The Series 2281S single channel, precision DC supply and battery simulator innovatively integrates the functions of high-precision power supply, battery test, and battery simulation. It is able to analyze the DC consumption of a device under test, test a battery and generate a battery model based on battery charging process, and simulate a battery based on the battery model. The Model 2281S-20-6 can output up to 20V and 6A and sink current up to 1A.

The 2281S uses linear regulation to ensure low output noise and superior load current measurement sensitivity. A high resolution color thin film transistor (TFT) screen displays a wide range of information on measurements. Soft-key buttons and a navigation wheel combine with the TFT display to provide an easy-to-navigate user interface that speeds instrument setup and operation. In addition, built-in plotting functions allow monitoring trends such as drift. These features provide the flexibility required for both benchtop and automated test system applications. In addition, the 2281S provides a list mode, triggers, and other speed optimization functions to minimize test time in automated testing applications.

Figure 1. 2281S startup screen.

Precision DC power supply, with DMM-Quality High Resolution, Low Current Measurements capability

Boasting output up to 120W, 20V, and 6A, unlike conventional power supplies, Series 2281S supplies can also make measurements with up to 6½ digits of resolution. Voltage output measurements can be resolved down to 100µV. These supplies measure load currents from 100nA to amps. Four load current measurement ranges (10A, 1A, 100mA, and 10mA) support measuring a device’s full load current, standby mode current, and small sleep mode current with DMM-quality accuracy. The high resolution allows discerning small changes in load currents with confidence. It also makes it possible to make a broad range of measurements or a single range with excellent accuracy across both low and high current values.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor load currents</td>
<td>from 100nA to 6A with high accuracy</td>
</tr>
<tr>
<td>Measure voltage and current</td>
<td>with 6½-digit resolution</td>
</tr>
<tr>
<td>Output up to</td>
<td>120W of low noise, linear regulated power</td>
</tr>
<tr>
<td>Built-in graphing</td>
<td>simplifies analyzing trends or displaying voltage or current waveforms</td>
</tr>
<tr>
<td>High resolution TFT display</td>
<td>and soft-key/icon-based user interface simplify power supply operation</td>
</tr>
<tr>
<td>Digital I/O</td>
<td>for direct communication with other devices and instruments</td>
</tr>
<tr>
<td>GPIB, USB, and LAN interfaces</td>
<td></td>
</tr>
<tr>
<td>Built-in web page</td>
<td>simplifies automated control and monitoring</td>
</tr>
<tr>
<td>Battery test with</td>
<td>charging and discharge function</td>
</tr>
<tr>
<td>Sink current up to</td>
<td>1A and source current up to 6A</td>
</tr>
<tr>
<td>Measure charge/discharge</td>
<td>current and voltage</td>
</tr>
<tr>
<td>Compute battery capacity in</td>
<td>Amp-Hour and Equivalent Series Resistance (ESR)</td>
</tr>
<tr>
<td>Build battery model based</td>
<td>on measurement results, which could be used for battery simulation</td>
</tr>
<tr>
<td>Generate and edit a battery model</td>
<td></td>
</tr>
<tr>
<td>Import and export a battery model</td>
<td></td>
</tr>
<tr>
<td>Simulate real battery output</td>
<td>during the charging/discharging process with battery model</td>
</tr>
<tr>
<td>Set the SOC/Voc, capacity, and</td>
<td>resistance of a simulated battery according to test requirements</td>
</tr>
<tr>
<td>Provide two modes of simulation:</td>
<td>dynamic and static.</td>
</tr>
<tr>
<td>Display the real-time change</td>
<td>of the SOC, Voc, and Vt for the simulated battery</td>
</tr>
</tbody>
</table>

The Series 2281S single channel, precision DC supply and battery simulator innovatively integrates the functions of high-precision power supply, battery test, and battery simulation. It is able to analyze the DC consumption of a device under test, test a battery and generate a battery model based on battery charging process, and simulate a battery based on the battery model. The Model 2281S-20-6 can output up to 20V and 6A and sink current up to 1A.

The 2281S uses linear regulation to ensure low output noise and superior load current measurement sensitivity. A high resolution color thin film transistor (TFT) screen displays a wide range of information on measurements. Soft-key buttons and a navigation wheel combine with the TFT display to provide an easy-to-navigate user interface that speeds instrument setup and operation. In addition, built-in plotting functions allow monitoring trends such as drift. These features provide the flexibility required for both benchtop and automated test system applications. In addition, the 2281S provides a list mode, triggers, and other speed optimization functions to minimize test time in automated testing applications.

Figure 1. 2281S startup screen.

Precision DC power supply, with DMM-Quality High Resolution, Low Current Measurements capability

Boasting output up to 120W, 20V, and 6A, unlike conventional power supplies, Series 2281S supplies can also make measurements with up to 6½ digits of resolution. Voltage output measurements can be resolved down to 100µV. These supplies measure load currents from 100nA to amps. Four load current measurement ranges (10A, 1A, 100mA, and 10mA) support measuring a device’s full load current, standby mode current, and small sleep mode current with DMM-quality accuracy. The high resolution allows discerning small changes in load currents with confidence. It also makes it possible to make a broad range of measurements or a single range with excellent accuracy across both low and high current values.
Measuring a battery during charging/discharging process

In the 2281S battery test function, you can conduct a charging/discharging test on a battery. Charging current ranges from 0 to 6A, and the maximum discharging current is 1A. During the charging, you can set the sampling interval for the internal 6½ digits multi-meter to sample the charging current and voltage continuously. Then the capacity of the battery is integrally computed, also the ESR will be computed. All the test result are saved in the internal memory.

After the test, you can generate a battery model based on the measurement result of a battery charging process. You can also edit the battery model or even create your own battery model, and import or export a battery model.

Figure 2. Battery test display.

Figure 3. Battery model.
Series 2281S
Single Channel, Precision DC Power Supply & Battery Simulator

Real battery simulation based on battery model
In the battery simulator function of the 2281S, real battery output performance can be simulated based on a selected battery model. SOC and Voc can be set to any state to test the device under specific circumstance. There are two modes from which to choose:

- Static: During the static simulation, open voltage and SOC stays the same.
- Dynamic: During the dynamic simulation, open voltage and SOC change according to charging and discharging like a real battery.

Capacity can also be reduced, as well, to accelerate the charging and discharging process for better test efficiency.

Easily View and Control Every Parameter of the battery test and simulation function
The bright, 4.3-inch TFT display shows voltage, current, and Amp-Hour readings, source settings, and many additional settings in large, easy-to-read characters. The icon-based main menu provides all the functions users can control and program for fast access to source setup, measurement setup, display formats, trigger options, and system settings. Menus are short, and menu options are easy to find and clearly described, enabling test parameters to be setup quickly by using the navigation wheel, keypad, or soft-keys. Many setup parameters, such as voltage and current settings, can be entered directly from the home screen; less complex tests don’t require access to the main menu to make adjustments - just use soft keys on the home screen. Whether test requirements are simple or complex, the Series 2281S supplies provide a simple way to set up all required parameters.

Optimized Performance for Production Test
Series 2281S supplies are as powerful in a production test system as they are flexible on the R&D benchtop. They provide all SCPI commands for all measurement functions. In addition, several other features can help minimize test time in automated systems. For example, an external trigger input allows hardware synchronization and control by other instruments in the test system. For the battery test and battery simulator function, the digital I/O can be configured as input or output. If the digital I/O is configured as input, the measurement can be triggered by external signals; if the digital I/O is configured as output, the digital I/O pin will send out a signal when the measurement is finished. Furthermore, to reduce measurement time, reading speed can be increased by reducing the acquisition time from 16.6ms (or 20ms) to 33µs (40µs).
Series 2281S
Single Channel, Precision DC Power Supply & Battery Simulator

A choice of front or rear panel terminals provides enhanced connection flexibility. For maximum voltage accuracy, 4-wire remote sensing ensures that the output voltage programmed is actually the level applied to the load. In addition, the sense lines are monitored in order to detect any breaks in them. These features ensure any production problems can be quickly identified and corrected. Series 2281S supplies can be controlled via their built-in GPIB, USB, or LAN interfaces. The USB interface is test and measurement system (TMC) compliant. The LXI Core compliant LAN interface supports controlling and monitoring a Series 2281S supply remotely, so test engineers can always access the power supply and view measurements, even if they’re located on a different continent than their test systems.

Specifications
23°C ±5°C with 1-hour instrument warm-up.

DC OUTPUT RATINGS
VOLTAGE: 0 to 20V.
CURRENT: 0 to 6A.
MAXIMUM POWER: 120W.

VOLTAGE
SOURCE SETTING
ACCURACY: ±(0.02% + 3mV).
RESOLUTION: 1mV.

MEASUREMENT (0.5V over-range)
ACCURACY: ±(0.02% + 2 mV).
RESOLUTION: 0.1mV.

ADDITIONAL OFFSET AT FASTER MEASUREMENT SETTINGS
5½ (0.1 PLC): 0.21mV
4½ (0.01 PLC): 1.44mV
3½ (0.002 PLC): 7.60mV.

REGULATION
LOAD: ±(0.01% + 2mV).
LINE: ±(0.01% ± 1mV).

OUTPUT RIPPLE AND NOISE
BANDWIDTH 20Hz–20MHz: <1mV RMS, <6mV p-p.

LOAD TRANSIENT RECOVERY TIME: Resistive load change 50% load to 100% load or 100% load to 50% load: <50µs to within 15mV of V-set.

SLEW RATE: Rising Voltage and Falling Voltage: 10V/s to 100V/s. Up to 1000V/s under limited conditions. (100V/s default).

MAXIMUM SOURCE VOLTAGE DROP PER LEAD: To Maintain Specified Voltage Accuracy: IV.
MAXIMUM SENSE HI AND SENSE LO LEAD RESISTANCE: To Maintain Specified Voltage Accuracy: 2Ω.

CURRENT
CURRENT LIMIT SETTING
FULL-SCALE AMPS: 6.1A
ACCURACY: ±(0.05% + 5mA).
RESOLUTION: 0.1mA.

MEASUREMENT (120% over-range except 10A)

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mA</td>
<td>10 µA</td>
<td>±(0.04% + 10 µA)</td>
</tr>
<tr>
<td>100 mA</td>
<td>100 µA</td>
<td>±(0.04% + 20 µA)</td>
</tr>
<tr>
<td>1 A</td>
<td>100 µA</td>
<td>±(0.04% + 250 µA)</td>
</tr>
<tr>
<td>10 A</td>
<td>1000 µA</td>
<td>±(0.05% + 250 µA)</td>
</tr>
</tbody>
</table>

ADDITIONAL OFFSET AT FASTER MEASUREMENT SETTINGS
Measure Resolution and (NPLC)

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>5½ (0.1 PLC)</td>
<td></td>
</tr>
<tr>
<td>10 mA</td>
<td>5.0 µA</td>
</tr>
<tr>
<td>100 mA</td>
<td>20 µA</td>
</tr>
<tr>
<td>1 A</td>
<td>80 µA</td>
</tr>
<tr>
<td>10 A</td>
<td>2.0 mA</td>
</tr>
</tbody>
</table>

4½ (0.01 PLC)

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mA</td>
<td>20 µA</td>
</tr>
<tr>
<td>100 mA</td>
<td>80 µA</td>
</tr>
<tr>
<td>1 A</td>
<td>800 µA</td>
</tr>
<tr>
<td>10 A</td>
<td>10 mA</td>
</tr>
</tbody>
</table>

3½ (0.002 PLC)

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mA</td>
<td>30 µA</td>
</tr>
<tr>
<td>100 mA</td>
<td>250 µA</td>
</tr>
<tr>
<td>1 A</td>
<td>20 mA</td>
</tr>
<tr>
<td>10 A</td>
<td>75 mA</td>
</tr>
</tbody>
</table>

CURRENT PULSE MEASUREMENT
MINIMUM PULSE WIDTH (10mA and 100mA range): 2ms.
MINIMUM PULSE WIDTH (1A AND 10A RANGE): 140µs.
MINIMUM TIME TO CAPTURE TWO CONSECUTIVE PULSES: 0.5ms.

REGULATION
LOAD: ±(0.01% ± 0.25 mA).
LINE: ±(0.01% ± 0.25 mA).

OUTPUT RIPPLE AND NOISE
BANDWIDTH 20Hz–20MHz: <1mV RMS.

MAXIMUM CONTINUOUS AVERAGE SINK CURRENT
NON-PROGRAMMABLE: 1.02A ± 0.1A (typical).
Series 2281S

Single Channel, Precision DC Power Supply & Battery Simulator

System Measurement Speeds

<table>
<thead>
<tr>
<th>Settings</th>
<th>Measure Resolution and (NPLC)</th>
<th>Concurrent (V+I)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Autozero On 60 Hz (50 Hz)</td>
<td>Autozero Off 60 Hz (50 Hz)</td>
</tr>
<tr>
<td>'Read?' with BUS Transfer</td>
<td>6½ (5 PLC)</td>
<td>2.0 (1.5)</td>
</tr>
<tr>
<td></td>
<td>6½ (1 PLC)</td>
<td>9.0 (8.0)</td>
</tr>
<tr>
<td></td>
<td>5½ (0.1 PLC)</td>
<td>48 (38)</td>
</tr>
</tbody>
</table>

TRG and TRACe:DATA? with BUS Transfer
- 4½ (0.01 PLC)³: 680 (646)
- 5½ (0.002 PLC)³: 845 (835)

Other Timing Data

- **CV to CC Transition Time** (V-Set = 5V, I-limit = 0.5A, Resistive Load change 25Ω to 2.5Ω): 2.4ms.
- **CC to CV Transition Time** (V-Set = 5V, I-limit = 0.5A, Resistive Load change 2.5Ω to 25Ω): 1.1ms.
- **Function Change** (from detection of bus command to function change completed): 10ms (typical).
- **Output Off/On** (from detection of bus command to voltage beginning to decrease): 5ms (typical).
- **Reverse Leads Actuation**: >1.5ms.

Protection

Overvoltage Protection (OVP)
- **Setting Accuracy**: ±(0.25% + 0.25V).
- **Resolution**: 125mV.
- **Response Time**: <1.5ms.

Overcurrent Protection (OCP)
- **Setting Accuracy**: ±(0.25% + 0.10A).
- **Resolution**: 25mA.
- **Response Time**: <1.5ms.

Overtemperature Protection (OTP)
- **Output Turn-off Temperature**: >93°C (typical).
- **Response Time**: <1.5ms (typical).

Notes

1. Specifications based on using remote sense connections. For 2-wire connections, add an offset of 0.5mV (front terminals).
2. 6½-digit resolution, 1 PLC reading rate, Filter on, Autozero on.
3. 100V/s to 1000V/s slew rate is limited to 5V changes at a maximum of 3A for the 2281S-20-6 supply.
4. 6½-digit resolution, 1 PLC reading rate, Filter on, Autozero on.
5. Settings: Autozero off, 0.002 PLC, Arm Source:external, Trigger Source:Immediate.
6. Time includes trigger detection, latency plus jitter of start of measurement, and measurement integration time, 0.002 PLC.
8. Settings: Autozero Off, Output On, Output Delay Off, Fixed Source:Voltage, Arm or Measure count 1000.
Series 2281S
Single Channel, Precision DC Power Supply & Battery Simulator

Specifications

Common Mode Current: < 6µA peak-peak (typical).

Chassis Isolation: ±240V, any terminal to chassis. >1GΩ in parallel with <6.8nF.

Temperature Coefficient: Add the following to all accuracy specifications when outside the range, 25°C ±5°C: (0.15 × specification)/°C for 0°C to 18°C and 28°C to 40°C.

Measurement Display Modes: Voltage and current, voltage only, current only.

Measurement Acquisition Control: Continuous, manual, external digital input, PC bus.

List Mode: Maximum number of stored lists: 9.

Math and Filter Functions:
- REL: Removes offset from current reading display. Range: –1×10^6 to +1×10^6.
- Mx+b: Removes offset from current reading display, Range: –1×10^6 to +1×10^6.
- Filter: Moving average, Count: 2–100, Window: 0.01% to 100%.

Memory Buffer: 2,500 locations, each location contains: Voltage measurement, current measurement, CV/CC Mode, and time stamp.

Display: 4.3 in. front panel color display, resolution: 480 pixels × 272 pixels.

Display Modes: Real time voltage and current readings and settings.

Plots of Stored Data: voltage vs. data point, current vs. data point, voltage and current vs. data point, 100 point resolution.

Table of Stored Data: time, date, voltage, current.

Filter: Moving average, Count: 2–100, Window: 0.01% to 100%.

Soft Button and Navigation Wheel Control

Communications:

- **GPIB**: IEEE-488.2 compliant and status model topology.
- **LAN**: RJ-45 connector, 10/100BT, Auto MDIX.
- **LXI Core 2011**, version 1.4.
- **USB**: USB2.0 host (front panel, type A), full speed, support U-disk drives.
- **USB2.0 device** (rear panel, type B), USBTMC compliant.

Digital IO: 9-pin female D-sub. 6 Input/Output pins.

Real-Time Clock: Capacitive charged, 20 days between next power on cycle at 25°C and ≤50%RH.

Digital I/O: 9-pin female D-sub. 6 Input/Output pins.

Input Signal Levels:
- 0.7V (maximum logic low).
- 3.7V (minimum logic high).

Input Voltage Limits:
- –0.25V (Absolute minimum).
- +0.25V (Absolute maximum).

Maximum Source Current:
- 50mA @ >2V (solid-state fuse protected).
- Trig In minimum pulse ≥4µs, Logic Low pulse.

Maximum Sink Current:
- 15–30µs, Logic Low pulse.

Input Voltage Limits:
- 15–30µs, Logic Low pulse.
- 0.7V (maximum logic low).

Input Signal Levels:
- 5V power supply, limited to 0.5A @ >4V (solid-state fuse protected).

Environmental Conditions:

- Operating: 0°C to 40°C, ≤80% RH up to 35°C, non-condensing.
- Storage: –25°C to 70°C.
- Altitude: to 2000 meters.
- Power Supply: 100V/120V/220V/240V ±10%.
- Power Line Frequency: 50/60Hz ±3Hz, automatically sensed at power-on.
- Power Consumption: 630VA peak.

Safety:

EMC: Conforms to European Union EMC directive.

Specifications are subject to change without notice. All Keithley trademarks and trade names are the property of Keithley Instruments. All other trademarks and trade names are the property of their respective companies.

For further information on how to purchase or to locate a sales partner please visit www.keithley.com/buy