The TPS61098x has two modes controlled by MODE pin: Active mode and Low Power mode. In Active mode, both outputs are enabled with enhanced response performance. In Low Power mode, the LDO or load switch is disabled to disconnect peripherals. The TPS61098x consumes only 300 nA quiescent current and can achieve up to 88% efficiency at 10 µA load in Low Power mode.

The TPS61098x supports automatic pass-through function. When input voltage is higher than a pass-through threshold, the boost converter stops switching and passes the input voltage to VMAIN rail; when input voltage is lower than the threshold, the boost works in boost mode and regulates output at the target value. The TPS61098x provides different versions for different output set values.

The TPS61098x can provide up to 50 mA total output current at 0.7 V input to 3.3 V output conversion. The boost is based on a hysteretic controller topology using synchronous rectifier to obtain maximum efficiency at minimal quiescent current.

The TPS61098x is available in 1.5 mm x 1.5 mm WSON package to enable small circuit layout size.
4 Revision History

Changes from Original (June 2015) to Revision A

- Changed text in the Description From: "can achieve 80% efficiency" To: "can achieve up to 88% efficiency" 1
- Changed "LDO / LS CRTL" with LDO / LS CTRL" and 4.7 µF To 4.7 µH in the Simplified Schematic 1
- Changed V_{Dropout} in the Electrical Characteristics From: TPS61098 and TPS610981 To: TPS6198x 5
- Changed $V_{\text{IN}} = 1.2 \text{ V To } V_{\text{IN}} = 1.5 \text{ V and } V_{\text{IN}} = 2 \text{ V to } V_{\text{IN}} = 2.5 \text{ V in Figure 11} 7
- Changed "Boost Efficiency" To: "Boost Output Voltage" in Figure 14 To Figure 17 8
- Changed text "below the programmed threshold," To: "below the programmed threshold with a hysteresis," in Thermal Shutdown ... 14
- Changed text "unstable operation at IC temperatures at the overtemperature threshold." To: "unstable operation at the overtemperature threshold." in Thermal Shutdown ... 14
- Changed text "sense or transfer signals" To: sense or transmit signals" in VMAIN to Power MCU and VSUB to Power Subsystem 16
- Changed 4.7 µF To 4.7 µH in Figure 29 ... 16
- Changed text "TPS610981 enters into sleep mode" To: "TPS610981 enters into Low Power mode" in Control Sequence .. 19
- Changed 4.7 µF To 4.7 µH in Figure 49 ... 23
- Changed text "a boost converter and an LDO are needed: To: "a boost converter with an LDO is needed" in Figure 53 . 24
- Changed 4.7 µF To 4.7 µH in Figure 53 ... 24
5 Device Comparison Table

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>INTEGRATED LDO OR LOAD SWITCH</th>
<th>VMAIN (ACTIVE MODE)</th>
<th>VMAIN (LOW POWER MODE)</th>
<th>VSUB (ACTIVE MODE)</th>
<th>VSUB (LOW POWER MODE)</th>
<th>VSUB ACTIVE DISCHARGE IN LOW POWER MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS61098DSE(1)</td>
<td>LDO</td>
<td>4.3 V</td>
<td>2.2 V</td>
<td>3.1 V</td>
<td>OFF</td>
<td>No</td>
</tr>
<tr>
<td>TPS610981DSE</td>
<td>LDO</td>
<td>3.3 V</td>
<td>3.3 V</td>
<td>3.0 V</td>
<td>OFF</td>
<td>Yes</td>
</tr>
<tr>
<td>TPS610982DSE(2)</td>
<td>LDO</td>
<td>3.3 V</td>
<td>3.3 V</td>
<td>2.8 V</td>
<td>2.8 V</td>
<td>No</td>
</tr>
</tbody>
</table>

(1) The DSE package is available taped and reeled. Add R suffix to device type (e.g., TPS61098DSER) to order quantities of 3000 devices per reel. Add T suffix to device type (e.g., TPS61098DSET) to order quantities of 250 devices per reel. For detailed ordering information please check the PACKAGE OPTION ADDENDUM section at the end of this datasheet.

(2) Preview product. Contact TI factory for more options information.

6 Pin Configuration and Functions

<table>
<thead>
<tr>
<th>PIN NAME</th>
<th>NO.</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMAIN</td>
<td>1</td>
<td>PWR</td>
<td>Boost converter output</td>
</tr>
<tr>
<td>SW</td>
<td>2</td>
<td>PWR</td>
<td>Connection for inductor</td>
</tr>
<tr>
<td>VIN</td>
<td>3</td>
<td>IC</td>
<td>IC power supply input</td>
</tr>
<tr>
<td>MODE</td>
<td>4</td>
<td>I</td>
<td>Mode selection pin. 1: Active mode; 0: Low Power mode. Must be actively tied high or low. Do not leave floating.</td>
</tr>
<tr>
<td>VSUB</td>
<td>5</td>
<td>PWR</td>
<td>LDO or load switch output</td>
</tr>
<tr>
<td>GND</td>
<td>6</td>
<td>PWR</td>
<td>IC ground</td>
</tr>
</tbody>
</table>

Copyright © 2015, Texas Instruments Incorporated

Submit Documentation Feedback

Product Folder Links: TPS61098 TPS610981 TPS610982
7 Specifications

7.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)\(^\text{(1)}\)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage VIN, SW, VMAIN, VSUB</td>
<td>-0.3</td>
<td>4.7</td>
<td>V</td>
</tr>
<tr>
<td>MODE</td>
<td>-0.3</td>
<td>5.0</td>
<td>V</td>
</tr>
<tr>
<td>Operating junction temperature, T(_J)</td>
<td>-40</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range, T(_stg)</td>
<td>-65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

\(^\text{(1)}\) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

<table>
<thead>
<tr>
<th></th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(_{ESD}) Electrostatic discharge</td>
<td>±1000</td>
<td>V</td>
</tr>
<tr>
<td>Human Body Model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(^\text{(1)})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charged Device Model (CDM), per JEDEC specification JESD22-C101, all pins(^\text{(2)})</td>
<td>±250</td>
<td></td>
</tr>
</tbody>
</table>

\(^\text{(1)}\) JEDEC document JEP155 states that 500V HBM rating allows safe manufacturing with a standard ESD control process.
\(^\text{(2)}\) JEDEC document JEP157 states that 250V CDM rating allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(_{IN}) Input voltage range</td>
<td>0.7</td>
<td>4.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V(_{MAIN}) Boost converter output voltage range</td>
<td>2.2</td>
<td>4.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V(_{SUB}) Load switch / LDO output voltage range</td>
<td>1.8</td>
<td>3.7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>L Effective inductance range</td>
<td>1.54</td>
<td>6.11</td>
<td>µH</td>
<td></td>
</tr>
<tr>
<td>C(_{BAT}) Effective input capacitance range at input(^\text{(1)})</td>
<td>5</td>
<td>µF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(_{O1}) Effective output capacitance range at VMAIN pin for boost converter output(^\text{(1)})</td>
<td>5</td>
<td>10</td>
<td>µF</td>
<td></td>
</tr>
<tr>
<td>C(_{O2}) Effective output capacitance range at VSUB pin for LDO output(^\text{(1)})</td>
<td>1</td>
<td>5</td>
<td>µF</td>
<td></td>
</tr>
<tr>
<td>C(_{O2}) Effective output capacitance range at VSUB pin for load switch output(^\text{(1)})(^\text{(3)})</td>
<td>1</td>
<td>2.2</td>
<td>µF</td>
<td></td>
</tr>
<tr>
<td>T(_J) Operating virtual junction temperature</td>
<td>-40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

\(^\text{(1)}\) Effective value. Ceramic capacitor’s derating effect under bias should be considered. Choose the right nominal capacitance by checking capacitor DC bias characteristics.
\(^\text{(2)}\) If LDO output current is lower than 20mA, the minimum effective output capacitance value can be lower to 0.5µF.
\(^\text{(3)}\) With load switch version, the output capacitor at VSUB pin is only required if smaller voltage ripple is needed.

7.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^\text{(1)})</th>
<th>TPS61098x DSE 6 PINS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(_{JA}) Junction-to-ambient thermal resistance</td>
<td>207.3</td>
<td>°C/W</td>
</tr>
<tr>
<td>R(_{JC\text{top}}) Junction-to-case (top) thermal resistance</td>
<td>118.9</td>
<td></td>
</tr>
<tr>
<td>R(_{JB}) Junction-to-board thermal resistance</td>
<td>136.4</td>
<td></td>
</tr>
<tr>
<td>ψ(_{JT}) Junction-to-top characterization parameter</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>ψ(_{JB}) Junction-to-board characterization parameter</td>
<td>136.4</td>
<td></td>
</tr>
<tr>
<td>R(_{JC\text{bot}}) Junction-to-case (bottom) thermal resistance</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

\(^\text{(1)}\) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
7.5 Electrical Characteristics

$T_J = -40^\circ C$ to $125^\circ C$ and $V_{IN} = 0.7$ V to 4.5 V. Typical values are at $V_{IN} = 1.5$ V, $T_J = 25^\circ C$, unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VERSION</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IN}</td>
<td>TPS61098x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{IN(MIN)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{Q(VIN)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{DS(on)}_{LS}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{DS(on)}_{HS}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{MAIN}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{(SUB)}_{(LDO version)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) TPS61098x is able to drive $R_{load} > 150 \Omega$ after V_{MAIN} is established over 1.8 V.

Copyright © 2015, Texas Instruments Incorporated
Electrical Characteristics (continued)

$T_J = -40^\circ C$ to $125^\circ C$ and $V_{IN} = 0.7 \text{ V to } 4.5 \text{ V}$. Typical values are at $V_{IN} = 1.5 \text{ V}, T_J = 25^\circ C$, unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VERSION</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{PSTH} Pass-through mode threshold</td>
<td>TPS61098</td>
<td>MODE = High, V_{IN} rising</td>
<td>4.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MODE = High, Hysteresis</td>
<td>0.1</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MODE = Low, V_{IN} rising</td>
<td>2.25</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPS610981</td>
<td>MODE = Low, Hysteresis</td>
<td>0.1</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPS61098x</td>
<td>MODE = High / Low, V_{IN} rising</td>
<td>3.35</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MODE = High / Low, Hysteresis</td>
<td>0.1</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSRR Power-supply rejection ratio from LDO input to output</td>
<td>TPS61098x</td>
<td>$f = 1 \text{ kHz}, C_{O2} = 10 \text{ µF}, I_{SUB} = 10 \text{ mA}$</td>
<td>40</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{stup_{LDO}}$ LDO startup time</td>
<td>TPS61098x</td>
<td>No Load</td>
<td>1</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Logic</td>
<td></td>
<td>Time from MODE high to 90% of V_{SUB}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IL} MODE input low voltage</td>
<td>TPS61098x</td>
<td></td>
<td>0.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IH} MODE input high voltage</td>
<td>TPS61098x</td>
<td></td>
<td>1.2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overtemperature protection</td>
<td>TPS61098x</td>
<td></td>
<td>150</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overtemperature hysteresis</td>
<td>TPS61098x</td>
<td></td>
<td>25</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.6 Typical Characteristics

Figure 1. \(I_Q \) into VMAIN Pin at Active Mode vs Temperature

Figure 2. \(I_Q \) into VMAIN Pin at Low Power Mode vs Temperature

Figure 3. Rectifier On Resistance vs Temperature

Figure 4. Low Side Switch On Resistance vs Temperature

Figure 5. Rectifier On Resistance vs Temperature

Figure 6. Low Side Switch On Resistance vs Temperature
Typical Characteristics (continued)

Figure 7. Rectifier On Resistance vs Temperature

Figure 8. Low Side Switch On Resistance vs Temperature

Figure 9. Current Limit vs Temperature

Figure 10. Boost Efficiency vs Output Current at Low Power Mode

Figure 11. Boost Efficiency vs Output Current at Active Mode

Figure 12. Boost Efficiency vs Output Current at Low Power Mode
Typical Characteristics (continued)

Figure 13. Boost Efficiency vs Output Current at Active Mode

Figure 14. Boost Load Regulation at Low Power Mode

Figure 15. Boost Load Regulation at Active Mode

Figure 16. Boost Load Regulation at Low Power Mode

Figure 17. Boost Load Regulation at Active Mode

Figure 18. LDO Load Regulation
Typical Characteristics (continued)

![Graph 1: LDO Load Regulation](image1)

Figure 19. LDO Load Regulation

![Graph 2: No Load Input Current vs Input Voltage at Low Power Mode](image2)

Figure 20. No Load Input Current vs Input Voltage at Low Power Mode

![Graph 3: No Load Input Current vs Input Voltage at Low Power Mode](image3)

Figure 21. No Load Input Current vs Input Voltage at Low Power Mode

![Graph 4: No Load Input Current vs Input Voltage at Active Power Mode](image4)

Figure 22. No Load Input Current vs Input Voltage at Active Power Mode

![Graph 5: LDO PSRR vs Frequency](image5)

Figure 23. LDO PSRR vs Frequency

![Graph 6: LDO PSRR vs Frequency](image6)

Figure 24. LDO PSRR vs Frequency
8 Detailed Description

8.1 Overview

The TPS61098x is an ultra low power solution optimized for products powered by either a one-cell or two-cell alkaline, NiCd or NiMH, one-cell coin cell battery or one-cell Li-Ion or Li-polymer battery. To simplify system design and save PCB space, the TPS61098x integrates an LDO or load switch with a boost converter (different configurations for different versions) to provide two output rails in a compact package. The boost output \(V_{\text{MAIN}} \) is designed as an always-on supply to power a main system, and the LDO or load switch output \(V_{\text{SUB}} \) is designed to power peripheral devices and can be turned off.

The TPS61098x features two modes controlled by MODE pin: Active mode and Low Power mode. In Active mode, both outputs are enabled, and the transient response performance of the boost converter and LDO/load switch are enhanced, so it is able to respond load transient quickly. In Low Power mode, the LDO/load switch is disabled, so the peripherals can be disconnected to minimize the battery drain. Besides that, the boost consumes only 300 nA quiescent current in Low Power mode, so up to 88% efficiency at 10 µA load can be achieved to extend the battery run time.

The TPS61098x supports automatic pass-through function in both Active mode and Low Power mode. When \(V_{\text{IN}} \) is detected higher than a pass-through threshold, which is around the target \(V_{\text{MAIN}} \) voltage, the boost converter stops switching and passes the input voltage through inductor and internal rectifier switch to \(V_{\text{MAIN}} \), so \(V_{\text{MAIN}} \) follows \(V_{\text{IN}} \); when \(V_{\text{IN}} \) is lower than the threshold, the boost works in boost mode and regulates \(V_{\text{MAIN}} \) at the target value. The TPS61098x can support different \(V_{\text{MAIN}} \) target values in Active mode and Low Power mode to meet various requirements. For example, for TPS61098, the set value of \(V_{\text{MAIN}} \) is 4.3 V in Active mode but 2.2 V in Low Power mode.

8.2 Functional Block Diagrams

![Functional Block Diagram](image-url)
8.3 Feature Description

8.3.1 Boost Controller Operation

The TPS61098x boost converter is controlled by a hysteretic current mode controller. This controller regulates the output voltage by keeping the inductor ripple current constant in the range of 100 mA and adjusting the offset of this inductor current depending on the output load. Since the input voltage, output voltage and inductor value all affect the rising and falling slopes of inductor ripple current, the switching frequency is not fixed and is decided by the operation condition. If the required average input current is lower than the average inductor current defined by this constant ripple, the inductor current goes discontinuous to keep the efficiency high under light load conditions. Figure 25 illustrates the hysteretic current operation. If the load is reduced further, the boost converter enters into Burst mode. In Burst mode, the boost converter ramps up the output voltage with several pulses and it stops operating once the output voltage exceeds a set threshold, and then it goes into a sleep status and consumes less quiescent current. It resumes switching when the output voltage is below the set threshold. It exits the Burst mode when the output current can no longer be supported in this mode. Refer to Figure 26 for Burst mode operation details.

To achieve high efficiency, the power stage is realized as a synchronous boost topology. The output voltage \(V_{\text{MAIN}} \) is monitored via an internal feedback network which is connected to the voltage error amplifier. To regulate the output voltage, the voltage error amplifier compares this feedback voltage to the internal voltage reference and adjusts the required offset of the inductor current accordingly.

![Figure 25. Hysteretic Current Operation](image)

\[I_L \]

Continuous Current Operation

Discontinuous Current Operation

100 mA (typ.)

\[t \]

Figure 25. Hysteretic Current Operation

![Figure 26. Burst Mode Operation](image)

Output Voltage of Boost Converter

Burst Mode Operation at Light Load

\[V_{\text{OUT_BST}} \]

Continuous Current Operation at Heavy Load

\[V_{\text{OUT_NOM}} \]

\[t \]

Figure 26. Burst Mode Operation

8.3.2 Pass-Through Operation

The TPS61098x supports automatic pass-through function for the boost converter. When the input voltage is detected higher than the pass-through threshold \(V_{\text{PSTH}} \), which is around \(V_{\text{MAIN}} \) set value, the boost converter enters into pass-through operation mode. In this mode, the boost converter stops switching, the rectifier is constantly turned on and the low side switch is turned off. The input voltage passes through external inductor and the internal rectifier to the output. The output voltage in this mode depends on the resistance between the input and the output, calculated as Equation 1:

\[V_{\text{MAIN}} = V_{\text{IN}} - \left(I_{\text{MAIN}} + I_{\text{SUB}} \right) \times (R_L + R_{\text{DSon_HS}}) \]

Equation 1
where R_L is the DCR of external inductor, and $R_{\text{DS(on)}_\text{HS}}$ is the resistance of internal rectifier.

When the input voltage is lower than V_{PSTH}, the boost converter resumes switching to regulate the output at target value.

The TPS61098x can support automatic pass-through function in both Active mode and Low Power mode.

8.3.3 LDO / Load Switch Operation

The TPS61098x uses a PMOS as a pass element of its integrated LDO / load switch. The input of the PMOS is connected to the output of the boost converter. When the MODE pin is pulled logic high, the PMOS is enabled to output a voltage on VSUB pin.

For load switch version, the PMOS pass element is fully turned on when enabled, no matter the boost converter works in boost operation mode or pass-through operation mode. So the output voltage at VSUB pin is decided by the output voltage at VMAIN pin and the current passing through the PMOS as Equation 2:

$$V_{\text{SUB}} = V_{\text{MAIN}} - I_{\text{SUB}} \times R_{\text{LS}}$$

where I_{SUB} is the load of VSUB rail and R_{LS} is the resistance of the PMOS when it is fully turned on.

For LDO version, the output voltage V_{SUB} is regulated at the set value when the voltage difference between its input and output is higher than the dropout voltage V_{Dropout}, no matter the boost converter works in boost operation mode or pass-through operation mode. V_{SUB} is monitored via an internal feedback network which is connected to the voltage error amplifier. To regulate V_{SUB}, the voltage error amplifier compares the feedback voltage to the internal voltage reference and adjusts the gate voltage of the PMOS accordingly. When the voltage drop across the PMOS is lower than the dropout voltage, the PMOS will be fully turned on and the output voltage at V_{SUB} is decided by Equation 2.

When the MODE pin is pulled low, the LDO or load switch is turned off to disconnect the load at VSUB pin. For some versions, active discharge function at VSUB pin is offered, which can discharge the V_{SUB} to ground after MODE pin is pulled low, to avoid any bias condition to downstream devices. For versions without the active discharge function, the VSUB pin is floating after MODE pin is pulled low, and its voltage normally drops down slowly due to leakage. Refer to the Device Comparison Table for version differences.

When MODE pin is toggled from low to high, soft-start is implemented for the LDO versions to avoid inrush current during LDO startup. The start up time of LDO is typically 1 ms. For load switch versions, the load switch is turned on faster, so the output capacitor at VSUB pin is suggested 10X smaller than the output capacitor at VMAIN pin to avoid obvious voltage drop of V_{MAIN} during load switch turning on process.

8.3.4 Start Up and Power Down

The boost converter of the TPS61098x is designed always-on, so there is no enable or disable control of it. The boost converter starts operation once input voltage is applied. If the input voltage is not high enough, a low voltage startup oscillator operates the switches first. During this phase, the switching frequency is controlled by the oscillator, and the maximum switch current is limited. Once the converter has built up the output voltage V_{MAIN} to approximately 1.8 V, the device switches to the normal hysteretic current mode operation and the VMAIN rail starts to supply the internal control circuit. If the input voltage is too low or the load during startup is too heavy, which makes the converter unable to build up 1.8 V at VMAIN rail, the boost converter can't start up successfully. It will keep in this status until the input voltage is increased or removed.

The TPS61098x is able to startup with 0.7 V input voltage with $\geq 3 \, \text{k}\Omega$ load. The startup time depends on input voltage and load conditions. After the V_{MAIN} reaches 1.8 V to start the normal hysteretic current mode operation, an internal ramp-up reference controls soft-start time of the boost converter until V_{MAIN} reaches its set value.

The TPS61098x does not support undervoltage lockout function. When the input voltage drops to a low voltage and can't provide the required energy to the boost converter, the V_{MAIN} drops. When and to what extent V_{MAIN} drops are dependent on the input and load conditions. When the boost converter is unable to maintain 1.8 V at VMAIN rail to supply the internal circuit, the TPS61098x powers down and enters into startup process again.
Feature Description (continued)

8.3.5 Over Load Protection

The boost converter of the TPS61098x supports a cycle-by-cycle current limit function in boost mode operation. If the peak inductor current reaches the internal switch current limit threshold, the main switch is turned off to stop a further increase of the input current. In this case the output voltage will decrease since the device cannot provide sufficient power to maintain the set output voltage. If the output voltage drops below the input voltage, the backgate diode of the rectifying switch gets forward biased and current starts to flow through it. Because this diode cannot be turned off, the load current is only limited by the remaining DC resistance. After the overload condition is removed, the converter automatically resumes normal operation.

The overload protection is not active in pass-through mode operation, in which the load current is only limited by the DC resistance.

The integrated LDO / load switch also supports over load protection. When the load current of VSUB rail reaches the I_{LIM_SUB}, the $V_{(SUB)}$ output current will be regulated at this limit value and will not increase further. In this case the $V_{(SUB)}$ voltage will decrease since the device cannot provide sufficient power to the load.

8.3.6 Thermal Shutdown

The TPS61098x has a built-in temperature sensor which monitors the internal junction temperature in boost mode operation. If the junction temperature exceeds the threshold (150°C typical), the device stops operating. As soon as the junction temperature has decreased below the programmed threshold with a hysteresis, it starts operating again. There is a built-in hysteresis (25°C typical) to avoid unstable operation at the overtemperature threshold. The over temperature protection is not active in pass-through mode operation.

8.4 Device Functional Modes

8.4.1 Operation Modes by MODE Pin

The TPS61098x features two operation modes controlled by MODE pin: the Active mode and Low Power mode. It can provide quick transient response in Active mode and ultra-low quiescent current in Low Power mode. So a low power system can easily use the TPS61098x to get high performance in its active mode and meantime minimize its power consumption to extend the battery run time in its sleep mode.

The MODE pin is usually controlled by an I/O pin of a controller, and should not be left floating.

8.4.1.1 Active Mode

The TPS61098x works in Active mode when MODE pin is logic high. In Active mode, both of the boost converter and the integrated LDO/load switch are enabled, and the TPS61098x can provide dual outputs simultaneously. The transient response performance of the boost converter is enhanced in Active mode, and the device consumes around 15 µA quiescent current. It is able to respond load transient quickly.

When MODE pin is toggled from low to high, soft-start is implemented for the LDO versions to avoid inrush current during startup. For load switch versions, the load switch is turned on faster, so the output capacitor at VSUB pin is suggested 10X smaller than the output capacitor at VMAIN pin to avoid obvious voltage drop of $V_{(MAIN)}$ during turning on process.

8.4.1.2 Low Power Mode

The TPS61098x works in Low Power mode when MODE pin is logic low. In Low Power mode, the LDO/load switch is turned off, so the peripherals can be disconnected to minimize the battery drain. The VSUB pin either outputs high impedance or is pulled to ground by internal active discharge circuit, depending on different versions. The boost converter consumes only 300 nA quiescent current typically, and can achieve up to 88% efficiency at 10 µA load.

The Low Power mode is designed to keep the load device powered with minimum power consumption. For example, it can be used to keep powering the main system, like an MCU, in a system's sleep mode even under < 0.7 V input voltage condition.

Figure 27 and Figure 28 illustrate the outputs of the TPS61098 and TPS610981 under different input voltages in Active mode and Low Power mode.
Device Functional Modes (continued)

8.4.2 Burst Mode Operation under Light Load Condition
The boost converter of TPS61098x enters into Burst Mode operation under light load condition. Refer to Boost Controller Operation for details.

8.4.3 Pass-Through Mode Operation
The boost converter of TPS61098x automatically enters into pass-through mode operation when input voltage is higher than the target output voltage. Refer to Pass-Through Operation for details.
9 Applications and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information
The TPS61098x is an ultra low power solution for products powered by either a one-cell or two-cell alkaline, NiCd or NiMH, one-cell coin cell or one-cell Li-Ion or Li-polymer battery. It integrates either a Low-dropout Linear Regulator (LDO) or a load switch with a boost converter and provides dual output rails. The \(V_{\text{MAIN}} \) rail is the output of the boost converter. It is an always-on output and can only be turned off by removing input voltage. The \(V_{\text{SUB}} \) rail is the output of the integrated LDO or load switch, and it can be turned off by pulling the MODE pin low.

9.2 Typical Applications

9.2.1 \(V_{\text{MAIN}} \) to Power MCU and \(V_{\text{SUB}} \) to Power Subsystem

The TPS61098x suits for low power systems very well, especially for the system which spends the most of time in sleep mode and wakes up periodically to sense or transmit signals. For this kind of application, the boost output \(V_{\text{MAIN}} \) can be used as an always-on supply for the main system, such as an MCU controller, and the LDO or load switch output \(V_{\text{SUB}} \) is used to power peripheral devices or subsystem.

As shown in Figure 29, the MCU can control both of the subsystem and the TPS61098x. When the system goes into sleep mode, the MCU can disable the subsystem first, and then force the TPS61098x enter into Low Power mode, where the VSUB rail is disconnected but the \(V_{\text{MAIN}} \) rail still powers the MCU with only 300 nA quiescent current. When the system wakes up, the MCU pulls the MODE pin of TPS61098x high first to turn on the VSUB rail, and then enables the subsystem. In this way, the system can benefit both of the enhanced transient response performance in active mode and the ultra-low quiescent current in sleep mode.

Figure 29. Typical Application of TPS610981 to Power Low Power System

9.2.1.1 Design Requirements
- 3.3 V \(V_{\text{MAIN}} \) rail to power MCU with 15 mA load current, 3 V \(V_{\text{SUB}} \) rail to power subsystem with 10 mA load current
- Power source, single-cell alkaline battery (0.7 V to 1.65 V range)
- Greater than 90% conversion efficiency
Typical Applications (continued)

9.2.1.2 Detailed Design Procedure

9.2.1.2.1 Device Choice

In the TPS61098x family, different versions are provided. Refer to Device Comparison Table for version details and select the right version for target applications. It is OK to use only one output rail, either $V_{\text{(MAIN)}}$ or $V_{\text{(BUS)}}$, as long as it suits the application.

In this example, dual rails of 3.3 V and 3 V are required to power both MCU and subsystem, so the TPS610981 is selected.

9.2.1.2.2 Maximum Output Current

For the boost converter, it provides output current for both $V_{\text{(MAIN)}}$ and $V_{\text{(SUB)}}$ rails. Its maximum output capability is determined by the input to output ratio and the current limit of the boost converter and can be estimated by Equation 3.

$$I_{\text{OUT(max)}} = \frac{V_{\text{IN}} \times (L_{\text{LIM}} - 50\text{mA}) \times \eta}{V_{\text{MAIN}}}$$

where η is the boost converter power efficiency estimation, and 50 mA is half of the inductor current ripple value. Minimum input voltage, maximum boost output voltage and minimum current limit I_{LIM} should be used as the worst case condition for the estimation.

Internal current limit is also implemented for the integrated LDO/load switch. So the maximum output current of VSUB rail should be lower than I_{LIM}, which has 200 mA minimum value. For LDO version, the maximum output current is also limited by its input to output headroom, that is $V_{\text{(MAIN)}} - V_{\text{(SUB)}}$. Make sure the headroom voltage is enough to support the load current. Please refer to Electrical Characteristics for the dropout voltage information.

In this example, assume the power efficiency is 80% (lower than typical value for the worst case estimation), so the calculated maximum output current of the boost converter is 50.9 mA, which satisfies the application requirements (15 mA + 10 mA). The load of VSUB rail is 10 mA, which is well below the $V_{\text{(SUB)}}$ rail current limit and the dropout voltage is also within the headroom.

9.2.1.2.3 Inductor Selection

Because the selection of the inductor affects steady state operation, transient behavior, and loop stability, the inductor is the most important component in power regulator design. There are three important inductor specifications, inductor value, saturation current, and dc resistance (DCR).

The TPS61098x is designed to work with inductor values between 2.2 µH and 4.7 µH. The inductance values affects the switching frequency f in continuous current operation, which is proportional to $1/L$ as shown in Equation 4.

$$f = \frac{1}{L \times 100\text{mA}} \times \frac{V_{\text{IN}} \times (V_{\text{MAIN}} - V_{\text{IN}}} \times \eta}{V_{\text{MAIN}}}$$

The inductor current ripple is fixed to 100 mA typical value by internal design, but it can be affected by the inductor value indirectly. Normally when a smaller inductor value is applied, the inductor current ramps up and down more quickly, so the current ripple becomes bigger because the internal current comparator has some delay to respond. So if smaller inductor peak current is required in applications, a higher inductor value can be tried. However, the TPS61098x is optimized to work within a range of L and C combinations. The LC output filter inductance and capacitance must be considered together. The output capacitor sets the corner frequency of the converter while the inductor creates a Right-Half-Plane-Zero degrading the stability of the converter. Consequently with a larger inductor, a bigger capacitor normally should be used to ensure the same L/C ratio thus a stable loop.

Having selected an inductance value, the peak current for the inductor in steady-state operation varies as a function of the load, the input and output voltages and can be estimated using Equation 5.
Typical Applications (continued)

\[
\begin{align*}
I_{L, \text{MAX}} &= \frac{V_{\text{MAIN}} \times (I_{\text{MAIN}} + I_{\text{SUB}})}{V_{\text{IN}} \times \eta} + 50mA; \quad \text{continuous current operation} \\
I_{L, \text{MAX}} &= 100mA; \quad \text{discontinuous current operation}
\end{align*}
\]

where, 80% can be used for the boost converter power efficiency estimation, 100 mA is the typical inductor current ripple value and 50mA is half of the ripple value, which may be affected a little bit by inductor value. **Equation 5** provides a suitable inductor current rating by using minimum input voltage, maximum boost output voltage and maximum load current for the calculation. Load transients and error conditions may cause higher inductor currents.

Equation 6 provides an easy way to estimate whether the device will work in continuous or discontinuous operation depending on the operating points. As long as the **Equation 6** is true, continuous operation is typically established. If **Equation 6** becomes false, discontinuous operation is typically established.

\[
\frac{V_{\text{MAIN}} \times (I_{\text{MAIN}} + I_{\text{SUB}})}{V_{\text{IN}} \times \eta} > 50mA
\]

Selecting an inductor with insufficient saturation performance can lead to excessive peak current in the converter. This could eventually harm the device and reduce its reliability.

In this example, the maximum load for the boost converter is 25 mA, and the minimum input voltage is 0.7 V, and the efficiency under this condition can be estimated at 80%, so the boost converter works in continuous operation by the calculation. The inductor peak current is calculated as 197 mA. To leave some margin, a 4.7 µH inductor with at least 250 mA saturation current is recommended for this application.

Table 1 also lists the recommended inductor for the TPS61098x device.

<table>
<thead>
<tr>
<th>INDUCTANCE [µH]</th>
<th>ISAT [A]</th>
<th>IRMS [A]</th>
<th>DC RESISTANCE [mΩ]</th>
<th>PART NUMBER</th>
<th>MANUFACTURER</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>0.86</td>
<td>1.08</td>
<td>168</td>
<td>VLF302510MT-4R7M</td>
<td>TDK</td>
</tr>
<tr>
<td>4.7</td>
<td>0.57</td>
<td>0.95</td>
<td>300</td>
<td>VLF252010MT-4R7M</td>
<td>TDK</td>
</tr>
<tr>
<td>2.2</td>
<td>1.23</td>
<td>1.5</td>
<td>84</td>
<td>VLF302510MT-2R2M</td>
<td>TDK</td>
</tr>
<tr>
<td>2.2</td>
<td>0.83</td>
<td>0.92</td>
<td>120</td>
<td>VLF252010MT-2R2M</td>
<td>TDK</td>
</tr>
</tbody>
</table>

9.2.1.2.4 Capacitor Selection

For best output and input voltage filtering, low ESR X5R or X7R ceramic capacitors are recommended.

The input capacitor minimizes input voltage ripple, suppresses input voltage spikes and provides a stable system rail for the device. An input capacitor value of at least 10 µF is recommended to improve transient behavior of the regulator and EMI behavior of the total power supply circuit. A ceramic capacitor placed as close as possible to the VIN and GND pins of the IC is recommended. For applications where line transient is expected, an input filter composed of 400-Ω resistor and 0.1-µF capacitor as shown in **Figure 29** is mandatory to avoid interference to internal pass-through threshold comparison circuitry.

For the output capacitor of VMAIN pin, small ceramic capacitors are recommended, placed as close as possible to the VMAIN and GND pins of the IC. If, for any reason, the application requires the use of large capacitors which cannot be placed close to the IC, the use of a small ceramic capacitor with a capacitance value of around 2.2 µF in parallel to the large one is recommended. This small capacitor should be placed as close as possible to the VMAIN and GND pins of the IC. The recommended typical output capacitor values are 10 µF and 22 µF (nominal values).

For LDO version, like all low dropout regulators, VSUB rail requires an output capacitor connected between VSUB and GND pins to stabilize the internal control loop. Ceramic capacitor of 10 µF (nominal value) is recommended for most applications. If the V_{SUB} drop during load transient is much cared, higher capacitance value up to 22 µF is recommended to provide better load transient performance. Capacitor below 10 µF is only recommended for light load operation. For load switch version, capacitor of 10x smaller value than capacitor at VMAIN pin is recommended to minimize the voltage drop caused by charge sharing when the load switch is turned on.
When selecting capacitors, ceramic capacitor’s derating effect under bias should be considered. Choose the right nominal capacitance by checking capacitor’s DC bias characteristics. In this example, GRM188R60J106ME84D, which is a 10 µF ceramic capacitor with high effective capacitance value at DC biased condition, is selected for both VMAIN and VSUB rails. The load transient response performance is shown in Application Curves section.

9.2.1.2.5 Control Sequence

In this example, the MCU is powered by the boost output V_{MAIN} and the subsystem is powered by the LDO V_{SUB}. MCU controls both of the TPS610981 and subsystem. The control sequence as shown in Figure 30 is recommended.

![Figure 30. System Control Sequence](image)

When the system is waking up, the MCU wakes up itself first, and it then pulls the MODE pin of TPS610981 to high to turn on the V_{SUB} rail. TPS610981 enters into Active mode and gets ready to provide power to the subsystem. Then the MCU enables the subsystem.

When the system is entering into sleep mode, the MCU disables the subsystem first and then pulls the MODE pin to low to turn off the V_{SUB}, so the subsystem is disconnected from the supply to minimize the current drain. TPS610981 enters into Low Power mode and the VMAIN rail still powers the MCU with only 300 nA quiescent current. The MCU enters into sleep mode itself finally.
9.2.1.3 Application Curves

Figure 31. Switching Waveforms

Figure 32. Switching Waveforms

Figure 33. Switching Waveforms

Figure 34. Switching Waveforms

Figure 35. Switching Waveforms

Figure 36. Switching Waveforms
TPS61098, TPS610981, TPS610982

Figure 37. Load Transient Response

Figure 38. Load Transient Response

Figure 39. LDO Load Transient Response

Figure 40. Line Transient Response

Figure 41. Line Transient Response

Figure 42. Line Transient Response
Figure 43. Load Regulation

- **Mode = L**
 - $V_{IN} = 1.5\, V$
 - $I_{MAIN} = 0\, mA$ to $120\, mA$ to $0\, mA$, ramp up and down

- **Mode = H**
 - $V_{IN} = 1.5\, V$
 - $I_{SUB} = 0\, mA$ to $120\, mA$ to $0\, mA$, ramp up and down

Figure 44. Load Regulation

- **Mode = L**
 - $V_{IN} = 1.5\, V$
 - $I_{MAIN} = 0\, mA$

- **Mode = H**
 - $V_{IN} = 1.5\, V$
 - $I_{MAIN} = 0\, mA$

Figure 45. Line Regulation

- **Mode = H**
 - $V_{IN} = 0.7\, V$ to $4.5\, V$, ramp up and down

Figure 46. Mode Toggling

- **Mode connected to GND**
 - $R_{MAIN} = 3\, k\Omega$
 - $V_{IN} = 0.7\, V$

- **Mode connected to VMAIN**
 - $R_{MAIN} = 1\, k\Omega$
 - $R_{SUB} = 1\, k\Omega$

Figure 47. Startup

Figure 48. Startup
9.2.2 VMAIN to Power the System in Low Power Mode

If only one power supply is needed for the whole system, users can easily leave the VSUB pin float and only use the VMAIN rail as the power supply. In this case, the TPS61098x functions as a standard boost converter. If enhanced load transient performance is needed when the system works in Active mode, the controller can control the MODE pin to switch the TPS61098x between the Active mode and Low Power mode. If the ultra-low Iq is critical for the application, users can connect the MODE pin to GND so the TPS61098x keeps working in Low Power mode with only 300 nA quiescent current. Below shows a typical application where the TPS61098 is used in Low Power mode to generate 2.2 V with only 300 nA Iq to power the whole system.

![Typical Application of TPS61098 VMAIN to Power the System in Low Power Mode](image)

9.2.2.1 Design Requirements

- 2.2 V V\textsubscript{MAIN} to power the whole system
- Power source, single-cell alkaline battery (0.7 V to 1.65 V range)
- \(\geq 80\% \) conversion efficiency at 10µA load

9.2.2.2 Detailed Design Procedure

Refer to the Detailed Design Procedure section for the detailed design steps.

9.2.2.3 Application Curves

![Load Transient Response](image)

![Line Transient Response](image)
9.2.3 VSUB to Power the System in Active Mode

In some applications, the system controller can be powered by the battery directly, but a buck-boost or a boost converter with an LDO is needed to provide a quiet power supply for a subsystem like a sensor. In this type of application, the TPS61098x can be used to replace the discrete boost converter and the LDO, providing a compact solution to simplify the system design and save the PCB space. The LDO can be turned on and off by the MODE pin. When the MODE pin is pulled low, the LDO is turned off to disconnect the load, and the TPS61098x also enters into Low Power mode to save power consumption. Below shows an application where the VSUB of the TPS61098 is used to supply the 3.1 V for a sensor in a system. The boost converter of the TPS61098 outputs 4.3 V and provides enough headroom for the LDO operation.

![Typical Application of TPS61098 VSUB to Power the System in Active Mode](image)

9.2.3.1 Design Requirements
- 3.1 V rail to power a sensor
- Power source, single-cell Li-ion battery (2.7 V to 4.3 V range)

9.2.3.2 Detailed Design Procedure
Refer to the *Detailed Design Procedure* section for the detailed design steps.
9.2.3.3 Application Curves

Figure 54. LDO Load Transient Response

Figure 55. Line Transient Response

Figure 56. MODE Toggling

Figure 57. Startup

10 Power Supply Recommendations

The TPS61098x family is designed to operate from an input voltage supply range between 0.7 V to 4.5 V. The power supply can be either a one-cell or two-cell alkaline, NiCd or NiMH, one-cell coin cell or one-cell Li-Ion or Li-polymer battery. The input supply should be well regulated with the rating of TPS61098x.
11 Layout

11.1 Layout Guidelines
As for all switching power supplies, the layout is an important step in the design, especially at high peak currents and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground paths. The input and output capacitor, as well as the inductor should be placed as close as possible to the IC.

11.2 Layout Example
The bottom layer is a large GND plane connected by vias.

![Diagram showing layout example](image-url)
12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer

TI’S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.2 Documentation Support

Performing Accurate PFM Mode Efficiency Measurements, SLVA236
Accurately measuring efficiency of ultralow-IQ devices, SLYT558
IQ: What it is, what it isn’t, and how to use it, SLYT412

12.3 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

<table>
<thead>
<tr>
<th>PARTS</th>
<th>PRODUCT FOLDER</th>
<th>SAMPLE & BUY</th>
<th>TECHNICAL DOCUMENTS</th>
<th>TOOLS & SOFTWARE</th>
<th>SUPPORT & COMMUNITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS61098</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>TPS610981</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>TPS610982</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
</tbody>
</table>

12.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI’s views; see TI’s Terms of Use.

TI E2E™ Online Community TI’s Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI’s Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments.

12.6 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.
13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Small Outline No-Lead (SON) package configuration.
D. This package is lead-free.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
E. Customers should contact their board fabrication site for solder mask tolerances.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. TI components are not authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products
<table>
<thead>
<tr>
<th>Audio</th>
<th>www.ti.com/audio</th>
<th>Applications</th>
<th>www.ti.com/automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
<td>Automotive and Transportation</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
<td>Communications and Telecom</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
<td>Consumer Electronics</td>
<td>www.ti.com/consumer-apps</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
<td>Industrial</td>
<td>www.ti.com/industrial</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
<td>Medical</td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
<td>Security</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.comomap</td>
<td>TI E2E Community</td>
<td>e2e.ti.com</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated