part, all other modes default to 8.

onebit = eightbits is compiled as onebit = (eightbits != 0)
All other modes compile as: onebit = (eightbits & 1)

Purpose: Chip Options -Defines the target processor. Every program must have exactly one #DEVICE with a chip.

When linking multiple compilation units, this directive must appear exactly the same in each compilation unit.

Compilation mode selection - The compilation mode selection allows existing code to be compiled without

encountering errors created by compiler compliance. As CCS discovers discrepancies in the way expressions
are evaluated according to ANSI, the change will generally be made only to the ANSI mode and the next
major CCS release.

Examples: Chip Options-
#device DSPIC33FJ64GP306

#device PIC24FJ64GA002 ICD=TRUE

#device ADC=10

#device ICD=TRUE ADC=10

Float Options-
#device %f=.

printf("%f",.5); //will print .5, without the directive it will print 0.5

Compilation mode selection-
#device CCS2

Example None

PreProcessor

81

Files:
Also See: None

device

Syntax: __DEVICE__

Elements: None

Purpose: This pre-processor identifier is defined by the compiler with the base number of the current device (from a
#DEVICE). The base number is usually the number after the C in the part number. For example the
PIC16C622 has a base number of 622.

Examples: #if __device__==71

SETUP_ADC_PORTS(ALL_DIGITAL);

#endif

Example
Files:

None

Also See: #DEVICE

#if expr #else #elif #endif

Syntax: #if expr
 code
#elif expr //Optional, any number may be used
 code
#else //Optional
 code
#endif

Elements: expr is an expression with constants, standard operators and/or preprocessor identifiers. Code
is any standard c source code.

Purpose: The pre-processor evaluates the constant expression and if it is non-zero will process the lines
up to the optional #ELSE or the #ENDIF.

Note: you may NOT use C variables in the #IF. Only preprocessor identifiers created via #define
can be used.
The preprocessor expression DEFINED(id) may be used to return 1 if the id is defined and 0 if it
is not.
== and != operators now accept a constant string as both operands. This allows for compile time
comparisons and can be used with GETENV() when it returns a string result.

Examples: #if MAX_VALUE > 255

 long value;

#else

 int value;

#endif

#if getenv(“DEVICE”)==”PIC16F877”

 //do something special for the PIC16F877

PCD_March 2015-1

82

#endif

Example Files: ex_extee.c

Also See: #IFDEF, #IFNDEF, getenv()

#error

Syntax: #ERROR text
#ERROR / warning text
#ERROR / information text

Elements: text is optional and may be any text

Purpose: Forces the compiler to generate an error at the location this directive appears in the file. The text
may include macros that will be expanded for the display. This may be used to see the macro
expansion. The command may also be used to alert the user to an invalid compile time situation.

Examples: #if BUFFER_SIZE>16

#error Buffer size is too large

#endif

#error Macro test: min(x,y)

Example Files: ex_psp.c

Also See: #WARNING

#export (options)

Syntax: #EXPORT (options)

Elements: FILE=filname
The filename which will be generated upon compile. If not given, the filname will be the name of the file you
are compiling, with a .o or .hex extension (depending on output format).

ONLY=symbol+symbol+.....+symbol
Only the listed symbols will be visible to modules that import or link this relocatable object file. If neither
ONLY or EXCEPT is used, all symbols are exported.

EXCEPT=symbol+symbol+.....+symbol
All symbols except the listed symbols will be visible to modules that import or link this relocatable object file. If
neither ONLY or EXCEPT is used, all symbols are exported.

RELOCATABLE
CCS relocatable object file format. Must be imported or linked before loading into a PIC. This is the default
format when the #EXPORT is used.

HEX
Intel HEX file format. Ready to be loaded into a PIC. This is the default format when no #EXPORT is used.

RANGE=start:stop
Only addresses in this range are included in the hex file.

PreProcessor

83

OFFSET=address

Hex file address starts at this address (0 by default)

ODD
Only odd bytes place in hex file.

EVEN
Only even bytes placed in hex file.

Purpose: This directive will tell the compiler to either generate a relocatable object file or a stand-alone HEX binary. A
relocatable object file must be linked into your application, while a stand-alone HEX binary can be
programmed directly into the PIC.
The command line compiler and the PCW IDE Project Manager can also be used to compile/link/build
modules and/or projects.
Multiple #EXPORT directives may be used to generate multiple hex files. this may be used for 8722 like
devices with external memory.

Examples: #EXPORT(RELOCATABLE, ONLY=TimerTask)

void TimerFunc1(void) { /* some code */ }

void TimerFunc2(void) { /* some code */ }

void TimerFunc3(void) { /* some code */ }

void TimerTask(void)

{

 TimerFunc1();

 TimerFunc2();

 TimerFunc3();

}

/*

This source will be compiled into a relocatable object, but the object this is being linked

to can only see TimerTask()

*/

Example
Files:

None

See Also:

#IMPORT, #MODULE, Invoking the Command Line Compiler, Multiple Compilation Unit

__file__

Syntax: __FILE__

Elements: None

Purpose: The pre-processor identifier is replaced at compile time with the file path and the
filename of the file being compiled.

Examples: if(index>MAX_ENTRIES)

 printf("Too many entries, source file: "

 __FILE__ " at line " __LINE__ "\r\n");

Example Files: assert.h

Also See: _ _ line_ _

PCD_March 2015-1

84

__filename__

Syntax: __FILENAME__

Elements: None

Purpose: The pre-processor identifier is replaced at compile time with the filename of the file being
compiled.

Examples: if(index>MAX_ENTRIES)

 printf("Too many entries, source file: "

 __FILENAME__ " at line " __LINE__ "\r\n");

Example Files: None

Also See: _ _ line_ _

#fill_rom

Syntax: #fill_rom value

Elements: value is a constant 16-bit value

Purpose: This directive specifies the data to be used to fill unused ROM locations. When linking multiple
compilation units, this directive must appear exactly the same in each compilation unit.

Examples: #fill_rom 0x36

Example
Files:

None

Also See: #ROM

#fuses

Syntax: #FUSES options

Elements: options vary depending on the device. A list of all valid options has been put at the top of each devices .h
file in a comment for reference. The PCW device edit utility can modify a particular devices fuses. The PCW
pull down menu VIEW | Valid fuses will show all fuses with their descriptions.

Some common options are:

 LP, XT, HS, RC

 WDT, NOWDT

 PROTECT, NOPROTECT

 PUT, NOPUT (Power Up Timer)

 BROWNOUT, NOBROWNOUT

Purpose: This directive defines what fuses should be set in the part when it is programmed. This directive does not
affect the compilation; however, the information is put in the output files. If the fuses need to be in Parallax
format, add a PAR option. SWAP has the special function of swapping (from the Microchip standard) the
high and low BYTES of non-program data in the Hex file. This is required for some device programmers.

PreProcessor

85

Some fuses are set by the compiler based on other compiler directives. For example, the oscillator fuses are
set up by the #USE delay directive. The debug, No debug and ICSPN Fuses are set by the #DEVICE
ICD=directive.

Some processors allow different levels for certain fuses. To access these levels, assign a value to the fuse.

When linking multiple compilation units be aware this directive applies to the final object file. Later files in the
import list may reverse settings in previous files.

To eliminate all fuses in the output files use:
 #FUSES none

To manually set the fuses in the output files use:
 #FUSES 1 = 0xC200 // sets config word 1 to 0xC200

Examples: #fuses HS,NOWDT

Example
Files:

None

Also See: None

#hexcomment

Syntax: #HEXCOMMENT text comment for the top of the hex file
#HEXCOMMENT\ text comment for the end of the hex file

Elements: None

Purpose: Puts a comment in the hex file

Some programmers (MPLAB in particular) do not like comments at the top of the hex file.

Examples: #HEXCOMMENT Version 3.1 – requires 20MHz crystal

Example
Files:

None

Also See: None

#id

Syntax: #ID number 32
#ID number, number, number, number
#ID "filename"
#ID CHECKSUM

Elements: Number 3 2 is a 32 bit number, number is a 8 bit number, filename is any valid PC filename and
checksum is a keyword.

Purpose: This directive defines the ID word to be programmed into the part. This directive does not affect the

compilation but the information is put in the output file.

PCD_March 2015-1

86

The first syntax will take a 32 -bit number and put one byte in each of the four ID bytes in the
traditional manner. The second syntax specifies the exact value to be used in each of the four ID
bytes .

When a filename is specified the ID is read from the file. The format must be simple text with a
CR/LF at the end. The keyword CHECKSUM indicates the device checksum should be saved as the
ID.

Examples: #id 0x12345678

#id 0x12, 0x34, 0x45, 0x67

#id "serial.num"

#id CHECKSUM

Example Files: ex_cust.c

Also See: None

#if expr #else #elif #endif

Syntax: #if expr

 code
#elif expr //Optional, any number may be used
 code
#else //Optional
 code
#endif

Elements: expr is an expression with constants, standard operators and/or preprocessor identifiers. Code
is any standard c source code.

Purpose: The pre-processor evaluates the constant expression and if it is non-zero will process the lines
up to the optional #ELSE or the #ENDIF.

Note: you may NOT use C variables in the #IF. Only preprocessor identifiers created via #define
can be used.
The preprocessor expression DEFINED(id) may be used to return 1 if the id is defined and 0 if it
is not.
== and != operators now accept a constant string as both operands. This allows for compile time
comparisons and can be used with GETENV() when it returns a string result.

Examples: #if MAX_VALUE > 255

 long value;

#else

 int value;

#endif

#if getenv(“DEVICE”)==”PIC16F877”

 //do something special for the PIC16F877

#endif

Example Files: ex_extee.c

Also See: #IFDEF, #IFNDEF, getenv()

PreProcessor

87

#ifdef #ifndef #else #elif #endif

Syntax: #IFDEF id

 code
#ELIF
 code
#ELSE
 code
#ENDIF

#IFNDEF id
 code
#ELIF
 code
#ELSE
 code
#ENDIF

Elements: id is a preprocessor identifier, code is valid C source code.

Purpose: This directive acts much like the #IF except that the preprocessor simply checks to see if the
specified ID is known to the preprocessor (created with a #DEFINE). #IFDEF checks to see if
defined and #IFNDEF checks to see if it is not defined.

Examples: #define debug // Comment line out for no debug

...

#ifdef DEBUG

printf("debug point a");

#endif

Example Files: ex_sqw.c

Also See: #IF

#ignore_warnings

Syntax: #ignore_warnings ALL
#IGNORE_WARNINGS NONE
#IGNORE_WARNINGS warnings

Elements: warnings is one or more warning numbers separated by commas

Purpose: This function will suppress warning messages from the compiler. ALL indicates no warning will be

generated. NONE indicates all warnings will be generated. If numbers are listed then those warnings are
suppressed.

Examples: #ignore_warnings 203

while(TRUE) {

#ignore_warnings NONE

Example
Files:

None

Also See: Warning messages

PCD_March 2015-1

88

#import (options)

Syntax: #IMPORT (options)

Elements: FILE=filname
The filename of the object you want to link with this compilation.

ONLY=symbol+symbol+.....+symbol
Only the listed symbols will imported from the specified relocatable object file. If neither ONLY or
EXCEPT is used, all symbols are imported.

EXCEPT=symbol+symbol+.....+symbol

The listed symbols will not be imported from the specified relocatable object file. If neither ONLY or
EXCEPT is used, all symbols are imported.

RELOCATABLE
CCS relocatable object file format. This is the default format when the #IMPORT is used.

COFF
COFF file format from MPASM, C18 or C30.

HEX

Imported data is straight hex data.

RANGE=start:stop
Only addresses in this range are read from the hex file.

LOCATION=id
The identifier is made a constant with the start address of the imported data.

SIZE=id

The identifier is made a constant with the size of the imported data.

Purpose: This directive will tell the compiler to include (link) a relocatable object with this unit during
compilation. Normally all global symbols from the specified file will be linked, but the EXCEPT and
ONLY options can prevent certain symbols from being linked.
The command line compiler and the PCW IDE Project Manager can also be used to compile/link/build
modules and/or projects.

Examples: #IMPORT(FILE=timer.o, ONLY=TimerTask)

void main(void)

{

 while(TRUE)

 TimerTask();

}

/*

timer.o is linked with this compilation, but only TimerTask() is visible in scope

from this object.

*/

Example Files: None

See Also: #EXPORT, #MODULE, Invoking the Command Line Compiler, Multiple Compilation Unit

PreProcessor

89

#include

Syntax: #INCLUDE <filename>
 or
#INCLUDE "filename"

Elements: filename is a valid PC filename. It may include normal drive and path information. A file with the
extension ".encrypted" is a valid PC file. The standard compiler #INCLUDE directive will accept files
with this extension and decrypt them as they are read. This allows include files to be distributed
without releasing the source code.

Purpose: Text from the specified file is used at this point of the compilation. If a full path is not specified the
compiler will use the list of directories specified for the project to search for the file. If the filename
is in "" then the directory with the main source file is searched first. If the filename is in <> then the
directory with the main source file is searched last.

Examples: #include <16C54.H>

#include <C:\INCLUDES\COMLIB\MYRS232.C>

Example Files: ex_sqw.c

Also See: None

#inline

Syntax: #INLINE

Elements: None

Purpose: Tells the compiler that the function immediately following the directive is to be implemented
INLINE. This will cause a duplicate copy of the code to be placed everywhere the function is
called. This is useful to save stack space and to increase speed. Without this directive the compiler
will decide when it is best to make procedures INLINE.

Examples: #inline

swapbyte(int &a, int &b) {

 int t;

 t=a;

 a=b;

 b=t;

}

Example Files: ex_cust.c

Also See: #SEPARATE

PCD_March 2015-1

90

#int_xxxx

Syntax: #INT_AC1 Analog comparator 1 output change

#INT_AC2 Analog comparator 2 output change

#INT_AC3 Analog comparator 3 output change

#INT_AC4 Analog comparator 4 output change

#INT_ADC1 ADC1 conversion complete

#INT_ADC2 Analog to digital conversion complete

#INT_ADCP0 ADC pair 0 conversion complete

#INT_ADCP1 ADC pair 1 conversion complete

#INT_ADCP2 ADC pair 2 conversion complete

#INT_ADCP3 ADC pair 3 conversion complete

#INT_ADCP4 ADC pair 4 conversion complete

#INT_ADCP5 ADC pair 5 conversion complete

#INT_ADDRERR Address error trap

#INT_C1RX ECAN1 Receive Data Ready

#INT_C1TX ECAN1 Transmit Data Request

#INT_C2RX ECAN2 Receive Data Ready

#INT_C2TX ECAN2 Transmit Data Request

#INT_CAN1 CAN 1 Combined Interrupt Request

#INT_CAN2 CAN 2 Combined Interrupt Request

#INT_CNI Input change notification interrupt

#INT_COMP Comparator event

#INT_CRC Cyclic redundancy check generator

#INT_DCI DCI transfer done

#INT_DCIE DCE error

#INT_DMA0 DMA channel 0 transfer complete

#INT_DMA1 DMA channel 1 transfer complete

#INT_DMA2 DMA channel 2 transfer complete

#INT_DMA3 DMA channel 3 transfer complete

#INT_DMA4 DMA channel 4 transfer complete

#INT_DMA5 DMA channel 5 transfer complete

#INT_DMA6 DMA channel 6 transfer complete

#INT_DMA7 DMA channel 7 transfer complete

#INT_DMAERR DMAC error trap

#INT_EEPROM Write complete

#INT_EX1 External Interrupt 1

#INT_EX4 External Interrupt 4

#INT_EXT0 External Interrupt 0

#INT_EXT1 External interrupt #1

#INT_EXT2 External interrupt #2

#INT_EXT3 External interrupt #3

#INT_EXT4 External interrupt #4

#INT_FAULTA PWM Fault A

#INT_FAULTA2 PWM Fault A 2

#INT_FAULTB PWM Fault B

#INT_IC1 Input Capture #1

#INT_IC2 Input Capture #2

#INT_IC3 Input Capture #3

PreProcessor

91

#INT_IC4 Input Capture #4

#INT_IC5 Input Capture #5

#INT_IC6 Input Capture #6

#INT_IC7 Input Capture #7

#INT_IC8 Input Capture #8

#INT_LOWVOLT Low voltage detected

#INT_LVD Low voltage detected

#INT_MATHERR Arithmetic error trap

#INT_MI2C Master I2C activity

#INT_MI2C2 Master2 I2C activity

#INT_OC1 Output Compare #1

#INT_OC2 Output Compare #2

#INT_OC3 Output Compare #3

#INT_OC4 Output Compare #4

#INT_OC5 Output Compare #5

#INT_OC6 Output Compare #6

#INT_OC7 Output Compare #7

#INT_OC8 Output Compare #8

#INT_OSC_FAIL System oscillator failed

#INT_PMP Parallel master port

#INT_PMP2 Parallel master port 2

#INT_PWM1 PWM generator 1 time based interrupt

#INT_PWM2 PWM generator 2 time based interrupt

#INT_PWM3 PWM generator 3 time based interrupt

#INT_PWM4 PWM generator 4 time based interrupt

#INT_PWMSEM PWM special event trigger

#INT_QEI QEI position counter compare

#INT_RDA RS232 receive data available

#INT_RDA2 RS232 receive data available in buffer 2

#INT_RTC Real - Time Clock/Calendar

#INT_SI2C Slave I2C activity

#INT_SI2C2 Slave2 I2C activity

#INT_SPI1 SPI1 Transfer Done

#INT_SPI1E SPI1E Transfer Done

#INT_SPI2 SPI2 Transfer Done

#INT_SPI2E SPI2 Error

#INT_SPIE SPI Error

#INT_STACKERR Stack Error

#INT_TBE RS232 transmit buffer empty

#INT_TBE2 RS232 transmit buffer 2 empty

#INT_TIMER1 Timer 1 overflow

#INT_TIMER2 Timer 2 overflow

#INT_TIMER3 Timer 3 overflow

#INT_TIMER4 Timer 4 overflow

#INT_TIMER5 Timer 5 overflow

#INT_TIMER6 Timer 6 overflow

#INT_TIMER7 Timer 7 overflow

#INT_TIMER8 Timer 8 overflow

#INT_TIMER9 Timer 9 overflow

#INT_UART1E UART1 error

PCD_March 2015-1

92

#INT_UART2E UART2 error

#INT_AUX Auxiliary memory ISR

Elements: NOCLEAR, LEVEL=n, HIGH, FAST, ALT

Purpose: These directives specify the following function is an interrupt function. Interrupt functions may not have any
parameters. Not all directives may be used with all parts. See the devices .h file for all valid interrupts for the
part or in PCW use the pull down VIEW | Valid Ints

The MPU will jump to the function when the interrupt is detected. The compiler will generate code to save
and restore the machine state, and will clear the interrupt flag. To prevent the flag from being cleared add
NOCLEAR after the #INT_xxxx. The application program must call ENABLE_INTERRUPTS(INT_xxxx) to
initially activate the interrupt.

An interrupt marked FAST uses the shadow feature to save registers. Only one interrupt may be marked fast.
Any registers used in the FAST interrupt beyond the shadow registers is the responsibility of the user to save
and restore.

Level=n specifies the level of the interrupt.

Enable_interrupts specifies the levels that are enabled. The default is level 0 and level 7 is never disabled.
 High is the same as level = 7.

A summary of the different kinds of dsPIC/PIC24 interrupts:
 #INT_xxxx
 Normal (low priority) interrupt. Compiler saves/restores key registers.
 This interrupt will not interrupt any interrupt in progress.
 #INT_xxxx FAST

Compiler does a FAST save/restore of key registers.
Only one is allowed in a program.

 #INT_xxxx HIGHLevel=3
Interrupt is enabled when levels 3 and below are enabled.

 #INT_GLOBAL
 Compiler generates no interrupt code. User function is located
 at address 8 for user interrupt handling.
 #INT_xxxx ALT
 Interrupt is placed in Alternate Interrupt Vector instead of Default Interrupt Vector.

Examples: #int_ad

adc_handler() {

 adc_active=FALSE;

}

#int_timer1 noclear

isr() {

 ...

}

Example
Files:

None

Also See: enable_interrupts(), disable_interrupts(), #INT_DEFAULT,

#INT_DEFAULT

Syntax: #INT_DEFAULT

Elements: None

PreProcessor

93

Purpose: The following function will be called if the ds PIC® triggers an interrupt and a #INT_xxx hadler
has not been defined for the interrupt.

Examples: #int_default

default_isr() {

 printf("Unexplained interrupt\r\n");

}

Example Files: None

Also See: #INT_xxxx,

__line__

Syntax: __line__

Elements: None

Purpose: The pre-processor identifier is replaced at compile time with line number of the file being
compiled.

Examples: if(index>MAX_ENTRIES)

 printf("Too many entries, source file: "

 __FILE__" at line " __LINE__ "\r\n");

Example Files: assert.h

Also See: _ _ file_ _

#list

Syntax: #LIST

Elements: None

Purpose: #LIST begins inserting or resumes inserting source lines into the .LST file after a #NOLIST.

Examples: #NOLIST // Don't clutter up the list file

#include <cdriver.h>

#LIST

Example Files: 16c74.h

Also See: #NOLIST

PCD_March 2015-1

94

#line

Syntax: #LINE number file name

Elements: Number is non-negative decimal integer. File name is optional.

Purpose: The C pre-processor informs the C Compiler of the location in your source code. This code is
simply used to change the value of _LINE_ and _FILE_ variables.

Examples: 1. void main(){

 #line 10 // specifies the line number that

 // should be reported for

 // the following line of input

2. #line 7 "hello.c"

 // line number in the source file

 // hello.c and it sets the

 // line 7 as current line

 // and hello.c as current file

Example Files: None

Also See: None

#locate

Syntax: #LOCATE id=x

Elements: id is a C variable,
x is a constant memory address

Purpose: #LOCATE allocates a C variable to a specified address. If the C variable was not previously defined, it will
be defined as an INT8.

A special form of this directive may be used to locate all A functions local variables starting at a fixed
location.
Use: #LOCATE Auto = address

This directive will place the indirected C variable at the requested address.

Examples: // This will locate the float variable at 50-53

// and C will not use this memory for other

// variables automatically located.

float x;

#locate x=0x800

Example
Files:

ex_glint.c

Also See: #byte, #bit, #reserve, #word, Named Registers, Type Specifiers, Type Qualifiers, Enumerated Types,
Structures & Unions, Typedef

PreProcessor

95

#module

Syntax: #MODULE

Elements: None

Purpose: All global symbols created from the #MODULE to the end of the file will only be visible within that
same block of code (and files #INCLUDE within that block). This may be used to limit the scope
of global variables and functions within include files. This directive also applies to pre-processor
#defines.
Note: The extern and static data qualifiers can also be used to denote scope of variables and
functions as in the standard C methodology. #MODULE does add some benefits in that pre-
processor #DEFINE can be given scope, which cannot normally be done in standard C
methodology.

Examples: int GetCount(void);

void SetCount(int newCount);

#MODULE

int g_count;

#define G_COUNT_MAX 100

int GetCount(void) {return(g_count);}

void SetCount(int newCount) {

 if (newCount>G_COUNT_MAX)

 newCount=G_COUNT_MAX;

 g_count=newCount;

}

/*

the functions GetCount() and SetCount() have global scope, but the variable

g_count and the #define G_COUNT_MAX only has scope to this file.

*/

Example Files: None

See Also: #EXPORT, Invoking the Command Line Compiler, Multiple Compilation Unit

#nolist

Syntax: #NOLIST

Elements: None

Purpose: Stops inserting source lines into the .LST file (until a #LIST)

Examples: #NOLIST // Don't clutter up the list file

#include <cdriver.h>

#LIST

Example Files: 16c74.h

Also See: #LIST

PCD_March 2015-1

96

#ocs

Syntax: #OCS x

Elements: x is the clock's speed and can be 1 Hz to 100 MHz.

Purpose: Used instead of the #use delay(clock = x)

Examples: #include <18F4520.h>

#device ICD=TRUE

#OCS 20 MHz

#use rs232(debugger)

void main(){

 -------;

 }

Example Files: None

Also See: #USE DELAY

#opt

Syntax: #OPT n

Elements: All Devices: n is the optimization level 0-9

Purpose: The optimization level is set with this directive. This setting applies to the entire program and may

appear anywhere in the file. The default is 9 for normal.
Examples: #opt 5

Example Files: None

Also See: None

#org

Syntax: #ORG start, end
 or
#ORG segment
 or
#ORG start, end { }
 or
#ORG start, end auto=0
#ORG start,end DEFAULT
 or
#ORG DEFAULT

Elements: start is the first ROM location (word address) to use, end is the last ROM location, segment is the
start ROM location from a previous #ORG

PreProcessor

97

Purpose: This directive will fix the following function, constant or ROM declaration into a specific ROM
area. End may be omitted if a segment was previously defined if you only want to add another
function to the segment.

Follow the ORG with a { } to only reserve the area with nothing inserted by the compiler.

The RAM for a ORG'd function may be reset to low memory so the local variables and scratch
variables are placed in low memory. This should only be used if the ORG'd function will not return to
the caller. The RAM used will overlap the RAM of the main program. Add a AUTO=0 at the end of
the #ORG line.

If the keyword DEFAULT is used then this address range is used for all functions user and compiler
generated from this point in the file until a #ORG DEFAULT is encountered (no address range). If a
compiler function is called from the generated code while DEFAULT is in effect the compiler
generates a new version of the function within the specified address range.

#ORG may be used to locate data in ROM. Because CONSTANT are implemented as functions the
#ORG should proceed the CONSTANT and needs a start and end address. For a ROM declaration
only the start address should be specified.

When linking multiple compilation units be aware this directive applies to the final object file. It is an
error if any #ORG overlaps between files unless the #ORG matches exactly.

Examples: #ORG 0x1E00, 0x1FFF

MyFunc() {

//This function located at 1E00

}

#ORG 0x1E00

Anotherfunc(){

// This will be somewhere 1E00-1F00

}

#ORG 0x800, 0x820 {}

//Nothing will be at 800-820

#ORG 0x1B80

ROM int32 seridl_N0=12345;

#ORG 0x1C00, 0x1C0F

CHAR CONST ID[10}= {"123456789"};

//This ID will be at 1C00

//Note some extra code will

//proceed the 123456789

#ORG 0x1F00, 0x1FF0

Void loader (){

.

.

.

}

Example Files: loader.c

Also See: #ROM

#pin_select

Syntax: #PIN_SELECT function=pin_xx

Elements: function is the Microchip defined pin function name, such as: U1RX (UART1 receive),

PCD_March 2015-1

98

INT1 (external interrupt 1), T2CK (timer 2 clock), IC1 (input capture 1), OC1 (output
capture 1).

NULL NULL

C1OUT Comparator 1 Output
C2OUT Comparator 2 Output
C3OUT Comparator 3 Output
C4OUT Comparator 4 Output
U1TX UART1 Transmit
U1RTS UART1 Request to Send
U2TX UART2 Transmit
U2RTS UART2 Request to Send
U3TX UART3 Transmit
U3RTS UART3 Request to Send
U4TX UART4 Transmit
U4RTS UART4 Request to Send
SDO1 SPI1 Data Output
SCK1OUT SPI1 Clock Output
SS1OUT SPI1 Slave Select Output
SDO2 SPI2 Data Output
SCK2OUT SPI2 Clock Output
SS2OUT SPI2 Slave Select Output
SDO3 SPI3 Data Output
SCK3OUT SPI3 Clock Output
SS3OUT SPI3 Slave Select Output
SDO4 SPI4 Data Output
SCK4OUT SPI4 Clock Output
SS4OUT SPI4 Slave Select Output
OC1 Output Compare 1
OC2 Output Compare 2
OC3 Output Compare 3
OC4 Output Compare 4
OC5 Output Compare 5
OC6 Output Compare 6
OC7 Output Compare 7
OC8 Output Compare 8
OC9 Output Compare 9
OC10 Output Compare 10
OC11 Output Compare 11
OC12 Output Compare 12
OC13 Output Compare 13
OC14 Output Compare 14
OC15 Output Compare 15
OC16 Output Compare 16
C1TX CAN1 Transmit
C2TX CAN2 Transmit
CSDO DCI Serial Data Output
CSCKOUT DCI Serial Clock Output
COFSOUT DCI Frame Sync Output
UPDN1 QEI1 Direction Status Output
UPDN2 QEI2 Direction Status Output
CTPLS CTMU Output Pulse
SYNCO1 PWM Synchronization Output Signal
SYNCO2 PWM Secondary Synchronization Output Signal
REFCLKO REFCLK Output Signal
CMP1 Analog Comparator Output 1
CMP2 Analog Comparator Output 2
CMP3 Analog Comparator Output 3
CMP4 Analog Comparator Output 4
PWM4H PWM4 High Output
PWM4L PWM4 Low Output

PreProcessor

99

QEI1CCMP QEI1 Counter Comparator Output
QEI2CCMP QEI2 Counter Comparator Output
MDOUT DSM Modulator Output
DCIDO DCI Serial Data Output
DCISCKOUT DCI Serial Clock Output
DCIFSOUT DCI Frame Sync Output
INT1 External Interrupt 1 Input
INT2 External Interrupt 2 Input
INT3 External Interrupt 3 Input
INT4 External Interrupt 4 Input
T1CK Timer 1 External Clock Input
T2CK Timer 2 External Clock Input
T3CK Timer 3 External Clock Input
T4CK Timer 4 External Clock Input
T5CK Timer 5 External Clock Input
T6CK Timer 6 External Clock Input
T7CK Timer 7 External Clock Input
T8CK Timer 8 External Clock Input
T9CK Timer 9 External Clock Input
IC1 Input Capture 1
IC2 Input Capture 2
IC3 Input Capture 3
IC4 Input Capture 4
IC5 Input Capture 5
IC6 Input Capture 6
IC7 Input Capture 7
IC8 Input Capture 8
IC9 Input Capture 9
IC10 Input Capture 10
IC11 Input Capture 11
IC12 Input Capture 12
IC13 Input Capture 13
IC14 Input Capture 14
IC15 Input Capture 15
IC16 Input Capture 16
C1RX CAN1 Receive
C2RX CAN2 Receive
OCFA Output Compare Fault A Input
OCFB Output Compare Fault B Input
OCFC Output Compare Fault C Input
U1RX UART1 Receive
U1CTS UART1 Clear to Send
U2RX UART2 Receive
U2CTS UART2 Clear to Send
U3RX UART3 Receive
U3CTS UART3 Clear to Send
U4RX UART4 Receive
U4CTS UART4 Clear to Send
SDI1 SPI1 Data Input
SCK1IN SPI1 Clock Input
SS1IN SPI1 Slave Select Input
SDI2 SPI2 Data Input
SCK2IN SPI2 Clock Input
SS2IN SPI2 Slave Select Input
SDI3 SPI3 Data Input
SCK3IN SPI3 Clock Input
SS3IN SPI3 Slave Select Input
SDI4 SPI4 Data Input
SCK4IN SPI4 Clock Input
SS4IN SPI4 Slave Select Input
CSDI DCI Serial Data Input
CSCK DCI Serial Clock Input

PCD_March 2015-1

100

COFS DCI Frame Sync Input
FLTA1 PWM1 Fault Input
FLTA2 PWM2 Fault Input
QEA1 QEI1 Phase A Input
QEA2 QEI2 Phase A Input
QEB1 QEI1 Phase B Input
QEB2 QEI2 Phase B Input
INDX1 QEI1 Index Input
INDX2 QEI2 Index Input
HOME1 QEI1 Home Input
HOME2 QEI2 Home Input
FLT1 PWM1 Fault Input
FLT2 PWM2 Fault Input
FLT3 PWM3 Fault Input
FLT4 PWM4 Fault Input
FLT5 PWM5 Fault Input
FLT6 PWM6 Fault Input
FLT7 PWM7 Fault Input
FLT8 PWM8 Fault Input
SYNCI1 PWM Synchronization Input 1
SYNCI2 PWM Synchronization Input 2
DCIDI DCI Serial Data Input
DCISCKIN DCI Serial Clock Input
DCIFSIN DCI Frame Sync Input
DTCMP1 PWM Dead Time Compensation 1 Input
DTCMP2 PWM Dead Time Compensation 2 Input
DTCMP3 PWM Dead Time Compensation 3 Input
DTCMP4 PWM Dead Time Compensation 4 Input
DTCMP5 PWM Dead Time Compensation 5 Input
DTCMP6 PWM Dead Time Compensation 6 Input
DTCMP7 PWM Dead Time Compensation 7 Input

pin_xx is the CCS provided pin definition. For example: PIN_C7, PIN_B0, PIN_D3,
etc.

Purpose: On PICs that contain Peripheral Pin Select (PPS), this allows the programmer to
define which pin a peripheral is mapped to.

Examples: #pin_select U1TX=PIN_C6

#pin_select U1RX=PIN_C7

#pin_select INT1=PIN_B0

Example
Files:

None

Also See: None

__pcd__

Syntax: __PCD__

Elements: None

Purpose: The PCD compiler defines this pre-processor identifier. It may be used to determine if the
PCD compiler is doing the compilation.

PreProcessor

101

Examples: #ifdef __pcd__

#device dsPIC33FJ256MC710

#endif

Example Files: ex_sqw.c

Also See: None

#pragma

Syntax: #PRAGMA cmd

Elements: cmd is any valid preprocessor directive.

Purpose: This directive is used to maintain compatibility between C compilers. This compiler will accept

this directive before any other pre-processor command. In no case does this compiler require this
directive.

Examples: #pragma device PIC16C54

Example Files: ex_cust.c

Also See: None

#profile

Syntax: #profile options

Elements: options may be one of the following:

functions Profiles the start/end of functions and all
profileout() messages.

functions,
parameters

Profiles the start/end of functions,
parameters sent to functions, and all
profileout() messages.

profileout Only profile profilout() messages.

paths Profiles every branch in the code.

off Disable all code profiling.

on Re-enables the code profiling that was
previously disabled with a #profile off
command. This will use the last
options before disabled with the off
command.

Purpose: Large programs on the microcontroller may generate lots of profile data, which may make it difficult to

debug or follow. By using #profile the user can dynamically control which points of the program are being

PCD_March 2015-1

102

profiled, and limit data to what is relevant to the user.

Examples: #profile off

void BigFunction(void)

{

 // BigFunction code goes here.

 // Since #profile off was called above,

 // no profiling will happen even for other

 // functions called by BigFunction().

}

#profile on

Example Files: ex_profile.c

Also See: #use profile(), profileout(), Code Profile overview

#recursive

Syntax: #RECURSIVE

Elements: None

Purpose: Tells the compiler that the procedure immediately following the directive will be recursive.

Examples: #recursive

int factorial(int num) {

 if (num <= 1)

 return 1;

 return num * factorial(num-1);

}

Example Files: None

Also See: None

#reserve

Syntax: #RESERVE address
 or
#RESERVE address, address, address
 or
#RESERVE start:end

Elements: address is a RAM address, start is the first address and end is the last address

Purpose: This directive allows RAM locations to be reserved from use by the compiler. #RESERVE must appear after
the #DEVICE otherwise it will have no effect. When linking multiple compilation units be aware this directive
applies to the final object file.

Examples: #DEVICE dsPIC30F2010

#RESERVE 0x800:0x80B3

Example ex_cust.c

PreProcessor

103

Files:
Also See: #ORG

#rom

Syntax: #ROM address = {list}
#ROM type address = {list}

Elements: address is a ROM word address, list is a list of words separated by commas

Purpose: Allows the insertion of data into the .HEX file. In particular, this may be used to program the '84

data EEPROM, as shown in the following example.

Note that if the #ROM address is inside the program memory space, the directive creates a
segment for the data, resulting in an error if a #ORG is over the same area. The #ROM data will
also be counted as used program memory space.

The type option indicates the type of each item, the default is 16 bits. Using char as the type
treats each item as 7 bits packing 2 chars into every pcm 14-bit word.

When linking multiple compilation units be aware this directive applies to the final object file.

Some special forms of this directive may be used for verifying program memory:

#ROM address = checksum
 This will put a value at address such that the entire program memory will sum to 0x1248

#ROM address = crc16
 This will put a value at address that is a crc16 of all the program memory except the specified
address

#ROM address = crc8
 This will put a value at address that is a crc16 of all the program memory except the specified
address

Examples: #rom getnev ("EEPROM_ADDRESS")={1,2,3,4,5,6,7,8}

#rom int8 0x1000={"(c)CCS, 2010"}

Example Files: None

Also See: #ORG

#separate

Syntax: #SEPARATE options

Elements: options is optional, and are:

STDCALL – Use the standard Microchip calling method, used in C30. W0-W7 is used for
function parameters, rest of the working registers are not touched, remaining function parameters
are pushed onto the stack.

ARG=Wx:Wy – Use the working registers Wx to Wy to hold function parameters. Any remaining

PCD_March 2015-1

104

function parameters are pushed onto the stack.

DND=Wx:Wy – Function will not change Wx to Wy working registers.

AVOID=Wx:Wy – Function will not use Wx to Wy working registers for function parameters.

NO RETURN - Prevents the compiler generated return at the end of a function.

You cannot use STDCALL with the ARG, DND or AVOID parameters.

If you do not specify one of these options, the compiler will determine the best configuration, and
will usually not use the stack for function parameters (usually scratch space is allocated for
parameters).

Purpose: Tells the compiler that the procedure IMMEDIATELY following the directive is to be implemented
SEPARATELY. This is useful to prevent the compiler from automatically making a procedure
INLINE. This will save ROM space but it does use more stack space. The compiler will make all
procedures marked SEPARATE, separate, as requested, even if there is not enough stack space
to execute.

Examples: #separate ARG=W0:W7 AVOID=W8:W15 DND=W8:W15

swapbyte (int *a, int *b) {

int t;

 t=*a;

 *a=*b;

 *b=t;

}

Example Files: ex_cust.c

Also See: #INLINE

#serialize

Syntax: #SERIALIZE(id=xxx, next="x" | file="filename.txt" " | listfile="filename.txt", "prompt="text",
log="filename.txt") -
or
#SERIALIZE(dataee=x, binary=x, next="x" | file="filename.txt" | listfile="filename.txt",
prompt="text", log="filename.txt")

Elements: id=xxx - Specify a C CONST identifier, may be int8, int16, int32 or char array

Use in place of id parameter, when storing serial number to EEPROM:
dataee=x - The address x is the start address in the data EEPROM.
binary=x - The integer x is the number of bytes to be written to address specified. -or-
string=x - The integer x is the number of bytes to be written to address specified.
unicode=n - If n is a 0, the string format is normal unicode. For n>0 n indicates the string

 number in a USB descriptor.

Use only one of the next three options:
file="filename.txt" - The file x is used to read the initial serial number from, and this file is updated

by the ICD programmer. It is assumed this is a one line file with the serial number. The
programmer will increment the serial number.

listfile="filename.txt" - The file x is used to read the initial serial number from, and this file is

updated by the ICD programmer. It is assumed this is a file one serial number per line. The
programmer will read the first line then delete that line from the file.

PreProcessor

105

next="x" - The serial number X is used for the first load, then the hex file is updated to increment x

by one.

Other optional parameters:
prompt="text" - If specified the user will be prompted for a serial number on each load. If used

with one of the above three options then the default value the user may use is picked according to
the above rules.

log=xxx - A file may optionally be specified to keep a log of the date, time, hex file name and serial

number each time the part is programmed. If no id=xxx is specified then this may be used as a
simple log of all loads of the hex file.

Purpose: Assists in making serial numbers easier to implement when working with CCS ICD units.
Comments are inserted into the hex file that the ICD software interprets.

Examples: //Prompt user for serial number to be placed

//at address of serialNumA

//Default serial number = 200int8int8 const serialNumA=100;

#serialize(id=serialNumA,next="200",prompt="Enter the serial number")

//Adds serial number log in seriallog.txt

#serialize(id=serialNumA,next="200",prompt="Enter the serial number",

log="seriallog.txt")

//Retrieves serial number from serials.txt

#serialize(id=serialNumA,listfile="serials.txt")

//Place serial number at EEPROM address 0, reserving 1 byte

#serialize(dataee=0,binary=1,next="45",prompt="Put in Serial number")

//Place string serial number at EEPROM address 0, reserving 2 bytes

#serialize(dataee=0, string=2,next="AB",prompt="Put in Serial number")

Example Files: None

Also See: None

#task

(The RTOS is only included with the PCW, PCWH, and PCWHD software packages.)

Each RTOS task is specified as a function that has no parameters and no return. The #TASK directive is needed just
before each RTOS task to enable the compiler to tell which functions are RTOS tasks. An RTOS task cannot be
called directly like a regular function can.

Syntax: #TASK (options)

Elements: options are separated by comma and may be:

rate=time
Where time is a number followed by s, ms, us, or ns. This specifies how often the task will execute.

max=time
Where time is a number followed by s, ms, us, or ns. This specifies the budgeted time for this task.

queue=bytes
Specifies how many bytes to allocate for this task's incoming messages. The default value is 0.

enabled=value
Specifies whether a task is enabled or disabled by rtos_run().

PCD_March 2015-1

106

True for enabled, false for disabled. The default value is enabled.

Purpose: This directive tells the compiler that the following function is an RTOS task.

The rate option is used to specify how often the task should execute. This must be a multiple of the
minor_cycle option if one is specified in the #USE RTOS directive.

The max option is used to specify how much processor time a task will use in one execution of the
task. The time specified in max must be equal to or less than the time specified in the minor_cycle
option of the #USE RTOS directive before the project will compile successfully. The compiler does
not have a way to enforce this limit on processor time, so a programmer must be careful with how
much processor time a task uses for execution. This option does not need to be specified.

The queue option is used to specify the number of bytes to be reserved
for the task to receive messages from other tasks or functions. The default queue value is 0.

Examples: #task(rate=1s, max=20ms, queue=5)

Also See: #USE RTOS

__time__

Syntax: __TIME__

Elements: None

Purpose: This pre-processor identifier is replaced at compile time with the time of the compile in the
form: "hh:mm:ss"

Examples: printf("Software was compiled on ");

printf(__TIME__);

Example Files: None

Also See: None

#type

Syntax: #TYPE standard-type=size
#TYPE default=area
#TYPE unsigned
#TYPE signed
#TYPE char=signed
#TYPE char=unsigned
#TYPE ARG=Wx:Wy
#TYPE DND=Wx:Wy
#TYPE AVOID=Wx:Wy
#TYPE RECURSIVE
#TYPE CLASSIC

Elements: standard-type is one of the C keywords short, int, long, float, or double

PreProcessor

107

size is 1,8,16, 48, or 64
area is a memory region defined before the #TYPE using the addressmod directive

Wx:Wy is a range of working registers (example: W0, W1, W15, etc)

Purpose: By default the compiler treats SHORT as 8 bits , INT as 16 bits, and LONG as 32 bits. The traditional C
convention is to have INT defined as the most efficient size for the target processor. This is why it is 16 bits
on the dsPIC/PIC24 ® . In order to help with code compatibility a #TYPE directive may be used to allow
these types to be changed. #TYPE can redefine these keywords.

Note that the commas are optional. Be warned CCS example programs and include files may not work right
if you use #TYPE in your program.

Classic will set the type sizes to be compatible with CCS PIC programs.

This directive may also be used to change the default RAM area used for variable storage. This is done by
specifying default=area where area is a addressmod address space.

When linking multiple compilation units be aware this directive only applies to the current compilation unit.

The #TYPE directive allows the keywords UNSIGNED and SIGNED to set the default data type.

The ARG parameter tells the compiler that all functions can use those working registers to receive
parameters. The DND parameters tells the compiler that all functions should not change those working
registers (not use them for scratch space). The AVOID parameter tells the compiler to not use those working
registers for passing variables to functions. If you are using recursive functions, then it will use the stack for
passing variables when there is not enough working registers to hold variables; if you are not using recursive
functions, the compiler will allocate scratch space for holding variables if there is not enough working
registers. #SEPARATE can be used to set these parameters on an individual basis.

The RECURSIVE option tells the compiler that ALL functions can be recursive. #RECURSIVE can also be
used to assign this status on an individual basis.

Examples: #TYPE SHORT= 1 , INT= 8 , LONG= 16, FLOAT=48

#TYPE default=area

addressmod (user_ram_block, 0x100, 0x1FF);

#type default=user_ram_block // all variable declarations

 // in this area will be in

 // 0x100-0x1FF

#type default= // restores memory allocation

 // back to normal

#TYPE SIGNED

#TYPE RECURSIVE

#TYPE ARG=W0:W7

#TYPE AVOID=W8:W15

#TYPE DND=W8:W15

...

void main()

{

int variable1; // variable1 can only take values from -128 to 127

...

...

}

Example
Files:

ex_cust.c

Also See: None

PCD_March 2015-1

108

#undef

Syntax: #UNDEF id

Elements: id is a pre-processor id defined via #DEFINE

Purpose: The specified pre-processor ID will no longer have meaning to the pre-processor.

Examples: #if MAXSIZE<100

#undef MAXSIZE

#define MAXSIZE 100

#endif

Example Files: None

Also See: #DEFINE

_unicode

Syntax:
__unicode(constant-string)

Elements:
Unicode format string

Purpose
This macro will convert a standard ASCII string to a Unicode format string by inserting a
\000 after each character and removing the normal C string terminator.

For example: _unicode("ABCD")
will return: "A\00B\000C\000D" (8 bytes total with the terminator)

Since the normal C terminator is not used for these strings you need to do one of the
following for variable length strings:

 string = _unicode(KEYWORD) "\000\000";
OR
 string = _unicode(KEYWORD);
 string_size = sizeof(_unicode(KEYWORD));

Examples: #define USB_DESC_STRING_TYPE 3

 #define USB_STRING(x) (sizeof(_unicode(x))+2),USB_DESC_STRING_TYPE,_unicode(x)

 #define USB_ENGLISH_STRING 4,USB_DESC_STRING_TYPE,0x09,0x04

 //Microsoft Defined for US-English

 char const USB_STRING_DESC[]=[

 USB_ENGLISH_STRING,

 USB_STRING("CCS"),

 USB_STRING("CCS HID DEMO")

 };

Example Files: usb_desc_hid.h

PreProcessor

109

#use capture

Syntax: #USE CAPTURE(options)

Elements: ICx/CCPx

Which CCP/Input Capture module to us.

INPUT = PIN_xx

Specifies which pin to use. Useful for device with remappable pins, this will cause
compiler to automatically assign pin to peripheral.

TIMER=x

Specifies the timer to use with capture unit. If not specified default to timer 1 for
PCM and PCH compilers and timer 3 for PCD compiler.

TICK=x

The tick time to setup the timer to. If not specified it will be set to fastest as
possible or if same timer was already setup by a previous stream it will be set to
that tick time. If using same timer as previous stream and different tick time an
error will be generated.

FASTEST

Use instead of TICK=x to set tick time to fastest as possible.

SLOWEST

Use instead of TICK=x to set tick time to slowest as possible.

CAPTURE_RISING

Specifies the edge that timer value is captured on. Defaults to
CAPTURE_RISING.

CAPTURE_FALLING

Specifies the edge that timer value is captured on. Defaults to
CAPTURE_RISING.

CAPTURE_BOTH

PCD only. Specifies the edge that timer value is captured on. Defaults to
CAPTURE_RISING.

PRE=x

Specifies number of rising edges before capture event occurs. Valid options are 1,
4 and 16, default to 1 if not specified. Options 4 and 16 are only valid when using
CAPTURE_RISING, will generate an error is used with CAPTURE_FALLING or
CAPTURE_BOTH.

ISR=x

PCD only. Specifies the number of capture events to occur before generating
capture interrupt. Valid options are 1, 2, 3 and 4, defaults to 1 is not specified.
 Option 1 is only valid option when using CAPTURE_BOTH, will generate an error
if trying to use 2, 3 or 4 with it.

STREAM=id

Associates a stream identifier with the capture module. The identifier may be used
in functions like get_capture_time().

DEFINE=id

Creates a define named id which specifies the number of capture per second.
 Default define name if not specified is CAPTURES_PER_SECOND. Define name

PCD_March 2015-1

110

must start with an ASCII letter 'A' to 'Z', an ASCII letter 'a' to 'z' or an ASCII
underscore ('_').

Purpose: This directive tells the compiler to setup an input capture on the specified pin using
the specified settings. The #USE DELAY directive must appear before this
directive can be used. This directive enables use of built-in functions such as
get_capture_time() and get_capture_event().

Examples: #USE CAPTURE(INPUT=PIN_C2,CAPTURE_RISING,TIMER=1,FASTEST)
Example
Files:

None.

Also See: get_capture_time(), get_capture_event()

#use delay

Syntax: #USE DELAY (options))

Elements: Options may be any of the following separated by commas:

clock=speed speed is a constant 1-100000000 (1 hz to 100 mhz).
This number can contains commas. This number also supports the following denominations: M, MHZ, K, KHZ.
This specifies the clock the CPU runs at. Depending on the PIC this is 2 or 4 times the instruction rate. This
directive is not needed if the following type=speed is used and there is no frequency multiplication or division.

type=speed type defines what kind of clock you are using, and the following values are valid: oscillator, osc
(same as oscillator), crystal, xtal (same as crystal), internal, int (same as internal) or rc. The compiler will
automatically set the oscillator configuration bits based upon your defined type. If you specified internal, the
compiler will also automatically set the internal oscillator to the defined speed. Configuration fuses are modified
when this option is used. Speed is the input frequency.

restart_wdt will restart the watchdog timer on every delay_us() and delay_ms() use.

AUX: type=speed Some chips have a second oscillator used by specific periphrials and when this is the case
this option sets up that oscillator.

Also See: delay_ms(), delay_us()

#use dynamic_memory

Syntax: #USE DYNAMIC_MEMORY

Elements: None

Purpose: This pre-processor directive instructs the compiler to create the _DYNAMIC_HEAD object.
_DYNAMIC_HEAD is the location where the first free space is allocated.

Examples: #USE DYNAMIC_MEMORY

void main (){

 }

Example
Files:

ex_malloc.c

Also See: None

PreProcessor

111

#use fast_io

Syntax: #USE FAST_IO (port)

Elements: port is A, B, C, D, E, F, G, H, J or ALL

Purpose: Affects how the compiler will generate code for input and output instructions that follow. This directive takes
effect until another #use xxxx_IO directive is encountered. The fast method of doing I/O will cause the
compiler to perform I/O without programming of the direction register. The compiler's default operation is the
opposite of this command, the direction I/O will be set/cleared on each I/O operation. The user must ensure
the direction register is set correctly via set_tris_X(). When linking multiple compilation units be aware this
directive only applies to the current compilation unit.

Examples: #use fast_io(A)

Example
Files:

ex_cust.c

Also See: #USE FIXED_IO, #USE STANDARD_IO, set_tris_X() , General Purpose I/O

#use fixed_io

Syntax: #USE FIXED_IO (port_outputs=pin, pin?)

Elements: port is A-G, pin is one of the pin constants defined in the devices .h file.

Purpose: This directive affects how the compiler will generate code for input and output instructions that follow. This
directive takes effect until another #USE XXX_IO directive is encountered. The fixed method of doing I/O will
cause the compiler to generate code to make an I/O pin either input or output every time it is used. The pins
are programmed according to the information in this directive (not the operations actually performed). This
saves a byte of RAM used in standard I/O. When linking multiple compilation units be aware this directive
only applies to the current compilation unit.

Examples: #use fixed_io(a_outputs=PIN_A2, PIN_A3)

Example
Files:

None

Also See: #USE FAST_IO, #USE STANDARD_IO, General Purpose I/O

#use i2c

Syntax: #USE I2C (options)

Elements: Options are separated by commas and may be:

MASTER Sets to the master mode

MULTI_MASTER Set the multi_master mode

SLAVE Set the slave mode

SCL=pin Specifies the SCL pin (pin is a bit address)

PCD_March 2015-1

112

SDA=pin Specifies the SDA pin

ADDRESS=nn Specifies the slave mode address

FAST Use the fast I2C specification.

FAST=nnnnnn Sets the speed to nnnnnn hz

SLOW Use the slow I2C specification

RESTART_WDT Restart the WDT while waiting in I2C_READ

FORCE_HW Use hardware I2C functions.

FORCE_SW Use software I2C functions.

NOFLOAT_HIGH Does not allow signals to float high, signals are driven from low to
high

SMBUS Bus used is not I2C bus, but very similar

STREAM=id Associates a stream identifier with this I2C port. The identifier may
then be used in functions like i2c_read or i2c_write.

NO_STRETCH Do not allow clock streaching

MASK=nn Set an address mask for parts that support it

I2C1 Instead of SCL= and SDA= this sets the pins to the first module

I2C2

Instead of SCL= and SDA= this sets the pins to the second
module

NOINIT No initialization of the I2C peripheral is performed. Use I2C_INIT()
to initialize peripheral at run time.

Only some chips allow the following:

DATA_HOLD No ACK is sent until I2C_READ is called for data bytes (slave only)

ADDRESS_HOLD No ACK is sent until I2C_read is called for the address byte (slave only)
SDA_HOLD Min of 300ns holdtime on SDA a from SCL goes low

Purpose: CCS offers support for the hardware-based I2CTM and a software-based master I2CTM device.(For more

information on the hardware-based I2C module, please consult the datasheet for your target device; not all
PICs support I2CTM.

The I2C library contains functions to implement an I2C bus. The #USE I2C remains in effect for the
I2C_START, I2C_STOP, I2C_READ, I2C_WRITE and I2C_POLL functions until another USE I2C is
encountered. Software functions are generated unless the FORCE_HW is specified. The SLAVE mode
should only be used with the built-in SSP. The functions created with this directive are exported when using
multiple compilation units. To access the correct function use the stream identifier.

Examples: #use I2C(master, sda=PIN_B0, scl=PIN_B1)

#use I2C(slave,sda=PIN_C4,scl=PIN_C3

 address=0xa0,FORCE_HW)

#use I2C(master, scl=PIN_B0, sda=PIN_B1, fast=450000)

//sets the target speed to 450 KBSP

Example
Files:

ex_extee.c with 16c74.h

Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read, I2C
Overview

PreProcessor

113

#use profile()

Syntax: #use profile(options)

Elements: options may be any of the following, comma separated:

ICD Default – configures code profiler to use the ICD
connection.

TIMER1 Optional. If specified, the code profiler run-time on
the microcontroller will use the Timer1 peripheral as
a timestamp for all profile events. If not specified
the code profiler tool will use the PC clock, which
may not be accurate for fast events.

BAUD=x Optional. If specified, will use a different baud rate between the
microcontroller and the code profiler tool. This may be required
on slow microcontrollers to attempt to use a slower baud rate.

Purpose: Tell the compiler to add the code profiler run-time in the microcontroller and configure the link and clock.

Examples: #profile(ICD, TIMER1, baud=9600)

Example
Files:

ex_profile.c

Also See: #profile(), profileout(), Code Profile overview

#use pwm

Syntax: #USE PWM(options)

Elements:
Options are separated by commas and may be:

PWMx or CCPx Selects the CCP to use, x being the module number to use.

PWMx or OCx Selects the Output Compare module, x being the module number to use.
OUTPUT=PIN_xx Selects the PWM pin to use, pin must be one of the OC pins. If device has remappable pins

compiler will assign specified pin to specified OC module. If OC module not specified it will
assign remappable pin to first available module.

TIMER=x Selects timer to use with PWM module, default if not specified is timer 2.
FREQUENCY=x Sets the period of PWM based off specified value, should not be used if PERIOD is already

specified. If frequency can't be achieved exactly compiler will generate a message specifying
the exact frequency and period of PWM. If neither FREQUENCY or PERIOD is specified, the
period defaults to maximum possible period with maximum resolution and compiler will
generate a message specifying the frequency and period of PWM, or if using same timer as
previous stream instead of setting to maximum possible it will be set to the same as previous
stream. If using same timer as previous stream and frequency is different compiler will
generate an error.

PERIOD=x Sets the period of PWM, should not be used if FREQUENCY is already specified. If period
can't be achieved exactly compiler will generate a message specifying the exact period and
frequency of PWM. If neither PERIOD or FREQUENCY is specified, the period defaults to

PCD_March 2015-1

114

maximum possible period with maximum resolution and compiler will generate a message
specifying the frequency and period of PWM, or if using same timer as previous stream instead
of setting to maximum possible it will be set to the same as previous stream. If using same
timer as previous stream and period is different compiler will generate an error.

BITS=x Sets the resolution of the the duty cycle, if period or frequency is specified will adjust the period
to meet set resolution and will generate an message specifying the frequency and duty of
PWM. If period or frequency not specified will set period to maximum possible for specified
resolution and compiler will generate a message specifying the frequency and period of PWM,
unless using same timer as previous then it will generate an error if resolution is different then
previous stream. If not specified then frequency, period or previous stream using same timer
sets the resolution.

DUTY=x Selects the duty percentage of PWM, default if not specified is 50%.
STREAM=id Associates a stream identifier with the PWM signal. The identifier may be used in functions like

pwm_set_duty_percent().

Purpose: This directive tells the compiler to setup a PWM on the specified pin using the specified
frequency, period, duty cycle and resolution. The #USE DELAY directive must appear
before this directive can be used. This directive enables use of built-in functions such
as set_pwm_duty_percent(), set_pwm_frequency(), set_pwm_period(), pwm_on() and
pwm_off().

Example Files None
Also See:

#use rs232

Syntax: #USE RS232 (options)

Elements: Options are separated by commas and may be:

STREAM=id Associates a stream identifier with this RS232 port. The identifier may
then be used in functions like fputc.

BAUD=x Set baud rate to x

XMIT=pin Set transmit pin

RCV=pin Set receive pin

FORCE_SW Will generate software serial I/O routines even when the UART pins are
specified.

BRGH1OK Allow bad baud rates on chips that have baud rate problems.

ENABLE=pin The specified pin will be high during transmit. This may be used to enable
485 transmit.

DEBUGGER Indicates this stream is used to send/receive data through a CCS ICD unit.
 The default pin used is B3, use XMIT= and RCV= to change the pin used.
 Both should be the same pin.

RESTART_WDT Will cause GETC() to clear the WDT as it waits for a character.

INVERT Invert the polarity of the serial pins (normally not needed when level
converter, such as the MAX232). May not be used with the internal UART.

PARITY=X Where x is N, E, or O.

BITS =X Where x is 5-9 (5-7 may not be used with the SCI).

PreProcessor

115

FLOAT_HIGH The line is not driven high. This is used for open collector outputs. Bit 6 in
RS232_ERRORS is set if the pin is not high at the end of the bit time.

ERRORS Used to cause the compiler to keep receive errors in the variable
RS232_ERRORS and to reset errors when they occur.

SAMPLE_EARLY A getc() normally samples data in the middle of a bit time. This option
causes the sample to be at the start of a bit time. May not be used with the
UART.

RETURN=pin For FLOAT_HIGH and MULTI_MASTER this is the pin used to read the
signal back. The default for FLOAT_HIGH is the XMIT pin and for
MULTI_MASTER the RCV pin.

MULTI_MASTER Uses the RETURN pin to determine if another master on the bus is
transmitting at the same time. If a collision is detected bit 6 is set in
RS232_ERRORS and all future PUTC's are ignored until bit 6 is cleared.
 The signal is checked at the start and end of a bit time. May not be used
with the UART.

LONG_DATA Makes getc() return an int16 and putc accept an int16. This is for 9 bit data
formats.

DISABLE_INTS

Will cause interrupts to be disabled when the routines get or put a character.
This prevents character distortion for software implemented I/O and prevents
interaction between I/O in interrupt handlers and the main program when
using the UART.

STOP=X

To set the number of stop bits (default is 1). This works for both UART and
non-UART ports.

TIMEOUT=X To set the time getc() waits for a byte in milliseconds. If no character comes
in within this time the RS232_ERRORS is set to 0 as well as the return value
form getc(). This works for both UART and non-UART ports.

SYNC_SLAVE Makes the RS232 line a synchronous slave, making the receive pin a clock
in, and the data pin the data in/out.

SYNC_MASTER Makes the RS232 line a synchronous master, making the receive pin a clock
out, and the data pin the data in/out.

SYNC_MATER_CONT Makes the RS232 line a synchronous master mode in continuous receive
mode. The receive pin is set as a clock out, and the data pin is set as the
data in/out.

UART1 Sets the XMIT= and RCV= to the chips first hardware UART.

UART1A

Uses alternate UART pins

UART2

Sets the XMIT= and RCV= to the chips second hardware UART.

UART2A

Uses alternate UART pins

NOINIT

No initialization of the UART peripheral is performed. Useful for dynamic
control of the UART baudrate or initializing the peripheral manually at a later
point in the program's run time. If this option is used, then setup_uart()
needs to be used to initialize the peripheral. Using a serial routine (such as
getc() or putc()) before the UART is initialized will cause undefined
behavior.

ICD Indicates this stream is used to send/receive data through a CCS ICD unit.
 The default trasmit pin is the PIC's ICSPDAT/PGD pin and the default
receive pin is the PIC's ICSPCLK/PGC pin. Use XMIT= and RCV= to

PCD_March 2015-1

116

change the pins used.
PCD devices with multiple programming pin pairs, use #device ICSP=x to
specify which pin pair ICD it is connected to. Option is not available when
Debugging, see DEBUGGER option above.

UART3 Sets the XMIT= and RCV= to the device's third hardware UART.
UART4 Sets the XMIT= and RCV= to the device's fourth hardware UART.
Serial Buffer Options:
RECEIVE_BUFFER=x Size in bytes of UART circular receive buffer, default if not specified is zero.

 Uses an interrupt to receive data, supports RDA interrupt or external
interrupts.

TRANSMIT_BUFFER=x Size in bytes of UART circular transmit buffer, default if not specified is zero.
TXISR If TRANSMIT_BUFFER is greater then zero specifies using TBE interrupt for

transmitting data. Default is NOTXISR if TXISR or NOTXISR is not
specified. TXISR option can only be used when using hardware UART.

NOTXISR If TRANSMIT_BUFFER is greater then zero specifies to not use TBE
interrupt for transmitting data. Default is NOTXISR if TXISR or NOTXISR is
not specified and XMIT_BUFFER is greater then zero

Flow Control Options:
RTS = PIN_xx Pin to use for RTS flow control. When using FLOW_CONTROL_MODE this

pin is driven to the active level when it is ready to receive more data. In
SIMPLEX_MODE the pin is driven to the active level when it has data to
transmit. FLOW_CONTROL_MODE can only be use when using
RECEIVE_BUFFER

RTS_LEVEL=x Specifies the active level of the RTS pin, HIGH is active high and LOW is
active low. Defaults to LOW if not specified.

CTS = PIN_xx Pin to use for CTS flow control. In both FLOW_CONTROL_MODE and
SIMPLEX_MODE this pin is sampled to see if it clear to send data. If pin is
at active level and there is data to send it will send next data byte.

CTS_LEVEL=x Specifies the active level of the CTS pin, HIGH is active high and LOW is
active low. Default to LOW if not specified

FLOW_CONTROL_MODE Specifies how the RTS pin is used. For FLOW_CONTROL_MODE the RTS
pin is driven to the active level when ready to receive data. Defaults to
FLOW_CONTROL_MODE when neither FLOW_CONTROL_MODE or
SIMPLEX_MODE is specified. If RTS pin isn't specified then this option is
not used.

SIMPLEX_MODE Specifies how the RTS pin is used. For SIMPLEX_MODE the RTS pin is
driven to the active level when it has data to send. Defaults to
FLOW_CONTROL_MODE when neither FLOW_CONTROL_MODE or
SIMPLEX_MODE is specified. If RTS pin isn't specified then this option is
not used.

Purpose: This directive tells the compiler the baud rate and pins used for serial I/O. This directive takes effect until

another RS232 directive is encountered. The #USE DELAY directive must appear before this directive can be
used. This directive enables use of built-in functions such as GETC, PUTC, and PRINTF. The functions
created with this directive are exported when using multiple compilation units. To access the correct function
use the stream identifier.

When using parts with built-in UART and the UART pins are specified, the SCI will be used. If a baud rate
cannot be achieved within 3% of the desired value using the current clock rate, an error will be generated.
The definition of the RS232_ERRORS is as follows:

No UART:

 Bit 7 is 9th bit for 9 bit data mode (get and put).

 Bit 6 set to one indicates a put failed in float high mode.

With a UART:

 Used only by get:

 Copy of RCSTA register except:

 Bit 0 is used to indicate a parity error.

Warning:

PreProcessor

117

The PIC UART will shut down on overflow (3 characters received by the hardware with a GETC() call). The
"ERRORS" option prevents the shutdown by detecting the condition and resetting the UART.

Examples: #use rs232(baud=9600, xmit=PIN_A2,rcv=PIN_A3)

Example
Files:

ex_cust.c

Also See: getc(), putc(), printf(), setup_uart(), RS2332 I/O overview

#use rtos

(The RTOS is only included with the PCW and PCWH packages.)

The CCS Real Time Operating System (RTOS) allows a PIC micro controller to
run regularly scheduled tasks without the need for interrupts. This is
accomplished by a function (RTOS_RUN()) that acts as a dispatcher. When a
task is scheduled to run, the dispatch function gives control of the processor to
that task. When the task is done executing or does not need the processor
anymore, control of the processor is returned to the dispatch function which
then will give control of the processor to the next task that is scheduled to
execute at the appropriate time. This process is called cooperative multi-
tasking.

Syntax: #USE RTOS (options)

Elements: options are separated by comma and may be:

timer=X Where x is 0-4 specifying the timer used by the RTOS.

minor_cycle=time Where time is a number followed by s, ms, us, ns. This is the
longest time any task will run. Each task's execution rate must be a
multiple of this time. The compiler can calculate this if it is not
specified.

statistics Maintain min, max, and total time used by each task.

Purpose: This directive tells the compiler which timer on the PIC to use for monitoring and when to grant control to a

task. Changes to the specified timer's prescaler will effect the rate at which tasks are executed.

This directive can also be used to specify the longest time that a task will ever take to execute with the
minor_cycle option. This simply forces all task execution rates to be a multiple of the minor_cycle before the
project will compile successfully. If the this option is not specified the compiler will use a minor_cycle value
that is the smallest possible factor of the execution rates of the RTOS tasks.

If the statistics option is specified then the compiler will keep track of the minimum processor time taken by
one execution of each task, the maximum processor time taken by one execution of each task, and the total
processor time used by each task.

When linking multiple compilation units, this directive must appear exactly the same in each compilation unit.

Examples: #use rtos(timer=0, minor_cycle=20ms)

Also See: #TASK

PCD_March 2015-1

118

#use spi

Syntax: #USE SPI (options)

Elements: Options are separated by commas and may be:

MASTER Set the device as the master. (default)

SLAVE Set the device as the slave.
BAUD=n Target bits per second, default is as fast as possible.
CLOCK_HIGH=n High time of clock in us (not needed if BAUD= is used). (default=0)
CLOCK_LOW=n Low time of clock in us (not needed if BAUD= is used). (default=0)
DI=pin Optional pin for incoming data.
DO=pin Optional pin for outgoing data.
CLK=pin Clock pin.
MODE=n The mode to put the SPI bus.
ENABLE=pin Optional pin to be active during data transfer.
LOAD=pin Optional pin to be pulsed active after data is transferred.
DIAGNOSTIC=pin Optional pin to the set high when data is sampled.
SAMPLE_RISE Sample on rising edge.
SAMPLE_FALL Sample on falling edge (default).
BITS=n Max number of bits in a transfer. (default=32)
SAMPLE_COUNT=n Number of samples to take (uses majority vote). (default=1
LOAD_ACTIVE=n Active state for LOAD pin (0, 1).
ENABLE_ACTIVE=n Active state for ENABLE pin (0, 1). (default=0)
IDLE=n Inactive state for CLK pin (0, 1). (default=0)
ENABLE_DELAY=n Time in us to delay after ENABLE is activated. (default=0)
DATA_HOLD=n Time between data change and clock change
LSB_FIRST LSB is sent first.
MSB_FIRST MSB is sent first. (default)
STREAM=id Specify a stream name for this protocol.
SPI1 Use the hardware pins for SPI Port 1
SPI2 Use the hardware pins for SPI Port 2
FORCE_HW Use the pic hardware SPI.
SPI3 Use the hardware pins for SPI Port 3
SPI4 Use the hardware pins for SPI Port 4
NOINIT Don't initialize the hardware SPI Port
XFER16 Uses 16 BIT transfers instead of two 8 BIT transfers

Purpose: The SPI library contains functions to implement an SPI bus. After setting all of the proper parameters in

#USE SPI, the spi_xfer() function can be used to both transfer and receive data on the SPI bus.

The SPI1 and SPI2 options will use the SPI hardware onboard the PIC. The most common pins present on
hardware SPI are: DI, DO, and CLK. These pins don’t need to be assigned values through the options; the
compiler will automatically assign hardware-specific values to these pins. Consult your PIC’s data sheet as to
where the pins for hardware SPI are. If hardware SPI is not used, then software SPI will be used. Software
SPI is much slower than hardware SPI, but software SPI can use any pins to transfer and receive data other
than just the pins tied to the PIC’s hardware SPI pins.

The MODE option is more or less a quick way to specify how the stream is going to sample data. MODE=0
sets IDLE=0 and SAMPLE_RISE. MODE=1 sets IDLE=0 and SAMPLE_FALL. MODE=2 sets IDLE=1 and
SAMPLE_FALL. MODE=3 sets IDLE=1 and SAMPLE_RISE. There are only these 4 MODEs.

SPI cannot use the same pins for DI and DO. If needed, specify two streams: one to send data and another
to receive data.

The pins must be specified with DI, DO, CLK or SPIx, all other options are defaulted as indicated above.

Examples: #use spi(DI=PIN_B1, DO=PIN_B0, CLK=PIN_B2, ENABLE=PIN_B4, BITS=16)

// uses software SPI

#use spi(FORCE_HW, BITS=16, stream=SPI_STREAM)

// uses hardware SPI and gives this stream the name SPI_STREAM

PreProcessor

119

Example
Files:

None

Also See: spi_xfer()

#use standard_io

Syntax: #USE STANDARD_IO (port)

Elements: port is A, B, C, D, E, F, G, H, J or ALL

Purpose: This directive affects how the compiler will generate code for input and output instructions that follow. This
directive takes effect until another #USE XXX_IO directive is encountered. The standard method of doing I/O
will cause the compiler to generate code to make an I/O pin either input or output every time it is used. On
the 5X processors this requires one byte of RAM for every port set to standard I/O.

Standard_io is the default I/O method for all ports.

When linking multiple compilation units be aware this directive only applies to the current compilation unit.

Examples: #use standard_io(A)

Example
Files:

ex_cust.c

Also See: #USE FAST_IO, #USE FIXED_IO, General Purpose I/O

#use timer

Syntax: #USE TIMER (options)

Elements: TIMER=x

Sets the timer to use as the tick timer. x is a valid timer that the PIC has. Default value is 1 for Timer 1.

TICK=xx

Sets the desired time for 1 tick. xx can be used with ns(nanoseconds), us (microseconds), ms
(milliseconds), or s (seconds). If the desired tick time can't be achieved it will set the time to closest
achievable time and will generate a warning specifying the exact tick time. The default value is 1us.

BITS=x

Sets the variable size used by the get_ticks() and set_ticks() functions for returning and setting the tick time.
 x can be 8 for 8 bits, 16 for 16 bits, 32 for 32bits or 64 for 64 bits. The default is 32 for 32 bits.

ISR

Uses the timer's interrupt to increment the upper bits of the tick timer. This mode requires the the global
interrupt be enabled in the main program.

NOISR

The get_ticks() function increments the upper bits of the tick timer. This requires that the get_ticks() function
be called more often then the timer's overflow rate. NOISR is the default mode of operation.

STREAM=id

Associates a stream identifier with the tick timer. The identifier may be used in functions like get_ticks().

PCD_March 2015-1

120

DEFINE=id

Creates a define named id which specifies the number of ticks that will occur in one second. Default define
name if not specified is TICKS_PER_SECOND. Define name must start with an ASCII letter 'A' to 'Z', an
ASCII letter 'a' to 'z' or an ASCII underscore ('_').

COUNTER or COUNTER=x

Sets up specified timer as a counter instead of timer. x specifies the prescallar to setup counter with, default
is1 if x is not specified specified. The function get_ticks() will return the current count and the function
set_ticks() can be used to set count to a specific starting value or to clear counter.

Purpose: This directive creates a tick timer using one of the PIC's timers. The tick timer is initialized to zero at
program start. This directive also creates the define TICKS_PER_SECOND as a floating point number,
which specifies that number of ticks that will occur in one second.

Examples: #USE TIMER(TIMER=1,TICK=1ms,BITS=16,NOISR)

unsigned int16 tick_difference(unsigned int16 current, unsigned int16 previous) {

 return(current - previous);

}

void main(void) {

 unsigned int16 current_tick, previous_tick;

 current_tick = previous_tick = get_ticks();

 while(TRUE) {

 current_tick = get_ticks();

 if(tick_difference(current_tick, previous_tick) > 1000) {

 output_toggle(PIN_B0);

 previous_tick = current_tick;

 }

 }

}

Example
Files:

None

Also See: get_ticks(), set_ticks()

#use touchpad

Syntax: #USE TOUCHPAD (options)

Elements: RANGE=x

Sets the oscillator charge/discharge current range. If x is L, current is nominally 0.1 microamps. If x is M,
current is nominally 1.2 microamps. If x is H, current is nominally 18 microamps. Default value is H (18
microamps).

THRESHOLD=x
x is a number between 1-100 and represents the percent reduction in the nominal frequency that will
generate a valid key press in software. Default value is 6%.

SCANTIME=xxMS
xx is the number of milliseconds used by the microprocessor to scan for one key press. If utilizing multiple
touch pads, each pad will use xx milliseconds to scan for one key press. Default is 32ms.

PIN=char
If a valid key press is determined on “PIN”, the software will return the character “char” in the function
touchpad_getc(). (Example: PIN_B0='A')

PreProcessor

121

SOURCETIME=xxus (CTMU only)

xx is thenumber of microseconds each pin is sampled for by ADC during each scan time period. Default is
10us.

Purpose: This directive will tell the compiler to initialize and activate the Capacitive Sensing Module (CSM)or Charge
Time Measurement Unit (CTMU) on the microcontroller. The compiler requires use of the TIMER0 and
TIMER1 modules for CSM and Timer1 ADC modules for CTMU, and global interrupts must still be activated
in the main program in order for the CSM or CTMU to begin normal operation. For most applications, a higher
RANGE, lower THRESHOLD, and higher SCANTIME will result better key press detection. Multiple PIN's
may be declared in “options”, but they must be valid pins used by the CSM or CTMU. The user may also
generate a TIMER0 ISR with TIMER0's interrupt occuring every SCANTIME milliseconds. In this case, the
CSM's or CTMU's ISR will be executed first.

Examples: #USE TOUCHPAD (THRESHOLD=5, PIN_D5='5', PIN_B0='C')

void main(void){

 char c;

 enable_interrupts(GLOBAL);

 while(1){

 c = TOUCHPAD_GETC(); //will wait until a pin is detected

 } //if PIN_B0 is pressed, c will have 'C'

} //if PIN_D5 is pressed, c will have '5'

Example
Files:

None

Also See: touchpad_state(), touchpad_getc(), touchpad_hit()

#warning

Syntax: #WARNING text

Elements: text is optional and may be any text

Purpose: Forces the compiler to generate a warning at the location this directive appears in the file. The

text may include macros that will be expanded for the display. This may be used to see the
macro expansion. The command may also be used to alert the user to an invalid compile time
situation.

To prevent the warning from being counted as a warning, use this syntax: #warning/information
text

Examples: #if BUFFER_SIZE < 32

#warning Buffer Overflow may occur

#endif

Example Files: ex_psp.c

Also See: #ERROR

PCD_March 2015-1

122

#word

Syntax: #WORD id = x

Elements: id is a valid C identifier,

x is a C variable or a constant

Purpose: If the id is already known as a C variable then this will locate the variable at address x. In this case the
variable type does not change from the original definition. If the id is not known a new C variable is created
and placed at address x with the type int16

Warning: In both cases memory at x is not exclusive to this variable. Other variables may be located at the
same location. In fact when x is a variable, then id and x share the same memory location.

Examples: #word data = 0x0860

struct {

 short C;

 short Z;

 short OV;

 short N;

 short RA;

 short IPL0;

 short IPL1;

 short IPL2;

 int upperByte : 8;

} status_register;

#word status_register = 0x42

...

short zero = status_register.Z;

Example
Files:

None

Also See: #bit, #byte, #locate, #reserve, Named Registers, Type Specifiers, Type Qualifiers, Enumerated Types,
Structures & Unions, Typedef

#zero_ram

Syntax: #ZERO_RAM

Elements: None

Purpose: This directive zero's out all of the internal registers that may be used to hold variables before program
execution begins.

Examples: #zero_ram

void main() {

}

Example
Files:

ex_cust.c

Also See: None

123

BUILT-IN FUNCTIONS

BUILT-IN FUNCTIONS

The CCS compiler provides a lot of built-in functions to access and use the PIC microcontroller's peripherals. This
makes it very easy for the users to configure and use the peripherals without going into in depth details of the
registers associated with the functionality. The functions categorized by the peripherals associated with them are
listed on the next page. Click on the function name to get a complete description and parameter and return value
descriptions.

RS232 I/O

assert() getch() putc()

fgetc() getchar() putchar()

fgets() gets() puts()

fprintf() kbhit() setup_uart()

ftc() perror() set_uart_speed()

fputs() getc() printf()

DISCRETE
I/O

get_tris_x() output_X() output_drive()

input() output_bit() output_low()

input_state() input_change_x() output_toggle()

set_tris_x() output_float() set_pullup()

input_x() output_high()

PARALLEL
PORT

psp_input_full() psp_output_full() a

psp_overflow() setup_psp(option, address_mask)

I2C I/O

i2c_isr_state() i2c_slaveaddr() i2c_write()

i2c_poll() i2c_start() i2c_speed()

i2c_read() i2c_stop() i2c_init()

PROCESSOR
CONTROLS

clear_interrupt() goto_address() reset_cpu()

disable_interrupts() interrupt_active() restart_cause()

enable_interrupts() setup_oscillator()

ext_int_edge() label_address() sleep()

getenv()

 a a

BIT/BYTE
MANIPULATION

bit_clear() make8() _mul()

bit_set() make16() rotate_left()

shift_left() shift_right() swap()

bit_test() make32() rotate_right()

PCD_March 2015-1

124

STANDARD C
MATH

abs() div() log()

acos() exp() log10()

asin() fabs() modf()

atan() floor() pow()

atan2() fmod() sin()

atoe() frexp() sinh()

ceil() labs() sqrt()

cos() ldexp() tan()

cosh() ldiv() tanh()

atof48() atof64() atoi32()

atoi48() atoi64()

VOLTAGE
REF/COMP

setup_low_volt_detect() setup_vref() setup_comparator()

A/D
CONVERSION

set_adc_channel() setup_adc() read_adc()

adc_done() setup_adc_ports() setup_adc_ports2()

setup_sd_adc() set_sd_adc_channel() set_sd_adc_calibration()

set_adc_channel2() adc_done2() setup_adc2()

read_sd_adc()

STANDARD C
CHAR/STRING

atof() isxdigit(char) strncpy()

atoi() itoa() strpbrk()

 sprintf() strcopy()

atol() strcat() strrchr()

isalnum() strchr() strspn()

isalpha(char) strcmp() strstr()

isamong() strcoll() strtod()

iscntrl(x) strcpy() strtok()

isdigit(char) strcspn() strtol()

isgraph(x) strerror() strtoul()

islower(char) stricmp() strxfrm()

isprint(x) strlen() tolower()

Built-in Functions

125

ispunct(x) strlwr() toupper()

isspace(char) strncat() strtof48()

isupper(char) strncmp() a

TIMERS

get_timer_x()

restart_wdt() setup_wdt()

set_ticks() get_ticks()

 get_timerxy()

set_timerxy() setup_timerx set_timerx()

STANDARD C
MEMORY

calloc() memcmp() offsetofbit()

free() memcpy() realloc()

longjmp() memmove() setjmp()

malloc() memset() a

memchr() offsetof() a

CAPTURE
COMPARE /

PWM

setup_cwg() cwg_status() cwg_restart()

set_pwmx_duty() setup_power_pwm_pins() setup_power_pwm()

 setup_ccpx()

get_motor_pwm_count() set_motor_pwm_duty() setup_motor_pwm()

get_capture() set_compare_time() setup_capture()

setup_compare() get_capture32() set_motor_unit()

get_capture_ccpx() get_capture32_ccpx() get_timer_ccpx()

set_ccpx_compare_time() set_timer_ccpx() set_timer_period_ccpx()

NON-VOLATILE
MEMORY

erase_eeprom() write_eeprom()

 read_program_memory()

read_configuration_memory() write_program_memory()

PCD_March 2015-1

126

read_eeprom() write_configuration_memory() read_rom_memory()

STANDARD C
SPECIAL

bsearch() rand() va_end()

nargs() srand() va_start()

qsort() va_arg() a

DELAYS delay_cycles() delay_ms() delay_us()

RTOS

rtos_await() rtos_msg_send() rtos_terminate()

rtos_disable() rtos_overrun() rtos_wait()

rtos_enable() rtos_run() rtos_yield()

rtos_msg_poll() rtos_signal() a

rtos_msg_read() rtos_stats() a

LCD
lcd_contrast() lcd_load() lcd_symbol()

setup_lcd() a a

QEI
qei_get_count() qei_set_count() qei_status()

setup_qei() a a

D/A
CONVERSION

dac_write() setup_dac() setup_high_speed_adc()

setup_high_speed_adc_pair() read_high_speed_adc() high_speed_adc_done()

REAL TIME
CLOCK

CALENDAR

rtc_read() setup_rtc() rtc_alarm_read()

rtc_alarm_write() setup_rtc_alarm() rtc_write()

CAPACITIVE
TOUCH PAD

touchpad_getc() touchpad_hit() touchpad_state()

PARALLEL
MASTER PORT

setup_pmp() pmp_address(address) psp_read()

pmp_overflow()
setup_pmp(option,
address,mask)

psp_write()

pmp_output_full() pmp_input_full() setup_psp(option,address_

Built-in Functions

127

mask)

pmp_write() pmp_read() psp_input_full()

psp_output_full()

DCI

dci_data_received() dci_read() dci_start()

dci_transmit_ready() dci_write() setup_dci()

CRC
crc_calc(mode) crc_init(mode) setup_crc(mode)

crc_calc8() crc_calc16() crc_calc32()

abs()

Syntax: value = abs(x)

Parameters: x is any integer or float type.

Returns: Same type as the parameter.

Function: Computes the absolute value of a number.

Availability: All devices

Requires: #INCLUDE <stdlib.h>

Examples: signed int target,actual;

 ...

error = abs(target-actual);

Example Files: None

Also See: labs()

PCD_March 2015-1

128

sin() cos() tan() asin() acos() atan() sinh() cosh() tanh()
atan2()

Syntax: val = sin (rad)
val = cos (rad)
val = tan (rad)
rad = asin (val)
rad1 = acos (val)
rad = atan (val)
rad2=atan2(val, val)
result=sinh(value)
result=cosh(value)
result=tanh(value)

Parameters: rad is any float type representing an angle in Radians -2pi to 2pi.
val is any float type with the range -1.0 to 1.0.
Value is any float type

Returns: rad is a float with a precision equal to val representing an angle in Radians -pi/2 to pi/2

val is a float with a precision equal to rad within the range -1.0 to 1.0.

rad1 is a float with a precision equal to val representing an angle in Radians 0 to pi

rad2 is a float with a precision equal to val representing an angle in Radians -pi to pi

Result is a float with a precision equal to value

Function: These functions perform basic Trigonometric functions.

sin returns the sine value of the parameter (measured in radians)

cos returns the cosine value of the parameter (measured in radians)
tan returns the tangent value of the parameter (measured in radians)
asin returns the arc sine value in the range [-pi/2,+pi/2] radians
acos returns the arc cosine value in the range[0,pi] radians
atan returns the arc tangent value in the range [-pi/2,+pi/2] radians
atan2 returns the arc tangent of y/x in the range [-pi,+pi] radians
sinh returns the hyperbolic sine of x
cosh returns the hyperbolic cosine of x
tanh returns the hyperbolic tangent of x

Note on error handling:
If "errno.h" is included then the domain and range errors are stored in the errno variable. The user can
check the errno to see if an error has occurred and print the error using the perror function.

Domain error occurs in the following cases:
asin: when the argument not in the range[-1,+1]
acos: when the argument not in the range[-1,+1]
atan2: when both arguments are zero

Range error occur in the following cases:
cosh: when the argument is too large
sinh: when the argument is too large

Availability: All devices

Requires: #INCLUDE <math.h>

Examples: float phase;

// Output one sine wave

for(phase=0; phase<2*3.141596; phase+=0.01)

Built-in Functions

129

 set_analog_voltage(sin(phase)+1);

Example
Files:

ex_tank.c

Also See: log(), log10(), exp(), pow(), sqrt()

adc_done() adc_done2()

Syntax: value = adc_done();
value = adc_done2();

Parameters: None

Returns: A short int. TRUE if the A/D converter is done with conversion, FALSE if it is still busy.

Function: Can be polled to determine if the A/D has valid data.

Availability: Only available on devices with built in analog to digital converters

Requires: None

Examples: int16 value;

setup_adc_ports(sAN0|sAN1, VSS_VDD);

setup_adc(ADC_CLOCK_DIV_4|ADC_TAD_MUL_8);

set_adc_channel(0);

read_adc(ADC_START_ONLY);

int1 done = adc_done();

while(!done) {

done = adc_done();

}

value = read_adc(ADC_READ_ONLY);

printf(“A/C value = %LX\n\r”, value);

}

Example
Files:

None

Also See: setup_adc(), set_adc_channel(), setup_adc_ports(), read_adc(), ADC Overview

assert()

Syntax: assert (condition);

Parameters: condition is any relational expression

Returns: Nothing

Function: This function tests the condition and if FALSE will generate an error message on STDERR (by
default the first USE RS232 in the program). The error message will include the file and line of
the assert(). No code is generated for the assert() if you #define NODEBUG. In this way you
may include asserts in your code for testing and quickly eliminate them from the final program.

PCD_March 2015-1

130

Availability: All devices

Requires: assert.h and #USE RS232

Examples: assert(number_of_entries<TABLE_SIZE);

// If number_of_entries is >= TABLE_SIZE then

// the following is output at the RS232:

// Assertion failed, file myfile.c, line 56

Example
Files:

None

Also See: #USE RS232, RS232 I/O Overview

atoe

Syntax: atoe(string);

Parameters: string is a pointer to a null terminated string of characters.

Returns: Result is a floating point number

Function: Converts the string passed to the function into a floating point representation. If
the result cannot be represented, the behavior is undefined. This function also
handles E format numbers .

Availability: All devices

Requires: #INCLUDE <stdlib.h>

Examples: char string [10];

float32 x;

strcpy (string, "12E3");

x = atoe(string);

// x is now 12000.00

Example
Files:

None

Also See:

atoi(), atol(), atoi32(), atof(), printf()

atof() atof48() atof64()

strtof48()

Syntax: result = atof (string)
or
result = atof48(string)
or
result=atof64(string)
or
result-strtof48(string))

Built-in Functions

131

Parameters: string is a pointer to a null terminated string of characters.

Returns: Result is a floating point number in single, extended or double precision format

Function: Converts the string passed to the function into a floating point representation. If the result

cannot be represented, the behavior is undefined.

Availability: All devices

Requires: #INCLUDE <stdlib.h>

Examples: char string [10];

float x;

strcpy (string, "123.456");

x = atof(string);

// x is now 123.456

Example
Files:

ex_tank.c

Also See: atoi(), atol(), atoi32(), printf()

pin_select()

Syntax: pin_select(peripheral_pin, pin, [unlock],[lock])

Parameters: peripheral_pin – a constant string specifying which peripheral pin to map the specified pin to.

 Refer to #pin_select for all available strings. Using “NULL” for the peripheral_pin parameter will
unassign the output peripheral pin that is currently assigned to the pin passed for the pin
parameter.

pin – the pin to map to the specified peripheral pin. Refer to device's header file for pin defines. If

the peripheral_pin parameter is an input, passing FALSE for the pin parameter will unassign the
pin that is currently assigned to that peripheral pin.

unlock – optional parameter specifying whether to perform an unlock sequence before writing the

RPINRx or RPORx register register determined by peripheral_pin and pin options. Default is
TRUE if not specified. The unlock sequence must be performed to allow writes to the RPINRx and
RPORx registers. This option allows calling pin_select() multiple times without performing an
unlock sequence each time.

lock – optional parameter specifying whether to perform a lock sequence after writing the RPINRx

or RPORx registers. Default is TRUE if not specified. Although not necessary it is a good idea to
lock the RPINRx and RPORx registers from writes after all pins have been mapped. This option
allows calling pin_select() multiple times without performing a lock sequence each time.

Returns: Nothing.

Availability: On device with remappable peripheral pins.
Requires: Pin defines in device's header file.
Examples: pin_select(“U2TX”,PIN_B0);

//Maps PIN_B0 to U2TX //peripheral pin, performs unlock //and lock sequences.

pin_select(“U2TX”,PIN_B0,TRUE,FALSE);

//Maps PIN_B0 to U2TX //peripheral pin and performs //unlock sequence.

pin_select(“U2RX”,PIN_B1,FALSE,TRUE);

PCD_March 2015-1

132

//Maps PIN_B1 to U2RX //peripheral pin and performs lock //sequence.
Example Files: None.
Also See: #pin_select

atoi() atol() atoi32()

atol32() atoi48() atoi64()

Syntax: ivalue = atoi(string)
 or
lvalue = atol(string)
 or
i32value = atoi32(string)
or
i48value=atoi48(string)
or
i64value=atoi64(string)
or
L32vale=atol32(string)

Parameters: string is a pointer to a null terminated string of characters.

Returns: ivalue is an 8 bit int.
lvalue is a 16 bit int.
i32value is a 32 bit int.
48value is a 48 bit int.
i64value is a 64 bit int.
L32value is a 32 bit long.

Function: Converts the string passed to the function into an int representation. Accepts both decimal and
hexadecimal argument. If the result cannot be represented, the behavior is undefined.

Availability: All devices

Requires: #INCLUDE <stdlib.h>

Examples: char string[10];

int x;

strcpy(string,"123");

x = atoi(string);

// x is now 123

Example
Files:

input.c

Also See: printf()

bit_clear()

Syntax: bit_clear(var, bit)

Built-in Functions

133

Parameters: var may be a any bit variable (any lvalue)
bit is a number 0- 63 representing a bit number, 0 is the least significant bit.

Returns: undefined

Function: Simply clears the specified bit in the given variable. The least significant bit is 0. This
function is the similar to: var &= ~(1<<bit);

Availability: All devices

Requires: Nothing

Examples: int x;

x=5;

bit_clear(x,2);

// x is now 1

Example
Files:

ex_patg.c

Also See: bit_set(), bit_test()

bit_first()

Syntax:

N = bit_first (value, var)

Parameters:

value is a 0 to 1 to be shifted in
var is a 16 bit integer.

Returns:

An 8 bit integer

Function:

This function sets N to the 0 based position of the first occurrence of value. The search starts from
the right or least significant bit.

Availability:

30F/33F/24-bit devices

Requires:

Nothing

Examples:

Int16 var = 0x0033;

Int8 N = 0;

// N = 2

N = bit_first (0, var);

Example Files:

None

Also See:

shift_right(), shift_left(), rotate_right(), rotate_left()

bit_last()

Syntax:

N = bit_last (value, var)
N = bit_last(var)

Parameters:

value is a 0 to 1 to search for
var is a 16 bit integer.

Returns:

An 8-bit integer

PCD_March 2015-1

134

Function:

The first function will find the first occurrence of value in the var starting with the most significant
bit.
The second function will note the most significant bit of var and then search for the first different
bit.
Both functions return a 0 based result.

Availability:

30F/33F/24-bit devices

Requires:

Nothing

Examples:

//Bit pattern

//11101110 11111111

Int16 var = 0xEEFF;

Int8 N = 0;

//N is assigned 12

N = bit_last (0, var);

//N is assigned 12

N = bit_last(var);

Example Files:

None

Also See:

shift_right(), shift_left(), rotate_right(), rotate_left()

bit_set()

Syntax:

bit_set(var, bit)

Parameters:

var may be any variable (any lvalue)
bit is a number 0- 63 representing a bit number, 0 is the least significant bit.

Returns:

Undefined

Function:

Sets the specified bit in the given variable. The least significant bit is 0. This function is the similar
to: var |= (1<<bit);

Availability:

All devices

Requires:

Nothing

Examples:

int x;

x=5;

bit_set(x,3);

// x is now 13

Example Files:

ex_patg.c

Also See:

bit_clear(), bit_test()

bit_test()

Syntax:

value = bit_test (var, bit)

Parameters:

var may be a any bit variable (any lvalue)
bit is a number 0- 63 representing a bit number, 0 is the least significant bit.

Built-in Functions

135

Returns:

0 or 1

Function:

Tests the specified bit in the given variable. The least significant bit is 0. This function is much more
efficient than, but otherwise similar to:
((var & (1<<bit)) != 0)

Availability:

All devices

Requires:

Nothing

Examples:

if(bit_test(x,3) || !bit_test (x,1)){

 //either bit 3 is 1 or bit 1 is 0

}

if(data!=0)

 for(i=31;!bit_test(data, i);i--) ;

// i now has the most significant bit in data

// that is set to a 1

Example
Files:

ex_patg.c

Also See:

bit_clear(), bit_set()

bsearch()

Syntax: ip = bsearch (&key, base, num, width, compare)

Parameters: key: Object to search for
base: Pointer to array of search data
num: Number of elements in search data
width: Width of elements in search data
compare: Function that compares two elements in search data

Returns: bsearch returns a pointer to an occurrence of key in the array pointed to by base. If key is not

found, the function returns NULL. If the array is not in order or contains duplicate records with
identical keys, the result is unpredictable.

Function: Performs a binary search of a sorted array

Availability: All devices

Requires: #INCLUDE <stdlib.h>

Examples: int nums[5]={1,2,3,4,5};

int compar(const void *arg1,const void *arg2);

void main() {

 int *ip, key;

 key = 3;

 ip = bsearch(&key, nums, 5, sizeof(int), compar);

}

int compar(const void *arg1,const void *arg2) {

 if (* (int *) arg1 < (* (int *) arg2) return –1

 else if (* (int *) arg1 == (* (int *) arg2) return 0

 else return 1;

PCD_March 2015-1

136

}

Example Files: None

Also See: qsort()

calloc()

Syntax: ptr=calloc(nmem, size)

Parameters: nmem is an integer representing the number of member objects
size is the number of bytes to be allocated for each one of them.

Returns: A pointer to the allocated memory, if any. Returns null otherwise.

Function: The calloc function allocates space for an array of nmem objects whose size is specified by size.

The space is initialized to all bits zero.

Availability: All devices

Requires: #INCLUDE <stdlibm.h>

Examples: int * iptr;

iptr=calloc(5,10);

// iptr will point to a block of memory of

// 50 bytes all initialized to 0.

Example Files: None

Also See: realloc(), free(), malloc()

ceil()

Syntax: result = ceil (value)

Parameters: value is any float type

Returns: A float with precision equal to value

Function: Computes the smallest integer value greater than the argument. CEIL(12.67) is 13.00.

Availability: All devices

Requires: #INCLUDE<math.h>

Examples: // Calculate cost based on weight rounded

// up to the next pound

cost = ceil(weight) * DollarsPerPound;

Example Files: None

Also See: floor()

Built-in Functions

137

clear_interrupt()

Syntax: clear_interrupt(level)

Parameters: level - a constant defined in the devices.h file

Returns: undefined

Function: Clears the interrupt flag for the given level. This function is designed for use with a specific

interrupt, thus eliminating the GLOBAL level as a possible parameter. Some chips that have
interrupt on change for individual pins allow the pin to be specified like INT_RA1.

Availability: All devices

Requires: Nothing

Examples: clear_interrupt(int_timer1);

Example Files: None

Also See: enable_interrupts , #INT , Interrupts Overview

disable_interrupts(), interrupt_actvie()

cog_status()

Syntax: value=cog_status();

Parameters: None

Returns: value - the status of the COG module
Function: To determine if a shutdown event occurred on the Complementary Output

Generator
(COG) module.

Availability: All devices with a COG module.
Examples: if(cog_status()==COG_AUTO_SHUTDOWN)

 cog_restart();

Example Files: None

Also See: setup_cog(), set_cog_dead_band(), set_cog_blanking(), set_cog_phase(),
cog_restart()

.

PCD_March 2015-1

138

cog_restart()

Syntax: cog_restart();

Parameters: None

Returns: Nothing
Function: To restart the Complementary Output Generator (COG) module after an auto-

shutdown
event occurs, when not using auto-restart option of module.

Availability: All devices with a COG module.
Examples: if(cog_status()==COG_AUTO_SHUTDOWN)

 cog_restart();

Example Files: None

Also See: setup_cog(), set_cog_dead_band(), set_cog_blanking(), set_cog_phase(),
cog_status()

crc_calc()

crc_calc8()

crc_calc16()

crc_calc32()

Syntax: Result = crc_calc (data,[width]);
Result = crc_calc(ptr,len,[width]);
Result = crc_calc8(data,[width]);
Result = crc_calc8(ptr,len,[width]);
Result = crc_calc16(data,[width]); //same as crc_calc()
Result = crc_calc16(ptr,len,[width]); //same as crc_calc()
Result = crc_calc32(data,[width]);
Result = crc_calc32(ptr,len,[width]);

Parameters: data- This is one double word, word or byte that needs to be processed when using

crc_calc16(), or crc_calc8(), crc_calc32()

ptr- is a pointer to one or more double words, words or bytes of data

len- number of double words, words or bytes to process for function calls

crc_calc16(), or crc_calc8(), crc_calc32()

width- optional parameter used to specify the input data bit width to use with the functions

crc_calc16(), and crc_calc8(), crc_calc32() Only available on devices with a 32-bit CRC
peripheral.
If not specified, it defaults to the width of the return value of the function, 8-bit for crc_calc8(), 16-bit

Built-in Functions

139

for crc_calc16() and 32-bit for crc_calc32().
 For devices with a 16-bit for CRC the input data bit width is the same as the return bit width,
crc_calc16() and 8-bit crc_calc8().

Returns: Returns the result of the final CRC calculation.

Function: This will process one data double word, word or byte or len double words, words or bytes of data

using the CRC engine.

Availability: Only the devices with built in CRC module.

Requires: Nothing

Examples: int16 data[8];

Result = crc_calc(data,8);

Example Files: None

Also See: setup_crc(); crc_init()

crc_init(mode)

Syntax: crc_init (data);

Parameters: data - This will setup the initial value used by write CRC shift register. Most commonly, this register

is set to 0x0000 for start of a new CRC calculation.

Returns: undefined

Function: Configures the CRCWDAT register with the initial value used for CRC calculations.

Availability: Only the devices with built in CRC module.

Requires: Nothing

Examples: crc_init (); // Starts the CRC accumulator out at 0

crc_init(0xFEEE); // Starts the CRC accumulator out at 0xFEEE

Example Files: None

Also See: setup_crc(), crc_calc(), crc_calc8()

cwg_status()

Syntax: value = cwg_status();

Parameters: None

PCD_March 2015-1

140

Returns: the status of the CWG module

Function: To determine if a shutdown event occured causing the module to auto-shutdown

Availability: On devices with a CWG module.

Examples: if(cwg_status() == CWG_AUTO_SHUTDOWN)

 cwg_restart();

Example
Files:

None

Also See: setup_cwg(), cwg_restart()

cwg_restart()

Syntax: cwg_restart();

Parameters: None

Returns: Nothing

Function: To restart the CWG module after an auto-shutdown event occurs, when not using
auto-raster option of module.

Availability: On devices with a CWG module.

Examples: if(cwg_status() == CWG_AUTO_SHUTDOWN)

 cwg_restart();

Example
Files:

None

Also See: setup_cwg(), cwg_status()

dac_write()

Syntax: dac_write (value)
dac_write (channel, value)

Parameters: Value: 8-bit integer value to be written to the DAC module

Value: 16-bit integer value to be written to the DAC module
channel: Channel to be written to. Constants are:
 DAC_RIGHT
 DAC_DEFAULT
 DAC_LEFT

Returns: undefined

Function: This function will write a 8-bit integer to the specified DAC channel.
This function will write a 16-bit integer to the specified DAC channel.

Availability: Only available on devices with built in digital to analog converters.

Built-in Functions

141

Requires: Nothing

Examples: int i = 0;

setup_dac(DAC_VDD | DAC_OUTPUT);

while(1){

 i++;

 dac_write(i);

}

int i = 0;

setup_dac(DAC_RIGHT_ON, 5);

while(1){

 i++;

 dac_write(DAC_RIGHT | i);

}

Also See: setup_dac(), DAC Overview, see header file for device selected

dci_data_received()

Syntax:

dci_data_received()

Parameters:

none

Returns:

An int1. Returns true if the DCI module has received data.

Function:

Use this function to poll the receive buffers. It acts as a kbhit() function for DCI.

Availability:

Only available on devices with DCI

Requires:

None

Examples:

while(1)
{
 if(dci_data_received())
 {
 //read data, load buffers, etc…
 }
}

Example Files: None
Also See:

DCI Overview, setup_dci(), dci_start(), dci_write(), dci_read(), dci_transmit_ready()

dci_read()

Syntax:

dci_read(left_ channel, right_ channel);

Parameters:

left_channel- A pointer to a signed int16 that will hold the incoming audio data for the left channel (on a
stereo system). This data is received on the bus before the right channel data (for situations where left &
right channel does have meaning)

right_channel- A pointer to a signed int16 that will hold the incoming audio data for the right channel (on a

PCD_March 2015-1

142

stereo system). This data is received on the bus after the data in left channel.
Returns:

undefined

Function:

Use this function to read two data words. Do not use this function with DMA. This function is provided mainly
for applications involving a stereo codec.

 If your application does not use both channels but only receives on a slot (see setup_dci), use only the left
channel.

Availability:

Only available on devices with DCI

Requires:

None

Examples:

while(1)
{
 dci_read(&left_channel, &right_channel);
 dci_write(&left_channel, &right_channel);
}

Example
Files:

None

Also See:

DCI Overview, setup_dci(), dci_start(), dci_write(), dci_transmit_ready(), dci_data_received()

dci_start()

Syntax:

dci_start();

Parameters:

None

Returns:

undefined

Function:

Starts the DCI module’s transmission. DCI operates in a continous transmission mode (unlike other
transmission protocols that transmit only when they have data). This function starts the transmission. This
function is primarily provided to use DCI in conjunction with DMA

Availability:

Only available on devices with DCI.

Requires:

None

Examples:

dci_initialize((I2S_MODE | DCI_MASTER |
DCI_CLOCK_OUTPUT | SAMPLE_RISING_EDGE |
UNDERFLOW_LAST |
MULTI_DEVICE_BUS),DCI_1WORD_FRAME |
DCI_16BIT_WORD | DCI_2WORD_INTERRUPT,
RECEIVE_SLOT0 | RECEIVE_SLOT1, TRANSMIT_SLOT0 |
TRANSMIT_SLOT1, 6000);

…

dci_start();

Example
Files:

None

Also See: DCI Overview, setup_dci(), dci_write(), dci_read(), dci_transmit_ready(), dci_data_received()

Built-in Functions

143

dci_transmit_ready()

Syntax:

dci_transmit_ready()

Parameters:

None

Returns:

An int1. Returns true if the DCI module is ready to transmit
(there is space open in the hardware buffer).

Function:

Use this function to poll the transmit buffers.

Availability:

Only available on devices with DCI

Requires:

None

Examples:

while(1)
{
 if(dci_transmit_ready())
 {
 //transmit data, load buffers, etc…
 }
}

Example Files:

None

Also See:

DCI Overview, setup_dci(), dci_start(), dci_write(), dci_read(), dci_data_received()

dci_write()

Syntax:

dci_write(left_channel, right_channel);

Parameters:

left channel- A pointer to a signed int16 that holds the outgoing audio data for the left channel (on a stereo
system). This data is transmitted on the bus before the right channel data (for situations where left & right
channel does have meaning)

right channel- A pointer to a signed int16 that holds the outgoing audio data for the right channel (on a
stereo system). This data is transmitted on the bus after the data in left channel.

Returns:

undefined

Function:

Use this function to transmit two data words. Do not use this function with DMA. This function is provided
mainly for applications involving a stereo codec.

If your application does not use both channels but only transmits on a slot (see setup_dci()), use only the left
channel. If you transmit more than two slots, call this function multiple times.

Availability: Only available on devices with DCI

PCD_March 2015-1

144

Requires:

None

Examples:

while(1)
{
 dci_read(&left_channel, &right_channel);
 dci_write(&left_channel, &right_channel);
}

Example
Files:

None

Also See:

DCI Overview, setup_dci(), dci_start(), dci_read(), dci_transmit_ready(), dci_data_received()

delay_cycles()

Syntax: delay_cycles (count)

Parameters: count - a constant 1-255

Returns: undefined

Function: Creates code to perform a delay of the specified number of instruction clocks (1-255). An
instruction clock is equal to four oscillator clocks.

The delay time may be longer than requested if an interrupt is serviced during the delay. The
time spent in the ISR does not count toward the delay time.

Availability: All devices

Requires: Nothing

Examples: delay_cycles(1); // Same as a NOP

delay_cycles(25); // At 20 mhz a 5us delay

Example Files: ex_cust.c

Also See: delay_us(), delay_ms()

delay_ms()

Syntax: delay_ms (time)

Parameters: time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an int16, now the upper byte affects
the time.

Returns: undefined

Built-in Functions

145

Function: This function will create code to perform a delay of the specified length. Time is specified in
milliseconds. This function works by executing a precise number of instructions to cause the
requested delay. It does not use any timers. If interrupts are enabled the time spent in an
interrupt routine is not counted toward the time.

The delay time may be longer than requested if an interrupt is serviced during the delay. The
time spent in the ISR does not count toward the delay time.

Availability: All devices

Requires: #USE DELAY

Examples: #use delay (clock=20000000)

delay_ms(2);

void delay_seconds(int n) {

 for (;n!=0; n- -)

 delay_ms(1000);

}

Example Files: ex_sqw.c

Also See: delay_us(), delay_cycles(), #USE DELAY

delay_us()

Syntax: delay_us (time)

Parameters: time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an int16, now the upper byte affects
the time.

Returns: undefined

Function: Creates code to perform a delay of the specified length. Time is specified in
microseconds. Shorter delays will be INLINE code and longer delays and variable delays are
calls to a function. This function works by executing a precise number of instructions to cause
the requested delay. It does not use any timers. If interrupts are enabled the time spent in an
interrupt routine is not counted toward the time.

The delay time may be longer than requested if an interrupt is serviced during the delay. The
time spent in the ISR does not count toward the delay time.

Availability: All devices

Requires: #USE DELAY

Examples: #use delay(clock=20000000)

do {

output_high(PIN_B0);

delay_us(duty);

output_low(PIN_B0);

delay_us(period-duty);

} while(TRUE);

PCD_March 2015-1

146

Example Files: ex_sqw.c

Also See: delay_ms(), delay_cycles(), #USE DELAY

disable_interrupts()

Syntax: disable_interrupts (name)
disable_interrupts (INTR_XX)
disable_interrupts (expression)

Parameters: name - a constant defined in the devices .h file

INTR_XX – Allows user selectable interrupt options like INTR_NORMAL, INTR_ALTERNATE,

INTR_LEVEL

expression – A non-constant expression

Returns: When INTR_LEVELx is used as a parameter, this function will return the previous level.

Function: Disables the interrupt for the given name. Valid specific names are the same as are used in

#INT_xxx and are listed in the devices .h file. Note that it is not necessary to disable interrupts
inside an interrupt service routine since interrupts are automatically disabled.

INTR_GLOBAL – Disables all interrupts that can be disabled

INTR_NORMAL – Use normal vectors for the ISR

INTR_ALTERNATE – Use alternate vectors for the ISR

INTR_LEVEL0 .. INTR_LEVEL7 – Disables interrupts at this level and below, enables interrupts
above this level

INTR_CN_PIN | PIN_xx – Disables a CN pin interrupts

expression – Disables interrupts during evaluation of the expression.

Availability: All dsPIC and PIC24 devices

Requires: Should have a #INT_xxxx, constants are defined in the devices .h file.

Examples: disable_interrupts(INT_RDA); // RS232 OFF

disable_interrupts(memcpy(buffer1,buffer2,10)) ;

enable_interrupts(ADC_DONE);

enable_interrupts(RB_CHANGE);

 // these enable the interrupts

Example Files: None

Also See: enable_interrupts(), #INT_xxxx, Interrupts Overview, clear_interrupt()
interrupt_active()

Built-in Functions

147

div() ldiv()

Syntax: idiv=div(num, denom)
ldiv =ldiv(lnum, ldenom)

Parameters: num and denom are signed integers.
num is the numerator and denom is the denominator.
lnum and ldenom are signed longs , signed int32, int48 or int64
lnum is the numerator and ldenom is the denominator.

Returns: idiv is a structure of type div_t and lidiv is a structure of type ldiv_t. The div function returns a
structure of type div_t, comprising of both the quotient and the remainder. The ldiv function
returns a structure of type ldiv_t, comprising of both the quotient and the remainder.

Function: The div and ldiv function computes the quotient and remainder of the division of the numerator by
the denominator. If the division is inexact, the resulting quotient is the integer or long of lesser
magnitude that is the nearest to the algebraic quotient. If the result cannot be represented, the
behavior is undefined; otherwise quot*denom(ldenom)+rem shall equal num(lnum).

Availability: All devices.

Requires: #INCLUDE <STDLIB.H>

Examples: div_t idiv;

ldiv_t lidiv;

idiv=div(3,2);

//idiv will contain quot=1 and rem=1

lidiv=ldiv(300,250);

//lidiv will contain lidiv.quot=1 and lidiv.rem=50

Example Files: None

Also See: None

dma_start()

Syntax: dma_start(channel, mode, addressA, addressB, count);

Parameters: Channel- The channel used in the DMA transfer

mode - The mode used for the DMA transfer.

addressA- The start RAM address of the buffer to use located within the DMA RAM bank.

addressB- If using PING_PONG mode the start RAM address of the second buffer to use located
within the DMA RAM bank.

count - Number of DMA transfers to do. Value must be one less than actual number of transfers.

Returns: void

Function: Starts the DMA transfer for the specified channel in the specified mode of operation.

Availability: Devices that have the DMA module.

Requires: Nothing

PCD_March 2015-1

148

Examples: dma_start(2, DMA_CONTINOUS | DMA_PING_PONG, 0x4000, 0x4200,255);

// This will setup the DMA channel 2 for continuous ping-pong mode with DMA RAM

addresses of 0x4000 and 0x4200.

Example Files: None

Also See: setup_dma(), dma_status()

dma_status()

Syntax: Value = dma_status(channel);

Parameters: Channel – The channel whose status is to be queried.

Returns: Returns a 8-bit int. Possible return values are :
DMA_IN_ERROR 0x01
DMA_OUT_ERROR 0x02
DMA_B_SELECT 0x04

Function: This function will return the status of the specified channel in the DMA module.

Availability: Devices that have the DMA module.

Requires: Nothing

Examples: Int8 value;

value = dma_status(3); // This will return the status of channel 3 of the DMA

module.

Example Files: None

Also See: setup_dma(), dma_start().

enable_interrupts()

Syntax: enable_interrupts (name)
enable_interrupts (INTR_XX)

Parameters: name- a constant defined in the devices .h file

INTR_XX – Allows user selectable interrupt options like INTR_NORMAL, INTR_ALTERNATE,

INTR_LEVEL

Returns: undefined

Function: Name -Enables the interrupt for the given name. Valid specific names are the same as are used in

#INT_xxx and are listed in the devices .h file.

INTR_GLOBAL – Enables all interrupt levels (same as INTR_LEVEL0)

Built-in Functions

149

INTR_NORMAL – Use normal vectors for the ISR

INTR_ALTERNATE – Use alternate vectors for the ISR

INTR_LEVEL0 .. INTR_LEVEL7 – Enables interrupts at this level and above, interrupts at lower
levels are disabled

INTR_CN_PIN | PIN_xx – Enables a CN pin interrupts

Availability: All dsPIC and PIC24 devices

Requires: Should have a #INT_xxxx, Constants are defined in the devices .h file.

Examples: enable_interrupts(INT_TIMER0);

enable_interrupts(INT_TIMER1);

enable_interrupts(INTR_CN_PIN|Pin_B0);

Example Files: None

Also See: disable_enterrupts(), #INT_xxxx, Interrupts Overview, clear_interrupt()
interrupt_active()

erase_program_memory

Syntax: erase_program_memory (address);

Parameters: address is 32 bits. The least significant bits may be ignored.

Returns: undefined

Function: Erases FLASH_ERASE_SIZE bytes to 0xFFFF in program memory. FLASH_ERASE_SIZE varies

depending on the part.
Family FLASH_ERASE_SIZE
dsPIC30F 32 instructions (96 bytes)
dsPIC33FJ 512 instructions (1536 bytes)
PIC24FJ 512 instructions (1536 bytes)
PIC24HJ 512 instructions (1536 bytes)
NOTE: Each instruction on the PCD is 24 bits wide (3 bytes)
See write_program_memory() for more information on program memory access.

Availability: All devices

Requires: Nothing

Examples: Int32 address = 0x2000;

erase_program_memory(address); // erase block of memory from 0x2000 to 0x2400 for a

PIC24HJ/FJ /33FJ device, or erase 0x2000 to 0x2040 for a dsPIC30F chip

Example
Files:

None

Also See: write program memory(), Program Eeprom Overview

PCD_March 2015-1

150

exp()

Syntax: result = exp (value)

Parameters: value is any float type

Returns: A float with a precision equal to value

Function: Computes the exponential function of the argument. This is e to the power of value where e is the
base of natural logarithms. exp(1) is 2.7182818.

Note on error handling:
If "errno.h" is included then the domain and range errors are stored in the errno variable. The user
can check the errno to see if an error has occurred and print the error using the perror function.

Range error occur in the following case:

 exp: when the argument is too large

Availability: All devices

Requires: #INCLUDE <math.h>

Examples: // Calculate x to the power of y

x_power_y = exp(y * log(x));

Example Files: None

Also See: pow(), log(), log10()

ext_int_edge()

Syntax: ext_int_edge (source, edge)

Parameters: source is a constant 0,1 or 2 for the PIC18XXX and 0 otherwise.
source is a constant from 0 to 4.

Source is optional and defaults to 0.
edge is a constant H_TO_L or L_TO_H representing "high to low" and "low to high"

Returns: undefined

Function: Determines when the external interrupt is acted upon. The edge may be L_TO_H or H_TO_L to
specify the rising or falling edge.

Availability: Only devices with interrupts

Requires: Constants are in the devices .h file

Examples: ext_int_edge(2, L_TO_H); // Set up PIC18 EXT2

ext_int_edge(2, L_TO_H); // Set up external interrupt 2 to interrupt

 // on rising edge

ext_int_edge(H_TO_L); // Sets up EXT

ext_int_edge(H_TO_L); // Sets up external interrupt 0 to interrupt

 // on falling edge

Example Files: ex_wakup.c

Also See: #INT_EXT , enable_interrupts() , disable_interrupts , Interrupts Overview

Built-in Functions

151

fabs()

Syntax: result=fabs (value)

Parameters: value is any float type

Returns: result is a float with precision to value

Function: The fabs function computes the absolute value of a float

Availability: All devices.

Requires: #INCLUDE <math.h>

Examples: double result;

result=fabs(-40.0)

// result is 40.0

Example Files: None

Also See: abs(), labs()

getc() getch() getchar() fgetc()

Syntax: value = getc()
value = fgetc(stream)
value=getch()
value=getchar()

Parameters: stream is a stream identifier (a constant byte)

Returns: An 8 bit character

Function: This function waits for a character to come in over the RS232 RCV pin and returns the character. If you do
not want to hang forever waiting for an incoming character use kbhit() to test for a character available. If a
built-in USART is used the hardware can buffer 3 characters otherwise GETC must be active while the
character is being received by the PIC®.

If fgetc() is used then the specified stream is used where getc() defaults to STDIN (the last USE RS232).

Availability: All devices

Requires: #USE RS232

Examples: printf("Continue (Y,N)?");

do {

 answer=getch();

}while(answer!='Y' && answer!='N');

#use rs232(baud=9600,xmit=pin_c6,

 rcv=pin_c7,stream=HOSTPC)
#use rs232(baud=1200,xmit=pin_b1,

PCD_March 2015-1

152

 rcv=pin_b0,stream=GPS)

#use rs232(baud=9600,xmit=pin_b3,

 stream=DEBUG)

...

while(TRUE) {

 c=fgetc(GPS);

 fputc(c,HOSTPC);

 if(c==13)

 fprintf(DEBUG,"Got a CR\r\n");

}

Example
Files:

ex_stwt.c

Also See: putc(), kbhit(), printf(), #USE RS232, input.c, RS232 I/O Overview

gets() fgets()

Syntax: gets (string)
value = fgets (string, stream)

Parameters: string is a pointer to an array of characters.
Stream is a stream identifier (a constant byte)

Returns: undefined

Function: Reads characters (using getc()) into the string until a RETURN (value 13) is encountered. The
string is terminated with a 0. Note that INPUT.C has a more versatile get_string function.

If fgets() is used then the specified stream is used where gets() defaults to STDIN (the last USE
RS232).

Availability: All devices

Requires: #USE RS232

Examples: char string[30];

printf("Password: ");

gets(string);

if(strcmp(string, password))

 printf("OK");

Example Files: None

Also See: getc(), get_string in input.c

floor()

Syntax: result = floor (value)

Parameters: value is any float type

Returns: result is a float with precision equal to value

Built-in Functions

153

Function: Computes the greatest integer value not greater than the argument. Floor (12.67) is 12.00.

Availability: All devices.

Requires: #INCLUDE <math.h>

Examples: // Find the fractional part of a value

frac = value - floor(value);

Example Files: None

Also See: ceil()

fmod()

Syntax: result= fmod (val1, val2)

Parameters: val1 is any float type
val2 is any float type

Returns: result is a float with precision equal to input parameters val1 and val2

Function: Returns the floating point remainder of val1/val2. Returns the value val1 - i*val2 for some integer

“i” such that, if val2 is nonzero, the result has the same sign as val1 and magnitude less than the
magnitude of val2.

Availability: All devices.

Requires: #INCLUDE <math.h>

Examples: float result;

result=fmod(3,2);

// result is 1

Example Files: None

Also See: None

printf() fprintf()

Syntax: printf (string)
 or
printf (cstring, values...)
 or
printf (fname, cstring, values...)
fprintf (stream, cstring, values...)

Parameters: String is a constant string or an array of characters null terminated.

Values is a list of variables separated by commas, fname is a function name to be used for
outputting (default is putc is none is specified.

PCD_March 2015-1

154

 Stream is a stream identifier (a constant byte). Note that format specifies do not work in ram
band strings.

Returns: undefined

Function: Outputs a string of characters to either the standard RS-232 pins (first two forms) or to a specified
function. Formatting is in accordance with the string argument. When variables are used this
string must be a constant. The % character is used within the string to indicate a variable value is
to be formatted and output. Longs in the printf may be 16 or 32 bit. A %% will output a single
%. Formatting rules for the % follows.

See the Expressions > Constants and Trigraph sections of this manual for other escape character
that may be part of the string.

If fprintf() is used then the specified stream is used where printf() defaults to STDOUT (the last
USE RS232).

Format:
The format takes the generic form %nt. n is optional and may be 1-9 to specify how many
characters are to be outputted, or 01-09 to indicate leading zeros, or 1.1 to 9.9 for floating point
and %w output. t is the type and may be one of the following:

c Character

s String or character
u Unsigned int
d Signed int
Lu Long unsigned int
Ld Long signed int
x Hex int (lower case)
X Hex int (upper case)
Lx Hex long int (lower case)
LX Hex long int (upper case)
f Float with truncated decimal
g Float with rounded decimal
e Float in exponential format
w Unsigned int with decimal place inserted. Specify two

numbers for n. The first is a total field width. The
second is the desired number of decimal places.

Example formats:

Specifier Value=0x12 Value=0xfe

%03u 018 254
%u 18 254
%2u 18 *
%5 18 254
%d 18 -2
%x 12 fe
%X 12 FE
%4X 0012 00FE
%3.1w 1.8 25.4

 * Result is undefined - Assume garbage.

Availability: All Devices

Requires: #USE RS232 (unless fname is used)

Examples: byte x,y,z;

printf("HiThere");

printf("RTCCValue=>%2x\n\r",get_rtcc());

printf("%2u %X %4X\n\r",x,y,z);

printf(LCD_PUTC, "n=%u",n);

Built-in Functions

155

Example Files: ex_admm.c, ex_lcdkb.c

Also See: atoi(), puts(), putc(), getc() (for a stream example), RS232 I/O Overview

putc() putchar() fputc()

Syntax: putc (cdata)
putchar (cdata)
fputc(cdata, stream)

Parameters: cdata is a 8 bit character.
Stream is a stream identifier (a constant byte)

Returns: undefined

Function: This function sends a character over the RS232 XMIT pin. A #USE RS232 must appear before
this call to determine the baud rate and pin used. The #USE RS232 remains in effect until
another is encountered in the file.

If fputc() is used then the specified stream is used where putc() defaults to STDOUT (the last
USE RS232).

Availability: All devices

Requires: #USE RS232

Examples: putc('*');

for(i=0; i<10; i++)

 putc(buffer[i]);

putc(13);

Example Files: ex_tgetc.c

Also See: getc(), printf(), #USE RS232, RS232 I/O Overview

puts() fputs()

Syntax: puts (string).
fputs (string, stream)

Parameters: string is a constant string or a character array (null-terminated).
Stream is a stream identifier (a constant byte)

Returns: undefined

Function: Sends each character in the string out the RS232 pin using putc(). After the string is sent a
CARRIAGE-RETURN (13) and LINE-FEED (10) are sent. In general printf() is more useful than
puts().

If fputs() is used then the specified stream is used where puts() defaults to STDOUT (the last
USE RS232)

Availability: All devices

PCD_March 2015-1

156

Requires: #USE RS232

Examples: puts(" ----------- ");

puts(" | HI | ");

puts(" ----------- ");

Example Files: None

Also See: printf(), gets(), RS232 I/O Overview

free()

Syntax: free(ptr)

Parameters: ptr is a pointer earlier returned by the calloc, malloc or realloc.

Returns: No value

Function: The free function causes the space pointed to by the ptr to be deallocated, that is made available
for further allocation. If ptr is a null pointer, no action occurs. If the ptr does not match a pointer
earlier returned by the calloc, malloc or realloc, or if the space has been deallocated by a call to
free or realloc function, the behavior is undefined.

Availability: All devices.

Requires: #INCLUDE <stdlibm.h>

Examples: int * iptr;

iptr=malloc(10);

free(iptr)

// iptr will be deallocated

Example Files: None

Also See: realloc(), malloc(), calloc()

frexp()

Syntax: result=frexp (value, &exp);

Parameters: value is any float type
exp is a signed int.

Returns: result is a float with precision equal to value

Function: The frexp function breaks a floating point number into a normalized fraction and an integral
power of 2. It stores the integer in the signed int object exp. The result is in the interval [1/2 to1)
or zero, such that value is result times 2 raised to power exp. If value is zero then both parts are
zero.

Availability: All devices.

Built-in Functions

157

Requires: #INCLUDE <math.h>

Examples: float result;

signed int exp;

result=frexp(.5,&exp);

// result is .5 and exp is 0

Example Files: None

Also See: ldexp(), exp(), log(), log10(), modf()

scanf()

printf()

Syntax: scanf(cstring);
scanf(cstring, values...)
fscanf(stream, cstring, values...)

Parameters: cstring is a constant string.

values is a list of variables separated by commas.

stream is a stream identifier.

Returns: 0 if a failure occurred, otherwise it returns the number of conversion specifiers that were read in, plus the

number of constant strings read in.

Function: Reads in a string of characters from the standard RS-232 pins and formats the string according to the
format specifiers. The format specifier character (%) used within the string indicates that a conversion
specification is to be done and the value is to be saved into the corresponding argument variable. A %%
will input a single %. Formatting rules for the format specifier as follows:

If fscanf() is used, then the specified stream is used, where scanf() defaults to STDIN (the last USE RS232).

Format:
The format takes the generic form %nt. n is an option and may be 1-99 specifying the field width, the
number of characters to be inputted. t is the type and maybe one of the following:

c Matches a sequence of characters of the number specified by the field width (1 if no field

width is specified). The corresponding argument shall be a pointer to the initial character
of an array long enough to accept the sequence.

s Matches a sequence of non-white space characters. The corresponding argument shall be

a pointer to the initial character of an array long enough to accept the sequence and a
terminating null character, which will be added automatically.

u Matches an unsigned decimal integer. The corresponding argument shall be a pointer to an

unsigned integer.

Lu Matches a long unsigned decimal integer. The corresponding argument shall be a pointer to

a long unsigned integer.

d Matches a signed decimal integer. The corresponding argument shall be a pointer to a

signed integer.

PCD_March 2015-1

158

Ld Matches a long signed decimal integer. The corresponding argument shall be a pointer to a

long signed integer.

o Matches a signed or unsigned octal integer. The corresponding argument shall be a pointer

to a signed or unsigned integer.

Lo Matches a long signed or unsigned octal integer. The corresponding argument shall be a

pointer to a long signed or unsigned integer.

x or X Matches a hexadecimal integer. The corresponding argument shall be a pointer to a signed

or unsigned integer.

Lx or LX Matches a long hexadecimal integer. The corresponding argument shall be a pointer to a

long signed or unsigned integer.

i Matches a signed or unsigned integer. The corresponding argument shall be a pointer to a

signed or unsigned integer.

Li Matches a long signed or unsigned integer. The corresponding argument shall be a pointer

to a long signed or unsigned integer.

f,g or e Matches a floating point number in decimal or exponential format. The corresponding

argument shall be a pointer to a float.

[Matches a non-empty sequence of characters from a set of expected characters. The

sequence of characters included in the set are made up of all character following the left
bracket ([) up to the matching right bracket (]). Unless the first character after the left
bracket is a ^, in which case the set of characters contain all characters that do not
appear between the brackets. If a - character is in the set and is not the first or second,
where the first is a ^, nor the last character, then the set includes all characters from the
character before the - to the character after the -.

 For example, %[a-z] would include all characters from a to z in the set and %[^a-z] would
exclude all characters from a to z from the set. The corresponding argument shall be a

pointer to the initial character of an array long enough to accept the sequence and a
terminating null character, which will be added automatically.

n Assigns the number of characters read thus far by the call to scanf() to the corresponding

argument. The corresponding argument shall be a pointer to an unsigned integer.

 An optional assignment-suppressing character (*) can be used after the format specifier to

indicate that the conversion specification is to be done, but not saved into a
corresponding variable. In this case, no corresponding argument variable should be
passed to the scanf() function.

 A string composed of ordinary non-white space characters is executed by reading the next

character of the string. If one of the inputted characters differs from the string, the
function fails and exits. If a white-space character precedes the ordinary non-white space
characters, then white-space characters are first read in until a non-white space character
is read.

 White-space characters are skipped, except for the conversion specifiers [, c or n, unless a

white-space character precedes the [or c specifiers.

Availability: All Devices

Requires: #USE RS232

Examples: char name[2-];

unsigned int8 number;

signed int32 time;

if(scanf("%u%s%ld",&number,name,&time))

 printf"\r\nName: %s, Number: %u, Time: %ld",name,number,time);

Built-in Functions

159

Example
Files:

None

Also See: RS232 I/O Overview, getc(), putc(), printf()

get_capture()

Syntax: value = get_capture(x)

Parameters: x defines which ccp module to read from.

Returns: A 16-bit timer value.

Function: This function obtains the last capture time from the indicated CCP module

Availability: Only available on devices with Input Capture modules

Requires: None

Examples:

Example Files: ex_ccpmp.c

Also See: setup_ccpx()

get_capture()

Syntax: value = get_capture(x, wait)

Parameters: x defines which input capture result buffer module to read from
wait signifies if the compiler should read the oldest result in the buffer or the next result to enter the buffer

Returns: A 16-bit timer value.

Function: If wait is true, the current capture values in the result buffer are cleared, and the next result to be sent to
the buffer is returned. If wait is false, the default setting, the first value currently in the buffer is returned.
However, the buffer will only hold four results while waiting for them to be read, so if read isn't being called
for every capture event, when wait is false, the buffer will fill with old capture values and any new results

will be lost.

Availability: Only available on devices with Input Capture modules

Requires: None

Examples: setup_timer3(TMR_INTERNAL | TMR_DIV_BY_8);

PCD_March 2015-1

160

setup_capture(2, CAPTURE_FE | CAPTURE_TIMER3);

while(TRUE) {

 timerValue = get_capture(2, TRUE);

 printf(“Capture 2 occurred at: %LU”, timerValue);

 }

Example
Files:

None

Also See: setup_capture(), setup_compare(), Input Capture Overview

get_capture_ccp1() get_capture_ccp2() get_capture_ccp3()
get_capture_ccp4() get_capture_ccp5()

Syntax: value=get_capture_ccpx(wait);

Parameters: wait -signifies if the compiler should read the oldest result in the buffer or the next result in the

buffer or the next result to enter the buffer.

Returns: value16 -a 16-bit timer value

Function: If wait is true, the current capture values in the result buffer are cleared, and the next result to be
sent, the buffer is returned. If wait is false, the default setting, the first value currently in the buffer

is return. However, the buffer will only hold four results while waiting for them to be read. If read is
not being called for every capture event, when wait is false, the buffer will fill with old capture

values and any new result will be lost.

Availability: Available only on PIC24FxxKMxxx family of devices with a MCCP and/or SCCP modules.

Requires: Nothing

Examples: unsigned int16 value;

setup_ccp1(CCP_CAPTURE_FE);

while(TRUE) {

 value=get_capture_ccp1(TRUE);

 printf("Capture occurred at: %LU", value);

}

Example Files: None

Built-in Functions

161

Also See: set_pwmX_duty(), setup_ccpX(), set_ccpX_compare_time(), set_timer_ccpX(),
set_timer_period_ccpX(), get_timer_ccpx(), get_capture32_ccpX()

get_capture32_ccp1() get_capture32_ccp2()
get_capture32_ccp3() get_capture32_ccp4()
get_capture32_ccp5()

Syntax: value=get_capture32_ccpx(wait);

Parameters: wait -signifies if the compiler should read the oldest result in the buffer or the next result in the

buffer or the next result to enter the buffer.

Returns: value32 -a 32-bit timer value

Function: If wait is true, the current capture values in the result buffer are cleared, and the next result to be
sent, the buffer is returned. If wait is false, the default setting, the first value currently in the buffer

is return. However, the buffer will only hold two results while waiting for them to be read. If read is
not being called for every capture event, when wait is false, the buffer will fill with old capture

values and any new result will be lost.

Availability: Available only on PIC24FxxKMxxx family of devices with a MCCP and/or SCCP modules.

Requires: Nothing

Examples: unsigned int32 value;

setup_ccp1(CCP_CAPTURE_FE|CCP_TIMER_32_BIT);

while(TRUE) {

 value=get_capture_ccp1(TRUE);

 printf("Capture occurred at: %LU", value);

}

Example Files: None

Also See: set_pwmX_duty(), setup_ccpX(), set_ccpX_compare_time(), set_timer_ccpX(),
set_timer_period_ccpX(), get_timer_ccpx(), get_capture_ccpX()

PCD_March 2015-1

162

get_capture_event()

Syntax: result = get_capture_event([stream]);

Parameters: stream – optional parameter specifying the stream defined in #USE CAPTURE.

Returns: TRUE if a capture event occurred, FALSE otherwise.

Function: To determine if a capture event occurred.

Availability: All devices.

Requires: #USE CAPTURE

Examples: #USE CAPTURE(INPUT=PIN_C2,CAPTURE_RISING,TIMER=1,FASTEST)
if(get_capture_event())
 result = get_capture_time();

Example Files: None

Also See: #use_capture, get_capture_time()

get_capture_time()

Syntax: result = get_capture_time([stream]);

Parameters: stream – optional parameter specifying the stream defined in #USE CAPTURE.

Returns: An int16 value representing the last capture time.

Function: To get the last capture time.

Availability: All devices.

Requires: #USE CAPTURE

Examples: #USE CAPTURE(INPUT=PIN_C2,CAPTURE_RISING,TIMER=1,FASTEST)

result = get_capture_time();

Example Files: None

Also See: #use_capture, get_capture_event()

Built-in Functions

163

get_capture32()

Syntax: result = get_capture32(x,[wait]);

Parameters: x is 1-16 and defines which input capture result buffer modules to read from.
wait is an optional parameter specifying if the compiler should read the oldest result in

the bugger or the next result to enter the buffer.

Returns: A 32-bit timer value

Function: If wait is true, the current capture values in the result buffer are cleared, and the next result
to be sent to the buffer is returned. If wait is false, the default setting, the first value currently

in the buffer is returned. However, the buffer will only hold four results while waiting for them
to be read, so if get_capture32 is not being called for every capture event. When wait is false,

the buffer will fill with old capture values and any new results will be lost.

Availability: Only devices with a 32-bit Input Capture module

Requires: Nothing

Examples: setup_timer2(TMR_INTERNAL | TMR_DIV_BY_1 | TMR_32_BIT);

setup_capture(1,CAPTURE_FE | CAPTURE_TIMER2 | CAPTURE_32_BIT);

while(TRUE) {

 timerValue=get_capture32(1,TRUE);

 printf("Capture 1 occurred at: %LU", timerValue);

}

Example Files: None

Also See: setup_capture(), setup_compare(), get_capture(), Input Capture Overview

get_motor_pwm_count()

Syntax: Data16 = get_motor_pwm_count(pwm);

Parameters: pwm- Defines the pwm module used.

Returns: 16 bits of data

Function: Returns the PWM count of the motor control unit.

Availability: Devices that have the motor control PWM unit.

Requires: None

Examples: Data16 = get_motor_pmw_count(1);

Example Files: None
Also See: setup_motor_pwm(), set_motor_unit(), set_motor_pwm_event(), set_motor_pwm_duty();

.

PCD_March 2015-1

164

get_nco_accumulator()

Syntax: value =get_nco_accumulator();

Parameters: none

Returns: current value of accumulator.

Availability: On devices with a NCO module.

Examples: value = get_nco_accumulator();

Example Files: None

Also See: setup_nco(), set_nco_inc_value(), get_nco_inc_value()

get_nco_inc_value()

Syntax: value =get_nco_inc_value();

Parameters: None

Returns: - current value set in increment registers.

Availability: On devices with a NCO module.

Examples: value = get_nco_inc_value();

Example Files: None

Also See: setup_nco(), set_nco_inc_value(), get_nco_accumulator()

get_ticks()

Syntax: value = get_ticks([stream]);

Parameters: stream – optional parameter specifying the stream defined in #USE TIMER.

Returns: value – a 8, 16, 32 or 64 bit integer. (int8, int16, int32 or int64)

Function: Returns the current tick value of the tick timer. The size returned depends on the size of the tick timer.

Availability: All devices.

Requires: #USE TIMER(options)

Examples: #USE TIMER(TIMER=1,TICK=1ms,BITS=16,NOISR)

Built-in Functions

165

void main(void) {

 unsigned int16 current_tick;

 current_tick = get_ticks();

}

Example
Files:

None

Also See: #USE TIMER, set_ticks()

get_timerA()

Syntax: value=get_timerA();

Parameters: none

Returns: The current value of the timer as an int8

Function: Returns the current value of the timer. All timers count up. When a timer reaches the maximum
value it will flip over to 0 and continue counting (254, 255, 0, 1, 2, …).

Availability: This function is only available on devices with Timer A hardware.

Requires: Nothing

Examples: set_timerA(0);

while(timerA < 200);

Example Files: none

Also See: set_timerA(), setup_timer_A(), TimerA Overview

get_timerB()

Syntax: value=get_timerB();

Parameters: none

Returns: The current value of the timer as an int8

Function: Returns the current value of the timer. All timers count up. When a timer reaches the maximum
value it will flip over to 0 and continue counting (254, 255, 0, 1, 2, …).

Availability: This function is only available on devices with Timer B hardware.

Requires: Nothing

Examples: set_timerB(0);

while(timerB < 200);

Example Files: none

Also See: set_timerB(), setup_timer_B(), TimerB Overview

PCD_March 2015-1

166

get_timerx()

Syntax: value=get_timer1()
value=get_timer2()
value=get_timer3()
value=get_timer4()
value=get_timer5()
value=get_timer6()
value=get_timer7()
value=get_timer8()
value=get_timer9()

Parameters: None

Returns: The current value of the timer as an int16

Function: Retrieves the value of the timer, specified by X (which may be 1-9)

Availability: This function is available on all devices that have a valid timerX.

Requires: Nothing

Examples: if(get_timer2() % 0xA0 == HALF_WAVE_PERIOD)

output_toggle(PIN_B0);

Example Files: ex_stwt.c

Also See: Timer Overview , setup_timerX(), get_timerXY(), set_timerX(), set_timerXY()

get_timerxy()

Syntax: value=get_timer23()
value=get_timer45()
value=get_timer67()
value=get_timer89()

Parameters: Void

Returns: The current value of the 32 bit timer as an int32

Function: Retrieves the 32 bit value of the timers X and Y, specified by XY (which may be 23, 45, 67 and 89)

Availability: This function is available on all devices that have a valid 32 bit enabled timers. Timers 2 & 3, 4 & 5,
6 & 7 and 8 & 9 may be used. The target device must have one of these timer sets. The target
timers must be enabled as 32 bit.

Requires: Nothing

Examples: if(get_timer23() > TRIGGER_TIME)

ExecuteEvent();

Example Files: ex_stwt.c

Built-in Functions

167

Also See: Timer Overview, setup_timerX(), get_timerXY(), set_timerX(), set_timerXY()

get_timer_ccp1() get_timer_ccp2() get_timer_ccp3()
get_timer_ccp4() get_timer_ccp5()

Syntax: value32=get_timer_ccpx();
value16=get_timer_ccpx(which);

Parameters: which - when in 16-bit mode determines which timer value to read. 0 reads the lower timer value

(CCPxTMRL), and 1 reads the upper timer value (CCPxTMRH).

Returns: value32 - the 32-bit timer value.

value16- the 16-bit timer value.

Function: This function gets the timer values for the CCP module.

Availability: Available only on PIC24FxxKMxxx family of devices with a MCCP and/or SCCP modules.

Requires: Nothing

Examples: unsigned int32 value32;

unsigned int32 value15;

value32=get_timer_ccpx(); //get the 32 bit timer value

value16=get_timer_ccpx(0); //get the 16 bit timer value from

 //lower timer

value16=get_timer_ccpx(1); //get the 16 bit timer value from

 //upper timer

Example Files: None

Also See: set_pwmX_duty(), setup_ccpX(), set_ccpX_compare_time(), set_timer_ccpX(),
set_timer_period_ccpX(), get_capture_ccpX(), get_captures32_ccpX()

PCD_March 2015-1

168

get_tris_x()

Syntax: value = get_tris_A();
value = get_tris_B();
value = get_tris_C();
value = get_tris_D();
value = get_tris_E();
value = get_tris_F();
value = get_tris_G();
value = get_tris_H();
value = get_tris_J();
value = get_tris_K()

Parameters: None

Returns: int16, the value of TRIS register

Function: Returns the value of the TRIS register of port A, B, C, D, E, F, G, H, J, or K.

Availability: All devices.

Requires: Nothing

Examples: tris_a = GET_TRIS_A();

Example Files: None

Also See: input(), output_low(), output_high()

getenv()

Syntax: value = getenv (cstring);

Parameters: cstring is a constant string with a recognized keyword

Returns: A constant number, a constant string or 0

Function: This function obtains information about the execution environment. The following are recognized
keywords. This function returns a constant 0 if the keyword is not understood.

FUSE_SET:fffff Returns 1 if fuse fffff is enabled

FUSE_VALID:fffff Returns 1 if fuse fffff is valid

INT:iiiii Returns 1 if the interrupt iiiii is valid

ID Returns the device ID (set by #ID)

DEVICE Returns the device name string (like "PIC16C74")

CLOCK Returns the MPU FOSC

VERSION Returns the compiler version as a float

Built-in Functions

169

VERSION_STRING Returns the compiler version as a string

PROGRAM_MEMORY Returns the size of memory for code (in words)

STACK Returns the stack size

SCRATCH Returns the start of the compiler scratch area

DATA_EEPROM Returns the number of bytes of data EEPROM

EEPROM_ADDRESS Returns the address of the start of EEPROM. 0 if not
supported by the device.

READ_PROGRAM Returns a 1 if the code memory can be read

ADC_CHANNELS Returns the number of A/D channels

ADC_RESOLUTION Returns the number of bits returned from READ_ADC()

ICD Returns a 1 if this is being compiled for a ICD

SPI Returns a 1 if the device has SPI

USB Returns a 1 if the device has USB

CAN Returns a 1 if the device has CAN

I2C_SLAVE Returns a 1 if the device has I2C slave H/W

I2C_MASTER Returns a 1 if the device has I2C master H/W

PSP Returns a 1 if the device has PSP

COMP Returns a 1 if the device has a comparator

VREF Returns a 1 if the device has a voltage reference

LCD Returns a 1 if the device has direct LCD H/W

UART Returns the number of H/W UARTs

AUART Returns 1 if the device has an ADV UART

CCPx Returns a 1 if the device has CCP number x

TIMERx Returns a 1 if the device has TIMER number x

FLASH_WRITE_SIZE Smallest number of bytes that can be written to FLASH

FLASH_ERASE_SIZE Smallest number of bytes that can be erased in FLASH

PCD_March 2015-1

170

BYTES_PER_ADDRESS Returns the number of bytes at an address location

BITS_PER_INSTRUCTION Returns the size of an instruction in bits

RAM Returns the number of RAM bytes available for your device.

SFR:name Returns the address of the specified special file register. The
output format can be used with the preprocessor command
#bit. name must match SFR denomination of your target PIC
(example: STATUS, INTCON, TXREG, RCREG, etc)

BIT:name Returns the bit address of the specified special file register
bit. The output format will be in “address:bit”, which can be
used with the preprocessor command #byte. name must
match SFR.bit denomination of your target PIC (example: C,
Z, GIE, TMR0IF, etc)

SFR_VALID:name Returns TRUE if the specified special file register name is
valid and exists for your target PIC (example:
getenv("SFR_VALID:INTCON"))

BIT_VALID:name Returns TRUE if the specified special file register bit is valid
and exists for your target PIC (example:
getenv("BIT_VALID:TMR0IF"))

PIN:PB Returns 1 if PB is a valid I/O PIN (like A2)

UARTx_RX Returns UARTxPin (like PINxC7)

UARTx_TX Returns UARTxPin (like PINxC6)

SPIx_DI Returns SPIxDI Pin

SPIxDO Returns SPIxDO Pin

SPIxCLK Returns SPIxCLK Pin

ETHERNET Returns 1 if device supports Ethernet

QEI Returns 1 if device has QEI

DAC Returns 1 if device has a D/A Converter

DSP Returns 1 if device supports DSP instructions

Built-in Functions

171

DCI Returns 1 if device has a DCI module

DMA Returns 1 if device supports DMA

CRC Returns 1 if device has a CRC module

CWG Returns 1 if device has a CWG module

NCO Returns 1 if device has a NCO module

CLC Returns 1 if device has a CLC module

DSM Returns 1 if device has a DSM module

OPAMP Returns 1 if device has op amps

RTC Returns 1 if device has a Real Time Clock

CAP_SENSE Returns 1 if device has a CSM cap sense module and 2 if it
has a CTMU module

EXTERNAL_MEMORY Returns 1 if device supports external program memory

INSTRUCTION_CLOCK Returns the MPU instruction clock

ENH16 Returns 1 for Enhanced 16 devices

ENH24 Returns 2 for Enhanced 24 devices

IC Returns number of Input Capture units device has

ICx Returns TRUE if ICx is on this part

OC Returns number of Output Compare units device has

OCx Returns TRUE if OCx is on this part

RAM_START Returns the starting address of the first general purpose RAM
location

Availability: All devices

Requires: Nothing

Examples: #IF getenv("VERSION")<3.050

 #ERROR Compiler version too old

#ENDIF

for(i=0;i<getenv("DATA_EEPROM");i++)

 write_eeprom(i,0);

#IF getenv("FUSE_VALID:BROWNOUT")

 #FUSE BROWNOUT

#ENDIF

PCD_March 2015-1

172

#byte status_reg=GETENV(“SFR:STATUS”)

#bit carry_flag=GETENV(“BIT:C”)

Example Files: None

Also See: None

gets() fgets()

Syntax: gets (string)
value = fgets (string, stream)

Parameters: string is a pointer to an array of characters.
Stream is a stream identifier (a constant byte)

Returns: undefined

Function: Reads characters (using getc()) into the string until a RETURN (value 13) is encountered. The

string is terminated with a 0. Note that INPUT.C has a more versatile get_string function.

If fgets() is used then the specified stream is used where gets() defaults to STDIN (the last USE
RS232).

Availability: All devices

Requires: #USE RS232

Examples: char string[30];

printf("Password: ");

gets(string);

if(strcmp(string, password))

 printf("OK");

Example Files: None

Also See: getc(), get_string in input.c

goto_address()

Syntax: goto_address(location);

Parameters: location is a ROM address, 16 or 32 bit int.

Returns: Nothing

Built-in Functions

173

Function: This function jumps to the address specified by location. Jumps outside of the current function
should be done only with great caution. This is not a normally used function except in very special
situations.

Availability: All devices

Requires: Nothing

Examples: #define LOAD_REQUEST PIN_B1

#define LOADER 0x1f00

if(input(LOAD_REQUEST))

 goto_address(LOADER);

Example Files: setjmp.h

Also See: label_address()

high_speed_adc_done()

Syntax: value = high_speed_adc_done([pair]);

Parameters: pair – Optional parameter that determines which ADC pair's ready flag to check. If not used all ready flags

are checked.

Returns: An int16. If pair is used 1 will be return if ADC is done with conversion, 0 will be return if still busy. If pair
isn't use it will return a bit map of which conversion are ready to be read. For example a return value of
0x0041 means that ADC pair 6, AN12 and AN13, and ADC pair 0, AN0 and AN1, are ready to be read.

Function: Can be polled to determine if the ADC has valid data to be read.

Availability: Only on dsPIC33FJxxGSxxx devices.

Requires: None

Examples: int16 result[2]

setup_high_speed_adc_pair(1, INDIVIDUAL_SOFTWARE_TRIGGER);

setup_high_speed_adc(ADC_CLOCK_DIV_4);

read_high_speed_adc(1, ADC_START_ONLY);

while(!high_speed_adc_done(1));

read_high_speed_adc(1, ADC_READ_ONLY, result);

printf(“AN2 value = %LX, AN3 value = %LX\n\r”,result[0],result[1]);

Example
Files:

None

Also See: setup_high_speed_adc(), setup_high_speed_adc_pair(), read_high_speed_adc()

PCD_March 2015-1

174

i2c_init()

Syntax: i2c_init([stream],baud);

Parameters: stream – optional parameter specifying the stream defined in #USE I2C.

baud – if baud is 0, I2C peripheral will be disable. If baud is 1, I2C peripheral is initialized and
enabled with baud rate specified in #USE I2C directive. If baud is > 1 then I2C peripheral is
initialized and enabled to specified baud rate.

Returns: Nothing

Function: To initialize I2C peripheral at run time to specified baud rate.

Availability: All devices.

Requires: #USE I2C

Examples: #USE I2C(MASTER,I2C1, FAST,NOINIT)
i2c_init(TRUE); //initialize and enable I2C peripheral to baud rate specified in //#USE
I2C
i2c_init(500000); //initialize and enable I2C peripheral to a baud rate of 500 //KBPS

Example Files: None

Also See: I2C_POLL(), i2c_speed(), I2C_SlaveAddr(), I2C_ISR_STATE(_) ,I2C_WRITE(),
I2C_READ(), _USE_I2C(), I2C()

i2c_isr_state()

Syntax: state = i2c_isr_state();
state = i2c_isr_state(stream);

Parameters: None
Returns: state is an 8 bit int

0 - Address match received with R/W bit clear, perform i2c_read() to read the I2C address.
1-0x7F - Master has written data; i2c_read() will immediately return the data
0x80 - Address match received with R/W bit set; perform i2c_read() to read the I2C address, and
use i2c_write() to pre-load the transmit buffer for the next transaction (next I2C read performed by
master will read this byte).
0x81-0xFF - Transmission completed and acknowledged; respond with i2c_write() to pre-load the
transmit buffer for the next transation (the next I2C read performed by master will read this byte).

Function: Returns the state of I2C communications in I2C slave mode after an SSP interrupt. The return value
increments with each byte received or sent.

If 0x00 or 0x80 is returned, an i2C_read() needs to be performed to read the I2C address that was
sent (it will match the address configured by #USE I2C so this value can be ignored)

Availability: Devices with i2c hardware
Requires: #USE I2C

Examples: #INT_SSP

 void i2c_isr() {

 state = i2c_isr_state();

 if(state== 0) i2c_read();

 i@c_read();

 if(state == 0x80)

 i2c_read(2);

 if(state >= 0x80)

Built-in Functions

175

 i2c_write(send_buffer[state - 0x80]);

 else if(state > 0)

 rcv_buffer[state - 1] = i2c_read();

}

Example Files: ex_slave.c

Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_write, i2c_read, #USE I2C, I2C Overview

i2c_poll()

Syntax: i2c_poll()
i2c_poll(stream)

Parameters: stream (optional)- specify the stream defined in #USE I2C

Returns: 1 (TRUE) or 0 (FALSE)

Function: The I2C_POLL() function should only be used when the built-in SSP is used. This function

returns TRUE if the hardware has a received byte in the buffer. When a TRUE is returned, a call
to I2C_READ() will immediately return the byte that was received.

Availability: Devices with built in I2C

Requires: #USE I2C

Examples: if(i2c-poll())

buffer [index]=i2c-read();//read data

Example Files: None

Also See: i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read, #USE I2C, I2C

Overview

i2c_read()

Syntax: data = i2c_read();
data = i2c_read(ack);
data = i2c_read(stream, ack);

Parameters: ack -Optional, defaults to 1.
 0 indicates do not ack.
 1 indicates to ack.
 2 slave only, indicates to not release clock at end of read. Use when i2c_isr_state ()
 returns 0x80.
 stream - specify the stream defined in #USE I2C

Returns: data - 8 bit int

Function: Reads a byte over the I2C interface. In master mode this function will generate the clock and in

slave mode it will wait for the clock. There is no timeout for the slave, use i2c_poll() to prevent a
lockup. Use restart_wdt() in the #USE I2C to strobe the watch-dog timer in the slave mode while

PCD_March 2015-1

176

waiting.

Availability: All devices.

Requires: #USE I2C

Examples: i2c_start();

i2c_write(0xa1);

data1 = i2c_read(TRUE);

data2 = i2c_read(FALSE);

i2c_stop();

Example Files: ex_extee.c with 2416.c

Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write, #USE I2C, I2C

Overview

i2c_slaveaddr()

Syntax: I2C_SlaveAddr(addr);
I2C_SlaveAddr(stream, addr);

Parameters: addr = 8 bit device address
stream(optional) - specifies the stream used in #USE I2C

Returns: Nothing

Function: This functions sets the address for the I2C interface in slave mode.

Availability: Devices with built in I2C

Requires: #USE I2C

Examples: i2c_SlaveAddr(0x08);

i2c_SlaveAddr(i2cStream1, 0x08);

Example Files: ex_slave.c

Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_isr_state, i2c_write, i2c_read, #USE I2C, I2C Overview

i2c_speed()

Syntax: i2c_speed (baud)
i2c_speed (stream, baud)

Parameters: baud is the number of bits per second.
stream - specify the stream defined in #USE I2C

Returns: Nothing.

Function: This function changes the I2c bit rate at run time. This only works if the hardware I2C module is

being used.

Availability: All devices.

Built-in Functions

177

Requires: #USE I2C

Examples: I2C_Speed (400000);

Example Files: none

Also See: i2c_poll, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read, #USE I2C, I2C

Overview

i2c_start()

Syntax: i2c_start()
i2c_start(stream)
i2c_start(stream, restart)

Parameters: stream: specify the stream defined in #USE I2C
restart: 2 – new restart is forced instead of start

1 – normal start is performed
0 (or not specified) – restart is done only if the compiler last encountered a I2C_START and no
I2C_STOP

Returns: undefined

Function: Issues a start condition when in the I2C master mode. After the start condition the clock is held
low until I2C_WRITE() is called. If another I2C_start is called in the same function before an
i2c_stop is called, then a special restart condition is issued. Note that specific I2C protocol
depends on the slave device. The I2C_START function will now accept an optional parameter. If
1 the compiler assumes the bus is in the stopped state. If 2 the compiler treats this I2C_START
as a restart. If no parameter is passed a 2 is used only if the compiler compiled a I2C_START
last with no I2C_STOP since.

Availability: All devices.

Requires: #USE I2C

Examples: i2c_start();

i2c_write(0xa0); // Device address

i2c_write(address); // Data to device

i2c_start(); // Restart

i2c_write(0xa1); // to change data direction

data=i2c_read(0); // Now read from slave

i2c_stop();

Example Files: ex_extee.c with 2416.c

Also See: i2c_poll, i2c_speed, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read, #USE I2C, I2C

Overview

PCD_March 2015-1

178

i2c_stop()

Syntax: i2c_stop()
i2c_stop(stream)

Parameters: stream: (optional) specify stream defined in #USE I2C

Returns: undefined

Function: Issues a stop condition when in the I2C master mode.

Availability: All devices.

Requires: #USE I2C

Examples: i2c_start(); // Start condition

i2c_write(0xa0); // Device address

i2c_write(5); // Device command

i2c_write(12); // Device data

i2c_stop(); // Stop condition

Example Files: ex_extee.c with 2416.c

Also See: i2c_poll, i2c_speed, i2c_start, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read, #USE I2C, I2C

Overview

i2c_write()

Syntax: i2c_write (data)
i2c_write (stream, data)

Parameters: data is an 8 bit int
stream - specify the stream defined in #USE I2C

Returns: This function returns the ACK Bit.

0 means ACK, 1 means NO ACK, 2 means there was a collision if in Multi_Master Mode.
This does not return an ACK if using i2c in slave mode.

Function: Sends a single byte over the I2C interface. In master mode this function will generate a clock
with the data and in slave mode it will wait for the clock from the master. No automatic timeout is
provided in this function. This function returns the ACK bit. The LSB of the first write after a
start determines the direction of data transfer (0 is master to slave). Note that specific I2C
protocol depends on the slave device.

Availability: All devices.

Requires: #USE I2C

Examples: long cmd;

 ...

i2c_start(); // Start condition

i2c_write(0xa0);// Device address

i2c_write(cmd);// Low byte of command

i2c_write(cmd>>8);// High byte of command

i2c_stop(); // Stop condition

Example Files: ex_extee.c with 2416.c

Built-in Functions

179

Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_read, #USE I2C, I2C

Overview

input()

Syntax: value = input (pin)

Parameters: Pin to read. Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651 . This is defined
as follows: #define PIN_A3 5651 .

The PIN could also be a variable. The variable must have a value equal to one of the constants
(like PIN_A1) to work properly. The tristate register is updated unless the FAST_IO mode is set
on port A. note that doing I/O with a variable instead of a constant will take much longer time.

Returns: 0 (or FALSE) if the pin is low,
1 (or TRUE) if the pin is high

Function: This function returns the state of the indicated pin. The method of I/O is dependent on the last
USE *_IO directive. By default with standard I/O before the input is done the data direction is set
to input.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

Examples: while (!input(PIN_B1));

// waits for B1 to go high

if(input(PIN_A0))

 printf("A0 is now high\r\n");

int16 i=PIN_B1;

while(!i);

//waits for B1 to go high

Example Files: ex_pulse.c

Also See: input_x(), output_low(), output_high(), #USE FIXED_IO, #USE FAST_IO, #USE

STANDARD_IO, General Purpose I/O

input_change_x()

Syntax: value = input_change_a();
value = input_change_b();
value = input_change_c();
value = input_change_d();
value = input_change_e();
value = input_change_f();
value = input_change_g();
value = input_change_h();
value = input_change_j();
value = input_change_k();

PCD_March 2015-1

180

Parameters: None

Returns: An 8-bit or 16-bit int representing the changes on the port.

Function: This function reads the level of the pins on the port and compares them to the results the last time the
input_change_x() function was called. A 1 is returned if the value has changed, 0 if the value is
unchanged.

Availability: All devices.

Requires: None

Examples: pin_check = input_change_b();

Example
Files:

None

Also See: input(), input_x(), output_x(), #USE FIXED_IO, #USE FAST_IO, #USE STANDARD_IO, General
Purpose I/O

input_state()

Syntax: value = input_state(pin)

Parameters: pin to read. Pins are defined in the devices .h file. The actual value is a bit address. For example,

port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651 . This is defined as
follows: #define PIN_A3 5651 .

Returns: Bit specifying whether pin is high or low. A 1 indicates the pin is high and a 0 indicates it is low.

Function: This function reads the level of a pin without changing the direction of the pin as INPUT() does.

Availability: All devices.

Requires: Nothing

Examples: level = input_state(pin_A3);

printf("level: %d",level);

Example Files: None

Also See: input(), set_tris_x(), output_low(), output_high(), General Purpose I/O

input_x()

Syntax: value = input_a()
value = input_b()
value = input_c()
value = input_d()
value = input_e()
value = input_f()

Built-in Functions

181

value = input_g()
value = input_h()
value = input_j()
value = input_k()

Parameters: None

Returns: An 16 bit int representing the port input data.

Function: Inputs an entire word from a port. The direction register is changed in accordance with the last specified
#USE *_IO directive. By default with standard I/O before the input is done the data direction is set to input.

Availability: All devices.

Requires: Nothing

Examples: data = input_b();

Example
Files:

ex_psp.c

Also See: input(), output_x(), #USE FIXED_IO, #USE FAST_IO, #USE STANDARD_IO

interrupt_active()

Syntax: interrupt_active (interrupt)

Parameters: Interrupt – constant specifying the interrupt

Returns: Boolean value

Function: The function checks the interrupt flag of the specified interrupt and returns true in case the flag is

set.

Availability: Device with interrupts

Requires: Should have a #INT_xxxx, Constants are defined in the devices .h file.

Examples: interrupt_active(INT_TIMER0);

interrupt_active(INT_TIMER1);

Example Files: None

Also See: disable_interrupts() , #INT , Interrupts Overview

clear_interrupt, enable_interrupts()

PCD_March 2015-1

182

isalnum(char) isalpha(char)

iscntrl(x) isdigit(char)

isgraph(x) islower(char) isspace(char) isupper(char)
isxdigit(char) isprint(x) ispunct(x)

Syntax: value = isalnum(datac)
value = isalpha(datac)
value = isdigit(datac)
value = islower(datac)
value = isspace(datac)
value = isupper(datac)
value = isxdigit(datac)
value = iscntrl(datac)
value = isgraph(datac)
value = isprint(datac)
value = punct(datac)

Parameters: datac is a 8 bit character

Returns: 0 (or FALSE) if datac dose not match the criteria, 1 (or TRUE) if datac does match the criteria.

Function: Tests a character to see if it meets specific criteria as follows:

isalnum(x) X is 0..9, 'A'..'Z', or 'a'..'z'

isalpha(x) X is 'A'..'Z' or 'a'..'z
isdigit(x) X is '0'..'9'
islower(x) X is 'a'..'z'
isupper(x) X is 'A'..'Z
isspace(x) X is a space
isxdigit(x) X is '0'..'9', 'A'..'F', or 'a'..'f
iscntrl(x) X is less than a space
isgraph(x) X is greater than a space
isprint(x) X is greater than or equal to a space
ispunct(x) X is greater than a space and not a letter or number

Availability: All devices.

Requires: #INCLUDE <ctype.h>

Examples: char id[20];

 ...

if(isalpha(id[0])) {

 valid_id=TRUE;

 for(i=1;i<strlen(id);i++)

 valid_id=valid_id && isalnum(id[i]);

} else

 valid_id=FALSE;

Example Files: ex_str.c

Also See: isamong()

Built-in Functions

183

isamong()

Syntax: result = isamong (value, cstring)

Parameters: value is a character
cstring is a constant sting

Returns: 0 (or FALSE) if value is not in cstring

1 (or TRUE) if value is in cstring

Function: Returns TRUE if a character is one of the characters in a constant string.

Availability: All devices

Requires: Nothing

Examples: char x= 'x';

...

if (isamong (x,

 "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"))

 printf ("The character is valid");

Example Files: #INCLUDE <ctype.h>

Also See: isalnum(), isalpha(), isdigit(), isspace(), islower(), isupper(), isxdigit()

itoa()

Syntax: string = itoa(i32value, i8base, string)
string = itoa(i48value, i8base, string)
string = itoa(i64value, i8base, string)

Parameters: i32value is a 32 bit int
i48value is a 48 bit int
i64value is a 64 bit int
i8base is a 8 bit int
string is a pointer to a null terminated string of characters

Returns: string is a pointer to a null terminated string of characters

Function: Converts the signed int32 , int48, or a int64 to a string according to the provided base and returns

the converted value if any. If the result cannot be represented, the function will return 0.

Availability: All devices

Requires: #INCLUDE <stdlib.h>

Examples: int32 x=1234;

char string[5];

itoa(x,10, string);

// string is now “1234”

Example Files: None

Also See: None

PCD_March 2015-1

184

kbhit()

Syntax: value = kbhit()
value = kbhit (stream)

Parameters: stream is the stream id assigned to an available RS232 port. If the stream parameter is not

included, the function uses the primary stream used by getc().

Returns: 0 (or FALSE) if getc() will need to wait for a character to come in, 1 (or TRUE) if a character is
ready for getc()

Function: If the RS232 is under software control this function returns TRUE if the start bit of a character is
being sent on the RS232 RCV pin. If the RS232 is hardware this function returns TRUE if a
character has been received and is waiting in the hardware buffer for getc() to read. This function
may be used to poll for data without stopping and waiting for the data to appear. Note that in the
case of software RS232 this function should be called at least 10 times the bit rate to ensure
incoming data is not lost.

Availability: All devices.

Requires: #USE RS232

Examples: char timed_getc() {

 long timeout;

 timeout_error=FALSE;

 timeout=0;

 while(!kbhit()&&(++timeout<50000)) // 1/2

 // second

 delay_us(10);

 if(kbhit())

 return(getc());

 else {

 timeout_error=TRUE;

 return(0);

 }

}

Example Files: ex_tgetc.c

Also See: getc(), #USE RS232, RS232 I/O Overview

label_address()

Syntax: value = label_address(label);

Parameters: label is a C label anywhere in the function

Returns: A 16 bit int in PCB,PCM and a 32 bit int for PCH, PCD

Function: This function obtains the address in ROM of the next instruction after the label. This is not a
normally used function except in very special situations.

Built-in Functions

185

Availability: All devices.

Requires: Nothing

Examples: start:

 a = (b+c)<<2;

end:

 printf("It takes %lu ROM locations.\r\n",

 label_address(end)-label_address(start));

Example Files: setjmp.h

Also See: goto_address()

labs()

Syntax: result = labs (value)

Parameters: value is a 16 , 32, 48 or 64 bit signed long int

Returns: A signed long int of type value

Function: Computes the absolute value of a long integer.

Availability: All devices.

Requires: #INCLUDE <stdlib.h>

Examples: if(labs(target_value - actual_value) > 500)

 printf("Error is over 500 points\r\n");

Example Files: None

Also See: abs()

ldexp()

Syntax: result= ldexp (value, exp);

Parameters: value is float any float type
exp is a signed int.

Returns: result is a float with value result times 2 raised to power exp.
result will have a precision equal to value

Function: The ldexp function multiplies a floating-point number by an integral power of 2.

Availability: All devices.

Requires: #INCLUDE <math.h>

Examples: float result;

result=ldexp(.5,0);

PCD_March 2015-1

186

// result is .5

Example Files: None

Also See: frexp(), exp(), log(), log10(), modf()

log()

Syntax: result = log (value)

Parameters: value is any float type

Returns: A float with precision equal to value

Function: Computes the natural logarithm of the float x. If the argument is less than or equal to zero or too
large, the behavior is undefined.

Note on error handling:
"errno.h" is included then the domain and range errors are stored in the errno variable. The user
can check the errno to see if an error has occurred and print the error using the perror function.

Domain error occurs in the following cases:

 log: when the argument is negative

Availability: All devices

Requires: #INCLUDE <math.h>

Examples: lnx = log(x);

Example Files: None

Also See: log10(), exp(), pow()

log10()

Syntax: result = log10 (value)

Parameters: value is any float type

Returns: A float with precision equal to value

Function: Computes the base-ten logarithm of the float x. If the argument is less than or equal to zero or too
large, the behavior is undefined.

Note on error handling:
If "errno.h" is included then the domain and range errors are stored in the errno variable. The
user can check the errno to see if an error has occurred and print the error using the perror
function.

Domain error occurs in the following cases:

Built-in Functions

187

 log10: when the argument is negative

Availability: All devices

Requires: #INCLUDE <math.h>

Examples: db = log10(read_adc()*(5.0/255))*10;

Example Files: None

Also See: log(), exp(), pow()

longjmp()

Syntax: longjmp (env, val)

Parameters: env: The data object that will be restored by this function
val: The value that the function setjmp will return. If val is 0 then the function setjmp will return 1
instead.

Returns: After longjmp is completed, program execution continues as if the corresponding invocation of the
setjmp function had just returned the value specified by val.

Function: Performs the non-local transfer of control.

Availability: All devices

Requires: #INCLUDE <setjmp.h>

Examples: longjmp(jmpbuf, 1);

Example Files: None

Also See: setjmp()

make8()

Syntax: i8 = MAKE8(var, offset)

Parameters: var is a 16 or 32 bit integer.
offset is a byte offset of 0,1,2 or 3.

Returns: An 8 bit integer

Function: Extracts the byte at offset from var. Same as: i8 = (((var >> (offset*8)) & 0xff) except it is done
with a single byte move.

Availability: All devices

Requires: Nothing

Examples: int32 x;

int y;

PCD_March 2015-1

188

y = make8(x,3); // Gets MSB of x

Example Files: None

Also See: make16(), make32()

make16()

Syntax: i16 = MAKE16(varhigh, varlow)

Parameters: varhigh and varlow are 8 bit integers.

Returns: A 16 bit integer

Function: Makes a 16 bit number out of two 8 bit numbers. If either parameter is 16 or 32 bits only the lsb
is used. Same as: i16 = (int16)(varhigh&0xff)*0x100+(varlow&0xff) except it is done with two
byte moves.

Availability: All devices

Requires: Nothing

Examples: long x;

int hi,lo;

x = make16(hi,lo);

Example Files: ltc1298.c

Also See: make8(), make32()

make32()

Syntax: i32 = MAKE32(var1, var2, var3, var4)

Parameters: var1-4 are a 8 or 16 bit integers. var2-4 are optional.

Returns: A 32 bit integer

Function: Makes a 32 bit number out of any combination of 8 and 16 bit numbers. Note that the number of
parameters may be 1 to 4. The msb is first. If the total bits provided is less than 32 then zeros
are added at the msb.

Availability: All devices

Requires: Nothing

Examples: int32 x;

int y;

long z;

x = make32(1,2,3,4); // x is 0x01020304

Built-in Functions

189

y=0x12;

z=0x4321;

x = make32(y,z); // x is 0x00124321

x = make32(y,y,z); // x is 0x12124321

Example Files: ex_freqc.c

Also See: make8(), make16()

malloc()

Syntax: ptr=malloc(size)

Parameters: size is an integer representing the number of byes to be allocated.

Returns: A pointer to the allocated memory, if any. Returns null otherwise.

Function: The malloc function allocates space for an object whose size is specified by size and whose

value is indeterminate.

Availability: All devices

Requires: #INCLUDE <stdlibm.h>

Examples: int * iptr;

iptr=malloc(10);

// iptr will point to a block of memory of 10 bytes.

Example Files: None

Also See: realloc(), free(), calloc()

memcpy() memmove()

Syntax: memcpy (destination, source, n)
memmove(destination, source, n)

Parameters: destination is a pointer to the destination memory.
source is a pointer to the source memory,.
n is the number of bytes to transfer

Returns: undefined

Function: Copies n bytes from source to destination in RAM. Be aware that array names are pointers
where other variable names and structure names are not (and therefore need a & before them).

Memmove performs a safe copy (overlapping objects doesn't cause a problem). Copying takes
place as if the n characters from the source are first copied into a temporary array of n
characters that doesn't overlap the destination and source objects. Then the n characters from
the temporary array are copied to destination.

PCD_March 2015-1

190

Availability: All devices

Requires: Nothing

Examples: memcpy(&structA, &structB, sizeof (structA));

memcpy(arrayA,arrayB,sizeof (arrayA));

memcpy(&structA, &databyte, 1);

char a[20]="hello";

memmove(a,a+2,5);

// a is now "llo"

Example Files: None

Also See: strcpy(), memset()

memset()

Syntax: memset (destination, value, n)

Parameters: destination is a pointer to memory.
value is a 8 bit int
n is a 16 bit int.

Returns: undefined

Function: Sets n number of bytes, starting at destination, to value. Be aware that array names are pointers
where other variable names and structure names are not (and therefore need a & before them).

Availability: All devices

Requires: Nothing

Examples: memset(arrayA, 0, sizeof(arrayA));

memset(arrayB, '?', sizeof(arrayB));

memset(&structA, 0xFF, sizeof(structA));

Example Files: None

Also See: memcpy()

modf()

Syntax: result= modf (value, & integral)

Parameters: value is any float type
integral is any float type

Returns: result is a float with precision equal to value

Function: The modf function breaks the argument value into integral and fractional parts, each of which

has the same sign as the argument. It stores the integral part as a float in the object integral.

Built-in Functions

191

Availability: All devices

Requires: #INCLUDE <math.h>

Examples: float 48 result, integral;

result=modf(123.987,&integral);

// result is .987 and integral is 123.0000

Example Files: None

Also See: None

_mul()

Syntax: prod=_mul(val1, val2);

Parameters: val1 and val2 are both 8-bit, 16-bit, or 48-bit integers

Returns:

val1 val2 prod

8 8 16

16* 16 32

32* 32 64

48* 48 64**

* or less
** large numbers will overflow with wrong results

Function: Performs an optimized multiplication. By accepting a different type than it returns, this function
avoids the overhead of converting the parameters to a larger type.

Availability: All devices

Requires: Nothing

Examples: int a=50, b=100;

long int c;

c = _mul(a, b); //c holds 5000

Example
Files:

None

Also See: None

nargs()

Syntax: void foo(char * str, int count, ...)

Parameters: The function can take variable parameters. The user can use stdarg library to create functions
that take variable parameters.

Returns: Function dependent.

Function: The stdarg library allows the user to create functions that supports variable arguments.

PCD_March 2015-1

192

The function that will accept a variable number of arguments must have at least one actual,
known parameters, and it may have more. The number of arguments is often passed to the
function in one of its actual parameters. If the variable-length argument list can involve more that
one type, the type information is generally passed as well. Before processing can begin, the
function creates a special argument pointer of type va_list.

Availability: All devices

Requires: #INCLUDE <stdarg.h>

Examples: int foo(int num, ...)

{

 int sum = 0;

 int i;

 va_list argptr; // create special argument pointer

 va_start(argptr,num); // initialize argptr

 for(i=0; i<num; i++)

 sum = sum + va_arg(argptr, int);

 va_end(argptr); // end variable processing

 return sum;

}

 void main()

{

 int total;

 total = foo(2,4,6,9,10,2);

}

Example Files: None

Also See: va_start() , va_end() , va_arg()

offsetof() offsetofbit()

Syntax: value = offsetof(stype, field);
value = offsetofbit(stype, field);

Parameters: stype is a structure type name.
Field is a field from the above structure

Returns: An 8 bit byte

Function: These functions return an offset into a structure for the indicated field.

offsetof returns the offset in bytes and offsetofbit returns the offset in bits.

Availability: All devices

Requires: #INCLUDE <stddef.h>

Examples: struct time_structure {

 int hour, min, sec;

 int zone : 4;

 intl daylight_savings;

}

x = offsetof(time_structure, sec);

 // x will be 2

x = offsetofbit(time_structure, sec);

 // x will be 16

Built-in Functions

193

x = offsetof (time_structure,

 daylight_savings);

 // x will be 3

x = offsetofbit(time_structure,

 daylight_savings);

 // x will be 28

Example Files: None

Also See: None

output_x()

Syntax: output_a (value)
output_b (value)
output_c (value)
output_d (value)
output_e (value)
output_f (value)
output_g (value)
output_h (value)
output_j (value)
output_k (value)

Parameters: value is a 16 bit int

Returns: undefined

Function: Output an entire word to a port. The direction register is changed in accordance with the last

specified #USE *_IO directive.

Availability: All devices, however not all devices have all ports (A-E)

Requires: Nothing

Examples: OUTPUT_B(0xf0);

Example Files: ex_patg.c

Also See: input(), output_low(), output_high(), output_float(), output_bit(), #USE FIXED_IO, #USE

FAST_IO, #USE STANDARD_IO, General Purpose I/O

output_bit()

Syntax: output_bit (pin, value)

Parameters: Pins are defined in the devices .h file. The actual number is a bit address. For example, port a
(byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651 . This is defined as
follows: #define PIN_A3 5651 . The PIN could also be a variable. The variable must have a
value equal to one of the constants (like PIN_A1) to work properly. The tristate register is
updated unless the FAST_IO mode is set on port A. Note that doing I/O with a variable instead
of a constant will take much longer time.
Value is a 1 or a 0.

PCD_March 2015-1

194

Returns: undefined

Function: Outputs the specified value (0 or 1) to the specified I/O pin. The

method of setting the direction register is determined by the last
#USE *_IO directive.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

Examples: output_bit(PIN_B0, 0);

// Same as output_low(pin_B0);

output_bit(PIN_B0,input(PIN_B1));

// Make pin B0 the same as B1

output_bit(PIN_B0,shift_left(&data,1,input(PIN_B1)));

// Output the MSB of data to

// B0 and at the same time

// shift B1 into the LSB of data

int16 i=PIN_B0;

ouput_bit(i,shift_left(&data,1,input(PIN_B1)));

//same as above example, but

//uses a variable instead of a constant

Example Files: ex_extee.c with 9356.c

Also See: input(), output_low(), output_high(), output_float(), output_x(), #USE FIXED_IO, #USE

FAST_IO, #USE STANDARD_IO, General Purpose I/O

output_drive()

Syntax: output_drive(pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit address. For example, port a (byte

0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651 . This is defined as follows: #DEFINE
PIN_A3 5651 .

Returns: undefined

Function: Sets the specified pin to the output mode.

Availability: All devices.

Requires: Pin constants are defined in the devices.h file.

Examples: output_drive(pin_A0); // sets pin_A0 to output its value

output_bit(pin_B0, input(pin_A0)) // makes B0 the same as A0

Example Files: None

Also See: input(), output_low(), output_high(), output_bit(), output_x(), output_float()

.

Built-in Functions

195

output_float()

Syntax: output_float (pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit address. For example, port a
(byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651 . This is defined as
follows: #DEFINE PIN_A3 5651 . The PIN could also be a variable to identify the pin. The
variable must have a value equal to one of the constants (like PIN_A1) to work properly. Note
that doing I/O with a variable instead of a constant will take much longer time.

Returns: undefined

Function: Sets the specified pin to the input mode. This will allow the pin to float high to represent a high
on an open collector type of connection.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

Examples: if((data & 0x80)==0)

 output_low(pin_A0);

else

 output_float(pin_A0);

Example Files: None

Also See: input(), output_low(), output_high(), output_bit(), output_x(), output_drive(), #USE FIXED_IO,

#USE FAST_IO, #USE STANDARD_IO, General Purpose I/O

output_high()

Syntax: output_high (pin)

Parameters: Pin to write to. Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651 . This is defined
as follows: #DEFINE PIN_A3 5651 . The PIN could also be a variable. The variable must have
a value equal to one of the constants (like PIN_A1) to work properly. The tristate register is
updated unless the FAST_IO mode is set on port A. Note that doing I/O with a variable instead
of a constant will take much longer time.

Returns: undefined

Function: Sets a given pin to the high state. The method of I/O used is dependent on the last USE *_IO
directive.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

Examples: output_high(PIN_A0);

output_low(PIN_A1);

Example Files: ex_sqw.c

Also See: input(), output_low(), output_float(), output_bit(), output_x(), #USE FIXED_IO, #USE FAST_IO,

#USE STANDARD_IO, General Purpose I/O

PCD_March 2015-1

196

output_low()

Syntax: output_low (pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit address. For example, port a

(byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651 . This is defined as
follows: #DEFINE PIN_A3 5651 . The PIN could also be a variable. The variable must have a
value equal to one of the constants (like PIN_A1) to work properly. The tristate register is
updated unless the FAST_IO mode is set on port A. Note that doing I/O with a variable instead
of a constant will take much longer time.

Returns: undefined

Function: Sets a given pin to the ground state. The method of I/O used is dependent on the last USE *_IO
directive.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

Examples: output_low(PIN_A0);

Int16i=PIN_A1;

output_low(PIN_A1);

Example Files: ex_sqw.c

Also See: input(), output_high(), output_float(), output_bit(), output_x(), #USE FIXED_IO, #USE FAST_IO,

#USE STANDARD_IO, General Purpose I/O

output_toggle()

Syntax: output_toggle(pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit address. For example, port a (byte

0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651 . This is defined as follows: #DEFINE
PIN_A3 5651 .

Returns: Undefined

Function: Toggles the high/low state of the specified pin.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

Examples: output_toggle(PIN_B4);

Example Files: None

Also See: Input(), output_high(), output_low(), output_bit(), output_x()

Built-in Functions

197

perror()

Syntax: perror(string);

Parameters: string is a constant string or array of characters (null terminated).

Returns: Nothing

Function: This function prints out to STDERR the supplied string and a description of the last system error
(usually a math error).

Availability: All devices.

Requires: #USE RS232, #INCLUDE <errno.h>

Examples: x = sin(y);

if(errno!=0)

 perror("Problem in find_area");

Example Files: None

Also See: RS232 I/O Overview

pmp_address(address)

Syntax: pmp_address (address);

Parameters: address- The address which is a 16 bit destination address value. This will setup the address register on

the PMP module and is only used in Master mode.

Returns: undefined

Function: Configures the address register of the PMP module with the destination address during Master mode
operation. The address can be either 14, 15 or 16 bits based on the multiplexing used for the Chip Select
Lines 1 and 2.

Availability: Only the devices with a built in Parallel Port module.

Requires: Nothing.

Examples: pmp_address(0x2100); // Sets up Address register to 0x2100

Example
Files:

None

Also See: setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(), pmp_write(), psp_output_full(),
psp_input_full(), psp_overflow(), pmp_output_full(), pmp_input_full(),pmp_overflow().
See header file for device selected.

PCD_March 2015-1

198

pmp_output_full() pmp_input_full() pmp_overflow()
pmp_error() pmp_timeout()

Syntax: result = pmp_output_full() //PMP only
result = pmp_input_full() //PMP only
result = pmp_overflow() //PMP only
result = pmp_eror() //EPMP only
result = pmp_timeout() //EPMP only

Parameters: None

Returns: A 0 (FALSE) or 1 (TRUE)

Function: These functions check the Parallel Port for the indicated conditions and return TRUE or FALSE.

Availability: This function is only available on devices with Parallel Port hardware on chips.

Requires: Nothing.

Examples: while (pmp_output_full()) ;

pmp_data = command;

while(!pmp_input_full()) ;

if (pmp_overflow())

 error = TRUE;

else

 data = pmp_data;

Example Files: None
Also See: setup_pmp(), pmp_write(), pmp_read()

pmp_read()

Syntax: result = pmp_read (); //Parallel Master Port
result = pmp_read8(address); //Enhanced Parallel Master Port
result = pmp_read16(address); //Enhanced Parallel Master Port
pmp_read8(address,pointer,count); //Enhanced Parallel Master Port
pmp_read16(address,pointer,count); //Enhanced Parallel Master Port

Parameters: address- EPMP only, address in EDS memory that is mapped to address from parallel port device

to read data from or start reading data from. (All address in EDS memory are word aligned)

pointer- EPMP only, pointer to array to read data to.

count- EPMP only, number of bytes to read. For pmp_read16() number of bytes must be even.

Returns: For pmp_read(), pmp_read8(address) or pmp_read16() an 8 or 16 bit value. For

pmp_read8(address,pointer,count) and pmp_read16(address,pointer,count) undefined.

Function: For PMP module, this will read a byte from the next buffer location. For EPMP module, reads one
byte/word or count bytes of data from the address mapped to the EDS memory location. The
address is used in conjunction with the offset address set with the setup_pmp_cs1() and
setup_pmp_cs2() functions to determine which address lines are high or low during the read.

Availability: Only the devices with a built in Parallel Master Port module or an Enhanced Parallel Master Port
module.

Built-in Functions

199

Requires: Nothing.

Examples: result = pmp_read(); //PMP reads next byte of

 //data

result = pmp_read8(0x8000); //EPMP reads byte of data from the address mapped

 //to first address in

 //EDS memory.

pmp_read16(0x8002,ptr,16); //EPMP reads 16 bytes of

 //data and returns to array

 //pointed to by ptr

 //starting at address mapped

 //to address 0x8002 in

 //EDS memory.

Example Files: None

Also See: setup_pmp(), setup_pmp_csx(), pmp_address(), pmp_read(), psp_read(), psp_write(),

pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(), pmp_output_full(),
pmp_input_full(),pmp_overflow() pmp_error(), pmp_timeout(), psp_error(), psp_timeout()

pmp_write()

Syntax: pmp_write (data); //Parallel Master Port
pmp_write8(address,data); //Enhanced Parallel Master Port
pmp_write8(address,pointer,data); //Enhanced Parallel Master Port
pmp_write16(address,data); //Enhanced Parallel Master Port
pmp_write16(address,pointer,data); //Enhanced Parallel Master Port

Parameters: data- The byte of data to be written.

address- EPMP only, address in EDS memory that is mapped to address from parallel port device

to write data to or start writing data to. (All addresses in EDS memory are word aligned)

pointer- EPMP only, pointer to data to be written

count- EPMP only, number of bytes to write. For pmp_write16() number of bytes must be even.

Returns: Undefined.

Function: For PMP modules, this will write a byte of data to the next buffer location. For EPMP modules

writes one byte/word or count bytes of data from the address mapped to the EDS memory location.
The address is used in conjunction with the offset address set with the setup_pmp_cs1() and
setup_pmp_cs2() functions to determine which address lines are high or low during write.

Availability: Only the devices with a built in Parallel Master Port module or Enhanced Parallel Master Port
modules.

Requires: Nothing.

Examples: pmp_write(data); //Write the data byte to

 //the next buffer location.

pmp_write8(0x8000,data); //EPMP writes the data byte to

 //the address mapped to

 //the first location in

 //EDS memory.

pmp_write16(0x8002,ptr,16); //EPMP writes 16 bytes of

PCD_March 2015-1

200

 //data pointed to by ptr

 //starting at address mapped

 //to address 0x8002 in

 //EDS Memory

Example Files: None
Also See: setup_pmp(), setup_pmp_csx(), pmp_address(), pmp_read(), psp_read(), psp_write(),

pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(), pmp_output_full(),
pmp_input_full(), pmp_overflow(), pmp_error(), pmp_timeout(), psp_error(), psp_timeout()

port_x_pullups ()

Syntax: port_a_pullups (value)
port_b_pullups (value)
port_d_pullups (value)
port_e_pullups (value)
port_j_pullups (value)
port_x_pullups (upmask)
port_x_pullups (upmask, downmask)

Parameters: value is TRUE or FALSE on most parts, some parts that allow pullups to be specified on individual
pins permit an 8 bit int here, one bit for each port pin.
upmask for ports that permit pullups to be specified on a pin basis. This mask indicates what pins
should have pullups activated. A 1 indicates the pullups is on.
downmask for ports that permit pulldowns to be specified on a pin basis. This mask indicates
what pins should have pulldowns activated. A 1 indicates the pulldowns is on.

Returns: undefined

Function: Sets the input pullups. TRUE will activate, and a FALSE will deactivate.

Availability: Only 14 and 16 bit devices (PCM and PCH). (Note: use SETUP_COUNTERS on PCB parts).

Requires: Nothing

Examples: port_a_pullups(FALSE);

Example Files: ex_lcdkb.c, kbd.c

Also See: input(), input_x(), output_float()

pow() pwr()

Syntax: f = pow (x,y)
f = pwr (x,y)

Parameters: x and y are any float type

Returns: A float with precision equal to function parameters x and y.

Function: Calculates X to the Y power.

Note on error handling:
If "errno.h" is included then the domain and range errors are stored in the errno variable. The

Built-in Functions

201

user can check the errno to see if an error has occurred and print the error using the perror
function.

Range error occurs in the following case:

 pow: when the argument X is negative

Availability: All Devices

Requires: #INCLUDE <math.h>

Examples: area = pow (size,3.0);

Example Files: None

Also See: None

printf() fprintf()

Syntax: printf (string)
 or
printf (cstring, values...)
 or
printf (fname, cstring, values...)
fprintf (stream, cstring, values...)

Parameters: String is a constant string or an array of characters null terminated.

Values is a list of variables separated by commas, fname is a function name to be used for

outputting (default is putc is none is specified.

 Stream is a stream identifier (a constant byte). Note that format specifies do not work in ram
band strings.

Returns: undefined

Function: Outputs a string of characters to either the standard RS-232 pins (first two forms) or to a specified
function. Formatting is in accordance with the string argument. When variables are used this
string must be a constant. The % character is used within the string to indicate a variable value is
to be formatted and output. Longs in the printf may be 16 or 32 bit. A %% will output a single
%. Formatting rules for the % follows.

See the Expressions > Constants and Trigraph sections of this manual for other escape character
that may be part of the string.

If fprintf() is used then the specified stream is used where printf() defaults to STDOUT (the last
USE RS232).

Format:
The format takes the generic form %nt. n is optional and may be 1-9 to specify how many
characters are to be outputted, or 01-09 to indicate leading zeros, or 1.1 to 9.9 for floating point
and %w output. t is the type and may be one of the following:

c Character

s String or character
u Unsigned int
d Signed int
Lu Long unsigned int
Ld Long signed int

PCD_March 2015-1

202

x Hex int (lower case)
X Hex int (upper case)
Lx Hex long int (lower case)
LX Hex long int (upper case)
f Float with truncated decimal
g Float with rounded decimal
e Float in exponential format
w Unsigned int with decimal place inserted. Specify two

numbers for n. The first is a total field width. The
second is the desired number of decimal places.

Example formats:

Specifier Value=0x12 Value=0xfe

%03u 018 254
%u 18 254
%2u 18 *
%5 18 254
%d 18 -2
%x 12 fe
%X 12 FE
%4X 0012 00FE
%3.1w 1.8 25.4

 * Result is undefined - Assume garbage.

Availability: All Devices

Requires: #USE RS232 (unless fname is used)

Examples: byte x,y,z;

printf("HiThere");

printf("RTCCValue=>%2x\n\r",get_rtcc());

printf("%2u %X %4X\n\r",x,y,z);

printf(LCD_PUTC, "n=%u",n);

Example Files: ex_admm.c, ex_lcdkb.c

Also See: atoi(), puts(), putc(), getc() (for a stream example), RS232 I/O Overview

profileout()

Syntax: profileout(string);
profileout(string, value);
profileout(value);

Parameters: string is any constant string, and value can be any constant or variable integer. Despite the length
of string the user specifies here, the code profile run-time will actually only send a one or two byte
identifier tag to the code profile tool to keep transmission and execution time to a minimum.

Returns: Undefined

Function: Typically the code profiler will log and display function entry and exits, to show
the call sequence and profile the execution time of the functions. By using
profileout(), the user can add any message or display any variable in the code
profile tool. Most messages sent by profileout() are displayed in the 'Data
Messages' and 'Call Sequence' screens of the code profile tool.
If a profileout(string) is used and the first word of string is "START", the code
profile tool will then measure the time it takes until it sees the same
profileout(string) where the "START" is replaced with "STOP". This

Built-in Functions

203

measurement is then displayed in the 'Statistics' screen of the code profile tool,
using string as the name (without "START" or "STOP")

Availability: Any device.

Requires: #use profile() used somewhere in the project source code.
Examples: // send a simple string.

profileout("This is a text string");
// send a variable with a string identifier.
profileout("RemoteSensor=", adc);
// just send a variable.
profileout(adc);
// time how long a block of code takes to execute.
// this will be displayed in the 'Statistics' of the
// Code Profile tool.
profileout("start my algorithm");
 /* code goes here */
profileout("stop my algorithm");

Example Files: ex_profile.c

Also See: #use profile(), #profile, Code Profile overview

psp_output_full() psp_input_full() psp_overflow()

Syntax: result = psp_output_full()
result = psp_input_full()
result = psp_overflow()
result = psp_error(); //EPMP only
result = psp_timeout(); //EPMP only

Parameters: None

Returns: A 0 (FALSE) or 1 (TRUE)

Function: These functions check the Parallel Slave Port (PSP) for the indicated conditions and return
TRUE or FALSE.

Availability: This function is only available on devices with PSP hardware on chips.

Requires: Nothing

Examples: while (psp_output_full()) ;

psp_data = command;

while(!psp_input_full()) ;

if (psp_overflow())

 error = TRUE;

else

 data = psp_data;

Example Files: ex_psp.c

Also See: setup_psp(), PSP Overview

PCD_March 2015-1

204

psp_read()

Syntax: Result = psp_read ();
Result = psp_read (address);

Parameters: address- The address of the buffer location that needs to be read. If address is not specified, use

the function psp_read() which will read the next buffer location.

Returns: A byte of data.

Function: psp_read() will read a byte of data from the next buffer location and psp_read (address) will read
the buffer location address.

Availability: Only the devices with a built in Parallel Master Port module of Enhanced Parallel Master Port
module.

Requires: Nothing.

Examples: Result = psp_read(); // Reads next byte of data

Result = psp_read(3); // Reads the buffer location 3

Example Files: None
Also See: setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(), pmp_write(), psp_output_full(),

psp_input_full(), psp_overflow(), pmp_output_full(), pmp_input_full(),pmp_overflow().
See header file for device selected.

psp_write()

Syntax: psp_write (data);
psp_write(address, data);

Parameters: address-The buffer location that needs to be written to
data- The byte of data to be written

Returns: Undefined.

Function: This will write a byte of data to the next buffer location or will write a byte to the specified buffer
location.

Availability: Only the devices with a built in Parallel Master Port module or Enhanced Parallel Master Port
module.

Requires: Nothing.

Examples: psp_write(data); // Write the data byte to

 // the next buffer location.

Example Files: None
Also See: setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(), pmp_write(), psp_output_full(),

psp_input_full(), psp_overflow(), pmp_output_full(), pmp_input_full(),pmp_overflow().
See header file for device selected.

Built-in Functions

205

putc_send();

fputc_send();

Syntax: putc_send();
fputc_send(stream);

Parameters: stream – parameter specifying the stream defined in #USE RS232.
Returns: Nothing

Function: Function used to transmit bytes loaded in transmit buffer over RS232. Depending on the options

used in #USE RS232 controls if function is available and how it works.

If using hardware UARTx with NOTXISR option it will check if currently transmitting. If not
transmitting it will then check for data in transmit buffer. If there is data in transmit buffer it will
load next byte from transmit buffer into the hardware TX buffer, unless using CTS flow control
option. In that case it will first check to see if CTS line is at its active state before loading next byte
from transmit buffer into the hardware TX buffer.

If using hardware UARTx with TXISR option, function only available if using CTS flow control
option, it will test to see if the TBEx interrupt is enabled. If not enabled it will then test for data in
transmit buffer to send. If there is data to send it will then test the CTS flow control line and if at its
active state it will enable the TBEx interrupt. When using the TXISR mode the TBEx interrupt
takes care off moving data from the transmit buffer into the hardware TX buffer.

If using software RS232, only useful if using CTS flow control, it will check if there is data in
transmit buffer to send. If there is data it will then check the CTS flow control line, and if at its
active state it will clock out the next data byte.

Availability: All devices

Requires: #USE RS232
Examples: #USE_RS232(UART1,BAUD=9600,TRANSMIT_BUFFER=50,NOTXISR)

printf(“Testing Transmit Buffer”);
while(TRUE){
 putc_send();
}

Example Files: None

Also See: _USE_RS232(), RCV_BUFFER_FULL(), TX_BUFFER_FULL(), TX_BUFFER_BYTES(), GET(
), PUTC() RINTF(), SETUP_UART(),
PUTC()_SEND

pwm_off()

Syntax: pwm_off([stream]);

Parameters: stream – optional parameter specifying the stream defined in #USE PWM.
Returns: Nothing.

Function: To turn off the PWM signal.
Availability: All devices.

Requires: #USE PWM
Examples: #USE PWM(OUTPUT=PIN_C2, FREQUENCY=10kHz, DUTY=25)

 while(TRUE){
 if(kbhit()){

PCD_March 2015-1

206

 c = getc();

 if(c=='F')
 pwm_off();
 }
}

Example Files: None
Also See: #use_pwm, pwm_on(), pwm_set_duty_percent(), pwm_set_duty(),

pwm_set_frequency()

pwm_on()

Syntax: pwm_on([stream]);

Parameters: stream – optional parameter specifying the stream defined in #USE PWM.
Returns: Nothing.

Function: To turn on the PWM signal.
Availability: All devices.

Requires: #USE PWM
Examples: #USE PWM(OUTPUT=PIN_C2, FREQUENCY=10kHz, DUTY=25)

 while(TRUE){

 if(kbhit()){

 c = getc();

 if(c=='O')

 pwm_on();

 }

}

Example Files: None
Also See: #use_pwm, pwm_off(), pwm_set_duty_percent(), pwm_set_duty,

pwm_set_frequency()

pwm_set_duty()

Syntax: pwm_set_duty([stream],duty);

Parameters: stream – optional parameter specifying the stream defined in #USE PWM.
duty – an int16 constant or variable specifying the new PWM high time.

Returns: Nothing.

Function: To change the duty cycle of the PWM signal. The duty cycle percentage depends
on the period of the PWM signal. This function is faster than
pwm_set_duty_percent(), but requires you to know what the period of the PWM
signal is.

Availability: All devices.

Requires: #USE PWM

Examples: #USE PWM(OUTPUT=PIN_C2, FREQUENCY=10kHz, DUTY=25)

Example Files: None
Also See: #use_pwm, pwm_on, pwm_off(), pwm_set_frequency(), pwm_set_duty_percent()

pwm_set_duty_percent

Syntax: pwm_set_duty_percent([stream]), percent

Built-in Functions

207

Parameters: stream – optional parameter specifying the stream defined in #USE PWM.
percent- an int16 constant or variable ranging from 0 to 1000 specifying the new PWM duty cycle,
D is 0% and 1000 is 100.0%.

Returns: Nothing.

Function: To change the duty cycle of the PWM signal. Duty cycle percentage is based off the current
frequency/period of the PWM signal.

Availability: All devices.

Requires: #USE PWM
Examples: #USE PWM(OUTPUT=PIN_C2, FREQUENCY=10kHz, DUTY=25)

pwm_set_duty_percent(500); //set PWM duty cycle to 50%

Example Files: None
Also See: #use_pwm, pwm_on(), pwm_off(), pwm_set_frequency(), pwm_set_duty()

pwm_set_frequency

Syntax: pwm_set_frequency([stream],frequency);

Parameters: stream – optional parameter specifying the stream defined in #USE PWM.

frequency – an int32 constant or variable specifying the new PWM frequency.

Returns: Nothing.

Function: To change the frequency of the PWM signal. Warning this may change the
resolution of the PWM signal.

Availability: All devices.

Requires: #USE PWM
Examples: #USE PWM(OUTPUT=PIN_C2, FREQUENCY=10kHz, DUTY=25)

pwm_set_frequency(1000); //set PWM frequency to 1kHz

Example Files: None
Also See: #use_pwm, pwm_on(), pwm_off(), pwm_set_duty_percent, pwm_set_duty()

qei_get_count()

Syntax: value = qei_get_count([unit]);

Parameters: value- The 16-bit value of the position counter.
unit- Optional unit number, defaults to 1.

Returns: void

Function: Reads the current 16-bit value of the position counter.

Availability: Devices that have the QEI module.

Requires: Nothing.

Examples: value = qei_get_counter();

Example Files: None

Also See: setup_qei() , qei_set_count() , qei_status().

PCD_March 2015-1

208

qei_set_count()

Syntax: qei_set_count([unit,] value);

Parameters: value- The 16-bit value of the position counter.
unit- Optional unit number, defaults to 1.

Returns: void

Function: Write a 16-bit value to the position counter.

Availability: Devices that have the QEI module.

Requires: Nothing.

Examples: qei_set_counter(value);

Example Files: None

Also See: setup_qei() , qei_get_count() , qei_status().

qei_status()

Syntax: status = qei_status([unit]);

Parameters: status- The status of the QEI module
unit- Optional unit number, defaults to 1.

Returns: void

Function: Returns the status of the QUI module.

Availability: Devices that have the QEI module.

Requires: Nothing.

Examples: status = qei_status();

Example Files: None

Also See: setup_qei() , qei_set_count() , qei_get_count().

qsort()

Syntax: qsort (base, num, width, compare)

Parameters: base: Pointer to array of sort data
num: Number of elements

Built-in Functions

209

width: Width of elements
compare: Function that compares two elements

Returns: None

Function: Performs the shell-metzner sort (not the quick sort algorithm). The contents of the array are sorted

into ascending order according to a comparison function pointed to by compare.

Availability: All devices

Requires: #INCLUDE <stdlib.h>

Examples: int nums[5]={ 2,3,1,5,4};

int compar(void *arg1,void *arg2);

void main() {

 qsort (nums, 5, sizeof(int), compar);

}

int compar(void *arg1,void *arg2) {

 if (* (int *) arg1 < (* (int *) arg2) return –1

 else if (* (int *) arg1 == (* (int *) arg2) return 0

 else return 1;

}

Example Files: ex_qsort.c

Also See: bsearch()

rand()

Syntax: re=rand()

Parameters: None

Returns: A pseudo-random integer.

Function: The rand function returns a sequence of pseudo-random integers in the range of 0 to
RAND_MAX.

Availability: All devices

Requires: #INCLUDE <STDLIB.H>

Examples: int I;

I=rand();

Example Files: None

Also See: srand()

PCD_March 2015-1

210

rcv_buffer_bytes()

Syntax: value = rcv_buffer_bytes([stream]);

Parameters: stream – optional parameter specifying the stream defined in #USE RS232.
Returns: Number of bytes in receive buffer that still need to be retrieved.

Function: Function to determine the number of bytes in receive buffer that still need to be retrieved.

Availability: All devices

Requires: #USE RS232
Examples: #USE_RS232(UART1,BAUD=9600,RECEIVE_BUFFER=100)

void main(void) {
 char c;
 if(rcv_buffer_bytes() > 10)
 c = getc();
}

Example Files: None

Also See: _USE_RS232(), RCV_BUFFER_FULL(), TX_BUFFER_FULL(), TX_BUFFER_BYTES(), GETC(
), PUTC() ,PRINTF(), SETUP_UART(), PUTC_SEND()

rcv_buffer_full()

Syntax: value = rcv_buffer_full([stream]);

Parameters: stream – optional parameter specifying the stream defined in #USE RS232.
Returns: TRUE if receive buffer is full, FALSE otherwise.
Function: Function to test if the receive buffer is full.

Availability: All devices

Requires: #USE RS232
Examples: #USE_RS232(UART1,BAUD=9600,RECEIVE_BUFFER=100)

void main(void) {
 char c;
 if(rcv_buffer_full())
 c = getc();
}

Example Files: None

Also See: _USE_RS232(),RCV_BUFFER_BYTES(), TX_BUFFER_BYTES() ,TX_BUFFER_FULL(),
GETC(), PUTC(), PRINTF(), SETUP_UART(), PUTC_SEND()

read_adc() read_adc2()

Syntax: value = read_adc ([mode])
value = read_adc2 ([mode])

Built-in Functions

211

Parameters: mode is an optional parameter. If used the values may be:
ADC_START_AND_READ (continually takes readings, this is the default)
ADC_START_ONLY (starts the conversion and returns)
ADC_READ_ONLY (reads last conversion result)

Returns: Either a 8 or 16 bit int depending on #DEVICE ADC= directive.

Function: This function will read the digital value from the analog to digital converter. Calls to setup_adc(),
setup_adc_ports() and set_adc_channel() should be made sometime before this function is
called. The range of the return value depends on number of bits in the chips A/D converter and
the setting in the #DEVICE ADC= directive as follows:

#DEVICE 10 bit 12 bit

ADC=8 00-FF 00-FF
ADC=10 0-3FF 0-3FF
ADC=11 x x
ADC=12 0-FFC 0-FFF
ADC=16 0-FFC0 0-FFF0

Note: x is not defined

Availability: Only available on devices with built in analog to digital converters.

Requires: Pin constants are defined in the devices .h file.

Examples: int16 value;

setup_adc_ports(sAN0|sAN1, VSS_VDD);

setup_adc(ADC_CLOCK_DIV_4|ADC_TAD_MUL_8);

while (TRUE)

{

 set_adc_channel(0);

 value = read_adc();

 printf(“Pin AN0 A/C value = %LX\n\r”, value);

 delay_ms(5000);

 set_adc_channel(1);

 read_adc(ADC_START_ONLY);

 ...

 value = read_adc(ADC_READ_ONLY);

 printf("Pin AN1 A/D value = %LX\n\r", value);

}

Example
Files:

ex_admm.c,

read_configuration_memory()

Syntax: read_configuration_memory(ramPtr, n)

Parameters: ramPtr is the destination pointer for the read results
count is an 8 bit integer

Returns: undefined

Function: Reads n bytes of configuration memory and saves the values to ramPtr.

Availability: All

Requires: Nothing

PCD_March 2015-1

212

Examples: int data[6];

read_configuration_memory(data,6);

Example Files: None

Also See: write_configuration_memory(), read_program_memory(), Configuration Memory Overview

read_eeprom()

Syntax: value = read_eeprom (address , [N])
 read_eeprom(address , variable)
 read_eeprom(address , pointer , N)

Parameters: address is an 8 bit or 16 bit int depending on the part
N specifies the number of EEPROM bytes to read
variable a specified location to store EEPROM read results
pointer is a pointer to location to store EEPROM read results

Returns: An 16 bit int

Function: By default the function reads a word from EEPROM at the specified address. The number of
bytes to read can optionally be defined by argument N. If a variable is used as an argument, then
EEPROM is read and the results are placed in the variable until the variable data size is full.
Finally, if a pointer is used as an argument, then n bytes of EEPROM at the given address are
read to the pointer.

Availability: This command is only for parts with built-in EEPROMS

Requires: Nothing

Examples: #define LAST_VOLUME 10

volume = read_EEPROM (LAST_VOLUME);

Example Files: None

Also See: write_eeprom(), Data Eeprom Overview

read_extended_ram()

Syntax: read_extended_ram(page,address,data,count);

Parameters: page – the page in extended RAM to read from
address – the address on the selected page to start reading from
data – pointer to the variable to return the data to
count – the number of bytes to read (0-32768)

Returns: Undefined

Function: To read data from the extended RAM of the PIC.

Availability: On devices with more then 30K of RAM.

Built-in Functions

213

Requires: Nothing

Examples: unsigned int8 data[8];

read_extended_ram(1,0x0000,data,8);

Example Files: None

Also See: read_extended_ram(), Extended RAM Overview

read_program_memory()

Syntax: READ_PROGRAM_MEMORY (address, dataptr, count);

Parameters: address is 32 bits . The least significant bit should always be 0 in PCM.
dataptr is a pointer to one or more bytes.
count is a 16 bit integer on PIC16 and 16-bit for PIC18

Returns: undefined

Function: Reads count bytes from program memory at address to RAM at dataptr. BDue to the 24 bit
program instruction size on the PCD devices, every fourth byte will be read as 0x00

Availability: Only devices that allow reads from program memory.

Requires: Nothing

Examples: char buffer[64];

read_external_memory(0x40000, buffer, 64);

Example Files: None

Also See: write program memory(), Program Eeprom Overview

read_high_speed_adc()

Syntax: read_high_speed_adc(pair,mode,result); // Individual start and read or
 // read only
read_high_speed_adc(pair,result); // Individual start and read
read_high_speed_adc(pair); // Individual start only
read_high_speed_adc(mode,result); // Global start and read or
 // read only
read_high_speed_adc(result); // Global start and read
read_high_speed_adc(); // Global start only

Parameters: pair – Optional parameter that determines which ADC pair number to start and/or read. Valid

values are 0 to total number of ADC pairs. 0 starts and/or reads ADC pair AN0 and AN1, 1 starts
and/or reads ADC pair AN2 and AN3, etc. If omitted then a global start and/or read will be
performed.

mode – Optional parameter, if used the values may be:

· ADC_START_AND_READ (starts conversion and reads result)

· ADC_START_ONLY (starts conversion and returns)

PCD_March 2015-1

214

· ADC_READ_ONLY(reads conversion result)

result – Pointer to return ADC conversion too. Parameter is optional, if not used the

read_fast_adc() function can only perform a start.

Returns: Undefined

Function: This function is used to start an analog to digital conversion and/or read the digital
value when the conversion is complete. Calls to setup_high_speed_adc() and
setup_high_speed_adc_pairs() should be made sometime before this function is
called.

When using this function to perform an individual start and read or individual start
only, the function assumes that the pair's trigger source was set to
INDIVIDUAL_SOFTWARE_TRIGGER.

When using this function to perform a global start and read, global start only, or
global read only. The function will perform the following steps:

1. Determine which ADC pairs are set for
GLOBAL_SOFTWARE_TRIGGER.
2. Clear the corresponding ready flags (if doing a start).
3. Set the global software trigger (if doing a start).
4. Read the corresponding ADC pairs in order from lowest to highest
(if doing a read).
5. Clear the corresponding ready flags (if doing a read).

When using this function to perform a individual read only. The function can read
the ADC result from any trigger source.

Availability: Only on dsPIC33FJxxGSxxx devices.

Requires: Constants are define in the device .h file.

Examples: //Individual start and read

int16 result[2];

setup_high_speed_adc(ADC_CLOCK_DIV_4);

setup_high_speed_adc_pair(0, INDIVIDUAL_SOFTWARE_TRIGGER);

read_high_speed_adc(0, result); //starts conversion for AN0 and AN1 and stores

 //result in result[0] and result[1]

//Global start and read

int16 result[4];

setup_high_speed_adc(ADC_CLOCK_DIV_4);

setup_high_speed_adc_pair(0, GLOBAL_SOFTWARE_TRIGGER);

setup_high_speed_adc_pair(4, GLOBAL_SOFTWARE_TRIGGER);

read_high_speed_adc(result); //starts conversion for AN0, AN1,

 //AN8 and AN9 and

 //stores result in result[0], result //[1], result[2]

 and result[3]

Example Files: None

Also See: setup_high_speed_adc(), setup_high_speed_adc_pair(), high_speed_adc_done()

Built-in Functions

215

read_rom_memory()

Syntax: READ_ROM_MEMORY (address, dataptr, count);

Parameters: address is 32 bits. The least significant bit should always be 0.
dataptr is a pointer to one or more bytes.
count is a 16 bit integer

Returns: undefined

Function: Reads count bytes from program memory at address to dataptr. Due to the 24 bit program instruction
size on the PCD devices, three bytes are read from each address location.

Availability: Only devices that allow reads from program memory.

Requires: Nothing

Examples: char buffer[64];

read_program_memory(0x40000, buffer, 64);

Example
Files:

None

Also See: write_eeprom(), read_eeprom(), Program eeprom overview

read_sd_adc()

Syntax: value = read_sd_adc();

Parameters: None

Returns: A signed 32 bit int.

Function: To poll the SDRDY bit and if set return the signed 32 bit value stored in the SD1RESH and SD1RESL
registers, and clear the SDRDY bit. The result returned depends on settings made with the setup_sd_adc()
function, but will always be a signed int32 value with the most significant bits being meaningful. Refer to
Section 66, 16-bit Sigma-Delta A/D Converter, of the PIC24F Family Reference Manual for more
information on the module and the result format.

Availability: Only devices with a Sigma-Delta Analog to Digital Converter (SD ADC) module.

Examples: value = read_sd_adc()

Example
Files:

None

Also See: setup_sd_adc(), set_sd_adc_calibration(), set_sd_adc_channel()

PCD_March 2015-1

216

realloc()

Syntax: realloc (ptr, size)

Parameters: ptr is a null pointer or a pointer previously returned by calloc or malloc or realloc function, size is
an integer representing the number of byes to be allocated.

Returns: A pointer to the possibly moved allocated memory, if any. Returns null otherwise.

Function: The realloc function changes the size of the object pointed to by the ptr to the size specified by
the size. The contents of the object shall be unchanged up to the lesser of new and old sizes. If
the new size is larger, the value of the newly allocated space is indeterminate. If ptr is a null
pointer, the realloc function behaves like malloc function for the specified size. If the ptr does not
match a pointer earlier returned by the calloc, malloc or realloc, or if the space has been
deallocated by a call to free or realloc function, the behavior is undefined. If the space cannot be
allocated, the object pointed to by ptr is unchanged. If size is zero and the ptr is not a null pointer,
the object is to be freed.

Availability: All devices

Requires: #INCLUDE <stdlibm.h>

Examples: int * iptr;

iptr=malloc(10);

realloc(iptr,20)

// iptr will point to a block of memory of 20 bytes, if available.

Example Files: None

Also See: malloc(), free(), calloc()

release_io()

Syntax: release_io();

Parameters: none

Returns: nothing
Function: The function releases the I/O pins after the device wakes up from deep sleep, allowing

the state of the I/O pins to change

Availability: Devices with a deep sleep module.

Requires: Nothing

Examples: unsigned int16 restart;

restart = restart_cause();

if(restart == RTC_FROM_DS)

 release_io();

Example Files: None

Also See: sleep()

Built-in Functions

217

reset_cpu()

Syntax: reset_cpu()

Parameters: None

Returns: This function never returns

Function: This is a general purpose device reset. It will jump to location 0 on PCB and PCM parts and also
reset the registers to power-up state on the PIC18XXX.

Availability: All devices

Requires: Nothing

Examples: if(checksum!=0)

 reset_cpu();

Example Files: None

Also See: None

restart_cause()

Syntax: value = restart_cause()

Parameters: None

Returns: A value indicating the cause of the last processor reset. The actual values are device
dependent. See the device .h file for specific values for a specific device. Some example values
are: RESTART_POWER_UP, RESTART_BROWNOUT, RESTART_WDT and
RESTART_MCLR

Function: Returns the cause of the last processor reset.

In order for the result to be accurate, it should be called immediately in main().

Availability: All devices

Requires: Constants are defined in the devices .h file.

Examples: switch (restart_cause()) {

 case RESTART_BROWNOUT:

 case RESTART_WDT:

 case RESTART_MCLR:

 handle_error();

}

Example Files: ex_wdt.c

Also See: restart_wdt(), reset_cpu()

PCD_March 2015-1

218

restart_wdt()

Syntax: restart_wdt()

Parameters: None

Returns: undefined

Function: Restarts the watchdog timer. If the watchdog timer is enabled, this must be
called periodically to prevent the processor from resetting.

The watchdog timer is used to cause a hardware reset if the software appears to
be stuck.

The timer must be enabled, the timeout time set and software must periodically
restart the timer. These are done differently on the PCB/PCM and PCH parts as
follows:

 PCB/PCM PCH

Enable/Disable #fuses setup_wdt()
Timeout time setup_wdt() #fuses
restart restart_wdt() restart_wdt()

Availability: All devices

Requires: #FUSES

Examples: #fuses WDT // PCB/PCM example

 // See setup_wdt for a

 // PIC18 example

main() {

 setup_wdt(WDT_2304MS);

 while (TRUE) {

 restart_wdt();

 perform_activity();

 }

}

Example
Files:

ex_wdt.c

Also See: #FUSES, setup_wdt(), WDT or Watch Dog Timer Overview

rotate_left()

Syntax: rotate_left (address, bytes)

Parameters: address is a pointer to memory
bytes is a count of the number of bytes to work with.

Returns: undefined

Function: Rotates a bit through an array or structure. The address may be an array identifier or an
address to a byte or structure (such as &data). Bit 0 of the lowest BYTE in RAM is considered
the LSB.

Availability: All devices

Built-in Functions

219

Requires: Nothing

Examples: x = 0x86;

rotate_left(&x, 1);

// x is now 0x0d

Example Files: None

Also See: rotate_right(), shift_left(), shift_right()

rotate_right()

Syntax: rotate_right (address, bytes)

Parameters: address is a pointer to memory,
bytes is a count of the number of bytes to work with.

Returns: undefined

Function: Rotates a bit through an array or structure. The address may be an array identifier or an address

to a byte or structure (such as &data). Bit 0 of the lowest BYTE in RAM is considered the LSB.

Availability: All devices

Requires: Nothing

Examples: struct {

 int cell_1 : 4;

 int cell_2 : 4;

 int cell_3 : 4;

 int cell_4 : 4; } cells;

rotate_right(&cells, 2);

rotate_right(&cells, 2);

rotate_right(&cells, 2);

rotate_right(&cells, 2);

// cell_1->4, 2->1, 3->2 and 4-> 3

Example Files: None

Also See: rotate_left(), shift_left(), shift_right()

rtc_alarm_read()

Syntax: rtc_alarm_read(&datetime);

Parameters: datetime- A structure that will contain the values to be written to the alarm in the RTCC module.

Structure used in read and write functions are defined in the device header file
as rtc_time_t

Returns: void

Function: Reads the date and time from the alarm in the RTCC module to structure datetime.

Availability: Devices that have the RTCC module.

PCD_March 2015-1

220

Requires: Nothing.

Examples: rtc_alarm_read(&datetime);

Example Files: None

Also See: rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(), setup_rtc()

rtc_alarm_write()

Syntax: rtc_alarm_write(&datetime);

Parameters: datetime- A structure that will contain the values to be written to the alarm in the RTCC module.

Structure used in read and write functions are defined in the device header file as rtc_time_t.

Returns: void

Function: Writes the date and time to the alarm in the RTCC module as specified in the structure date time.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples: rtc_alarm_write(&datetime);

Example Files: None

Also See: rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(), setup_rtc()

rtc_read()

Syntax: rtc_read(&datetime);

Parameters: datetime- A structure that will contain the values returned by the RTCC module.

Structure used in read and write functions are defined in the device header file as rtc_time_t.

Returns: void

Function: Reads the current value of Time and Date from the RTCC module and stores the structure date
time.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples: rtc_read(&datetime);

Built-in Functions

221

Example Files: ex_rtcc.c

Also See: rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(), setup_rtc()

rtc_write()

Syntax: rtc_write(&datetime);

Parameters: datetime- A structure that will contain the values to be written to the RTCC module.

Structure used in read and write functions are defined in the device header file as rtc_time_t.

Returns: void

Function: Writes the date and time to the RTCC module as specified in the structure date time.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples: rtc_write(&datetime);

Example Files: ex_rtcc.c

Also See: rtc_read() , rtc_alarm_read() , rtc_alarm_write() , setup_rtc_alarm() , rtc_write(), setup_rtc()

rtos_await()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_await (expre)

Parameters: expre is a logical expression.

Returns: None

Function: This function can only be used in an RTOS task. This function waits for expre to be true before
continuing execution of the rest of the code of the RTOS task. This function allows other tasks to
execute while the task waits for expre to be true.

Availability: All devices

Requires: #USE RTOS

Examples: rtos_await(kbhit());

Also See: None

PCD_March 2015-1

222

rtos_disable()

The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_disable (task)

Parameters: task is the identifier of a function that is being used as an RTOS task.

Returns: None

Function: This function disables a task which causes the task to not execute until enabled by rtos_enable().
All tasks are enabled by default.

Availability: All devices

Requires: #USE RTOS

Examples: rtos_disable(toggle_green)

Also See: rtos enable()

rtos_enable()

The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_enable (task)

Parameters: task is the identifier of a function that is being used as an RTOS task.

Returns: None

Function: This function enables a task to execute at it's specified rate.

Availability: All devices

Requires: #USE RTOS

Examples: rtos_enable(toggle_green);

Also See: rtos disable()

rtos_msg_poll()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Built-in Functions

223

Syntax: i = rtos_msg_poll()

Parameters: None

Returns: An integer that specifies how many messages are in the queue.

Function: This function can only be used inside an RTOS task. This function returns the number of
messages that are in the queue for the task that the rtos_msg_poll() function is used in.

Availability: All devices

Requires: #USE RTOS

Examples: if(rtos_msg_poll())

Also See: rtos msg send(), rtos msg read()

rtos_msg_read()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: b = rtos_msg_read()

Parameters: None

Returns: A byte that is a message for the task.

Function: This function can only be used inside an RTOS task. This function reads in the next (message) of
the queue for the task that the rtos_msg_read() function is used in.

Availability: All devices

Requires: #USE RTOS

Examples: if(rtos_msg_poll()) {

 b = rtos_msg_read();

Also See: rtos msg poll(), rtos msg send()

rtos_msg_send()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_msg_send(task, byte)

Parameters: task is the identifier of a function that is being used as an RTOS task
byte is the byte to send to task as a message.

Returns: None

Function: This function can be used anytime after rtos_run() has been called.
This function sends a byte long message (byte) to the task identified by task.

PCD_March 2015-1

224

Availability: All devices

Requires: #USE RTOS

Examples: if(kbhit())

{

 rtos_msg_send(echo, getc());

}

Also See: rtos_msg_poll(), rtos_msg_read()

rtos_overrun()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_overrun([task])

Parameters: task is an optional parameter that is the identifier of a function that is being used as an RTOS task

Returns: A 0 (FALSE) or 1 (TRUE)

Function: This function returns TRUE if the specified task took more time to execute than it was allocated. If
no task was specified, then it returns TRUE if any task ran over it's alloted execution time.

Availability: All devices

Requires: #USE RTOS(statistics)

Examples: rtos_overrun()

Also See: None

rtos_run()

The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_run()

Parameters: None

Returns: None

Function: This function begins the execution of all enabled RTOS tasks. This function controls the execution
of the RTOS tasks at the allocated rate for each task. This function will return only when
rtos_terminate() is called.

Availability: All devices

Requires: #USE RTOS

Examples: rtos_run()

Also See: rtos terminate()

Built-in Functions

225

rtos_signal()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_signal (sem)

Parameters: sem is a global variable that represents the current availability of a shared
system resource (a semaphore).

Returns: None

Function: This function can only be used by an RTOS task. This function increments sem to let waiting
tasks know that a shared resource is available for use.

Availability: All devices

Requires: #USE RTOS

Examples: rtos_signal(uart_use)

Also See: rtos wait()

rtos_stats()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_stats(task,&stat)

Parameters: task is the identifier of a function that is being used as an RTOS task.
stat is a structure containing the following:
 struct rtos_stas_struct {
 unsigned int32 task_total_ticks; //number of ticks the task has
 //used
 unsigned int16 task_min_ticks; //the minimum number of ticks
 //used
 unsigned int16 task_max_ticks; //the maximum number of ticks
 //used
 unsigned int16 hns_per_tick; //us = (ticks*hns_per_tick)/10
 };

Returns: Undefined

Function: This function returns the statistic data for a specified task.

Availability: All devices

Requires: #USE RTOS(statistics)

Examples: rtos_stats(echo, &stats)

PCD_March 2015-1

226

Also See: None

rtos_terminate()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_terminate()

Parameters: None

Returns: None

Function: This function ends the execution of all RTOS tasks. The execution of the program will continue
with the first line of code after the rtos_run() call in the program. (This function causes rtos_run()
to return.)

Availability: All devices

Requires: #USE RTOS

Examples: rtos_terminate()

Also See: rtos run()

rtos_wait()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_wait (sem)

Parameters: sem is a global variable that represents the current availability of a shared
system resource (a semaphore).

Returns: None

Function: This function can only be used by an RTOS task. This function waits for sem to be greater than 0
(shared resource is available), then decrements sem to claim usage of the shared resource and
continues the execution of the rest of the code the RTOS task. This function allows other tasks to
execute while the task waits for the shared resource to be available.

Availability: All devices

Requires: #USE RTOS

Examples: rtos_wait(uart_use)

Also See: rtos signal()

Built-in Functions

227

rtos_yield()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_yield()

Parameters: None

Returns: None

Function: This function can only be used in an RTOS task. This function stops the execution of the current
task and returns control of the processor to rtos_run(). When the next task executes, it will start
it's execution on
the line of code after the rtos_yield().

Availability: All devices

Requires: #USE RTOS

Examples: void yield(void)

{

 printf(“Yielding...\r\n”);

 rtos_yield();

 printf(“Executing code after yield\r\n”);

}

Also See: None

set_adc_channel()

set_adc_channel2()

Syntax: set_adc_channel (chan [,neg]))
set_adc_channel2(chan)

Parameters: chan is the channel number to select. Channel numbers start at 0 and are labeled in the data sheet AN0,
AN1. For devices with a differential ADC it sets the positive channel to use.

neg is optional and is used for devices with a differential ADC only. It sets the negative channel to use,

channel numbers can be 0 to 6 or VSS. If no parameter is used the negative channel will be set to VSS by
default.

Returns: undefined

Function: Specifies the channel to use for the next read_adc() call. Be aware that you must wait a short time after
changing the channel before you can get a valid read. The time varies depending on the impedance of the
input source. In general 10us is good for most applications. You need not change the channel before every
read if the channel does not change.

Availability: Only available on devices with built in analog to digital converters

Requires: Nothing

Examples: set_adc_channel(2);

value = read_adc();

PCD_March 2015-1

228

Example
Files:

ex_admm.c

Also See: read_adc(), setup_adc(), setup_adc_ports(), ADC Overview

scanf()

printf()

Syntax: scanf(cstring);
scanf(cstring, values...)
fscanf(stream, cstring, values...)

Parameters: cstring is a constant string.

values is a list of variables separated by commas.

stream is a stream identifier.

Returns: 0 if a failure occurred, otherwise it returns the number of conversion specifiers that were read in, plus the

number of constant strings read in.

Function: Reads in a string of characters from the standard RS-232 pins and formats the string according to the
format specifiers. The format specifier character (%) used within the string indicates that a conversion
specification is to be done and the value is to be saved into the corresponding argument variable. A %%
will input a single %. Formatting rules for the format specifier as follows:

If fscanf() is used, then the specified stream is used, where scanf() defaults to STDIN (the last USE RS232).

Format:
The format takes the generic form %nt. n is an option and may be 1-99 specifying the field width, the
number of characters to be inputted. t is the type and maybe one of the following:

c Matches a sequence of characters of the number specified by the field width (1 if no field

width is specified). The corresponding argument shall be a pointer to the initial character
of an array long enough to accept the sequence.

s Matches a sequence of non-white space characters. The corresponding argument shall be

a pointer to the initial character of an array long enough to accept the sequence and a
terminating null character, which will be added automatically.

u Matches an unsigned decimal integer. The corresponding argument shall be a pointer to an

unsigned integer.

Lu Matches a long unsigned decimal integer. The corresponding argument shall be a pointer to

a long unsigned integer.

d Matches a signed decimal integer. The corresponding argument shall be a pointer to a

signed integer.

Ld Matches a long signed decimal integer. The corresponding argument shall be a pointer to a

long signed integer.

o Matches a signed or unsigned octal integer. The corresponding argument shall be a pointer

to a signed or unsigned integer.

Built-in Functions

229

Lo Matches a long signed or unsigned octal integer. The corresponding argument shall be a

pointer to a long signed or unsigned integer.

x or X Matches a hexadecimal integer. The corresponding argument shall be a pointer to a signed

or unsigned integer.

Lx or LX Matches a long hexadecimal integer. The corresponding argument shall be a pointer to a

long signed or unsigned integer.

i Matches a signed or unsigned integer. The corresponding argument shall be a pointer to a

signed or unsigned integer.

Li Matches a long signed or unsigned integer. The corresponding argument shall be a pointer

to a long signed or unsigned integer.

f,g or e Matches a floating point number in decimal or exponential format. The corresponding

argument shall be a pointer to a float.

[Matches a non-empty sequence of characters from a set of expected characters. The

sequence of characters included in the set are made up of all character following the left
bracket ([) up to the matching right bracket (]). Unless the first character after the left
bracket is a ^, in which case the set of characters contain all characters that do not
appear between the brackets. If a - character is in the set and is not the first or second,
where the first is a ^, nor the last character, then the set includes all characters from the
character before the - to the character after the -.

 For example, %[a-z] would include all characters from a to z in the set and %[^a-z] would
exclude all characters from a to z from the set. The corresponding argument shall be a

pointer to the initial character of an array long enough to accept the sequence and a
terminating null character, which will be added automatically.

n Assigns the number of characters read thus far by the call to scanf() to the corresponding

argument. The corresponding argument shall be a pointer to an unsigned integer.

 An optional assignment-suppressing character (*) can be used after the format specifier to

indicate that the conversion specification is to be done, but not saved into a
corresponding variable. In this case, no corresponding argument variable should be
passed to the scanf() function.

 A string composed of ordinary non-white space characters is executed by reading the next

character of the string. If one of the inputted characters differs from the string, the
function fails and exits. If a white-space character precedes the ordinary non-white space
characters, then white-space characters are first read in until a non-white space character
is read.

 White-space characters are skipped, except for the conversion specifiers [, c or n, unless a

white-space character precedes the [or c specifiers.

Availability: All Devices

Requires: #USE RS232

Examples: char name[2-];

unsigned int8 number;

signed int32 time;

if(scanf("%u%s%ld",&number,name,&time))

 printf"\r\nName: %s, Number: %u, Time: %ld",name,number,time);

Example
Files:

None

Also See: RS232 I/O Overview, getc(), putc(), printf()

PCD_March 2015-1

230

set_ccp1_compare_time() set_ccp2_compare_time()
set_ccp3_compare_time() set_ccp4_compare_time()
set_ccp5_compare_time()

Syntax: set_ccpx_compare_time(time);
set_ccpx_compare_time(timeA, timeB);

Parameters: time - may be a 16 or 32-bit constant or varaible. If 16-bit, it sets the CCPxRAL register to the

value time and CCPxRBL to zero; used for single edge output compare mode set for 16-bit timer
mode. If 32-bit, it sets the CCPxRAL and CCPxRBL register to the value time, CCPxRAL least
significant word and CCPRBL most significant word; used for single edge output compare mode
set for 32-bit timer mode.

timeA - is a 16-bit constant or variable to set the CCPxRAL register to the value of timeA, used for

dual edge output c ompare and PWM modes.

timeB - is a 16-bit constant or variable to set the CCPxRBL register to the value of timeB, used for

dual edge output compare and PWM modes.

Returns: Undefined

Function: This function sets the compare value for the CCP module. If the CCP module is performing a
single edge compare in 16-bit mode, then the CCPxRBL register is not used. If 32-bit mode, the
CCPxRBL is the most significant word of the compare time. If the CCP module is performing dual
edge compare to generate an output pulse, then timeA, CCPxRAL register, signifies the start of the
pulse, and timeB, CCPxRBL register signifies the pulse termination time.

Availability: Available only on PIC24FxxKMxxx family of devices with a MCCP and/or SCCP modules.

Requires: Nothing

Examples: setup_ccp1(CCP_COMPARE_PULSE);

set_timer_period_ccp1(800);

set_ccp1_compare_time(200,300); //generate a pulse starting at time

 // 200 and ending at time 300

Built-in Functions

231

Example Files: None

Also See: set_pwmX_duty(), setup_ccpX(), set_timer_period_ccpX(), set_timer_ccpX(),
get_timer_ccpX(), get_capture_ccpX(), get_captures32_ccpX()

set_cog_blanking()

Syntax: set_cog_blanking(falling_time, rising_time);

Parameters: falling time - sets the falling edge blanking time.

rising time - sets the rising edge blanking time.

Returns: Nothing

Function: To set the falling and rising edge blanking times on the Complementary

Output Generator (COG) module. The time is based off the source clock of the COG
module, the times are either a 4-bit or 6-bit value, depending on the device, refer to the
device's datasheet for the correct width.

Availability: All devices with a COG module.

Examples: set_cog_blanking(10,10);

Example Files: None

Also See: setup_cog(), set_cog_phase(), set_cog_dead_band(), cog_status(),
cog_restart()

set_cog_dead_band()

Syntax: set_cog_dead_band(falling_time, rising_time);

Parameters: falling time - sets the falling edge dead-band time.

rising time - sets the rising edge dead-band time.

Returns: Nothing

Function: To set the falling and rising edge dead-band times on the Complementary

PCD_March 2015-1

232

Output Generator (COG) module. The time is based off the source clock of the COG
module, the times are either a 4-bit or 6-bit value, depending on the device,
refer to the device's datasheet for the correct width.

Availability: All devices with a COG module.

Examples: set_cog_dead_band(16,32);

Example Files: None

Also See: setup_cog(), set_cog_phase(), set_cog_blanking(), cog_status(),
cog_restart()

set_cog_phase()

Syntax: set_cog_phase(rising_time);
set_cog_phase(falling_time, rising_time);

Parameters: falling time - sets the falling edge phase time.

rising time - sets the rising edge phase time.

Returns: Nothing

Function: To set the falling and rising edge phase times on the

Complementary
Output Generator (COG) module. The time is based off the source
clock of the COG
module, the times are either a 4-bit or 6-bit value, depending on the
device.
Some devices only have a rising edge delay, refer to the device's
datasheet.

Availability: All devices with a COG module.

Examples: set_cog_phase(10,10);

Example Files: None

Also See: setup_cog(), set_cog_dead_band(), set_cog_blanking(), cog_status(),
cog_restart()

.

Built-in Functions

233

set_compare_time()

Syntax: set_compare_time(x, time])

Parameters: x is 1-8 and defines which output compare module to set time for
time is the compare time for the primary compare register.

Returns: None

Function: This function sets the compare value for the ccp module.

Availability: Only available on devices with ccp modules.

Requires: Nothing

Examples:

Example Files: ex_ccp1s.c
Also See: get_capture(), setup_ccpx()

set_compare_time()

Syntax: set_compare_time(x, ocr, [ocrs]])

Parameters: x is 1-16 and defines which output compare module to set time for
ocr is the compare time for the primary compare register.
ocrs is the optional compare time for the secondary register. Used for dual compare mode.

Returns: None

Function: This function sets the compare value for the output compare module. If the output compare module is to
perform only a single compare than the ocrs register is not used. If the output compare module is using
double compare to generate an output pulse, the ocr signifies the start of the pulse and ocrs defines the
pulse termination time.

Availability: Only available on devices with output compare modules.

Requires: Nothing

Examples: // Pin OC1 will be set when timer 2 is equal to 0xF000

setup_timer2(TMR_INTERNAL | TIMER_DIV_BY_8);

setup_compare_time(1, 0xF000);

setup_compare(1, COMPARE_SET_ON_MATCH | COMPARE_TIMER2);

Example
Files:

None

Also See: get_capture(), setup_compare(), Output Compare, PWM Overview

PCD_March 2015-1

234

set_motor_pwm_duty()

Syntax: set_motor_pwm_duty(pwm,group,time);

Parameters: pwm- Defines the pwm module used.

group- Output pair number 1,2 or 3.

time- The value set in the duty cycle register.

Returns: void

Function: Configures the motor control PWM unit duty.

Availability: Devices that have the motor control PWM unit.

Requires: None

Examples: set_motor_pmw_duty(1,0,0x55); // Sets the PWM1 Unit a duty cycle value

Example Files: None

Also See: get_motor_pwm_count(), set_motor_pwm_event(), set_motor_unit(), setup_motor_pwm()

set_motor_pwm_event()

Syntax: set_motor_pwm_event(pwm,time);

Parameters: pwm- Defines the pwm module used.
time- The value in the special event comparator register used for scheduling other events.

Returns: void

Function: Configures the PWM event on the motor control unit.

Availability: Devices that have the motor control PWM unit.

Requires: None

Examples: set_motor_pmw_event(pwm,time);

Example Files: None

Also See: get_motor_pwm_count(), setup_motor_pwm(), set_motor_unit(),
set_motor_pwm_duty();

set_motor_unit()

Syntax: set_motor_unit(pwm,unit,options, active_deadtime, inactive_deadtime);

Built-in Functions

235

Parameters: pwm- Defines the pwm module used

Unit- This will select Unit A or Unit B

options- The mode of the power PWM module. See the devices .h file for all options

active_deadtime- Set the active deadtime for the unit

inactive_deadtime- Set the inactive deadtime for the unit

Returns: void

Function: Configures the motor control PWM unit.

Availability: Devices that have the motor control PWM unit

Requires: None

Examples: set_motor_unit(pwm,unit,MPWM_INDEPENDENT | MPWM_FORCE_L_1, active_deadtime,

inactive_deadtime);

Example Files: None

Also See: get_motor_pwm_count(), set_motor_pwm_event(), set_motor_pwm_duty(), setup_motor_pwm()

set_nco_inc_value()

Syntax: set_nco_inc_value(value);

Parameters: value- 16-bit value to set the NCO increment registers to (0 - 65535)

Returns: Undefined

Function: Sets the value that the NCO's accumulator will be incremented by on each clock

pulse. The increment registers are double buffered so the new value won't be
applied until the accumulator rolls-over.

Availability: On devices with a NCO module.

Examples: set_nco_inc_value(inc_value); //sets the new increment value

Example
Files:

None

Also See: setup_nco(), get_nco_accumulator(), get_nco_inc_value()

set_open_drain_a(value)
set_open_drain_b(value)
set_open_drain_c(value)
set_open_drain_d(value)
set_open_drain_e(value)
set_open_drain_f(value)
set_open_drain_g(value)
set_open_drain_h(value)
set_open_drain_j(value)

PCD_March 2015-1

236

Syntax: set_open_drain_a(value)
set_open_drain_b(value)
set_open_drain_c(value)
set_open_drain_d(value)
set_open_drain_e(value)
set_open_drain_f(value)
set_open_drain_g(value)
set_open_drain_h(value)
set_open_drain_j(value)
set_open_drain_k(value)

Parameters: value – is a bitmap corresponding to the pins of the port. Setting a bit causes the corresponding

pin to act as an open-drain output.

Returns: Nothing

Function Enables/Disables open-drain output capability on port pins. Not all ports or port pins have open-
drain capability, refer to devices datasheet for port and pin availability.

Availability On device that have open-drain capability.
Examples: set_open_drain_b(0x0001); //enables open-drain output on

 PIN_B0, disable on all //other port B pins.
Example Files: None.

set_pullup()

Syntax: set_Pullup(state, [pin])

Parameters: Pins are defined in the devices .h file. If no pin is provided in the function call, then all of the pins are set to
the passed in state.

State is either true or false.

Returns: undefined

Function: Sets the pin's pull up state to the passed in state value. If no pin is included in the function call, then all
valid pins are set to the passed in state.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file.

Examples: set_pullup(true, PIN_B0);

 //Sets pin B0's pull up state to true

 set_pullup(false);

 //Sets all pin's pull up state to false

Example
Files:

None

Also See: None

Built-in Functions

237

set_pwm1_duty() set_pwm2_duty() set_pwm3_duty()
set_pwm4_duty() set_pwm5_duty()

Syntax: set_pwmX_duty (value)

Parameters: value may be an 8 or 16 bit constant or variable.

Returns: undefined

Function: .

PIC24FxxKLxxx devices, writes the 10-bit value to the PWM to set the duty. An 8-bit value
may be used if the most significant bits are not required. The 10-bit value is then used to
determine the duty cycle of the PWM signal as follows:

 duty cycle = value / [4 * (PRx +1)]
 Where PRx is the maximum value timer 2 or 4 will count to before rolling over.

PIC24FxxKMxxx devices, wires the 16-bit value to the PWM to set the duty. The 16-bit value
is then used to determine the duty cycle of the PWM signal as follows:

 duty cycle=value/(CCPxPRL+1)
 Where CCPxPRL is the maximum value timer 2 will count to before toggling the output pin.

Availability: This function is only available on devices with MCCP and/or SCCP modules.

Requires: None

Examples:
PIC24FxxKLxxx Devices:
// 32 MHz clock

unsigned int16 duty;

setup_timer2(T2_DIV_BY_4, 199, 1); //period=50us

setup_ccp1(CCP_PWM);

duty=400; //duty=400/[4*(199+1)]=0.5=50%

set_pwm1_duty(duty);

PIC24FxxKMxxx Devices:
// 32 MHz clock

unsigned int16 duty;

setup_ccp1(CCP_PWM);

set_timer_period_ccp1(799); //period=50us

duty=400; //duty=400/(799+1)=0.5=50%

set_pwm1_duty(duty);

Example Files: ex_pwm.c

Also See: setup_ccpX(), set_ccpX_compare_time(), set_timer_period_ccpX(), set_timer_ccpX(),
get_timer_ccpX(), get_capture_ccpX(), get_captures32_ccpX()

set_rtcc() set_timer0() set_timer1() set_timer2()
set_timer3() set_timer4() set_timer5()

Syntax: set_timer0(value) or set_rtcc (value)

PCD_March 2015-1

238

set_timer1(value)
set_timer2(value)
set_timer3(value)
set_timer4(value)
set_timer5(value)

Parameters: Timers 1 & 5 get a 16 bit int.
Timer 2 and 4 gets an 8 bit int.
Timer 0 (AKA RTCC) gets an 8 bit int except on the PIC18XXX where it needs a 16 bit int.
Timer 3 is 8 bit on PIC16 and 16 bit on PIC18

Returns: undefined

Function: Sets the count value of a real time clock/counter. RTCC and Timer0 are the same. All timers
count up. When a timer reaches the maximum value it will flip over to 0 and continue counting
(254, 255, 0, 1, 2...)

Availability: Timer 0 - All devices
Timers 1 & 2 - Most but not all PCM devices
Timer 3 - Only PIC18XXX and some pick devices
Timer 4 - Some PCH devices
Timer 5 - Only PIC18XX31

Requires: Nothing

Examples: // 20 mhz clock, no prescaler, set timer 0

// to overflow in 35us

set_timer0(81); // 256-(.000035/(4/20000000))

Example Files: ex_patg.c

Also See: set_timer1(), get_timerX() Timer0 Overview, Timer1Overview, Timer2 Overview, Timer5

Overview

set_ticks()

Syntax: set_ticks([stream],value);

Parameters: stream – optional parameter specifying the stream defined in #USE TIMER
value – a 8, 16, 32 or 64 bit integer, specifying the new value of the tick timer. (int8, int16, int32 or

int64)

Returns: void

Function: Sets the new value of the tick timer. Size passed depends on the size of the tick timer.

Availability: All devices.

Requires: #USE TIMER(options)

Examples: #USE TIMER(TIMER=1,TICK=1ms,BITS=16,NOISR)

void main(void) {

 unsigned int16 value = 0x1000;

 set_ticks(value);

}

Example Files: None

Built-in Functions

239

Also See: #USE TIMER, get_ticks()

setup_sd_adc_calibration()

Syntax: setup_sd_adc_calibration(model);

Parameters: mode- selects whether to enable or disable calibration mode for the SD ADC module. The following
defines are made in the device's .h file:
1 SDADC_START_CALIBRATION_MODE
2 SDADC_END_CALIBRATION_MODE

Returns: Nothing

Function: To enable or disable calibration mode on the Sigma-Delta Analog to Digital Converter (SD
ADC) module. This can be used to determine the offset error of the module, which then can
be subtracted from future readings.

Availability: Only devices with a SD ADC module.

Examples: signed int 32 result, calibration;

set_sd_adc_calibration(SDADC_START_CALIBRATION_MODE);
calibration = read_sd_adc();
set_sd_adc_calibration(SDADC_END_CALIBRATION_MODE);

result = read_sd_adc() - calibration;

Example
Files:

None

Also See: setup_sd_adc(), read_sd_adc(), set_sd_adc_channel()

set_sd_adc_channel()

Syntax: setup_sd_adc(channel);

Parameters: channel- sets the SD ADC channel to read. Channel can be 0 to read the difference between CH0+ and
CH0-, 1 to read the difference between CH1+ and CH1-, or one of the following:
1 SDADC_CH1SE_SVSS
2 SDADC_REFERENCE

Returns: Nothing

Function: To select the channel that the Sigma-Delta Analog to Digital Converter (SD ADC) performs the conversion
on.

Availability: Only devices with a SD ADC module.

Examples: set_sd_adc_channel(0);

PCD_March 2015-1

240

Example
Files:

None

Also See: setup_sd_adc(), read_sd_adc(), set_sd_adc_calibration()

set_timerA()

Syntax: set_timerA(value);

Parameters: An 8 bit integer. Specifying the new value of the timer. (int8)

Returns: undefined

Function: Sets the current value of the timer. All timers count up. When a timer reaches the maximum
value it will flip over to 0 and continue counting (254, 255, 0, 1, 2, …).

Availability: This function is only available on devices with Timer A hardware.

Requires: Nothing

Examples: // 20 mhz clock, no prescaler, set timer A

// to overflow in 35us

set_timerA(81); // 256-(.000035/(4/20000000))

Example Files: none

Also See: get_timerA(), setup_timer_A(), TimerA Overview

set_timerB()

Syntax: set_timerB(value);

Parameters: An 8 bit integer. Specifying the new value of the timer. (int8)

Returns: undefined

Function: Sets the current value of the timer. All timers count up. When a timer reaches the maximum
value it will flip over to 0 and continue counting (254, 255, 0, 1, 2, …).

Availability: This function is only available on devices with Timer B hardware.

Requires: Nothing

Examples: // 20 mhz clock, no prescaler, set timer B

// to overflow in 35us

set_timerB(81); // 256-(.000035/(4/20000000))

Example Files: none

Also See: get_timerB(), setup_timer_B(), TimerB Overview

Built-in Functions

241

set_timerx()

Syntax: set_timerX(value)

Parameters: A 16 bit integer, specifiying the new value of the timer. (int16)
Returns: void

Function: Allows the user to set the value of the timer.
Availability: This function is available on all devices that have a valid timerX.
Requires: Nothing

Examples: if(EventOccured())

set_timer2(0);//reset the timer.

Example
Files:

None

Also See: Timer Overview, setup_timerX(), get_timerXY() , set_timerX() , set_timerXY()

set_timerxy()

Syntax: set_timerXY(value)

Parameters: A 32 bit integer, specifying the new value of the timer. (int32)

Returns: void

Function: Retrieves the 32 bit value of the timers X and Y, specified by XY(which may be 23, 45, 67 and
89)

Availability: This function is available on all devices that have a valid 32 bit enabled timers. Timers 2 & 3, 4 &
5, 6 & 7 and 8 & 9 may be used. The target device must have one of these timer sets. The target
timers must be enabled as 32 bit.

Requires: Nothing

Examples: if(get_timer45() == THRESHOLD)

set_timer(THRESHOLD + 0x1000);//skip those timer values

Example Files: None

Also See: Timer Overview, setup_timerX(), get_timerXY(), set_timerX(), set_timerXY()

set_rtcc() set_timer0() set_timer1() set_timer2()
set_timer3() set_timer4() set_timer5()

Syntax: set_timer0(value) or set_rtcc (value)

PCD_March 2015-1

242

set_timer1(value)
set_timer2(value)
set_timer3(value)
set_timer4(value)
set_timer5(value)

Parameters: Timers 1 & 5 get a 16 bit int.
Timer 2 and 4 gets an 8 bit int.
Timer 0 (AKA RTCC) gets an 8 bit int except on the PIC18XXX where it needs a 16 bit int.
Timer 3 is 8 bit on PIC16 and 16 bit on PIC18

Returns: undefined

Function: Sets the count value of a real time clock/counter. RTCC and Timer0 are the same. All timers
count up. When a timer reaches the maximum value it will flip over to 0 and continue counting
(254, 255, 0, 1, 2...)

Availability: Timer 0 - All devices
Timers 1 & 2 - Most but not all PCM devices
Timer 3 - Only PIC18XXX and some pick devices
Timer 4 - Some PCH devices
Timer 5 - Only PIC18XX31

Requires: Nothing

Examples: // 20 mhz clock, no prescaler, set timer 0

// to overflow in 35us

set_timer0(81); // 256-(.000035/(4/20000000))

Example Files: ex_patg.c

Also See: set_timer1(), get_timerX() Timer0 Overview, Timer1Overview, Timer2 Overview, Timer5

Overview

set_timer_ccp1() set_timer_ccp2() set_timer_ccp3()
set_timer_ccp4() set_timer_ccp5()

Syntax: set_timer_ccpx(time);
set_timer_ccpx(timeL, timeH);

Parameters: time - may be a 32-bit constant or variable. Sets the timer value for the CCPx module when in 32-

bit mode.

timeL - may be a 16-bit constant or variable to set the value of the lower timer when CCP module

is set for 16-bit mode.

timeH - may be a 16-bit constant or variable to set the value of the upper timer when CCP module

is set for 16-bit mode.

Returns: Undefined

Built-in Functions

243

Function: This function sets the timer values for the CCP module. TimeH is optional parameter when using
16-bit mode, defaults to zero if not specified.

Availability: Available only on PIC24FxxKMxxx family of devices with a MCCP and/or SCCP modules.

Requires: Nothing

Examples: setup_ccp1(CCP_TIMER); //set for dual timer mode

set_timer_ccp1(100,200); //set lower timer value to 100 and upper timer

 //value to 200

Example Files: None

Also See: set_pwmX_duty(), setup_ccpX(), set_ccpX_compare_time(), get_capture_ccpX(),
set_timer_period_ccpX(), get_timer_ccpx(), get_captures32_ccpX()

set_timer_period_ccp1() set_timer_period_ccp2()
set_timer_period_ccp3() set_timer_period_ccp4()
set_timer_period_ccp5()

Syntax: set_timer_period_ccpx(time);
set_timer_period_ccpx(timeL, timeH);

Parameters: time - may be a 32-bit constant or variable. Sets the timer period for the CCPx module when in

32-bit mode.

timeL - is a 16-bit constant or variable to set the period of the lower timer when CCP module is set

for 16-bit mode.

timeH - is a 16-bit constant or variable to set the period of the upper timer when CCP module is

set for 16-bit mode.

Returns: Undefined

PCD_March 2015-1

244

Function: This function sets the timer periods for the CCP module. When setting up CCP module in 32-bit
function is only needed when using Timer mode. Period register are not used when module is
setup for 32-bit compare mode, period is always 0xFFFFFFFF. TimeH is optional parameter when
using 16-bit mode, default to zero if not specified.

Availability: Available only on PIC24FxxKMxxx family of devices with a MCCP and/or SCCP modules.

Requires: Nothing

Examples: setup_ccp1(CCP_TIMER); //set for dual timer mode

set_timer_period_ccp1(800,2000); //set lower timer period to 800 and

 //upper timer period to 2000

Example Files: None

Also See: set_pwmX_duty(), setup_ccpX(), set_ccpX_compare_time(), set_timer_ccpX(), get_timer_ccpX(),
get_capture_ccpX(), get_captures32_ccpX()

set_tris_x()

Syntax: set_tris_a (value)
set_tris_b (value)
set_tris_c (value)
set_tris_d (value)
set_tris_e (value)
set_tris_f (value)
set_tris_g (value)
set_tris_h (value)
set_tris_j (value)
set_tris_k (value)

Parameters: value is an 16 bit int with each bit representing a bit of the I/O port.

Returns: undefined

Function: These functions allow the I/O port direction (TRI-State) registers to be set. This must be used with
FAST_IO and when I/O ports are accessed as memory such as when a # word directive is used to
access an I/O port. Using the default standard I/O the built in functions set the I/O direction
automatically.

Each bit in the value represents one pin. A 1 indicates the pin is input and a 0 indicates it is
output.

Availability: All devices (however not all devices have all I/O ports)

Built-in Functions

245

Requires: Nothing

Examples: SET_TRIS_B(0x0F);

 // B7,B6,B5,B4 are outputs

 // B15,B14,B13,B12,B11,B10,B9,B8, B3,B2,B1,B0 are inputs

Example Files: lcd.c

Also See: #USE FAST_IO, #USE FIXED_IO, #USE STANDARD_IO, General Purpose I/O

set_uart_speed()

Syntax: set_uart_speed (baud, [stream, clock])

Parameters: baud is a constant representing the number of bits per second.
stream is an optional stream identifier.
clock is an optional parameter to indicate what the current clock is if it is different from the #use
delay value

Returns: undefined

Function: Changes the baud rate of the built-in hardware RS232 serial port at run-time.

Availability: This function is only available on devices with a built in UART.

Requires: #USE RS232

Examples: // Set baud rate based on setting

// of pins B0 and B1

switch(input_b() & 3) {

 case 0 : set_uart_speed(2400); break;

 case 1 : set_uart_speed(4800); break;

 case 2 : set_uart_speed(9600); break;

 case 3 : set_uart_speed(19200); break;

}

Example Files: loader.c

Also See: #USE RS232, putc(), getc(), setup uart(), RS232 I/O Overview,

setjmp()

Syntax: result = setjmp (env)

Parameters: env: The data object that will receive the current environment

Returns: If the return is from a direct invocation, this function returns 0.
If the return is from a call to the longjmp function, the setjmp function returns a nonzero value and
it's the same value passed to the longjmp function.

Function: Stores information on the current calling context in a data object of type jmp_buf and which marks
where you want control to pass on a corresponding longjmp call.

PCD_March 2015-1

246

Availability: All devices

Requires: #INCLUDE <setjmp.h>

Examples: result = setjmp(jmpbuf);

Example Files: None

Also See: longjmp()

setup_adc(mode)

setup_adc2(mode)

Syntax: setup_adc (mode);
setup_adc2(mode);

Parameters: mode- Analog to digital mode. The valid options vary depending on the device. See the
devices .h file for all options. Some typical options include:

 ADC_OFF

 ADC_CLOCK_INTERNAL

 ADC_CLOCK_DIV_32

 ADC_CLOCK_INTERNAL – The ADC will use an internal clock

 ADC_CLOCK_DIV_32 – The ADC will use the external clock scaled down by 32

 ADC_TAD_MUL_16 – The ADC sample time will be 16 times the ADC conversion
time

Returns: undefined

Function: Configures the ADC clock speed and the ADC sample time. The ADC converters have a

maximum speed of operation, so ADC clock needs to be scaled accordingly. In addition, the
sample time can be set by using a bitwise OR to concatenate the constant to the argument.

Availability: Only the devices with built in analog to digital converter.

Requires: Constants are defined in the devices .h file.

Examples: setup_adc_ports(ALL_ANALOG);

setup_adc(ADC_CLOCK_INTERNAL);

set_adc_channel(0);

value = read_adc();

setup_adc(ADC_OFF);

Example Files: ex_admm.c

Also See: setup_adc_ports(), set_adc_channel(), read_adc(), #DEVICE, ADC Overview,

see header file for device selected

setup_adc_ports()

setup_adc_ports2()

Syntax: setup_adc_ports (value)

Built-in Functions

247

setup_adc_ports (ports, [reference])
setup_adc_ports (ports, [reference])

Parameters: value - a constant defined in the devices .h file

ports - is a constant specifying the ADC pins to use
reference - is an optional constant specifying the ADC reference to use
By default, the reference voltage are Vss and Vdd

Returns: undefined

Function: Sets up the ADC pins to be analog, digital, or a combination and the voltage reference to use when
computing the ADC value. The allowed analog pin combinations vary depending on the chip and are
defined by using the bitwise OR to concatenate selected pins together. Check the device include file for a
complete list of available pins and reference voltage settings. The constants ALL_ANALOG and
NO_ANALOGS are valid for all chips. Some other example pin definitions are:

• sAN1 | sAN2 – AN1 and AN2 are analog, remaining pins are digital
• sAN0 | sAN3 – AN0 and AN3 are analog, remaining pins are digital

Availability: Only available on devices with built in analog to digital converters

Requires: Constants are defined in the devices .h file.

Examples: // Set all ADC pins to analog mode

setup_adc_ports(ALL_ANALOG);

// Pins AN0, AN1 and AN3 are analog and all other pins

// are digital.

setup_adc_ports(sAN0|sAN1|sAN3);

// Pins AN0 and AN1 are analog. The VrefL pin

// and Vdd are used for voltage references

setup_adc_ports(sAN0|sAN1, VREF_VDD);

Example
Files:

ex_admm.c

Also See: setup_adc(), read_adc(), set_adc_channel(), ADC Overview

setup_capture()

Syntax: setup_capture(x, mode)

Parameters: x is 1-16 and defines which input capture module is being configured
mode is defined by the constants in the devices .h file

Returns: None

Function: This function specifies how the input capture module is going to function based on the value of mode. The
device specific options are listed in the device .h file.

Availability: Only available on devices with Input Capture modules

Requires: None

Examples: setup_timer3(TMR_INTERNAL | TMR_DIV_BY_8);

setup_capture(2, CAPTURE_FE | CAPTURE_TIMER3);

while(TRUE) {

 timerValue = get_capture(2, TRUE);

PCD_March 2015-1

248

 printf(“Capture 2 occurred at: %LU”, timerValue);

 }

Example
Files:

None

Also See: get_capture(), setup_compare(), Input Capture Overview

setup_ccp1() setup_ccp2() setup_ccp3() setup_ccp4()
setup_ccp5() setup_ccp6()

Syntax: setup_ccpx(mode,[pwm]);//PIC24FxxKLxxx devices
setup_ccpx(mode1,[mode2],[mode3],[dead_time]);//PIC24FxxKMxxx devices

Parameters:
mode and mode1 are constants used for setting up the CCP module. Valid constants are

defined in the device's .h file, refer to the device's .h file for all options. Some typical options are
as follows:
 CCP_OFF
 CCP_COMPARE_INT_AND_TOGGLE
 CCP_CAPTURE_FE
 CCP_CAPTURE_RE
 CCP_CAPTURE_DIV_4
 CCP_CAPTURE_DIV_16
 CCP_COMPARE_SET_ON_MATCH
 CCP_COMPARE_CLR_ON_MATCH
 CCP_COMPARE_INT
 CCP_COMPARE_RESET_TIMER
 CCP_PWM

mode2 is an optional parameter for setting up more settings of the CCP module. Valid constants

are defined in the device's .h file, refer to the device's .h file for all options.

mode3 is an optional parameter for setting up more settings of the CCP module. Valid constants

are defined in the device's .h file, refer to the device's .h file for all options.

pwm is an optional parameter for devices that have an ECCP module. this

parameter allows setting the shutdown time. The value may be 0-255.

dead_time is an optional parameter for setting the dead time when the CCP

module is operating in PWM mode with complementary outputs. The value may be
0-63, 0 is the default setting if not specified.

Returns: Undefined

Function: Initializes the CCP module. For PIC24FxxKLxxx devices the CCP module can operate in three
modes (Capture, Compare or PWM).
 Capture Mode - the value of Timer 3 is copied to the CCPRxH and CCPRxl registers when

 an input event occurs.
 Compare Mode - will trigger an action when Timer 3 and the CCPRxL and CCPRxH registers

 are equal.
 PWM Mode - will generate a square wave, the duty cycle of the signal can be adjusted using

 the CCPRxL register and the DCxB bits of the CCPxCON register. The function
 set_pwmx_duty() is provided for setting the duty cycle when in PWM mode.

PIC24FxxKMxxx devices, the CCP module can operate in four mode (Timer, Caputure, Compare
or PWM). IN Timer mode, it functions as a timer. The module has to basic modes, it can
functions as two independent 16-bit timers/counters or as a single 32-bit timer/counter. The
mode it operates in is controlled by the option CCP_TIMER_32_BIT, with the previous options

Built-in Functions

249

added, the module operates as a single 32-bit timer, and if not added, it operates as two 16-bit
timers. The function set_timer_period_ccpx() is provided to set the period(s) of the timer, and the
functions set_timer_ccpx() and get_timer_ccpx() are provided to set and get the current value of
the timer(s).

In Capture mode, the value of the timer is captured when an input event occurs, it can operate in
either 16-bit or 32-bit mode. The functions get_capture_ccpx() and get_capture32_ccpx() are
provided to get the last capture value.

In Compare and PWM modes, the value of the timers is c ompared to one or two compare
registers, depending on its mode of operation, to generate a single output transition or a train of
output pulses. For signal output edge modes, CCP_COMPARE_SET_ON_MATCH,
 CCP_COMPARE_CLR_ON_MATCH, and CCP_COMPARE_TOGGLE, the module can operate
in 16 or 32-bit mode, all other modes can only operate in 16-bit mode. However, when in 32-bit
mode the timer source will only rollover when it reaches 0xFFFFFFFF or when reset from an
external synchronization source. Therefore, is a period of less than 0xFFFFFFFF is needed, as it
requires an external synchronization source to reset the timer. The functions
set_ccpx_compare_time() and set_pwmx_duty() are provided for setting the compare registers.

Availability: Only on devices with the MCCP and/or SCCP modules.

Requires: Constants are defined in the devices .h file.

Examples: setup_ccp1(CCP_CAPTURE_FE);

setup_ccp1(CCP_COMPARE_TOGGLE);

setup_ccp1(CCP_PWM);

Example Files: ex_pwm.c, ex_ccpmp.c, ex_ccp1s.c

Also See: set_pwmX_duty(), set_ccpX_compare_time(), set_timer_period_ccpX(), set_timer_ccpX(),

get_timer_ccpX(), get_capture_ccpX(), get_captures32_ccpX()

setup_clc1() setup_clc2() setup_clc3() setup_clc4()

Syntax: setup_clc1(mode);
setup_clc2(mode);
setup_clc3(mode);
setup_clc4(mode);

Parameters: mode – The mode to setup the Configurable Logic Cell (CLC) module into. See the

device's .h file for all options. Some typical options include:
 CLC_ENABLED
 CLC_OUTPUT
 CLC_MODE_AND_OR
 CLC_MODE_OR_XOR

Returns: Undefined.

Function: Sets up the CLC module to performed the specified logic. Please refer to the device
datasheet to determine what each input to the CLC module does for the select logic
function

Availability: On devices with a CLC module.

Returns: Undefined.

Examples: setup_clc1(CLC_ENABLED | CLC_MODE_AND_OR);

PCD_March 2015-1

250

Example Files: None

Also See: clcx_setup_gate(), clcx_setup_input()

setup_comparator()

Syntax: setup_comparator (mode)

Parameters: mode is a bit-field comprised of the following constants:

NC_NC_NC_NC
A4_A5_NC_NC
A4_VR_NC_NC
A5_VR_NC_NC
NC_NC_A2_A3
NC_NC_A2_VR
NC_NC_A3_VR
A4_A5_A2_A3
A4_VR_A2_VR
A5_VR_A3_VR
C1_INVERT
C2_INVERT
C1_OUTPUT
C2_OUTPUT

Returns: void

Function: Configures the voltage comparator.

The voltage comparator allows you to compare two voltages and find the greater of them. The
configuration constants for this function specify the sources for the comparator in the order C1-
C1+, C2-, C2+.The constants may be or’ed together if the NC’s do not overlap; A4_A5_NC_NC |
NC_NC_A3_VR is valid, however, A4_A5_NC_NC | A4_VR_NC_NC may produce unexpected
results. The results of the comparator module are stored in C1OUT and C2OUT, respectively.
Cx_INVERT will invert the results of the comparator and Cx_OUTPUT will output the results to
the comparator output pin.

Availability: Some devices, consult your target datasheet.

Requires Constants are defined in the devices .h file.

Examples: setup_comparator(A4_A5_NC_NC);//use C1, not C2

Example Files:

setup_compare()

Syntax: setup_compare(x, mode)

Parameters: mode is defined by the constants in the devices .h file
x is 1-16 and specifies which OC pin to use.

Built-in Functions

251

Returns: None

Function: This function specifies how the output compare module is going to function based on the value of
mode. The device specific options are listed in the device .h file.

Availability: Only available on devices with output compare modules.

Requires: None

Examples: // Pin OC1 will be set when timer 2 is equal to 0xF000

setup_timer2(TMR_INTERNAL | TIMER_DIV_BY_16);

set_compare_time(1, 0xF000);

setup_compare(1, COMPARE_SET_ON_MATCH | COMPARE_TIMER2);

Example Files: None
Also See: set_compare_time(), set_pwm_duty(), setup_capture(), Output Compare / PWM Overview

setup_crc(mode)

Syntax: setup_crc(polynomial terms)

Parameters: polynomial - This will setup the actual polynomial in the CRC engine. The power of each term is
passed separated by a comma. 0 is allowed, but ignored. The following define is added to the
device's header file (32-bit CRC Moduel Only), to enable little-endian shift direction:

· CRC_LITTLE_ENDIAN

Returns: undefined

Function: Configures the CRC engine register with the polynomial

Availability: Only the devices with built in CRC module

Requires: Nothing

Examples: setup_crc (12, 5);

// CRC Polynomial is X
12
 + X

5
 + 1

setup_crc(16, 15, 3, 1);

// CRC Polynomial is X
16
 + X

15
 + X

3
 + X

1
+ 1

Example Files: ex.c

Also See: crc_init(); crc_calc(); crc_calc8()

setup_cog()

Syntax: setup_cog(mode, [shutdown]);

PCD_March 2015-1

252

setup_cog(mode, [shutdown], [sterring]);

Parameters: mode- the setup of the COG module. See the device's .h file for all options.

Some typical options include:

 COG_ENABLED

 COG_DISABLED

 COG_CLOCK_HFINTOSC

 COG_CLOCK_FOSC

shutdown- the setup for the auto-shutdown feature of COG module.

See the device's .h file for all the options. Some typical options include:

 COG_AUTO_RESTART

 COG_SHUTDOWN_ON_C1OUT

 COG_SHUTDOWN_ON_C2OUT

steering- optional parameter for steering the PWM signal to COG output pins and/or

selecting
the COG pins static level. Used when COG is set for steered PWM or
synchronous steered
PWM modes. Not available on all devices, see the device's .h file if available and for all
options.
Some typical options include:

 COG_PULSE_STEERING_A

 COG_PULSE_STEERING_B

 COG_PULSE_STEERING_C

 COG_PULSE_STEERING_D

Returns: undefined

Function: Sets up the Complementary Output Generator (COG) module, the auto-
shutdown feature of the module and if available steers the signal to the different
output pins.

Availability: All devices with a COG module.

Examples: setup_cog(COG_ENABLED | COG_PWM | COG_FALLING_SOURCE_PWM3 |

COG_RISING_SOURCE_PWM3, COG_NO_AUTO_SHUTDOWN,

COG_PULSE_STEERING_A | COG_PULSE_STEERING_B);

Example Files: None

Also See: set_cog_dead_band(), set_cog_phase(), set_cog_blanking(), cog_status(),
cog_restart()

setup_crc()

Syntax: setup_crc(polynomial terms)

Parameters: polynomial- This will setup the actual polynomial in the CRC engine. The

power of each term is passed separated by a comma. 0 is allowed, but
ignored. The following define

Built-in Functions

253

is added to the device's header file to enable little-endian shift direction:
 CRC_LITTLE_ENDIAN

Returns: Nothing

Function: Configures the CRC engine register with the polynomial.
Availability: Only devices with a built-in CRC module.
Examples: setup_crc(12, 5); // CRC Polynomial is x

12
+x

5
+1

setup_crc(16, 15, 3, 1); // CRC Polynomial is

x
16
+x

15
+x

3
+x

1
+1

Example Files: None

Also See: crc_init(), crc_calc(), crc_calc8()

setup_cwg()

Syntax: setup_cwg(mode,shutdown,dead_time_rising,dead_time_falling)

Parameters: mode- the setup of the CWG module. See the device's .h file for

all options.
Some typical options include:

 CWG_ENABLED

 CWG_DISABLED

 CWG_OUTPUT_B

 CWG_OUTPUT_A

shutdown- the setup for the auto-shutdown feature of CWG

module.
See the device's .h file for all the options. Some typical options
include:

CWG_AUTO_RESTART
CWG_SHUTDOWN_ON)COMP1
CWG_SHUTDOWN_ON_FLT
CWG_SHUTDOWN_ON_CLC2

dead_time_rising- value specifying the dead time between A and

B on the
rising edge. (0-63)

dead_time_rising- value specifying the dead time between A and

B on the
falling edge. (0-63)

Returns: undefined

Function: Sets up the CWG module, the auto-shutdown feature of module and
the rising and falling dead times of the module.

Availability: All devices with a CWG module.

Examples: setup_cwg(CWG_ENABLED|CWG_OUTPUT_A|CWG_OUTPUT_B|

CWG_INPUT_PWM1,CWG_SHUTDOWN_ON_FLT,60,30);

PCD_March 2015-1

254

Example Files: None

Also See: cwg_status(), cwg_restart()

setup_dac()

Syntax:

setup_dac(mode);
setup_dac(mode, divisor);

Parameters:

mode- The valid options vary depending on the device. See the devices .h file for all options. Some
typical options include:

· DAC_OUTPUT

divisor- Divides the provided clock

Returns:

undefined

Function:

Configures the DAC including reference voltage. Configures the DAC including channel output and
clock speed.

Availability:

Only the devices with built in digital to analog converter.

Requires:

Constants are defined in the devices .h file.

Examples:

setup_dac(DAC_VDD | DAC_OUTPUT);

dac_write(value);

setup_dac(DAC_RIGHT_ON, 5);

Example Files:

None

Also See:

dac_write(), DAC Overview, See header file for device selected

setup_dci()

Syntax:

setup_dci(configuration, data size, rx config, tx config, sample rate);

Parameters:

configuration - Specifies the configuration the Data Converter Interface should be initialized into,
including the mode of transmission and bus properties. The following constants may be combined (
OR’d) for this parameter:

 · CODEC_MULTICHANNEL

 · CODEC_I2S· CODEC_AC16
 · CODEC_AC20· JUSTIFY_DATA· DCI_MASTER
 · DCI_SLAVE· TRISTATE_BUS· MULTI_DEVICE_BUS
 · SAMPLE_FALLING_EDGE· SAMPLE_RISING_EDGE
 · DCI_CLOCK_INPUT· DCI_CLOCK_OUTPUT

Built-in Functions

255

data size – Specifies the size of frames and words in the transmission:

 · DCI_xBIT_WORD: x may be 4 through 16
 · DCI_xWORD_FRAME: x may be 1 through 16
 · DCI_xWORD_INTERRUPT: x may be 1 through 4

rx config- Specifies which words of a given frame the DCI module will receive (commonly used for
a multi-channel, shared bus situation)

 · RECEIVE_SLOTx: x May be 0 through 15
 · RECEIVE_ALL· RECEIVE_NONE

tx config- Specifies which words of a given frame the DCI module will transmit on.

 · TRANSMIT_SLOTx: x May be 0 through 15
 · TRANSMIT _ALL
 · TRANSMIT _NONE

sample rate-The desired number of frames per second that the DCI module should produce. Use a
numeric value for this parameter. Keep in mind that not all rates are achievable with a given clock.
Consult the device datasheet for more information on selecting an adequate clock.

Returns:

undefined

Function:

Configures the DCI module

Availability:

Only on devices with the DCI peripheral

Requires:

Constants are defined in the devices .h file.

Examples:

dci_initialize((I2S_MODE | DCI_MASTER | DCI_CLOCK_OUTPUT |

 SAMPLE_RISING_EDGE | UNDERFLOW_LAST |

 MULTI_DEVICE_BUS),

 DCI_1WORD_FRAME | DCI_16BIT_WORD |

 DCI_2WORD_INTERRUPT,

 RECEIVE_SLOT0 | RECEIVE_SLOT1,

 TRANSMIT_SLOT0 | TRANSMIT_SLOT1,

 44100);

Example Files:

None

Also See:

DCI Overview, dci start(), dci write(), dci read(), dci transmit ready(), dci data received()

setup_dma()

Syntax: setup_dma(channel, peripheral,mode);

Parameters: Channel- The channel used in the DMA transfer
peripheral - The peripheral that the DMA wishes to talk to.
mode- This will specify the mode used in the DMA transfer

Returns: void

Function: Configures the DMA module to copy data from the specified peripheral to RAM allocated for the
DMA channel.

Availability: Devices that have the DMA module.

PCD_March 2015-1

256

Requires Nothing

Examples:

setup_dma(2, DMA_IN_SPI1, DMA_BYTE);

// This will setup the DMA channel 1 to talk to

// SPI1 input buffer.

Example Files: None
Also See dma_start(), dma_status()

setup_high_speed_adc()

Syntax: setup_high_speed_adc (mode);

Parameters: mode – Analog to digital mode. The valid options vary depending on the device. See the devices .h file for

all options. Some typical options include:

· ADC_OFF

· ADC_CLOCK_DIV_1

· ADC_HALT_IDLE – The ADC will not run when PIC is idle.

Returns: Undefined

Function: Configures the High-Speed ADC clock speed and other High-Speed ADC options including, when the ADC

interrupts occurs, the output result format, the conversion order, whether the ADC pair is sampled
sequentially or simultaneously, and whether the dedicated sample and hold is continuously sampled or
samples when a trigger event occurs.

Availability: Only on dsPIC33FJxxGSxxx devices.

Requires: Constants are define in the device .h file.

Examples: setup_high_speed_adc_pair(0, INDIVIDUAL_SOFTWARE_TRIGGER);

setup_high_speed_adc(ADC_CLOCK_DIV_4);

read_high_speed_adc(0, START_AND_READ, result);

setup_high_speed_adc(ADC_OFF);

Example
Files:

None

Also See: setup_high_speed_adc_pair(), read_high_speed_adc(), high_speed_adc_done()

setup_high_speed_adc_pair()

Syntax: setup_high_speed_adc_pair(pair, mode);

Parameters: pair – The High-Speed ADC pair number to setup, valid values are 0 to total number of ADC pairs. 0 sets

up ADC pair AN0 and AN1, 1 sets up ADC pair AN2 and AN3, etc.

mode – ADC pair mode. The valid options vary depending on the device. See the devices .h file for all

options. Some typical options include:

· INDIVIDUAL_SOFTWARE_TRIGGER

· GLOBAL_SOFTWARE_TRIGGER

Built-in Functions

257

· PWM_PRIMARY_SE_TRIGGER

· PWM_GEN1_PRIMARY_TRIGGER

· PWM_GEN2_PRIMARY_TRIGGER

Returns: Undefined

Function: Sets up the analog pins and trigger source for the specified ADC pair. Also sets up whether ADC

conversion for the specified pair triggers the common ADC interrupt.

If zero is passed for the second parameter the corresponding analog pins will be set to digital pins.

Availability: Only on dsPIC33FJxxGSxxx devices.
Requires: Constants are define in the device .h file.

Examples: setup_high_speed_adc_pair(0, INDIVIDUAL_SOFTWARE_TRIGGER);

setup_high_speed_adc_pair(1, GLOBAL_SOFTWARE_TRIGGER);

setup_high_speed_adc_pair(2, 0) – sets AN4 and AN5 as digital pins.

Example
Files:

None

Also See: setup_high_speed_adc(), read_high_speed_adc(), high_speed_adc_done()

setup_low_volt_detect()

Syntax: setup_low_volt_detect(mode)

Parameters: mode may be one of the constants defined in the devices .h file. LVD_LVDIN, LVD_45, LVD_42,

LVD_40, LVD_38, LVD_36, LVD_35, LVD_33, LVD_30, LVD_28, LVD_27, LVD_25, LVD_23,
LVD_21, LVD_19
One of the following may be or’ed(via |) with the above if high voltage detect is also available in
the device
LVD_TRIGGER_BELOW, LVD_TRIGGER_ABOVE

Returns: undefined

Function: This function controls the high/low voltage detect module in the device. The mode constants
specifies the voltage trip point and a direction of change from that point (available only if high
voltage detect module is included in the device). If the device experiences a change past the trip
point in the specified direction the interrupt flag is set and if the interrupt is enabled the execution
branches to the interrupt service routine.

Availability: This function is only available with devices that have the high/low voltage detect module.

Requires Constants are defined in the devices.h file.

Examples: setup_low_volt_detect(LVD_TRIGGER_BELOW | LVD_36);

This would trigger the interrupt when the voltage is below 3.6 volts

PCD_March 2015-1

258

setup_motor_pwm()

Syntax: setup_motor_pwm(pwm,options, timebase);
setup_motor_pwm(pwm,options,prescale,postscale,timebase)

Parameters: Pwm- Defines the pwm module used.

Options- The mode of the power PWM module. See the devices .h file for all
options

timebase- This parameter sets up the PWM time base pre-scale and post-scale.

prescale- This will select the PWM timebase prescale setting

postscale- This will select the PWM timebase postscale setting

Returns: void

Function: Configures the motor control PWM module

Availability: Devices that have the motor control PWM unit.

Requires: None

Examples: setup_motor_pwm(1,MPWM_FREE_RUN | MPWM_SYNC_OVERRIDES, timebase);

Example
Files:

None

Also See: get motor pwm count(), set motor pwm event(), set motor unit(), set motor pwm
duty();

setup_oscillator()

Syntax: setup_oscillator(mode, target [,source] [,divide])

Parameters: Mode is one of:
• OSC_INTERNAL
• OSC_CRYSTAL
• OSC_CLOCK
• OSC_RC
• OSC_SECONDARY

Target is the target frequency to run the device it.

Source is optional. It specifies the external crystal/oscillator frequency. If omitted the value from the
last #USE DELAY is used. If mode is OSC_INTERNAL, source is an optional tune value for the
internal oscillator for PICs that support it. If omitted a tune value of zero will be used.

Divide in optional. For PICs that support it, it specifies the divide ration for the Display Module
Interface Clock. A number from 0 to 64 divides the clock from 1 to 17 increasing in increments of
0.25, a number from 64 to 96 divides the clock from 17 to 33 increasing in increments of 0.5, and a
number from 96 to 127 divides the clock from 33 to 64 increasing in increments of 1. If omitted zero
will be used for divide by 1.

Returns: None

Built-in Functions

259

Function: Configures the oscillator with preset internal and external source configurations. If the device fuses

are set and #use delay() is specified, the compiler will configure the oscillator. Use this function for
explicit configuration or programming dynamic clock switches. Please consult your target data
sheets for valid configurations, especially when using the PLL multiplier, as many frequency range
restrictions are specified.

Availability: This function is available on all devices.

Requires: The configuration constants are defined in the device’s header file.

Examples: setup_oscillator(OSC_CRYSTAL, 4000000, 16000000);

setup_oscillator(OSC_INTERNAL, 29480000);

Example Files: None

Also See: setup_wdt(), Internal Oscillator Overview

setup_pmp(option,address_mask)

Syntax: setup_pmp(options,address_mask);

Parameters: options- The mode of the Parallel Master Port that allows to set the Master Port mode, read-write

strobe options and other functionality of the PMPort module. See the device's .h file for all options.
Some typical options include:

· PAR_PSP_AUTO_INC
· PAR_CONTINUE_IN_IDLE
· PAR_INTR_ON_RW //Interrupt on read write
· PAR_INC_ADDR //Increment address by 1 every
 //read/write cycle
· PAR_MASTER_MODE_1 //Master Mode 1
· PAR_WAITE4 //4 Tcy Wait for data hold after
 // strobe

address_mask- this allows the user to setup the address enable register with a 16-bit value. This

value determines which address lines are active from the available 16 address lines PMA0:PMA15.

Returns: Undefined.

Function: Configures various options in the PMP module. The options are present in the device's .h file and
they are used to setup the module. The PMP module is highly configurable and this function allows
users to setup configurations like the Slave module, Interrupt options, address
increment/decrement options, Address enable bits, and various strobe and delay options.

Availability: Only the devices with a built-in Parallel Master Port module.

Requires: Constants are defined in the device's .h file.

Examples: setup_psp(PAR_ENABLE| //Sets up Master mode with address

PAR_MASTER_MODE_1|PAR_ //lines PMA0:PMA7

STOP_IN_IDLE,0x00FF);

Example Files: None

Also See: setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(), pmp_write(),

psp_output_full(), psp_input_full(), psp_overflow(), pmp_output_full(), pmp_input_full(),

PCD_March 2015-1

260

pmp_overflow()
See header file for device selected

setup_power_pwm_pins()

Syntax: setup_power_pwm_pins(module0,module1,module2,module3)

Parameters: For each module (two pins) specify:
PWM_PINS_DISABLED, PWM_ODD_ON, PWM_BOTH_ON,
PWM_COMPLEMENTARY

Returns: undefined

Function: Configures the pins of the Pulse Width Modulation (PWM) device.

Availability: All devices equipped with a power control PWM.

Requires: None

Examples: setup_power_pwm_pins(PWM_PINS_DISABLED, PWM_PINS_DISABLED, PWM_PINS_DISABLED,

 PWM_PINS_DISABLED);

setup_power_pwm_pins(PWM_COMPLEMENTARY,

 PWM_COMPLEMENTARY, PWM_PINS_DISABLED, PWM_PINS_DISABLED);

Example Files: None

Also See: setup_power_pwm(), set_power_pwm_override(),set_power_pwmX_duty()

setup_psp(option,address_mask)

Syntax: setup_psp (options,address_mask);
setup_psp(options);

Parameters: Option- The mode of the Parallel slave port. This allows to set the slave port mode, read-write
strobe options and other functionality of the PMP/EPMP module. See the devices .h file for all
options. Some typical options include:

· PAR_PSP_AUTO_INC
· PAR_CONTINUE_IN_IDLE
· PAR_INTR_ON_RW //Interrupt on read write
· PAR_INC_ADDR //Increment address by 1 every
 //read/write cycle
· PAR_WAITE4 //4 Tcy Wait for data hold after
 //strobe

address_mask- This allows the user to setup the address enable register with a 16 bit or 32 bit
(EPMP) value. This value determines which address lines are active from the available 16
address lines PMA0: PMA15 or 32 address lines PMAO:PMA31 (EPMP only).

Returns: Undefined.

Function: Configures various options in the PMP/EPMP module. The options are present in the device.h

Built-in Functions

261

file and they are used to setup the module. The PMP/EPMP module is highly configurable and
this function allows users to setup configurations like the Slave mode, Interrupt options, address
increment/decrement options, Address enable bits and various strobe and delay options.

Availability: Only the devices with a built in Parallel Port module or Enhanced Parallel Master Port module.

Requires: Constants are defined in the devices .h file.

Examples: setup_psp(PAR_PSP_AUTO_INC| //Sets up legacy slave

 //mode with

PAR_STOP_IN_IDLE,0x00FF); //read and write buffers

 //auto increment.

Example Files: None
Also See: setup_pmp() , pmp_address() , pmp_read() , psp_read() , psp_write() , pmp_write() ,

psp_output_full(), psp_input_full(), psp_overflow(), pmp_output_full() , pmp_input_full() ,
pmp_overflow()

See header file for device selected.

setup_pwm1() setup_pwm2() setup_pwm3()
setup_pwm4()

Syntax: setup_pwm1(settings);
setup_pwm2(settings);
setup_pwm3(settings);
setup_pwm4(settings);

Parameters: settings- setup of the PWM module. See the device's .h file for all options.

Some typical options include:

· PWM_ENABLED
· PWM_OUTPUT
· PWM_ACTIVE_LOW

Returns: Undefined

Function: Sets up the PWM module.

Availability: On devices with a PWM module.

Examples: setup_pwm1(PWM_ENABLED|PWM_OUTPUT);

Example
Files:

None

Also See: set_pwm_duty()

setup_qei()

Syntax: setup_qei([unit,]options, filter, maxcount);

Parameters: Options- The mode of the QEI module. See the devices .h file for all options

PCD_March 2015-1

262

Some common options are:
 · QEI_MODE_X2
 · QEI_TIMER_GATED
 · QEI_TIMER_DIV_BY_1

filter - This parameter is optional and the user can specify the digital filter clock divisor.

maxcount - This will specify the value at which to reset the position counter.

unit - Optional unit number, defaults to 1.

Returns: void

Function: Configures the Quadrature Encoder Interface. Various settings
 like modes, direction can be setup.

Availability: Devices that have the QEI module.

Requires: Nothing.

Examples: setup_qei(QEI_MODE_X2|QEI_TIMER_INTERNAL,QEI_FILTER_DIV_2,

QEI_FORWARD);

Example Files: None

Also See: qei_set_count() , qei_get_count() , qei_status()

setup_rtc()

Syntax: setup_rtc() (options, calibration);

Parameters: Options- The mode of the RTCC module. See the devices .h file for all options

Calibration- This parameter is optional and the user can specify an 8 bit value that will get written to the
calibration configuration register.

Returns: void

Function: Configures the Real Time Clock and Calendar module. The module requires an external 32.768 kHz clock
crystal for operation.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples: setup_rtc(RTC_ENABLE | RTC_OUTPUT SECONDS, 0x00);

// Enable RTCC module with seconds clock and no calibration

Example
Files:

None

Also See: rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(),
rtc_write(, setup_rtc()

Built-in Functions

263

setup_rtc_alarm()

Syntax: setup_rtc_alarm(options, mask, repeat);

Parameters: options- The mode of the RTCC module. See the devices .h file for all options

mask- specifies the alarm mask bits for the alarm configuration.

repeat- Specifies the number of times the alarm will repeat. It can have a max value of 255.

Returns: void

Function: Configures the alarm of the RTCC module.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples: setup_rtc_alarm(RTC_ALARM_ENABLE, RTC_ALARM_HOUR, 3);

Example Files: None

Also See: rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(), setup_rtc()

setup_sd_adc()

Syntax: setup_sd_adc(settings1, settings 2, settings3);

Parameters: settings1- settings for the SD1CON1 register of the SD ADC module. See the device's .h file for all
options. Some options include:
1 SDADC_ENABLED
2 SDADC_NO_HALT
3 SDADC_GAIN_1
4 SDADC_NO_DITHER
5 SDADC_SVDD_SVSS
6 SDADC_BW_NORMAL

settings2- settings for the SD1CON2 register of the SD ADC module. See the device's .h file for all
options. Some options include:
7 SDADC_CHOPPING_ENABLED
8 SDADC_INT_EVERY_SAMPLE
9 SDADC_RES_UPDATED_EVERY_INT
10 SDADC_NO_ROUNDING

settings3- settings for the SD1CON3 register of the SD ADC module. See the device's .h file for all
options. Some options include:
11 SDADC_CLOCK_DIV_1
12 SDADC_OSR_1024
13 SDADC_CLK_SYSTEM

Returns: Nothing

Function: To setup the Sigma-Delta Analog to Digital Converter (SD ADC) module.

PCD_March 2015-1

264

Availability: Only devices with a SD ADC module.

Examples: setup_sd_adc(SDADC_ENABLED | SDADC_DITHER_LOW,

SDADC_CHOPPING_ENABLED | SDADC_INT_EVERY_5TH_SAMPLE |
SDADC_RES_UPDATED_EVERY_INT, SDADC_CLK_SYSTEM |
SDADC_CLOCK_DIV_4);

Example
Files:

None

Also See: set_sd_adc_channel(), read_sd_adc(), set_sd_adc_calibration()

setup_smtx()

Syntax: setup_smt1(mode,[period]);
setup_smt2(mode,[period]);

Parameters: mode - The setup of the SMT module. See the device's .h file for all

aoptions. Some
typical options include:
 SMT_ENABLED
 SMT_MODE_TIMER
 SMT_MODE_GATED_TIMER
 SMT_MODE_PERIOD_DUTY_CYCLE_ACQ

period - Optional parameter for specifying the overflow value of the SMT

timer, defaults
to maximum value if not specified.

Returns: Nothing

Function: Configures the Signal Measurement Timer (SMT) module.

Availability: Only devices with a built-in SMT module.
Examples: setup_smt1(SMT_ENABLED | SMT_MODE_PERIOD_DUTY_CYCLE_ACQ|

SMT_REPEAT_DATA_ACQ_MODE | SMT_CLK_FOSC);

Example Files: None

Also See: smtx_status(), stmx_start(), smtx_stop(), smtx_update(),
 smtx_reset_timer(),
smtx_read(), smtx_write()

setup_spi() setup_spi2()

Syntax: setup_spi (mode)
setup_spi2 (mode)

Parameters: mode may be:

 SPI_MASTER, SPI_SLAVE, SPI_SS_DISABLED

Built-in Functions

265

 SPI_L_TO_H, SPI_H_TO_L

 SPI_CLK_DIV_4, SPI_CLK_DIV_16,

 SPI_CLK_DIV_64, SPI_CLK_T2

 SPI_SAMPLE_AT_END, SPI_XMIT_L_TO_H

 SPI_MODE_16B, SPI_XMIT_L_TO_H

 Constants from each group may be or'ed together with |.

Returns: undefined

Function: Configures the hardware SPI™ module.
• SPI_MASTER will configure the module as the bus master
• SPI_SLAVE will configure the module as a slave on the SPI™ bus
• SPI_SS_DISABLED will turn off the slave select pin so the slave module receives any
transmission on the bus.
• SPI_x_to_y will specify the clock edge on which to sample and transmit data
• SPI_CLK_DIV_x will specify the divisor used to create the SCK clock from system clock.

Availability: This function is only available on devices with SPI hardware.

Requires: Constants are defined in the devices .h file.

Examples: setup_spi(SPI_MASTER | SPI_L_TO_H | SPI_DIV_BY_16);

Example Files: ex_spi.c

Also See: spi_write(), spi_read(), spi_data_is_in(), SPI Overview

setup_timerx()

Syntax: setup_timerX(mode)
setup_timerX(mode,period)

Parameters: Mode is a bit-field comprised of the following configuration constants:

• TMR_DISABLED: Disables the timer operation.

• TMR_INTERNAL: Enables the timer operation using the system clock. Without divisions, the
timer will increment on every instruction cycle. On PCD, this is half the oscillator frequency.

• TMR_EXTERNAL: Uses a clock source that is connected to the SOSCI/SOSCO pins

• T1_EXTERNAL_SYNC: Uses a clock source that is connected to the SOSCI/SOSCO pins. The
timer will increment on the rising edge of the external clock which is synchronized to the internal
clock phases. This mode is available only for Timer1.

• T1_EXTERNAL_RTC: Uses a low power clock source connected to the SOSCI/SOSCO pins;
suitable for use as a real time clock. If this mode is used, the low power oscillator will be enabled
by the setup_timer function. This mode is available only for Timer1.

• TMR_DIV_BY_X: X is the number of input clock cycles to pass before the timer is incremented. X
may be 1, 8, 64 or 256.

• TMR_32_BIT: This configuration concatenates the timers into 32 bit mode. This constant should
be used with timers 2, 4, 6 and 8 only.

• Period is an optional 16 bit integer parameter that specifies the timer period. The default value is

PCD_March 2015-1

266

0xFFFF.

Returns: void

Function: Sets up the timer specified by X (May be 1 – 9). X must be a valid timer on the target device.

Availability: This function is available on all devices that have a valid timer X. Use getenv or refer to the target
datasheet to determine which timers are valid.

Requires: Configuration constants are defined in the device's header file.

Examples: /* setup a timer that increments every 64th instruction cycle with an overflow

period of 0xA010 */

setup_timer2(TMR_INTERNAL | TMR_DIV_BY_64, 0xA010);

/* Setup another timer as a 32-bit hybrid with a period of 0xFFFFFFFF and a

interrupt that will be fired when that timer overflows*/

setup_timer4(TMR_32_BIT); //use get_timer45() to get the timer value

enable_interrupts(int_timer5);//use the odd number timer for the interrupt

Example Files: None

Also See: Timer Overview, setup_timerX(), get_timerXY(), set_timerX(), set_timerXY()

setup_timer_A()

Syntax: setup_timer_A (mode);

Parameters: mode values may be:
 · TA_OFF, TA_INTERNAL, TA_EXT_H_TO_L, TA_EXT_L_TO_H
 · TA_DIV_1, TA_DIV_2, TA_DIV_4, TA_DIV_8, TA_DIV_16, TA_DIV_32,
 TA_DIV_64, TA_DIV_128, TA_DIV_256
 · constants from different groups may be or'ed together with |.

Returns: undefined

Function: sets up Timer A.

Availability: This function is only available on devices with Timer A hardware.

Requires: Constants are defined in the device's .h file.

Examples: setup_timer_A(TA_OFF);

setup_timer_A(TA_INTERNAL | TA_DIV_256);

setup_timer_A(TA_EXT_L_TO_H | TA_DIV_1);

Example Files: none

Also See: get_timerA(), set_timerA(), TimerA Overview

setup_timer_B()

Syntax: setup_timer_B (mode);

Built-in Functions

267

Parameters: mode values may be:
 · TB_OFF, TB_INTERNAL, TB_EXT_H_TO_L, TB_EXT_L_TO_H
 · TB_DIV_1, TB_DIV_2, TB_DIV_4, TB_DIV_8, TB_DIV_16, TB_DIV_32,
 TB_DIV_64, TB_DIV_128, TB_DIV_256
 · constants from different groups may be or'ed together with |.

Returns: undefined

Function: sets up Timer B

Availability: This function is only available on devices with Timer B hardware.

Requires: Constants are defined in device's .h file.

Examples: setup_timer_B(TB_OFF);

setup_timer_B(TB_INTERNAL | TB_DIV_256);

setup_timer_B(TA_EXT_L_TO_H | TB_DIV_1);

Example Files: none

Also See: get_timerB(), set_timerB(), TimerB Overview

setup_timer_0()

Syntax: setup_timer_0 (mode)

Parameters: mode may be one or two of the constants defined in the devices .h file. RTCC_INTERNAL,
RTCC_EXT_L_TO_H or RTCC_EXT_H_TO_L

RTCC_DIV_2, RTCC_DIV_4, RTCC_DIV_8, RTCC_DIV_16, RTCC_DIV_32, RTCC_DIV_64,
RTCC_DIV_128, RTCC_DIV_256

PIC18XXX only: RTCC_OFF, RTCC_8_BIT

One constant may be used from each group or'ed together with the | operator.

Returns: undefined

Function: Sets up the timer 0 (aka RTCC).

Warning: On older PIC16 devices, set-up of the prescaler may undo the WDT prescaler.

Availability: All devices.

Requires: Constants are defined in the devices .h file.

Examples: setup_timer_0 (RTCC_DIV_2|RTCC_EXT_L_TO_H);

Example Files:
Also See: get_timer0(), set_timer0(), setup counters()

PCD_March 2015-1

268

setup_timer_1()

Syntax: setup_timer_1 (mode)

Parameters: mode values may be:

 T1_DISABLED, T1_INTERNAL, T1_EXTERNAL, T1_EXTERNAL_SYNC

 T1_CLK_OUT

 T1_DIV_BY_1, T1_DIV_BY_2, T1_DIV_BY_4, T1_DIV_BY_8

 constants from different groups may be or'ed together with |.

Returns: undefined

Function: Initializes timer 1. The timer value may be read and written to using SET_TIMER1() and
GET_TIMER1()Timer 1 is a 16 bit timer.

With an internal clock at 20mhz and with the T1_DIV_BY_8 mode, the timer will increment every
1.6us. It will overflow every 104.8576ms.

Availability: This function is only available on devices with timer 1 hardware.

Requires: Constants are defined in the devices .h file.

Examples: setup_timer_1 (T1_DISABLED);

setup_timer_1 (T1_INTERNAL | T1_DIV_BY_4);

setup_timer_1 (T1_INTERNAL | T1_DIV_BY_8);

Example Files:
Also See: get_timer1(), Timer1 Overview

setup_timer_2()

Syntax: setup_timer_2 (mode, period, postscale)

Parameters: mode may be one of:

 T2_DISABLED

 T2_DIV_BY_1, T2_DIV_BY_4, T2_DIV_BY_16
Period is a int 0-255 that determines when the clock value is reset
Postscale is a number 1-16 that determines how many timer overflows
before an interrupt: (1 means once, 2 means twice, an so on)

Returns: undefined

Function: Initializes timer 2. The mode specifies the clock divisor (from the oscillator clock).
The timer value may be read and written to using GET_TIMER2() and SET_TIMER2().
2 is a 8-bit counter/timer.

Availability: This function is only available on devices with timer 2 hardware.

Requires: Constants are defined in the devices .h file.

Examples: setup_timer_2 (T2_DIV_BY_4, 0xc0, 2) //at 20mhz, the timer will

 //increment every 800ns

 //will overflow every 154.4us,

 //and will interrupt every 308.us

Example Files:

Built-in Functions

269

Also See: get_timer2(), set_timer2() Timer2 Overview

setup_timer_3()

Syntax: setup_timer_3 (mode)

Parameters: Mode may be one of the following constants from each group or'ed (via |) together:

 T3_DISABLED, T3_INTERNAL, T3_EXTERNAL, T3_EXTERNAL_SYNC

 T3_DIV_BY_1, T3_DIV_BY_2, T3_DIV_BY_4, T3_DIV_BY_8

Returns: undefined

Function: Initializes timer 3 or 4.The mode specifies the clock divisor (from the oscillator clock). The timer
value may be read and written to using GET_TIMER3() and SET_TIMER3(). Timer 3 is a 16 bit
counter/timer.

Availability: This function is only available on devices with timer 3 hardware.

Requires: Constants are defined in the devices .h file.

Examples: setup_timer_3 (T3_INTERNAL | T3_DIV_BY_2);

Example Files: None

Also See: get_timer3(), set_timer3()

setup_timer_4()

Syntax: setup_timer_4 (mode, period, postscale)

Parameters: mode may be one of:

 T4_DISABLED, T4_DIV_BY_1, T4_DIV_BY_4, T4_DIV_BY_16

period is a int 0-255 that determines when the clock value is reset,

postscale is a number 1-16 that determines how many timer overflows
before an interrupt: (1 means once, 2 means twice, and so on).

Returns: undefined

Function: Initializes timer 4. The mode specifies the clock divisor (from the oscillator clock).
The timer value may be read and written to using GET_TIMER4() and SET_TIMER4().
Timer 4 is a 8 bit counter/timer.

Availability: This function is only available on devices with timer 4 hardware.

Requires: Constants are defined in the devices .h file

Examples: setup_timer_4 (T4_DIV_BY_4, 0xc0, 2);

// At 20mhz, the timer will increment every 800ns,

// will overflow every 153.6us,

// and will interrupt every 307.2us.

PCD_March 2015-1

270

Example Files:
Also See: get_timer4(), set_timer4()

setup_timer_5()

Syntax: setup_timer_5 (mode)

Parameters: mode may be one or two of the constants defined in the devices .h file.

T5_DISABLED, T5_INTERNAL, T5_EXTERNAL, or T5_EXTERNAL_SYNC

T5_DIV_BY_1, T5_DIV_BY_2, T5_DIV_BY_4, T5_DIV_BY_8

T5_ONE_SHOT, T5_DISABLE_SE_RESET, or T5_ENABLE_DURING_SLEEP

Returns: undefined

Function: Initializes timer 5. The mode specifies the clock divisor (from the oscillator clock). The timer value
may be read and written to using GET_TIMER5() and SET_TIMER5(). Timer 5 is a 16 bit
counter/timer.

Availability: This function is only available on devices with timer 5 hardware.

Requires: Constants are defined in the devices .h file.

Examples: setup_timer_5 (T5_INTERNAL | T5_DIV_BY_2);

Example Files: None

Also See: get_timer5(), set_timer5(), Timer5 Overview

setup_uart()

Syntax: setup_uart(baud, stream)
setup_uart(baud)
setup_uart(baud, stream, clock)

Parameters: baud is a constant representing the number of bits per second. A one or zero may also be passed to
control the on/off status.
Stream is an optional stream identifier.

Chips with the advanced UART may also use the following constants:
UART_ADDRESS UART only accepts data with 9th bit=1
UART_DATA UART accepts all data

Chips with the EUART H/W may use the following constants:
UART_AUTODETECT Waits for 0x55 character and sets the UART baud rate to match.
UART_AUTODETECT_NOWAIT Same as above function, except returns before 0x55 is received.
 KBHIT() will be true when the match is made. A call to GETC() will clear the character.
UART_WAKEUP_ON_RDA Wakes PIC up out of sleep when RCV goes from high to low

clock - If specified this is the clock rate this function should assume. The default comes from the #USE

Built-in Functions

271

DELAY.

Returns: undefined

Function: Very similar to SET_UART_SPEED. If 1 is passed as a parameter, the UART is turned on, and if 0 is
passed, UART is turned off. If a BAUD rate is passed to it, the UART is also turned on, if not already on.

Availability: This function is only available on devices with a built in UART.

Requires: #USE RS232

Examples: setup_uart(9600);

setup_uart(9600, rsOut);

Example
Files:

None

Also See: #USE RS232, putc(), getc(), RS232 I/O Overview

setup_vref()

Syntax: setup_vref (mode)

Parameters: mode is a bit-field comprised of the following constants:
• VREF_DISABLED
• VREF_LOW (Vdd * value / 24)
• VREF_HIGH (Vdd * value / 32 + Vdd/4)
• VREF_ANALOG

Returns: undefined

Function: Configures the voltage reference circuit used by the voltage comparator.

The voltage reference circuit allows you to specify a reference voltage that the comparator module may use.
You may use the Vdd and Vss voltages as your reference or you may specify VREF_ANALOG to use
supplied Vdd and Vss. Voltages may also be tuned to specific values in steps, 0 through 15. That value
must be or’ed to the configuration constants.

Availability: Some devices, consult your target datasheet.

Requires: Constants are defined in the devices .h file.

Examples: /* Use the 15th step on the course setting */

setup_vref(VREF_LOW | 14);

Example
Files:

None

setup_wdt()

Syntax: setup_wdt (mode)

Parameters: Mode is a bit-field comprised of the following constants:
• WDT_ON
• WDT_OFF

PCD_March 2015-1

272

Specific Time Options vary between chips, some examples are:
WDT_2ms
WDT_64MS
WDT_1S
WDT_16S

Function: Configures the watchdog timer.
The watchdog timer is used to monitor the software. If the software does not reset the
watchdog timer before it overflows, the device is reset, preventing the device from hanging until
a manual reset is initiated. The watchdog timer is derived from the slow internal timer.

Availability:

Examples: setup_wdt(WDT_ON);

Example
Files:

ex_wdt.c

Also See: Internal Oscillator Overview

setup_zdc()

Syntax: setup_zdc(mode);

Parameters: mode- the setup of the ZDC module. The options for setting up the

module include:

 ZCD_ENABLED

 ZCD_DISABLED

 ZCD_INVERTED

 ZCD_INT_L_TO_H

 ZCD_INT_H_TO_L

Returns: Nothing
Function: To set-up the Zero_Cross Detection (ZCD) module.

Availability: All devices with a ZCD module.

Examples: setup_zcd(ZCD_ENABLE|ZCD_INT_H_TO_L);

Example Files: None

Also See: zcd_status()

shift_left()

Syntax: shift_left (address, bytes, value)

Built-in Functions

273

Parameters: address is a pointer to memory.
 bytes is a count of the number of bytes to work with
 value is a 0 to 1 to be shifted in.

Returns: 0 or 1 for the bit shifted out

Function: Shifts a bit into an array or structure. The address may be an array identifier or an address to a structure
(such as &data). Bit 0 of the lowest byte in RAM is treated as the LSB.

Availability: All devices

Requires: Nothing

Examples: byte buffer[3];

for(i=0; i<=24; ++i){

 // Wait for clock high

 while (!input(PIN_A2));

 shift_left(buffer,3,input(PIN_A3));

 // Wait for clock low

 while (input(PIN_A2));

}

// reads 24 bits from pin A3,each bit is read

// on a low to high on pin A2

Example
Files:

ex_extee.c, 9356.c

Also See: shift_right(), rotate_right(), rotate_left(),

shift_right()

Syntax: shift_right (address, bytes, value)

Parameters: address is a pointer to memory
bytes is a count of the number of bytes to work with
value is a 0 to 1 to be shifted in.

Returns: 0 or 1 for the bit shifted out

Function: Shifts a bit into an array or structure. The address may be an array identifier or an address to a structure
(such as &data). Bit 0 of the lowest byte in RAM is treated as the LSB.

Availability: All devices

Requires: Nothing

Examples: // reads 16 bits from pin A1, each bit is read

// on a low to high on pin A2

struct {

 byte time;

 byte command : 4;

 byte source : 4;} msg;

for(i=0; i<=16; ++i) {

 while(!input(PIN_A2));

 shift_right(&msg,3,input(PIN_A1));

 while (input(PIN_A2)) ;}

// This shifts 8 bits out PIN_A0, LSB first.

for(i=0;i<8;++i)

 output_bit(PIN_A0,shift_right(&data,1,0));

PCD_March 2015-1

274

Example
Files:

ex_extee.c, 9356.c

Also See: shift_left(), rotate_right(), rotate_left(),

sleep()

Syntax: sleep(mode)

Parameters: mode configures what sleep mode to enter, mode is optional. If mode is SLEEP_IDLE, the PIC
will stop executing code but the peripherals will still be operational. If mode is SLEEP_FULL, the
PIC will stop executing code and the peripherals will stop being clocked, peripherals that do not
need a clock or are using an external clock will still be operational. SLEEP_FULL will reduce
power consumption the most. If no parameter is specified, SLEEP_FULL will be used.

Returns: Undefined

Function: Issues a SLEEP instruction. Details are device dependent. However, in general the part will
enter low power mode and halt program execution until woken by specific external
events. Depending on the cause of the wake up execution may continue after the sleep
instruction. The compiler inserts a sleep() after the last statement in main().

Availability: All devices

Requires: Nothing

Examples: disable_interrupts(INT_GLOBAL);

enable_interrupt(INT_EXT);

clear_interrupt();

sleep(SLEEP_FULL); //sleep until an INT_EXT interrupt

//after INT_EXT wake-up, will resume operation from this point

Example Files: ex_wakup.c

Also See: reset cpu()

sleep_ulpwu()

Syntax: sleep_ulpwu(time)

Parameters: time specifies how long, in us, to charge the capacitor on the ultra-low power wakeup pin (by
outputting a high on PIN_B0).

Returns: undefined

Function: Charges the ultra-low power wake-up capacitor on PIN_B0 for time microseconds, and then puts
the PIC to sleep. The PIC will then wake-up on an 'Interrupt-on-Change' after the charge on the
cap is lost.

Availability: Ultra Low Power Wake-Up support on the PIC (example, PIC124F32KA302)

Requires: #USE DELAY

Built-in Functions

275

Examples: while(TRUE)

{

 if (input(PIN_A1))

 //do something

 else

 sleep_ulpwu(10); //cap will be charged for 10us,

 //then goto sleep

}

Example Files: None

Also See: #USE DELAY

smtx_read()

Syntax: value_smt1_read(which);
value_smt2_read(which);

Parameters: which - Specifies which SMT registers to read. The following defines

have been made
in the device's header file to select which registers are read:
 SMT_CAPTURED_PERIOD_REG
 SMT_CAPTURED_PULSE_WIDTH_REG
 SMT_TMR_REG
 SMT_PERIOD_REG

Returns: 32-bit value

Function: To read the Capture Period Registers, Capture Pulse Width Registers,
Timer Registers or Period Registers of the Signal Measurement Timer
module.

Availability: Only devices with a built-in SMT module.
Examples: unsigned int32 Period;

Period = smt1_read(SMT_CAPTURED_PERIOD_REG);

Example Files: None

Also See: smtx_status(), stmx_start(), smtx_stop(), smtx_update(),
 smtx_reset_timer(),
setup_SMTx(), smtx_write()

smtx_reset_timer()

Syntax: smt1_reset_timer();
smt2_reset_timer();

Parameters: None

PCD_March 2015-1

276

Returns: Nothing

Function: To manually reset the Timer Register of the Signal Measurement
Timer module.

Availability: Only devices with a built-in SMT module.
Examples: smt1_reset_timer();

Example Files: None

Also See: setup_smtx(), stmx_start(), smtx_stop(), smtx_update(),
 smtx_status(),
smtx_read(), smtx_write()

smtx_start()

Syntax: smt1_start();
smt2_start();

Parameters: None

Returns: Nothing

Function: To have the Signal Measurement Timer (SMT) module start
acquiring data.

Availability: Only devices with a built-in SMT module.
Examples: smt1_start();

Example Files: None

Also See: smtx_status(), setup_smtx(), smtx_stop(), smtx_update(),
 smtx_reset_timer(),
smtx_read(), smtx_write()

smtx_status()

Syntax: value = smt1_status();
value = smt2_status();

Parameters: None

Returns: The status of the SMT module.

Function: To return the status of the Signal Measurement Timer (SMT) module.

Built-in Functions

277

Availability: Only devices with a built-in SMT module.
Examples: status = smt1_status();

Example Files: None

Also See: setup_smtx(), stmx_start(), smtx_stop(), smtx_update(),
 smtx_reset_timer(),
smtx_read(), smtx_write()

smtx_stop()

Syntax: smt1_stop();
smt2_stop();

Parameters: None

Returns: Nothing

Function: Configures the Signal Measurement Timer (SMT) module.

Availability: Only devices with a built-in SMT module.
Examples: smt1_stop()

Example Files: None

Also See: smtx_status(), stmx_start(), setup_smtx(), smtx_update(),
 smtx_reset_timer(),
smtx_read(), smtx_write()

smtx_write()

Syntax: smt1_write(which,value);
smt2_write(which,value);

Parameters: which - Specifies which SMT registers to write. The following defines have been made

in the device's header file to select which registers are written:
 SMT_TMR_REG
 SMT_PERIOD_REG

value - The 24-bit value to set the specified registers.

Returns: Nothing

Function: To write the Timer Registers or Period Registers of the Signal Measurement

Timer (SMT) module

PCD_March 2015-1

278

Availability: Only devices with a built-in SMT module.
Examples: smt1_write(SMT_PERIOD_REG, 0x100000000);

Example Files: None

Also See: smtx_status(), stmx_start(), setup_smtx(), smtx_update(),
 smtx_reset_timer(),
smtx_read(), setup_smtx()

smtx_update()

Syntax: smt1_update(which);
smt2_update(which);

Parameters: which - Specifies which capture registers to manually update. The following

defines have been made in the device's header file to select which registers are
updated:
 SMT_CAPTURED_PERIOD_REG
 SMT_CAPTURED_PULSE_WIDTH_REG

Returns: Nothing

Function: To manually update the Capture Period Registers or the Capture Pulse Width
Registers of the Signal Measurement Timer module.

Availability: Only devices with a built-in SMT module.
Examples: smt1_update(SMT_CAPTURED_PERIOD_REG);

Example
Files:

None

Also See: setup_smtx(), stmx_start(), smtx_stop(), smtx_status(), smtx_reset_timer(),
smtx_read(), smtx_write()

spi_data_is_in() spi_data_is_in2()

Syntax: result = spi_data_is_in()
result = spi_data_is_in2()

Parameters: None

Returns: 0 (FALSE) or 1 (TRUE)

Built-in Functions

279

Function: Returns TRUE if data has been received over the SPI.

Availability: This function is only available on devices with SPI hardware.

Requires: Nothing

Examples: while (!spi_data_is_in() && input(PIN_B2));

 if(spi_data_is_in())

 data = spi_read();

Example Files: None

Also See: spi_read(), spi_write(), SPI Overview

spi_init()

Syntax: spi_init(baud);
spi_init(stream,baud);

Parameters: stream – is the SPI stream to use as defined in the STREAM=name option in #USE SPI.
band- the band rate to initialize the SPI module to. If FALSE it will disable the SPI module, if

TRUE it will enable the SPI module to the band rate specified in #use SPI.

Returns: Nothing.

Function: Initializes the SPI module to the settings specified in #USE SPI.

Availability: This function is only available on devices with SPI hardware.

Requires: #USE SPI

Examples: while #use spi(MATER, SPI1, baud=1000000, mode=0, stream=SPI1_MODE0)

spi_inspi_init(SPI1_MODE0, TRUE); //initialize and enable SPI1 to setting in #USE SPI

spi_inspi_init(FALSE); //disable SPI1

spi_inspi_init(250000);//initialize and enable SPI1 to a baud rate of 250K

Example Files: None

Also See: #USE SPI, spi_xfer(), spi_xfer_in(), spi_prewrite(), spi_speed()

spi_prewrite(data);

Syntax: spi_prewrite(data);
spi_prewrite(stream, data);

Parameters: stream – is the SPI stream to use as defined in the STREAM=name option in #USE SPI.
data- the variable or constant to transfer via SPI

Returns: Nothing.

Function: Writes data into the SPI buffer without waiting for transfer to be completed. Can be used in
conjunction with spi_xfer() with no parameters to transfer more then 8 bits for PCM and PCH
device, or more then 8 bits or 16 bits (XFER16 option) for PCD. Function is useful when using the
SSP or SSP2 interrupt service routines for PCM and PCH device, or the SPIx interrupt service
routines for PCD device.

Availability: This function is only available on devices with SPI hardware.

PCD_March 2015-1

280

Requires: #USE SPI, and the option SLAVE is used in #USE SPI to setup PIC as a SPI slave device
Examples: spi_prewrite(data_out);
Example Files: ex_spi_slave.c

Also See: #USE SPI, spi_xfer(), spi_xfer_in(), spi_init(), spi_speed()

spi_read() spi_read2()

spi_read3()

spi_read4()

Syntax: value = spi_read ([data])
value = spi_read2 ([data])
value = spi_read3([data])
value = spi_read4 ([data])

Parameters: data – optional parameter and if included is an 8 bit int.

Returns: An 8 bit int

Function: Return a value read by the SPI. If a value is passed to the spi_read() the data will be clocked
out and the data received will be returned. If no data is ready, spi_read() will wait for the data is
a SLAVE or return the last DATA clocked in from spi_write().

If this device is the MASTER then either do a spi_write(data) followed by a spi_read() or do a
spi_read(data). These both do the same thing and will generate a clock. If there is no data to
send just do a spi_read(0) to get the clock.

If this device is a SLAVE then either call spi_read() to wait for the clock and data or
use_spi_data_is_in() to determine if data is ready.

Availability: This function is only available on devices with SPI hardware.

Requires: Nothing

Examples: data_in = spi_read(out_data);

Example Files: ex_spi.c

Also See: spi_write(), spi_write_16(), spi_read_16(), spi_data_is_in(), SPI Overview

Built-in Functions

281

spi_read_16()

spi_read2_16()

spi_read3_16()

spi_read4_16()

Syntax: value = spi_read_16([data]);
value = spi_read2_16([data]);
value = spi_read3_16([data]);
value = spi_read4_16([data]);

Parameters: data – optional parameter and if included is a 16 bit int

Returns: A 16 bit int

Function: Return a value read by the SPI. If a value is passed to the spi_read_16() the data will be clocked out and
the data received will be returned. If no data is ready, spi_read_16() will wait for the data is a SLAVE or
return the last DATA clocked in from spi_write_16().
If this device is the MASTER then either do a spi_write_16(data) followed by a spi_read_16() or do a
spi_read_16(data). These both do the same thing and will generate a clock. If there is no data to send just
do a spi_read_16(0) to get the clock.
If this device is a slave then either call spi_read_16() to wait for the clock and data or use_spi_data_is_in()
to determine if data is ready.

Availability: This function is only available on devices with SPI hardware.

Requires: NThat the option SPI_MODE_16B be used in setup_spi() function, or that the option XFER16 be used in
#use SPI(

Examples: data_in = spi_read_16(out_data);

Example
Files:

None

Also See: spi_read(), spi_write(), spi_write_16(), spi_data_is_in(), SPI Overview

spi_speed

Syntax: spi_speed(baud);
spi_speed(stream,baud);
spi_speed(stream,baud,clock);

Parameters: stream – is the SPI stream to use as defined in the STREAM=name option in #USE SPI.
band- the band rate to set the SPI module to
clock- the current clock rate to calculate the band rate with.

If not specified it uses the value specified in #use delay ().

Returns: Nothing.

Function: Sets the SPI module's baud rate to the specified value.

Availability: This function is only available on devices with SPI hardware.

Requires: #USE SPI

PCD_March 2015-1

282

Examples: spi_speed(250000);

spi_speed(SPI1_MODE0, 250000);
spi_speed(SPI1_MODE0, 125000, 8000000);

Example Files: None

Also See: #USE SPI, spi_xfer(), spi_xfer_in(), spi_prewrite(), spi_init()

spi_write() spi_write2()

spi_write3()

spi_write4()

Syntax: spi_write([wait],value);
spi_write2([wait],value);
spi_write3([wait],value);
spi_write4([wait],value);

Parameters: value is an 8 bit int
wait- an optional parameter specifying whether the function will wait for the SPI transfer to

complete before exiting. Default is TRUE if not specified.

Returns: Nothing

Function: Sends a byte out the SPI interface. This will cause 8 clocks to be generated. This function will
write the value out to the SPI. At the same time data is clocked out data is clocked in and
stored in a receive buffer. spi_read() may be used to read the buffer.

Availability: This function is only available on devices with SPI hardware.

Requires: Nothing

Examples: spi_write(data_out);

data_in = spi_read();

Example Files: ex_spi.c

Also See: spi_read(), spi_data_is_in(), SPI Overview, spi_write_16(), spi_read_16()

spi_xfer()

Syntax: spi_xfer(data)
spi_xfer(stream, data)
spi_xfer(stream, data, bits)
result = spi_xfer(data)
result = spi_xfer(stream, data)
result = spi_xfer(stream, data, bits)

Built-in Functions

283

Parameters: data is the variable or constant to transfer via SPI. The pin used to transfer data is defined in the
DO=pin option in #use spi. stream is the SPI stream to use as defined in the STREAM=name
option in #USE SPI.
 bits is how many bits of data will be transferred.

Returns: The data read in from the SPI. The pin used to transfer result is defined in the DI=pin option in
#USE SPI.

Function: Transfers data to and reads data from an SPI device.

Availability: All devices with SPI support.

Requires: #USE SPI

Examples: int i = 34;

spi_xfer(i);

// transfers the number 34 via SPI

int trans = 34, res;

res = spi_xfer(trans);

// transfers the number 34 via SPI

// also reads the number coming in from SPI

Example Files: None

Also See: #USE SPI

SPII_XFER_IN()

Syntax: value = spi_xfer_in();
value = spi_xfer_in(bits);
value = spi_xfer_in(stream,bits);

Parameters: stream – is the SPI stream to use as defined in the STREAM=name option in #USE SPI.
bits – is how many bits of data to be received.

Returns: The data read in from the SPI

Function: Reads data from the SPI, without writing data into the transmit buffer first.

Availability: This function is only available on devices with SPI hardware.

Requires: #USE SPI, and the option SLAVE is used in #USE SPI to setup PIC as a SPI slave device.
Examples: data_in = spi_xfer_in();

Example Files: ex_spi_slave.c

Also See: #USE SPI, spi_xfer(), spi_prewrite(), spi_init(), spi_speed()

sqrt()

Syntax: result = sqrt (value)

Parameters: value is any float type

Returns: Returns a floating point value with a precision equal to value

PCD_March 2015-1

284

Function: Computes the non-negative square root of the float value x. If the argument is negative, the
behavior is undefined.

Note on error handling:
If "errno.h" is included then the domain and range errors are stored in the errno variable. The
user can check the errno to see if an error has occurred and print the error using the perror
function.

Domain error occurs in the following cases:
sqrt: when the argument is negative

Availability: All devices.

Requires: #INCLUDE <math.h>

Examples: distance = sqrt(pow((x1-x2),2)+pow((y1-y2),2));

Example Files: None

Also See: None

srand()

Syntax: srand(n)

Parameters: n is the seed for a new sequence of pseudo-random numbers to be returned by subsequent

calls to rand.

Returns: No value.

Function: The srand() function uses the argument as a seed for a new sequence of pseudo-random
numbers to be returned by subsequent calls to rand. If srand() is then called with same seed
value, the sequence of random numbers shall be repeated. If rand is called before any call to
srand() have been made, the same sequence shall be generated as when srand() is first called
with a seed value of 1.

Availability: All devices.

Requires: #INCLUDE <STDLIB.H>

Examples: srand(10);

I=rand();

Example Files: None

Also See: rand()

Built-in Functions

285

STANDARD STRING FUNCTIONS() memchr() memcmp()
strcat() strchr() strcmp() strcoll() strcspn() strerror()
stricmp() strlen() strlwr() strncat() strncmp() strncpy()
strpbrk() strrchr() strspn() strstr() strxfrm()

Syntax: ptr=strcat (s1, s2) Concatenate s2 onto s1

ptr=strchr (s1, c) Find c in s1 and return &s1[i]
ptr=strrchr (s1, c) Same but search in reverse
cresult=strcmp (s1, s2) Compare s1 to s2
iresult=strncmp (s1, s2, n) Compare s1 to s2 (n bytes)
iresult=stricmp (s1, s2) Compare and ignore case
ptr=strncpy (s1, s2, n) Copy up to n characters s2->s1
iresult=strcspn (s1, s2) Count of initial chars in s1 not in s2
iresult=strspn (s1, s2) Count of initial chars in s1 also in s2
iresult=strlen (s1) Number of characters in s1
ptr=strlwr (s1) Convert string to lower case
ptr=strpbrk (s1, s2) Search s1 for first char also in s2
ptr=strstr (s1, s2) Search for s2 in s1
ptr=strncat(s1,s2, n) Concatenates up to n bytes of s2 onto s1
iresult=strcoll(s1,s2) Compares s1 to s2, both interpreted as appropriate to the

current locale.
res=strxfrm(s1,s2,n) Transforms maximum of n characters of s2 and places

them in s1, such that strcmp(s1,s2) will give the same
result as strcoll(s1,s2)

iresult=memcmp(m1,m2,n) Compare m1 to m2 (n bytes)
ptr=memchr(m1,c,n) Find c in first n characters of m1 and return &m1[i]
ptr=strerror(errnum) Maps the error number in errnum to an error message

string. The parameters 'errnum' is an unsigned 8 bit int.
Returns a pointer to the string.

Parameters: s1 and s2 are pointers to an array of characters (or the name of an array). Note that s1 and s2
MAY NOT BE A CONSTANT (like "hi").

n is a count of the maximum number of character to operate on.

c is a 8 bit character

m1 and m2 are pointers to memory.

Returns: ptr is a copy of the s1 pointer

iresult is an 8 bit int
result is -1 (less than), 0 (equal) or 1 (greater than)
res is an integer.

Function: Functions are identified above.

Availability: All devices.

Requires: #include <string.h>

Examples: char string1[10], string2[10];

strcpy(string1,"hi ");

strcpy(string2,"there");

strcat(string1,string2);

printf("Length is %u\r\n", strlen(string1));

 // Will print 8

PCD_March 2015-1

286

Example Files: ex_str.c

Also See: strcpy(), strtok()

strcpy() strcopy()

Syntax: strcpy (dest, src)
strcopy (dest, src)

Parameters: dest is a pointer to a RAM array of characters.
src may be either a pointer to a RAM array of characters or it may be a constant string.

Returns: undefined

Function: Copies a constant or RAM string to a RAM string. Strings are terminated with a 0.

Availability: All devices.

Requires: Nothing

Examples: char string[10], string2[10];

.

.

.

strcpy (string, "Hi There");

strcpy(string2,string);

Example Files: ex_str.c

Also See: strxxxx()

strtod() strtof() strtof48()

Syntax: result=strtod(nptr,& endptr)
result=strtof(nptr,& endptr)
result=strtof48(nptr,& endptr)

Parameters: nptr and endptr are strings

Returns: strtod returns a double precision floating point number.
strtof returns a single precision floating point number.
strtof48 returns a extended precision floating point number.
returns the converted value in result, if any. If no conversion could be performed, zero is
returned.

Function: The strtod function converts the initial portion of the string pointed to by nptr to a float
representation. The part of the string after conversion is stored in the object pointed to endptr,
provided that endptr is not a null pointer. If nptr is empty or does not have the expected form, no
conversion is performed and the value of nptr is stored in the object pointed to by endptr,
provided endptr is not a null pointer.

Built-in Functions

287

Availability: All devices.

Requires: #INCLUDE <stdlib.h>

Examples: double result;

char str[12]="123.45hello";

char *ptr;

result=strtod(str,&ptr);

//result is 123.45 and ptr is "hello"

Example Files: None

Also See: strtol(), strtoul()

strtok()

Syntax: ptr = strtok(s1, s2)

Parameters: s1 and s2 are pointers to an array of characters (or the name of an array). Note that s1 and s2
MAY NOT BE A CONSTANT (like "hi"). s1 may be 0 to indicate a continue operation.

Returns: ptr points to a character in s1 or is 0

Function: Finds next token in s1 delimited by a character from separator string s2 (which can be different
from call to call), and returns pointer to it.

First call starts at beginning of s1 searching for the first character NOT contained in s2 and
returns null if there is none are found.

If none are found, it is the start of first token (return value). Function then searches from there
for a character contained in s2.

If none are found, current token extends to the end of s1, and subsequent searches for a token
will return null.

If one is found, it is overwritten by '\0', which terminates current token. Function saves pointer to
following character from which next search will start.

Each subsequent call, with 0 as first argument, starts searching from the saved pointer.

Availability: All devices.

Requires: #INCLUDE <string.h>

Examples: char string[30], term[3], *ptr;

strcpy(string,"one,two,three;");

strcpy(term,",;");

ptr = strtok(string, term);

while(ptr!=0) {

 puts(ptr);

 ptr = strtok(0, term);

 }

 // Prints:

 one

 two

 three

Example Files: ex_str.c

PCD_March 2015-1

288

Also See: strxxxx(), strcpy()

strtol()

Syntax: result=strtol(nptr,& endptr, base)

Parameters: nptr and endptr are strings and base is an integer

Returns: result is a signed long int.
returns the converted value in result , if any. If no conversion could be performed, zero is
returned.

Function: The strtol function converts the initial portion of the string pointed to by nptr to a signed long int
representation in some radix determined by the value of base. The part of the string after
conversion is stored in the object pointed to endptr, provided that endptr is not a null pointer. If
nptr is empty or does not have the expected form, no conversion is performed and the value of
nptr is stored in the object pointed to by endptr, provided endptr is not a null pointer.

Availability: All devices.

Requires: #INCLUDE <stdlib.h>

Examples: signed long result;

char str[9]="123hello";

char *ptr;

result=strtol(str,&ptr,10);

//result is 123 and ptr is "hello"

Example Files: None

Also See: strtod(), strtoul()

strtoul()

Syntax: result=strtoul(nptr,endptr, base)

Parameters: nptr and endptr are strings pointers and base is an integer 2-36.

Returns: result is an unsigned long int.
returns the converted value in result , if any. If no conversion could be performed, zero is
returned.

Function: The strtoul function converts the initial portion of the string pointed to by nptr to a long int
representation in some radix determined by the value of base. The part of the string after
conversion is stored in the object pointed to endptr, provided that endptr is not a null pointer. If
nptr is empty or does not have the expected form, no conversion is performed and the value of
nptr is stored in the object pointed to by endptr, provided endptr is not a null pointer.

Built-in Functions

289

Availability: All devices.

Requires: STDLIB.H must be included

Examples: long result;

char str[9]="123hello";

char *ptr;

result=strtoul(str,&ptr,10);

//result is 123 and ptr is "hello"

Example Files: None

Also See: strtol(), strtod()

swap()

Syntax: swap (lvalue)
result = swap(lvalue)

Parameters: lvalue is a byte variable

Returns: A byte

Function: Swaps the upper nibble with the lower nibble of the specified byte. This is the same as:
byte = (byte << 4) | (byte >> 4);

Availability: All devices.

Requires: Nothing

Examples: x=0x45;

swap(x);

//x now is 0x54

int x = 0x42;

int result;

result = swap(x);

// result is 0x24;

Example Files: None

Also See: rotate_right(), rotate_left()

tolower() toupper()

Syntax: result = tolower (cvalue)
result = toupper (cvalue)

Parameters: cvalue is a character

PCD_March 2015-1

290

Returns: An 8 bit character

Function: These functions change the case of letters in the alphabet.

TOLOWER(X) will return 'a'..'z' for X in 'A'..'Z' and all other characters are unchanged.
TOUPPER(X) will return 'A'..'Z' for X in 'a'..'z' and all other characters are unchanged.

Availability: All devices.

Requires: Nothing

Examples: switch(toupper(getc())) {

 case 'R' : read_cmd(); break;

 case 'W' : write_cmd(); break;

 case 'Q' : done=TRUE; break;

}

Example Files: ex_str.c

Also See: None

touchpad_getc()

Syntax: input = TOUCHPAD_GETC();

Parameters: None

Returns: char (returns corresponding ASCII number is “input” declared as int)

Function: Actively waits for firmware to signal that a pre-declared Capacitive Sensing Module (CSM) or
charge time measurement unit (CTMU) pin is active, then stores the pre-declared character value
of that pin in “input”.

Note: Until a CSM or CTMU pin is read by firmware as active, this instruction will cause the
microcontroller to stall.

Availability: All PIC's with a CSM or CTMU Module

Requires: #USE TOUCHPAD (options)

Examples: //When the pad connected to PIN_B0 is activated, store the letter 'A'

#USE TOUCHPAD (PIN_B0='A')

void main(void){

 char c;

 enable_interrupts(GLOBAL);

 c = TOUCHPAD_GETC();

 //will wait until one of declared pins is detected

 //if PIN_B0 is pressed, c will get value 'A'

}

Example Files:

None

Also See: #USE TOUCHPAD, touchpad_state()

Built-in Functions

291

touchpad_hit()

Syntax: value = TOUCHPAD_HIT()

Parameters: None

Returns: TRUE or FALSE

Function: Returns TRUE if a Capacitive Sensing Module (CSM) or Charge Time Measurement Unit (CTMU)
key has been pressed. If TRUE, then a call to touchpad_getc() will not cause the program to wait
for a key press.

Availability: All PIC's with a CSM or CTMU Module

Requires: #USE TOUCHPAD (options)

Examples: // When the pad connected to PIN_B0 is activated, store the letter 'A'

#USE TOUCHPAD (PIN_B0='A')

void main(void){

 char c;

 enable_interrupts(GLOBAL);

 while (TRUE) {

 if (TOUCHPAD_HIT())

 //wait until key on PIN_B0 is pressed

 c = TOUCHPAD_GETC(); //get key that was pressed

 } //c will get value 'A'

}

Example Files: None

Also See:

#USE TOUCHPAD (), touchpad_state(), touchpad_getc()

touchpad_state()

Syntax: TOUCHPAD_STATE (state);

Parameters: state is a literal 0, 1, or 2.

Returns: None

Function: Sets the current state of the touchpad connected to the Capacitive Sensing Module (CSM). The
state can be one of the following three values:

 0 : Normal state
 1 : Calibrates, then enters normal state
 2 : Test mode, data from each key is collected in the int16 array TOUCHDATA

Note: If the state is set to 1 while a key is being pressed, the touchpad will not calibrate properly.

Availability: All PIC's with a CSM Module

Requires: #USE TOUCHPAD (options)

PCD_March 2015-1

292

Examples: #USE TOUCHPAD (THRESHOLD=5, PIN_D5='5', PIN_B0='C')

void main(void){

 char c;

 TOUCHPAD_STATE(1); //calibrates, then enters normal state

 enable_interrupts(GLOBAL);

 while(1){

 c = TOUCHPAD_GETC();

 //will wait until one of declared pins is detected

 }

 //if PIN_B0 is pressed, c will get value 'C'

} //if PIN_D5 is pressed, c will get value '5'

Example Files: None

Also See:

#USE TOUCHPAD, touchpad_getc(), touchpad_hit()

tx_buffer_bytes()

Syntax: value = tx_buffer_bytes([stream]);

Parameters: stream – optional parameter specifying the stream defined in #USE RS232.

Returns: Number of bytes in transmit buffer that still need to be sent.

Function: Function to determine the number of bytes in transmit buffer that still need to be sent.

Availability: All devices

Requires: #USE RS232

Examples: #USE_RS232(UART1,BAUD=9600,TRANSMIT_BUFFER=50)
void main(void) {
 char string[] = “Hello”;
 if(tx_buffer_bytes() <= 45)
 printf(“%s”,string);
}

Example Files: None

Also See: _USE_RS232(), RCV_BUFFER_FULL(), TX_BUFFER_FULL(), RCV_BUFFER_BYTES(), GET(
), PUTC() ,PRINTF(), SETUP_UART(), PUTC_SEND()

.

tx_buffer_full()

Syntax: value = tx_buffer_full([stream])

Parameters: stream – optional parameter specifying the stream defined in #USE RS232

Returns: TRUE if transmit buffer is full, FALSE otherwise.

Built-in Functions

293

Function: Function to determine if there is room in transmit buffer for another character.

Availability: All devices

Requires: #USE RS232

Examples: #USE_RS232(UART1,BAUD=9600,TRANSMIT_BUFFER=50)
void main(void) {
 char c;

 if(!tx_buffer_full())
 putc(c);
}

Example Files: None

Also See: _USE_RS232(), RCV_BUFFER_FULL(), TX_BUFFER_FULL()., RCV_BUFFER_BYTES(),
GETC(), PUTC(), PRINTF(), SETUP_UART()., PUTC_SEND()

va_arg()

Syntax: va_arg(argptr, type)

Parameters: argptr is a special argument pointer of type va_list

type – This is data type like int or char.

Returns: The first call to va_arg after va_start return the value of the parameters after that specified by the

last parameter. Successive invocations return the values of the remaining arguments in
succession.

Function: The function will return the next argument every time it is called.

Availability: All devices.

Requires: #INCLUDE <stdarg.h>

Examples: int foo(int num, ...)

{

int sum = 0;

int i;

va_list argptr; // create special argument pointer

va_start(argptr,num); // initialize argptr

for(i=0; i<num; i++)

 sum = sum + va_arg(argptr, int);

va_end(argptr); // end variable processing

return sum;

}

Example Files: None

Also See: nargs(), va_end(), va_start()

PCD_March 2015-1

294

va_end()

Syntax: va_end(argptr)

Parameters: argptr is a special argument pointer of type va_list.

Returns: None

Function: A call to the macro will end variable processing. This will facillitate a normal return from the

function whose variable argument list was referred to by the expansion of va_start().

Availability: All devices.

Requires: #INCLUDE <stdarg.h>

Examples: int foo(int num, ...)

{

int sum = 0;

int i;

va_list argptr; // create special argument pointer

va_start(argptr,num); // initialize argptr

for(i=0; i<num; i++)

 sum = sum + va_arg(argptr, int);

va_end(argptr); // end variable processing

return sum;

}

Example Files: None

Also See: nargs(), va_start(), va_arg()

va_start

Syntax: va_start(argptr, variable)

Parameters: argptr is a special argument pointer of type va_list

variable – The second parameter to va_start() is the name of the last parameter before the

variable-argument list.

Returns: None

Function: The function will initialize the argptr using a call to the macro va_start().

Availability: All devices.

Requires: #INCLUDE <stdarg.h>

Examples: int foo(int num, ...)

{

int sum = 0;

int i;

va_list argptr; // create special argument pointer

va_start(argptr,num); // initialize argptr

for(i=0; i<num; i++)

 sum = sum + va_arg(argptr, int);

va_end(argptr); // end variable processing

return sum;

Built-in Functions

295

}

Example Files: None

Also See: nargs(), va_start(), va_arg()

write_configuration_memory()

Syntax: write_configuration_memory (dataptr, count)

Parameters: dataptr: pointer to one or more bytes
count: a 8 bit integer

Returns: undefined

Function: Erases all fuses and writes count bytes from the dataptr to the configuration memory.

Availability: All PIC18 flash devices

Requires: Nothing

Examples: int data[6];

write_configuration_memory(data,6)

Example Files: None

Also See: WRITE_PROGRAM_MEMORY(), Configuration Memory Overview

write_eeprom()

Syntax: write_eeprom (address, value)
 write_eeprom (address , pointer , N)

Parameters: address is the 0 based starting location of the EEPROM write
N specifies the number of EEPROM bytes to write
value is a constant or variable to write to EEPROM
pointer is a pointer to location to data to be written to EEPROM

Returns: undefined

Function: This function will write the specified value to the given address of EEPROM. If pointers are used
than the function will write n bytes of data from the pointer to EEPROM starting at the value of
address.
In order to allow interrupts to occur while using the write operation, use the #DEVICE option
WRITE_EEPROM = NOINT. This will allow interrupts to occur while the write_eeprom()
operations is polling the done bit to check if the write operations has completed. Can be used as
long as no EEPROM operations are performed during an ISR.

Availability: This function is only available on devices with supporting hardware on chip.

Requires: Nothing

Examples: #define LAST_VOLUME 10 // Location in EEPROM

PCD_March 2015-1

296

volume++;

write_eeprom(LAST_VOLUME,volume);

Example Files: None

Also See: read_eeprom(), write_program_eeprom(), read_program_eeprom(), data Eeprom Overview

write_extended_ram()

Syntax: write_extended_ram (page,address,data,count);

Parameters: page – the page in extended RAM to write to
address – the address on the selected page to start writing to
data – pointer to the data to be written
count – the number of bytes to write (0-32768)

Returns: undefined

Function: To write data to the extended RAM of the PIC.

Availability: On devices with more then 30K of RAM.

Requires: Nothing

Examples: unsigned int8 data[8] = {0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08};

write_extended_ram(1,0x0000,data,8);

Example Files: None

Also See: read_extended_ram(), Extended RAM Overview

write_program_memory()

Syntax: write_program_memory(address, dataptr, count);

Parameters: address is 32 bits .
dataptr is a pointer to one or more bytes
count is a 16 bit integer on PIC16 and 16-bit for PIC18

Returns: undefined

Function: Writes count bytes to program memory from dataptr to address. This function is most effective when
count is a multiple of FLASH_WRITE_SIZE, but count needs to be a multiple of four. Whenever this
function is about to write to a location that is a multiple of FLASH_ERASE_SIZE then an erase is
performed on the whole block. Due to the 24 bit instruction length on PCD parts, every fourth byte of
data is ignored. Fill the ignored bytes with 0x00.

See Program EEPROM Overview for more information on program memory access

Availability: Only devices that allow writes to program memory.

Requires: Nothing

Built-in Functions

297

Examples: for(i=0x1000;i<=0x1fff;i++) {

 value=read_adc();

 write_program_memory(i, value, 2);

 delay_ms(1000);

}

int8 write_data[4] = {0x10,0x20,0x30,0x00};

write_program_memory (0x2000, write_data, 4);

Example Files: None

zdc_status()

Syntax: value=zcd_status()

Parameters: None
Returns: value - the status of the ZCD module. The following defines are made in the device's

header file and are as follows:

 ZCD_IS_SINKING

 ZCD_IS_SOURCING

Function: To determine if the Zero-Cross Detection (ZCD) module is currently sinking or sourcing current.
If the ZCD module is setup to have the output polarity inverted, the value return will be reversed.

Availability: All devices with a ZCD module.

Examples: value=zcd_status():

Example Files: None

Also See: setup_zcd()

298

STANDARD C INCLUDE FILES

errno.h

errno.h

EDOM Domain error value
ERANGE Range error value
errno error value

float.h

float.h
FLT_RADIX: Radix of the exponent representation
FLT_MANT_DIG: Number of base digits in the floating point significant
FLT_DIG: Number of decimal digits, q, such that any floating point number with

q decimal digits can be rounded into a floating point number with p
radix b digits and back again without change to the q decimal digits.

FLT_MIN_EXP: Minimum negative integer such that FLT_RADIX raised to that
power minus 1 is a normalized floating-point number.

FLT_MIN_10_EXP: Minimum negative integer such that 10 raised to that power is in the
range of normalized floating-point numbers.

FLT_MAX_EXP: Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating-point number.

FLT_MAX_10_EXP: Maximum negative integer such that 10 raised to that power is in the
range representable finite floating-point numbers.

FLT_MAX: Maximum representable finite floating point number.
FLT_EPSILON: The difference between 1 and the least value greater than 1 that is

representable in the given floating point type.
FLT_MIN: Minimum normalized positive floating point number
DBL_MANT_DIG: Number of base digits in the double significant
DBL_DIG: Number of decimal digits, q, such that any double number with q

decimal digits can be rounded into a double number with p radix b
digits and back again without change to the q decimal digits.

DBL_MIN_EXP: Minimum negative integer such that FLT_RADIX raised to that
power minus 1 is a normalized double number.

DBL_MIN_10_EXP: Minimum negative integer such that 10 raised to that power is in the
range of normalized double numbers.

DBL_MAX_EXP: Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite double number.

DBL_MAX_10_EXP: Maximum negative integer such that 10 raised to that power is in the
range of representable finite double numbers.

DBL_MAX: Maximum representable finite floating point number.
DBL_EPSILON: The difference between 1 and the least value greater than 1 that is

representable in the given floating point type.
DBL_MIN: Minimum normalized positive double number.
LDBL_MANT_DIG: Number of base digits in the floating point significant
LDBL_DIG: Number of decimal digits, q, such that any floating point number with

q decimal digits can be rounded into a floating point number with p
radix b digits and back again without change to the q decimal digits.

Standard C Include Files

299

LDBL_MIN_EXP: Minimum negative integer such that FLT_RADIX raised to that
power minus 1 is a normalized floating-point number.

LDBL_MIN_10_EXP: Minimum negative integer such that 10 raised to that power is in the
range of normalized floating-point numbers.

LDBL_MAX_EXP: Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating-point number.

LDBL_MAX_10_EXP: Maximum negative integer such that 10 raised to that power is in the
range of representable finite floating-point numbers.

LDBL_MAX: Maximum representable finite floating point number.
LDBL_EPSILON: The difference between 1 and the least value greater than 1 that is

representable in the given floating point type.
LDBL_MIN: Minimum normalized positive floating point number.

limits.h

limits.h

CHAR_BIT: Number of bits for the smallest object that is not a bit_field.
SCHAR_MIN: Minimum value for an object of type signed char
SCHAR_MAX: Maximum value for an object of type signed char
UCHAR_MAX: Maximum value for an object of type unsigned char
CHAR_MIN: Minimum value for an object of type char(unsigned)
CHAR_MAX: Maximum value for an object of type char(unsigned)
MB_LEN_MAX: Maximum number of bytes in a multibyte character.
SHRT_MIN: Minimum value for an object of type short int
SHRT_MAX: Maximum value for an object of type short int
USHRT_MAX: Maximum value for an object of type unsigned short int
INT_MIN: Minimum value for an object of type signed int
INT_MAX: Maximum value for an object of type signed int
UINT_MAX: Maximum value for an object of type unsigned int
LONG_MIN: Minimum value for an object of type signed long int
LONG_MAX: Maximum value for an object of type signed long int
ULONG_MAX: Maximum value for an object of type unsigned long int

locale.h

locale.h

locale.h (Localization not supported)

lconv localization structure

SETLOCALE() returns null
LOCALCONV() returns clocale

setjmp.h

setjmp.h

jmp_buf: An array used by the following functions
setjmp: Marks a return point for the next longjmp

PCD_March 2015-1

300

longjmp: Jumps to the last marked point

stddef.h

stddef.h
ptrdiff_t: The basic type of a pointer
size_t: The type of the sizeof operator (int)
wchar_t The type of the largest character set supported (char) (8 bits)
NULL A null pointer (0)

stdio.h

stdio.h

stderr The standard error s stream (USE RS232 specified as stream or the first USE RS232)
stdout The standard output stream (USE RS232 specified as stream last USE RS232)
stdin The standard input s stream (USE RS232 specified as stream last USE RS232)

stdlib.h

stdlib.h

div_t structure type that contains two signed integers (quot and
rem).

ldiv_t structure type that contains two signed longs (quot and rem
EXIT_FAILURE returns 1
EXIT_SUCCESS returns 0
RAND_MAX-
MBCUR_MAX- 1
SYSTEM() Returns 0(not supported)
Multibyte character and string
functions:

Multibyte characters not supported

MBLEN() Returns the length of the string.
MBTOWC() Returns 1.
WCTOMB() Returns 1.
MBSTOWCS() Returns length of string.
WBSTOMBS() Returns length of string.

Stdlib.h functions included just for compliance with ANSI C.

301

ERROR MESSAGES

Compiler Error Messages

ENDIF with no corresponding #IF

Compiler found a #ENDIF directive without a corresponding #IF.
#ERROR
A #DEVICE required before this line
The compiler requires a #device before it encounters any statement or compiler directive that may cause it to
generate code. In general #defines may appear before a #device but not much more.

ADDRESSMOD function definition is incorrect

ADDRESSMOD range is invalid

A numeric expression must appear here
Some C expression (like 123, A or B+C) must appear at this spot in the code. Some expression that will evaluate to
a value.
Arrays of bits are not permitted
Arrays may not be of SHORT INT. Arrays of Records are permitted but the record size is always rounded up to the
next byte boundary.

Assignment invalid: value is READ ONLY

Attempt to create a pointer to a constant
Constant tables are implemented as functions. Pointers cannot be created to functions. For example CHAR
CONST MSG[9]={"HI THERE"}; is permitted, however you cannot use &MSG. You can only reference MSG with
subscripts such as MSG[i] and in some function calls such as Printf and STRCPY.
Attributes used may only be applied to a function (INLINE or SEPARATE)
An attempt was made to apply #INLINE or #SEPARATE to something other than a function.

Bad ASM syntax

Bad expression syntax
This is a generic error message. It covers all incorrect syntax.
Baud rate out of range
The compiler could not create code for the specified baud rate. If the internal UART is being used the combination of
the clock and the UART capabilities could not get a baud rate within 3% of the requested value. If the built in UART
is not being used then the clock will not permit the indicated baud rate. For fast baud rates, a faster clock will be
required.
BIT variable not permitted here
Addresses cannot be created to bits. For example &X is not permitted if X is a SHORT INT.

Branch out of range

Cannot change device type this far into the code
The #DEVICE is not permitted after code is generated that is device specific. Move the #DEVICE to an area before
code is generated.
Character constant constructed incorrectly
Generally this is due to too many characters within the single quotes. For example 'ab' is an error as is '\nr'. The
backslash is permitted provided the result is a single character such as '\010' or '\n'.
Constant out of the valid range
This will usually occur in inline assembly where a constant must be within a particular range and it is not. For example
BTFSC 3,9 would cause this error since the second operand must be from 0-8.

Data item too big

Define expansion is too large
A fully expanded DEFINE must be less than 255 characters. Check to be sure the DEFINE is not recursively defined.
Define syntax error
This is usually caused by a missing or misplaced (or) within a define.
Demo period has expired

PCD_March 2015-1

302

Please contact CCS to purchase a licensed copy.

www.ccsinfo.com/pricing
Different levels of indirection
This is caused by a INLINE function with a reference parameter being called with a parameter that is not a variable.
 Usually calling with a constant causes this.
Divide by zero
An attempt was made to divide by zero at compile time using constants.
Duplicate case value
Two cases in a switch statement have the same value.
Duplicate DEFAULT statements
The DEFAULT statement within a SWITCH may only appear once in each SWITCH. This error indicates a second
DEFAULT was encountered.
Duplicate function
A function has already been defined with this name. Remember that the compiler is not case sensitive unless a
#CASE is used.
Duplicate Interrupt Procedure
Only one function may be attached to each interrupt level. For example the #INT_RB may only appear once in each
program.
Element is not a member
A field of a record identified by the compiler is not actually in the record. Check the identifier spelling.
ELSE with no corresponding IF
Compiler found an ELSE statement without a corresponding IF. Make sure the ELSE statement always match with
the previous IF statement.
End of file while within define definition
The end of the source file was encountered while still expanding a define. Check for a missing).
End of source file reached without closing comment */ symbol
The end of the source file has been reached and a comment (started with /*) is still in effect. The */ is missing.
type are INT and CHAR.

Expect ;
Expect }
Expect CASE
Expect comma
Expect WHILE
Expecting *
Expecting :
Expecting <
Expecting =
Expecting >
Expecting a (
Expecting a , or)
Expecting a , or }
Expecting a .
Expecting a ; or ,
Expecting a ; or {
Expecting a close paren
Expecting a declaration
Expecting a structure/union
Expecting a variable
Expecting an =
Expecting a]
Expecting a {
Expecting an array
Expecting an identifier
Expecting function name
Expecting an opcode mnemonic
This must be a Microchip mnemonic such as MOVLW or BTFSC.
Expecting LVALUE such as a variable name or * expression
This error will occur when a constant is used where a variable should be. For example 4=5; will give this error.
Expecting a basic type
Examples of a basic type are INT and CHAR.

Error Messages

303

Expression must be a constant or simple variable
The indicated expression must evaluate to a constant at compile time. For example 5*3+1 is permitted but 5*x+1
where X is a INT is not permitted. If X were a DEFINE that had a constant value then it is permitted.
Expression must evaluate to a constant
The indicated expression must evaluate to a constant at compile time. For example 5*3+1 is permitted but 5*x+1
where X is a INT is not permitted. If X were a DEFINE that had a constant value then it is permitted.
Expression too complex
This expression has generated too much code for the compiler to handle for a single expression. This is very rare but
if it happens, break the expression up into smaller parts.

Too many assembly lines are being generated for a single C statement. Contact CCS to increase the internal limits.

EXTERNal symbol not found

EXTERNal symbol type mis-match

Extra characters on preprocessor command line
Characters are appearing after a preprocessor directive that do not apply to that directive. Preprocessor commands
own the entire line unlike the normal C syntax. For example the following is an error:
#PRAGMA DEVICE <PIC16C74> main() { int x; x=1;}

File cannot be opened
Check the filename and the current path. The file could not be opened.
File cannot be opened for write
The operating system would not allow the compiler to create one of the output files. Make sure the file is not marked
READ ONLY and that the compiler process has write privileges to the directory and file.
Filename must start with " or <
The correct syntax of a #include is one of the following two formats:
#include "filename.ext"

#include <filename.ext>

This error indicates neither a " or < was found after #include.
Filename must terminate with " or; msg:' '
The filename specified in a #include must terminate with a " if it starts with a ". It must terminate with a > if it starts
with a <.
Floating-point numbers not supported for this operation
A floating-point number is not permitted in the operation near the error. For example, ++F where F is a float is not
allowed.
Function definition different from previous definition
This is a mis-match between a function prototype and a function definition. Be sure that if a #INLINE or #SEPARATE
are used that they appear for both the prototype and definition. These directives are treated much like a type
specifier.

Function used but not defined
The indicated function had a prototype but was never defined in the program.
Identifier is already used in this scope
An attempt was made to define a new identifier that has already been defined.
Illegal C character in input file
A bad character is in the source file. Try deleting the line and re-typing it.

Import error

Improper use of a function identifier
Function identifiers may only be used to call a function. An attempt was made to otherwise reference a function. A
function identifier should have a (after it.
Incorrectly constructed label
This may be an improperly terminated expression followed by a label. For example:
x=5+

MPLAB:

Initialization of unions is not permitted
Structures can be initialized with an initial value but UNIONS cannot be.
Internal compiler limit reached
The program is using too much of something. An internal compiler limit was reached. Contact CCS and the limit may
be able to be expanded.
Internal Error - Contact CCS

PCD_March 2015-1

304

This error indicates the compiler detected an internal inconsistency. This is not an error with the source code;
although, something in the source code has triggered the internal error. This problem can usually be quickly
corrected by sending the source files to CCS so the problem can be re-created and corrected.

In the meantime if the error was on a particular line, look for another way to perform the same operation. The error
was probably caused by the syntax of the identified statement. If the error was the last line of the code, the problem
was in linking. Look at the call tree for something out of the ordinary.
Interrupt handler uses too much stack
Too many stack locations are being used by an interrupt handler.
Invalid conversion from LONG INT to INT
In this case, a LONG INT cannot be converted to an INT. You can type cast the LONG INT to perform a truncation.
 For example:
I = INT(LI);

Invalid interrupt directive
Invalid parameters to built in function
Built-in shift and rotate functions (such as SHIFT_LEFT) require an expression that evaluates to a constant to specify
the number of bytes.
Invalid Pre-Processor directive
The compiler does not know the preprocessor directive. This is the identifier in one of the following two places:
#xxxxx

#PRAGMA xxxxx

Invalid ORG range
The end address must be greater than or equal to the start address. The range may not overlap another range. The
range may not include locations 0-3. If only one address is specified it must match the start address of a previous
#org.

Invalid overload function

Invalid type conversion
Label not permitted here
Library in USE not found
The identifier after the USE is not one of the pre-defined libraries for the compiler. Check the spelling.
Linker Error: "%s" already defined in "%s"
Linker Error: ("%s'
Linker Error: Canont allocate memory for the section "%s" in the module "%s", because it overlaps with other
sections.
Linker Error: Cannot find unique match for symbol "%s"
Linker Error: Cannot open file "%s"
Linker Error: COFF file "%s" is corrupt; recompile module.
Linker Error: Not enough memory in the target to reallocate the section "%s" in the module "%s".
Linker Error: Section "%s" is found in the modules "%s" and "%s" with different section types.
Linker Error: Unknown error, contact CCS support.
Linker Error: Unresolved external symbol "%s" inside the module "%s".
Linker option no compatible with prior options.
Linker Warning: Section "%s" in module "%s" is declared as shared but there is no shared memory in the target chip.
The shared flag is ignored.
Linker option not compatible with prior options
Conflicting linker options are specified. For example using both the EXCEPT= and ONLY= options in the same
directive is not legal.
LVALUE required
This error will occur when a constant is used where a variable should be. For example 4=5; will give this error.
Macro identifier requires parameters
A #DEFINE identifier is being used but no parameters were specified, as required. For example:
#define min(x,y) ((x<y)?x:y)

When called MIN must have a (--,--) after it such as:
r=min(value, 6);

Macro is defined recursively
A C macro has been defined in such a way as to cause a recursive call to itself.
Missing #ENDIF
A #IF was found without a corresponding #ENDIF.
Missing or invalid .CRG file
The user registration file(s) are not part of the download software. In order for the software to run the files must be in
the same directory as the .EXE files. These files are on the original diskette, CD ROM or e-mail in a non-compressed

Error Messages

305

format. You need only copy them to the .EXE directory. There is one .REG file for each compiler (PCB.REG,
PCM.REG and PCH.REG).

More info:

Must have a #USE DELAY before this #USE

Must have a #USE DELAY before a #USE RS232
The RS232 library uses the DELAY library. You must have a #USE DELAY before you can do a #USE RS232.
No errors
The program has successfully compiled and all requested output files have been created.
No MAIN() function found
All programs are required to have one function with the name main().

No overload function matches

No valid assignment made to function pointer

Not enough RAM for all variables
The program requires more RAM than is available. The symbol map shows variables allocated. The call tree shows
the RAM used by each function. Additional RAM usage can be obtained by breaking larger functions into smaller
ones and splitting the RAM between them.

For example, a function A may perform a series of operations and have 20 local variables declared. Upon analysis, it
may be determined that there are two main parts to the calculations and many variables are not shared between the
parts. A function B may be defined with 7 local variables and a function C may be defined with 7 local variables.
 Function A now calls B and C and combines the results and now may only need 6 variables. The savings are
accomplished because B and C are not executing at the same time and the same real memory locations will be used
for their 6 variables (just not at the same time). The compiler will allocate only 13 locations for the group of functions
A, B, C where 20 were required before to perform the same operation.
Number of bits is out of range
For a count of bits, such as in a structure definition, this must be 1-8. For a bit number specification, such as in the
#BIT, the number must be 0-7.

Only integers are supported for this operation

Option invalid

Out of ROM, A segment or the program is too large
A function and all of the INLINE functions it calls must fit into one segment (a hardware code page). For example, on
the PIC16 chip a code page is 512 instructions. If a program has only one function and that function is 600
instructions long, you will get this error even though the chip has plenty of ROM left. The function needs to be split
into at least two smaller functions. Even after this is done, this error may occur since the new function may be only
called once and the linker might automatically INLINE it. This is easily determined by reviewing the call tree. If this
error is caused by too many functions being automatically INLINED by the linker, simply add a #SEPARATE before a
function to force the function to be SEPARATE. Separate functions can be allocated on any page that has room.
 The best way to understand the cause of this error is to review the call tree.

Parameters must be located in RAM

Parameters not permitted
An identifier that is not a function or preprocessor macro can not have a ' (' after it.
Pointers to bits are not permitted
Addresses cannot be created to bits. For example, &X is not permitted if X is a SHORT INT.
Previous identifier must be a pointer
A -> may only be used after a pointer to a structure. It cannot be used on a structure itself or other kind of variable.
Printf format type is invalid
An unknown character is after the % in a printf. Check the printf reference for valid formats.
Printf format (%) invalid
A bad format combination was used. For example, %lc.
Printf variable count (%) does not match actual count
The number of % format indicators in the printf does not match the actual number of variables that follow.
 Remember in order to print a single %, you must use %%.
Recursion not permitted
The linker will not allow recursive function calls. A function may not call itself and it may not call any other function
that will eventually re-call it.

PCD_March 2015-1

306

Recursively defined structures not permitted
A structure may not contain an instance of itself.
Reference arrays are not permitted
A reference parameter may not refer to an array.
Return not allowed in void function
A return statement may not have a value if the function is void.

RTOS call only allowed inside task functions

Selected part does not have ICD debug capability

STDOUT not defined (may be missing #RS 232)
An attempt was made to use a I/O function such as printf when no default I/O stream has been established. Add a
#USE RS232 to define a I/O stream.
Stream must be a constant in the valid range
I/O functions like fputc, fgetc require a stream identifier that was defined in a #USE RS232. This identifier must
appear exactly as it does when it was defined. Be sure it has not been redefined with a #define.
String too long
Structure field name required
A structure is being used in a place where a field of the structure must appear. Change to the form s.f where s is the
structure name and f is a field name.

Structures and UNIONS cannot be parameters (use * or &)
A structure may not be passed by value. Pass a pointer to the structure using &.
Subscript out of range
A subscript to a RAM array must be at least 1 and not more than 128 elements. Note that large arrays might not fit in
a bank. ROM arrays may not occupy more than 256 locations.
This linker function is not available in this compiler version.
Some linker functions are only available if the PCW or PCWH product is installed.
This type cannot be qualified with this qualifier
Check the qualifiers. Be sure to look on previous lines. An example of this error is:
VOID X;

Too many array subscripts
Arrays are limited to 5 dimensions.
Too many constant structures to fit into available space
Available space depends on the chip. Some chips only allow constant structures in certain places. Look at the last
calling tree to evaluate space usage. Constant structures will appear as functions with a @CONST at the beginning
of the name.
Too many elements in an ENUM
A max of 256 elements are allowed in an ENUM.

Too many fast interrupt handlers have been defined

Too many fast interrupt handlers have been identified
Too many nested #INCLUDEs
No more than 10 include files may be open at a time.
Too many parameters
More parameters have been given to a function than the function was defined with.
Too many subscripts
More subscripts have been given to an array than the array was defined with.
Type is not defined
The specified type is used but not defined in the program. Check the spelling.
Type specification not valid for a function
This function has a type specifier that is not meaningful to a function.

Undefined identifier

Undefined label that was used in a GOTO
There was a GOTO LABEL but LABEL was never encountered within the required scope. A GOTO cannot jump
outside a function.
Unknown device type
A #DEVICE contained an unknown device. The center letters of a device are always C regardless of the actual part
in use. For example, use PIC16C74 not PIC16RC74. Be sure the correct compiler is being used for the indicated
device. See #DEVICE for more information.
Unknown keyword in #FUSES

Error Messages

307

Check the keyword spelling against the description under #FUSES.
Unknown linker keyword
The keyword used in a linker directive is not understood.
Unknown type
The specified type is used but not defined in the program. Check the spelling.

User aborted compilation

USE parameter invalid
One of the parameters to a USE library is not valid for the current environment.
USE parameter value is out of range
One of the values for a parameter to the USE library is not valid for the current environment.

Variable never used

Variable of this data type is never greater than this constant

308

COMPILER WARNING MESSAGES

Compiler Warning Messages

#error/warning
Assignment inside relational expression
Although legal it is a common error to do something like if(a=b) when it was intended to do if(a==b).

Assignment to enum is not of the correct type.

This warning indicates there may be such a typo in this line:
Assignment to enum is not of the correct type
If a variable is declared as a ENUM it is best to assign to the variables only elements of the enum. For example:
 enum colors {RED,GREEN,BLUE} color;

 ...

 color = GREEN; // OK

 color = 1; // Warning 209

 color = (colors)1; //OK

Code has no effect
The compiler can not discern any effect this source code could have on the generated code. Some examples:
 1;

 a==b;

 1,2,3;

Condition always FALSE
This error when it has been determined at compile time that a relational expression will never be true. For example:
 int x;

 if(x>>9)

Condition always TRUE
This error when it has been determined at compile time that a relational expression will never be false. For example:
 #define PIN_A1 41

 ...

 if(PIN_A1) // Intended was: if(input(PIN_A1))

Function not void and does not return a value
Functions that are declared as returning a value should have a return statement with a value to be returned. Be
aware that in C only functions declared VOID are not intended to return a value. If nothing is specified as a function
return value "int" is assumed.
Duplicate #define
The identifier in the #define has already been used in a previous #define. To redefine an identifier use #UNDEF first.
 To prevent defines that may be included from multiple source do something like:

#ifndef ID

#define ID text

#endif

Feature not supported

Function never called

Function not void and does not return a value.

Info:

Interrupt level changed

Interrupts disabled during call to prevent re-entrancy.

Linker Warning: "%s" already defined in object "%s"; second definition ignored.
Linker Warning: Address and size of section "%s" in module "%s" exceeds maximum range for this processor. The
section will be ignored.

Compiler Warning Messages

309

Linker Warning: The module "%s" doesn't have a valid chip id. The module will be considered for the target chip
"%s".
Linker Warning: The target chip "%s" of the imported module "%s" doesn't match the target chip "%s" of the source.
Linker Warning: Unsupported relocation type in module "%s".

Memory not available at requested location.

Operator precedence rules may not be as intended, use() to clarify
Some combinations of operators are confusing to some programmers. This warning is issued for expressions where
adding() would help to clarify the meaning. For example:
 if(x << n + 1)

would be more universally understood when expressed:
 if(x << (n + 1))

Option may be wrong
Structure passed by value
Structures are usually passed by reference to a function. This warning is generated if the structure is being passed
by value. This warning is not generated if the structure is less than 5 bytes. For example:
 void myfunct(mystruct s1) // Pass by value - Warning

 myfunct(s2);

 void myfunct(mystruct * s1) // Pass by reference - OK

 myfunct(&s2);

 void myfunct(mystruct & s1) // Pass by reference - OK

 myfunct(s2);

Undefined identifier
The specified identifier is being used but has never been defined. Check the spelling.
Unprotected call in a #INT_GLOBAL
The interrupt function defined as #INT_GLOBAL is intended to be assembly language or very simple C code. This
error indicates the linker detected code that violated the standard memory allocation scheme. This may be caused
when a C function is called from a #INT_GLOBAL interrupt handler.
Unreachable code
Code included in the program is never executed. For example:
 if(n==5)

 goto do5;

 goto exit;

 if(n==20) // No way to get to this line

 return;

Unsigned variable is never less than zero
Unsigned variables are never less than 0. This warning indicates an attempt to check to see if an unsigned variable
is negative. For example the following will not work as intended:
 int i;

 for(i=10; i>=0; i--)

Variable assignment never used.

Variable of this data type is never greater than this constant
A variable is being compared to a constant. The maximum value of the variable could never be larger than the
constant. For example the following could never be true:
 int x; // 8 bits, 0-255

 if (x>300)

Variable never used
A variable has been declared and never referenced in the code.

Variable used before assignment is made.

310

COMMON QUESTIONS & ANSWERS

How are type conversions handled?

The compiler provides automatic type conversions when an assignment is performed. Some information may be lost
if the destination can not properly represent the source. For example: int8var = int16var; Causes the top byte of
int16var to be lost.

Assigning a smaller signed expression to a larger signed variable will result in the sign being maintained. For
example, a signed 8 bit int that is -1 when assigned to a 16 bit signed variable is still -1.

Signed numbers that are negative when assigned to a unsigned number will cause the 2's complement value to be
assigned. For example, assigning -1 to a int8 will result in the int8 being 255. In this case the sign bit is not extended
(conversion to unsigned is done before conversion to more bits). This means the -1 assigned to a 16 bit unsigned is
still 255.

Likewise assigning a large unsigned number to a signed variable of the same size or smaller will result in the value
being distorted. For example, assigning 255 to a signed int8 will result in -1.

The above assignment rules also apply to parameters passed to functions.

When a binary operator has operands of differing types then the lower order operand is converted (using the above
rules) to the higher. The order is as follows:

 Float

 Signed 32 bit

 Unsigned 32 bit

 Signed 16 bit

 Unsigned 16 bit

 Signed 8 bit

 Unsigned 8 bit

 1 bit

The result is then the same as the operands. Each operator in an expression is evaluated independently. For
example:

i32 = i16 - (i8 + i8)

The + operator is 8 bit, the result is converted to 16 bit after the addition and the - is 16 bit, that result is converted to
32 bit and the assignment is done. Note that if i8 is 200 and i16 is 400 then the result in i32 is 256. (200 plus 200 is
144 with a 8 bit +)

Explicit conversion may be done at any point with (type) inserted before the expression to be converted. For example
in the above the perhaps desired effect may be achieved by doing:

i32 = i16 - ((long)i8 + i8)

In this case the first i8 is converted to 16 bit, then the add is a 16 bit add and the second i8 is forced to 16 bit.

A common C programming error is to do something like:

i16 = i8 * 100;

When the intent was:
i16 = (long) i8 * 100;

Common Questions & Answers

311

Remember that with unsigned ints (the default for this compiler) the values are never negative. For example 2-4 is
254 (in 8 bit). This means the following is an endless loop since i is never less than 0:

int i;
for(i=100; i>=0; i--)

How can a constant data table be placed in ROM?

The compiler has support for placing any data structure into the device ROM as a constant read-only element. Since
the ROM and RAM data paths are separate , there are restrictions on how the data is accessed. For example, to
place a 10 element BYTE array in ROM use:
BYTE CONST TABLE [10]= {9,8,7,6,5,4,3,2,1,0};

and to access the table use:
x = TABLE [i];

OR
x = TABLE [5];

BUT NOT
ptr = &TABLE [i];

In this case, a pointer to the table cannot be constructed.

Similar constructs using CONST may be used with any data type including structures, longs and floats.

The following are two methods provided:

1. Efficient access with "const".

2. Pointer friendly "ROM" Qualifier, for example:

ROM BYTE TABLE[10] = {9,8,7,6,5,4,3,2,1,0}

and to access the table use:

x = TABLE[i];

or

PTR = &TABLE[i];

and

x = *PTR;

//Be sure not to mix RAM and ROM pointers. They are not interchangeable.

How can I use two or more RS-232 ports on one PIC®?

The #USE RS232 (and I2C for that matter) is in effect for GETC, PUTC, PRINTF and KBHIT functions encountered
until another #USE RS232 is found.

The #USE RS232 is not an executable line. It works much like a #DEFINE.

The following is an example program to read from one RS-232 port (A) and echo the data to both the first RS-232
port (A) and a second RS-232 port (B).

#USE RS232(BAUD=9600, XMIT=PIN_B0, RCV=PIN_B1)

void put_to_a(char c) {

 put(c);

}

char get_from_a() {

PCD_March 2015-1

312

 return(getc()); }

#USE RS232(BAUD=9600, XMIT=PIN_B2,RCV=PIN_B3)

void put_to_b(char b) {

 putc(c);

}

main() {

 char c;

 put_to_a("Online\n\r");

 put_to_b("Online\n\r");

 while(TRUE) {

 c=get_from_a();

 put_to_b(c);

 put_to_a(c);

 }

}

The following will do the same thing but is more readable and is the recommended method:

#USE RS232(BAUD=9600, XMIT=PIN_B0, RCV=PIN_B1, STREAM=COM_A)

#USE RS232(BAUD=9600, XMIT=PIN_B2, RCV=PIN_B3, STREAM=COM_B)

 main() {

 char c;

 fprintf(COM_A,"Online\n\r");

 fprintf(COM_B,"Online\n\r");

 while(TRUE) {

 c = fgetc(COM_A);

 fputc(c, COM_A);

 fputc(c, COM_B);

 }

 }

How do I directly read/write to internal registers?

A hardware register may be mapped to a C variable to allow direct read and write capability to the register. The
following is an example using the TIMER0 register:
#BYTE timer 1 = 0x 100

timer0= 128; //set timer0 to 128

while (timer 1 ! = 200); // wait for timer0 to reach 200

Bits in registers may also be mapped as follows:
#BIT T 1 IF = 0x 84.3

.

.

.

while (!T 1 IF); //wait for timer0 interrupt

Registers may be indirectly addressed as shown in the following example:
printf ("enter address:");

a = gethex ();

printf ("\r\n value is %x\r\n", *a);

The compiler has a large set of built-in functions that will allow one to perform the most common tasks with C function
calls. When possible, it is best to use the built-in functions rather than directly write to registers. Register locations
change between chips and some register operations require a specific algorithm to be performed when a register
value is changed. The compiler also takes into account known chip errata in the implementation of the built-in
functions. For example, it is better to do set_tris_ B (0); rather than *0x 02C6 =0;

Common Questions & Answers

313

How do I do a printf to a string?

The following is an example of how to direct the output of a printf to a string. We used the \f to indicate the start of the
string.

This example shows how to put a floating point number in a string.

main() {

 char string[20];

 float f;

 f=12.345;

 sprintf(string,"\f%6.3f",f);

}

How do I get getc() to timeout after a specified time?

GETC will always wait for a character to become available unless a timeout time is specified in the #use rs232().
The following is an example of how to setup the PIC to timeout when waiting for an RS232 character.

#include <18F4520.h>

#fuses HS,NOWDT

#use delay(clock=20MHz)

#use rs232(UART1,baud=9600,timeout=500) //timeout = 500 milliseconds, 1/2 second

void main()

{

 char c;

 while(TRUE)

 {

 c=getc(); //if getc() timeouts 0 is returned to c

 //otherwise receive character is returned to c

 if(c) //if not zero echo character back

 putc(c);

 //user to do code

 output_toggle(PIN_A5);

 }

}

How do I wait only a specified time for a button press?

The following is an example of how to wait only a specific time for a button press.

#define PUSH_BUTTON PIN_A4

int1 timeout_error;

int1 timed_get_button_press(void){

 int16 timeout;

 timeout_error=FALSE;

 timeout=0;

 while(input(PUSH_BUTTON) && (++timeout<50000)) // 1/2 second

 delay_us(10);

 if(!input(PUSH_BUTTON))

 return(TRUE); //button pressed

 else{

 timeout_error=TRUE;

 return(FALSE); //button not pressed timeout occurred

 }

PCD_March 2015-1

314

}

How do I write variables to EEPROM that are not a word?

The following is an example of how to read and write a floating point number from/to EEPROM. The same concept
may be used for structures, arrays or any other types.

• n is an offset into the EEPROM

WRITE_FLOAT-EEPROM(int16 n, float data) {

write_eeprom(n, data, sizeof(float));

}

float READ_FLOAT_EEPROM(int16 n) {

float data;

(int32)data = read_eeprom(n, sizeof(float));

return(data);

}

How does one map a variable to an I/O port?

Two methods are as follows:
#byte PORTB = 0x02C8 //Just an example, check the

#define ALL_OUT 0 //DATA sheet for the correct

#define ALL_IN 0xff //address for your chip

main() {

 int i;

 set_tris_b(ALL_OUT);

 PORTB = 0;// Set all pins low

 for(i=0;i<=127;++i) // Quickly count from 0 to 127

 PORTB=i; // on the I/O port pin

 set_tris_b(ALL_IN);

 i = PORTB; // i now contains the portb value.

}

Remember when using the #BYTE, the created variable is treated like memory. You must maintain the tri-state
control registers yourself via the SET_TRIS_X function. Following is an example of placing a structure on an I/O port:

struct port_b_layout

 {int data : 4;

 int rw : 1;

 int cd : 1;

 };

struct port_b_layout port_b;

#byte port_b = 0x02C8

struct port_b_layout const INIT_1 = {0, 1,1, };

struct port_b_layout const INIT_2 = {3, 1,1, };

struct port_b_layout const INIT_3 = {0, 0,0, };

struct port_b_layout const FOR_SEND = {0,0,0, };

 // All outputs

struct port_b_layout const FOR_READ = {15,0,0, };

 // Data is an input

main() {

 int x;

 set_tris_b((int)FOR_SEND); // The constant

 // structure is

 // treated like

Common Questions & Answers

315

 // a byte and

 // is used to

 // set the data

 // direction

 port_b = INIT_1;

 delay_us(25);

 port_b = INIT_2; // These constant structures delay_us(25);

 // are used to set all fields

 port_b = INIT_3; // on the port with a single

 // command

 set_tris_b((int)FOR_READ);

 port_b.rw=0;

 // Here the individual

 port_b.cd=1; // fields are accessed

 // independently.

 x = port_b.data;

}

How does the compiler determine TRUE and FALSE on
expressions?

When relational expressions are assigned to variables, the result is always 0 or 1.

For example:

bytevar = 5>0; //bytevar will be 1

bytevar = 0>5; //bytevar will be 0

The same is true when relational operators are used in expressions.

For example:

bytevar = (x>y)*4;

is the same as:

if(x>y)

 bytevar=4;

else

 bytevar=0;

SHORT INTs (bit variables) are treated the same as relational expressions. They evaluate to 0 or 1.

When expressions are converted to relational expressions or SHORT INTs, the result will be FALSE (or 0) when the
expression is 0, otherwise the result is TRUE (or 1).

For example:

bytevar = 54;

bitvar = bytevar; //bitvar will be 1 (bytevar ! = O)

if(bytevar) //will be TRUE

bytevar = 0;

bitvar = bytevar; //bitvar will be 0

PCD_March 2015-1

316

How does the PIC® connect to a PC?

A level converter should be used to convert the TTL (0-5V_ levels that the PIC® operates with to the RS-232 voltages
(+/- 3-12V) used by the PIC®. The following is a popular configuration using the MAX232 chip as a level converter.

How does the PIC® connect to an I2C device?

Two I/O lines are required for I2C. Both lines must have pullup registers. Often the I2C device will have a H/W
selectable address. The address set must match the address in S/W. The example programs all assume the
selectable address lines are grounded.

How much time do math operations take?

Unsigned 8 bit operations are quite fast and floating point is very slow. If possible consider fixed point instead of
floating point. For example instead of "float cost_in_dollars;" do "long cost_in_cents;". For trig formulas consider a

Common Questions & Answers

317

lookup table instead of real time calculations (see EX_SINE.C for an example). The following are some rough times
on a 24-bit PIC®. Note times will vary depending on memory banks used.

80mhz dsPIC33FJ (40MIPS)

int8
[us]

int16
[us]

int32
[us]

int48
[us]

int64
[us]

float32
[us]

float48
[us]

float 64
[us]

+ 0.075 0.75 0.175 0.275 0.375 3.450 3.825 5.025

- 0.125 0.125 0.200 0.350 0.400 3.375 3.725 5.225

* 0.175 0.100 1.150 1.850 1.975 2.450 2.950 4.525

/ 0.650 0.550 13.500 25.550 68.225 12.475 22.575 33.80

exp() * * * * * 70.675 158.55 206.125

ln() * * * * * 94.475 157.400 201.825

sin() * * * * * 77.875 136.925 184.225

What can be done about an OUT OF RAM error?

The compiler makes every effort to optimize usage of RAM. Understanding the RAM allocation can be a help in
designing the program structure. The best re-use of RAM is accomplished when local variables are used with lots of
functions. RAM is re-used between functions not active at the same time. See the NOT ENOUGH RAM error
message in this manual for a more detailed example.

RAM is also used for expression evaluation when the expression is complex. The more complex the expression, the
more scratch RAM locations the compiler will need to allocate to that expression. The RAM allocated is reserved
during the execution of the entire function but may be re-used between expressions within the function. The total
RAM required for a function is the sum of the parameters, the local variables and the largest number of scratch
locations required for any expression within the function. The RAM required for a function is shown in the call tree
after the RAM=. The RAM stays used when the function calls another function and new RAM is allocated for the new
function. However when a function RETURNS the RAM may be re-used by another function called by the parent.
Sequential calls to functions each with their own local variables is very efficient use of RAM as opposed to a large
function with local variables declared for the entire process at once.

Be sure to use SHORT INT (1 bit) variables whenever possible for flags and other boolean variables. The compiler
can pack eight such variables into one byte location. The compiler does this automatically whenever you use SHORT
INT. The code size and ROM size will be smaller.

Finally, consider an external memory device to hold data not required frequently. An external 8 pin EEPROM or
SRAM can be connected to the PIC® with just 2 wires and provide a great deal of additional storage capability. The
compiler package includes example drivers for these devices. The primary drawback is a slower access time to read
and write the data. The SRAM will have fast read and write with memory being lost when power fails. The EEPROM
will have a very long write cycle, but can retain the data when power is lost.

What is an easy way for two or more PICs® to communicate?

There are two example programs (EX_PBUSM.C and EX_PBUSR.C) that show how to use a simple one-wire
interface to transfer data between PICs®. Slower data can use pin B0 and the EXT interrupt. The built-in UART may
be used for high speed transfers. An RS232 driver chip may be used for long distance operations. The RS485 as well
as the high speed UART require 2 pins and minor software changes. The following are some hardware
configurations.

PCD_March 2015-1

318

What is an easy way for two or more PICs® to communicate?

There are two example programs (EX_PBUSM.C and EX_PBUSR.C) that show how to use a simple
one-wire interface to transfer data between PICs®. Slower data can use pin B0 and the EXT interrupt.
 The built-in UART may be used for high speed transfers. An RS232 driver chip may be used for long
distance operations. The RS485 as well as the high speed UART require 2 pins and minor software
changes. The following are some hardware configurations.

Common Questions & Answers

319

What is the format of floating point numbers?

The CCS PCD compiler uses the IEEE format for all the floating point number operations. The following floating point
numbers are supported:

• 32 bit floating point numbers – Single Precision
• 48 bit floating point numbers – Extended Precision
• 64 bit floating point numbers – Double Precision

The format of these numbers is as follows:

32 bit floating point numbers – Single Precision

Sign Exponent Ex Mantissa Mantissa

31 30 23 22 15------------0

• 23 bit Mantissa (Bit 0 – Bit 22)
• 8 bit exponent (Bit 23 – bit 30)
• 1 sign bit (Bit 31)

Example
Numbers

Representation
 Hex - 32 bit float

0 0000 0000

1 3F80 0000

-1 BF80 0000

10. 4120 0000

100 42C8 0000

123.45 42F6 E666

123.45E20 6427 4E53

213.45E-
20

21B6 2E17

 31 15 0

PCD_March 2015-1

320

48 bit floating point numbers –Extended Precision

Sign Exponent Mantissa Mantissa Mantissa

47 46 39 38 32 31 16 15 0

• 1 Sign bit – (Bit 47)
• 8 bit Exponent (Bits 39 – 46)
• 39 bit Mantissa (Bit 0 – bit 39)

Example
Numbers

Representation Hex -
64 bit float

1 3F80 0000 0000

 -1 BF80 0000 0000

10 4120 0000 0000

100 42C8 0000 0000

123.45 42F6 E666 6666

123.45E20 6427 4E52 9759

213.45E-
20

21B6 2E17 64FF

 47 31 15 --0

64 bit floating point numbers – Double Precision

Sign Exponent Mantissa Mantissa Mantissa

63 62 52 51 32 31 16 15 0

• 1 Sign bit – (Bit 47)
• 11 bit Exponent (Bits 52 – 62)
• 52 bit Mantissa (Bit 0 – bit 51)

Example
Numbers

Representation Hex - 64 bit float

0 0000 0000 0000 0000

1 3FF0 0000 0000 0000

 -1 BFF0 0000 0000 0000

10 4024 0000 0000 0000

100 4059 0000 0000 0000

123.45 405E DCCC CCCC CCCC

123.45E20 4484 E9CA 52EB 182A

213.45E-
20

3C36 C5C2 EC9F DBFD

 63 47 31 15 0

Why does the .LST file look out of order?

The list file is produced to show the assembly code created for the C source code. Each C source line has the
corresponding assembly lines under it to show the compiler’s work. The following three special cases make the .LST

file look strange to the first time viewer. Understanding how the compiler is working in these special cases will make
the .LST file appear quite normal and very useful.

Common Questions & Answers

321

1. Stray code near the top of the program is sometimes under what looks like a non-executable source line.

Some of the code generated by the compiler does not correspond to any particular source line. The compiler will put
this code either near the top of the program or sometimes under a #USE that caused subroutines to be generated.

2. The addresses are out of order.

The compiler will create the .LST file in the order of the C source code. The linker has re-arranged the code to
properly fit the functions into the best code pages and the best half of a code page. The resulting code is not in
source order. Whenever the compiler has a discontinuity in the .LST file, it will put a * line in the file. This is most
often seen between functions and in places where INLINE functions are called. In the case of an INLINE function, the
addresses will continue in order up where the source for the INLINE function is located.

3. The compiler has gone insane and generated the same instruction over and over.

For example:

...........A=0;

03F: CLRF 15

*

46:CLRF 15

*

051: CLRF 15

*

113: CLRF 15

This effect is seen when the function is an INLINE function and is called from more than one place. In the above
case, the A=0 line is in an INLINE function called in four places. Each place it is called from gets a new copy of the
code. Each instance of the code is shown along with the original source line, and the result may look unusual until the
addresses and the * are noticed.

Why is the RS-232 not working right?

1. The PIC® is Sending Garbage Characters.

A. Check the clock on the target for accuracy. Crystals are usually not a problem but RC oscillators can cause
trouble with RS-232. Make sure the #USE DELAY matches the actual clock frequency.

B. Make sure the PC (or other host) has the correct baud and parity setting.

C. Check the level conversion. When using a driver/receiver chip, such as the MAX 232, do not use INVERT
when making direct connections with resistors and/or diodes. You probably need the INVERT option in the
#USE RS232.

D. Remember that PUTC(6) will send an ASCII 6 to the PC and this may not be a visible character. PUTC('A')
will output a visible character A.

2. The PIC® is Receiving Garbage Characters.

A. Check all of the above.

3. Nothing is Being Sent.

A. Make sure that the tri-state registers are correct. The mode (standard, fast, fixed) used will be whatever the
mode is when the #USE RS232 is encountered. Staying with the default STANDARD mode is safest.

B. Use the following main() for testing:

main() {

 while(TRUE)

 putc('U');

PCD_March 2015-1

322

}

Check the XMIT pin for activity with a logic probe, scope or whatever you can. If you can look at it with a
scope, check the bit time (it should be 1/BAUD). Check again after the level converter.

4. Nothing is being received.

First be sure the PIC® can send data. Use the following main() for testing:

main() {

 printf("start");

 while(TRUE)

 putc(getc()+1);

}

When connected to a PC typing A should show B echoed back.
If nothing is seen coming back (except the initial "Start"), check the RCV pin on the PIC® with a logic
probe. You should see a HIGH state and when a key is pressed at the PC, a pulse to low. Trace back to find
out where it is lost.

5. The PIC® is always receiving data via RS-232 even when none is being sent.

A. Check that the INVERT option in the USE RS232 is right for your level converter. If the RCV pin is HIGH
when no data is being sent, you should NOT use INVERT. If the pin is low when no data is being sent, you
need to use INVERT.

B. Check that the pin is stable at HIGH or LOW in accordance with A above when no data is being sent.

C. When using PORT A with a device that supports the SETUP_ADC_PORTS function make sure the port is
set to digital inputs. This is not the default. The same is true for devices with a comparator on PORT A.

6. Compiler reports INVALID BAUD RATE.

A. When using a software RS232 (no built-in UART), the clock cannot be really slow when fast baud rates
are used and cannot be really fast with slow baud rates. Experiment with the clock/baud rate values to find
your limits.

B. When using the built-in UART, the requested baud rate must be within 3% of a rate that can be achieved
for no error to occur. Some parts have internal bugs with BRGH set to 1 and the compiler will not use this
unless you specify BRGH1OK in the #USE RS232 directive.

323

EXAMPLE PROGRAMS

EXAMPLE PROGRAMS

A large number of example programs are included with the software. The following is a list of many of the programs
and some of the key programs are re-printed on the following pages. Most programs will work with any chip by just
changing the #INCLUDE line that includes the device information. All of the following programs have wiring
instructions at the beginning of the code in a comment header. The SIOW.EXE program included in the program
directory may be used to demonstrate the example programs. This program will use a PC COM port to communicate
with the target.

Generic header files are included for the standard PIC® parts. These files are in the DEVICES directory. The pins of
the chip are defined in these files in the form PIN_B2. It is recommended that for a given project, the file is copied to a
project header file and the PIN_xx defines be changed to match the actual hardware. For example; LCDRW
(matching the mnemonic on the schematic). Use the generic include files by placing the following in your main .C file:
#include <16C74.H>

LIST OF COMPLETE EXAMPLE PROGRAMS (in the EXAMPLES directory)

EX_1920.C

Uses a Dallas DS1920 button to read temperature

EX_AD12.C

Shows how to use an external 12 bit A/D converter

EX_ADMM.C

A/D Conversion example showing min and max analog readings

EX_ADMM10.C

Similar to ex_admm.c, but this uses 10bit A/D readings.

EX_ADMM_STATS.C

Similar to ex_admm.c, but this uses also calculates the mean and standard deviation.

EX_BOOTLOAD.C

A stand-alone application that needs to be loaded by a bootloader (see ex_bootloader.c for a bootloader).

EX_BOOTLOADER.C

A bootloader, loads an application onto the PIC (see ex_bootload.c for an application).

EX_CAN.C

Receive and transmit CAN packets.

EX_CHECKSUM.C

Determines the checksum of the program memory, verifies it agains the checksum that was written to the USER ID
location of the PIC.

EX_COMP.C

Uses the analog comparator and voltage reference available on some PIC 24 s

EX_CRC.C

Calculates CRC on a message showing the fast and powerful bit operations

EX_CUST.C

Change the nature of the compiler using special preprocessor directives

PCD_March 2015-1

324

EX_FIXED.C

Shows fixed point numbers

EX_DPOT.C

Controls an external digital POT

EX_DTMF.C

Generates DTMF tones

EX_ENCOD.C

Interfaces to an optical encoder to determine direction and speed

EX_EXPIO.C

Uses simple logic chips to add I/O ports to the PIC

EX_EXSIO.C

Shows how to use a multi-port external UART chip

EX_EXTEE.C

Reads and writes to an external EEPROM

EX_EXTDYNMEM.C

Uses addressmod to create a user defined storage space, where a new qualifier is created that reads/writes to an
extrenal RAM device.

EX_FAT.C

An example of reading and writing to a FAT file system on an MMC/SD card.

EX_FLOAT.C

Shows how to use basic floating point

EX_FREQC.C

A 50 mhz frequency counter

EX_GLCD.C

Displays contents on a graphic LCD, includes shapes and text.

EX_GLINT.C

Shows how to define a custom global interrupt hander for fast interrupts

EX_HUMIDITY.C

How to read the humidity from a Humirel HT3223/HTF3223 Humidity module

EX_ICD.C

Shows a simple program for use with Microchips ICD debugger

EX_INPUTCAPTURE.C

Uses the PIC input capture module to measure a pulse width

EX_INTEE.C

Reads and writes to the PIC internal EEPROM

EX_LCDKB.C

Displays data to an LCD module and reads data for keypad

EX_LCDTH.C

Shows current, min and max temperature on an LCD

EX_LED.C

Drives a two digit 7 segment LED

Example Programs

325

EX_LOAD.C

Serial boot loader program

EX_LOGGER.C

A simple temperature data logger, uses the flash program memory for saving data

EX_MACRO.C

Shows how powerful advanced macros can be in C

EX_MALLOC.C

An example of dynamic memory allocation using malloc().

EX_MCR.C

An example of reading magnetic card readers.

EX_MMCSD.C

An example of using an MMC/SD media card as an external EEPROM. To use this card with a FAT file system, see
ex_fat.c

EX_MODBUS_MASTER.C

An example MODBUS application, this is a master and will talk to the ex_modbus_slave.c example.

EX_MODBUS_SLAVE.C

An example MODBUS application, this is a slave and will talk to the ex_modbus_master.c example.

EX_MOUSE.C

Shows how to implement a standard PC mouse on a PIC

EX_MXRAM.C

Shows how to use all the RAM on parts with problem memory allocation

EX_OUTPUTCOMPARE.C

Generates a precision pulse using the PIC output compare module.

EX_PATG.C

Generates 8 square waves of different frequencies

EX_PBUSM.C

Generic PIC to PIC message transfer program over one wire

EX_PBUSR.C

Implements a PIC to PIC shared RAM over one wire

EX_PBUTT.C

Shows how to use the B port change interrupt to detect pushbuttons

EX_PGEN.C

Generates pulses with period and duty switch selectable

EX_PLL.C

Interfaces to an external frequency synthesizer to tune a radio

EX_PSP.C

Uses the PIC PSP to implement a printer parallel to serial converter

EX_PULSE.C

Measures a pulse width using timer0

EX_PWM.C

Uses the PIC output compare module to generate a PWM pulse stream.

EX_QSORT.C

PCD_March 2015-1

326

An example of using the stdlib function qsort() to sort data. Pointers to functions is used by qsort() so the user can
specify their sort algorithm.

EX_REACT.C

Times the reaction time of a relay closing using the input capture module.

EX_RFID.C

An example of how to read the ID from a 125kHz RFID transponder tag.

EX_RMSDB.C

Calculates the RMS voltage and dB level of an AC signal

EX_RS485.C

An application that shows a multi-node communication protocol commonly found on RS-485 busses.

EX_RTC.C

Sets and reads an external Real Time Clock using RS232

EX_RTCLK.C

Sets and reads an external Real Time Clock using an LCD and keypad

EX_RTCTIMER.C

How to use the PIC's hardware timer as a real time clock.

EX_RTOS_DEMO_X.C

9 examples are provided that show how to use CCS's built-in RTOS (Real Time Operating System).

EX_SINE.C

Generates a sine wave using a D/A converter

EX_SISR.C

Shows how to do RS232 serial interrupts

EX_STISR.C

Shows how to do RS232 transmit buffering with interrupts

EX_SLAVE.C

Simulates an I2C serial EEPROM showing the PIC slave mode

EX_SPEED.C

Calculates the speed of an external object like a model car

EX_SPI.C

Communicates with a serial EEPROM using the H/W SPI module

EX_SPI_SLAVE.C

How to use the PIC's MSSP peripheral as a SPI slave. This example will talk to the ex_spi.c example.

EX_SQW.C

Simple Square wave generator

EX_SRAM.C

Reads and writes to an external serial RAM

EX_STEP.C

Drives a stepper motor via RS232 commands and an analog input

EX_STR.C

Shows how to use basic C string handling functions

EX_STWT.C

A stop Watch program that shows how to user a timer interrupt

Example Programs

327

EX_SYNC_MASTER.C
EX_SYNC_SLAVE.C

An example of using the USART of the PIC in synchronous mode. The master and slave examples talk to each
other.

EX_TANK.C

Uses trig functions to calculate the liquid in a odd shaped tank

EX_TEMP.C

Displays (via RS232) the temperature from a digital sensor

EX_TGETC.C

Demonstrates how to timeout of waiting for RS232 data

EX_TONES.C

Shows how to generate tones by playing "Happy Birthday"

EX_TOUCH.C

Reads the serial number from a Dallas touch device

EX_USB_HID.C

Implements a USB HID device on the PIC16C765 or an external USB chip

EX_USB_SCOPE.C

Implements a USB bulk mode transfer for a simple oscilloscope on an ext ernal USB chip

EX_USB_KBMOUSE.C
EX_USB_KBMOUSE2.C

Examples of how to implement 2 USB HID devices on the same device, by combining a mouse and keyboard.

EX_USB_SERIAL.C
EX_USB_SERIAL2.C

Examples of using the CDC USB class to create a virtual COM port for backwards compatability with legacy software.

EX_VOICE.C

Self learning text to voice program

EX_WAKUP.C

Shows how to put a chip into sleep mode and wake it up

EX_WDTDS.C

Shows how to use the dsPIC30/dsPIC33/PIC24 watchdog timer

EX_X10.C

Communicates with a TW523 unit to read and send power line X10 codes

EX_EXTA.C

The XTEA encryption cipher is used to create an encrypted link between two PICs.

LIST OF INCLUDE FILES (in the DRIVERS directory)

2401.C

Serial EEPROM functions

2402.C

Serial EEPROM functions

2404.C

Serial EEPROM functions

2408.C

PCD_March 2015-1

328

Serial EEPROM functions

24128.C

Serial EEPROM functions

2416.C

Serial EEPROM functions

24256.C

Serial EEPROM functions

2432.C

Serial EEPROM functions

2465.C

Serial EEPROM functions

25160.C

Serial EEPROM functions

25320.C

Serial EEPROM functions

25640.C

Serial EEPROM functions

25C080.C

Serial EEPROM functions

68HC68R1

C Serial RAM functions

68HC68R2.C

Serial RAM functions

74165.C

Expanded input functions

74595.C

Expanded output functions

9346.C

Serial EEPROM functions

9356.C

Serial EEPROM functions

9356SPI.C

Serial EEPROM functions (uses H/W SPI)

9366.C

Serial EEPROM functions

AD7705.C

A/D Converter functions

AD7715.C

A/D Converter functions

AD8400.C

Digital POT functions

Example Programs

329

ADS8320.C

A/D Converter functions

ASSERT.H

Standard C error reporting

AT25256.C

Serial EEPROM functions

AT29C1024.C

Flash drivers for an external memory chip

CRC.C

CRC calculation functions

CE51X.C

Functions to access the 12CE51x EEPROM

CE62X.C

Functions to access the 12CE62x EEPROM

CE67X.C

Functions to access the 12CE67x EEPROM

CTYPE.H

Definitions for various character handling functions

DS1302.C

Real time clock functions

DS1621.C

Temperature functions

DS1621M.C

Temperature functions for multiple DS1621 devices on the same bus

DS1631.C

Temperature functions

DS1624.C

Temperature functions

DS1868.C

Digital POT functions

ERRNO.H

Standard C error handling for math errors

FLOAT.H

Standard C float constants

FLOATEE.C

Functions to read/write floats to an EEPROM

INPUT.C

Functions to read strings and numbers via RS232

ISD4003.C

Functions for the ISD4003 voice record/playback chip

KBD.C

Functions to read a keypad

PCD_March 2015-1

330

LCD.C

LCD module functions

LIMITS.H

Standard C definitions for numeric limits

LMX2326.C

PLL functions

LOADER.C

A simple RS232 program loader

LOCALE.H

Standard C functions for local language support

LTC1298.C

12 Bit A/D converter functions

MATH.H

Various standard trig functions

MAX517.C

D/A converter functions

MCP3208.C

A/D converter functions

NJU6355.C

Real time clock functions

PCF8570.C

Serial RAM functions

SC28L19X.C

Driver for the Phillips external UART (4 or 8 port)

SETJMP.H

Standard C functions for doing jumps outside functions

STDDEF.H

Standard C definitions

STDIO.H

Not much here - Provided for standard C compatibility

STDLIB.H

String to number functions

STDLIBM.H

Standard C memory management functions

STRING.H

Various standard string functions

TONES.C

Functions to generate tones

TOUCH.C

Functions to read/write to Dallas touch devices

USB.H

Example Programs

331

Standard USB request and token handler code

USBN960X.C

Functions to interface to Nationals USBN960x USB chips

USB.C

USB token and request handler code, Also includes usb_desc.h and usb.h

X10.C

Functions to read/write X10 codes

332

SOFTWARE LICENSE AGREEMENT

SOFTWARE LICENSE AGREEMENT

Carefully read this Agreement prior to opening this package. By opening this
package, you agree to abide by the following provisions.
If you choose not to accept these provisions, promptly return the unopened
package for a refund.

All materials supplied herein are owned by Custom Computer Services, Inc. (“CCS”)
and is protected by copyright law and international copyright treaty. Software shall
include, but not limited to, associated media, printed materials, and electronic
documentation.

These license terms are an agreement between You (“Licensee”) and CCS for use
of the Software (“Software”). By installation, copy, download, or otherwise use of the
Software, you agree to be bound by all the provisions of this License Agreement.

1. LICENSE - CCS grants Licensee a license to use in one of the two following
options:
1) Software may be used solely by single-user on multiple computer systems;
2) Software may be installed on single-computer system for use by multiple
users. Use of Software by additional users or on a network requires payment of
additional fees.

Licensee may transfer the Software and license to a third party; and such third
party will be held to the terms of this Agreement. All copies of Software must be
transferred to the third party or destroyed. Written notification must be sent to
CCS for the transfer to be valid.

2. APPLICATIONS SOFTWARE - Use of this Software and derivative programs
created by Licensee shall be identified as Applications Software, are not subject
to this Agreement. Royalties are not be associated with derivative programs.

3. WARRANTY - CCS warrants the media to be free from defects in material and
workmanship, and that the Software will substantially conform to the related
documentation for a period of thirty (30) days after the date of purchase. CCS
does not warrant that the Software will be free from error or will meet your
specific requirements. If a breach in warranty has occurred, CCS will refund the
purchase price or substitution of Software without the defect.

4. LIMITATION OF LIABILITY AND DISCLAIMER OF WARRANTIES – CCS and
its suppliers disclaim any expressed warranties (other than the warranty

Software License Agreement

333

contained in Section 3 herein), all implied warranties, including, but not limited to,
the implied warranties of merchantability, of satisfactory quality, and of fitness for
a particular purpose, regarding the Software.

Neither CCS, nor its suppliers, will be liable for personal injury, or any incidental,
special, indirect or consequential damages whatsoever, including, without
limitation, damages for loss of profits, loss of data, business interruption, or any
other commercial damages or losses, arising out of or related to your use or
inability to use the Software.

Licensee is responsible for determining whether Software is suitable for
Applications.

©1994-2015 Custom Computer Services, Inc.
ALL RIGHTS RESERVED WORLDWIDE

PO BOX 2452

BROOKFIELD, WI 53008 U.S.A.

