ORDERING INFORMATION

AXG 0 J

7: Socket
8: Header

Number of pins (2 digits)
Mated height
<Socket>/<Header>
0: 0.6 mm

Functions
J: 3A type Power terminal

Surface treatment (Contact portion / Terminal portion)
<Socket>
7: Base: Ni plating, Surface: Au plating (for Ni barrier available)
<Header>
4: Base: Ni plating, Surface: Au plating

FEATURES
1. 0.6 mm Mated Height with 2.2 mm width.
2. Supports 3A power terminals
3. A slim 2.2 mm (width) design provides space-saving benefits. The actual footprint is reduced by 34%, when compared to a 40 pin A4F.
4. “TOUGH CONTACT” structure provides a slim and low-profile design resistant to various environmental conditions.
5. Power terminal type means power line is ensured without having to use signal line. Contributes to space savings

APPLICATIONS
Multiple connection of power signal between USB and battery in portable terminals such as smartphones and tablet PCs

RoHS compliant
PRODUCT TYPES

<table>
<thead>
<tr>
<th>Mated height</th>
<th>Number of pins</th>
<th>Part number Socket</th>
<th>Part number Header</th>
<th>Packing</th>
<th>Packing</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6mm</td>
<td>10</td>
<td>AXG7100J7</td>
<td>AXG8100J4</td>
<td>10,000 pieces</td>
<td>20,000 pieces</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>AXG7120J7</td>
<td>AXG8120J4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>AXG7160J7</td>
<td>AXG8160J4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>AXG7200J7</td>
<td>AXG8200J4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>AXG7240J7</td>
<td>AXG8240J4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>AXG7300J7</td>
<td>AXG8300J4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>AXG7340J7</td>
<td>AXG8340J4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>AXG7400J7</td>
<td>AXG8400J4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>AXG7500J7</td>
<td>AXG8500J4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>AXG7600J7</td>
<td>AXG8600J4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. Order unit:
 - For volume production: 1-inner carton (1-reel) units
 - For samples, please contact our sales office.

2. Please contact us for connectors having a number of pins other than those listed above.

SPECIFICATIONS

1. Characteristics

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated current</td>
<td>3.0A/pin contact (power terminal)</td>
<td></td>
</tr>
<tr>
<td>0.30A/pin contact (signal terminal): Max. 5 A at total pin contacts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated voltage</td>
<td>60V AC/DC</td>
<td></td>
</tr>
<tr>
<td>Breakdown voltage</td>
<td>150V AC for 1 min.</td>
<td>No short-circuiting or damage at a detection current of 1 mA when the specified voltage is applied for one minute.</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>Min. 1,000MΩ (initial)</td>
<td>Using 250V DC megger (applied for 1 min.)</td>
</tr>
<tr>
<td>Contact resistance</td>
<td>Max. 30mΩ (power terminal)</td>
<td>Based on the contact resistance measurement method specified by JIS C 5402.</td>
</tr>
<tr>
<td>90mΩ (signal terminal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite insertion force</td>
<td>1.300N/pin contacts x pin contacts</td>
<td></td>
</tr>
<tr>
<td>Composite removal force</td>
<td>0.165N/pin contacts x pin contacts</td>
<td></td>
</tr>
<tr>
<td>Contact holding force (Socket signal terminal, Header power terminal)</td>
<td>Min. 0.20N/pin contacts</td>
<td>Measuring the maximum force.</td>
</tr>
<tr>
<td>5 cycles, insulation resistance min. 100MΩ, contact resistance max. 30mΩ (power terminal) max. 90mΩ (signal terminal)</td>
<td></td>
<td>As the contact is axially pull out.</td>
</tr>
<tr>
<td>Environmental characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>–55°C to +85°C</td>
<td>No freezing at low temperatures. No dew condensation.</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>–55°C to +85°C (product only)</td>
<td>No freezing at low temperatures. No dew condensation.</td>
</tr>
<tr>
<td>–40°C to +50°C (emboss packing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal shock resistance (header and socket mated)</td>
<td>5 cycles, insulation resistance min. 100MΩ, contact resistance max. 30mΩ (power terminal) max. 90mΩ (signal terminal)</td>
<td>Conformed to MIL-STD-202F, method 107G</td>
</tr>
<tr>
<td>Humidity resistance (header and socket mated)</td>
<td>120 hours, insulation resistance min. 100MΩ, contact resistance max. 30mΩ (power terminal) max. 90mΩ (signal terminal)</td>
<td>Conformed to IEC60068-2-78, Bath temperature 40°C, humidity 90 to 95% R.H.</td>
</tr>
<tr>
<td>Saltwater spray resistance (header and socket mated)</td>
<td>24 hours, insulation resistance min. 100MΩ, contact resistance max. 30mΩ (power terminal) max. 90mΩ (signal terminal)</td>
<td>Conformed to IEC60068-2-11, Bath temperature 35°C, saltwater concentration 5x1%</td>
</tr>
<tr>
<td>H2S resistance (header and socket mated)</td>
<td>48 hours, contact resistance max. 30mΩ (power terminal) max. 90mΩ (signal terminal)</td>
<td>Bath temperature 40°C, gas concentration 3x1 ppm, humidity 75 to 80% R.H.</td>
</tr>
<tr>
<td>Insertion and removal life</td>
<td>Mechanical life: 30 times Contact resistance max. 30mΩ (power terminal) max. 90mΩ (signal terminal) Composite removal force 0.165N/pin contacts x pin contacts</td>
<td>Repeated insertion and removal speed of max. 200 times/ hours</td>
</tr>
<tr>
<td>Soldering heat resistance</td>
<td>The initial specification must be satisfied electrically and mechanically</td>
<td>Infrared reflow soldering: Peak temperature: 260°C or less (on the surface of the PC board around the connector terminals) Soldering iron: 300°C within 5 sec. 350°C within 3 sec.</td>
</tr>
<tr>
<td>Unit weight</td>
<td>60 pin contacts: Socket 0.02g Header 0.01g</td>
<td></td>
</tr>
</tbody>
</table>

2. Material and surface treatment

<table>
<thead>
<tr>
<th>Part name</th>
<th>Material</th>
<th>Surface treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molded portion</td>
<td>LCP resin (UL94V-0)</td>
<td>—</td>
</tr>
<tr>
<td>Contact and Post</td>
<td>Copper alloy</td>
<td>—</td>
</tr>
</tbody>
</table>

Contact portion: Base: Ni plating, Surface: Au plating
Terminal portion: Base: Ni plating, Surface: Au plating (except the terminal tips)
 - The terminals close to the portion to be soldered have nickel barriers (exposed nickel portions).
 - Power terminals: Sockets: Base: Ni plating, Surface: Au plating (except the terminal tips)
 - Headers: Base: Ni plating, Surface: Au plating
Narrow pitch connectors A35US with power terminal (0.35mm pitch)

DIMENSIONS (Unit: mm)

Socket (Mated height: 0.6 mm)

The CAD data of the products with a [CAD Data] mark can be downloaded from: http://industrial.panasonic.com/ac/e/

Socket

- The degree of terminal flat: 0.08
- Dimensions:
 - A: 0.35 ±0.05
 - B: 0.12 ±0.05
 - C: 0.18 ±0.07

Header

- The degree of terminal flat: 0.08
- Dimensions:
 - A: 0.35 ±0.05
 - B: 0.12 ±0.05
 - C: 0.18 ±0.07

General tolerance: ±0.2

Note: Since power terminals are built into the body, the Y and Z parts are connected electrically.

Dimension table (mm)

<table>
<thead>
<tr>
<th>Number of pins/dimension</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4.25</td>
<td>1.40</td>
<td>3.45</td>
</tr>
<tr>
<td>12</td>
<td>4.60</td>
<td>1.75</td>
<td>3.80</td>
</tr>
<tr>
<td>16</td>
<td>5.30</td>
<td>2.45</td>
<td>4.50</td>
</tr>
<tr>
<td>20</td>
<td>6.00</td>
<td>3.15</td>
<td>5.20</td>
</tr>
<tr>
<td>24</td>
<td>6.70</td>
<td>3.85</td>
<td>5.90</td>
</tr>
<tr>
<td>30</td>
<td>7.75</td>
<td>4.90</td>
<td>6.95</td>
</tr>
<tr>
<td>34</td>
<td>8.45</td>
<td>5.60</td>
<td>7.65</td>
</tr>
<tr>
<td>40</td>
<td>9.50</td>
<td>6.65</td>
<td>8.70</td>
</tr>
<tr>
<td>50</td>
<td>11.25</td>
<td>8.40</td>
<td>10.45</td>
</tr>
<tr>
<td>60</td>
<td>13.00</td>
<td>10.15</td>
<td>12.20</td>
</tr>
</tbody>
</table>

Socket and Header are mated
EMBOSSED TAPE DIMENSIONS (Unit: mm)

- **Specifications for taping**
 (In accordance with JIS C 0806-3:1999. However, not applied to the mounting-hole pitch of some connectors.)

- **Specifications for the plastic reel**
 (In accordance with EIAJ ET-7200B.)

Dimension table (Unit: mm)

<table>
<thead>
<tr>
<th></th>
<th>Type of taping</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Quantity per reel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socket</td>
<td>Max. 30</td>
<td>16.0</td>
<td>7.5</td>
<td>17.4</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>34 to 60</td>
<td>24.0</td>
<td>11.5</td>
<td>25.4</td>
<td>10,000</td>
</tr>
<tr>
<td>Header</td>
<td>Max. 34</td>
<td>16.0</td>
<td>7.5</td>
<td>17.4</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>40 to 60</td>
<td>24.0</td>
<td>11.5</td>
<td>25.4</td>
<td>10,000</td>
</tr>
</tbody>
</table>

Connector orientation with respect to embossed tape feeding direction

<table>
<thead>
<tr>
<th>Direction of tape progress</th>
<th>Type</th>
<th>Common for A35US with power terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Socket</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Header</td>
</tr>
</tbody>
</table>

Note: There is no indication on this product regarding top-bottom or left-right orientation.
1. Design of PC board patterns
Conduct the recommended foot pattern design, in order to preserve the mechanical strength of terminal solder areas.

2. Recommended PC board and metal mask patterns
Connectors are mounted with high pitch density, intervals of 0.35 mm, 0.4 mm or 0.5 mm. In order to reduce solder and flux rise, solder bridges and other issues make sure the proper levels of solder is used. The figures to the right are recommended metal mask patterns. Please use them as a reference.

Please refer to the latest product specifications when designing your product.
For board-to-board/board-to-FPC
Notes on Using Narrow pitch Connectors/Stacking Connectors for High Current

About safety remarks
Observe the following safety precautions to prevent accidents and injuries.
1) Do not use these connectors beyond the specified ranges. The use of the product outside of the specified rated current and breakdown voltage ranges may cause abnormal heating, smoke, and fire.
2) In order to avoid accidents, make sure you have thoroughly reviewed the specifications and the operation manual before use. Please consult us if you plan to use the product in a way not covered by the specifications. Otherwise, the quality cannot be guaranteed.
3) We are consistently striving to improve quality and reliability. However, the fact remains that electrical components and devices generally cause failures at a given statistical probability. Furthermore, their durability varies with use environments or use conditions. In this respect, we ask you to check for actual electrical components and devices under actual conditions before use without fail. Continuously using them in a state of degraded performance may cause deterioration in insulation performance, thus resulting in abnormal heat generation, smoke generation, or firing. We ask you to carry out safety design including redundancy design, design for fire spread prevention, and design for malfunction prevention as well as periodic maintenance so that no accidents resulting in injury or death, fire accidents, or social damage will be caused as a result of our product failure or service life.

Regarding the design of devices and PC board patterns
1) When using the board to board connectors, do not connect a pair of board with multiple connectors. Otherwise, misaligned connector positions may cause mating failure or product breakage.
2) With mounting equipment, there may be up to ±0.2 to 0.3-mm error in positioning. Be sure to design PC boards and patterns while taking into consideration the performance and abilities of the required equipment.
3) Some connectors have tabs embossed on the body to aid in positioning. When using these connectors, make sure that the PC board is designed with positioning holes to match these tabs.
4) To ensure the required mechanical strength when soldering the connector terminals, make sure the PC board meets recommended PC board pattern design dimensions given.
5) PC board
Control the thicknesses of the coverlay and adhesive to prevent poor soldering. This connector has no stand-off. Therefore, minimize the thickness of the backside of the connector area.
6) For all connectors of the narrow pitch series, to prevent the PC board from coming off during vibrations or impacts, and to prevent loads from falling directly on the soldered portions, be sure to design some means to fix the PC board in place.

Example) Secure in place with screws

When connecting PC boards, take appropriate measures to prevent the connector from coming off.
7) Notes when using a FPC.
• Due to its flexibility, a FPC board may make the connector terminal soldering connection weak. In order to strengthen the connection and prevent the peeling off of terminal soldering, a stiffener is strongly recommended to be attached to the backside of the connector area.

Regarding the selection of the connector placement machine and the mounting procedures
1) Select the placement machine taking into consideration the connector height, required positioning accuracy, and packaging conditions.
2) Be aware that if the catching force of the placement machine is too great, it may deform the shape of the connector body or connector terminals.
3) Be aware that during mounting, external forces may be applied to the connector contact surfaces and terminals and cause deformations.
4) Depending on the size of the connector being used, self alignment may not be possible. In such cases, be sure to carefully position the terminal with the PC board pattern.
5) The positioning bosses give an approximate alignment for positioning on the PC board. For accurate positioning of the connector when mounting it to the PC board, we recommend using an automatic positioning machine.
6) Excessive mounter chucking force may deform the molded or metal part of the connector. Consult us in advance if chucking is to be applied.
Regarding soldering

- **Reflow soldering**
 1) Measure the recommended profile temperature for reflow soldering by placing a sensor on the PC board near the connector surface or terminals. (Please refer to the specification for detail because the temperature setting differs by products.)
 2) As for cream solder printing, screen printing is recommended.
 3) When setting the screen opening area and PC board foot pattern area, refer the recommended PC board pattern and window size of metal mask on the specification sheet, and make sure that the size of board pattern and metal mask at the base of the terminals are not increased.
 4) Please pay attentions not to provide too much solder. It makes miss mating because of interference at soldering portion when mating.
 5) When mounting on both sides of the PC board and the connector is mounting on the underside, use adhesives or other means to ensure the connector is properly fixed to the PC board. (Double reflow soldering on the same side is possible.)
 6) The condition of solder or flux rise and wettability varies depending on the type of solder and flux. Solder and flux characteristics should be taken into consideration and also set the reflow temperature and oxygen level.
 7) Do not use resin-containing solder. Otherwise, the contacts might be firmly fixed.
 8) The temperature profiles given in this catalog are values measured when using the connector on a resin-based PC board. When performed reflow soldering on a metal board (iron, aluminum, etc.) or a metal table to mount on a FPC, make sure there is no deformation or discoloration of the connector before mounting.
 9) Consult us when using a screen-printing thickness other than that recommended.

- **Soldering conditions**
 Please use the reflow temperature profile conditions recommended below for reflow soldering. Please contact us before using a temperature profile other than that described below (e.g. lead-free solder).

- **Narrow pitch connectors (except P8 type)**

 - **Soldering conditions**
 Please use the reflow temperature profile conditions as recommended below for reflow soldering. Please contact us before using a temperature profile other than that described below (e.g. lead-free solder).

 - **Narrow pitch connector (P8)**

For products other than the ones above, please refer to the latest product specifications.

Table A

<table>
<thead>
<tr>
<th>Product name</th>
<th>Soldering iron temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMD type connectors</td>
<td>300°C within 5 sec.</td>
</tr>
<tr>
<td></td>
<td>350°C within 3 sec.</td>
</tr>
</tbody>
</table>

Hand soldering

1) Set the soldering iron so that the tip temperature is less than that given in the table below.

2) Do not allow flux to spread onto the connector leads or PC board. This may lead to flux rising up to the connector inside.

3) Touch the soldering iron to the foot pattern. After the foot pattern and connector terminal are heated, apply the solder wire so it melts at the end of the connector terminals.

4) Be aware that soldering while applying a load on the connector terminals may cause improper operation of the connector.

5) Thoroughly clean the soldering iron.

6) Flux from the solder wire may get on the contact surfaces during soldering operations. After soldering, carefully check the contact surfaces and clean off any solder before use.

7) These connector is low profile type. If too much solder is supplied for hand soldering, it makes miss mating because of interference at soldering portion. Please pay attentions.

- **Solder reworking**
 1) Finish reworking in one operation.
 2) In case of soldering rework of bridges. Don’t use supplementary solder flux. Doing so may cause contact problems by flux.
 3) Keep the soldering iron tip temperature below the temperature given in Table A.

Handling Single Components

1) Make sure not to drop or allow parts to fall from work bench.

2) Excessive force applied to the terminals could cause warping, come out, or weaken the adhesive strength of the solder. Handle with care.

3) Do not insert or remove the connector when it is not soldered. Forcibly applied external pressure on the terminals can weaken the adherence of the terminals to the molded part or cause the terminals to lose their evenness.

Panasonic Corporation Electromechanical Control Business Division industrial.panasonic.com/ac/e/

© Panasonic Corporation 2015

ACCTB48E 201503-T
Notes on Using Narrow pitch Connectors/Stacking Connectors for High Current

Precautions for mating
This product is designed with ease of handling. However, in order to prevent the deformation or damage of contacts and molding, take care and do not mate the connectors as shown right.

![Precautions for mating](image)

Cleaning flux from PC board
There is no need to clean this product. If cleaning it, pay attention to the following points to prevent the negative effect to the product.
1) Keep the cleaning solvent clean and prevent the connector contacts from contamination.
2) Some cleaning solvents are strong and they may dissolve the molded part and characters, so pure water passed liquid solvent is recommended.

Handling the PC board
■ Handling the PC board after mounting the connector
When cutting or bending the PC board after mounting the connector, be careful that the soldered sections are subjected to excessive force.

![Handling the PC board](image)

Storage of connectors
1) To prevent problems from voids or air pockets due to heat of reflow soldering, avoid storing the connectors in areas of high humidity.
2) Depending on the connector type, the color of the connector may vary from connector to connector depending on when it is produced.
3) When storing the connectors with the PC boards assembled and components already set, be careful not to stack them up so the connectors are subjected to excessive forces.
4) Avoid storing the connectors in locations with excessive dust. The dust may accumulate and cause improper connections at the contact surfaces.

![Storage of connectors](image)

Other Notes
1) Do not remove or insert the electrified connector (in the state of carrying current or applying voltage).
2) Dropping of the products or rough mishandling may bend or damage the terminals and possibly hinder proper reflow soldering.
3) Before soldering, try not to insert or remove the connector more than absolutely necessary.
4) When coating the PC board after soldering the connector to prevent the deterioration of insulation, perform the coating in such a way so that the coating does not get on the connector.
5) There may be variations in the colors of products from different production lots. This is normal.
6) The connectors are not meant to be used for switching.
7) Product failures due to condensation are not covered by warranty.
Regarding sample orders to confirm proper mounting

When ordering samples to confirm proper mounting with the placement machine, connectors are delivered in 50-piece units in the condition given right. Consult a sales representative for ordering sample units.

Condition when delivered from manufacturing

- Embossed tape amount required for the mounting
- Required number of products for sample production (Unit 50 pcs.)

Reel

(Delivery can also be made on a reel by customer request.)

Please refer to the latest product specifications when designing your product.